mm: add merging after mremap resize
[linux-block.git] / mm / ksm.c
CommitLineData
7a338472 1// SPDX-License-Identifier: GPL-2.0-only
f8af4da3 2/*
31dbd01f
IE
3 * Memory merging support.
4 *
5 * This code enables dynamic sharing of identical pages found in different
6 * memory areas, even if they are not shared by fork()
7 *
36b2528d 8 * Copyright (C) 2008-2009 Red Hat, Inc.
31dbd01f
IE
9 * Authors:
10 * Izik Eidus
11 * Andrea Arcangeli
12 * Chris Wright
36b2528d 13 * Hugh Dickins
f8af4da3
HD
14 */
15
16#include <linux/errno.h>
31dbd01f 17#include <linux/mm.h>
36090def 18#include <linux/mm_inline.h>
31dbd01f 19#include <linux/fs.h>
f8af4da3 20#include <linux/mman.h>
31dbd01f 21#include <linux/sched.h>
6e84f315 22#include <linux/sched/mm.h>
f7ccbae4 23#include <linux/sched/coredump.h>
31dbd01f
IE
24#include <linux/rwsem.h>
25#include <linux/pagemap.h>
26#include <linux/rmap.h>
27#include <linux/spinlock.h>
59e1a2f4 28#include <linux/xxhash.h>
31dbd01f
IE
29#include <linux/delay.h>
30#include <linux/kthread.h>
31#include <linux/wait.h>
32#include <linux/slab.h>
33#include <linux/rbtree.h>
62b61f61 34#include <linux/memory.h>
31dbd01f 35#include <linux/mmu_notifier.h>
2c6854fd 36#include <linux/swap.h>
f8af4da3 37#include <linux/ksm.h>
4ca3a69b 38#include <linux/hashtable.h>
878aee7d 39#include <linux/freezer.h>
72788c38 40#include <linux/oom.h>
90bd6fd3 41#include <linux/numa.h>
f8af4da3 42
31dbd01f 43#include <asm/tlbflush.h>
73848b46 44#include "internal.h"
31dbd01f 45
e850dcf5
HD
46#ifdef CONFIG_NUMA
47#define NUMA(x) (x)
48#define DO_NUMA(x) do { (x); } while (0)
49#else
50#define NUMA(x) (0)
51#define DO_NUMA(x) do { } while (0)
52#endif
53
5a2ca3ef
MR
54/**
55 * DOC: Overview
56 *
31dbd01f
IE
57 * A few notes about the KSM scanning process,
58 * to make it easier to understand the data structures below:
59 *
60 * In order to reduce excessive scanning, KSM sorts the memory pages by their
61 * contents into a data structure that holds pointers to the pages' locations.
62 *
63 * Since the contents of the pages may change at any moment, KSM cannot just
64 * insert the pages into a normal sorted tree and expect it to find anything.
65 * Therefore KSM uses two data structures - the stable and the unstable tree.
66 *
67 * The stable tree holds pointers to all the merged pages (ksm pages), sorted
68 * by their contents. Because each such page is write-protected, searching on
69 * this tree is fully assured to be working (except when pages are unmapped),
70 * and therefore this tree is called the stable tree.
71 *
5a2ca3ef
MR
72 * The stable tree node includes information required for reverse
73 * mapping from a KSM page to virtual addresses that map this page.
74 *
75 * In order to avoid large latencies of the rmap walks on KSM pages,
76 * KSM maintains two types of nodes in the stable tree:
77 *
78 * * the regular nodes that keep the reverse mapping structures in a
79 * linked list
80 * * the "chains" that link nodes ("dups") that represent the same
81 * write protected memory content, but each "dup" corresponds to a
82 * different KSM page copy of that content
83 *
84 * Internally, the regular nodes, "dups" and "chains" are represented
9303c9d5 85 * using the same struct stable_node structure.
5a2ca3ef 86 *
31dbd01f
IE
87 * In addition to the stable tree, KSM uses a second data structure called the
88 * unstable tree: this tree holds pointers to pages which have been found to
89 * be "unchanged for a period of time". The unstable tree sorts these pages
90 * by their contents, but since they are not write-protected, KSM cannot rely
91 * upon the unstable tree to work correctly - the unstable tree is liable to
92 * be corrupted as its contents are modified, and so it is called unstable.
93 *
94 * KSM solves this problem by several techniques:
95 *
96 * 1) The unstable tree is flushed every time KSM completes scanning all
97 * memory areas, and then the tree is rebuilt again from the beginning.
98 * 2) KSM will only insert into the unstable tree, pages whose hash value
99 * has not changed since the previous scan of all memory areas.
100 * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
101 * colors of the nodes and not on their contents, assuring that even when
102 * the tree gets "corrupted" it won't get out of balance, so scanning time
103 * remains the same (also, searching and inserting nodes in an rbtree uses
104 * the same algorithm, so we have no overhead when we flush and rebuild).
105 * 4) KSM never flushes the stable tree, which means that even if it were to
106 * take 10 attempts to find a page in the unstable tree, once it is found,
107 * it is secured in the stable tree. (When we scan a new page, we first
108 * compare it against the stable tree, and then against the unstable tree.)
8fdb3dbf
HD
109 *
110 * If the merge_across_nodes tunable is unset, then KSM maintains multiple
111 * stable trees and multiple unstable trees: one of each for each NUMA node.
31dbd01f
IE
112 */
113
114/**
115 * struct mm_slot - ksm information per mm that is being scanned
116 * @link: link to the mm_slots hash list
117 * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
6514d511 118 * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
31dbd01f
IE
119 * @mm: the mm that this information is valid for
120 */
121struct mm_slot {
122 struct hlist_node link;
123 struct list_head mm_list;
6514d511 124 struct rmap_item *rmap_list;
31dbd01f
IE
125 struct mm_struct *mm;
126};
127
128/**
129 * struct ksm_scan - cursor for scanning
130 * @mm_slot: the current mm_slot we are scanning
131 * @address: the next address inside that to be scanned
6514d511 132 * @rmap_list: link to the next rmap to be scanned in the rmap_list
31dbd01f
IE
133 * @seqnr: count of completed full scans (needed when removing unstable node)
134 *
135 * There is only the one ksm_scan instance of this cursor structure.
136 */
137struct ksm_scan {
138 struct mm_slot *mm_slot;
139 unsigned long address;
6514d511 140 struct rmap_item **rmap_list;
31dbd01f
IE
141 unsigned long seqnr;
142};
143
7b6ba2c7
HD
144/**
145 * struct stable_node - node of the stable rbtree
146 * @node: rb node of this ksm page in the stable tree
4146d2d6 147 * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
2c653d0e 148 * @hlist_dup: linked into the stable_node->hlist with a stable_node chain
4146d2d6 149 * @list: linked into migrate_nodes, pending placement in the proper node tree
7b6ba2c7 150 * @hlist: hlist head of rmap_items using this ksm page
4146d2d6 151 * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
2c653d0e
AA
152 * @chain_prune_time: time of the last full garbage collection
153 * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN
4146d2d6 154 * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
7b6ba2c7
HD
155 */
156struct stable_node {
4146d2d6
HD
157 union {
158 struct rb_node node; /* when node of stable tree */
159 struct { /* when listed for migration */
160 struct list_head *head;
2c653d0e
AA
161 struct {
162 struct hlist_node hlist_dup;
163 struct list_head list;
164 };
4146d2d6
HD
165 };
166 };
7b6ba2c7 167 struct hlist_head hlist;
2c653d0e
AA
168 union {
169 unsigned long kpfn;
170 unsigned long chain_prune_time;
171 };
172 /*
173 * STABLE_NODE_CHAIN can be any negative number in
174 * rmap_hlist_len negative range, but better not -1 to be able
175 * to reliably detect underflows.
176 */
177#define STABLE_NODE_CHAIN -1024
178 int rmap_hlist_len;
4146d2d6
HD
179#ifdef CONFIG_NUMA
180 int nid;
181#endif
7b6ba2c7
HD
182};
183
31dbd01f
IE
184/**
185 * struct rmap_item - reverse mapping item for virtual addresses
6514d511 186 * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
db114b83 187 * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
bc56620b 188 * @nid: NUMA node id of unstable tree in which linked (may not match page)
31dbd01f
IE
189 * @mm: the memory structure this rmap_item is pointing into
190 * @address: the virtual address this rmap_item tracks (+ flags in low bits)
191 * @oldchecksum: previous checksum of the page at that virtual address
7b6ba2c7
HD
192 * @node: rb node of this rmap_item in the unstable tree
193 * @head: pointer to stable_node heading this list in the stable tree
194 * @hlist: link into hlist of rmap_items hanging off that stable_node
31dbd01f
IE
195 */
196struct rmap_item {
6514d511 197 struct rmap_item *rmap_list;
bc56620b
HD
198 union {
199 struct anon_vma *anon_vma; /* when stable */
200#ifdef CONFIG_NUMA
201 int nid; /* when node of unstable tree */
202#endif
203 };
31dbd01f
IE
204 struct mm_struct *mm;
205 unsigned long address; /* + low bits used for flags below */
7b6ba2c7 206 unsigned int oldchecksum; /* when unstable */
31dbd01f 207 union {
7b6ba2c7
HD
208 struct rb_node node; /* when node of unstable tree */
209 struct { /* when listed from stable tree */
210 struct stable_node *head;
211 struct hlist_node hlist;
212 };
31dbd01f
IE
213 };
214};
215
216#define SEQNR_MASK 0x0ff /* low bits of unstable tree seqnr */
7b6ba2c7
HD
217#define UNSTABLE_FLAG 0x100 /* is a node of the unstable tree */
218#define STABLE_FLAG 0x200 /* is listed from the stable tree */
31dbd01f
IE
219
220/* The stable and unstable tree heads */
ef53d16c
HD
221static struct rb_root one_stable_tree[1] = { RB_ROOT };
222static struct rb_root one_unstable_tree[1] = { RB_ROOT };
223static struct rb_root *root_stable_tree = one_stable_tree;
224static struct rb_root *root_unstable_tree = one_unstable_tree;
31dbd01f 225
4146d2d6
HD
226/* Recently migrated nodes of stable tree, pending proper placement */
227static LIST_HEAD(migrate_nodes);
2c653d0e 228#define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev)
4146d2d6 229
4ca3a69b
SL
230#define MM_SLOTS_HASH_BITS 10
231static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
31dbd01f
IE
232
233static struct mm_slot ksm_mm_head = {
234 .mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
235};
236static struct ksm_scan ksm_scan = {
237 .mm_slot = &ksm_mm_head,
238};
239
240static struct kmem_cache *rmap_item_cache;
7b6ba2c7 241static struct kmem_cache *stable_node_cache;
31dbd01f
IE
242static struct kmem_cache *mm_slot_cache;
243
244/* The number of nodes in the stable tree */
b4028260 245static unsigned long ksm_pages_shared;
31dbd01f 246
e178dfde 247/* The number of page slots additionally sharing those nodes */
b4028260 248static unsigned long ksm_pages_sharing;
31dbd01f 249
473b0ce4
HD
250/* The number of nodes in the unstable tree */
251static unsigned long ksm_pages_unshared;
252
253/* The number of rmap_items in use: to calculate pages_volatile */
254static unsigned long ksm_rmap_items;
255
2c653d0e
AA
256/* The number of stable_node chains */
257static unsigned long ksm_stable_node_chains;
258
259/* The number of stable_node dups linked to the stable_node chains */
260static unsigned long ksm_stable_node_dups;
261
262/* Delay in pruning stale stable_node_dups in the stable_node_chains */
584ff0df 263static unsigned int ksm_stable_node_chains_prune_millisecs = 2000;
2c653d0e
AA
264
265/* Maximum number of page slots sharing a stable node */
266static int ksm_max_page_sharing = 256;
267
31dbd01f 268/* Number of pages ksmd should scan in one batch */
2c6854fd 269static unsigned int ksm_thread_pages_to_scan = 100;
31dbd01f
IE
270
271/* Milliseconds ksmd should sleep between batches */
2ffd8679 272static unsigned int ksm_thread_sleep_millisecs = 20;
31dbd01f 273
e86c59b1
CI
274/* Checksum of an empty (zeroed) page */
275static unsigned int zero_checksum __read_mostly;
276
277/* Whether to merge empty (zeroed) pages with actual zero pages */
278static bool ksm_use_zero_pages __read_mostly;
279
e850dcf5 280#ifdef CONFIG_NUMA
90bd6fd3
PH
281/* Zeroed when merging across nodes is not allowed */
282static unsigned int ksm_merge_across_nodes = 1;
ef53d16c 283static int ksm_nr_node_ids = 1;
e850dcf5
HD
284#else
285#define ksm_merge_across_nodes 1U
ef53d16c 286#define ksm_nr_node_ids 1
e850dcf5 287#endif
90bd6fd3 288
31dbd01f
IE
289#define KSM_RUN_STOP 0
290#define KSM_RUN_MERGE 1
291#define KSM_RUN_UNMERGE 2
ef4d43a8
HD
292#define KSM_RUN_OFFLINE 4
293static unsigned long ksm_run = KSM_RUN_STOP;
294static void wait_while_offlining(void);
31dbd01f
IE
295
296static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
fcf9a0ef 297static DECLARE_WAIT_QUEUE_HEAD(ksm_iter_wait);
31dbd01f
IE
298static DEFINE_MUTEX(ksm_thread_mutex);
299static DEFINE_SPINLOCK(ksm_mmlist_lock);
300
301#define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
302 sizeof(struct __struct), __alignof__(struct __struct),\
303 (__flags), NULL)
304
305static int __init ksm_slab_init(void)
306{
307 rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
308 if (!rmap_item_cache)
309 goto out;
310
7b6ba2c7
HD
311 stable_node_cache = KSM_KMEM_CACHE(stable_node, 0);
312 if (!stable_node_cache)
313 goto out_free1;
314
31dbd01f
IE
315 mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
316 if (!mm_slot_cache)
7b6ba2c7 317 goto out_free2;
31dbd01f
IE
318
319 return 0;
320
7b6ba2c7
HD
321out_free2:
322 kmem_cache_destroy(stable_node_cache);
323out_free1:
31dbd01f
IE
324 kmem_cache_destroy(rmap_item_cache);
325out:
326 return -ENOMEM;
327}
328
329static void __init ksm_slab_free(void)
330{
331 kmem_cache_destroy(mm_slot_cache);
7b6ba2c7 332 kmem_cache_destroy(stable_node_cache);
31dbd01f
IE
333 kmem_cache_destroy(rmap_item_cache);
334 mm_slot_cache = NULL;
335}
336
2c653d0e
AA
337static __always_inline bool is_stable_node_chain(struct stable_node *chain)
338{
339 return chain->rmap_hlist_len == STABLE_NODE_CHAIN;
340}
341
342static __always_inline bool is_stable_node_dup(struct stable_node *dup)
343{
344 return dup->head == STABLE_NODE_DUP_HEAD;
345}
346
347static inline void stable_node_chain_add_dup(struct stable_node *dup,
348 struct stable_node *chain)
349{
350 VM_BUG_ON(is_stable_node_dup(dup));
351 dup->head = STABLE_NODE_DUP_HEAD;
352 VM_BUG_ON(!is_stable_node_chain(chain));
353 hlist_add_head(&dup->hlist_dup, &chain->hlist);
354 ksm_stable_node_dups++;
355}
356
357static inline void __stable_node_dup_del(struct stable_node *dup)
358{
b4fecc67 359 VM_BUG_ON(!is_stable_node_dup(dup));
2c653d0e
AA
360 hlist_del(&dup->hlist_dup);
361 ksm_stable_node_dups--;
362}
363
364static inline void stable_node_dup_del(struct stable_node *dup)
365{
366 VM_BUG_ON(is_stable_node_chain(dup));
367 if (is_stable_node_dup(dup))
368 __stable_node_dup_del(dup);
369 else
370 rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid));
371#ifdef CONFIG_DEBUG_VM
372 dup->head = NULL;
373#endif
374}
375
31dbd01f
IE
376static inline struct rmap_item *alloc_rmap_item(void)
377{
473b0ce4
HD
378 struct rmap_item *rmap_item;
379
5b398e41 380 rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL |
381 __GFP_NORETRY | __GFP_NOWARN);
473b0ce4
HD
382 if (rmap_item)
383 ksm_rmap_items++;
384 return rmap_item;
31dbd01f
IE
385}
386
387static inline void free_rmap_item(struct rmap_item *rmap_item)
388{
473b0ce4 389 ksm_rmap_items--;
31dbd01f
IE
390 rmap_item->mm = NULL; /* debug safety */
391 kmem_cache_free(rmap_item_cache, rmap_item);
392}
393
7b6ba2c7
HD
394static inline struct stable_node *alloc_stable_node(void)
395{
6213055f 396 /*
397 * The allocation can take too long with GFP_KERNEL when memory is under
398 * pressure, which may lead to hung task warnings. Adding __GFP_HIGH
399 * grants access to memory reserves, helping to avoid this problem.
400 */
401 return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH);
7b6ba2c7
HD
402}
403
404static inline void free_stable_node(struct stable_node *stable_node)
405{
2c653d0e
AA
406 VM_BUG_ON(stable_node->rmap_hlist_len &&
407 !is_stable_node_chain(stable_node));
7b6ba2c7
HD
408 kmem_cache_free(stable_node_cache, stable_node);
409}
410
31dbd01f
IE
411static inline struct mm_slot *alloc_mm_slot(void)
412{
413 if (!mm_slot_cache) /* initialization failed */
414 return NULL;
415 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
416}
417
418static inline void free_mm_slot(struct mm_slot *mm_slot)
419{
420 kmem_cache_free(mm_slot_cache, mm_slot);
421}
422
31dbd01f
IE
423static struct mm_slot *get_mm_slot(struct mm_struct *mm)
424{
4ca3a69b
SL
425 struct mm_slot *slot;
426
b67bfe0d 427 hash_for_each_possible(mm_slots_hash, slot, link, (unsigned long)mm)
4ca3a69b
SL
428 if (slot->mm == mm)
429 return slot;
31dbd01f 430
31dbd01f
IE
431 return NULL;
432}
433
434static void insert_to_mm_slots_hash(struct mm_struct *mm,
435 struct mm_slot *mm_slot)
436{
31dbd01f 437 mm_slot->mm = mm;
4ca3a69b 438 hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm);
31dbd01f
IE
439}
440
a913e182
HD
441/*
442 * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
443 * page tables after it has passed through ksm_exit() - which, if necessary,
c1e8d7c6 444 * takes mmap_lock briefly to serialize against them. ksm_exit() does not set
a913e182
HD
445 * a special flag: they can just back out as soon as mm_users goes to zero.
446 * ksm_test_exit() is used throughout to make this test for exit: in some
447 * places for correctness, in some places just to avoid unnecessary work.
448 */
449static inline bool ksm_test_exit(struct mm_struct *mm)
450{
451 return atomic_read(&mm->mm_users) == 0;
452}
453
31dbd01f
IE
454/*
455 * We use break_ksm to break COW on a ksm page: it's a stripped down
456 *
7a9547fd 457 * if (get_user_pages(addr, 1, FOLL_WRITE, &page, NULL) == 1)
31dbd01f
IE
458 * put_page(page);
459 *
460 * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
461 * in case the application has unmapped and remapped mm,addr meanwhile.
462 * Could a ksm page appear anywhere else? Actually yes, in a VM_PFNMAP
bbcd53c9 463 * mmap of /dev/mem, where we would not want to touch it.
1b2ee126
DH
464 *
465 * FAULT_FLAG/FOLL_REMOTE are because we do this outside the context
466 * of the process that owns 'vma'. We also do not want to enforce
467 * protection keys here anyway.
31dbd01f 468 */
d952b791 469static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
31dbd01f
IE
470{
471 struct page *page;
50a7ca3c 472 vm_fault_t ret = 0;
31dbd01f
IE
473
474 do {
475 cond_resched();
1b2ee126
DH
476 page = follow_page(vma, addr,
477 FOLL_GET | FOLL_MIGRATION | FOLL_REMOTE);
3218f871 478 if (IS_ERR_OR_NULL(page) || is_zone_device_page(page))
31dbd01f
IE
479 break;
480 if (PageKsm(page))
dcddffd4 481 ret = handle_mm_fault(vma, addr,
bce617ed
PX
482 FAULT_FLAG_WRITE | FAULT_FLAG_REMOTE,
483 NULL);
31dbd01f
IE
484 else
485 ret = VM_FAULT_WRITE;
486 put_page(page);
33692f27 487 } while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
d952b791
HD
488 /*
489 * We must loop because handle_mm_fault() may back out if there's
490 * any difficulty e.g. if pte accessed bit gets updated concurrently.
491 *
492 * VM_FAULT_WRITE is what we have been hoping for: it indicates that
493 * COW has been broken, even if the vma does not permit VM_WRITE;
494 * but note that a concurrent fault might break PageKsm for us.
495 *
496 * VM_FAULT_SIGBUS could occur if we race with truncation of the
497 * backing file, which also invalidates anonymous pages: that's
498 * okay, that truncation will have unmapped the PageKsm for us.
499 *
500 * VM_FAULT_OOM: at the time of writing (late July 2009), setting
501 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
502 * current task has TIF_MEMDIE set, and will be OOM killed on return
503 * to user; and ksmd, having no mm, would never be chosen for that.
504 *
505 * But if the mm is in a limited mem_cgroup, then the fault may fail
506 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
507 * even ksmd can fail in this way - though it's usually breaking ksm
508 * just to undo a merge it made a moment before, so unlikely to oom.
509 *
510 * That's a pity: we might therefore have more kernel pages allocated
511 * than we're counting as nodes in the stable tree; but ksm_do_scan
512 * will retry to break_cow on each pass, so should recover the page
513 * in due course. The important thing is to not let VM_MERGEABLE
514 * be cleared while any such pages might remain in the area.
515 */
516 return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
31dbd01f
IE
517}
518
ef694222
BL
519static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
520 unsigned long addr)
521{
522 struct vm_area_struct *vma;
523 if (ksm_test_exit(mm))
524 return NULL;
ff69fb81
LH
525 vma = vma_lookup(mm, addr);
526 if (!vma || !(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
ef694222
BL
527 return NULL;
528 return vma;
529}
530
8dd3557a 531static void break_cow(struct rmap_item *rmap_item)
31dbd01f 532{
8dd3557a
HD
533 struct mm_struct *mm = rmap_item->mm;
534 unsigned long addr = rmap_item->address;
31dbd01f
IE
535 struct vm_area_struct *vma;
536
4035c07a
HD
537 /*
538 * It is not an accident that whenever we want to break COW
539 * to undo, we also need to drop a reference to the anon_vma.
540 */
9e60109f 541 put_anon_vma(rmap_item->anon_vma);
4035c07a 542
d8ed45c5 543 mmap_read_lock(mm);
ef694222
BL
544 vma = find_mergeable_vma(mm, addr);
545 if (vma)
546 break_ksm(vma, addr);
d8ed45c5 547 mmap_read_unlock(mm);
31dbd01f
IE
548}
549
550static struct page *get_mergeable_page(struct rmap_item *rmap_item)
551{
552 struct mm_struct *mm = rmap_item->mm;
553 unsigned long addr = rmap_item->address;
554 struct vm_area_struct *vma;
555 struct page *page;
556
d8ed45c5 557 mmap_read_lock(mm);
ef694222
BL
558 vma = find_mergeable_vma(mm, addr);
559 if (!vma)
31dbd01f
IE
560 goto out;
561
562 page = follow_page(vma, addr, FOLL_GET);
3218f871 563 if (IS_ERR_OR_NULL(page) || is_zone_device_page(page))
31dbd01f 564 goto out;
f765f540 565 if (PageAnon(page)) {
31dbd01f
IE
566 flush_anon_page(vma, page, addr);
567 flush_dcache_page(page);
568 } else {
569 put_page(page);
c8f95ed1
AA
570out:
571 page = NULL;
31dbd01f 572 }
d8ed45c5 573 mmap_read_unlock(mm);
31dbd01f
IE
574 return page;
575}
576
90bd6fd3
PH
577/*
578 * This helper is used for getting right index into array of tree roots.
579 * When merge_across_nodes knob is set to 1, there are only two rb-trees for
580 * stable and unstable pages from all nodes with roots in index 0. Otherwise,
581 * every node has its own stable and unstable tree.
582 */
583static inline int get_kpfn_nid(unsigned long kpfn)
584{
d8fc16a8 585 return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
90bd6fd3
PH
586}
587
2c653d0e
AA
588static struct stable_node *alloc_stable_node_chain(struct stable_node *dup,
589 struct rb_root *root)
590{
591 struct stable_node *chain = alloc_stable_node();
592 VM_BUG_ON(is_stable_node_chain(dup));
593 if (likely(chain)) {
594 INIT_HLIST_HEAD(&chain->hlist);
595 chain->chain_prune_time = jiffies;
596 chain->rmap_hlist_len = STABLE_NODE_CHAIN;
597#if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA)
98fa15f3 598 chain->nid = NUMA_NO_NODE; /* debug */
2c653d0e
AA
599#endif
600 ksm_stable_node_chains++;
601
602 /*
603 * Put the stable node chain in the first dimension of
604 * the stable tree and at the same time remove the old
605 * stable node.
606 */
607 rb_replace_node(&dup->node, &chain->node, root);
608
609 /*
610 * Move the old stable node to the second dimension
611 * queued in the hlist_dup. The invariant is that all
612 * dup stable_nodes in the chain->hlist point to pages
457aef94 613 * that are write protected and have the exact same
2c653d0e
AA
614 * content.
615 */
616 stable_node_chain_add_dup(dup, chain);
617 }
618 return chain;
619}
620
621static inline void free_stable_node_chain(struct stable_node *chain,
622 struct rb_root *root)
623{
624 rb_erase(&chain->node, root);
625 free_stable_node(chain);
626 ksm_stable_node_chains--;
627}
628
4035c07a
HD
629static void remove_node_from_stable_tree(struct stable_node *stable_node)
630{
631 struct rmap_item *rmap_item;
4035c07a 632
2c653d0e
AA
633 /* check it's not STABLE_NODE_CHAIN or negative */
634 BUG_ON(stable_node->rmap_hlist_len < 0);
635
b67bfe0d 636 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
4035c07a
HD
637 if (rmap_item->hlist.next)
638 ksm_pages_sharing--;
639 else
640 ksm_pages_shared--;
76093853 641
642 rmap_item->mm->ksm_merging_pages--;
643
2c653d0e
AA
644 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
645 stable_node->rmap_hlist_len--;
9e60109f 646 put_anon_vma(rmap_item->anon_vma);
4035c07a
HD
647 rmap_item->address &= PAGE_MASK;
648 cond_resched();
649 }
650
2c653d0e
AA
651 /*
652 * We need the second aligned pointer of the migrate_nodes
653 * list_head to stay clear from the rb_parent_color union
654 * (aligned and different than any node) and also different
655 * from &migrate_nodes. This will verify that future list.h changes
815f0ddb 656 * don't break STABLE_NODE_DUP_HEAD. Only recent gcc can handle it.
2c653d0e 657 */
2c653d0e
AA
658 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes);
659 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1);
2c653d0e 660
4146d2d6
HD
661 if (stable_node->head == &migrate_nodes)
662 list_del(&stable_node->list);
663 else
2c653d0e 664 stable_node_dup_del(stable_node);
4035c07a
HD
665 free_stable_node(stable_node);
666}
667
2cee57d1
YS
668enum get_ksm_page_flags {
669 GET_KSM_PAGE_NOLOCK,
670 GET_KSM_PAGE_LOCK,
671 GET_KSM_PAGE_TRYLOCK
672};
673
4035c07a
HD
674/*
675 * get_ksm_page: checks if the page indicated by the stable node
676 * is still its ksm page, despite having held no reference to it.
677 * In which case we can trust the content of the page, and it
678 * returns the gotten page; but if the page has now been zapped,
679 * remove the stale node from the stable tree and return NULL.
c8d6553b 680 * But beware, the stable node's page might be being migrated.
4035c07a
HD
681 *
682 * You would expect the stable_node to hold a reference to the ksm page.
683 * But if it increments the page's count, swapping out has to wait for
684 * ksmd to come around again before it can free the page, which may take
685 * seconds or even minutes: much too unresponsive. So instead we use a
686 * "keyhole reference": access to the ksm page from the stable node peeps
687 * out through its keyhole to see if that page still holds the right key,
688 * pointing back to this stable node. This relies on freeing a PageAnon
689 * page to reset its page->mapping to NULL, and relies on no other use of
690 * a page to put something that might look like our key in page->mapping.
4035c07a
HD
691 * is on its way to being freed; but it is an anomaly to bear in mind.
692 */
2cee57d1
YS
693static struct page *get_ksm_page(struct stable_node *stable_node,
694 enum get_ksm_page_flags flags)
4035c07a
HD
695{
696 struct page *page;
697 void *expected_mapping;
c8d6553b 698 unsigned long kpfn;
4035c07a 699
bda807d4
MK
700 expected_mapping = (void *)((unsigned long)stable_node |
701 PAGE_MAPPING_KSM);
c8d6553b 702again:
08df4774 703 kpfn = READ_ONCE(stable_node->kpfn); /* Address dependency. */
c8d6553b 704 page = pfn_to_page(kpfn);
4db0c3c2 705 if (READ_ONCE(page->mapping) != expected_mapping)
4035c07a 706 goto stale;
c8d6553b
HD
707
708 /*
709 * We cannot do anything with the page while its refcount is 0.
710 * Usually 0 means free, or tail of a higher-order page: in which
711 * case this node is no longer referenced, and should be freed;
1c4c3b99 712 * however, it might mean that the page is under page_ref_freeze().
c8d6553b 713 * The __remove_mapping() case is easy, again the node is now stale;
52d1e606 714 * the same is in reuse_ksm_page() case; but if page is swapcache
9800562f 715 * in folio_migrate_mapping(), it might still be our page,
52d1e606 716 * in which case it's essential to keep the node.
c8d6553b
HD
717 */
718 while (!get_page_unless_zero(page)) {
719 /*
720 * Another check for page->mapping != expected_mapping would
721 * work here too. We have chosen the !PageSwapCache test to
722 * optimize the common case, when the page is or is about to
723 * be freed: PageSwapCache is cleared (under spin_lock_irq)
1c4c3b99 724 * in the ref_freeze section of __remove_mapping(); but Anon
c8d6553b
HD
725 * page->mapping reset to NULL later, in free_pages_prepare().
726 */
727 if (!PageSwapCache(page))
728 goto stale;
729 cpu_relax();
730 }
731
4db0c3c2 732 if (READ_ONCE(page->mapping) != expected_mapping) {
4035c07a
HD
733 put_page(page);
734 goto stale;
735 }
c8d6553b 736
2cee57d1
YS
737 if (flags == GET_KSM_PAGE_TRYLOCK) {
738 if (!trylock_page(page)) {
739 put_page(page);
740 return ERR_PTR(-EBUSY);
741 }
742 } else if (flags == GET_KSM_PAGE_LOCK)
8aafa6a4 743 lock_page(page);
2cee57d1
YS
744
745 if (flags != GET_KSM_PAGE_NOLOCK) {
4db0c3c2 746 if (READ_ONCE(page->mapping) != expected_mapping) {
8aafa6a4
HD
747 unlock_page(page);
748 put_page(page);
749 goto stale;
750 }
751 }
4035c07a 752 return page;
c8d6553b 753
4035c07a 754stale:
c8d6553b
HD
755 /*
756 * We come here from above when page->mapping or !PageSwapCache
757 * suggests that the node is stale; but it might be under migration.
19138349 758 * We need smp_rmb(), matching the smp_wmb() in folio_migrate_ksm(),
c8d6553b
HD
759 * before checking whether node->kpfn has been changed.
760 */
761 smp_rmb();
4db0c3c2 762 if (READ_ONCE(stable_node->kpfn) != kpfn)
c8d6553b 763 goto again;
4035c07a
HD
764 remove_node_from_stable_tree(stable_node);
765 return NULL;
766}
767
31dbd01f
IE
768/*
769 * Removing rmap_item from stable or unstable tree.
770 * This function will clean the information from the stable/unstable tree.
771 */
772static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
773{
7b6ba2c7
HD
774 if (rmap_item->address & STABLE_FLAG) {
775 struct stable_node *stable_node;
5ad64688 776 struct page *page;
31dbd01f 777
7b6ba2c7 778 stable_node = rmap_item->head;
62862290 779 page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK);
4035c07a
HD
780 if (!page)
781 goto out;
5ad64688 782
7b6ba2c7 783 hlist_del(&rmap_item->hlist);
62862290 784 unlock_page(page);
4035c07a 785 put_page(page);
08beca44 786
98666f8a 787 if (!hlist_empty(&stable_node->hlist))
4035c07a
HD
788 ksm_pages_sharing--;
789 else
7b6ba2c7 790 ksm_pages_shared--;
76093853 791
792 rmap_item->mm->ksm_merging_pages--;
793
2c653d0e
AA
794 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
795 stable_node->rmap_hlist_len--;
31dbd01f 796
9e60109f 797 put_anon_vma(rmap_item->anon_vma);
c89a384e 798 rmap_item->head = NULL;
93d17715 799 rmap_item->address &= PAGE_MASK;
31dbd01f 800
7b6ba2c7 801 } else if (rmap_item->address & UNSTABLE_FLAG) {
31dbd01f
IE
802 unsigned char age;
803 /*
9ba69294 804 * Usually ksmd can and must skip the rb_erase, because
31dbd01f 805 * root_unstable_tree was already reset to RB_ROOT.
9ba69294
HD
806 * But be careful when an mm is exiting: do the rb_erase
807 * if this rmap_item was inserted by this scan, rather
808 * than left over from before.
31dbd01f
IE
809 */
810 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
cd551f97 811 BUG_ON(age > 1);
31dbd01f 812 if (!age)
90bd6fd3 813 rb_erase(&rmap_item->node,
ef53d16c 814 root_unstable_tree + NUMA(rmap_item->nid));
473b0ce4 815 ksm_pages_unshared--;
93d17715 816 rmap_item->address &= PAGE_MASK;
31dbd01f 817 }
4035c07a 818out:
31dbd01f
IE
819 cond_resched(); /* we're called from many long loops */
820}
821
420be4ed 822static void remove_trailing_rmap_items(struct rmap_item **rmap_list)
31dbd01f 823{
6514d511
HD
824 while (*rmap_list) {
825 struct rmap_item *rmap_item = *rmap_list;
826 *rmap_list = rmap_item->rmap_list;
31dbd01f 827 remove_rmap_item_from_tree(rmap_item);
31dbd01f
IE
828 free_rmap_item(rmap_item);
829 }
830}
831
832/*
e850dcf5 833 * Though it's very tempting to unmerge rmap_items from stable tree rather
31dbd01f
IE
834 * than check every pte of a given vma, the locking doesn't quite work for
835 * that - an rmap_item is assigned to the stable tree after inserting ksm
c1e8d7c6 836 * page and upping mmap_lock. Nor does it fit with the way we skip dup'ing
31dbd01f
IE
837 * rmap_items from parent to child at fork time (so as not to waste time
838 * if exit comes before the next scan reaches it).
81464e30
HD
839 *
840 * Similarly, although we'd like to remove rmap_items (so updating counts
841 * and freeing memory) when unmerging an area, it's easier to leave that
842 * to the next pass of ksmd - consider, for example, how ksmd might be
843 * in cmp_and_merge_page on one of the rmap_items we would be removing.
31dbd01f 844 */
d952b791
HD
845static int unmerge_ksm_pages(struct vm_area_struct *vma,
846 unsigned long start, unsigned long end)
31dbd01f
IE
847{
848 unsigned long addr;
d952b791 849 int err = 0;
31dbd01f 850
d952b791 851 for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
9ba69294
HD
852 if (ksm_test_exit(vma->vm_mm))
853 break;
d952b791
HD
854 if (signal_pending(current))
855 err = -ERESTARTSYS;
856 else
857 err = break_ksm(vma, addr);
858 }
859 return err;
31dbd01f
IE
860}
861
19138349
MWO
862static inline struct stable_node *folio_stable_node(struct folio *folio)
863{
864 return folio_test_ksm(folio) ? folio_raw_mapping(folio) : NULL;
865}
866
88484826
MR
867static inline struct stable_node *page_stable_node(struct page *page)
868{
19138349 869 return folio_stable_node(page_folio(page));
88484826
MR
870}
871
872static inline void set_page_stable_node(struct page *page,
873 struct stable_node *stable_node)
874{
6c287605 875 VM_BUG_ON_PAGE(PageAnon(page) && PageAnonExclusive(page), page);
88484826
MR
876 page->mapping = (void *)((unsigned long)stable_node | PAGE_MAPPING_KSM);
877}
878
2ffd8679
HD
879#ifdef CONFIG_SYSFS
880/*
881 * Only called through the sysfs control interface:
882 */
cbf86cfe
HD
883static int remove_stable_node(struct stable_node *stable_node)
884{
885 struct page *page;
886 int err;
887
2cee57d1 888 page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK);
cbf86cfe
HD
889 if (!page) {
890 /*
891 * get_ksm_page did remove_node_from_stable_tree itself.
892 */
893 return 0;
894 }
895
9a63236f
AR
896 /*
897 * Page could be still mapped if this races with __mmput() running in
898 * between ksm_exit() and exit_mmap(). Just refuse to let
899 * merge_across_nodes/max_page_sharing be switched.
900 */
901 err = -EBUSY;
902 if (!page_mapped(page)) {
cbf86cfe 903 /*
8fdb3dbf
HD
904 * The stable node did not yet appear stale to get_ksm_page(),
905 * since that allows for an unmapped ksm page to be recognized
906 * right up until it is freed; but the node is safe to remove.
cbf86cfe
HD
907 * This page might be in a pagevec waiting to be freed,
908 * or it might be PageSwapCache (perhaps under writeback),
909 * or it might have been removed from swapcache a moment ago.
910 */
911 set_page_stable_node(page, NULL);
912 remove_node_from_stable_tree(stable_node);
913 err = 0;
914 }
915
916 unlock_page(page);
917 put_page(page);
918 return err;
919}
920
2c653d0e
AA
921static int remove_stable_node_chain(struct stable_node *stable_node,
922 struct rb_root *root)
923{
924 struct stable_node *dup;
925 struct hlist_node *hlist_safe;
926
927 if (!is_stable_node_chain(stable_node)) {
928 VM_BUG_ON(is_stable_node_dup(stable_node));
929 if (remove_stable_node(stable_node))
930 return true;
931 else
932 return false;
933 }
934
935 hlist_for_each_entry_safe(dup, hlist_safe,
936 &stable_node->hlist, hlist_dup) {
937 VM_BUG_ON(!is_stable_node_dup(dup));
938 if (remove_stable_node(dup))
939 return true;
940 }
941 BUG_ON(!hlist_empty(&stable_node->hlist));
942 free_stable_node_chain(stable_node, root);
943 return false;
944}
945
cbf86cfe
HD
946static int remove_all_stable_nodes(void)
947{
03640418 948 struct stable_node *stable_node, *next;
cbf86cfe
HD
949 int nid;
950 int err = 0;
951
ef53d16c 952 for (nid = 0; nid < ksm_nr_node_ids; nid++) {
cbf86cfe
HD
953 while (root_stable_tree[nid].rb_node) {
954 stable_node = rb_entry(root_stable_tree[nid].rb_node,
955 struct stable_node, node);
2c653d0e
AA
956 if (remove_stable_node_chain(stable_node,
957 root_stable_tree + nid)) {
cbf86cfe
HD
958 err = -EBUSY;
959 break; /* proceed to next nid */
960 }
961 cond_resched();
962 }
963 }
03640418 964 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
4146d2d6
HD
965 if (remove_stable_node(stable_node))
966 err = -EBUSY;
967 cond_resched();
968 }
cbf86cfe
HD
969 return err;
970}
971
d952b791 972static int unmerge_and_remove_all_rmap_items(void)
31dbd01f
IE
973{
974 struct mm_slot *mm_slot;
975 struct mm_struct *mm;
976 struct vm_area_struct *vma;
d952b791
HD
977 int err = 0;
978
979 spin_lock(&ksm_mmlist_lock);
9ba69294 980 ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
d952b791
HD
981 struct mm_slot, mm_list);
982 spin_unlock(&ksm_mmlist_lock);
31dbd01f 983
a5f18ba0
MWO
984 for (mm_slot = ksm_scan.mm_slot; mm_slot != &ksm_mm_head;
985 mm_slot = ksm_scan.mm_slot) {
986 VMA_ITERATOR(vmi, mm_slot->mm, 0);
987
31dbd01f 988 mm = mm_slot->mm;
d8ed45c5 989 mmap_read_lock(mm);
a5f18ba0 990 for_each_vma(vmi, vma) {
9ba69294
HD
991 if (ksm_test_exit(mm))
992 break;
31dbd01f
IE
993 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
994 continue;
d952b791
HD
995 err = unmerge_ksm_pages(vma,
996 vma->vm_start, vma->vm_end);
9ba69294
HD
997 if (err)
998 goto error;
31dbd01f 999 }
9ba69294 1000
420be4ed 1001 remove_trailing_rmap_items(&mm_slot->rmap_list);
d8ed45c5 1002 mmap_read_unlock(mm);
d952b791
HD
1003
1004 spin_lock(&ksm_mmlist_lock);
9ba69294 1005 ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
d952b791 1006 struct mm_slot, mm_list);
9ba69294 1007 if (ksm_test_exit(mm)) {
4ca3a69b 1008 hash_del(&mm_slot->link);
9ba69294
HD
1009 list_del(&mm_slot->mm_list);
1010 spin_unlock(&ksm_mmlist_lock);
1011
1012 free_mm_slot(mm_slot);
1013 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
9ba69294 1014 mmdrop(mm);
7496fea9 1015 } else
9ba69294 1016 spin_unlock(&ksm_mmlist_lock);
31dbd01f
IE
1017 }
1018
cbf86cfe
HD
1019 /* Clean up stable nodes, but don't worry if some are still busy */
1020 remove_all_stable_nodes();
d952b791 1021 ksm_scan.seqnr = 0;
9ba69294
HD
1022 return 0;
1023
1024error:
d8ed45c5 1025 mmap_read_unlock(mm);
31dbd01f 1026 spin_lock(&ksm_mmlist_lock);
d952b791 1027 ksm_scan.mm_slot = &ksm_mm_head;
31dbd01f 1028 spin_unlock(&ksm_mmlist_lock);
d952b791 1029 return err;
31dbd01f 1030}
2ffd8679 1031#endif /* CONFIG_SYSFS */
31dbd01f 1032
31dbd01f
IE
1033static u32 calc_checksum(struct page *page)
1034{
1035 u32 checksum;
9b04c5fe 1036 void *addr = kmap_atomic(page);
59e1a2f4 1037 checksum = xxhash(addr, PAGE_SIZE, 0);
9b04c5fe 1038 kunmap_atomic(addr);
31dbd01f
IE
1039 return checksum;
1040}
1041
31dbd01f
IE
1042static int write_protect_page(struct vm_area_struct *vma, struct page *page,
1043 pte_t *orig_pte)
1044{
1045 struct mm_struct *mm = vma->vm_mm;
eed05e54 1046 DEFINE_PAGE_VMA_WALK(pvmw, page, vma, 0, 0);
31dbd01f
IE
1047 int swapped;
1048 int err = -EFAULT;
ac46d4f3 1049 struct mmu_notifier_range range;
6c287605 1050 bool anon_exclusive;
31dbd01f 1051
36eaff33
KS
1052 pvmw.address = page_address_in_vma(page, vma);
1053 if (pvmw.address == -EFAULT)
31dbd01f
IE
1054 goto out;
1055
29ad768c 1056 BUG_ON(PageTransCompound(page));
6bdb913f 1057
7269f999 1058 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
6f4f13e8 1059 pvmw.address,
ac46d4f3
JG
1060 pvmw.address + PAGE_SIZE);
1061 mmu_notifier_invalidate_range_start(&range);
6bdb913f 1062
36eaff33 1063 if (!page_vma_mapped_walk(&pvmw))
6bdb913f 1064 goto out_mn;
36eaff33
KS
1065 if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?"))
1066 goto out_unlock;
31dbd01f 1067
6c287605 1068 anon_exclusive = PageAnonExclusive(page);
595cd8f2 1069 if (pte_write(*pvmw.pte) || pte_dirty(*pvmw.pte) ||
b3a81d08 1070 (pte_protnone(*pvmw.pte) && pte_savedwrite(*pvmw.pte)) ||
6c287605 1071 anon_exclusive || mm_tlb_flush_pending(mm)) {
31dbd01f
IE
1072 pte_t entry;
1073
1074 swapped = PageSwapCache(page);
36eaff33 1075 flush_cache_page(vma, pvmw.address, page_to_pfn(page));
31dbd01f 1076 /*
25985edc 1077 * Ok this is tricky, when get_user_pages_fast() run it doesn't
31dbd01f 1078 * take any lock, therefore the check that we are going to make
f0953a1b 1079 * with the pagecount against the mapcount is racy and
31dbd01f
IE
1080 * O_DIRECT can happen right after the check.
1081 * So we clear the pte and flush the tlb before the check
1082 * this assure us that no O_DIRECT can happen after the check
1083 * or in the middle of the check.
0f10851e
JG
1084 *
1085 * No need to notify as we are downgrading page table to read
1086 * only not changing it to point to a new page.
1087 *
ee65728e 1088 * See Documentation/mm/mmu_notifier.rst
31dbd01f 1089 */
0f10851e 1090 entry = ptep_clear_flush(vma, pvmw.address, pvmw.pte);
31dbd01f
IE
1091 /*
1092 * Check that no O_DIRECT or similar I/O is in progress on the
1093 * page
1094 */
31e855ea 1095 if (page_mapcount(page) + 1 + swapped != page_count(page)) {
36eaff33 1096 set_pte_at(mm, pvmw.address, pvmw.pte, entry);
31dbd01f
IE
1097 goto out_unlock;
1098 }
6c287605 1099
088b8aa5 1100 /* See page_try_share_anon_rmap(): clear PTE first. */
6c287605
DH
1101 if (anon_exclusive && page_try_share_anon_rmap(page)) {
1102 set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1103 goto out_unlock;
1104 }
1105
4e31635c
HD
1106 if (pte_dirty(entry))
1107 set_page_dirty(page);
595cd8f2
AK
1108
1109 if (pte_protnone(entry))
1110 entry = pte_mkclean(pte_clear_savedwrite(entry));
1111 else
1112 entry = pte_mkclean(pte_wrprotect(entry));
36eaff33 1113 set_pte_at_notify(mm, pvmw.address, pvmw.pte, entry);
31dbd01f 1114 }
36eaff33 1115 *orig_pte = *pvmw.pte;
31dbd01f
IE
1116 err = 0;
1117
1118out_unlock:
36eaff33 1119 page_vma_mapped_walk_done(&pvmw);
6bdb913f 1120out_mn:
ac46d4f3 1121 mmu_notifier_invalidate_range_end(&range);
31dbd01f
IE
1122out:
1123 return err;
1124}
1125
1126/**
1127 * replace_page - replace page in vma by new ksm page
8dd3557a
HD
1128 * @vma: vma that holds the pte pointing to page
1129 * @page: the page we are replacing by kpage
1130 * @kpage: the ksm page we replace page by
31dbd01f
IE
1131 * @orig_pte: the original value of the pte
1132 *
1133 * Returns 0 on success, -EFAULT on failure.
1134 */
8dd3557a
HD
1135static int replace_page(struct vm_area_struct *vma, struct page *page,
1136 struct page *kpage, pte_t orig_pte)
31dbd01f
IE
1137{
1138 struct mm_struct *mm = vma->vm_mm;
31dbd01f 1139 pmd_t *pmd;
50722804 1140 pmd_t pmde;
31dbd01f 1141 pte_t *ptep;
e86c59b1 1142 pte_t newpte;
31dbd01f
IE
1143 spinlock_t *ptl;
1144 unsigned long addr;
31dbd01f 1145 int err = -EFAULT;
ac46d4f3 1146 struct mmu_notifier_range range;
31dbd01f 1147
8dd3557a 1148 addr = page_address_in_vma(page, vma);
31dbd01f
IE
1149 if (addr == -EFAULT)
1150 goto out;
1151
6219049a
BL
1152 pmd = mm_find_pmd(mm, addr);
1153 if (!pmd)
31dbd01f 1154 goto out;
50722804
ZK
1155 /*
1156 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
1157 * without holding anon_vma lock for write. So when looking for a
1158 * genuine pmde (in which to find pte), test present and !THP together.
1159 */
1160 pmde = *pmd;
1161 barrier();
1162 if (!pmd_present(pmde) || pmd_trans_huge(pmde))
1163 goto out;
31dbd01f 1164
7269f999 1165 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, addr,
6f4f13e8 1166 addr + PAGE_SIZE);
ac46d4f3 1167 mmu_notifier_invalidate_range_start(&range);
6bdb913f 1168
31dbd01f
IE
1169 ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
1170 if (!pte_same(*ptep, orig_pte)) {
1171 pte_unmap_unlock(ptep, ptl);
6bdb913f 1172 goto out_mn;
31dbd01f 1173 }
6c287605
DH
1174 VM_BUG_ON_PAGE(PageAnonExclusive(page), page);
1175 VM_BUG_ON_PAGE(PageAnon(kpage) && PageAnonExclusive(kpage), kpage);
31dbd01f 1176
e86c59b1
CI
1177 /*
1178 * No need to check ksm_use_zero_pages here: we can only have a
457aef94 1179 * zero_page here if ksm_use_zero_pages was enabled already.
e86c59b1
CI
1180 */
1181 if (!is_zero_pfn(page_to_pfn(kpage))) {
1182 get_page(kpage);
f1e2db12 1183 page_add_anon_rmap(kpage, vma, addr, RMAP_NONE);
e86c59b1
CI
1184 newpte = mk_pte(kpage, vma->vm_page_prot);
1185 } else {
1186 newpte = pte_mkspecial(pfn_pte(page_to_pfn(kpage),
1187 vma->vm_page_prot));
a38c015f
CI
1188 /*
1189 * We're replacing an anonymous page with a zero page, which is
1190 * not anonymous. We need to do proper accounting otherwise we
1191 * will get wrong values in /proc, and a BUG message in dmesg
1192 * when tearing down the mm.
1193 */
1194 dec_mm_counter(mm, MM_ANONPAGES);
e86c59b1 1195 }
31dbd01f
IE
1196
1197 flush_cache_page(vma, addr, pte_pfn(*ptep));
0f10851e
JG
1198 /*
1199 * No need to notify as we are replacing a read only page with another
1200 * read only page with the same content.
1201 *
ee65728e 1202 * See Documentation/mm/mmu_notifier.rst
0f10851e
JG
1203 */
1204 ptep_clear_flush(vma, addr, ptep);
e86c59b1 1205 set_pte_at_notify(mm, addr, ptep, newpte);
31dbd01f 1206
cea86fe2 1207 page_remove_rmap(page, vma, false);
ae52a2ad
HD
1208 if (!page_mapped(page))
1209 try_to_free_swap(page);
8dd3557a 1210 put_page(page);
31dbd01f
IE
1211
1212 pte_unmap_unlock(ptep, ptl);
1213 err = 0;
6bdb913f 1214out_mn:
ac46d4f3 1215 mmu_notifier_invalidate_range_end(&range);
31dbd01f
IE
1216out:
1217 return err;
1218}
1219
1220/*
1221 * try_to_merge_one_page - take two pages and merge them into one
8dd3557a
HD
1222 * @vma: the vma that holds the pte pointing to page
1223 * @page: the PageAnon page that we want to replace with kpage
80e14822
HD
1224 * @kpage: the PageKsm page that we want to map instead of page,
1225 * or NULL the first time when we want to use page as kpage.
31dbd01f
IE
1226 *
1227 * This function returns 0 if the pages were merged, -EFAULT otherwise.
1228 */
1229static int try_to_merge_one_page(struct vm_area_struct *vma,
8dd3557a 1230 struct page *page, struct page *kpage)
31dbd01f
IE
1231{
1232 pte_t orig_pte = __pte(0);
1233 int err = -EFAULT;
1234
db114b83
HD
1235 if (page == kpage) /* ksm page forked */
1236 return 0;
1237
8dd3557a 1238 if (!PageAnon(page))
31dbd01f
IE
1239 goto out;
1240
31dbd01f
IE
1241 /*
1242 * We need the page lock to read a stable PageSwapCache in
1243 * write_protect_page(). We use trylock_page() instead of
1244 * lock_page() because we don't want to wait here - we
1245 * prefer to continue scanning and merging different pages,
1246 * then come back to this page when it is unlocked.
1247 */
8dd3557a 1248 if (!trylock_page(page))
31e855ea 1249 goto out;
f765f540
KS
1250
1251 if (PageTransCompound(page)) {
a7306c34 1252 if (split_huge_page(page))
f765f540
KS
1253 goto out_unlock;
1254 }
1255
31dbd01f
IE
1256 /*
1257 * If this anonymous page is mapped only here, its pte may need
1258 * to be write-protected. If it's mapped elsewhere, all of its
1259 * ptes are necessarily already write-protected. But in either
1260 * case, we need to lock and check page_count is not raised.
1261 */
80e14822
HD
1262 if (write_protect_page(vma, page, &orig_pte) == 0) {
1263 if (!kpage) {
1264 /*
1265 * While we hold page lock, upgrade page from
1266 * PageAnon+anon_vma to PageKsm+NULL stable_node:
1267 * stable_tree_insert() will update stable_node.
1268 */
1269 set_page_stable_node(page, NULL);
1270 mark_page_accessed(page);
337ed7eb
MK
1271 /*
1272 * Page reclaim just frees a clean page with no dirty
1273 * ptes: make sure that the ksm page would be swapped.
1274 */
1275 if (!PageDirty(page))
1276 SetPageDirty(page);
80e14822
HD
1277 err = 0;
1278 } else if (pages_identical(page, kpage))
1279 err = replace_page(vma, page, kpage, orig_pte);
1280 }
31dbd01f 1281
f765f540 1282out_unlock:
8dd3557a 1283 unlock_page(page);
31dbd01f
IE
1284out:
1285 return err;
1286}
1287
81464e30
HD
1288/*
1289 * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1290 * but no new kernel page is allocated: kpage must already be a ksm page.
8dd3557a
HD
1291 *
1292 * This function returns 0 if the pages were merged, -EFAULT otherwise.
81464e30 1293 */
8dd3557a
HD
1294static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item,
1295 struct page *page, struct page *kpage)
81464e30 1296{
8dd3557a 1297 struct mm_struct *mm = rmap_item->mm;
81464e30
HD
1298 struct vm_area_struct *vma;
1299 int err = -EFAULT;
1300
d8ed45c5 1301 mmap_read_lock(mm);
85c6e8dd
AA
1302 vma = find_mergeable_vma(mm, rmap_item->address);
1303 if (!vma)
81464e30
HD
1304 goto out;
1305
8dd3557a 1306 err = try_to_merge_one_page(vma, page, kpage);
db114b83
HD
1307 if (err)
1308 goto out;
1309
bc56620b
HD
1310 /* Unstable nid is in union with stable anon_vma: remove first */
1311 remove_rmap_item_from_tree(rmap_item);
1312
c1e8d7c6 1313 /* Must get reference to anon_vma while still holding mmap_lock */
9e60109f
PZ
1314 rmap_item->anon_vma = vma->anon_vma;
1315 get_anon_vma(vma->anon_vma);
81464e30 1316out:
d8ed45c5 1317 mmap_read_unlock(mm);
81464e30
HD
1318 return err;
1319}
1320
31dbd01f
IE
1321/*
1322 * try_to_merge_two_pages - take two identical pages and prepare them
1323 * to be merged into one page.
1324 *
8dd3557a
HD
1325 * This function returns the kpage if we successfully merged two identical
1326 * pages into one ksm page, NULL otherwise.
31dbd01f 1327 *
80e14822 1328 * Note that this function upgrades page to ksm page: if one of the pages
31dbd01f
IE
1329 * is already a ksm page, try_to_merge_with_ksm_page should be used.
1330 */
8dd3557a
HD
1331static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item,
1332 struct page *page,
1333 struct rmap_item *tree_rmap_item,
1334 struct page *tree_page)
31dbd01f 1335{
80e14822 1336 int err;
31dbd01f 1337
80e14822 1338 err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
31dbd01f 1339 if (!err) {
8dd3557a 1340 err = try_to_merge_with_ksm_page(tree_rmap_item,
80e14822 1341 tree_page, page);
31dbd01f 1342 /*
81464e30
HD
1343 * If that fails, we have a ksm page with only one pte
1344 * pointing to it: so break it.
31dbd01f 1345 */
4035c07a 1346 if (err)
8dd3557a 1347 break_cow(rmap_item);
31dbd01f 1348 }
80e14822 1349 return err ? NULL : page;
31dbd01f
IE
1350}
1351
2c653d0e
AA
1352static __always_inline
1353bool __is_page_sharing_candidate(struct stable_node *stable_node, int offset)
1354{
1355 VM_BUG_ON(stable_node->rmap_hlist_len < 0);
1356 /*
1357 * Check that at least one mapping still exists, otherwise
1358 * there's no much point to merge and share with this
1359 * stable_node, as the underlying tree_page of the other
1360 * sharer is going to be freed soon.
1361 */
1362 return stable_node->rmap_hlist_len &&
1363 stable_node->rmap_hlist_len + offset < ksm_max_page_sharing;
1364}
1365
1366static __always_inline
1367bool is_page_sharing_candidate(struct stable_node *stable_node)
1368{
1369 return __is_page_sharing_candidate(stable_node, 0);
1370}
1371
c01f0b54
CIK
1372static struct page *stable_node_dup(struct stable_node **_stable_node_dup,
1373 struct stable_node **_stable_node,
1374 struct rb_root *root,
1375 bool prune_stale_stable_nodes)
2c653d0e 1376{
b4fecc67 1377 struct stable_node *dup, *found = NULL, *stable_node = *_stable_node;
2c653d0e 1378 struct hlist_node *hlist_safe;
8dc5ffcd 1379 struct page *_tree_page, *tree_page = NULL;
2c653d0e
AA
1380 int nr = 0;
1381 int found_rmap_hlist_len;
1382
1383 if (!prune_stale_stable_nodes ||
1384 time_before(jiffies, stable_node->chain_prune_time +
1385 msecs_to_jiffies(
1386 ksm_stable_node_chains_prune_millisecs)))
1387 prune_stale_stable_nodes = false;
1388 else
1389 stable_node->chain_prune_time = jiffies;
1390
1391 hlist_for_each_entry_safe(dup, hlist_safe,
1392 &stable_node->hlist, hlist_dup) {
1393 cond_resched();
1394 /*
1395 * We must walk all stable_node_dup to prune the stale
1396 * stable nodes during lookup.
1397 *
1398 * get_ksm_page can drop the nodes from the
1399 * stable_node->hlist if they point to freed pages
1400 * (that's why we do a _safe walk). The "dup"
1401 * stable_node parameter itself will be freed from
1402 * under us if it returns NULL.
1403 */
2cee57d1 1404 _tree_page = get_ksm_page(dup, GET_KSM_PAGE_NOLOCK);
2c653d0e
AA
1405 if (!_tree_page)
1406 continue;
1407 nr += 1;
1408 if (is_page_sharing_candidate(dup)) {
1409 if (!found ||
1410 dup->rmap_hlist_len > found_rmap_hlist_len) {
1411 if (found)
8dc5ffcd 1412 put_page(tree_page);
2c653d0e
AA
1413 found = dup;
1414 found_rmap_hlist_len = found->rmap_hlist_len;
8dc5ffcd 1415 tree_page = _tree_page;
2c653d0e 1416
8dc5ffcd 1417 /* skip put_page for found dup */
2c653d0e
AA
1418 if (!prune_stale_stable_nodes)
1419 break;
2c653d0e
AA
1420 continue;
1421 }
1422 }
1423 put_page(_tree_page);
1424 }
1425
80b18dfa
AA
1426 if (found) {
1427 /*
1428 * nr is counting all dups in the chain only if
1429 * prune_stale_stable_nodes is true, otherwise we may
1430 * break the loop at nr == 1 even if there are
1431 * multiple entries.
1432 */
1433 if (prune_stale_stable_nodes && nr == 1) {
2c653d0e
AA
1434 /*
1435 * If there's not just one entry it would
1436 * corrupt memory, better BUG_ON. In KSM
1437 * context with no lock held it's not even
1438 * fatal.
1439 */
1440 BUG_ON(stable_node->hlist.first->next);
1441
1442 /*
1443 * There's just one entry and it is below the
1444 * deduplication limit so drop the chain.
1445 */
1446 rb_replace_node(&stable_node->node, &found->node,
1447 root);
1448 free_stable_node(stable_node);
1449 ksm_stable_node_chains--;
1450 ksm_stable_node_dups--;
b4fecc67 1451 /*
0ba1d0f7
AA
1452 * NOTE: the caller depends on the stable_node
1453 * to be equal to stable_node_dup if the chain
1454 * was collapsed.
b4fecc67 1455 */
0ba1d0f7
AA
1456 *_stable_node = found;
1457 /*
f0953a1b 1458 * Just for robustness, as stable_node is
0ba1d0f7
AA
1459 * otherwise left as a stable pointer, the
1460 * compiler shall optimize it away at build
1461 * time.
1462 */
1463 stable_node = NULL;
80b18dfa
AA
1464 } else if (stable_node->hlist.first != &found->hlist_dup &&
1465 __is_page_sharing_candidate(found, 1)) {
2c653d0e 1466 /*
80b18dfa
AA
1467 * If the found stable_node dup can accept one
1468 * more future merge (in addition to the one
1469 * that is underway) and is not at the head of
1470 * the chain, put it there so next search will
1471 * be quicker in the !prune_stale_stable_nodes
1472 * case.
1473 *
1474 * NOTE: it would be inaccurate to use nr > 1
1475 * instead of checking the hlist.first pointer
1476 * directly, because in the
1477 * prune_stale_stable_nodes case "nr" isn't
1478 * the position of the found dup in the chain,
1479 * but the total number of dups in the chain.
2c653d0e
AA
1480 */
1481 hlist_del(&found->hlist_dup);
1482 hlist_add_head(&found->hlist_dup,
1483 &stable_node->hlist);
1484 }
1485 }
1486
8dc5ffcd
AA
1487 *_stable_node_dup = found;
1488 return tree_page;
2c653d0e
AA
1489}
1490
1491static struct stable_node *stable_node_dup_any(struct stable_node *stable_node,
1492 struct rb_root *root)
1493{
1494 if (!is_stable_node_chain(stable_node))
1495 return stable_node;
1496 if (hlist_empty(&stable_node->hlist)) {
1497 free_stable_node_chain(stable_node, root);
1498 return NULL;
1499 }
1500 return hlist_entry(stable_node->hlist.first,
1501 typeof(*stable_node), hlist_dup);
1502}
1503
8dc5ffcd
AA
1504/*
1505 * Like for get_ksm_page, this function can free the *_stable_node and
1506 * *_stable_node_dup if the returned tree_page is NULL.
1507 *
1508 * It can also free and overwrite *_stable_node with the found
1509 * stable_node_dup if the chain is collapsed (in which case
1510 * *_stable_node will be equal to *_stable_node_dup like if the chain
1511 * never existed). It's up to the caller to verify tree_page is not
1512 * NULL before dereferencing *_stable_node or *_stable_node_dup.
1513 *
1514 * *_stable_node_dup is really a second output parameter of this
1515 * function and will be overwritten in all cases, the caller doesn't
1516 * need to initialize it.
1517 */
1518static struct page *__stable_node_chain(struct stable_node **_stable_node_dup,
1519 struct stable_node **_stable_node,
1520 struct rb_root *root,
1521 bool prune_stale_stable_nodes)
2c653d0e 1522{
b4fecc67 1523 struct stable_node *stable_node = *_stable_node;
2c653d0e
AA
1524 if (!is_stable_node_chain(stable_node)) {
1525 if (is_page_sharing_candidate(stable_node)) {
8dc5ffcd 1526 *_stable_node_dup = stable_node;
2cee57d1 1527 return get_ksm_page(stable_node, GET_KSM_PAGE_NOLOCK);
2c653d0e 1528 }
8dc5ffcd
AA
1529 /*
1530 * _stable_node_dup set to NULL means the stable_node
1531 * reached the ksm_max_page_sharing limit.
1532 */
1533 *_stable_node_dup = NULL;
2c653d0e
AA
1534 return NULL;
1535 }
8dc5ffcd 1536 return stable_node_dup(_stable_node_dup, _stable_node, root,
2c653d0e
AA
1537 prune_stale_stable_nodes);
1538}
1539
8dc5ffcd
AA
1540static __always_inline struct page *chain_prune(struct stable_node **s_n_d,
1541 struct stable_node **s_n,
1542 struct rb_root *root)
2c653d0e 1543{
8dc5ffcd 1544 return __stable_node_chain(s_n_d, s_n, root, true);
2c653d0e
AA
1545}
1546
8dc5ffcd
AA
1547static __always_inline struct page *chain(struct stable_node **s_n_d,
1548 struct stable_node *s_n,
1549 struct rb_root *root)
2c653d0e 1550{
8dc5ffcd
AA
1551 struct stable_node *old_stable_node = s_n;
1552 struct page *tree_page;
1553
1554 tree_page = __stable_node_chain(s_n_d, &s_n, root, false);
1555 /* not pruning dups so s_n cannot have changed */
1556 VM_BUG_ON(s_n != old_stable_node);
1557 return tree_page;
2c653d0e
AA
1558}
1559
31dbd01f 1560/*
8dd3557a 1561 * stable_tree_search - search for page inside the stable tree
31dbd01f
IE
1562 *
1563 * This function checks if there is a page inside the stable tree
1564 * with identical content to the page that we are scanning right now.
1565 *
7b6ba2c7 1566 * This function returns the stable tree node of identical content if found,
31dbd01f
IE
1567 * NULL otherwise.
1568 */
62b61f61 1569static struct page *stable_tree_search(struct page *page)
31dbd01f 1570{
90bd6fd3 1571 int nid;
ef53d16c 1572 struct rb_root *root;
4146d2d6
HD
1573 struct rb_node **new;
1574 struct rb_node *parent;
2c653d0e 1575 struct stable_node *stable_node, *stable_node_dup, *stable_node_any;
4146d2d6 1576 struct stable_node *page_node;
31dbd01f 1577
4146d2d6
HD
1578 page_node = page_stable_node(page);
1579 if (page_node && page_node->head != &migrate_nodes) {
1580 /* ksm page forked */
08beca44 1581 get_page(page);
62b61f61 1582 return page;
08beca44
HD
1583 }
1584
90bd6fd3 1585 nid = get_kpfn_nid(page_to_pfn(page));
ef53d16c 1586 root = root_stable_tree + nid;
4146d2d6 1587again:
ef53d16c 1588 new = &root->rb_node;
4146d2d6 1589 parent = NULL;
90bd6fd3 1590
4146d2d6 1591 while (*new) {
4035c07a 1592 struct page *tree_page;
31dbd01f
IE
1593 int ret;
1594
08beca44 1595 cond_resched();
4146d2d6 1596 stable_node = rb_entry(*new, struct stable_node, node);
2c653d0e 1597 stable_node_any = NULL;
8dc5ffcd 1598 tree_page = chain_prune(&stable_node_dup, &stable_node, root);
b4fecc67
AA
1599 /*
1600 * NOTE: stable_node may have been freed by
1601 * chain_prune() if the returned stable_node_dup is
1602 * not NULL. stable_node_dup may have been inserted in
1603 * the rbtree instead as a regular stable_node (in
1604 * order to collapse the stable_node chain if a single
0ba1d0f7 1605 * stable_node dup was found in it). In such case the
3413b2c8 1606 * stable_node is overwritten by the callee to point
0ba1d0f7
AA
1607 * to the stable_node_dup that was collapsed in the
1608 * stable rbtree and stable_node will be equal to
1609 * stable_node_dup like if the chain never existed.
b4fecc67 1610 */
2c653d0e
AA
1611 if (!stable_node_dup) {
1612 /*
1613 * Either all stable_node dups were full in
1614 * this stable_node chain, or this chain was
1615 * empty and should be rb_erased.
1616 */
1617 stable_node_any = stable_node_dup_any(stable_node,
1618 root);
1619 if (!stable_node_any) {
1620 /* rb_erase just run */
1621 goto again;
1622 }
1623 /*
1624 * Take any of the stable_node dups page of
1625 * this stable_node chain to let the tree walk
1626 * continue. All KSM pages belonging to the
1627 * stable_node dups in a stable_node chain
1628 * have the same content and they're
457aef94 1629 * write protected at all times. Any will work
2c653d0e
AA
1630 * fine to continue the walk.
1631 */
2cee57d1
YS
1632 tree_page = get_ksm_page(stable_node_any,
1633 GET_KSM_PAGE_NOLOCK);
2c653d0e
AA
1634 }
1635 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
f2e5ff85
AA
1636 if (!tree_page) {
1637 /*
1638 * If we walked over a stale stable_node,
1639 * get_ksm_page() will call rb_erase() and it
1640 * may rebalance the tree from under us. So
1641 * restart the search from scratch. Returning
1642 * NULL would be safe too, but we'd generate
1643 * false negative insertions just because some
1644 * stable_node was stale.
1645 */
1646 goto again;
1647 }
31dbd01f 1648
4035c07a 1649 ret = memcmp_pages(page, tree_page);
c8d6553b 1650 put_page(tree_page);
31dbd01f 1651
4146d2d6 1652 parent = *new;
c8d6553b 1653 if (ret < 0)
4146d2d6 1654 new = &parent->rb_left;
c8d6553b 1655 else if (ret > 0)
4146d2d6 1656 new = &parent->rb_right;
c8d6553b 1657 else {
2c653d0e
AA
1658 if (page_node) {
1659 VM_BUG_ON(page_node->head != &migrate_nodes);
1660 /*
1661 * Test if the migrated page should be merged
1662 * into a stable node dup. If the mapcount is
1663 * 1 we can migrate it with another KSM page
1664 * without adding it to the chain.
1665 */
1666 if (page_mapcount(page) > 1)
1667 goto chain_append;
1668 }
1669
1670 if (!stable_node_dup) {
1671 /*
1672 * If the stable_node is a chain and
1673 * we got a payload match in memcmp
1674 * but we cannot merge the scanned
1675 * page in any of the existing
1676 * stable_node dups because they're
1677 * all full, we need to wait the
1678 * scanned page to find itself a match
1679 * in the unstable tree to create a
1680 * brand new KSM page to add later to
1681 * the dups of this stable_node.
1682 */
1683 return NULL;
1684 }
1685
c8d6553b
HD
1686 /*
1687 * Lock and unlock the stable_node's page (which
1688 * might already have been migrated) so that page
1689 * migration is sure to notice its raised count.
1690 * It would be more elegant to return stable_node
1691 * than kpage, but that involves more changes.
1692 */
2cee57d1
YS
1693 tree_page = get_ksm_page(stable_node_dup,
1694 GET_KSM_PAGE_TRYLOCK);
1695
1696 if (PTR_ERR(tree_page) == -EBUSY)
1697 return ERR_PTR(-EBUSY);
1698
2c653d0e
AA
1699 if (unlikely(!tree_page))
1700 /*
1701 * The tree may have been rebalanced,
1702 * so re-evaluate parent and new.
1703 */
4146d2d6 1704 goto again;
2c653d0e
AA
1705 unlock_page(tree_page);
1706
1707 if (get_kpfn_nid(stable_node_dup->kpfn) !=
1708 NUMA(stable_node_dup->nid)) {
1709 put_page(tree_page);
1710 goto replace;
1711 }
1712 return tree_page;
c8d6553b 1713 }
31dbd01f
IE
1714 }
1715
4146d2d6
HD
1716 if (!page_node)
1717 return NULL;
1718
1719 list_del(&page_node->list);
1720 DO_NUMA(page_node->nid = nid);
1721 rb_link_node(&page_node->node, parent, new);
ef53d16c 1722 rb_insert_color(&page_node->node, root);
2c653d0e
AA
1723out:
1724 if (is_page_sharing_candidate(page_node)) {
1725 get_page(page);
1726 return page;
1727 } else
1728 return NULL;
4146d2d6
HD
1729
1730replace:
b4fecc67
AA
1731 /*
1732 * If stable_node was a chain and chain_prune collapsed it,
0ba1d0f7
AA
1733 * stable_node has been updated to be the new regular
1734 * stable_node. A collapse of the chain is indistinguishable
1735 * from the case there was no chain in the stable
1736 * rbtree. Otherwise stable_node is the chain and
1737 * stable_node_dup is the dup to replace.
b4fecc67 1738 */
0ba1d0f7 1739 if (stable_node_dup == stable_node) {
b4fecc67
AA
1740 VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1741 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
2c653d0e
AA
1742 /* there is no chain */
1743 if (page_node) {
1744 VM_BUG_ON(page_node->head != &migrate_nodes);
1745 list_del(&page_node->list);
1746 DO_NUMA(page_node->nid = nid);
b4fecc67
AA
1747 rb_replace_node(&stable_node_dup->node,
1748 &page_node->node,
2c653d0e
AA
1749 root);
1750 if (is_page_sharing_candidate(page_node))
1751 get_page(page);
1752 else
1753 page = NULL;
1754 } else {
b4fecc67 1755 rb_erase(&stable_node_dup->node, root);
2c653d0e
AA
1756 page = NULL;
1757 }
4146d2d6 1758 } else {
2c653d0e
AA
1759 VM_BUG_ON(!is_stable_node_chain(stable_node));
1760 __stable_node_dup_del(stable_node_dup);
1761 if (page_node) {
1762 VM_BUG_ON(page_node->head != &migrate_nodes);
1763 list_del(&page_node->list);
1764 DO_NUMA(page_node->nid = nid);
1765 stable_node_chain_add_dup(page_node, stable_node);
1766 if (is_page_sharing_candidate(page_node))
1767 get_page(page);
1768 else
1769 page = NULL;
1770 } else {
1771 page = NULL;
1772 }
4146d2d6 1773 }
2c653d0e
AA
1774 stable_node_dup->head = &migrate_nodes;
1775 list_add(&stable_node_dup->list, stable_node_dup->head);
4146d2d6 1776 return page;
2c653d0e
AA
1777
1778chain_append:
1779 /* stable_node_dup could be null if it reached the limit */
1780 if (!stable_node_dup)
1781 stable_node_dup = stable_node_any;
b4fecc67
AA
1782 /*
1783 * If stable_node was a chain and chain_prune collapsed it,
0ba1d0f7
AA
1784 * stable_node has been updated to be the new regular
1785 * stable_node. A collapse of the chain is indistinguishable
1786 * from the case there was no chain in the stable
1787 * rbtree. Otherwise stable_node is the chain and
1788 * stable_node_dup is the dup to replace.
b4fecc67 1789 */
0ba1d0f7 1790 if (stable_node_dup == stable_node) {
b4fecc67 1791 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
2c653d0e
AA
1792 /* chain is missing so create it */
1793 stable_node = alloc_stable_node_chain(stable_node_dup,
1794 root);
1795 if (!stable_node)
1796 return NULL;
1797 }
1798 /*
1799 * Add this stable_node dup that was
1800 * migrated to the stable_node chain
1801 * of the current nid for this page
1802 * content.
1803 */
b4fecc67 1804 VM_BUG_ON(!is_stable_node_dup(stable_node_dup));
2c653d0e
AA
1805 VM_BUG_ON(page_node->head != &migrate_nodes);
1806 list_del(&page_node->list);
1807 DO_NUMA(page_node->nid = nid);
1808 stable_node_chain_add_dup(page_node, stable_node);
1809 goto out;
31dbd01f
IE
1810}
1811
1812/*
e850dcf5 1813 * stable_tree_insert - insert stable tree node pointing to new ksm page
31dbd01f
IE
1814 * into the stable tree.
1815 *
7b6ba2c7
HD
1816 * This function returns the stable tree node just allocated on success,
1817 * NULL otherwise.
31dbd01f 1818 */
7b6ba2c7 1819static struct stable_node *stable_tree_insert(struct page *kpage)
31dbd01f 1820{
90bd6fd3
PH
1821 int nid;
1822 unsigned long kpfn;
ef53d16c 1823 struct rb_root *root;
90bd6fd3 1824 struct rb_node **new;
f2e5ff85 1825 struct rb_node *parent;
2c653d0e
AA
1826 struct stable_node *stable_node, *stable_node_dup, *stable_node_any;
1827 bool need_chain = false;
31dbd01f 1828
90bd6fd3
PH
1829 kpfn = page_to_pfn(kpage);
1830 nid = get_kpfn_nid(kpfn);
ef53d16c 1831 root = root_stable_tree + nid;
f2e5ff85
AA
1832again:
1833 parent = NULL;
ef53d16c 1834 new = &root->rb_node;
90bd6fd3 1835
31dbd01f 1836 while (*new) {
4035c07a 1837 struct page *tree_page;
31dbd01f
IE
1838 int ret;
1839
08beca44 1840 cond_resched();
7b6ba2c7 1841 stable_node = rb_entry(*new, struct stable_node, node);
2c653d0e 1842 stable_node_any = NULL;
8dc5ffcd 1843 tree_page = chain(&stable_node_dup, stable_node, root);
2c653d0e
AA
1844 if (!stable_node_dup) {
1845 /*
1846 * Either all stable_node dups were full in
1847 * this stable_node chain, or this chain was
1848 * empty and should be rb_erased.
1849 */
1850 stable_node_any = stable_node_dup_any(stable_node,
1851 root);
1852 if (!stable_node_any) {
1853 /* rb_erase just run */
1854 goto again;
1855 }
1856 /*
1857 * Take any of the stable_node dups page of
1858 * this stable_node chain to let the tree walk
1859 * continue. All KSM pages belonging to the
1860 * stable_node dups in a stable_node chain
1861 * have the same content and they're
457aef94 1862 * write protected at all times. Any will work
2c653d0e
AA
1863 * fine to continue the walk.
1864 */
2cee57d1
YS
1865 tree_page = get_ksm_page(stable_node_any,
1866 GET_KSM_PAGE_NOLOCK);
2c653d0e
AA
1867 }
1868 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
f2e5ff85
AA
1869 if (!tree_page) {
1870 /*
1871 * If we walked over a stale stable_node,
1872 * get_ksm_page() will call rb_erase() and it
1873 * may rebalance the tree from under us. So
1874 * restart the search from scratch. Returning
1875 * NULL would be safe too, but we'd generate
1876 * false negative insertions just because some
1877 * stable_node was stale.
1878 */
1879 goto again;
1880 }
31dbd01f 1881
4035c07a
HD
1882 ret = memcmp_pages(kpage, tree_page);
1883 put_page(tree_page);
31dbd01f
IE
1884
1885 parent = *new;
1886 if (ret < 0)
1887 new = &parent->rb_left;
1888 else if (ret > 0)
1889 new = &parent->rb_right;
1890 else {
2c653d0e
AA
1891 need_chain = true;
1892 break;
31dbd01f
IE
1893 }
1894 }
1895
2c653d0e
AA
1896 stable_node_dup = alloc_stable_node();
1897 if (!stable_node_dup)
7b6ba2c7 1898 return NULL;
31dbd01f 1899
2c653d0e
AA
1900 INIT_HLIST_HEAD(&stable_node_dup->hlist);
1901 stable_node_dup->kpfn = kpfn;
1902 set_page_stable_node(kpage, stable_node_dup);
1903 stable_node_dup->rmap_hlist_len = 0;
1904 DO_NUMA(stable_node_dup->nid = nid);
1905 if (!need_chain) {
1906 rb_link_node(&stable_node_dup->node, parent, new);
1907 rb_insert_color(&stable_node_dup->node, root);
1908 } else {
1909 if (!is_stable_node_chain(stable_node)) {
1910 struct stable_node *orig = stable_node;
1911 /* chain is missing so create it */
1912 stable_node = alloc_stable_node_chain(orig, root);
1913 if (!stable_node) {
1914 free_stable_node(stable_node_dup);
1915 return NULL;
1916 }
1917 }
1918 stable_node_chain_add_dup(stable_node_dup, stable_node);
1919 }
08beca44 1920
2c653d0e 1921 return stable_node_dup;
31dbd01f
IE
1922}
1923
1924/*
8dd3557a
HD
1925 * unstable_tree_search_insert - search for identical page,
1926 * else insert rmap_item into the unstable tree.
31dbd01f
IE
1927 *
1928 * This function searches for a page in the unstable tree identical to the
1929 * page currently being scanned; and if no identical page is found in the
1930 * tree, we insert rmap_item as a new object into the unstable tree.
1931 *
1932 * This function returns pointer to rmap_item found to be identical
1933 * to the currently scanned page, NULL otherwise.
1934 *
1935 * This function does both searching and inserting, because they share
1936 * the same walking algorithm in an rbtree.
1937 */
8dd3557a
HD
1938static
1939struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item,
1940 struct page *page,
1941 struct page **tree_pagep)
31dbd01f 1942{
90bd6fd3
PH
1943 struct rb_node **new;
1944 struct rb_root *root;
31dbd01f 1945 struct rb_node *parent = NULL;
90bd6fd3
PH
1946 int nid;
1947
1948 nid = get_kpfn_nid(page_to_pfn(page));
ef53d16c 1949 root = root_unstable_tree + nid;
90bd6fd3 1950 new = &root->rb_node;
31dbd01f
IE
1951
1952 while (*new) {
1953 struct rmap_item *tree_rmap_item;
8dd3557a 1954 struct page *tree_page;
31dbd01f
IE
1955 int ret;
1956
d178f27f 1957 cond_resched();
31dbd01f 1958 tree_rmap_item = rb_entry(*new, struct rmap_item, node);
8dd3557a 1959 tree_page = get_mergeable_page(tree_rmap_item);
c8f95ed1 1960 if (!tree_page)
31dbd01f
IE
1961 return NULL;
1962
1963 /*
8dd3557a 1964 * Don't substitute a ksm page for a forked page.
31dbd01f 1965 */
8dd3557a
HD
1966 if (page == tree_page) {
1967 put_page(tree_page);
31dbd01f
IE
1968 return NULL;
1969 }
1970
8dd3557a 1971 ret = memcmp_pages(page, tree_page);
31dbd01f
IE
1972
1973 parent = *new;
1974 if (ret < 0) {
8dd3557a 1975 put_page(tree_page);
31dbd01f
IE
1976 new = &parent->rb_left;
1977 } else if (ret > 0) {
8dd3557a 1978 put_page(tree_page);
31dbd01f 1979 new = &parent->rb_right;
b599cbdf
HD
1980 } else if (!ksm_merge_across_nodes &&
1981 page_to_nid(tree_page) != nid) {
1982 /*
1983 * If tree_page has been migrated to another NUMA node,
1984 * it will be flushed out and put in the right unstable
1985 * tree next time: only merge with it when across_nodes.
1986 */
1987 put_page(tree_page);
1988 return NULL;
31dbd01f 1989 } else {
8dd3557a 1990 *tree_pagep = tree_page;
31dbd01f
IE
1991 return tree_rmap_item;
1992 }
1993 }
1994
7b6ba2c7 1995 rmap_item->address |= UNSTABLE_FLAG;
31dbd01f 1996 rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
e850dcf5 1997 DO_NUMA(rmap_item->nid = nid);
31dbd01f 1998 rb_link_node(&rmap_item->node, parent, new);
90bd6fd3 1999 rb_insert_color(&rmap_item->node, root);
31dbd01f 2000
473b0ce4 2001 ksm_pages_unshared++;
31dbd01f
IE
2002 return NULL;
2003}
2004
2005/*
2006 * stable_tree_append - add another rmap_item to the linked list of
2007 * rmap_items hanging off a given node of the stable tree, all sharing
2008 * the same ksm page.
2009 */
2010static void stable_tree_append(struct rmap_item *rmap_item,
2c653d0e
AA
2011 struct stable_node *stable_node,
2012 bool max_page_sharing_bypass)
31dbd01f 2013{
2c653d0e
AA
2014 /*
2015 * rmap won't find this mapping if we don't insert the
2016 * rmap_item in the right stable_node
2017 * duplicate. page_migration could break later if rmap breaks,
2018 * so we can as well crash here. We really need to check for
2019 * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check
457aef94 2020 * for other negative values as an underflow if detected here
2c653d0e
AA
2021 * for the first time (and not when decreasing rmap_hlist_len)
2022 * would be sign of memory corruption in the stable_node.
2023 */
2024 BUG_ON(stable_node->rmap_hlist_len < 0);
2025
2026 stable_node->rmap_hlist_len++;
2027 if (!max_page_sharing_bypass)
2028 /* possibly non fatal but unexpected overflow, only warn */
2029 WARN_ON_ONCE(stable_node->rmap_hlist_len >
2030 ksm_max_page_sharing);
2031
7b6ba2c7 2032 rmap_item->head = stable_node;
31dbd01f 2033 rmap_item->address |= STABLE_FLAG;
7b6ba2c7 2034 hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
e178dfde 2035
7b6ba2c7
HD
2036 if (rmap_item->hlist.next)
2037 ksm_pages_sharing++;
2038 else
2039 ksm_pages_shared++;
76093853 2040
2041 rmap_item->mm->ksm_merging_pages++;
31dbd01f
IE
2042}
2043
2044/*
81464e30
HD
2045 * cmp_and_merge_page - first see if page can be merged into the stable tree;
2046 * if not, compare checksum to previous and if it's the same, see if page can
2047 * be inserted into the unstable tree, or merged with a page already there and
2048 * both transferred to the stable tree.
31dbd01f
IE
2049 *
2050 * @page: the page that we are searching identical page to.
2051 * @rmap_item: the reverse mapping into the virtual address of this page
2052 */
2053static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
2054{
4b22927f 2055 struct mm_struct *mm = rmap_item->mm;
31dbd01f 2056 struct rmap_item *tree_rmap_item;
8dd3557a 2057 struct page *tree_page = NULL;
7b6ba2c7 2058 struct stable_node *stable_node;
8dd3557a 2059 struct page *kpage;
31dbd01f
IE
2060 unsigned int checksum;
2061 int err;
2c653d0e 2062 bool max_page_sharing_bypass = false;
31dbd01f 2063
4146d2d6
HD
2064 stable_node = page_stable_node(page);
2065 if (stable_node) {
2066 if (stable_node->head != &migrate_nodes &&
2c653d0e
AA
2067 get_kpfn_nid(READ_ONCE(stable_node->kpfn)) !=
2068 NUMA(stable_node->nid)) {
2069 stable_node_dup_del(stable_node);
4146d2d6
HD
2070 stable_node->head = &migrate_nodes;
2071 list_add(&stable_node->list, stable_node->head);
2072 }
2073 if (stable_node->head != &migrate_nodes &&
2074 rmap_item->head == stable_node)
2075 return;
2c653d0e
AA
2076 /*
2077 * If it's a KSM fork, allow it to go over the sharing limit
2078 * without warnings.
2079 */
2080 if (!is_page_sharing_candidate(stable_node))
2081 max_page_sharing_bypass = true;
4146d2d6 2082 }
31dbd01f
IE
2083
2084 /* We first start with searching the page inside the stable tree */
62b61f61 2085 kpage = stable_tree_search(page);
4146d2d6
HD
2086 if (kpage == page && rmap_item->head == stable_node) {
2087 put_page(kpage);
2088 return;
2089 }
2090
2091 remove_rmap_item_from_tree(rmap_item);
2092
62b61f61 2093 if (kpage) {
2cee57d1
YS
2094 if (PTR_ERR(kpage) == -EBUSY)
2095 return;
2096
08beca44 2097 err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
31dbd01f
IE
2098 if (!err) {
2099 /*
2100 * The page was successfully merged:
2101 * add its rmap_item to the stable tree.
2102 */
5ad64688 2103 lock_page(kpage);
2c653d0e
AA
2104 stable_tree_append(rmap_item, page_stable_node(kpage),
2105 max_page_sharing_bypass);
5ad64688 2106 unlock_page(kpage);
31dbd01f 2107 }
8dd3557a 2108 put_page(kpage);
31dbd01f
IE
2109 return;
2110 }
2111
2112 /*
4035c07a
HD
2113 * If the hash value of the page has changed from the last time
2114 * we calculated it, this page is changing frequently: therefore we
2115 * don't want to insert it in the unstable tree, and we don't want
2116 * to waste our time searching for something identical to it there.
31dbd01f
IE
2117 */
2118 checksum = calc_checksum(page);
2119 if (rmap_item->oldchecksum != checksum) {
2120 rmap_item->oldchecksum = checksum;
2121 return;
2122 }
2123
e86c59b1
CI
2124 /*
2125 * Same checksum as an empty page. We attempt to merge it with the
2126 * appropriate zero page if the user enabled this via sysfs.
2127 */
2128 if (ksm_use_zero_pages && (checksum == zero_checksum)) {
2129 struct vm_area_struct *vma;
2130
d8ed45c5 2131 mmap_read_lock(mm);
4b22927f 2132 vma = find_mergeable_vma(mm, rmap_item->address);
56df70a6
MS
2133 if (vma) {
2134 err = try_to_merge_one_page(vma, page,
2135 ZERO_PAGE(rmap_item->address));
2136 } else {
2137 /*
2138 * If the vma is out of date, we do not need to
2139 * continue.
2140 */
2141 err = 0;
2142 }
d8ed45c5 2143 mmap_read_unlock(mm);
e86c59b1
CI
2144 /*
2145 * In case of failure, the page was not really empty, so we
2146 * need to continue. Otherwise we're done.
2147 */
2148 if (!err)
2149 return;
2150 }
8dd3557a
HD
2151 tree_rmap_item =
2152 unstable_tree_search_insert(rmap_item, page, &tree_page);
31dbd01f 2153 if (tree_rmap_item) {
77da2ba0
CI
2154 bool split;
2155
8dd3557a
HD
2156 kpage = try_to_merge_two_pages(rmap_item, page,
2157 tree_rmap_item, tree_page);
77da2ba0
CI
2158 /*
2159 * If both pages we tried to merge belong to the same compound
2160 * page, then we actually ended up increasing the reference
2161 * count of the same compound page twice, and split_huge_page
2162 * failed.
2163 * Here we set a flag if that happened, and we use it later to
2164 * try split_huge_page again. Since we call put_page right
2165 * afterwards, the reference count will be correct and
2166 * split_huge_page should succeed.
2167 */
2168 split = PageTransCompound(page)
2169 && compound_head(page) == compound_head(tree_page);
8dd3557a 2170 put_page(tree_page);
8dd3557a 2171 if (kpage) {
bc56620b
HD
2172 /*
2173 * The pages were successfully merged: insert new
2174 * node in the stable tree and add both rmap_items.
2175 */
5ad64688 2176 lock_page(kpage);
7b6ba2c7
HD
2177 stable_node = stable_tree_insert(kpage);
2178 if (stable_node) {
2c653d0e
AA
2179 stable_tree_append(tree_rmap_item, stable_node,
2180 false);
2181 stable_tree_append(rmap_item, stable_node,
2182 false);
7b6ba2c7 2183 }
5ad64688 2184 unlock_page(kpage);
7b6ba2c7 2185
31dbd01f
IE
2186 /*
2187 * If we fail to insert the page into the stable tree,
2188 * we will have 2 virtual addresses that are pointing
2189 * to a ksm page left outside the stable tree,
2190 * in which case we need to break_cow on both.
2191 */
7b6ba2c7 2192 if (!stable_node) {
8dd3557a
HD
2193 break_cow(tree_rmap_item);
2194 break_cow(rmap_item);
31dbd01f 2195 }
77da2ba0
CI
2196 } else if (split) {
2197 /*
2198 * We are here if we tried to merge two pages and
2199 * failed because they both belonged to the same
2200 * compound page. We will split the page now, but no
2201 * merging will take place.
2202 * We do not want to add the cost of a full lock; if
2203 * the page is locked, it is better to skip it and
2204 * perhaps try again later.
2205 */
2206 if (!trylock_page(page))
2207 return;
2208 split_huge_page(page);
2209 unlock_page(page);
31dbd01f 2210 }
31dbd01f
IE
2211 }
2212}
2213
2214static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
6514d511 2215 struct rmap_item **rmap_list,
31dbd01f
IE
2216 unsigned long addr)
2217{
2218 struct rmap_item *rmap_item;
2219
6514d511
HD
2220 while (*rmap_list) {
2221 rmap_item = *rmap_list;
93d17715 2222 if ((rmap_item->address & PAGE_MASK) == addr)
31dbd01f 2223 return rmap_item;
31dbd01f
IE
2224 if (rmap_item->address > addr)
2225 break;
6514d511 2226 *rmap_list = rmap_item->rmap_list;
31dbd01f 2227 remove_rmap_item_from_tree(rmap_item);
31dbd01f
IE
2228 free_rmap_item(rmap_item);
2229 }
2230
2231 rmap_item = alloc_rmap_item();
2232 if (rmap_item) {
2233 /* It has already been zeroed */
2234 rmap_item->mm = mm_slot->mm;
2235 rmap_item->address = addr;
6514d511
HD
2236 rmap_item->rmap_list = *rmap_list;
2237 *rmap_list = rmap_item;
31dbd01f
IE
2238 }
2239 return rmap_item;
2240}
2241
2242static struct rmap_item *scan_get_next_rmap_item(struct page **page)
2243{
2244 struct mm_struct *mm;
2245 struct mm_slot *slot;
2246 struct vm_area_struct *vma;
2247 struct rmap_item *rmap_item;
a5f18ba0 2248 struct vma_iterator vmi;
90bd6fd3 2249 int nid;
31dbd01f
IE
2250
2251 if (list_empty(&ksm_mm_head.mm_list))
2252 return NULL;
2253
2254 slot = ksm_scan.mm_slot;
2255 if (slot == &ksm_mm_head) {
2919bfd0
HD
2256 /*
2257 * A number of pages can hang around indefinitely on per-cpu
2258 * pagevecs, raised page count preventing write_protect_page
2259 * from merging them. Though it doesn't really matter much,
2260 * it is puzzling to see some stuck in pages_volatile until
2261 * other activity jostles them out, and they also prevented
2262 * LTP's KSM test from succeeding deterministically; so drain
2263 * them here (here rather than on entry to ksm_do_scan(),
2264 * so we don't IPI too often when pages_to_scan is set low).
2265 */
2266 lru_add_drain_all();
2267
4146d2d6
HD
2268 /*
2269 * Whereas stale stable_nodes on the stable_tree itself
2270 * get pruned in the regular course of stable_tree_search(),
2271 * those moved out to the migrate_nodes list can accumulate:
2272 * so prune them once before each full scan.
2273 */
2274 if (!ksm_merge_across_nodes) {
03640418 2275 struct stable_node *stable_node, *next;
4146d2d6
HD
2276 struct page *page;
2277
03640418
GT
2278 list_for_each_entry_safe(stable_node, next,
2279 &migrate_nodes, list) {
2cee57d1
YS
2280 page = get_ksm_page(stable_node,
2281 GET_KSM_PAGE_NOLOCK);
4146d2d6
HD
2282 if (page)
2283 put_page(page);
2284 cond_resched();
2285 }
2286 }
2287
ef53d16c 2288 for (nid = 0; nid < ksm_nr_node_ids; nid++)
90bd6fd3 2289 root_unstable_tree[nid] = RB_ROOT;
31dbd01f
IE
2290
2291 spin_lock(&ksm_mmlist_lock);
2292 slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
2293 ksm_scan.mm_slot = slot;
2294 spin_unlock(&ksm_mmlist_lock);
2b472611
HD
2295 /*
2296 * Although we tested list_empty() above, a racing __ksm_exit
2297 * of the last mm on the list may have removed it since then.
2298 */
2299 if (slot == &ksm_mm_head)
2300 return NULL;
31dbd01f
IE
2301next_mm:
2302 ksm_scan.address = 0;
6514d511 2303 ksm_scan.rmap_list = &slot->rmap_list;
31dbd01f
IE
2304 }
2305
2306 mm = slot->mm;
a5f18ba0
MWO
2307 vma_iter_init(&vmi, mm, ksm_scan.address);
2308
d8ed45c5 2309 mmap_read_lock(mm);
9ba69294 2310 if (ksm_test_exit(mm))
a5f18ba0 2311 goto no_vmas;
9ba69294 2312
a5f18ba0 2313 for_each_vma(vmi, vma) {
31dbd01f
IE
2314 if (!(vma->vm_flags & VM_MERGEABLE))
2315 continue;
2316 if (ksm_scan.address < vma->vm_start)
2317 ksm_scan.address = vma->vm_start;
2318 if (!vma->anon_vma)
2319 ksm_scan.address = vma->vm_end;
2320
2321 while (ksm_scan.address < vma->vm_end) {
9ba69294
HD
2322 if (ksm_test_exit(mm))
2323 break;
31dbd01f 2324 *page = follow_page(vma, ksm_scan.address, FOLL_GET);
3218f871 2325 if (IS_ERR_OR_NULL(*page) || is_zone_device_page(*page)) {
21ae5b01
AA
2326 ksm_scan.address += PAGE_SIZE;
2327 cond_resched();
2328 continue;
2329 }
f765f540 2330 if (PageAnon(*page)) {
31dbd01f
IE
2331 flush_anon_page(vma, *page, ksm_scan.address);
2332 flush_dcache_page(*page);
2333 rmap_item = get_next_rmap_item(slot,
6514d511 2334 ksm_scan.rmap_list, ksm_scan.address);
31dbd01f 2335 if (rmap_item) {
6514d511
HD
2336 ksm_scan.rmap_list =
2337 &rmap_item->rmap_list;
31dbd01f
IE
2338 ksm_scan.address += PAGE_SIZE;
2339 } else
2340 put_page(*page);
d8ed45c5 2341 mmap_read_unlock(mm);
31dbd01f
IE
2342 return rmap_item;
2343 }
21ae5b01 2344 put_page(*page);
31dbd01f
IE
2345 ksm_scan.address += PAGE_SIZE;
2346 cond_resched();
2347 }
2348 }
2349
9ba69294 2350 if (ksm_test_exit(mm)) {
a5f18ba0 2351no_vmas:
9ba69294 2352 ksm_scan.address = 0;
6514d511 2353 ksm_scan.rmap_list = &slot->rmap_list;
9ba69294 2354 }
31dbd01f
IE
2355 /*
2356 * Nuke all the rmap_items that are above this current rmap:
2357 * because there were no VM_MERGEABLE vmas with such addresses.
2358 */
420be4ed 2359 remove_trailing_rmap_items(ksm_scan.rmap_list);
31dbd01f
IE
2360
2361 spin_lock(&ksm_mmlist_lock);
cd551f97
HD
2362 ksm_scan.mm_slot = list_entry(slot->mm_list.next,
2363 struct mm_slot, mm_list);
2364 if (ksm_scan.address == 0) {
2365 /*
c1e8d7c6 2366 * We've completed a full scan of all vmas, holding mmap_lock
cd551f97
HD
2367 * throughout, and found no VM_MERGEABLE: so do the same as
2368 * __ksm_exit does to remove this mm from all our lists now.
9ba69294
HD
2369 * This applies either when cleaning up after __ksm_exit
2370 * (but beware: we can reach here even before __ksm_exit),
2371 * or when all VM_MERGEABLE areas have been unmapped (and
c1e8d7c6 2372 * mmap_lock then protects against race with MADV_MERGEABLE).
cd551f97 2373 */
4ca3a69b 2374 hash_del(&slot->link);
cd551f97 2375 list_del(&slot->mm_list);
9ba69294
HD
2376 spin_unlock(&ksm_mmlist_lock);
2377
cd551f97
HD
2378 free_mm_slot(slot);
2379 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
d8ed45c5 2380 mmap_read_unlock(mm);
9ba69294
HD
2381 mmdrop(mm);
2382 } else {
d8ed45c5 2383 mmap_read_unlock(mm);
7496fea9 2384 /*
3e4e28c5 2385 * mmap_read_unlock(mm) first because after
7496fea9
ZC
2386 * spin_unlock(&ksm_mmlist_lock) run, the "mm" may
2387 * already have been freed under us by __ksm_exit()
2388 * because the "mm_slot" is still hashed and
2389 * ksm_scan.mm_slot doesn't point to it anymore.
2390 */
2391 spin_unlock(&ksm_mmlist_lock);
cd551f97 2392 }
31dbd01f
IE
2393
2394 /* Repeat until we've completed scanning the whole list */
cd551f97 2395 slot = ksm_scan.mm_slot;
31dbd01f
IE
2396 if (slot != &ksm_mm_head)
2397 goto next_mm;
2398
31dbd01f
IE
2399 ksm_scan.seqnr++;
2400 return NULL;
2401}
2402
2403/**
2404 * ksm_do_scan - the ksm scanner main worker function.
b7701a5f 2405 * @scan_npages: number of pages we want to scan before we return.
31dbd01f
IE
2406 */
2407static void ksm_do_scan(unsigned int scan_npages)
2408{
2409 struct rmap_item *rmap_item;
3f649ab7 2410 struct page *page;
31dbd01f 2411
878aee7d 2412 while (scan_npages-- && likely(!freezing(current))) {
31dbd01f
IE
2413 cond_resched();
2414 rmap_item = scan_get_next_rmap_item(&page);
2415 if (!rmap_item)
2416 return;
4146d2d6 2417 cmp_and_merge_page(page, rmap_item);
31dbd01f
IE
2418 put_page(page);
2419 }
2420}
2421
6e158384
HD
2422static int ksmd_should_run(void)
2423{
2424 return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
2425}
2426
31dbd01f
IE
2427static int ksm_scan_thread(void *nothing)
2428{
fcf9a0ef
KT
2429 unsigned int sleep_ms;
2430
878aee7d 2431 set_freezable();
339aa624 2432 set_user_nice(current, 5);
31dbd01f
IE
2433
2434 while (!kthread_should_stop()) {
6e158384 2435 mutex_lock(&ksm_thread_mutex);
ef4d43a8 2436 wait_while_offlining();
6e158384 2437 if (ksmd_should_run())
31dbd01f 2438 ksm_do_scan(ksm_thread_pages_to_scan);
6e158384
HD
2439 mutex_unlock(&ksm_thread_mutex);
2440
878aee7d
AA
2441 try_to_freeze();
2442
6e158384 2443 if (ksmd_should_run()) {
fcf9a0ef
KT
2444 sleep_ms = READ_ONCE(ksm_thread_sleep_millisecs);
2445 wait_event_interruptible_timeout(ksm_iter_wait,
2446 sleep_ms != READ_ONCE(ksm_thread_sleep_millisecs),
2447 msecs_to_jiffies(sleep_ms));
31dbd01f 2448 } else {
878aee7d 2449 wait_event_freezable(ksm_thread_wait,
6e158384 2450 ksmd_should_run() || kthread_should_stop());
31dbd01f
IE
2451 }
2452 }
2453 return 0;
2454}
2455
f8af4da3
HD
2456int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
2457 unsigned long end, int advice, unsigned long *vm_flags)
2458{
2459 struct mm_struct *mm = vma->vm_mm;
d952b791 2460 int err;
f8af4da3
HD
2461
2462 switch (advice) {
2463 case MADV_MERGEABLE:
2464 /*
2465 * Be somewhat over-protective for now!
2466 */
2467 if (*vm_flags & (VM_MERGEABLE | VM_SHARED | VM_MAYSHARE |
2468 VM_PFNMAP | VM_IO | VM_DONTEXPAND |
0661a336 2469 VM_HUGETLB | VM_MIXEDMAP))
f8af4da3
HD
2470 return 0; /* just ignore the advice */
2471
e1fb4a08
DJ
2472 if (vma_is_dax(vma))
2473 return 0;
2474
12564485
SA
2475#ifdef VM_SAO
2476 if (*vm_flags & VM_SAO)
2477 return 0;
2478#endif
74a04967
KA
2479#ifdef VM_SPARC_ADI
2480 if (*vm_flags & VM_SPARC_ADI)
2481 return 0;
2482#endif
cc2383ec 2483
d952b791
HD
2484 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2485 err = __ksm_enter(mm);
2486 if (err)
2487 return err;
2488 }
f8af4da3
HD
2489
2490 *vm_flags |= VM_MERGEABLE;
2491 break;
2492
2493 case MADV_UNMERGEABLE:
2494 if (!(*vm_flags & VM_MERGEABLE))
2495 return 0; /* just ignore the advice */
2496
d952b791
HD
2497 if (vma->anon_vma) {
2498 err = unmerge_ksm_pages(vma, start, end);
2499 if (err)
2500 return err;
2501 }
f8af4da3
HD
2502
2503 *vm_flags &= ~VM_MERGEABLE;
2504 break;
2505 }
2506
2507 return 0;
2508}
33cf1707 2509EXPORT_SYMBOL_GPL(ksm_madvise);
f8af4da3
HD
2510
2511int __ksm_enter(struct mm_struct *mm)
2512{
6e158384
HD
2513 struct mm_slot *mm_slot;
2514 int needs_wakeup;
2515
2516 mm_slot = alloc_mm_slot();
31dbd01f
IE
2517 if (!mm_slot)
2518 return -ENOMEM;
2519
6e158384
HD
2520 /* Check ksm_run too? Would need tighter locking */
2521 needs_wakeup = list_empty(&ksm_mm_head.mm_list);
2522
31dbd01f
IE
2523 spin_lock(&ksm_mmlist_lock);
2524 insert_to_mm_slots_hash(mm, mm_slot);
2525 /*
cbf86cfe
HD
2526 * When KSM_RUN_MERGE (or KSM_RUN_STOP),
2527 * insert just behind the scanning cursor, to let the area settle
31dbd01f
IE
2528 * down a little; when fork is followed by immediate exec, we don't
2529 * want ksmd to waste time setting up and tearing down an rmap_list.
cbf86cfe
HD
2530 *
2531 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
2532 * scanning cursor, otherwise KSM pages in newly forked mms will be
2533 * missed: then we might as well insert at the end of the list.
31dbd01f 2534 */
cbf86cfe
HD
2535 if (ksm_run & KSM_RUN_UNMERGE)
2536 list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list);
2537 else
2538 list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
31dbd01f
IE
2539 spin_unlock(&ksm_mmlist_lock);
2540
f8af4da3 2541 set_bit(MMF_VM_MERGEABLE, &mm->flags);
f1f10076 2542 mmgrab(mm);
6e158384
HD
2543
2544 if (needs_wakeup)
2545 wake_up_interruptible(&ksm_thread_wait);
2546
f8af4da3
HD
2547 return 0;
2548}
2549
1c2fb7a4 2550void __ksm_exit(struct mm_struct *mm)
f8af4da3 2551{
cd551f97 2552 struct mm_slot *mm_slot;
9ba69294 2553 int easy_to_free = 0;
cd551f97 2554
31dbd01f 2555 /*
9ba69294
HD
2556 * This process is exiting: if it's straightforward (as is the
2557 * case when ksmd was never running), free mm_slot immediately.
2558 * But if it's at the cursor or has rmap_items linked to it, use
c1e8d7c6 2559 * mmap_lock to synchronize with any break_cows before pagetables
9ba69294
HD
2560 * are freed, and leave the mm_slot on the list for ksmd to free.
2561 * Beware: ksm may already have noticed it exiting and freed the slot.
31dbd01f 2562 */
9ba69294 2563
cd551f97
HD
2564 spin_lock(&ksm_mmlist_lock);
2565 mm_slot = get_mm_slot(mm);
9ba69294 2566 if (mm_slot && ksm_scan.mm_slot != mm_slot) {
6514d511 2567 if (!mm_slot->rmap_list) {
4ca3a69b 2568 hash_del(&mm_slot->link);
9ba69294
HD
2569 list_del(&mm_slot->mm_list);
2570 easy_to_free = 1;
2571 } else {
2572 list_move(&mm_slot->mm_list,
2573 &ksm_scan.mm_slot->mm_list);
2574 }
cd551f97 2575 }
cd551f97
HD
2576 spin_unlock(&ksm_mmlist_lock);
2577
9ba69294
HD
2578 if (easy_to_free) {
2579 free_mm_slot(mm_slot);
2580 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2581 mmdrop(mm);
2582 } else if (mm_slot) {
d8ed45c5
ML
2583 mmap_write_lock(mm);
2584 mmap_write_unlock(mm);
9ba69294 2585 }
31dbd01f
IE
2586}
2587
cbf86cfe 2588struct page *ksm_might_need_to_copy(struct page *page,
5ad64688
HD
2589 struct vm_area_struct *vma, unsigned long address)
2590{
e05b3453
MWO
2591 struct folio *folio = page_folio(page);
2592 struct anon_vma *anon_vma = folio_anon_vma(folio);
5ad64688
HD
2593 struct page *new_page;
2594
cbf86cfe
HD
2595 if (PageKsm(page)) {
2596 if (page_stable_node(page) &&
2597 !(ksm_run & KSM_RUN_UNMERGE))
2598 return page; /* no need to copy it */
2599 } else if (!anon_vma) {
2600 return page; /* no need to copy it */
e1c63e11
NS
2601 } else if (page->index == linear_page_index(vma, address) &&
2602 anon_vma->root == vma->anon_vma->root) {
cbf86cfe
HD
2603 return page; /* still no need to copy it */
2604 }
2605 if (!PageUptodate(page))
2606 return page; /* let do_swap_page report the error */
2607
5ad64688 2608 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
8f425e4e
MWO
2609 if (new_page &&
2610 mem_cgroup_charge(page_folio(new_page), vma->vm_mm, GFP_KERNEL)) {
62fdb163
HD
2611 put_page(new_page);
2612 new_page = NULL;
2613 }
5ad64688
HD
2614 if (new_page) {
2615 copy_user_highpage(new_page, page, address, vma);
2616
2617 SetPageDirty(new_page);
2618 __SetPageUptodate(new_page);
48c935ad 2619 __SetPageLocked(new_page);
4d45c3af
YY
2620#ifdef CONFIG_SWAP
2621 count_vm_event(KSM_SWPIN_COPY);
2622#endif
5ad64688
HD
2623 }
2624
5ad64688
HD
2625 return new_page;
2626}
2627
6d4675e6 2628void rmap_walk_ksm(struct folio *folio, struct rmap_walk_control *rwc)
e9995ef9
HD
2629{
2630 struct stable_node *stable_node;
e9995ef9 2631 struct rmap_item *rmap_item;
e9995ef9
HD
2632 int search_new_forks = 0;
2633
2f031c6f 2634 VM_BUG_ON_FOLIO(!folio_test_ksm(folio), folio);
9f32624b
JK
2635
2636 /*
2637 * Rely on the page lock to protect against concurrent modifications
2638 * to that page's node of the stable tree.
2639 */
2f031c6f 2640 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
e9995ef9 2641
2f031c6f 2642 stable_node = folio_stable_node(folio);
e9995ef9 2643 if (!stable_node)
1df631ae 2644 return;
e9995ef9 2645again:
b67bfe0d 2646 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
e9995ef9 2647 struct anon_vma *anon_vma = rmap_item->anon_vma;
5beb4930 2648 struct anon_vma_chain *vmac;
e9995ef9
HD
2649 struct vm_area_struct *vma;
2650
ad12695f 2651 cond_resched();
6d4675e6
MK
2652 if (!anon_vma_trylock_read(anon_vma)) {
2653 if (rwc->try_lock) {
2654 rwc->contended = true;
2655 return;
2656 }
2657 anon_vma_lock_read(anon_vma);
2658 }
bf181b9f
ML
2659 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
2660 0, ULONG_MAX) {
1105a2fc
JH
2661 unsigned long addr;
2662
ad12695f 2663 cond_resched();
5beb4930 2664 vma = vmac->vma;
1105a2fc
JH
2665
2666 /* Ignore the stable/unstable/sqnr flags */
cd7fae26 2667 addr = rmap_item->address & PAGE_MASK;
1105a2fc
JH
2668
2669 if (addr < vma->vm_start || addr >= vma->vm_end)
e9995ef9
HD
2670 continue;
2671 /*
2672 * Initially we examine only the vma which covers this
2673 * rmap_item; but later, if there is still work to do,
2674 * we examine covering vmas in other mms: in case they
2675 * were forked from the original since ksmd passed.
2676 */
2677 if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
2678 continue;
2679
0dd1c7bb
JK
2680 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2681 continue;
2682
2f031c6f 2683 if (!rwc->rmap_one(folio, vma, addr, rwc->arg)) {
b6b19f25 2684 anon_vma_unlock_read(anon_vma);
1df631ae 2685 return;
e9995ef9 2686 }
2f031c6f 2687 if (rwc->done && rwc->done(folio)) {
0dd1c7bb 2688 anon_vma_unlock_read(anon_vma);
1df631ae 2689 return;
0dd1c7bb 2690 }
e9995ef9 2691 }
b6b19f25 2692 anon_vma_unlock_read(anon_vma);
e9995ef9
HD
2693 }
2694 if (!search_new_forks++)
2695 goto again;
e9995ef9
HD
2696}
2697
52629506 2698#ifdef CONFIG_MIGRATION
19138349 2699void folio_migrate_ksm(struct folio *newfolio, struct folio *folio)
e9995ef9
HD
2700{
2701 struct stable_node *stable_node;
2702
19138349
MWO
2703 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2704 VM_BUG_ON_FOLIO(!folio_test_locked(newfolio), newfolio);
2705 VM_BUG_ON_FOLIO(newfolio->mapping != folio->mapping, newfolio);
e9995ef9 2706
19138349 2707 stable_node = folio_stable_node(folio);
e9995ef9 2708 if (stable_node) {
19138349
MWO
2709 VM_BUG_ON_FOLIO(stable_node->kpfn != folio_pfn(folio), folio);
2710 stable_node->kpfn = folio_pfn(newfolio);
c8d6553b 2711 /*
19138349 2712 * newfolio->mapping was set in advance; now we need smp_wmb()
c8d6553b 2713 * to make sure that the new stable_node->kpfn is visible
19138349
MWO
2714 * to get_ksm_page() before it can see that folio->mapping
2715 * has gone stale (or that folio_test_swapcache has been cleared).
c8d6553b
HD
2716 */
2717 smp_wmb();
19138349 2718 set_page_stable_node(&folio->page, NULL);
e9995ef9
HD
2719 }
2720}
2721#endif /* CONFIG_MIGRATION */
2722
62b61f61 2723#ifdef CONFIG_MEMORY_HOTREMOVE
ef4d43a8
HD
2724static void wait_while_offlining(void)
2725{
2726 while (ksm_run & KSM_RUN_OFFLINE) {
2727 mutex_unlock(&ksm_thread_mutex);
2728 wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
74316201 2729 TASK_UNINTERRUPTIBLE);
ef4d43a8
HD
2730 mutex_lock(&ksm_thread_mutex);
2731 }
2732}
2733
2c653d0e
AA
2734static bool stable_node_dup_remove_range(struct stable_node *stable_node,
2735 unsigned long start_pfn,
2736 unsigned long end_pfn)
2737{
2738 if (stable_node->kpfn >= start_pfn &&
2739 stable_node->kpfn < end_pfn) {
2740 /*
2741 * Don't get_ksm_page, page has already gone:
2742 * which is why we keep kpfn instead of page*
2743 */
2744 remove_node_from_stable_tree(stable_node);
2745 return true;
2746 }
2747 return false;
2748}
2749
2750static bool stable_node_chain_remove_range(struct stable_node *stable_node,
2751 unsigned long start_pfn,
2752 unsigned long end_pfn,
2753 struct rb_root *root)
2754{
2755 struct stable_node *dup;
2756 struct hlist_node *hlist_safe;
2757
2758 if (!is_stable_node_chain(stable_node)) {
2759 VM_BUG_ON(is_stable_node_dup(stable_node));
2760 return stable_node_dup_remove_range(stable_node, start_pfn,
2761 end_pfn);
2762 }
2763
2764 hlist_for_each_entry_safe(dup, hlist_safe,
2765 &stable_node->hlist, hlist_dup) {
2766 VM_BUG_ON(!is_stable_node_dup(dup));
2767 stable_node_dup_remove_range(dup, start_pfn, end_pfn);
2768 }
2769 if (hlist_empty(&stable_node->hlist)) {
2770 free_stable_node_chain(stable_node, root);
2771 return true; /* notify caller that tree was rebalanced */
2772 } else
2773 return false;
2774}
2775
ee0ea59c
HD
2776static void ksm_check_stable_tree(unsigned long start_pfn,
2777 unsigned long end_pfn)
62b61f61 2778{
03640418 2779 struct stable_node *stable_node, *next;
62b61f61 2780 struct rb_node *node;
90bd6fd3 2781 int nid;
62b61f61 2782
ef53d16c
HD
2783 for (nid = 0; nid < ksm_nr_node_ids; nid++) {
2784 node = rb_first(root_stable_tree + nid);
ee0ea59c 2785 while (node) {
90bd6fd3 2786 stable_node = rb_entry(node, struct stable_node, node);
2c653d0e
AA
2787 if (stable_node_chain_remove_range(stable_node,
2788 start_pfn, end_pfn,
2789 root_stable_tree +
2790 nid))
ef53d16c 2791 node = rb_first(root_stable_tree + nid);
2c653d0e 2792 else
ee0ea59c
HD
2793 node = rb_next(node);
2794 cond_resched();
90bd6fd3 2795 }
ee0ea59c 2796 }
03640418 2797 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
4146d2d6
HD
2798 if (stable_node->kpfn >= start_pfn &&
2799 stable_node->kpfn < end_pfn)
2800 remove_node_from_stable_tree(stable_node);
2801 cond_resched();
2802 }
62b61f61
HD
2803}
2804
2805static int ksm_memory_callback(struct notifier_block *self,
2806 unsigned long action, void *arg)
2807{
2808 struct memory_notify *mn = arg;
62b61f61
HD
2809
2810 switch (action) {
2811 case MEM_GOING_OFFLINE:
2812 /*
ef4d43a8
HD
2813 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
2814 * and remove_all_stable_nodes() while memory is going offline:
2815 * it is unsafe for them to touch the stable tree at this time.
2816 * But unmerge_ksm_pages(), rmap lookups and other entry points
2817 * which do not need the ksm_thread_mutex are all safe.
62b61f61 2818 */
ef4d43a8
HD
2819 mutex_lock(&ksm_thread_mutex);
2820 ksm_run |= KSM_RUN_OFFLINE;
2821 mutex_unlock(&ksm_thread_mutex);
62b61f61
HD
2822 break;
2823
2824 case MEM_OFFLINE:
2825 /*
2826 * Most of the work is done by page migration; but there might
2827 * be a few stable_nodes left over, still pointing to struct
ee0ea59c
HD
2828 * pages which have been offlined: prune those from the tree,
2829 * otherwise get_ksm_page() might later try to access a
2830 * non-existent struct page.
62b61f61 2831 */
ee0ea59c
HD
2832 ksm_check_stable_tree(mn->start_pfn,
2833 mn->start_pfn + mn->nr_pages);
e4a9bc58 2834 fallthrough;
62b61f61 2835 case MEM_CANCEL_OFFLINE:
ef4d43a8
HD
2836 mutex_lock(&ksm_thread_mutex);
2837 ksm_run &= ~KSM_RUN_OFFLINE;
62b61f61 2838 mutex_unlock(&ksm_thread_mutex);
ef4d43a8
HD
2839
2840 smp_mb(); /* wake_up_bit advises this */
2841 wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
62b61f61
HD
2842 break;
2843 }
2844 return NOTIFY_OK;
2845}
ef4d43a8
HD
2846#else
2847static void wait_while_offlining(void)
2848{
2849}
62b61f61
HD
2850#endif /* CONFIG_MEMORY_HOTREMOVE */
2851
2ffd8679
HD
2852#ifdef CONFIG_SYSFS
2853/*
2854 * This all compiles without CONFIG_SYSFS, but is a waste of space.
2855 */
2856
31dbd01f
IE
2857#define KSM_ATTR_RO(_name) \
2858 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2859#define KSM_ATTR(_name) \
1bad2e5c 2860 static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
31dbd01f
IE
2861
2862static ssize_t sleep_millisecs_show(struct kobject *kobj,
2863 struct kobj_attribute *attr, char *buf)
2864{
ae7a927d 2865 return sysfs_emit(buf, "%u\n", ksm_thread_sleep_millisecs);
31dbd01f
IE
2866}
2867
2868static ssize_t sleep_millisecs_store(struct kobject *kobj,
2869 struct kobj_attribute *attr,
2870 const char *buf, size_t count)
2871{
dfefd226 2872 unsigned int msecs;
31dbd01f
IE
2873 int err;
2874
dfefd226
AD
2875 err = kstrtouint(buf, 10, &msecs);
2876 if (err)
31dbd01f
IE
2877 return -EINVAL;
2878
2879 ksm_thread_sleep_millisecs = msecs;
fcf9a0ef 2880 wake_up_interruptible(&ksm_iter_wait);
31dbd01f
IE
2881
2882 return count;
2883}
2884KSM_ATTR(sleep_millisecs);
2885
2886static ssize_t pages_to_scan_show(struct kobject *kobj,
2887 struct kobj_attribute *attr, char *buf)
2888{
ae7a927d 2889 return sysfs_emit(buf, "%u\n", ksm_thread_pages_to_scan);
31dbd01f
IE
2890}
2891
2892static ssize_t pages_to_scan_store(struct kobject *kobj,
2893 struct kobj_attribute *attr,
2894 const char *buf, size_t count)
2895{
dfefd226 2896 unsigned int nr_pages;
31dbd01f 2897 int err;
31dbd01f 2898
dfefd226
AD
2899 err = kstrtouint(buf, 10, &nr_pages);
2900 if (err)
31dbd01f
IE
2901 return -EINVAL;
2902
2903 ksm_thread_pages_to_scan = nr_pages;
2904
2905 return count;
2906}
2907KSM_ATTR(pages_to_scan);
2908
2909static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
2910 char *buf)
2911{
ae7a927d 2912 return sysfs_emit(buf, "%lu\n", ksm_run);
31dbd01f
IE
2913}
2914
2915static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
2916 const char *buf, size_t count)
2917{
dfefd226 2918 unsigned int flags;
31dbd01f 2919 int err;
31dbd01f 2920
dfefd226
AD
2921 err = kstrtouint(buf, 10, &flags);
2922 if (err)
31dbd01f
IE
2923 return -EINVAL;
2924 if (flags > KSM_RUN_UNMERGE)
2925 return -EINVAL;
2926
2927 /*
2928 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
2929 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
d0f209f6
HD
2930 * breaking COW to free the pages_shared (but leaves mm_slots
2931 * on the list for when ksmd may be set running again).
31dbd01f
IE
2932 */
2933
2934 mutex_lock(&ksm_thread_mutex);
ef4d43a8 2935 wait_while_offlining();
31dbd01f
IE
2936 if (ksm_run != flags) {
2937 ksm_run = flags;
d952b791 2938 if (flags & KSM_RUN_UNMERGE) {
e1e12d2f 2939 set_current_oom_origin();
d952b791 2940 err = unmerge_and_remove_all_rmap_items();
e1e12d2f 2941 clear_current_oom_origin();
d952b791
HD
2942 if (err) {
2943 ksm_run = KSM_RUN_STOP;
2944 count = err;
2945 }
2946 }
31dbd01f
IE
2947 }
2948 mutex_unlock(&ksm_thread_mutex);
2949
2950 if (flags & KSM_RUN_MERGE)
2951 wake_up_interruptible(&ksm_thread_wait);
2952
2953 return count;
2954}
2955KSM_ATTR(run);
2956
90bd6fd3
PH
2957#ifdef CONFIG_NUMA
2958static ssize_t merge_across_nodes_show(struct kobject *kobj,
ae7a927d 2959 struct kobj_attribute *attr, char *buf)
90bd6fd3 2960{
ae7a927d 2961 return sysfs_emit(buf, "%u\n", ksm_merge_across_nodes);
90bd6fd3
PH
2962}
2963
2964static ssize_t merge_across_nodes_store(struct kobject *kobj,
2965 struct kobj_attribute *attr,
2966 const char *buf, size_t count)
2967{
2968 int err;
2969 unsigned long knob;
2970
2971 err = kstrtoul(buf, 10, &knob);
2972 if (err)
2973 return err;
2974 if (knob > 1)
2975 return -EINVAL;
2976
2977 mutex_lock(&ksm_thread_mutex);
ef4d43a8 2978 wait_while_offlining();
90bd6fd3 2979 if (ksm_merge_across_nodes != knob) {
cbf86cfe 2980 if (ksm_pages_shared || remove_all_stable_nodes())
90bd6fd3 2981 err = -EBUSY;
ef53d16c
HD
2982 else if (root_stable_tree == one_stable_tree) {
2983 struct rb_root *buf;
2984 /*
2985 * This is the first time that we switch away from the
2986 * default of merging across nodes: must now allocate
2987 * a buffer to hold as many roots as may be needed.
2988 * Allocate stable and unstable together:
2989 * MAXSMP NODES_SHIFT 10 will use 16kB.
2990 */
bafe1e14
JP
2991 buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
2992 GFP_KERNEL);
ef53d16c
HD
2993 /* Let us assume that RB_ROOT is NULL is zero */
2994 if (!buf)
2995 err = -ENOMEM;
2996 else {
2997 root_stable_tree = buf;
2998 root_unstable_tree = buf + nr_node_ids;
2999 /* Stable tree is empty but not the unstable */
3000 root_unstable_tree[0] = one_unstable_tree[0];
3001 }
3002 }
3003 if (!err) {
90bd6fd3 3004 ksm_merge_across_nodes = knob;
ef53d16c
HD
3005 ksm_nr_node_ids = knob ? 1 : nr_node_ids;
3006 }
90bd6fd3
PH
3007 }
3008 mutex_unlock(&ksm_thread_mutex);
3009
3010 return err ? err : count;
3011}
3012KSM_ATTR(merge_across_nodes);
3013#endif
3014
e86c59b1 3015static ssize_t use_zero_pages_show(struct kobject *kobj,
ae7a927d 3016 struct kobj_attribute *attr, char *buf)
e86c59b1 3017{
ae7a927d 3018 return sysfs_emit(buf, "%u\n", ksm_use_zero_pages);
e86c59b1
CI
3019}
3020static ssize_t use_zero_pages_store(struct kobject *kobj,
3021 struct kobj_attribute *attr,
3022 const char *buf, size_t count)
3023{
3024 int err;
3025 bool value;
3026
3027 err = kstrtobool(buf, &value);
3028 if (err)
3029 return -EINVAL;
3030
3031 ksm_use_zero_pages = value;
3032
3033 return count;
3034}
3035KSM_ATTR(use_zero_pages);
3036
2c653d0e
AA
3037static ssize_t max_page_sharing_show(struct kobject *kobj,
3038 struct kobj_attribute *attr, char *buf)
3039{
ae7a927d 3040 return sysfs_emit(buf, "%u\n", ksm_max_page_sharing);
2c653d0e
AA
3041}
3042
3043static ssize_t max_page_sharing_store(struct kobject *kobj,
3044 struct kobj_attribute *attr,
3045 const char *buf, size_t count)
3046{
3047 int err;
3048 int knob;
3049
3050 err = kstrtoint(buf, 10, &knob);
3051 if (err)
3052 return err;
3053 /*
3054 * When a KSM page is created it is shared by 2 mappings. This
3055 * being a signed comparison, it implicitly verifies it's not
3056 * negative.
3057 */
3058 if (knob < 2)
3059 return -EINVAL;
3060
3061 if (READ_ONCE(ksm_max_page_sharing) == knob)
3062 return count;
3063
3064 mutex_lock(&ksm_thread_mutex);
3065 wait_while_offlining();
3066 if (ksm_max_page_sharing != knob) {
3067 if (ksm_pages_shared || remove_all_stable_nodes())
3068 err = -EBUSY;
3069 else
3070 ksm_max_page_sharing = knob;
3071 }
3072 mutex_unlock(&ksm_thread_mutex);
3073
3074 return err ? err : count;
3075}
3076KSM_ATTR(max_page_sharing);
3077
b4028260
HD
3078static ssize_t pages_shared_show(struct kobject *kobj,
3079 struct kobj_attribute *attr, char *buf)
3080{
ae7a927d 3081 return sysfs_emit(buf, "%lu\n", ksm_pages_shared);
b4028260
HD
3082}
3083KSM_ATTR_RO(pages_shared);
3084
3085static ssize_t pages_sharing_show(struct kobject *kobj,
3086 struct kobj_attribute *attr, char *buf)
3087{
ae7a927d 3088 return sysfs_emit(buf, "%lu\n", ksm_pages_sharing);
b4028260
HD
3089}
3090KSM_ATTR_RO(pages_sharing);
3091
473b0ce4
HD
3092static ssize_t pages_unshared_show(struct kobject *kobj,
3093 struct kobj_attribute *attr, char *buf)
3094{
ae7a927d 3095 return sysfs_emit(buf, "%lu\n", ksm_pages_unshared);
473b0ce4
HD
3096}
3097KSM_ATTR_RO(pages_unshared);
3098
3099static ssize_t pages_volatile_show(struct kobject *kobj,
3100 struct kobj_attribute *attr, char *buf)
3101{
3102 long ksm_pages_volatile;
3103
3104 ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
3105 - ksm_pages_sharing - ksm_pages_unshared;
3106 /*
3107 * It was not worth any locking to calculate that statistic,
3108 * but it might therefore sometimes be negative: conceal that.
3109 */
3110 if (ksm_pages_volatile < 0)
3111 ksm_pages_volatile = 0;
ae7a927d 3112 return sysfs_emit(buf, "%ld\n", ksm_pages_volatile);
473b0ce4
HD
3113}
3114KSM_ATTR_RO(pages_volatile);
3115
2c653d0e
AA
3116static ssize_t stable_node_dups_show(struct kobject *kobj,
3117 struct kobj_attribute *attr, char *buf)
3118{
ae7a927d 3119 return sysfs_emit(buf, "%lu\n", ksm_stable_node_dups);
2c653d0e
AA
3120}
3121KSM_ATTR_RO(stable_node_dups);
3122
3123static ssize_t stable_node_chains_show(struct kobject *kobj,
3124 struct kobj_attribute *attr, char *buf)
3125{
ae7a927d 3126 return sysfs_emit(buf, "%lu\n", ksm_stable_node_chains);
2c653d0e
AA
3127}
3128KSM_ATTR_RO(stable_node_chains);
3129
3130static ssize_t
3131stable_node_chains_prune_millisecs_show(struct kobject *kobj,
3132 struct kobj_attribute *attr,
3133 char *buf)
3134{
ae7a927d 3135 return sysfs_emit(buf, "%u\n", ksm_stable_node_chains_prune_millisecs);
2c653d0e
AA
3136}
3137
3138static ssize_t
3139stable_node_chains_prune_millisecs_store(struct kobject *kobj,
3140 struct kobj_attribute *attr,
3141 const char *buf, size_t count)
3142{
584ff0df 3143 unsigned int msecs;
2c653d0e
AA
3144 int err;
3145
584ff0df
ZB
3146 err = kstrtouint(buf, 10, &msecs);
3147 if (err)
2c653d0e
AA
3148 return -EINVAL;
3149
3150 ksm_stable_node_chains_prune_millisecs = msecs;
3151
3152 return count;
3153}
3154KSM_ATTR(stable_node_chains_prune_millisecs);
3155
473b0ce4
HD
3156static ssize_t full_scans_show(struct kobject *kobj,
3157 struct kobj_attribute *attr, char *buf)
3158{
ae7a927d 3159 return sysfs_emit(buf, "%lu\n", ksm_scan.seqnr);
473b0ce4
HD
3160}
3161KSM_ATTR_RO(full_scans);
3162
31dbd01f
IE
3163static struct attribute *ksm_attrs[] = {
3164 &sleep_millisecs_attr.attr,
3165 &pages_to_scan_attr.attr,
3166 &run_attr.attr,
b4028260
HD
3167 &pages_shared_attr.attr,
3168 &pages_sharing_attr.attr,
473b0ce4
HD
3169 &pages_unshared_attr.attr,
3170 &pages_volatile_attr.attr,
3171 &full_scans_attr.attr,
90bd6fd3
PH
3172#ifdef CONFIG_NUMA
3173 &merge_across_nodes_attr.attr,
3174#endif
2c653d0e
AA
3175 &max_page_sharing_attr.attr,
3176 &stable_node_chains_attr.attr,
3177 &stable_node_dups_attr.attr,
3178 &stable_node_chains_prune_millisecs_attr.attr,
e86c59b1 3179 &use_zero_pages_attr.attr,
31dbd01f
IE
3180 NULL,
3181};
3182
f907c26a 3183static const struct attribute_group ksm_attr_group = {
31dbd01f
IE
3184 .attrs = ksm_attrs,
3185 .name = "ksm",
3186};
2ffd8679 3187#endif /* CONFIG_SYSFS */
31dbd01f
IE
3188
3189static int __init ksm_init(void)
3190{
3191 struct task_struct *ksm_thread;
3192 int err;
3193
e86c59b1
CI
3194 /* The correct value depends on page size and endianness */
3195 zero_checksum = calc_checksum(ZERO_PAGE(0));
3196 /* Default to false for backwards compatibility */
3197 ksm_use_zero_pages = false;
3198
31dbd01f
IE
3199 err = ksm_slab_init();
3200 if (err)
3201 goto out;
3202
31dbd01f
IE
3203 ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
3204 if (IS_ERR(ksm_thread)) {
25acde31 3205 pr_err("ksm: creating kthread failed\n");
31dbd01f 3206 err = PTR_ERR(ksm_thread);
d9f8984c 3207 goto out_free;
31dbd01f
IE
3208 }
3209
2ffd8679 3210#ifdef CONFIG_SYSFS
31dbd01f
IE
3211 err = sysfs_create_group(mm_kobj, &ksm_attr_group);
3212 if (err) {
25acde31 3213 pr_err("ksm: register sysfs failed\n");
2ffd8679 3214 kthread_stop(ksm_thread);
d9f8984c 3215 goto out_free;
31dbd01f 3216 }
c73602ad
HD
3217#else
3218 ksm_run = KSM_RUN_MERGE; /* no way for user to start it */
3219
2ffd8679 3220#endif /* CONFIG_SYSFS */
31dbd01f 3221
62b61f61 3222#ifdef CONFIG_MEMORY_HOTREMOVE
ef4d43a8 3223 /* There is no significance to this priority 100 */
62b61f61
HD
3224 hotplug_memory_notifier(ksm_memory_callback, 100);
3225#endif
31dbd01f
IE
3226 return 0;
3227
d9f8984c 3228out_free:
31dbd01f
IE
3229 ksm_slab_free();
3230out:
3231 return err;
f8af4da3 3232}
a64fb3cd 3233subsys_initcall(ksm_init);