include/linux/swapops.h: remove stub for non_swap_entry()
[linux-block.git] / mm / ksm.c
CommitLineData
7a338472 1// SPDX-License-Identifier: GPL-2.0-only
f8af4da3 2/*
31dbd01f
IE
3 * Memory merging support.
4 *
5 * This code enables dynamic sharing of identical pages found in different
6 * memory areas, even if they are not shared by fork()
7 *
36b2528d 8 * Copyright (C) 2008-2009 Red Hat, Inc.
31dbd01f
IE
9 * Authors:
10 * Izik Eidus
11 * Andrea Arcangeli
12 * Chris Wright
36b2528d 13 * Hugh Dickins
f8af4da3
HD
14 */
15
16#include <linux/errno.h>
31dbd01f 17#include <linux/mm.h>
36090def 18#include <linux/mm_inline.h>
31dbd01f 19#include <linux/fs.h>
f8af4da3 20#include <linux/mman.h>
31dbd01f 21#include <linux/sched.h>
6e84f315 22#include <linux/sched/mm.h>
f7ccbae4 23#include <linux/sched/coredump.h>
31dbd01f
IE
24#include <linux/rwsem.h>
25#include <linux/pagemap.h>
26#include <linux/rmap.h>
27#include <linux/spinlock.h>
59e1a2f4 28#include <linux/xxhash.h>
31dbd01f
IE
29#include <linux/delay.h>
30#include <linux/kthread.h>
31#include <linux/wait.h>
32#include <linux/slab.h>
33#include <linux/rbtree.h>
62b61f61 34#include <linux/memory.h>
31dbd01f 35#include <linux/mmu_notifier.h>
2c6854fd 36#include <linux/swap.h>
f8af4da3 37#include <linux/ksm.h>
4ca3a69b 38#include <linux/hashtable.h>
878aee7d 39#include <linux/freezer.h>
72788c38 40#include <linux/oom.h>
90bd6fd3 41#include <linux/numa.h>
f8af4da3 42
31dbd01f 43#include <asm/tlbflush.h>
73848b46 44#include "internal.h"
31dbd01f 45
e850dcf5
HD
46#ifdef CONFIG_NUMA
47#define NUMA(x) (x)
48#define DO_NUMA(x) do { (x); } while (0)
49#else
50#define NUMA(x) (0)
51#define DO_NUMA(x) do { } while (0)
52#endif
53
5a2ca3ef
MR
54/**
55 * DOC: Overview
56 *
31dbd01f
IE
57 * A few notes about the KSM scanning process,
58 * to make it easier to understand the data structures below:
59 *
60 * In order to reduce excessive scanning, KSM sorts the memory pages by their
61 * contents into a data structure that holds pointers to the pages' locations.
62 *
63 * Since the contents of the pages may change at any moment, KSM cannot just
64 * insert the pages into a normal sorted tree and expect it to find anything.
65 * Therefore KSM uses two data structures - the stable and the unstable tree.
66 *
67 * The stable tree holds pointers to all the merged pages (ksm pages), sorted
68 * by their contents. Because each such page is write-protected, searching on
69 * this tree is fully assured to be working (except when pages are unmapped),
70 * and therefore this tree is called the stable tree.
71 *
5a2ca3ef
MR
72 * The stable tree node includes information required for reverse
73 * mapping from a KSM page to virtual addresses that map this page.
74 *
75 * In order to avoid large latencies of the rmap walks on KSM pages,
76 * KSM maintains two types of nodes in the stable tree:
77 *
78 * * the regular nodes that keep the reverse mapping structures in a
79 * linked list
80 * * the "chains" that link nodes ("dups") that represent the same
81 * write protected memory content, but each "dup" corresponds to a
82 * different KSM page copy of that content
83 *
84 * Internally, the regular nodes, "dups" and "chains" are represented
9303c9d5 85 * using the same struct stable_node structure.
5a2ca3ef 86 *
31dbd01f
IE
87 * In addition to the stable tree, KSM uses a second data structure called the
88 * unstable tree: this tree holds pointers to pages which have been found to
89 * be "unchanged for a period of time". The unstable tree sorts these pages
90 * by their contents, but since they are not write-protected, KSM cannot rely
91 * upon the unstable tree to work correctly - the unstable tree is liable to
92 * be corrupted as its contents are modified, and so it is called unstable.
93 *
94 * KSM solves this problem by several techniques:
95 *
96 * 1) The unstable tree is flushed every time KSM completes scanning all
97 * memory areas, and then the tree is rebuilt again from the beginning.
98 * 2) KSM will only insert into the unstable tree, pages whose hash value
99 * has not changed since the previous scan of all memory areas.
100 * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
101 * colors of the nodes and not on their contents, assuring that even when
102 * the tree gets "corrupted" it won't get out of balance, so scanning time
103 * remains the same (also, searching and inserting nodes in an rbtree uses
104 * the same algorithm, so we have no overhead when we flush and rebuild).
105 * 4) KSM never flushes the stable tree, which means that even if it were to
106 * take 10 attempts to find a page in the unstable tree, once it is found,
107 * it is secured in the stable tree. (When we scan a new page, we first
108 * compare it against the stable tree, and then against the unstable tree.)
8fdb3dbf
HD
109 *
110 * If the merge_across_nodes tunable is unset, then KSM maintains multiple
111 * stable trees and multiple unstable trees: one of each for each NUMA node.
31dbd01f
IE
112 */
113
114/**
115 * struct mm_slot - ksm information per mm that is being scanned
116 * @link: link to the mm_slots hash list
117 * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
6514d511 118 * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
31dbd01f
IE
119 * @mm: the mm that this information is valid for
120 */
121struct mm_slot {
122 struct hlist_node link;
123 struct list_head mm_list;
6514d511 124 struct rmap_item *rmap_list;
31dbd01f
IE
125 struct mm_struct *mm;
126};
127
128/**
129 * struct ksm_scan - cursor for scanning
130 * @mm_slot: the current mm_slot we are scanning
131 * @address: the next address inside that to be scanned
6514d511 132 * @rmap_list: link to the next rmap to be scanned in the rmap_list
31dbd01f
IE
133 * @seqnr: count of completed full scans (needed when removing unstable node)
134 *
135 * There is only the one ksm_scan instance of this cursor structure.
136 */
137struct ksm_scan {
138 struct mm_slot *mm_slot;
139 unsigned long address;
6514d511 140 struct rmap_item **rmap_list;
31dbd01f
IE
141 unsigned long seqnr;
142};
143
7b6ba2c7
HD
144/**
145 * struct stable_node - node of the stable rbtree
146 * @node: rb node of this ksm page in the stable tree
4146d2d6 147 * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
2c653d0e 148 * @hlist_dup: linked into the stable_node->hlist with a stable_node chain
4146d2d6 149 * @list: linked into migrate_nodes, pending placement in the proper node tree
7b6ba2c7 150 * @hlist: hlist head of rmap_items using this ksm page
4146d2d6 151 * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
2c653d0e
AA
152 * @chain_prune_time: time of the last full garbage collection
153 * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN
4146d2d6 154 * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
7b6ba2c7
HD
155 */
156struct stable_node {
4146d2d6
HD
157 union {
158 struct rb_node node; /* when node of stable tree */
159 struct { /* when listed for migration */
160 struct list_head *head;
2c653d0e
AA
161 struct {
162 struct hlist_node hlist_dup;
163 struct list_head list;
164 };
4146d2d6
HD
165 };
166 };
7b6ba2c7 167 struct hlist_head hlist;
2c653d0e
AA
168 union {
169 unsigned long kpfn;
170 unsigned long chain_prune_time;
171 };
172 /*
173 * STABLE_NODE_CHAIN can be any negative number in
174 * rmap_hlist_len negative range, but better not -1 to be able
175 * to reliably detect underflows.
176 */
177#define STABLE_NODE_CHAIN -1024
178 int rmap_hlist_len;
4146d2d6
HD
179#ifdef CONFIG_NUMA
180 int nid;
181#endif
7b6ba2c7
HD
182};
183
31dbd01f
IE
184/**
185 * struct rmap_item - reverse mapping item for virtual addresses
6514d511 186 * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
db114b83 187 * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
bc56620b 188 * @nid: NUMA node id of unstable tree in which linked (may not match page)
31dbd01f
IE
189 * @mm: the memory structure this rmap_item is pointing into
190 * @address: the virtual address this rmap_item tracks (+ flags in low bits)
191 * @oldchecksum: previous checksum of the page at that virtual address
7b6ba2c7
HD
192 * @node: rb node of this rmap_item in the unstable tree
193 * @head: pointer to stable_node heading this list in the stable tree
194 * @hlist: link into hlist of rmap_items hanging off that stable_node
31dbd01f
IE
195 */
196struct rmap_item {
6514d511 197 struct rmap_item *rmap_list;
bc56620b
HD
198 union {
199 struct anon_vma *anon_vma; /* when stable */
200#ifdef CONFIG_NUMA
201 int nid; /* when node of unstable tree */
202#endif
203 };
31dbd01f
IE
204 struct mm_struct *mm;
205 unsigned long address; /* + low bits used for flags below */
7b6ba2c7 206 unsigned int oldchecksum; /* when unstable */
31dbd01f 207 union {
7b6ba2c7
HD
208 struct rb_node node; /* when node of unstable tree */
209 struct { /* when listed from stable tree */
210 struct stable_node *head;
211 struct hlist_node hlist;
212 };
31dbd01f
IE
213 };
214};
215
216#define SEQNR_MASK 0x0ff /* low bits of unstable tree seqnr */
7b6ba2c7
HD
217#define UNSTABLE_FLAG 0x100 /* is a node of the unstable tree */
218#define STABLE_FLAG 0x200 /* is listed from the stable tree */
31dbd01f
IE
219
220/* The stable and unstable tree heads */
ef53d16c
HD
221static struct rb_root one_stable_tree[1] = { RB_ROOT };
222static struct rb_root one_unstable_tree[1] = { RB_ROOT };
223static struct rb_root *root_stable_tree = one_stable_tree;
224static struct rb_root *root_unstable_tree = one_unstable_tree;
31dbd01f 225
4146d2d6
HD
226/* Recently migrated nodes of stable tree, pending proper placement */
227static LIST_HEAD(migrate_nodes);
2c653d0e 228#define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev)
4146d2d6 229
4ca3a69b
SL
230#define MM_SLOTS_HASH_BITS 10
231static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
31dbd01f
IE
232
233static struct mm_slot ksm_mm_head = {
234 .mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
235};
236static struct ksm_scan ksm_scan = {
237 .mm_slot = &ksm_mm_head,
238};
239
240static struct kmem_cache *rmap_item_cache;
7b6ba2c7 241static struct kmem_cache *stable_node_cache;
31dbd01f
IE
242static struct kmem_cache *mm_slot_cache;
243
244/* The number of nodes in the stable tree */
b4028260 245static unsigned long ksm_pages_shared;
31dbd01f 246
e178dfde 247/* The number of page slots additionally sharing those nodes */
b4028260 248static unsigned long ksm_pages_sharing;
31dbd01f 249
473b0ce4
HD
250/* The number of nodes in the unstable tree */
251static unsigned long ksm_pages_unshared;
252
253/* The number of rmap_items in use: to calculate pages_volatile */
254static unsigned long ksm_rmap_items;
255
2c653d0e
AA
256/* The number of stable_node chains */
257static unsigned long ksm_stable_node_chains;
258
259/* The number of stable_node dups linked to the stable_node chains */
260static unsigned long ksm_stable_node_dups;
261
262/* Delay in pruning stale stable_node_dups in the stable_node_chains */
584ff0df 263static unsigned int ksm_stable_node_chains_prune_millisecs = 2000;
2c653d0e
AA
264
265/* Maximum number of page slots sharing a stable node */
266static int ksm_max_page_sharing = 256;
267
31dbd01f 268/* Number of pages ksmd should scan in one batch */
2c6854fd 269static unsigned int ksm_thread_pages_to_scan = 100;
31dbd01f
IE
270
271/* Milliseconds ksmd should sleep between batches */
2ffd8679 272static unsigned int ksm_thread_sleep_millisecs = 20;
31dbd01f 273
e86c59b1
CI
274/* Checksum of an empty (zeroed) page */
275static unsigned int zero_checksum __read_mostly;
276
277/* Whether to merge empty (zeroed) pages with actual zero pages */
278static bool ksm_use_zero_pages __read_mostly;
279
e850dcf5 280#ifdef CONFIG_NUMA
90bd6fd3
PH
281/* Zeroed when merging across nodes is not allowed */
282static unsigned int ksm_merge_across_nodes = 1;
ef53d16c 283static int ksm_nr_node_ids = 1;
e850dcf5
HD
284#else
285#define ksm_merge_across_nodes 1U
ef53d16c 286#define ksm_nr_node_ids 1
e850dcf5 287#endif
90bd6fd3 288
31dbd01f
IE
289#define KSM_RUN_STOP 0
290#define KSM_RUN_MERGE 1
291#define KSM_RUN_UNMERGE 2
ef4d43a8
HD
292#define KSM_RUN_OFFLINE 4
293static unsigned long ksm_run = KSM_RUN_STOP;
294static void wait_while_offlining(void);
31dbd01f
IE
295
296static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
fcf9a0ef 297static DECLARE_WAIT_QUEUE_HEAD(ksm_iter_wait);
31dbd01f
IE
298static DEFINE_MUTEX(ksm_thread_mutex);
299static DEFINE_SPINLOCK(ksm_mmlist_lock);
300
301#define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
302 sizeof(struct __struct), __alignof__(struct __struct),\
303 (__flags), NULL)
304
305static int __init ksm_slab_init(void)
306{
307 rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
308 if (!rmap_item_cache)
309 goto out;
310
7b6ba2c7
HD
311 stable_node_cache = KSM_KMEM_CACHE(stable_node, 0);
312 if (!stable_node_cache)
313 goto out_free1;
314
31dbd01f
IE
315 mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
316 if (!mm_slot_cache)
7b6ba2c7 317 goto out_free2;
31dbd01f
IE
318
319 return 0;
320
7b6ba2c7
HD
321out_free2:
322 kmem_cache_destroy(stable_node_cache);
323out_free1:
31dbd01f
IE
324 kmem_cache_destroy(rmap_item_cache);
325out:
326 return -ENOMEM;
327}
328
329static void __init ksm_slab_free(void)
330{
331 kmem_cache_destroy(mm_slot_cache);
7b6ba2c7 332 kmem_cache_destroy(stable_node_cache);
31dbd01f
IE
333 kmem_cache_destroy(rmap_item_cache);
334 mm_slot_cache = NULL;
335}
336
2c653d0e
AA
337static __always_inline bool is_stable_node_chain(struct stable_node *chain)
338{
339 return chain->rmap_hlist_len == STABLE_NODE_CHAIN;
340}
341
342static __always_inline bool is_stable_node_dup(struct stable_node *dup)
343{
344 return dup->head == STABLE_NODE_DUP_HEAD;
345}
346
347static inline void stable_node_chain_add_dup(struct stable_node *dup,
348 struct stable_node *chain)
349{
350 VM_BUG_ON(is_stable_node_dup(dup));
351 dup->head = STABLE_NODE_DUP_HEAD;
352 VM_BUG_ON(!is_stable_node_chain(chain));
353 hlist_add_head(&dup->hlist_dup, &chain->hlist);
354 ksm_stable_node_dups++;
355}
356
357static inline void __stable_node_dup_del(struct stable_node *dup)
358{
b4fecc67 359 VM_BUG_ON(!is_stable_node_dup(dup));
2c653d0e
AA
360 hlist_del(&dup->hlist_dup);
361 ksm_stable_node_dups--;
362}
363
364static inline void stable_node_dup_del(struct stable_node *dup)
365{
366 VM_BUG_ON(is_stable_node_chain(dup));
367 if (is_stable_node_dup(dup))
368 __stable_node_dup_del(dup);
369 else
370 rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid));
371#ifdef CONFIG_DEBUG_VM
372 dup->head = NULL;
373#endif
374}
375
31dbd01f
IE
376static inline struct rmap_item *alloc_rmap_item(void)
377{
473b0ce4
HD
378 struct rmap_item *rmap_item;
379
5b398e41 380 rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL |
381 __GFP_NORETRY | __GFP_NOWARN);
473b0ce4
HD
382 if (rmap_item)
383 ksm_rmap_items++;
384 return rmap_item;
31dbd01f
IE
385}
386
387static inline void free_rmap_item(struct rmap_item *rmap_item)
388{
473b0ce4 389 ksm_rmap_items--;
31dbd01f
IE
390 rmap_item->mm = NULL; /* debug safety */
391 kmem_cache_free(rmap_item_cache, rmap_item);
392}
393
7b6ba2c7
HD
394static inline struct stable_node *alloc_stable_node(void)
395{
6213055f 396 /*
397 * The allocation can take too long with GFP_KERNEL when memory is under
398 * pressure, which may lead to hung task warnings. Adding __GFP_HIGH
399 * grants access to memory reserves, helping to avoid this problem.
400 */
401 return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH);
7b6ba2c7
HD
402}
403
404static inline void free_stable_node(struct stable_node *stable_node)
405{
2c653d0e
AA
406 VM_BUG_ON(stable_node->rmap_hlist_len &&
407 !is_stable_node_chain(stable_node));
7b6ba2c7
HD
408 kmem_cache_free(stable_node_cache, stable_node);
409}
410
31dbd01f
IE
411static inline struct mm_slot *alloc_mm_slot(void)
412{
413 if (!mm_slot_cache) /* initialization failed */
414 return NULL;
415 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
416}
417
418static inline void free_mm_slot(struct mm_slot *mm_slot)
419{
420 kmem_cache_free(mm_slot_cache, mm_slot);
421}
422
31dbd01f
IE
423static struct mm_slot *get_mm_slot(struct mm_struct *mm)
424{
4ca3a69b
SL
425 struct mm_slot *slot;
426
b67bfe0d 427 hash_for_each_possible(mm_slots_hash, slot, link, (unsigned long)mm)
4ca3a69b
SL
428 if (slot->mm == mm)
429 return slot;
31dbd01f 430
31dbd01f
IE
431 return NULL;
432}
433
434static void insert_to_mm_slots_hash(struct mm_struct *mm,
435 struct mm_slot *mm_slot)
436{
31dbd01f 437 mm_slot->mm = mm;
4ca3a69b 438 hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm);
31dbd01f
IE
439}
440
a913e182
HD
441/*
442 * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
443 * page tables after it has passed through ksm_exit() - which, if necessary,
c1e8d7c6 444 * takes mmap_lock briefly to serialize against them. ksm_exit() does not set
a913e182
HD
445 * a special flag: they can just back out as soon as mm_users goes to zero.
446 * ksm_test_exit() is used throughout to make this test for exit: in some
447 * places for correctness, in some places just to avoid unnecessary work.
448 */
449static inline bool ksm_test_exit(struct mm_struct *mm)
450{
451 return atomic_read(&mm->mm_users) == 0;
452}
453
31dbd01f
IE
454/*
455 * We use break_ksm to break COW on a ksm page: it's a stripped down
456 *
7a9547fd 457 * if (get_user_pages(addr, 1, FOLL_WRITE, &page, NULL) == 1)
31dbd01f
IE
458 * put_page(page);
459 *
460 * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
461 * in case the application has unmapped and remapped mm,addr meanwhile.
462 * Could a ksm page appear anywhere else? Actually yes, in a VM_PFNMAP
bbcd53c9 463 * mmap of /dev/mem, where we would not want to touch it.
1b2ee126
DH
464 *
465 * FAULT_FLAG/FOLL_REMOTE are because we do this outside the context
466 * of the process that owns 'vma'. We also do not want to enforce
467 * protection keys here anyway.
31dbd01f 468 */
d952b791 469static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
31dbd01f
IE
470{
471 struct page *page;
50a7ca3c 472 vm_fault_t ret = 0;
31dbd01f
IE
473
474 do {
475 cond_resched();
1b2ee126
DH
476 page = follow_page(vma, addr,
477 FOLL_GET | FOLL_MIGRATION | FOLL_REMOTE);
22eccdd7 478 if (IS_ERR_OR_NULL(page))
31dbd01f
IE
479 break;
480 if (PageKsm(page))
dcddffd4 481 ret = handle_mm_fault(vma, addr,
bce617ed
PX
482 FAULT_FLAG_WRITE | FAULT_FLAG_REMOTE,
483 NULL);
31dbd01f
IE
484 else
485 ret = VM_FAULT_WRITE;
486 put_page(page);
33692f27 487 } while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
d952b791
HD
488 /*
489 * We must loop because handle_mm_fault() may back out if there's
490 * any difficulty e.g. if pte accessed bit gets updated concurrently.
491 *
492 * VM_FAULT_WRITE is what we have been hoping for: it indicates that
493 * COW has been broken, even if the vma does not permit VM_WRITE;
494 * but note that a concurrent fault might break PageKsm for us.
495 *
496 * VM_FAULT_SIGBUS could occur if we race with truncation of the
497 * backing file, which also invalidates anonymous pages: that's
498 * okay, that truncation will have unmapped the PageKsm for us.
499 *
500 * VM_FAULT_OOM: at the time of writing (late July 2009), setting
501 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
502 * current task has TIF_MEMDIE set, and will be OOM killed on return
503 * to user; and ksmd, having no mm, would never be chosen for that.
504 *
505 * But if the mm is in a limited mem_cgroup, then the fault may fail
506 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
507 * even ksmd can fail in this way - though it's usually breaking ksm
508 * just to undo a merge it made a moment before, so unlikely to oom.
509 *
510 * That's a pity: we might therefore have more kernel pages allocated
511 * than we're counting as nodes in the stable tree; but ksm_do_scan
512 * will retry to break_cow on each pass, so should recover the page
513 * in due course. The important thing is to not let VM_MERGEABLE
514 * be cleared while any such pages might remain in the area.
515 */
516 return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
31dbd01f
IE
517}
518
ef694222
BL
519static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
520 unsigned long addr)
521{
522 struct vm_area_struct *vma;
523 if (ksm_test_exit(mm))
524 return NULL;
ff69fb81
LH
525 vma = vma_lookup(mm, addr);
526 if (!vma || !(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
ef694222
BL
527 return NULL;
528 return vma;
529}
530
8dd3557a 531static void break_cow(struct rmap_item *rmap_item)
31dbd01f 532{
8dd3557a
HD
533 struct mm_struct *mm = rmap_item->mm;
534 unsigned long addr = rmap_item->address;
31dbd01f
IE
535 struct vm_area_struct *vma;
536
4035c07a
HD
537 /*
538 * It is not an accident that whenever we want to break COW
539 * to undo, we also need to drop a reference to the anon_vma.
540 */
9e60109f 541 put_anon_vma(rmap_item->anon_vma);
4035c07a 542
d8ed45c5 543 mmap_read_lock(mm);
ef694222
BL
544 vma = find_mergeable_vma(mm, addr);
545 if (vma)
546 break_ksm(vma, addr);
d8ed45c5 547 mmap_read_unlock(mm);
31dbd01f
IE
548}
549
550static struct page *get_mergeable_page(struct rmap_item *rmap_item)
551{
552 struct mm_struct *mm = rmap_item->mm;
553 unsigned long addr = rmap_item->address;
554 struct vm_area_struct *vma;
555 struct page *page;
556
d8ed45c5 557 mmap_read_lock(mm);
ef694222
BL
558 vma = find_mergeable_vma(mm, addr);
559 if (!vma)
31dbd01f
IE
560 goto out;
561
562 page = follow_page(vma, addr, FOLL_GET);
22eccdd7 563 if (IS_ERR_OR_NULL(page))
31dbd01f 564 goto out;
f765f540 565 if (PageAnon(page)) {
31dbd01f
IE
566 flush_anon_page(vma, page, addr);
567 flush_dcache_page(page);
568 } else {
569 put_page(page);
c8f95ed1
AA
570out:
571 page = NULL;
31dbd01f 572 }
d8ed45c5 573 mmap_read_unlock(mm);
31dbd01f
IE
574 return page;
575}
576
90bd6fd3
PH
577/*
578 * This helper is used for getting right index into array of tree roots.
579 * When merge_across_nodes knob is set to 1, there are only two rb-trees for
580 * stable and unstable pages from all nodes with roots in index 0. Otherwise,
581 * every node has its own stable and unstable tree.
582 */
583static inline int get_kpfn_nid(unsigned long kpfn)
584{
d8fc16a8 585 return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
90bd6fd3
PH
586}
587
2c653d0e
AA
588static struct stable_node *alloc_stable_node_chain(struct stable_node *dup,
589 struct rb_root *root)
590{
591 struct stable_node *chain = alloc_stable_node();
592 VM_BUG_ON(is_stable_node_chain(dup));
593 if (likely(chain)) {
594 INIT_HLIST_HEAD(&chain->hlist);
595 chain->chain_prune_time = jiffies;
596 chain->rmap_hlist_len = STABLE_NODE_CHAIN;
597#if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA)
98fa15f3 598 chain->nid = NUMA_NO_NODE; /* debug */
2c653d0e
AA
599#endif
600 ksm_stable_node_chains++;
601
602 /*
603 * Put the stable node chain in the first dimension of
604 * the stable tree and at the same time remove the old
605 * stable node.
606 */
607 rb_replace_node(&dup->node, &chain->node, root);
608
609 /*
610 * Move the old stable node to the second dimension
611 * queued in the hlist_dup. The invariant is that all
612 * dup stable_nodes in the chain->hlist point to pages
457aef94 613 * that are write protected and have the exact same
2c653d0e
AA
614 * content.
615 */
616 stable_node_chain_add_dup(dup, chain);
617 }
618 return chain;
619}
620
621static inline void free_stable_node_chain(struct stable_node *chain,
622 struct rb_root *root)
623{
624 rb_erase(&chain->node, root);
625 free_stable_node(chain);
626 ksm_stable_node_chains--;
627}
628
4035c07a
HD
629static void remove_node_from_stable_tree(struct stable_node *stable_node)
630{
631 struct rmap_item *rmap_item;
4035c07a 632
2c653d0e
AA
633 /* check it's not STABLE_NODE_CHAIN or negative */
634 BUG_ON(stable_node->rmap_hlist_len < 0);
635
b67bfe0d 636 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
4035c07a
HD
637 if (rmap_item->hlist.next)
638 ksm_pages_sharing--;
639 else
640 ksm_pages_shared--;
2c653d0e
AA
641 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
642 stable_node->rmap_hlist_len--;
9e60109f 643 put_anon_vma(rmap_item->anon_vma);
4035c07a
HD
644 rmap_item->address &= PAGE_MASK;
645 cond_resched();
646 }
647
2c653d0e
AA
648 /*
649 * We need the second aligned pointer of the migrate_nodes
650 * list_head to stay clear from the rb_parent_color union
651 * (aligned and different than any node) and also different
652 * from &migrate_nodes. This will verify that future list.h changes
815f0ddb 653 * don't break STABLE_NODE_DUP_HEAD. Only recent gcc can handle it.
2c653d0e 654 */
2c653d0e
AA
655 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes);
656 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1);
2c653d0e 657
4146d2d6
HD
658 if (stable_node->head == &migrate_nodes)
659 list_del(&stable_node->list);
660 else
2c653d0e 661 stable_node_dup_del(stable_node);
4035c07a
HD
662 free_stable_node(stable_node);
663}
664
2cee57d1
YS
665enum get_ksm_page_flags {
666 GET_KSM_PAGE_NOLOCK,
667 GET_KSM_PAGE_LOCK,
668 GET_KSM_PAGE_TRYLOCK
669};
670
4035c07a
HD
671/*
672 * get_ksm_page: checks if the page indicated by the stable node
673 * is still its ksm page, despite having held no reference to it.
674 * In which case we can trust the content of the page, and it
675 * returns the gotten page; but if the page has now been zapped,
676 * remove the stale node from the stable tree and return NULL.
c8d6553b 677 * But beware, the stable node's page might be being migrated.
4035c07a
HD
678 *
679 * You would expect the stable_node to hold a reference to the ksm page.
680 * But if it increments the page's count, swapping out has to wait for
681 * ksmd to come around again before it can free the page, which may take
682 * seconds or even minutes: much too unresponsive. So instead we use a
683 * "keyhole reference": access to the ksm page from the stable node peeps
684 * out through its keyhole to see if that page still holds the right key,
685 * pointing back to this stable node. This relies on freeing a PageAnon
686 * page to reset its page->mapping to NULL, and relies on no other use of
687 * a page to put something that might look like our key in page->mapping.
4035c07a
HD
688 * is on its way to being freed; but it is an anomaly to bear in mind.
689 */
2cee57d1
YS
690static struct page *get_ksm_page(struct stable_node *stable_node,
691 enum get_ksm_page_flags flags)
4035c07a
HD
692{
693 struct page *page;
694 void *expected_mapping;
c8d6553b 695 unsigned long kpfn;
4035c07a 696
bda807d4
MK
697 expected_mapping = (void *)((unsigned long)stable_node |
698 PAGE_MAPPING_KSM);
c8d6553b 699again:
08df4774 700 kpfn = READ_ONCE(stable_node->kpfn); /* Address dependency. */
c8d6553b 701 page = pfn_to_page(kpfn);
4db0c3c2 702 if (READ_ONCE(page->mapping) != expected_mapping)
4035c07a 703 goto stale;
c8d6553b
HD
704
705 /*
706 * We cannot do anything with the page while its refcount is 0.
707 * Usually 0 means free, or tail of a higher-order page: in which
708 * case this node is no longer referenced, and should be freed;
1c4c3b99 709 * however, it might mean that the page is under page_ref_freeze().
c8d6553b 710 * The __remove_mapping() case is easy, again the node is now stale;
52d1e606
KT
711 * the same is in reuse_ksm_page() case; but if page is swapcache
712 * in migrate_page_move_mapping(), it might still be our page,
713 * in which case it's essential to keep the node.
c8d6553b
HD
714 */
715 while (!get_page_unless_zero(page)) {
716 /*
717 * Another check for page->mapping != expected_mapping would
718 * work here too. We have chosen the !PageSwapCache test to
719 * optimize the common case, when the page is or is about to
720 * be freed: PageSwapCache is cleared (under spin_lock_irq)
1c4c3b99 721 * in the ref_freeze section of __remove_mapping(); but Anon
c8d6553b
HD
722 * page->mapping reset to NULL later, in free_pages_prepare().
723 */
724 if (!PageSwapCache(page))
725 goto stale;
726 cpu_relax();
727 }
728
4db0c3c2 729 if (READ_ONCE(page->mapping) != expected_mapping) {
4035c07a
HD
730 put_page(page);
731 goto stale;
732 }
c8d6553b 733
2cee57d1
YS
734 if (flags == GET_KSM_PAGE_TRYLOCK) {
735 if (!trylock_page(page)) {
736 put_page(page);
737 return ERR_PTR(-EBUSY);
738 }
739 } else if (flags == GET_KSM_PAGE_LOCK)
8aafa6a4 740 lock_page(page);
2cee57d1
YS
741
742 if (flags != GET_KSM_PAGE_NOLOCK) {
4db0c3c2 743 if (READ_ONCE(page->mapping) != expected_mapping) {
8aafa6a4
HD
744 unlock_page(page);
745 put_page(page);
746 goto stale;
747 }
748 }
4035c07a 749 return page;
c8d6553b 750
4035c07a 751stale:
c8d6553b
HD
752 /*
753 * We come here from above when page->mapping or !PageSwapCache
754 * suggests that the node is stale; but it might be under migration.
19138349 755 * We need smp_rmb(), matching the smp_wmb() in folio_migrate_ksm(),
c8d6553b
HD
756 * before checking whether node->kpfn has been changed.
757 */
758 smp_rmb();
4db0c3c2 759 if (READ_ONCE(stable_node->kpfn) != kpfn)
c8d6553b 760 goto again;
4035c07a
HD
761 remove_node_from_stable_tree(stable_node);
762 return NULL;
763}
764
31dbd01f
IE
765/*
766 * Removing rmap_item from stable or unstable tree.
767 * This function will clean the information from the stable/unstable tree.
768 */
769static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
770{
7b6ba2c7
HD
771 if (rmap_item->address & STABLE_FLAG) {
772 struct stable_node *stable_node;
5ad64688 773 struct page *page;
31dbd01f 774
7b6ba2c7 775 stable_node = rmap_item->head;
62862290 776 page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK);
4035c07a
HD
777 if (!page)
778 goto out;
5ad64688 779
7b6ba2c7 780 hlist_del(&rmap_item->hlist);
62862290 781 unlock_page(page);
4035c07a 782 put_page(page);
08beca44 783
98666f8a 784 if (!hlist_empty(&stable_node->hlist))
4035c07a
HD
785 ksm_pages_sharing--;
786 else
7b6ba2c7 787 ksm_pages_shared--;
2c653d0e
AA
788 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
789 stable_node->rmap_hlist_len--;
31dbd01f 790
9e60109f 791 put_anon_vma(rmap_item->anon_vma);
c89a384e 792 rmap_item->head = NULL;
93d17715 793 rmap_item->address &= PAGE_MASK;
31dbd01f 794
7b6ba2c7 795 } else if (rmap_item->address & UNSTABLE_FLAG) {
31dbd01f
IE
796 unsigned char age;
797 /*
9ba69294 798 * Usually ksmd can and must skip the rb_erase, because
31dbd01f 799 * root_unstable_tree was already reset to RB_ROOT.
9ba69294
HD
800 * But be careful when an mm is exiting: do the rb_erase
801 * if this rmap_item was inserted by this scan, rather
802 * than left over from before.
31dbd01f
IE
803 */
804 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
cd551f97 805 BUG_ON(age > 1);
31dbd01f 806 if (!age)
90bd6fd3 807 rb_erase(&rmap_item->node,
ef53d16c 808 root_unstable_tree + NUMA(rmap_item->nid));
473b0ce4 809 ksm_pages_unshared--;
93d17715 810 rmap_item->address &= PAGE_MASK;
31dbd01f 811 }
4035c07a 812out:
31dbd01f
IE
813 cond_resched(); /* we're called from many long loops */
814}
815
420be4ed 816static void remove_trailing_rmap_items(struct rmap_item **rmap_list)
31dbd01f 817{
6514d511
HD
818 while (*rmap_list) {
819 struct rmap_item *rmap_item = *rmap_list;
820 *rmap_list = rmap_item->rmap_list;
31dbd01f 821 remove_rmap_item_from_tree(rmap_item);
31dbd01f
IE
822 free_rmap_item(rmap_item);
823 }
824}
825
826/*
e850dcf5 827 * Though it's very tempting to unmerge rmap_items from stable tree rather
31dbd01f
IE
828 * than check every pte of a given vma, the locking doesn't quite work for
829 * that - an rmap_item is assigned to the stable tree after inserting ksm
c1e8d7c6 830 * page and upping mmap_lock. Nor does it fit with the way we skip dup'ing
31dbd01f
IE
831 * rmap_items from parent to child at fork time (so as not to waste time
832 * if exit comes before the next scan reaches it).
81464e30
HD
833 *
834 * Similarly, although we'd like to remove rmap_items (so updating counts
835 * and freeing memory) when unmerging an area, it's easier to leave that
836 * to the next pass of ksmd - consider, for example, how ksmd might be
837 * in cmp_and_merge_page on one of the rmap_items we would be removing.
31dbd01f 838 */
d952b791
HD
839static int unmerge_ksm_pages(struct vm_area_struct *vma,
840 unsigned long start, unsigned long end)
31dbd01f
IE
841{
842 unsigned long addr;
d952b791 843 int err = 0;
31dbd01f 844
d952b791 845 for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
9ba69294
HD
846 if (ksm_test_exit(vma->vm_mm))
847 break;
d952b791
HD
848 if (signal_pending(current))
849 err = -ERESTARTSYS;
850 else
851 err = break_ksm(vma, addr);
852 }
853 return err;
31dbd01f
IE
854}
855
19138349
MWO
856static inline struct stable_node *folio_stable_node(struct folio *folio)
857{
858 return folio_test_ksm(folio) ? folio_raw_mapping(folio) : NULL;
859}
860
88484826
MR
861static inline struct stable_node *page_stable_node(struct page *page)
862{
19138349 863 return folio_stable_node(page_folio(page));
88484826
MR
864}
865
866static inline void set_page_stable_node(struct page *page,
867 struct stable_node *stable_node)
868{
869 page->mapping = (void *)((unsigned long)stable_node | PAGE_MAPPING_KSM);
870}
871
2ffd8679
HD
872#ifdef CONFIG_SYSFS
873/*
874 * Only called through the sysfs control interface:
875 */
cbf86cfe
HD
876static int remove_stable_node(struct stable_node *stable_node)
877{
878 struct page *page;
879 int err;
880
2cee57d1 881 page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK);
cbf86cfe
HD
882 if (!page) {
883 /*
884 * get_ksm_page did remove_node_from_stable_tree itself.
885 */
886 return 0;
887 }
888
9a63236f
AR
889 /*
890 * Page could be still mapped if this races with __mmput() running in
891 * between ksm_exit() and exit_mmap(). Just refuse to let
892 * merge_across_nodes/max_page_sharing be switched.
893 */
894 err = -EBUSY;
895 if (!page_mapped(page)) {
cbf86cfe 896 /*
8fdb3dbf
HD
897 * The stable node did not yet appear stale to get_ksm_page(),
898 * since that allows for an unmapped ksm page to be recognized
899 * right up until it is freed; but the node is safe to remove.
cbf86cfe
HD
900 * This page might be in a pagevec waiting to be freed,
901 * or it might be PageSwapCache (perhaps under writeback),
902 * or it might have been removed from swapcache a moment ago.
903 */
904 set_page_stable_node(page, NULL);
905 remove_node_from_stable_tree(stable_node);
906 err = 0;
907 }
908
909 unlock_page(page);
910 put_page(page);
911 return err;
912}
913
2c653d0e
AA
914static int remove_stable_node_chain(struct stable_node *stable_node,
915 struct rb_root *root)
916{
917 struct stable_node *dup;
918 struct hlist_node *hlist_safe;
919
920 if (!is_stable_node_chain(stable_node)) {
921 VM_BUG_ON(is_stable_node_dup(stable_node));
922 if (remove_stable_node(stable_node))
923 return true;
924 else
925 return false;
926 }
927
928 hlist_for_each_entry_safe(dup, hlist_safe,
929 &stable_node->hlist, hlist_dup) {
930 VM_BUG_ON(!is_stable_node_dup(dup));
931 if (remove_stable_node(dup))
932 return true;
933 }
934 BUG_ON(!hlist_empty(&stable_node->hlist));
935 free_stable_node_chain(stable_node, root);
936 return false;
937}
938
cbf86cfe
HD
939static int remove_all_stable_nodes(void)
940{
03640418 941 struct stable_node *stable_node, *next;
cbf86cfe
HD
942 int nid;
943 int err = 0;
944
ef53d16c 945 for (nid = 0; nid < ksm_nr_node_ids; nid++) {
cbf86cfe
HD
946 while (root_stable_tree[nid].rb_node) {
947 stable_node = rb_entry(root_stable_tree[nid].rb_node,
948 struct stable_node, node);
2c653d0e
AA
949 if (remove_stable_node_chain(stable_node,
950 root_stable_tree + nid)) {
cbf86cfe
HD
951 err = -EBUSY;
952 break; /* proceed to next nid */
953 }
954 cond_resched();
955 }
956 }
03640418 957 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
4146d2d6
HD
958 if (remove_stable_node(stable_node))
959 err = -EBUSY;
960 cond_resched();
961 }
cbf86cfe
HD
962 return err;
963}
964
d952b791 965static int unmerge_and_remove_all_rmap_items(void)
31dbd01f
IE
966{
967 struct mm_slot *mm_slot;
968 struct mm_struct *mm;
969 struct vm_area_struct *vma;
d952b791
HD
970 int err = 0;
971
972 spin_lock(&ksm_mmlist_lock);
9ba69294 973 ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
d952b791
HD
974 struct mm_slot, mm_list);
975 spin_unlock(&ksm_mmlist_lock);
31dbd01f 976
9ba69294
HD
977 for (mm_slot = ksm_scan.mm_slot;
978 mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
31dbd01f 979 mm = mm_slot->mm;
d8ed45c5 980 mmap_read_lock(mm);
31dbd01f 981 for (vma = mm->mmap; vma; vma = vma->vm_next) {
9ba69294
HD
982 if (ksm_test_exit(mm))
983 break;
31dbd01f
IE
984 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
985 continue;
d952b791
HD
986 err = unmerge_ksm_pages(vma,
987 vma->vm_start, vma->vm_end);
9ba69294
HD
988 if (err)
989 goto error;
31dbd01f 990 }
9ba69294 991
420be4ed 992 remove_trailing_rmap_items(&mm_slot->rmap_list);
d8ed45c5 993 mmap_read_unlock(mm);
d952b791
HD
994
995 spin_lock(&ksm_mmlist_lock);
9ba69294 996 ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
d952b791 997 struct mm_slot, mm_list);
9ba69294 998 if (ksm_test_exit(mm)) {
4ca3a69b 999 hash_del(&mm_slot->link);
9ba69294
HD
1000 list_del(&mm_slot->mm_list);
1001 spin_unlock(&ksm_mmlist_lock);
1002
1003 free_mm_slot(mm_slot);
1004 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
9ba69294 1005 mmdrop(mm);
7496fea9 1006 } else
9ba69294 1007 spin_unlock(&ksm_mmlist_lock);
31dbd01f
IE
1008 }
1009
cbf86cfe
HD
1010 /* Clean up stable nodes, but don't worry if some are still busy */
1011 remove_all_stable_nodes();
d952b791 1012 ksm_scan.seqnr = 0;
9ba69294
HD
1013 return 0;
1014
1015error:
d8ed45c5 1016 mmap_read_unlock(mm);
31dbd01f 1017 spin_lock(&ksm_mmlist_lock);
d952b791 1018 ksm_scan.mm_slot = &ksm_mm_head;
31dbd01f 1019 spin_unlock(&ksm_mmlist_lock);
d952b791 1020 return err;
31dbd01f 1021}
2ffd8679 1022#endif /* CONFIG_SYSFS */
31dbd01f 1023
31dbd01f
IE
1024static u32 calc_checksum(struct page *page)
1025{
1026 u32 checksum;
9b04c5fe 1027 void *addr = kmap_atomic(page);
59e1a2f4 1028 checksum = xxhash(addr, PAGE_SIZE, 0);
9b04c5fe 1029 kunmap_atomic(addr);
31dbd01f
IE
1030 return checksum;
1031}
1032
31dbd01f
IE
1033static int write_protect_page(struct vm_area_struct *vma, struct page *page,
1034 pte_t *orig_pte)
1035{
1036 struct mm_struct *mm = vma->vm_mm;
eed05e54 1037 DEFINE_PAGE_VMA_WALK(pvmw, page, vma, 0, 0);
31dbd01f
IE
1038 int swapped;
1039 int err = -EFAULT;
ac46d4f3 1040 struct mmu_notifier_range range;
31dbd01f 1041
36eaff33
KS
1042 pvmw.address = page_address_in_vma(page, vma);
1043 if (pvmw.address == -EFAULT)
31dbd01f
IE
1044 goto out;
1045
29ad768c 1046 BUG_ON(PageTransCompound(page));
6bdb913f 1047
7269f999 1048 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
6f4f13e8 1049 pvmw.address,
ac46d4f3
JG
1050 pvmw.address + PAGE_SIZE);
1051 mmu_notifier_invalidate_range_start(&range);
6bdb913f 1052
36eaff33 1053 if (!page_vma_mapped_walk(&pvmw))
6bdb913f 1054 goto out_mn;
36eaff33
KS
1055 if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?"))
1056 goto out_unlock;
31dbd01f 1057
595cd8f2 1058 if (pte_write(*pvmw.pte) || pte_dirty(*pvmw.pte) ||
b3a81d08
MK
1059 (pte_protnone(*pvmw.pte) && pte_savedwrite(*pvmw.pte)) ||
1060 mm_tlb_flush_pending(mm)) {
31dbd01f
IE
1061 pte_t entry;
1062
1063 swapped = PageSwapCache(page);
36eaff33 1064 flush_cache_page(vma, pvmw.address, page_to_pfn(page));
31dbd01f 1065 /*
25985edc 1066 * Ok this is tricky, when get_user_pages_fast() run it doesn't
31dbd01f 1067 * take any lock, therefore the check that we are going to make
f0953a1b 1068 * with the pagecount against the mapcount is racy and
31dbd01f
IE
1069 * O_DIRECT can happen right after the check.
1070 * So we clear the pte and flush the tlb before the check
1071 * this assure us that no O_DIRECT can happen after the check
1072 * or in the middle of the check.
0f10851e
JG
1073 *
1074 * No need to notify as we are downgrading page table to read
1075 * only not changing it to point to a new page.
1076 *
ad56b738 1077 * See Documentation/vm/mmu_notifier.rst
31dbd01f 1078 */
0f10851e 1079 entry = ptep_clear_flush(vma, pvmw.address, pvmw.pte);
31dbd01f
IE
1080 /*
1081 * Check that no O_DIRECT or similar I/O is in progress on the
1082 * page
1083 */
31e855ea 1084 if (page_mapcount(page) + 1 + swapped != page_count(page)) {
36eaff33 1085 set_pte_at(mm, pvmw.address, pvmw.pte, entry);
31dbd01f
IE
1086 goto out_unlock;
1087 }
4e31635c
HD
1088 if (pte_dirty(entry))
1089 set_page_dirty(page);
595cd8f2
AK
1090
1091 if (pte_protnone(entry))
1092 entry = pte_mkclean(pte_clear_savedwrite(entry));
1093 else
1094 entry = pte_mkclean(pte_wrprotect(entry));
36eaff33 1095 set_pte_at_notify(mm, pvmw.address, pvmw.pte, entry);
31dbd01f 1096 }
36eaff33 1097 *orig_pte = *pvmw.pte;
31dbd01f
IE
1098 err = 0;
1099
1100out_unlock:
36eaff33 1101 page_vma_mapped_walk_done(&pvmw);
6bdb913f 1102out_mn:
ac46d4f3 1103 mmu_notifier_invalidate_range_end(&range);
31dbd01f
IE
1104out:
1105 return err;
1106}
1107
1108/**
1109 * replace_page - replace page in vma by new ksm page
8dd3557a
HD
1110 * @vma: vma that holds the pte pointing to page
1111 * @page: the page we are replacing by kpage
1112 * @kpage: the ksm page we replace page by
31dbd01f
IE
1113 * @orig_pte: the original value of the pte
1114 *
1115 * Returns 0 on success, -EFAULT on failure.
1116 */
8dd3557a
HD
1117static int replace_page(struct vm_area_struct *vma, struct page *page,
1118 struct page *kpage, pte_t orig_pte)
31dbd01f
IE
1119{
1120 struct mm_struct *mm = vma->vm_mm;
31dbd01f
IE
1121 pmd_t *pmd;
1122 pte_t *ptep;
e86c59b1 1123 pte_t newpte;
31dbd01f
IE
1124 spinlock_t *ptl;
1125 unsigned long addr;
31dbd01f 1126 int err = -EFAULT;
ac46d4f3 1127 struct mmu_notifier_range range;
31dbd01f 1128
8dd3557a 1129 addr = page_address_in_vma(page, vma);
31dbd01f
IE
1130 if (addr == -EFAULT)
1131 goto out;
1132
6219049a
BL
1133 pmd = mm_find_pmd(mm, addr);
1134 if (!pmd)
31dbd01f 1135 goto out;
31dbd01f 1136
7269f999 1137 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, addr,
6f4f13e8 1138 addr + PAGE_SIZE);
ac46d4f3 1139 mmu_notifier_invalidate_range_start(&range);
6bdb913f 1140
31dbd01f
IE
1141 ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
1142 if (!pte_same(*ptep, orig_pte)) {
1143 pte_unmap_unlock(ptep, ptl);
6bdb913f 1144 goto out_mn;
31dbd01f
IE
1145 }
1146
e86c59b1
CI
1147 /*
1148 * No need to check ksm_use_zero_pages here: we can only have a
457aef94 1149 * zero_page here if ksm_use_zero_pages was enabled already.
e86c59b1
CI
1150 */
1151 if (!is_zero_pfn(page_to_pfn(kpage))) {
1152 get_page(kpage);
1153 page_add_anon_rmap(kpage, vma, addr, false);
1154 newpte = mk_pte(kpage, vma->vm_page_prot);
1155 } else {
1156 newpte = pte_mkspecial(pfn_pte(page_to_pfn(kpage),
1157 vma->vm_page_prot));
a38c015f
CI
1158 /*
1159 * We're replacing an anonymous page with a zero page, which is
1160 * not anonymous. We need to do proper accounting otherwise we
1161 * will get wrong values in /proc, and a BUG message in dmesg
1162 * when tearing down the mm.
1163 */
1164 dec_mm_counter(mm, MM_ANONPAGES);
e86c59b1 1165 }
31dbd01f
IE
1166
1167 flush_cache_page(vma, addr, pte_pfn(*ptep));
0f10851e
JG
1168 /*
1169 * No need to notify as we are replacing a read only page with another
1170 * read only page with the same content.
1171 *
ad56b738 1172 * See Documentation/vm/mmu_notifier.rst
0f10851e
JG
1173 */
1174 ptep_clear_flush(vma, addr, ptep);
e86c59b1 1175 set_pte_at_notify(mm, addr, ptep, newpte);
31dbd01f 1176
cea86fe2 1177 page_remove_rmap(page, vma, false);
ae52a2ad
HD
1178 if (!page_mapped(page))
1179 try_to_free_swap(page);
8dd3557a 1180 put_page(page);
31dbd01f
IE
1181
1182 pte_unmap_unlock(ptep, ptl);
1183 err = 0;
6bdb913f 1184out_mn:
ac46d4f3 1185 mmu_notifier_invalidate_range_end(&range);
31dbd01f
IE
1186out:
1187 return err;
1188}
1189
1190/*
1191 * try_to_merge_one_page - take two pages and merge them into one
8dd3557a
HD
1192 * @vma: the vma that holds the pte pointing to page
1193 * @page: the PageAnon page that we want to replace with kpage
80e14822
HD
1194 * @kpage: the PageKsm page that we want to map instead of page,
1195 * or NULL the first time when we want to use page as kpage.
31dbd01f
IE
1196 *
1197 * This function returns 0 if the pages were merged, -EFAULT otherwise.
1198 */
1199static int try_to_merge_one_page(struct vm_area_struct *vma,
8dd3557a 1200 struct page *page, struct page *kpage)
31dbd01f
IE
1201{
1202 pte_t orig_pte = __pte(0);
1203 int err = -EFAULT;
1204
db114b83
HD
1205 if (page == kpage) /* ksm page forked */
1206 return 0;
1207
8dd3557a 1208 if (!PageAnon(page))
31dbd01f
IE
1209 goto out;
1210
31dbd01f
IE
1211 /*
1212 * We need the page lock to read a stable PageSwapCache in
1213 * write_protect_page(). We use trylock_page() instead of
1214 * lock_page() because we don't want to wait here - we
1215 * prefer to continue scanning and merging different pages,
1216 * then come back to this page when it is unlocked.
1217 */
8dd3557a 1218 if (!trylock_page(page))
31e855ea 1219 goto out;
f765f540
KS
1220
1221 if (PageTransCompound(page)) {
a7306c34 1222 if (split_huge_page(page))
f765f540
KS
1223 goto out_unlock;
1224 }
1225
31dbd01f
IE
1226 /*
1227 * If this anonymous page is mapped only here, its pte may need
1228 * to be write-protected. If it's mapped elsewhere, all of its
1229 * ptes are necessarily already write-protected. But in either
1230 * case, we need to lock and check page_count is not raised.
1231 */
80e14822
HD
1232 if (write_protect_page(vma, page, &orig_pte) == 0) {
1233 if (!kpage) {
1234 /*
1235 * While we hold page lock, upgrade page from
1236 * PageAnon+anon_vma to PageKsm+NULL stable_node:
1237 * stable_tree_insert() will update stable_node.
1238 */
1239 set_page_stable_node(page, NULL);
1240 mark_page_accessed(page);
337ed7eb
MK
1241 /*
1242 * Page reclaim just frees a clean page with no dirty
1243 * ptes: make sure that the ksm page would be swapped.
1244 */
1245 if (!PageDirty(page))
1246 SetPageDirty(page);
80e14822
HD
1247 err = 0;
1248 } else if (pages_identical(page, kpage))
1249 err = replace_page(vma, page, kpage, orig_pte);
1250 }
31dbd01f 1251
f765f540 1252out_unlock:
8dd3557a 1253 unlock_page(page);
31dbd01f
IE
1254out:
1255 return err;
1256}
1257
81464e30
HD
1258/*
1259 * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1260 * but no new kernel page is allocated: kpage must already be a ksm page.
8dd3557a
HD
1261 *
1262 * This function returns 0 if the pages were merged, -EFAULT otherwise.
81464e30 1263 */
8dd3557a
HD
1264static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item,
1265 struct page *page, struct page *kpage)
81464e30 1266{
8dd3557a 1267 struct mm_struct *mm = rmap_item->mm;
81464e30
HD
1268 struct vm_area_struct *vma;
1269 int err = -EFAULT;
1270
d8ed45c5 1271 mmap_read_lock(mm);
85c6e8dd
AA
1272 vma = find_mergeable_vma(mm, rmap_item->address);
1273 if (!vma)
81464e30
HD
1274 goto out;
1275
8dd3557a 1276 err = try_to_merge_one_page(vma, page, kpage);
db114b83
HD
1277 if (err)
1278 goto out;
1279
bc56620b
HD
1280 /* Unstable nid is in union with stable anon_vma: remove first */
1281 remove_rmap_item_from_tree(rmap_item);
1282
c1e8d7c6 1283 /* Must get reference to anon_vma while still holding mmap_lock */
9e60109f
PZ
1284 rmap_item->anon_vma = vma->anon_vma;
1285 get_anon_vma(vma->anon_vma);
81464e30 1286out:
d8ed45c5 1287 mmap_read_unlock(mm);
81464e30
HD
1288 return err;
1289}
1290
31dbd01f
IE
1291/*
1292 * try_to_merge_two_pages - take two identical pages and prepare them
1293 * to be merged into one page.
1294 *
8dd3557a
HD
1295 * This function returns the kpage if we successfully merged two identical
1296 * pages into one ksm page, NULL otherwise.
31dbd01f 1297 *
80e14822 1298 * Note that this function upgrades page to ksm page: if one of the pages
31dbd01f
IE
1299 * is already a ksm page, try_to_merge_with_ksm_page should be used.
1300 */
8dd3557a
HD
1301static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item,
1302 struct page *page,
1303 struct rmap_item *tree_rmap_item,
1304 struct page *tree_page)
31dbd01f 1305{
80e14822 1306 int err;
31dbd01f 1307
80e14822 1308 err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
31dbd01f 1309 if (!err) {
8dd3557a 1310 err = try_to_merge_with_ksm_page(tree_rmap_item,
80e14822 1311 tree_page, page);
31dbd01f 1312 /*
81464e30
HD
1313 * If that fails, we have a ksm page with only one pte
1314 * pointing to it: so break it.
31dbd01f 1315 */
4035c07a 1316 if (err)
8dd3557a 1317 break_cow(rmap_item);
31dbd01f 1318 }
80e14822 1319 return err ? NULL : page;
31dbd01f
IE
1320}
1321
2c653d0e
AA
1322static __always_inline
1323bool __is_page_sharing_candidate(struct stable_node *stable_node, int offset)
1324{
1325 VM_BUG_ON(stable_node->rmap_hlist_len < 0);
1326 /*
1327 * Check that at least one mapping still exists, otherwise
1328 * there's no much point to merge and share with this
1329 * stable_node, as the underlying tree_page of the other
1330 * sharer is going to be freed soon.
1331 */
1332 return stable_node->rmap_hlist_len &&
1333 stable_node->rmap_hlist_len + offset < ksm_max_page_sharing;
1334}
1335
1336static __always_inline
1337bool is_page_sharing_candidate(struct stable_node *stable_node)
1338{
1339 return __is_page_sharing_candidate(stable_node, 0);
1340}
1341
c01f0b54
CIK
1342static struct page *stable_node_dup(struct stable_node **_stable_node_dup,
1343 struct stable_node **_stable_node,
1344 struct rb_root *root,
1345 bool prune_stale_stable_nodes)
2c653d0e 1346{
b4fecc67 1347 struct stable_node *dup, *found = NULL, *stable_node = *_stable_node;
2c653d0e 1348 struct hlist_node *hlist_safe;
8dc5ffcd 1349 struct page *_tree_page, *tree_page = NULL;
2c653d0e
AA
1350 int nr = 0;
1351 int found_rmap_hlist_len;
1352
1353 if (!prune_stale_stable_nodes ||
1354 time_before(jiffies, stable_node->chain_prune_time +
1355 msecs_to_jiffies(
1356 ksm_stable_node_chains_prune_millisecs)))
1357 prune_stale_stable_nodes = false;
1358 else
1359 stable_node->chain_prune_time = jiffies;
1360
1361 hlist_for_each_entry_safe(dup, hlist_safe,
1362 &stable_node->hlist, hlist_dup) {
1363 cond_resched();
1364 /*
1365 * We must walk all stable_node_dup to prune the stale
1366 * stable nodes during lookup.
1367 *
1368 * get_ksm_page can drop the nodes from the
1369 * stable_node->hlist if they point to freed pages
1370 * (that's why we do a _safe walk). The "dup"
1371 * stable_node parameter itself will be freed from
1372 * under us if it returns NULL.
1373 */
2cee57d1 1374 _tree_page = get_ksm_page(dup, GET_KSM_PAGE_NOLOCK);
2c653d0e
AA
1375 if (!_tree_page)
1376 continue;
1377 nr += 1;
1378 if (is_page_sharing_candidate(dup)) {
1379 if (!found ||
1380 dup->rmap_hlist_len > found_rmap_hlist_len) {
1381 if (found)
8dc5ffcd 1382 put_page(tree_page);
2c653d0e
AA
1383 found = dup;
1384 found_rmap_hlist_len = found->rmap_hlist_len;
8dc5ffcd 1385 tree_page = _tree_page;
2c653d0e 1386
8dc5ffcd 1387 /* skip put_page for found dup */
2c653d0e
AA
1388 if (!prune_stale_stable_nodes)
1389 break;
2c653d0e
AA
1390 continue;
1391 }
1392 }
1393 put_page(_tree_page);
1394 }
1395
80b18dfa
AA
1396 if (found) {
1397 /*
1398 * nr is counting all dups in the chain only if
1399 * prune_stale_stable_nodes is true, otherwise we may
1400 * break the loop at nr == 1 even if there are
1401 * multiple entries.
1402 */
1403 if (prune_stale_stable_nodes && nr == 1) {
2c653d0e
AA
1404 /*
1405 * If there's not just one entry it would
1406 * corrupt memory, better BUG_ON. In KSM
1407 * context with no lock held it's not even
1408 * fatal.
1409 */
1410 BUG_ON(stable_node->hlist.first->next);
1411
1412 /*
1413 * There's just one entry and it is below the
1414 * deduplication limit so drop the chain.
1415 */
1416 rb_replace_node(&stable_node->node, &found->node,
1417 root);
1418 free_stable_node(stable_node);
1419 ksm_stable_node_chains--;
1420 ksm_stable_node_dups--;
b4fecc67 1421 /*
0ba1d0f7
AA
1422 * NOTE: the caller depends on the stable_node
1423 * to be equal to stable_node_dup if the chain
1424 * was collapsed.
b4fecc67 1425 */
0ba1d0f7
AA
1426 *_stable_node = found;
1427 /*
f0953a1b 1428 * Just for robustness, as stable_node is
0ba1d0f7
AA
1429 * otherwise left as a stable pointer, the
1430 * compiler shall optimize it away at build
1431 * time.
1432 */
1433 stable_node = NULL;
80b18dfa
AA
1434 } else if (stable_node->hlist.first != &found->hlist_dup &&
1435 __is_page_sharing_candidate(found, 1)) {
2c653d0e 1436 /*
80b18dfa
AA
1437 * If the found stable_node dup can accept one
1438 * more future merge (in addition to the one
1439 * that is underway) and is not at the head of
1440 * the chain, put it there so next search will
1441 * be quicker in the !prune_stale_stable_nodes
1442 * case.
1443 *
1444 * NOTE: it would be inaccurate to use nr > 1
1445 * instead of checking the hlist.first pointer
1446 * directly, because in the
1447 * prune_stale_stable_nodes case "nr" isn't
1448 * the position of the found dup in the chain,
1449 * but the total number of dups in the chain.
2c653d0e
AA
1450 */
1451 hlist_del(&found->hlist_dup);
1452 hlist_add_head(&found->hlist_dup,
1453 &stable_node->hlist);
1454 }
1455 }
1456
8dc5ffcd
AA
1457 *_stable_node_dup = found;
1458 return tree_page;
2c653d0e
AA
1459}
1460
1461static struct stable_node *stable_node_dup_any(struct stable_node *stable_node,
1462 struct rb_root *root)
1463{
1464 if (!is_stable_node_chain(stable_node))
1465 return stable_node;
1466 if (hlist_empty(&stable_node->hlist)) {
1467 free_stable_node_chain(stable_node, root);
1468 return NULL;
1469 }
1470 return hlist_entry(stable_node->hlist.first,
1471 typeof(*stable_node), hlist_dup);
1472}
1473
8dc5ffcd
AA
1474/*
1475 * Like for get_ksm_page, this function can free the *_stable_node and
1476 * *_stable_node_dup if the returned tree_page is NULL.
1477 *
1478 * It can also free and overwrite *_stable_node with the found
1479 * stable_node_dup if the chain is collapsed (in which case
1480 * *_stable_node will be equal to *_stable_node_dup like if the chain
1481 * never existed). It's up to the caller to verify tree_page is not
1482 * NULL before dereferencing *_stable_node or *_stable_node_dup.
1483 *
1484 * *_stable_node_dup is really a second output parameter of this
1485 * function and will be overwritten in all cases, the caller doesn't
1486 * need to initialize it.
1487 */
1488static struct page *__stable_node_chain(struct stable_node **_stable_node_dup,
1489 struct stable_node **_stable_node,
1490 struct rb_root *root,
1491 bool prune_stale_stable_nodes)
2c653d0e 1492{
b4fecc67 1493 struct stable_node *stable_node = *_stable_node;
2c653d0e
AA
1494 if (!is_stable_node_chain(stable_node)) {
1495 if (is_page_sharing_candidate(stable_node)) {
8dc5ffcd 1496 *_stable_node_dup = stable_node;
2cee57d1 1497 return get_ksm_page(stable_node, GET_KSM_PAGE_NOLOCK);
2c653d0e 1498 }
8dc5ffcd
AA
1499 /*
1500 * _stable_node_dup set to NULL means the stable_node
1501 * reached the ksm_max_page_sharing limit.
1502 */
1503 *_stable_node_dup = NULL;
2c653d0e
AA
1504 return NULL;
1505 }
8dc5ffcd 1506 return stable_node_dup(_stable_node_dup, _stable_node, root,
2c653d0e
AA
1507 prune_stale_stable_nodes);
1508}
1509
8dc5ffcd
AA
1510static __always_inline struct page *chain_prune(struct stable_node **s_n_d,
1511 struct stable_node **s_n,
1512 struct rb_root *root)
2c653d0e 1513{
8dc5ffcd 1514 return __stable_node_chain(s_n_d, s_n, root, true);
2c653d0e
AA
1515}
1516
8dc5ffcd
AA
1517static __always_inline struct page *chain(struct stable_node **s_n_d,
1518 struct stable_node *s_n,
1519 struct rb_root *root)
2c653d0e 1520{
8dc5ffcd
AA
1521 struct stable_node *old_stable_node = s_n;
1522 struct page *tree_page;
1523
1524 tree_page = __stable_node_chain(s_n_d, &s_n, root, false);
1525 /* not pruning dups so s_n cannot have changed */
1526 VM_BUG_ON(s_n != old_stable_node);
1527 return tree_page;
2c653d0e
AA
1528}
1529
31dbd01f 1530/*
8dd3557a 1531 * stable_tree_search - search for page inside the stable tree
31dbd01f
IE
1532 *
1533 * This function checks if there is a page inside the stable tree
1534 * with identical content to the page that we are scanning right now.
1535 *
7b6ba2c7 1536 * This function returns the stable tree node of identical content if found,
31dbd01f
IE
1537 * NULL otherwise.
1538 */
62b61f61 1539static struct page *stable_tree_search(struct page *page)
31dbd01f 1540{
90bd6fd3 1541 int nid;
ef53d16c 1542 struct rb_root *root;
4146d2d6
HD
1543 struct rb_node **new;
1544 struct rb_node *parent;
2c653d0e 1545 struct stable_node *stable_node, *stable_node_dup, *stable_node_any;
4146d2d6 1546 struct stable_node *page_node;
31dbd01f 1547
4146d2d6
HD
1548 page_node = page_stable_node(page);
1549 if (page_node && page_node->head != &migrate_nodes) {
1550 /* ksm page forked */
08beca44 1551 get_page(page);
62b61f61 1552 return page;
08beca44
HD
1553 }
1554
90bd6fd3 1555 nid = get_kpfn_nid(page_to_pfn(page));
ef53d16c 1556 root = root_stable_tree + nid;
4146d2d6 1557again:
ef53d16c 1558 new = &root->rb_node;
4146d2d6 1559 parent = NULL;
90bd6fd3 1560
4146d2d6 1561 while (*new) {
4035c07a 1562 struct page *tree_page;
31dbd01f
IE
1563 int ret;
1564
08beca44 1565 cond_resched();
4146d2d6 1566 stable_node = rb_entry(*new, struct stable_node, node);
2c653d0e 1567 stable_node_any = NULL;
8dc5ffcd 1568 tree_page = chain_prune(&stable_node_dup, &stable_node, root);
b4fecc67
AA
1569 /*
1570 * NOTE: stable_node may have been freed by
1571 * chain_prune() if the returned stable_node_dup is
1572 * not NULL. stable_node_dup may have been inserted in
1573 * the rbtree instead as a regular stable_node (in
1574 * order to collapse the stable_node chain if a single
0ba1d0f7
AA
1575 * stable_node dup was found in it). In such case the
1576 * stable_node is overwritten by the calleee to point
1577 * to the stable_node_dup that was collapsed in the
1578 * stable rbtree and stable_node will be equal to
1579 * stable_node_dup like if the chain never existed.
b4fecc67 1580 */
2c653d0e
AA
1581 if (!stable_node_dup) {
1582 /*
1583 * Either all stable_node dups were full in
1584 * this stable_node chain, or this chain was
1585 * empty and should be rb_erased.
1586 */
1587 stable_node_any = stable_node_dup_any(stable_node,
1588 root);
1589 if (!stable_node_any) {
1590 /* rb_erase just run */
1591 goto again;
1592 }
1593 /*
1594 * Take any of the stable_node dups page of
1595 * this stable_node chain to let the tree walk
1596 * continue. All KSM pages belonging to the
1597 * stable_node dups in a stable_node chain
1598 * have the same content and they're
457aef94 1599 * write protected at all times. Any will work
2c653d0e
AA
1600 * fine to continue the walk.
1601 */
2cee57d1
YS
1602 tree_page = get_ksm_page(stable_node_any,
1603 GET_KSM_PAGE_NOLOCK);
2c653d0e
AA
1604 }
1605 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
f2e5ff85
AA
1606 if (!tree_page) {
1607 /*
1608 * If we walked over a stale stable_node,
1609 * get_ksm_page() will call rb_erase() and it
1610 * may rebalance the tree from under us. So
1611 * restart the search from scratch. Returning
1612 * NULL would be safe too, but we'd generate
1613 * false negative insertions just because some
1614 * stable_node was stale.
1615 */
1616 goto again;
1617 }
31dbd01f 1618
4035c07a 1619 ret = memcmp_pages(page, tree_page);
c8d6553b 1620 put_page(tree_page);
31dbd01f 1621
4146d2d6 1622 parent = *new;
c8d6553b 1623 if (ret < 0)
4146d2d6 1624 new = &parent->rb_left;
c8d6553b 1625 else if (ret > 0)
4146d2d6 1626 new = &parent->rb_right;
c8d6553b 1627 else {
2c653d0e
AA
1628 if (page_node) {
1629 VM_BUG_ON(page_node->head != &migrate_nodes);
1630 /*
1631 * Test if the migrated page should be merged
1632 * into a stable node dup. If the mapcount is
1633 * 1 we can migrate it with another KSM page
1634 * without adding it to the chain.
1635 */
1636 if (page_mapcount(page) > 1)
1637 goto chain_append;
1638 }
1639
1640 if (!stable_node_dup) {
1641 /*
1642 * If the stable_node is a chain and
1643 * we got a payload match in memcmp
1644 * but we cannot merge the scanned
1645 * page in any of the existing
1646 * stable_node dups because they're
1647 * all full, we need to wait the
1648 * scanned page to find itself a match
1649 * in the unstable tree to create a
1650 * brand new KSM page to add later to
1651 * the dups of this stable_node.
1652 */
1653 return NULL;
1654 }
1655
c8d6553b
HD
1656 /*
1657 * Lock and unlock the stable_node's page (which
1658 * might already have been migrated) so that page
1659 * migration is sure to notice its raised count.
1660 * It would be more elegant to return stable_node
1661 * than kpage, but that involves more changes.
1662 */
2cee57d1
YS
1663 tree_page = get_ksm_page(stable_node_dup,
1664 GET_KSM_PAGE_TRYLOCK);
1665
1666 if (PTR_ERR(tree_page) == -EBUSY)
1667 return ERR_PTR(-EBUSY);
1668
2c653d0e
AA
1669 if (unlikely(!tree_page))
1670 /*
1671 * The tree may have been rebalanced,
1672 * so re-evaluate parent and new.
1673 */
4146d2d6 1674 goto again;
2c653d0e
AA
1675 unlock_page(tree_page);
1676
1677 if (get_kpfn_nid(stable_node_dup->kpfn) !=
1678 NUMA(stable_node_dup->nid)) {
1679 put_page(tree_page);
1680 goto replace;
1681 }
1682 return tree_page;
c8d6553b 1683 }
31dbd01f
IE
1684 }
1685
4146d2d6
HD
1686 if (!page_node)
1687 return NULL;
1688
1689 list_del(&page_node->list);
1690 DO_NUMA(page_node->nid = nid);
1691 rb_link_node(&page_node->node, parent, new);
ef53d16c 1692 rb_insert_color(&page_node->node, root);
2c653d0e
AA
1693out:
1694 if (is_page_sharing_candidate(page_node)) {
1695 get_page(page);
1696 return page;
1697 } else
1698 return NULL;
4146d2d6
HD
1699
1700replace:
b4fecc67
AA
1701 /*
1702 * If stable_node was a chain and chain_prune collapsed it,
0ba1d0f7
AA
1703 * stable_node has been updated to be the new regular
1704 * stable_node. A collapse of the chain is indistinguishable
1705 * from the case there was no chain in the stable
1706 * rbtree. Otherwise stable_node is the chain and
1707 * stable_node_dup is the dup to replace.
b4fecc67 1708 */
0ba1d0f7 1709 if (stable_node_dup == stable_node) {
b4fecc67
AA
1710 VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1711 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
2c653d0e
AA
1712 /* there is no chain */
1713 if (page_node) {
1714 VM_BUG_ON(page_node->head != &migrate_nodes);
1715 list_del(&page_node->list);
1716 DO_NUMA(page_node->nid = nid);
b4fecc67
AA
1717 rb_replace_node(&stable_node_dup->node,
1718 &page_node->node,
2c653d0e
AA
1719 root);
1720 if (is_page_sharing_candidate(page_node))
1721 get_page(page);
1722 else
1723 page = NULL;
1724 } else {
b4fecc67 1725 rb_erase(&stable_node_dup->node, root);
2c653d0e
AA
1726 page = NULL;
1727 }
4146d2d6 1728 } else {
2c653d0e
AA
1729 VM_BUG_ON(!is_stable_node_chain(stable_node));
1730 __stable_node_dup_del(stable_node_dup);
1731 if (page_node) {
1732 VM_BUG_ON(page_node->head != &migrate_nodes);
1733 list_del(&page_node->list);
1734 DO_NUMA(page_node->nid = nid);
1735 stable_node_chain_add_dup(page_node, stable_node);
1736 if (is_page_sharing_candidate(page_node))
1737 get_page(page);
1738 else
1739 page = NULL;
1740 } else {
1741 page = NULL;
1742 }
4146d2d6 1743 }
2c653d0e
AA
1744 stable_node_dup->head = &migrate_nodes;
1745 list_add(&stable_node_dup->list, stable_node_dup->head);
4146d2d6 1746 return page;
2c653d0e
AA
1747
1748chain_append:
1749 /* stable_node_dup could be null if it reached the limit */
1750 if (!stable_node_dup)
1751 stable_node_dup = stable_node_any;
b4fecc67
AA
1752 /*
1753 * If stable_node was a chain and chain_prune collapsed it,
0ba1d0f7
AA
1754 * stable_node has been updated to be the new regular
1755 * stable_node. A collapse of the chain is indistinguishable
1756 * from the case there was no chain in the stable
1757 * rbtree. Otherwise stable_node is the chain and
1758 * stable_node_dup is the dup to replace.
b4fecc67 1759 */
0ba1d0f7 1760 if (stable_node_dup == stable_node) {
b4fecc67 1761 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
2c653d0e
AA
1762 /* chain is missing so create it */
1763 stable_node = alloc_stable_node_chain(stable_node_dup,
1764 root);
1765 if (!stable_node)
1766 return NULL;
1767 }
1768 /*
1769 * Add this stable_node dup that was
1770 * migrated to the stable_node chain
1771 * of the current nid for this page
1772 * content.
1773 */
b4fecc67 1774 VM_BUG_ON(!is_stable_node_dup(stable_node_dup));
2c653d0e
AA
1775 VM_BUG_ON(page_node->head != &migrate_nodes);
1776 list_del(&page_node->list);
1777 DO_NUMA(page_node->nid = nid);
1778 stable_node_chain_add_dup(page_node, stable_node);
1779 goto out;
31dbd01f
IE
1780}
1781
1782/*
e850dcf5 1783 * stable_tree_insert - insert stable tree node pointing to new ksm page
31dbd01f
IE
1784 * into the stable tree.
1785 *
7b6ba2c7
HD
1786 * This function returns the stable tree node just allocated on success,
1787 * NULL otherwise.
31dbd01f 1788 */
7b6ba2c7 1789static struct stable_node *stable_tree_insert(struct page *kpage)
31dbd01f 1790{
90bd6fd3
PH
1791 int nid;
1792 unsigned long kpfn;
ef53d16c 1793 struct rb_root *root;
90bd6fd3 1794 struct rb_node **new;
f2e5ff85 1795 struct rb_node *parent;
2c653d0e
AA
1796 struct stable_node *stable_node, *stable_node_dup, *stable_node_any;
1797 bool need_chain = false;
31dbd01f 1798
90bd6fd3
PH
1799 kpfn = page_to_pfn(kpage);
1800 nid = get_kpfn_nid(kpfn);
ef53d16c 1801 root = root_stable_tree + nid;
f2e5ff85
AA
1802again:
1803 parent = NULL;
ef53d16c 1804 new = &root->rb_node;
90bd6fd3 1805
31dbd01f 1806 while (*new) {
4035c07a 1807 struct page *tree_page;
31dbd01f
IE
1808 int ret;
1809
08beca44 1810 cond_resched();
7b6ba2c7 1811 stable_node = rb_entry(*new, struct stable_node, node);
2c653d0e 1812 stable_node_any = NULL;
8dc5ffcd 1813 tree_page = chain(&stable_node_dup, stable_node, root);
2c653d0e
AA
1814 if (!stable_node_dup) {
1815 /*
1816 * Either all stable_node dups were full in
1817 * this stable_node chain, or this chain was
1818 * empty and should be rb_erased.
1819 */
1820 stable_node_any = stable_node_dup_any(stable_node,
1821 root);
1822 if (!stable_node_any) {
1823 /* rb_erase just run */
1824 goto again;
1825 }
1826 /*
1827 * Take any of the stable_node dups page of
1828 * this stable_node chain to let the tree walk
1829 * continue. All KSM pages belonging to the
1830 * stable_node dups in a stable_node chain
1831 * have the same content and they're
457aef94 1832 * write protected at all times. Any will work
2c653d0e
AA
1833 * fine to continue the walk.
1834 */
2cee57d1
YS
1835 tree_page = get_ksm_page(stable_node_any,
1836 GET_KSM_PAGE_NOLOCK);
2c653d0e
AA
1837 }
1838 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
f2e5ff85
AA
1839 if (!tree_page) {
1840 /*
1841 * If we walked over a stale stable_node,
1842 * get_ksm_page() will call rb_erase() and it
1843 * may rebalance the tree from under us. So
1844 * restart the search from scratch. Returning
1845 * NULL would be safe too, but we'd generate
1846 * false negative insertions just because some
1847 * stable_node was stale.
1848 */
1849 goto again;
1850 }
31dbd01f 1851
4035c07a
HD
1852 ret = memcmp_pages(kpage, tree_page);
1853 put_page(tree_page);
31dbd01f
IE
1854
1855 parent = *new;
1856 if (ret < 0)
1857 new = &parent->rb_left;
1858 else if (ret > 0)
1859 new = &parent->rb_right;
1860 else {
2c653d0e
AA
1861 need_chain = true;
1862 break;
31dbd01f
IE
1863 }
1864 }
1865
2c653d0e
AA
1866 stable_node_dup = alloc_stable_node();
1867 if (!stable_node_dup)
7b6ba2c7 1868 return NULL;
31dbd01f 1869
2c653d0e
AA
1870 INIT_HLIST_HEAD(&stable_node_dup->hlist);
1871 stable_node_dup->kpfn = kpfn;
1872 set_page_stable_node(kpage, stable_node_dup);
1873 stable_node_dup->rmap_hlist_len = 0;
1874 DO_NUMA(stable_node_dup->nid = nid);
1875 if (!need_chain) {
1876 rb_link_node(&stable_node_dup->node, parent, new);
1877 rb_insert_color(&stable_node_dup->node, root);
1878 } else {
1879 if (!is_stable_node_chain(stable_node)) {
1880 struct stable_node *orig = stable_node;
1881 /* chain is missing so create it */
1882 stable_node = alloc_stable_node_chain(orig, root);
1883 if (!stable_node) {
1884 free_stable_node(stable_node_dup);
1885 return NULL;
1886 }
1887 }
1888 stable_node_chain_add_dup(stable_node_dup, stable_node);
1889 }
08beca44 1890
2c653d0e 1891 return stable_node_dup;
31dbd01f
IE
1892}
1893
1894/*
8dd3557a
HD
1895 * unstable_tree_search_insert - search for identical page,
1896 * else insert rmap_item into the unstable tree.
31dbd01f
IE
1897 *
1898 * This function searches for a page in the unstable tree identical to the
1899 * page currently being scanned; and if no identical page is found in the
1900 * tree, we insert rmap_item as a new object into the unstable tree.
1901 *
1902 * This function returns pointer to rmap_item found to be identical
1903 * to the currently scanned page, NULL otherwise.
1904 *
1905 * This function does both searching and inserting, because they share
1906 * the same walking algorithm in an rbtree.
1907 */
8dd3557a
HD
1908static
1909struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item,
1910 struct page *page,
1911 struct page **tree_pagep)
31dbd01f 1912{
90bd6fd3
PH
1913 struct rb_node **new;
1914 struct rb_root *root;
31dbd01f 1915 struct rb_node *parent = NULL;
90bd6fd3
PH
1916 int nid;
1917
1918 nid = get_kpfn_nid(page_to_pfn(page));
ef53d16c 1919 root = root_unstable_tree + nid;
90bd6fd3 1920 new = &root->rb_node;
31dbd01f
IE
1921
1922 while (*new) {
1923 struct rmap_item *tree_rmap_item;
8dd3557a 1924 struct page *tree_page;
31dbd01f
IE
1925 int ret;
1926
d178f27f 1927 cond_resched();
31dbd01f 1928 tree_rmap_item = rb_entry(*new, struct rmap_item, node);
8dd3557a 1929 tree_page = get_mergeable_page(tree_rmap_item);
c8f95ed1 1930 if (!tree_page)
31dbd01f
IE
1931 return NULL;
1932
1933 /*
8dd3557a 1934 * Don't substitute a ksm page for a forked page.
31dbd01f 1935 */
8dd3557a
HD
1936 if (page == tree_page) {
1937 put_page(tree_page);
31dbd01f
IE
1938 return NULL;
1939 }
1940
8dd3557a 1941 ret = memcmp_pages(page, tree_page);
31dbd01f
IE
1942
1943 parent = *new;
1944 if (ret < 0) {
8dd3557a 1945 put_page(tree_page);
31dbd01f
IE
1946 new = &parent->rb_left;
1947 } else if (ret > 0) {
8dd3557a 1948 put_page(tree_page);
31dbd01f 1949 new = &parent->rb_right;
b599cbdf
HD
1950 } else if (!ksm_merge_across_nodes &&
1951 page_to_nid(tree_page) != nid) {
1952 /*
1953 * If tree_page has been migrated to another NUMA node,
1954 * it will be flushed out and put in the right unstable
1955 * tree next time: only merge with it when across_nodes.
1956 */
1957 put_page(tree_page);
1958 return NULL;
31dbd01f 1959 } else {
8dd3557a 1960 *tree_pagep = tree_page;
31dbd01f
IE
1961 return tree_rmap_item;
1962 }
1963 }
1964
7b6ba2c7 1965 rmap_item->address |= UNSTABLE_FLAG;
31dbd01f 1966 rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
e850dcf5 1967 DO_NUMA(rmap_item->nid = nid);
31dbd01f 1968 rb_link_node(&rmap_item->node, parent, new);
90bd6fd3 1969 rb_insert_color(&rmap_item->node, root);
31dbd01f 1970
473b0ce4 1971 ksm_pages_unshared++;
31dbd01f
IE
1972 return NULL;
1973}
1974
1975/*
1976 * stable_tree_append - add another rmap_item to the linked list of
1977 * rmap_items hanging off a given node of the stable tree, all sharing
1978 * the same ksm page.
1979 */
1980static void stable_tree_append(struct rmap_item *rmap_item,
2c653d0e
AA
1981 struct stable_node *stable_node,
1982 bool max_page_sharing_bypass)
31dbd01f 1983{
2c653d0e
AA
1984 /*
1985 * rmap won't find this mapping if we don't insert the
1986 * rmap_item in the right stable_node
1987 * duplicate. page_migration could break later if rmap breaks,
1988 * so we can as well crash here. We really need to check for
1989 * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check
457aef94 1990 * for other negative values as an underflow if detected here
2c653d0e
AA
1991 * for the first time (and not when decreasing rmap_hlist_len)
1992 * would be sign of memory corruption in the stable_node.
1993 */
1994 BUG_ON(stable_node->rmap_hlist_len < 0);
1995
1996 stable_node->rmap_hlist_len++;
1997 if (!max_page_sharing_bypass)
1998 /* possibly non fatal but unexpected overflow, only warn */
1999 WARN_ON_ONCE(stable_node->rmap_hlist_len >
2000 ksm_max_page_sharing);
2001
7b6ba2c7 2002 rmap_item->head = stable_node;
31dbd01f 2003 rmap_item->address |= STABLE_FLAG;
7b6ba2c7 2004 hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
e178dfde 2005
7b6ba2c7
HD
2006 if (rmap_item->hlist.next)
2007 ksm_pages_sharing++;
2008 else
2009 ksm_pages_shared++;
31dbd01f
IE
2010}
2011
2012/*
81464e30
HD
2013 * cmp_and_merge_page - first see if page can be merged into the stable tree;
2014 * if not, compare checksum to previous and if it's the same, see if page can
2015 * be inserted into the unstable tree, or merged with a page already there and
2016 * both transferred to the stable tree.
31dbd01f
IE
2017 *
2018 * @page: the page that we are searching identical page to.
2019 * @rmap_item: the reverse mapping into the virtual address of this page
2020 */
2021static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
2022{
4b22927f 2023 struct mm_struct *mm = rmap_item->mm;
31dbd01f 2024 struct rmap_item *tree_rmap_item;
8dd3557a 2025 struct page *tree_page = NULL;
7b6ba2c7 2026 struct stable_node *stable_node;
8dd3557a 2027 struct page *kpage;
31dbd01f
IE
2028 unsigned int checksum;
2029 int err;
2c653d0e 2030 bool max_page_sharing_bypass = false;
31dbd01f 2031
4146d2d6
HD
2032 stable_node = page_stable_node(page);
2033 if (stable_node) {
2034 if (stable_node->head != &migrate_nodes &&
2c653d0e
AA
2035 get_kpfn_nid(READ_ONCE(stable_node->kpfn)) !=
2036 NUMA(stable_node->nid)) {
2037 stable_node_dup_del(stable_node);
4146d2d6
HD
2038 stable_node->head = &migrate_nodes;
2039 list_add(&stable_node->list, stable_node->head);
2040 }
2041 if (stable_node->head != &migrate_nodes &&
2042 rmap_item->head == stable_node)
2043 return;
2c653d0e
AA
2044 /*
2045 * If it's a KSM fork, allow it to go over the sharing limit
2046 * without warnings.
2047 */
2048 if (!is_page_sharing_candidate(stable_node))
2049 max_page_sharing_bypass = true;
4146d2d6 2050 }
31dbd01f
IE
2051
2052 /* We first start with searching the page inside the stable tree */
62b61f61 2053 kpage = stable_tree_search(page);
4146d2d6
HD
2054 if (kpage == page && rmap_item->head == stable_node) {
2055 put_page(kpage);
2056 return;
2057 }
2058
2059 remove_rmap_item_from_tree(rmap_item);
2060
62b61f61 2061 if (kpage) {
2cee57d1
YS
2062 if (PTR_ERR(kpage) == -EBUSY)
2063 return;
2064
08beca44 2065 err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
31dbd01f
IE
2066 if (!err) {
2067 /*
2068 * The page was successfully merged:
2069 * add its rmap_item to the stable tree.
2070 */
5ad64688 2071 lock_page(kpage);
2c653d0e
AA
2072 stable_tree_append(rmap_item, page_stable_node(kpage),
2073 max_page_sharing_bypass);
5ad64688 2074 unlock_page(kpage);
31dbd01f 2075 }
8dd3557a 2076 put_page(kpage);
31dbd01f
IE
2077 return;
2078 }
2079
2080 /*
4035c07a
HD
2081 * If the hash value of the page has changed from the last time
2082 * we calculated it, this page is changing frequently: therefore we
2083 * don't want to insert it in the unstable tree, and we don't want
2084 * to waste our time searching for something identical to it there.
31dbd01f
IE
2085 */
2086 checksum = calc_checksum(page);
2087 if (rmap_item->oldchecksum != checksum) {
2088 rmap_item->oldchecksum = checksum;
2089 return;
2090 }
2091
e86c59b1
CI
2092 /*
2093 * Same checksum as an empty page. We attempt to merge it with the
2094 * appropriate zero page if the user enabled this via sysfs.
2095 */
2096 if (ksm_use_zero_pages && (checksum == zero_checksum)) {
2097 struct vm_area_struct *vma;
2098
d8ed45c5 2099 mmap_read_lock(mm);
4b22927f 2100 vma = find_mergeable_vma(mm, rmap_item->address);
56df70a6
MS
2101 if (vma) {
2102 err = try_to_merge_one_page(vma, page,
2103 ZERO_PAGE(rmap_item->address));
2104 } else {
2105 /*
2106 * If the vma is out of date, we do not need to
2107 * continue.
2108 */
2109 err = 0;
2110 }
d8ed45c5 2111 mmap_read_unlock(mm);
e86c59b1
CI
2112 /*
2113 * In case of failure, the page was not really empty, so we
2114 * need to continue. Otherwise we're done.
2115 */
2116 if (!err)
2117 return;
2118 }
8dd3557a
HD
2119 tree_rmap_item =
2120 unstable_tree_search_insert(rmap_item, page, &tree_page);
31dbd01f 2121 if (tree_rmap_item) {
77da2ba0
CI
2122 bool split;
2123
8dd3557a
HD
2124 kpage = try_to_merge_two_pages(rmap_item, page,
2125 tree_rmap_item, tree_page);
77da2ba0
CI
2126 /*
2127 * If both pages we tried to merge belong to the same compound
2128 * page, then we actually ended up increasing the reference
2129 * count of the same compound page twice, and split_huge_page
2130 * failed.
2131 * Here we set a flag if that happened, and we use it later to
2132 * try split_huge_page again. Since we call put_page right
2133 * afterwards, the reference count will be correct and
2134 * split_huge_page should succeed.
2135 */
2136 split = PageTransCompound(page)
2137 && compound_head(page) == compound_head(tree_page);
8dd3557a 2138 put_page(tree_page);
8dd3557a 2139 if (kpage) {
bc56620b
HD
2140 /*
2141 * The pages were successfully merged: insert new
2142 * node in the stable tree and add both rmap_items.
2143 */
5ad64688 2144 lock_page(kpage);
7b6ba2c7
HD
2145 stable_node = stable_tree_insert(kpage);
2146 if (stable_node) {
2c653d0e
AA
2147 stable_tree_append(tree_rmap_item, stable_node,
2148 false);
2149 stable_tree_append(rmap_item, stable_node,
2150 false);
7b6ba2c7 2151 }
5ad64688 2152 unlock_page(kpage);
7b6ba2c7 2153
31dbd01f
IE
2154 /*
2155 * If we fail to insert the page into the stable tree,
2156 * we will have 2 virtual addresses that are pointing
2157 * to a ksm page left outside the stable tree,
2158 * in which case we need to break_cow on both.
2159 */
7b6ba2c7 2160 if (!stable_node) {
8dd3557a
HD
2161 break_cow(tree_rmap_item);
2162 break_cow(rmap_item);
31dbd01f 2163 }
77da2ba0
CI
2164 } else if (split) {
2165 /*
2166 * We are here if we tried to merge two pages and
2167 * failed because they both belonged to the same
2168 * compound page. We will split the page now, but no
2169 * merging will take place.
2170 * We do not want to add the cost of a full lock; if
2171 * the page is locked, it is better to skip it and
2172 * perhaps try again later.
2173 */
2174 if (!trylock_page(page))
2175 return;
2176 split_huge_page(page);
2177 unlock_page(page);
31dbd01f 2178 }
31dbd01f
IE
2179 }
2180}
2181
2182static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
6514d511 2183 struct rmap_item **rmap_list,
31dbd01f
IE
2184 unsigned long addr)
2185{
2186 struct rmap_item *rmap_item;
2187
6514d511
HD
2188 while (*rmap_list) {
2189 rmap_item = *rmap_list;
93d17715 2190 if ((rmap_item->address & PAGE_MASK) == addr)
31dbd01f 2191 return rmap_item;
31dbd01f
IE
2192 if (rmap_item->address > addr)
2193 break;
6514d511 2194 *rmap_list = rmap_item->rmap_list;
31dbd01f 2195 remove_rmap_item_from_tree(rmap_item);
31dbd01f
IE
2196 free_rmap_item(rmap_item);
2197 }
2198
2199 rmap_item = alloc_rmap_item();
2200 if (rmap_item) {
2201 /* It has already been zeroed */
2202 rmap_item->mm = mm_slot->mm;
2203 rmap_item->address = addr;
6514d511
HD
2204 rmap_item->rmap_list = *rmap_list;
2205 *rmap_list = rmap_item;
31dbd01f
IE
2206 }
2207 return rmap_item;
2208}
2209
2210static struct rmap_item *scan_get_next_rmap_item(struct page **page)
2211{
2212 struct mm_struct *mm;
2213 struct mm_slot *slot;
2214 struct vm_area_struct *vma;
2215 struct rmap_item *rmap_item;
90bd6fd3 2216 int nid;
31dbd01f
IE
2217
2218 if (list_empty(&ksm_mm_head.mm_list))
2219 return NULL;
2220
2221 slot = ksm_scan.mm_slot;
2222 if (slot == &ksm_mm_head) {
2919bfd0
HD
2223 /*
2224 * A number of pages can hang around indefinitely on per-cpu
2225 * pagevecs, raised page count preventing write_protect_page
2226 * from merging them. Though it doesn't really matter much,
2227 * it is puzzling to see some stuck in pages_volatile until
2228 * other activity jostles them out, and they also prevented
2229 * LTP's KSM test from succeeding deterministically; so drain
2230 * them here (here rather than on entry to ksm_do_scan(),
2231 * so we don't IPI too often when pages_to_scan is set low).
2232 */
2233 lru_add_drain_all();
2234
4146d2d6
HD
2235 /*
2236 * Whereas stale stable_nodes on the stable_tree itself
2237 * get pruned in the regular course of stable_tree_search(),
2238 * those moved out to the migrate_nodes list can accumulate:
2239 * so prune them once before each full scan.
2240 */
2241 if (!ksm_merge_across_nodes) {
03640418 2242 struct stable_node *stable_node, *next;
4146d2d6
HD
2243 struct page *page;
2244
03640418
GT
2245 list_for_each_entry_safe(stable_node, next,
2246 &migrate_nodes, list) {
2cee57d1
YS
2247 page = get_ksm_page(stable_node,
2248 GET_KSM_PAGE_NOLOCK);
4146d2d6
HD
2249 if (page)
2250 put_page(page);
2251 cond_resched();
2252 }
2253 }
2254
ef53d16c 2255 for (nid = 0; nid < ksm_nr_node_ids; nid++)
90bd6fd3 2256 root_unstable_tree[nid] = RB_ROOT;
31dbd01f
IE
2257
2258 spin_lock(&ksm_mmlist_lock);
2259 slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
2260 ksm_scan.mm_slot = slot;
2261 spin_unlock(&ksm_mmlist_lock);
2b472611
HD
2262 /*
2263 * Although we tested list_empty() above, a racing __ksm_exit
2264 * of the last mm on the list may have removed it since then.
2265 */
2266 if (slot == &ksm_mm_head)
2267 return NULL;
31dbd01f
IE
2268next_mm:
2269 ksm_scan.address = 0;
6514d511 2270 ksm_scan.rmap_list = &slot->rmap_list;
31dbd01f
IE
2271 }
2272
2273 mm = slot->mm;
d8ed45c5 2274 mmap_read_lock(mm);
9ba69294
HD
2275 if (ksm_test_exit(mm))
2276 vma = NULL;
2277 else
2278 vma = find_vma(mm, ksm_scan.address);
2279
2280 for (; vma; vma = vma->vm_next) {
31dbd01f
IE
2281 if (!(vma->vm_flags & VM_MERGEABLE))
2282 continue;
2283 if (ksm_scan.address < vma->vm_start)
2284 ksm_scan.address = vma->vm_start;
2285 if (!vma->anon_vma)
2286 ksm_scan.address = vma->vm_end;
2287
2288 while (ksm_scan.address < vma->vm_end) {
9ba69294
HD
2289 if (ksm_test_exit(mm))
2290 break;
31dbd01f 2291 *page = follow_page(vma, ksm_scan.address, FOLL_GET);
21ae5b01
AA
2292 if (IS_ERR_OR_NULL(*page)) {
2293 ksm_scan.address += PAGE_SIZE;
2294 cond_resched();
2295 continue;
2296 }
f765f540 2297 if (PageAnon(*page)) {
31dbd01f
IE
2298 flush_anon_page(vma, *page, ksm_scan.address);
2299 flush_dcache_page(*page);
2300 rmap_item = get_next_rmap_item(slot,
6514d511 2301 ksm_scan.rmap_list, ksm_scan.address);
31dbd01f 2302 if (rmap_item) {
6514d511
HD
2303 ksm_scan.rmap_list =
2304 &rmap_item->rmap_list;
31dbd01f
IE
2305 ksm_scan.address += PAGE_SIZE;
2306 } else
2307 put_page(*page);
d8ed45c5 2308 mmap_read_unlock(mm);
31dbd01f
IE
2309 return rmap_item;
2310 }
21ae5b01 2311 put_page(*page);
31dbd01f
IE
2312 ksm_scan.address += PAGE_SIZE;
2313 cond_resched();
2314 }
2315 }
2316
9ba69294
HD
2317 if (ksm_test_exit(mm)) {
2318 ksm_scan.address = 0;
6514d511 2319 ksm_scan.rmap_list = &slot->rmap_list;
9ba69294 2320 }
31dbd01f
IE
2321 /*
2322 * Nuke all the rmap_items that are above this current rmap:
2323 * because there were no VM_MERGEABLE vmas with such addresses.
2324 */
420be4ed 2325 remove_trailing_rmap_items(ksm_scan.rmap_list);
31dbd01f
IE
2326
2327 spin_lock(&ksm_mmlist_lock);
cd551f97
HD
2328 ksm_scan.mm_slot = list_entry(slot->mm_list.next,
2329 struct mm_slot, mm_list);
2330 if (ksm_scan.address == 0) {
2331 /*
c1e8d7c6 2332 * We've completed a full scan of all vmas, holding mmap_lock
cd551f97
HD
2333 * throughout, and found no VM_MERGEABLE: so do the same as
2334 * __ksm_exit does to remove this mm from all our lists now.
9ba69294
HD
2335 * This applies either when cleaning up after __ksm_exit
2336 * (but beware: we can reach here even before __ksm_exit),
2337 * or when all VM_MERGEABLE areas have been unmapped (and
c1e8d7c6 2338 * mmap_lock then protects against race with MADV_MERGEABLE).
cd551f97 2339 */
4ca3a69b 2340 hash_del(&slot->link);
cd551f97 2341 list_del(&slot->mm_list);
9ba69294
HD
2342 spin_unlock(&ksm_mmlist_lock);
2343
cd551f97
HD
2344 free_mm_slot(slot);
2345 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
d8ed45c5 2346 mmap_read_unlock(mm);
9ba69294
HD
2347 mmdrop(mm);
2348 } else {
d8ed45c5 2349 mmap_read_unlock(mm);
7496fea9 2350 /*
3e4e28c5 2351 * mmap_read_unlock(mm) first because after
7496fea9
ZC
2352 * spin_unlock(&ksm_mmlist_lock) run, the "mm" may
2353 * already have been freed under us by __ksm_exit()
2354 * because the "mm_slot" is still hashed and
2355 * ksm_scan.mm_slot doesn't point to it anymore.
2356 */
2357 spin_unlock(&ksm_mmlist_lock);
cd551f97 2358 }
31dbd01f
IE
2359
2360 /* Repeat until we've completed scanning the whole list */
cd551f97 2361 slot = ksm_scan.mm_slot;
31dbd01f
IE
2362 if (slot != &ksm_mm_head)
2363 goto next_mm;
2364
31dbd01f
IE
2365 ksm_scan.seqnr++;
2366 return NULL;
2367}
2368
2369/**
2370 * ksm_do_scan - the ksm scanner main worker function.
b7701a5f 2371 * @scan_npages: number of pages we want to scan before we return.
31dbd01f
IE
2372 */
2373static void ksm_do_scan(unsigned int scan_npages)
2374{
2375 struct rmap_item *rmap_item;
3f649ab7 2376 struct page *page;
31dbd01f 2377
878aee7d 2378 while (scan_npages-- && likely(!freezing(current))) {
31dbd01f
IE
2379 cond_resched();
2380 rmap_item = scan_get_next_rmap_item(&page);
2381 if (!rmap_item)
2382 return;
4146d2d6 2383 cmp_and_merge_page(page, rmap_item);
31dbd01f
IE
2384 put_page(page);
2385 }
2386}
2387
6e158384
HD
2388static int ksmd_should_run(void)
2389{
2390 return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
2391}
2392
31dbd01f
IE
2393static int ksm_scan_thread(void *nothing)
2394{
fcf9a0ef
KT
2395 unsigned int sleep_ms;
2396
878aee7d 2397 set_freezable();
339aa624 2398 set_user_nice(current, 5);
31dbd01f
IE
2399
2400 while (!kthread_should_stop()) {
6e158384 2401 mutex_lock(&ksm_thread_mutex);
ef4d43a8 2402 wait_while_offlining();
6e158384 2403 if (ksmd_should_run())
31dbd01f 2404 ksm_do_scan(ksm_thread_pages_to_scan);
6e158384
HD
2405 mutex_unlock(&ksm_thread_mutex);
2406
878aee7d
AA
2407 try_to_freeze();
2408
6e158384 2409 if (ksmd_should_run()) {
fcf9a0ef
KT
2410 sleep_ms = READ_ONCE(ksm_thread_sleep_millisecs);
2411 wait_event_interruptible_timeout(ksm_iter_wait,
2412 sleep_ms != READ_ONCE(ksm_thread_sleep_millisecs),
2413 msecs_to_jiffies(sleep_ms));
31dbd01f 2414 } else {
878aee7d 2415 wait_event_freezable(ksm_thread_wait,
6e158384 2416 ksmd_should_run() || kthread_should_stop());
31dbd01f
IE
2417 }
2418 }
2419 return 0;
2420}
2421
f8af4da3
HD
2422int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
2423 unsigned long end, int advice, unsigned long *vm_flags)
2424{
2425 struct mm_struct *mm = vma->vm_mm;
d952b791 2426 int err;
f8af4da3
HD
2427
2428 switch (advice) {
2429 case MADV_MERGEABLE:
2430 /*
2431 * Be somewhat over-protective for now!
2432 */
2433 if (*vm_flags & (VM_MERGEABLE | VM_SHARED | VM_MAYSHARE |
2434 VM_PFNMAP | VM_IO | VM_DONTEXPAND |
0661a336 2435 VM_HUGETLB | VM_MIXEDMAP))
f8af4da3
HD
2436 return 0; /* just ignore the advice */
2437
e1fb4a08
DJ
2438 if (vma_is_dax(vma))
2439 return 0;
2440
12564485
SA
2441#ifdef VM_SAO
2442 if (*vm_flags & VM_SAO)
2443 return 0;
2444#endif
74a04967
KA
2445#ifdef VM_SPARC_ADI
2446 if (*vm_flags & VM_SPARC_ADI)
2447 return 0;
2448#endif
cc2383ec 2449
d952b791
HD
2450 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2451 err = __ksm_enter(mm);
2452 if (err)
2453 return err;
2454 }
f8af4da3
HD
2455
2456 *vm_flags |= VM_MERGEABLE;
2457 break;
2458
2459 case MADV_UNMERGEABLE:
2460 if (!(*vm_flags & VM_MERGEABLE))
2461 return 0; /* just ignore the advice */
2462
d952b791
HD
2463 if (vma->anon_vma) {
2464 err = unmerge_ksm_pages(vma, start, end);
2465 if (err)
2466 return err;
2467 }
f8af4da3
HD
2468
2469 *vm_flags &= ~VM_MERGEABLE;
2470 break;
2471 }
2472
2473 return 0;
2474}
33cf1707 2475EXPORT_SYMBOL_GPL(ksm_madvise);
f8af4da3
HD
2476
2477int __ksm_enter(struct mm_struct *mm)
2478{
6e158384
HD
2479 struct mm_slot *mm_slot;
2480 int needs_wakeup;
2481
2482 mm_slot = alloc_mm_slot();
31dbd01f
IE
2483 if (!mm_slot)
2484 return -ENOMEM;
2485
6e158384
HD
2486 /* Check ksm_run too? Would need tighter locking */
2487 needs_wakeup = list_empty(&ksm_mm_head.mm_list);
2488
31dbd01f
IE
2489 spin_lock(&ksm_mmlist_lock);
2490 insert_to_mm_slots_hash(mm, mm_slot);
2491 /*
cbf86cfe
HD
2492 * When KSM_RUN_MERGE (or KSM_RUN_STOP),
2493 * insert just behind the scanning cursor, to let the area settle
31dbd01f
IE
2494 * down a little; when fork is followed by immediate exec, we don't
2495 * want ksmd to waste time setting up and tearing down an rmap_list.
cbf86cfe
HD
2496 *
2497 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
2498 * scanning cursor, otherwise KSM pages in newly forked mms will be
2499 * missed: then we might as well insert at the end of the list.
31dbd01f 2500 */
cbf86cfe
HD
2501 if (ksm_run & KSM_RUN_UNMERGE)
2502 list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list);
2503 else
2504 list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
31dbd01f
IE
2505 spin_unlock(&ksm_mmlist_lock);
2506
f8af4da3 2507 set_bit(MMF_VM_MERGEABLE, &mm->flags);
f1f10076 2508 mmgrab(mm);
6e158384
HD
2509
2510 if (needs_wakeup)
2511 wake_up_interruptible(&ksm_thread_wait);
2512
f8af4da3
HD
2513 return 0;
2514}
2515
1c2fb7a4 2516void __ksm_exit(struct mm_struct *mm)
f8af4da3 2517{
cd551f97 2518 struct mm_slot *mm_slot;
9ba69294 2519 int easy_to_free = 0;
cd551f97 2520
31dbd01f 2521 /*
9ba69294
HD
2522 * This process is exiting: if it's straightforward (as is the
2523 * case when ksmd was never running), free mm_slot immediately.
2524 * But if it's at the cursor or has rmap_items linked to it, use
c1e8d7c6 2525 * mmap_lock to synchronize with any break_cows before pagetables
9ba69294
HD
2526 * are freed, and leave the mm_slot on the list for ksmd to free.
2527 * Beware: ksm may already have noticed it exiting and freed the slot.
31dbd01f 2528 */
9ba69294 2529
cd551f97
HD
2530 spin_lock(&ksm_mmlist_lock);
2531 mm_slot = get_mm_slot(mm);
9ba69294 2532 if (mm_slot && ksm_scan.mm_slot != mm_slot) {
6514d511 2533 if (!mm_slot->rmap_list) {
4ca3a69b 2534 hash_del(&mm_slot->link);
9ba69294
HD
2535 list_del(&mm_slot->mm_list);
2536 easy_to_free = 1;
2537 } else {
2538 list_move(&mm_slot->mm_list,
2539 &ksm_scan.mm_slot->mm_list);
2540 }
cd551f97 2541 }
cd551f97
HD
2542 spin_unlock(&ksm_mmlist_lock);
2543
9ba69294
HD
2544 if (easy_to_free) {
2545 free_mm_slot(mm_slot);
2546 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2547 mmdrop(mm);
2548 } else if (mm_slot) {
d8ed45c5
ML
2549 mmap_write_lock(mm);
2550 mmap_write_unlock(mm);
9ba69294 2551 }
31dbd01f
IE
2552}
2553
cbf86cfe 2554struct page *ksm_might_need_to_copy(struct page *page,
5ad64688
HD
2555 struct vm_area_struct *vma, unsigned long address)
2556{
e05b3453
MWO
2557 struct folio *folio = page_folio(page);
2558 struct anon_vma *anon_vma = folio_anon_vma(folio);
5ad64688
HD
2559 struct page *new_page;
2560
cbf86cfe
HD
2561 if (PageKsm(page)) {
2562 if (page_stable_node(page) &&
2563 !(ksm_run & KSM_RUN_UNMERGE))
2564 return page; /* no need to copy it */
2565 } else if (!anon_vma) {
2566 return page; /* no need to copy it */
e1c63e11
NS
2567 } else if (page->index == linear_page_index(vma, address) &&
2568 anon_vma->root == vma->anon_vma->root) {
cbf86cfe
HD
2569 return page; /* still no need to copy it */
2570 }
2571 if (!PageUptodate(page))
2572 return page; /* let do_swap_page report the error */
2573
5ad64688 2574 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
8f425e4e
MWO
2575 if (new_page &&
2576 mem_cgroup_charge(page_folio(new_page), vma->vm_mm, GFP_KERNEL)) {
62fdb163
HD
2577 put_page(new_page);
2578 new_page = NULL;
2579 }
5ad64688
HD
2580 if (new_page) {
2581 copy_user_highpage(new_page, page, address, vma);
2582
2583 SetPageDirty(new_page);
2584 __SetPageUptodate(new_page);
48c935ad 2585 __SetPageLocked(new_page);
4d45c3af
YY
2586#ifdef CONFIG_SWAP
2587 count_vm_event(KSM_SWPIN_COPY);
2588#endif
5ad64688
HD
2589 }
2590
5ad64688
HD
2591 return new_page;
2592}
2593
84fbbe21 2594void rmap_walk_ksm(struct folio *folio, const struct rmap_walk_control *rwc)
e9995ef9
HD
2595{
2596 struct stable_node *stable_node;
e9995ef9 2597 struct rmap_item *rmap_item;
e9995ef9
HD
2598 int search_new_forks = 0;
2599
2f031c6f 2600 VM_BUG_ON_FOLIO(!folio_test_ksm(folio), folio);
9f32624b
JK
2601
2602 /*
2603 * Rely on the page lock to protect against concurrent modifications
2604 * to that page's node of the stable tree.
2605 */
2f031c6f 2606 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
e9995ef9 2607
2f031c6f 2608 stable_node = folio_stable_node(folio);
e9995ef9 2609 if (!stable_node)
1df631ae 2610 return;
e9995ef9 2611again:
b67bfe0d 2612 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
e9995ef9 2613 struct anon_vma *anon_vma = rmap_item->anon_vma;
5beb4930 2614 struct anon_vma_chain *vmac;
e9995ef9
HD
2615 struct vm_area_struct *vma;
2616
ad12695f 2617 cond_resched();
b6b19f25 2618 anon_vma_lock_read(anon_vma);
bf181b9f
ML
2619 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
2620 0, ULONG_MAX) {
1105a2fc
JH
2621 unsigned long addr;
2622
ad12695f 2623 cond_resched();
5beb4930 2624 vma = vmac->vma;
1105a2fc
JH
2625
2626 /* Ignore the stable/unstable/sqnr flags */
cd7fae26 2627 addr = rmap_item->address & PAGE_MASK;
1105a2fc
JH
2628
2629 if (addr < vma->vm_start || addr >= vma->vm_end)
e9995ef9
HD
2630 continue;
2631 /*
2632 * Initially we examine only the vma which covers this
2633 * rmap_item; but later, if there is still work to do,
2634 * we examine covering vmas in other mms: in case they
2635 * were forked from the original since ksmd passed.
2636 */
2637 if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
2638 continue;
2639
0dd1c7bb
JK
2640 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2641 continue;
2642
2f031c6f 2643 if (!rwc->rmap_one(folio, vma, addr, rwc->arg)) {
b6b19f25 2644 anon_vma_unlock_read(anon_vma);
1df631ae 2645 return;
e9995ef9 2646 }
2f031c6f 2647 if (rwc->done && rwc->done(folio)) {
0dd1c7bb 2648 anon_vma_unlock_read(anon_vma);
1df631ae 2649 return;
0dd1c7bb 2650 }
e9995ef9 2651 }
b6b19f25 2652 anon_vma_unlock_read(anon_vma);
e9995ef9
HD
2653 }
2654 if (!search_new_forks++)
2655 goto again;
e9995ef9
HD
2656}
2657
52629506 2658#ifdef CONFIG_MIGRATION
19138349 2659void folio_migrate_ksm(struct folio *newfolio, struct folio *folio)
e9995ef9
HD
2660{
2661 struct stable_node *stable_node;
2662
19138349
MWO
2663 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2664 VM_BUG_ON_FOLIO(!folio_test_locked(newfolio), newfolio);
2665 VM_BUG_ON_FOLIO(newfolio->mapping != folio->mapping, newfolio);
e9995ef9 2666
19138349 2667 stable_node = folio_stable_node(folio);
e9995ef9 2668 if (stable_node) {
19138349
MWO
2669 VM_BUG_ON_FOLIO(stable_node->kpfn != folio_pfn(folio), folio);
2670 stable_node->kpfn = folio_pfn(newfolio);
c8d6553b 2671 /*
19138349 2672 * newfolio->mapping was set in advance; now we need smp_wmb()
c8d6553b 2673 * to make sure that the new stable_node->kpfn is visible
19138349
MWO
2674 * to get_ksm_page() before it can see that folio->mapping
2675 * has gone stale (or that folio_test_swapcache has been cleared).
c8d6553b
HD
2676 */
2677 smp_wmb();
19138349 2678 set_page_stable_node(&folio->page, NULL);
e9995ef9
HD
2679 }
2680}
2681#endif /* CONFIG_MIGRATION */
2682
62b61f61 2683#ifdef CONFIG_MEMORY_HOTREMOVE
ef4d43a8
HD
2684static void wait_while_offlining(void)
2685{
2686 while (ksm_run & KSM_RUN_OFFLINE) {
2687 mutex_unlock(&ksm_thread_mutex);
2688 wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
74316201 2689 TASK_UNINTERRUPTIBLE);
ef4d43a8
HD
2690 mutex_lock(&ksm_thread_mutex);
2691 }
2692}
2693
2c653d0e
AA
2694static bool stable_node_dup_remove_range(struct stable_node *stable_node,
2695 unsigned long start_pfn,
2696 unsigned long end_pfn)
2697{
2698 if (stable_node->kpfn >= start_pfn &&
2699 stable_node->kpfn < end_pfn) {
2700 /*
2701 * Don't get_ksm_page, page has already gone:
2702 * which is why we keep kpfn instead of page*
2703 */
2704 remove_node_from_stable_tree(stable_node);
2705 return true;
2706 }
2707 return false;
2708}
2709
2710static bool stable_node_chain_remove_range(struct stable_node *stable_node,
2711 unsigned long start_pfn,
2712 unsigned long end_pfn,
2713 struct rb_root *root)
2714{
2715 struct stable_node *dup;
2716 struct hlist_node *hlist_safe;
2717
2718 if (!is_stable_node_chain(stable_node)) {
2719 VM_BUG_ON(is_stable_node_dup(stable_node));
2720 return stable_node_dup_remove_range(stable_node, start_pfn,
2721 end_pfn);
2722 }
2723
2724 hlist_for_each_entry_safe(dup, hlist_safe,
2725 &stable_node->hlist, hlist_dup) {
2726 VM_BUG_ON(!is_stable_node_dup(dup));
2727 stable_node_dup_remove_range(dup, start_pfn, end_pfn);
2728 }
2729 if (hlist_empty(&stable_node->hlist)) {
2730 free_stable_node_chain(stable_node, root);
2731 return true; /* notify caller that tree was rebalanced */
2732 } else
2733 return false;
2734}
2735
ee0ea59c
HD
2736static void ksm_check_stable_tree(unsigned long start_pfn,
2737 unsigned long end_pfn)
62b61f61 2738{
03640418 2739 struct stable_node *stable_node, *next;
62b61f61 2740 struct rb_node *node;
90bd6fd3 2741 int nid;
62b61f61 2742
ef53d16c
HD
2743 for (nid = 0; nid < ksm_nr_node_ids; nid++) {
2744 node = rb_first(root_stable_tree + nid);
ee0ea59c 2745 while (node) {
90bd6fd3 2746 stable_node = rb_entry(node, struct stable_node, node);
2c653d0e
AA
2747 if (stable_node_chain_remove_range(stable_node,
2748 start_pfn, end_pfn,
2749 root_stable_tree +
2750 nid))
ef53d16c 2751 node = rb_first(root_stable_tree + nid);
2c653d0e 2752 else
ee0ea59c
HD
2753 node = rb_next(node);
2754 cond_resched();
90bd6fd3 2755 }
ee0ea59c 2756 }
03640418 2757 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
4146d2d6
HD
2758 if (stable_node->kpfn >= start_pfn &&
2759 stable_node->kpfn < end_pfn)
2760 remove_node_from_stable_tree(stable_node);
2761 cond_resched();
2762 }
62b61f61
HD
2763}
2764
2765static int ksm_memory_callback(struct notifier_block *self,
2766 unsigned long action, void *arg)
2767{
2768 struct memory_notify *mn = arg;
62b61f61
HD
2769
2770 switch (action) {
2771 case MEM_GOING_OFFLINE:
2772 /*
ef4d43a8
HD
2773 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
2774 * and remove_all_stable_nodes() while memory is going offline:
2775 * it is unsafe for them to touch the stable tree at this time.
2776 * But unmerge_ksm_pages(), rmap lookups and other entry points
2777 * which do not need the ksm_thread_mutex are all safe.
62b61f61 2778 */
ef4d43a8
HD
2779 mutex_lock(&ksm_thread_mutex);
2780 ksm_run |= KSM_RUN_OFFLINE;
2781 mutex_unlock(&ksm_thread_mutex);
62b61f61
HD
2782 break;
2783
2784 case MEM_OFFLINE:
2785 /*
2786 * Most of the work is done by page migration; but there might
2787 * be a few stable_nodes left over, still pointing to struct
ee0ea59c
HD
2788 * pages which have been offlined: prune those from the tree,
2789 * otherwise get_ksm_page() might later try to access a
2790 * non-existent struct page.
62b61f61 2791 */
ee0ea59c
HD
2792 ksm_check_stable_tree(mn->start_pfn,
2793 mn->start_pfn + mn->nr_pages);
e4a9bc58 2794 fallthrough;
62b61f61 2795 case MEM_CANCEL_OFFLINE:
ef4d43a8
HD
2796 mutex_lock(&ksm_thread_mutex);
2797 ksm_run &= ~KSM_RUN_OFFLINE;
62b61f61 2798 mutex_unlock(&ksm_thread_mutex);
ef4d43a8
HD
2799
2800 smp_mb(); /* wake_up_bit advises this */
2801 wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
62b61f61
HD
2802 break;
2803 }
2804 return NOTIFY_OK;
2805}
ef4d43a8
HD
2806#else
2807static void wait_while_offlining(void)
2808{
2809}
62b61f61
HD
2810#endif /* CONFIG_MEMORY_HOTREMOVE */
2811
2ffd8679
HD
2812#ifdef CONFIG_SYSFS
2813/*
2814 * This all compiles without CONFIG_SYSFS, but is a waste of space.
2815 */
2816
31dbd01f
IE
2817#define KSM_ATTR_RO(_name) \
2818 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2819#define KSM_ATTR(_name) \
1bad2e5c 2820 static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
31dbd01f
IE
2821
2822static ssize_t sleep_millisecs_show(struct kobject *kobj,
2823 struct kobj_attribute *attr, char *buf)
2824{
ae7a927d 2825 return sysfs_emit(buf, "%u\n", ksm_thread_sleep_millisecs);
31dbd01f
IE
2826}
2827
2828static ssize_t sleep_millisecs_store(struct kobject *kobj,
2829 struct kobj_attribute *attr,
2830 const char *buf, size_t count)
2831{
dfefd226 2832 unsigned int msecs;
31dbd01f
IE
2833 int err;
2834
dfefd226
AD
2835 err = kstrtouint(buf, 10, &msecs);
2836 if (err)
31dbd01f
IE
2837 return -EINVAL;
2838
2839 ksm_thread_sleep_millisecs = msecs;
fcf9a0ef 2840 wake_up_interruptible(&ksm_iter_wait);
31dbd01f
IE
2841
2842 return count;
2843}
2844KSM_ATTR(sleep_millisecs);
2845
2846static ssize_t pages_to_scan_show(struct kobject *kobj,
2847 struct kobj_attribute *attr, char *buf)
2848{
ae7a927d 2849 return sysfs_emit(buf, "%u\n", ksm_thread_pages_to_scan);
31dbd01f
IE
2850}
2851
2852static ssize_t pages_to_scan_store(struct kobject *kobj,
2853 struct kobj_attribute *attr,
2854 const char *buf, size_t count)
2855{
dfefd226 2856 unsigned int nr_pages;
31dbd01f 2857 int err;
31dbd01f 2858
dfefd226
AD
2859 err = kstrtouint(buf, 10, &nr_pages);
2860 if (err)
31dbd01f
IE
2861 return -EINVAL;
2862
2863 ksm_thread_pages_to_scan = nr_pages;
2864
2865 return count;
2866}
2867KSM_ATTR(pages_to_scan);
2868
2869static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
2870 char *buf)
2871{
ae7a927d 2872 return sysfs_emit(buf, "%lu\n", ksm_run);
31dbd01f
IE
2873}
2874
2875static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
2876 const char *buf, size_t count)
2877{
dfefd226 2878 unsigned int flags;
31dbd01f 2879 int err;
31dbd01f 2880
dfefd226
AD
2881 err = kstrtouint(buf, 10, &flags);
2882 if (err)
31dbd01f
IE
2883 return -EINVAL;
2884 if (flags > KSM_RUN_UNMERGE)
2885 return -EINVAL;
2886
2887 /*
2888 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
2889 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
d0f209f6
HD
2890 * breaking COW to free the pages_shared (but leaves mm_slots
2891 * on the list for when ksmd may be set running again).
31dbd01f
IE
2892 */
2893
2894 mutex_lock(&ksm_thread_mutex);
ef4d43a8 2895 wait_while_offlining();
31dbd01f
IE
2896 if (ksm_run != flags) {
2897 ksm_run = flags;
d952b791 2898 if (flags & KSM_RUN_UNMERGE) {
e1e12d2f 2899 set_current_oom_origin();
d952b791 2900 err = unmerge_and_remove_all_rmap_items();
e1e12d2f 2901 clear_current_oom_origin();
d952b791
HD
2902 if (err) {
2903 ksm_run = KSM_RUN_STOP;
2904 count = err;
2905 }
2906 }
31dbd01f
IE
2907 }
2908 mutex_unlock(&ksm_thread_mutex);
2909
2910 if (flags & KSM_RUN_MERGE)
2911 wake_up_interruptible(&ksm_thread_wait);
2912
2913 return count;
2914}
2915KSM_ATTR(run);
2916
90bd6fd3
PH
2917#ifdef CONFIG_NUMA
2918static ssize_t merge_across_nodes_show(struct kobject *kobj,
ae7a927d 2919 struct kobj_attribute *attr, char *buf)
90bd6fd3 2920{
ae7a927d 2921 return sysfs_emit(buf, "%u\n", ksm_merge_across_nodes);
90bd6fd3
PH
2922}
2923
2924static ssize_t merge_across_nodes_store(struct kobject *kobj,
2925 struct kobj_attribute *attr,
2926 const char *buf, size_t count)
2927{
2928 int err;
2929 unsigned long knob;
2930
2931 err = kstrtoul(buf, 10, &knob);
2932 if (err)
2933 return err;
2934 if (knob > 1)
2935 return -EINVAL;
2936
2937 mutex_lock(&ksm_thread_mutex);
ef4d43a8 2938 wait_while_offlining();
90bd6fd3 2939 if (ksm_merge_across_nodes != knob) {
cbf86cfe 2940 if (ksm_pages_shared || remove_all_stable_nodes())
90bd6fd3 2941 err = -EBUSY;
ef53d16c
HD
2942 else if (root_stable_tree == one_stable_tree) {
2943 struct rb_root *buf;
2944 /*
2945 * This is the first time that we switch away from the
2946 * default of merging across nodes: must now allocate
2947 * a buffer to hold as many roots as may be needed.
2948 * Allocate stable and unstable together:
2949 * MAXSMP NODES_SHIFT 10 will use 16kB.
2950 */
bafe1e14
JP
2951 buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
2952 GFP_KERNEL);
ef53d16c
HD
2953 /* Let us assume that RB_ROOT is NULL is zero */
2954 if (!buf)
2955 err = -ENOMEM;
2956 else {
2957 root_stable_tree = buf;
2958 root_unstable_tree = buf + nr_node_ids;
2959 /* Stable tree is empty but not the unstable */
2960 root_unstable_tree[0] = one_unstable_tree[0];
2961 }
2962 }
2963 if (!err) {
90bd6fd3 2964 ksm_merge_across_nodes = knob;
ef53d16c
HD
2965 ksm_nr_node_ids = knob ? 1 : nr_node_ids;
2966 }
90bd6fd3
PH
2967 }
2968 mutex_unlock(&ksm_thread_mutex);
2969
2970 return err ? err : count;
2971}
2972KSM_ATTR(merge_across_nodes);
2973#endif
2974
e86c59b1 2975static ssize_t use_zero_pages_show(struct kobject *kobj,
ae7a927d 2976 struct kobj_attribute *attr, char *buf)
e86c59b1 2977{
ae7a927d 2978 return sysfs_emit(buf, "%u\n", ksm_use_zero_pages);
e86c59b1
CI
2979}
2980static ssize_t use_zero_pages_store(struct kobject *kobj,
2981 struct kobj_attribute *attr,
2982 const char *buf, size_t count)
2983{
2984 int err;
2985 bool value;
2986
2987 err = kstrtobool(buf, &value);
2988 if (err)
2989 return -EINVAL;
2990
2991 ksm_use_zero_pages = value;
2992
2993 return count;
2994}
2995KSM_ATTR(use_zero_pages);
2996
2c653d0e
AA
2997static ssize_t max_page_sharing_show(struct kobject *kobj,
2998 struct kobj_attribute *attr, char *buf)
2999{
ae7a927d 3000 return sysfs_emit(buf, "%u\n", ksm_max_page_sharing);
2c653d0e
AA
3001}
3002
3003static ssize_t max_page_sharing_store(struct kobject *kobj,
3004 struct kobj_attribute *attr,
3005 const char *buf, size_t count)
3006{
3007 int err;
3008 int knob;
3009
3010 err = kstrtoint(buf, 10, &knob);
3011 if (err)
3012 return err;
3013 /*
3014 * When a KSM page is created it is shared by 2 mappings. This
3015 * being a signed comparison, it implicitly verifies it's not
3016 * negative.
3017 */
3018 if (knob < 2)
3019 return -EINVAL;
3020
3021 if (READ_ONCE(ksm_max_page_sharing) == knob)
3022 return count;
3023
3024 mutex_lock(&ksm_thread_mutex);
3025 wait_while_offlining();
3026 if (ksm_max_page_sharing != knob) {
3027 if (ksm_pages_shared || remove_all_stable_nodes())
3028 err = -EBUSY;
3029 else
3030 ksm_max_page_sharing = knob;
3031 }
3032 mutex_unlock(&ksm_thread_mutex);
3033
3034 return err ? err : count;
3035}
3036KSM_ATTR(max_page_sharing);
3037
b4028260
HD
3038static ssize_t pages_shared_show(struct kobject *kobj,
3039 struct kobj_attribute *attr, char *buf)
3040{
ae7a927d 3041 return sysfs_emit(buf, "%lu\n", ksm_pages_shared);
b4028260
HD
3042}
3043KSM_ATTR_RO(pages_shared);
3044
3045static ssize_t pages_sharing_show(struct kobject *kobj,
3046 struct kobj_attribute *attr, char *buf)
3047{
ae7a927d 3048 return sysfs_emit(buf, "%lu\n", ksm_pages_sharing);
b4028260
HD
3049}
3050KSM_ATTR_RO(pages_sharing);
3051
473b0ce4
HD
3052static ssize_t pages_unshared_show(struct kobject *kobj,
3053 struct kobj_attribute *attr, char *buf)
3054{
ae7a927d 3055 return sysfs_emit(buf, "%lu\n", ksm_pages_unshared);
473b0ce4
HD
3056}
3057KSM_ATTR_RO(pages_unshared);
3058
3059static ssize_t pages_volatile_show(struct kobject *kobj,
3060 struct kobj_attribute *attr, char *buf)
3061{
3062 long ksm_pages_volatile;
3063
3064 ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
3065 - ksm_pages_sharing - ksm_pages_unshared;
3066 /*
3067 * It was not worth any locking to calculate that statistic,
3068 * but it might therefore sometimes be negative: conceal that.
3069 */
3070 if (ksm_pages_volatile < 0)
3071 ksm_pages_volatile = 0;
ae7a927d 3072 return sysfs_emit(buf, "%ld\n", ksm_pages_volatile);
473b0ce4
HD
3073}
3074KSM_ATTR_RO(pages_volatile);
3075
2c653d0e
AA
3076static ssize_t stable_node_dups_show(struct kobject *kobj,
3077 struct kobj_attribute *attr, char *buf)
3078{
ae7a927d 3079 return sysfs_emit(buf, "%lu\n", ksm_stable_node_dups);
2c653d0e
AA
3080}
3081KSM_ATTR_RO(stable_node_dups);
3082
3083static ssize_t stable_node_chains_show(struct kobject *kobj,
3084 struct kobj_attribute *attr, char *buf)
3085{
ae7a927d 3086 return sysfs_emit(buf, "%lu\n", ksm_stable_node_chains);
2c653d0e
AA
3087}
3088KSM_ATTR_RO(stable_node_chains);
3089
3090static ssize_t
3091stable_node_chains_prune_millisecs_show(struct kobject *kobj,
3092 struct kobj_attribute *attr,
3093 char *buf)
3094{
ae7a927d 3095 return sysfs_emit(buf, "%u\n", ksm_stable_node_chains_prune_millisecs);
2c653d0e
AA
3096}
3097
3098static ssize_t
3099stable_node_chains_prune_millisecs_store(struct kobject *kobj,
3100 struct kobj_attribute *attr,
3101 const char *buf, size_t count)
3102{
584ff0df 3103 unsigned int msecs;
2c653d0e
AA
3104 int err;
3105
584ff0df
ZB
3106 err = kstrtouint(buf, 10, &msecs);
3107 if (err)
2c653d0e
AA
3108 return -EINVAL;
3109
3110 ksm_stable_node_chains_prune_millisecs = msecs;
3111
3112 return count;
3113}
3114KSM_ATTR(stable_node_chains_prune_millisecs);
3115
473b0ce4
HD
3116static ssize_t full_scans_show(struct kobject *kobj,
3117 struct kobj_attribute *attr, char *buf)
3118{
ae7a927d 3119 return sysfs_emit(buf, "%lu\n", ksm_scan.seqnr);
473b0ce4
HD
3120}
3121KSM_ATTR_RO(full_scans);
3122
31dbd01f
IE
3123static struct attribute *ksm_attrs[] = {
3124 &sleep_millisecs_attr.attr,
3125 &pages_to_scan_attr.attr,
3126 &run_attr.attr,
b4028260
HD
3127 &pages_shared_attr.attr,
3128 &pages_sharing_attr.attr,
473b0ce4
HD
3129 &pages_unshared_attr.attr,
3130 &pages_volatile_attr.attr,
3131 &full_scans_attr.attr,
90bd6fd3
PH
3132#ifdef CONFIG_NUMA
3133 &merge_across_nodes_attr.attr,
3134#endif
2c653d0e
AA
3135 &max_page_sharing_attr.attr,
3136 &stable_node_chains_attr.attr,
3137 &stable_node_dups_attr.attr,
3138 &stable_node_chains_prune_millisecs_attr.attr,
e86c59b1 3139 &use_zero_pages_attr.attr,
31dbd01f
IE
3140 NULL,
3141};
3142
f907c26a 3143static const struct attribute_group ksm_attr_group = {
31dbd01f
IE
3144 .attrs = ksm_attrs,
3145 .name = "ksm",
3146};
2ffd8679 3147#endif /* CONFIG_SYSFS */
31dbd01f
IE
3148
3149static int __init ksm_init(void)
3150{
3151 struct task_struct *ksm_thread;
3152 int err;
3153
e86c59b1
CI
3154 /* The correct value depends on page size and endianness */
3155 zero_checksum = calc_checksum(ZERO_PAGE(0));
3156 /* Default to false for backwards compatibility */
3157 ksm_use_zero_pages = false;
3158
31dbd01f
IE
3159 err = ksm_slab_init();
3160 if (err)
3161 goto out;
3162
31dbd01f
IE
3163 ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
3164 if (IS_ERR(ksm_thread)) {
25acde31 3165 pr_err("ksm: creating kthread failed\n");
31dbd01f 3166 err = PTR_ERR(ksm_thread);
d9f8984c 3167 goto out_free;
31dbd01f
IE
3168 }
3169
2ffd8679 3170#ifdef CONFIG_SYSFS
31dbd01f
IE
3171 err = sysfs_create_group(mm_kobj, &ksm_attr_group);
3172 if (err) {
25acde31 3173 pr_err("ksm: register sysfs failed\n");
2ffd8679 3174 kthread_stop(ksm_thread);
d9f8984c 3175 goto out_free;
31dbd01f 3176 }
c73602ad
HD
3177#else
3178 ksm_run = KSM_RUN_MERGE; /* no way for user to start it */
3179
2ffd8679 3180#endif /* CONFIG_SYSFS */
31dbd01f 3181
62b61f61 3182#ifdef CONFIG_MEMORY_HOTREMOVE
ef4d43a8 3183 /* There is no significance to this priority 100 */
62b61f61
HD
3184 hotplug_memory_notifier(ksm_memory_callback, 100);
3185#endif
31dbd01f
IE
3186 return 0;
3187
d9f8984c 3188out_free:
31dbd01f
IE
3189 ksm_slab_free();
3190out:
3191 return err;
f8af4da3 3192}
a64fb3cd 3193subsys_initcall(ksm_init);