ksm: use find_mergeable_vma in try_to_merge_with_ksm_page
[linux-block.git] / mm / ksm.c
CommitLineData
f8af4da3 1/*
31dbd01f
IE
2 * Memory merging support.
3 *
4 * This code enables dynamic sharing of identical pages found in different
5 * memory areas, even if they are not shared by fork()
6 *
36b2528d 7 * Copyright (C) 2008-2009 Red Hat, Inc.
31dbd01f
IE
8 * Authors:
9 * Izik Eidus
10 * Andrea Arcangeli
11 * Chris Wright
36b2528d 12 * Hugh Dickins
31dbd01f
IE
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2.
f8af4da3
HD
15 */
16
17#include <linux/errno.h>
31dbd01f
IE
18#include <linux/mm.h>
19#include <linux/fs.h>
f8af4da3 20#include <linux/mman.h>
31dbd01f
IE
21#include <linux/sched.h>
22#include <linux/rwsem.h>
23#include <linux/pagemap.h>
24#include <linux/rmap.h>
25#include <linux/spinlock.h>
26#include <linux/jhash.h>
27#include <linux/delay.h>
28#include <linux/kthread.h>
29#include <linux/wait.h>
30#include <linux/slab.h>
31#include <linux/rbtree.h>
62b61f61 32#include <linux/memory.h>
31dbd01f 33#include <linux/mmu_notifier.h>
2c6854fd 34#include <linux/swap.h>
f8af4da3 35#include <linux/ksm.h>
4ca3a69b 36#include <linux/hashtable.h>
878aee7d 37#include <linux/freezer.h>
72788c38 38#include <linux/oom.h>
90bd6fd3 39#include <linux/numa.h>
f8af4da3 40
31dbd01f 41#include <asm/tlbflush.h>
73848b46 42#include "internal.h"
31dbd01f 43
e850dcf5
HD
44#ifdef CONFIG_NUMA
45#define NUMA(x) (x)
46#define DO_NUMA(x) do { (x); } while (0)
47#else
48#define NUMA(x) (0)
49#define DO_NUMA(x) do { } while (0)
50#endif
51
31dbd01f
IE
52/*
53 * A few notes about the KSM scanning process,
54 * to make it easier to understand the data structures below:
55 *
56 * In order to reduce excessive scanning, KSM sorts the memory pages by their
57 * contents into a data structure that holds pointers to the pages' locations.
58 *
59 * Since the contents of the pages may change at any moment, KSM cannot just
60 * insert the pages into a normal sorted tree and expect it to find anything.
61 * Therefore KSM uses two data structures - the stable and the unstable tree.
62 *
63 * The stable tree holds pointers to all the merged pages (ksm pages), sorted
64 * by their contents. Because each such page is write-protected, searching on
65 * this tree is fully assured to be working (except when pages are unmapped),
66 * and therefore this tree is called the stable tree.
67 *
68 * In addition to the stable tree, KSM uses a second data structure called the
69 * unstable tree: this tree holds pointers to pages which have been found to
70 * be "unchanged for a period of time". The unstable tree sorts these pages
71 * by their contents, but since they are not write-protected, KSM cannot rely
72 * upon the unstable tree to work correctly - the unstable tree is liable to
73 * be corrupted as its contents are modified, and so it is called unstable.
74 *
75 * KSM solves this problem by several techniques:
76 *
77 * 1) The unstable tree is flushed every time KSM completes scanning all
78 * memory areas, and then the tree is rebuilt again from the beginning.
79 * 2) KSM will only insert into the unstable tree, pages whose hash value
80 * has not changed since the previous scan of all memory areas.
81 * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
82 * colors of the nodes and not on their contents, assuring that even when
83 * the tree gets "corrupted" it won't get out of balance, so scanning time
84 * remains the same (also, searching and inserting nodes in an rbtree uses
85 * the same algorithm, so we have no overhead when we flush and rebuild).
86 * 4) KSM never flushes the stable tree, which means that even if it were to
87 * take 10 attempts to find a page in the unstable tree, once it is found,
88 * it is secured in the stable tree. (When we scan a new page, we first
89 * compare it against the stable tree, and then against the unstable tree.)
8fdb3dbf
HD
90 *
91 * If the merge_across_nodes tunable is unset, then KSM maintains multiple
92 * stable trees and multiple unstable trees: one of each for each NUMA node.
31dbd01f
IE
93 */
94
95/**
96 * struct mm_slot - ksm information per mm that is being scanned
97 * @link: link to the mm_slots hash list
98 * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
6514d511 99 * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
31dbd01f
IE
100 * @mm: the mm that this information is valid for
101 */
102struct mm_slot {
103 struct hlist_node link;
104 struct list_head mm_list;
6514d511 105 struct rmap_item *rmap_list;
31dbd01f
IE
106 struct mm_struct *mm;
107};
108
109/**
110 * struct ksm_scan - cursor for scanning
111 * @mm_slot: the current mm_slot we are scanning
112 * @address: the next address inside that to be scanned
6514d511 113 * @rmap_list: link to the next rmap to be scanned in the rmap_list
31dbd01f
IE
114 * @seqnr: count of completed full scans (needed when removing unstable node)
115 *
116 * There is only the one ksm_scan instance of this cursor structure.
117 */
118struct ksm_scan {
119 struct mm_slot *mm_slot;
120 unsigned long address;
6514d511 121 struct rmap_item **rmap_list;
31dbd01f
IE
122 unsigned long seqnr;
123};
124
7b6ba2c7
HD
125/**
126 * struct stable_node - node of the stable rbtree
127 * @node: rb node of this ksm page in the stable tree
4146d2d6
HD
128 * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
129 * @list: linked into migrate_nodes, pending placement in the proper node tree
7b6ba2c7 130 * @hlist: hlist head of rmap_items using this ksm page
4146d2d6
HD
131 * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
132 * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
7b6ba2c7
HD
133 */
134struct stable_node {
4146d2d6
HD
135 union {
136 struct rb_node node; /* when node of stable tree */
137 struct { /* when listed for migration */
138 struct list_head *head;
139 struct list_head list;
140 };
141 };
7b6ba2c7 142 struct hlist_head hlist;
62b61f61 143 unsigned long kpfn;
4146d2d6
HD
144#ifdef CONFIG_NUMA
145 int nid;
146#endif
7b6ba2c7
HD
147};
148
31dbd01f
IE
149/**
150 * struct rmap_item - reverse mapping item for virtual addresses
6514d511 151 * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
db114b83 152 * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
bc56620b 153 * @nid: NUMA node id of unstable tree in which linked (may not match page)
31dbd01f
IE
154 * @mm: the memory structure this rmap_item is pointing into
155 * @address: the virtual address this rmap_item tracks (+ flags in low bits)
156 * @oldchecksum: previous checksum of the page at that virtual address
7b6ba2c7
HD
157 * @node: rb node of this rmap_item in the unstable tree
158 * @head: pointer to stable_node heading this list in the stable tree
159 * @hlist: link into hlist of rmap_items hanging off that stable_node
31dbd01f
IE
160 */
161struct rmap_item {
6514d511 162 struct rmap_item *rmap_list;
bc56620b
HD
163 union {
164 struct anon_vma *anon_vma; /* when stable */
165#ifdef CONFIG_NUMA
166 int nid; /* when node of unstable tree */
167#endif
168 };
31dbd01f
IE
169 struct mm_struct *mm;
170 unsigned long address; /* + low bits used for flags below */
7b6ba2c7 171 unsigned int oldchecksum; /* when unstable */
31dbd01f 172 union {
7b6ba2c7
HD
173 struct rb_node node; /* when node of unstable tree */
174 struct { /* when listed from stable tree */
175 struct stable_node *head;
176 struct hlist_node hlist;
177 };
31dbd01f
IE
178 };
179};
180
181#define SEQNR_MASK 0x0ff /* low bits of unstable tree seqnr */
7b6ba2c7
HD
182#define UNSTABLE_FLAG 0x100 /* is a node of the unstable tree */
183#define STABLE_FLAG 0x200 /* is listed from the stable tree */
31dbd01f
IE
184
185/* The stable and unstable tree heads */
ef53d16c
HD
186static struct rb_root one_stable_tree[1] = { RB_ROOT };
187static struct rb_root one_unstable_tree[1] = { RB_ROOT };
188static struct rb_root *root_stable_tree = one_stable_tree;
189static struct rb_root *root_unstable_tree = one_unstable_tree;
31dbd01f 190
4146d2d6
HD
191/* Recently migrated nodes of stable tree, pending proper placement */
192static LIST_HEAD(migrate_nodes);
193
4ca3a69b
SL
194#define MM_SLOTS_HASH_BITS 10
195static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
31dbd01f
IE
196
197static struct mm_slot ksm_mm_head = {
198 .mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
199};
200static struct ksm_scan ksm_scan = {
201 .mm_slot = &ksm_mm_head,
202};
203
204static struct kmem_cache *rmap_item_cache;
7b6ba2c7 205static struct kmem_cache *stable_node_cache;
31dbd01f
IE
206static struct kmem_cache *mm_slot_cache;
207
208/* The number of nodes in the stable tree */
b4028260 209static unsigned long ksm_pages_shared;
31dbd01f 210
e178dfde 211/* The number of page slots additionally sharing those nodes */
b4028260 212static unsigned long ksm_pages_sharing;
31dbd01f 213
473b0ce4
HD
214/* The number of nodes in the unstable tree */
215static unsigned long ksm_pages_unshared;
216
217/* The number of rmap_items in use: to calculate pages_volatile */
218static unsigned long ksm_rmap_items;
219
31dbd01f 220/* Number of pages ksmd should scan in one batch */
2c6854fd 221static unsigned int ksm_thread_pages_to_scan = 100;
31dbd01f
IE
222
223/* Milliseconds ksmd should sleep between batches */
2ffd8679 224static unsigned int ksm_thread_sleep_millisecs = 20;
31dbd01f 225
e850dcf5 226#ifdef CONFIG_NUMA
90bd6fd3
PH
227/* Zeroed when merging across nodes is not allowed */
228static unsigned int ksm_merge_across_nodes = 1;
ef53d16c 229static int ksm_nr_node_ids = 1;
e850dcf5
HD
230#else
231#define ksm_merge_across_nodes 1U
ef53d16c 232#define ksm_nr_node_ids 1
e850dcf5 233#endif
90bd6fd3 234
31dbd01f
IE
235#define KSM_RUN_STOP 0
236#define KSM_RUN_MERGE 1
237#define KSM_RUN_UNMERGE 2
ef4d43a8
HD
238#define KSM_RUN_OFFLINE 4
239static unsigned long ksm_run = KSM_RUN_STOP;
240static void wait_while_offlining(void);
31dbd01f
IE
241
242static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
243static DEFINE_MUTEX(ksm_thread_mutex);
244static DEFINE_SPINLOCK(ksm_mmlist_lock);
245
246#define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
247 sizeof(struct __struct), __alignof__(struct __struct),\
248 (__flags), NULL)
249
250static int __init ksm_slab_init(void)
251{
252 rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
253 if (!rmap_item_cache)
254 goto out;
255
7b6ba2c7
HD
256 stable_node_cache = KSM_KMEM_CACHE(stable_node, 0);
257 if (!stable_node_cache)
258 goto out_free1;
259
31dbd01f
IE
260 mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
261 if (!mm_slot_cache)
7b6ba2c7 262 goto out_free2;
31dbd01f
IE
263
264 return 0;
265
7b6ba2c7
HD
266out_free2:
267 kmem_cache_destroy(stable_node_cache);
268out_free1:
31dbd01f
IE
269 kmem_cache_destroy(rmap_item_cache);
270out:
271 return -ENOMEM;
272}
273
274static void __init ksm_slab_free(void)
275{
276 kmem_cache_destroy(mm_slot_cache);
7b6ba2c7 277 kmem_cache_destroy(stable_node_cache);
31dbd01f
IE
278 kmem_cache_destroy(rmap_item_cache);
279 mm_slot_cache = NULL;
280}
281
282static inline struct rmap_item *alloc_rmap_item(void)
283{
473b0ce4
HD
284 struct rmap_item *rmap_item;
285
286 rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL);
287 if (rmap_item)
288 ksm_rmap_items++;
289 return rmap_item;
31dbd01f
IE
290}
291
292static inline void free_rmap_item(struct rmap_item *rmap_item)
293{
473b0ce4 294 ksm_rmap_items--;
31dbd01f
IE
295 rmap_item->mm = NULL; /* debug safety */
296 kmem_cache_free(rmap_item_cache, rmap_item);
297}
298
7b6ba2c7
HD
299static inline struct stable_node *alloc_stable_node(void)
300{
301 return kmem_cache_alloc(stable_node_cache, GFP_KERNEL);
302}
303
304static inline void free_stable_node(struct stable_node *stable_node)
305{
306 kmem_cache_free(stable_node_cache, stable_node);
307}
308
31dbd01f
IE
309static inline struct mm_slot *alloc_mm_slot(void)
310{
311 if (!mm_slot_cache) /* initialization failed */
312 return NULL;
313 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
314}
315
316static inline void free_mm_slot(struct mm_slot *mm_slot)
317{
318 kmem_cache_free(mm_slot_cache, mm_slot);
319}
320
31dbd01f
IE
321static struct mm_slot *get_mm_slot(struct mm_struct *mm)
322{
4ca3a69b
SL
323 struct mm_slot *slot;
324
b67bfe0d 325 hash_for_each_possible(mm_slots_hash, slot, link, (unsigned long)mm)
4ca3a69b
SL
326 if (slot->mm == mm)
327 return slot;
31dbd01f 328
31dbd01f
IE
329 return NULL;
330}
331
332static void insert_to_mm_slots_hash(struct mm_struct *mm,
333 struct mm_slot *mm_slot)
334{
31dbd01f 335 mm_slot->mm = mm;
4ca3a69b 336 hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm);
31dbd01f
IE
337}
338
a913e182
HD
339/*
340 * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
341 * page tables after it has passed through ksm_exit() - which, if necessary,
342 * takes mmap_sem briefly to serialize against them. ksm_exit() does not set
343 * a special flag: they can just back out as soon as mm_users goes to zero.
344 * ksm_test_exit() is used throughout to make this test for exit: in some
345 * places for correctness, in some places just to avoid unnecessary work.
346 */
347static inline bool ksm_test_exit(struct mm_struct *mm)
348{
349 return atomic_read(&mm->mm_users) == 0;
350}
351
31dbd01f
IE
352/*
353 * We use break_ksm to break COW on a ksm page: it's a stripped down
354 *
355 * if (get_user_pages(current, mm, addr, 1, 1, 1, &page, NULL) == 1)
356 * put_page(page);
357 *
358 * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
359 * in case the application has unmapped and remapped mm,addr meanwhile.
360 * Could a ksm page appear anywhere else? Actually yes, in a VM_PFNMAP
361 * mmap of /dev/mem or /dev/kmem, where we would not want to touch it.
362 */
d952b791 363static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
31dbd01f
IE
364{
365 struct page *page;
d952b791 366 int ret = 0;
31dbd01f
IE
367
368 do {
369 cond_resched();
5117b3b8 370 page = follow_page(vma, addr, FOLL_GET | FOLL_MIGRATION);
22eccdd7 371 if (IS_ERR_OR_NULL(page))
31dbd01f
IE
372 break;
373 if (PageKsm(page))
374 ret = handle_mm_fault(vma->vm_mm, vma, addr,
375 FAULT_FLAG_WRITE);
376 else
377 ret = VM_FAULT_WRITE;
378 put_page(page);
33692f27 379 } while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
d952b791
HD
380 /*
381 * We must loop because handle_mm_fault() may back out if there's
382 * any difficulty e.g. if pte accessed bit gets updated concurrently.
383 *
384 * VM_FAULT_WRITE is what we have been hoping for: it indicates that
385 * COW has been broken, even if the vma does not permit VM_WRITE;
386 * but note that a concurrent fault might break PageKsm for us.
387 *
388 * VM_FAULT_SIGBUS could occur if we race with truncation of the
389 * backing file, which also invalidates anonymous pages: that's
390 * okay, that truncation will have unmapped the PageKsm for us.
391 *
392 * VM_FAULT_OOM: at the time of writing (late July 2009), setting
393 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
394 * current task has TIF_MEMDIE set, and will be OOM killed on return
395 * to user; and ksmd, having no mm, would never be chosen for that.
396 *
397 * But if the mm is in a limited mem_cgroup, then the fault may fail
398 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
399 * even ksmd can fail in this way - though it's usually breaking ksm
400 * just to undo a merge it made a moment before, so unlikely to oom.
401 *
402 * That's a pity: we might therefore have more kernel pages allocated
403 * than we're counting as nodes in the stable tree; but ksm_do_scan
404 * will retry to break_cow on each pass, so should recover the page
405 * in due course. The important thing is to not let VM_MERGEABLE
406 * be cleared while any such pages might remain in the area.
407 */
408 return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
31dbd01f
IE
409}
410
ef694222
BL
411static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
412 unsigned long addr)
413{
414 struct vm_area_struct *vma;
415 if (ksm_test_exit(mm))
416 return NULL;
417 vma = find_vma(mm, addr);
418 if (!vma || vma->vm_start > addr)
419 return NULL;
420 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
421 return NULL;
422 return vma;
423}
424
8dd3557a 425static void break_cow(struct rmap_item *rmap_item)
31dbd01f 426{
8dd3557a
HD
427 struct mm_struct *mm = rmap_item->mm;
428 unsigned long addr = rmap_item->address;
31dbd01f
IE
429 struct vm_area_struct *vma;
430
4035c07a
HD
431 /*
432 * It is not an accident that whenever we want to break COW
433 * to undo, we also need to drop a reference to the anon_vma.
434 */
9e60109f 435 put_anon_vma(rmap_item->anon_vma);
4035c07a 436
81464e30 437 down_read(&mm->mmap_sem);
ef694222
BL
438 vma = find_mergeable_vma(mm, addr);
439 if (vma)
440 break_ksm(vma, addr);
31dbd01f
IE
441 up_read(&mm->mmap_sem);
442}
443
29ad768c
AA
444static struct page *page_trans_compound_anon(struct page *page)
445{
446 if (PageTransCompound(page)) {
668f9abb 447 struct page *head = compound_head(page);
29ad768c 448 /*
22e5c47e
AA
449 * head may actually be splitted and freed from under
450 * us but it's ok here.
29ad768c 451 */
29ad768c
AA
452 if (PageAnon(head))
453 return head;
454 }
455 return NULL;
456}
457
31dbd01f
IE
458static struct page *get_mergeable_page(struct rmap_item *rmap_item)
459{
460 struct mm_struct *mm = rmap_item->mm;
461 unsigned long addr = rmap_item->address;
462 struct vm_area_struct *vma;
463 struct page *page;
464
465 down_read(&mm->mmap_sem);
ef694222
BL
466 vma = find_mergeable_vma(mm, addr);
467 if (!vma)
31dbd01f
IE
468 goto out;
469
470 page = follow_page(vma, addr, FOLL_GET);
22eccdd7 471 if (IS_ERR_OR_NULL(page))
31dbd01f 472 goto out;
29ad768c 473 if (PageAnon(page) || page_trans_compound_anon(page)) {
31dbd01f
IE
474 flush_anon_page(vma, page, addr);
475 flush_dcache_page(page);
476 } else {
477 put_page(page);
478out: page = NULL;
479 }
480 up_read(&mm->mmap_sem);
481 return page;
482}
483
90bd6fd3
PH
484/*
485 * This helper is used for getting right index into array of tree roots.
486 * When merge_across_nodes knob is set to 1, there are only two rb-trees for
487 * stable and unstable pages from all nodes with roots in index 0. Otherwise,
488 * every node has its own stable and unstable tree.
489 */
490static inline int get_kpfn_nid(unsigned long kpfn)
491{
d8fc16a8 492 return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
90bd6fd3
PH
493}
494
4035c07a
HD
495static void remove_node_from_stable_tree(struct stable_node *stable_node)
496{
497 struct rmap_item *rmap_item;
4035c07a 498
b67bfe0d 499 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
4035c07a
HD
500 if (rmap_item->hlist.next)
501 ksm_pages_sharing--;
502 else
503 ksm_pages_shared--;
9e60109f 504 put_anon_vma(rmap_item->anon_vma);
4035c07a
HD
505 rmap_item->address &= PAGE_MASK;
506 cond_resched();
507 }
508
4146d2d6
HD
509 if (stable_node->head == &migrate_nodes)
510 list_del(&stable_node->list);
511 else
512 rb_erase(&stable_node->node,
ef53d16c 513 root_stable_tree + NUMA(stable_node->nid));
4035c07a
HD
514 free_stable_node(stable_node);
515}
516
517/*
518 * get_ksm_page: checks if the page indicated by the stable node
519 * is still its ksm page, despite having held no reference to it.
520 * In which case we can trust the content of the page, and it
521 * returns the gotten page; but if the page has now been zapped,
522 * remove the stale node from the stable tree and return NULL.
c8d6553b 523 * But beware, the stable node's page might be being migrated.
4035c07a
HD
524 *
525 * You would expect the stable_node to hold a reference to the ksm page.
526 * But if it increments the page's count, swapping out has to wait for
527 * ksmd to come around again before it can free the page, which may take
528 * seconds or even minutes: much too unresponsive. So instead we use a
529 * "keyhole reference": access to the ksm page from the stable node peeps
530 * out through its keyhole to see if that page still holds the right key,
531 * pointing back to this stable node. This relies on freeing a PageAnon
532 * page to reset its page->mapping to NULL, and relies on no other use of
533 * a page to put something that might look like our key in page->mapping.
4035c07a
HD
534 * is on its way to being freed; but it is an anomaly to bear in mind.
535 */
8fdb3dbf 536static struct page *get_ksm_page(struct stable_node *stable_node, bool lock_it)
4035c07a
HD
537{
538 struct page *page;
539 void *expected_mapping;
c8d6553b 540 unsigned long kpfn;
4035c07a 541
4035c07a
HD
542 expected_mapping = (void *)stable_node +
543 (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM);
c8d6553b 544again:
4db0c3c2 545 kpfn = READ_ONCE(stable_node->kpfn);
c8d6553b
HD
546 page = pfn_to_page(kpfn);
547
548 /*
549 * page is computed from kpfn, so on most architectures reading
550 * page->mapping is naturally ordered after reading node->kpfn,
551 * but on Alpha we need to be more careful.
552 */
553 smp_read_barrier_depends();
4db0c3c2 554 if (READ_ONCE(page->mapping) != expected_mapping)
4035c07a 555 goto stale;
c8d6553b
HD
556
557 /*
558 * We cannot do anything with the page while its refcount is 0.
559 * Usually 0 means free, or tail of a higher-order page: in which
560 * case this node is no longer referenced, and should be freed;
561 * however, it might mean that the page is under page_freeze_refs().
562 * The __remove_mapping() case is easy, again the node is now stale;
563 * but if page is swapcache in migrate_page_move_mapping(), it might
564 * still be our page, in which case it's essential to keep the node.
565 */
566 while (!get_page_unless_zero(page)) {
567 /*
568 * Another check for page->mapping != expected_mapping would
569 * work here too. We have chosen the !PageSwapCache test to
570 * optimize the common case, when the page is or is about to
571 * be freed: PageSwapCache is cleared (under spin_lock_irq)
572 * in the freeze_refs section of __remove_mapping(); but Anon
573 * page->mapping reset to NULL later, in free_pages_prepare().
574 */
575 if (!PageSwapCache(page))
576 goto stale;
577 cpu_relax();
578 }
579
4db0c3c2 580 if (READ_ONCE(page->mapping) != expected_mapping) {
4035c07a
HD
581 put_page(page);
582 goto stale;
583 }
c8d6553b 584
8fdb3dbf 585 if (lock_it) {
8aafa6a4 586 lock_page(page);
4db0c3c2 587 if (READ_ONCE(page->mapping) != expected_mapping) {
8aafa6a4
HD
588 unlock_page(page);
589 put_page(page);
590 goto stale;
591 }
592 }
4035c07a 593 return page;
c8d6553b 594
4035c07a 595stale:
c8d6553b
HD
596 /*
597 * We come here from above when page->mapping or !PageSwapCache
598 * suggests that the node is stale; but it might be under migration.
599 * We need smp_rmb(), matching the smp_wmb() in ksm_migrate_page(),
600 * before checking whether node->kpfn has been changed.
601 */
602 smp_rmb();
4db0c3c2 603 if (READ_ONCE(stable_node->kpfn) != kpfn)
c8d6553b 604 goto again;
4035c07a
HD
605 remove_node_from_stable_tree(stable_node);
606 return NULL;
607}
608
31dbd01f
IE
609/*
610 * Removing rmap_item from stable or unstable tree.
611 * This function will clean the information from the stable/unstable tree.
612 */
613static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
614{
7b6ba2c7
HD
615 if (rmap_item->address & STABLE_FLAG) {
616 struct stable_node *stable_node;
5ad64688 617 struct page *page;
31dbd01f 618
7b6ba2c7 619 stable_node = rmap_item->head;
8aafa6a4 620 page = get_ksm_page(stable_node, true);
4035c07a
HD
621 if (!page)
622 goto out;
5ad64688 623
7b6ba2c7 624 hlist_del(&rmap_item->hlist);
4035c07a
HD
625 unlock_page(page);
626 put_page(page);
08beca44 627
98666f8a 628 if (!hlist_empty(&stable_node->hlist))
4035c07a
HD
629 ksm_pages_sharing--;
630 else
7b6ba2c7 631 ksm_pages_shared--;
31dbd01f 632
9e60109f 633 put_anon_vma(rmap_item->anon_vma);
93d17715 634 rmap_item->address &= PAGE_MASK;
31dbd01f 635
7b6ba2c7 636 } else if (rmap_item->address & UNSTABLE_FLAG) {
31dbd01f
IE
637 unsigned char age;
638 /*
9ba69294 639 * Usually ksmd can and must skip the rb_erase, because
31dbd01f 640 * root_unstable_tree was already reset to RB_ROOT.
9ba69294
HD
641 * But be careful when an mm is exiting: do the rb_erase
642 * if this rmap_item was inserted by this scan, rather
643 * than left over from before.
31dbd01f
IE
644 */
645 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
cd551f97 646 BUG_ON(age > 1);
31dbd01f 647 if (!age)
90bd6fd3 648 rb_erase(&rmap_item->node,
ef53d16c 649 root_unstable_tree + NUMA(rmap_item->nid));
473b0ce4 650 ksm_pages_unshared--;
93d17715 651 rmap_item->address &= PAGE_MASK;
31dbd01f 652 }
4035c07a 653out:
31dbd01f
IE
654 cond_resched(); /* we're called from many long loops */
655}
656
31dbd01f 657static void remove_trailing_rmap_items(struct mm_slot *mm_slot,
6514d511 658 struct rmap_item **rmap_list)
31dbd01f 659{
6514d511
HD
660 while (*rmap_list) {
661 struct rmap_item *rmap_item = *rmap_list;
662 *rmap_list = rmap_item->rmap_list;
31dbd01f 663 remove_rmap_item_from_tree(rmap_item);
31dbd01f
IE
664 free_rmap_item(rmap_item);
665 }
666}
667
668/*
e850dcf5 669 * Though it's very tempting to unmerge rmap_items from stable tree rather
31dbd01f
IE
670 * than check every pte of a given vma, the locking doesn't quite work for
671 * that - an rmap_item is assigned to the stable tree after inserting ksm
672 * page and upping mmap_sem. Nor does it fit with the way we skip dup'ing
673 * rmap_items from parent to child at fork time (so as not to waste time
674 * if exit comes before the next scan reaches it).
81464e30
HD
675 *
676 * Similarly, although we'd like to remove rmap_items (so updating counts
677 * and freeing memory) when unmerging an area, it's easier to leave that
678 * to the next pass of ksmd - consider, for example, how ksmd might be
679 * in cmp_and_merge_page on one of the rmap_items we would be removing.
31dbd01f 680 */
d952b791
HD
681static int unmerge_ksm_pages(struct vm_area_struct *vma,
682 unsigned long start, unsigned long end)
31dbd01f
IE
683{
684 unsigned long addr;
d952b791 685 int err = 0;
31dbd01f 686
d952b791 687 for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
9ba69294
HD
688 if (ksm_test_exit(vma->vm_mm))
689 break;
d952b791
HD
690 if (signal_pending(current))
691 err = -ERESTARTSYS;
692 else
693 err = break_ksm(vma, addr);
694 }
695 return err;
31dbd01f
IE
696}
697
2ffd8679
HD
698#ifdef CONFIG_SYSFS
699/*
700 * Only called through the sysfs control interface:
701 */
cbf86cfe
HD
702static int remove_stable_node(struct stable_node *stable_node)
703{
704 struct page *page;
705 int err;
706
707 page = get_ksm_page(stable_node, true);
708 if (!page) {
709 /*
710 * get_ksm_page did remove_node_from_stable_tree itself.
711 */
712 return 0;
713 }
714
8fdb3dbf
HD
715 if (WARN_ON_ONCE(page_mapped(page))) {
716 /*
717 * This should not happen: but if it does, just refuse to let
718 * merge_across_nodes be switched - there is no need to panic.
719 */
cbf86cfe 720 err = -EBUSY;
8fdb3dbf 721 } else {
cbf86cfe 722 /*
8fdb3dbf
HD
723 * The stable node did not yet appear stale to get_ksm_page(),
724 * since that allows for an unmapped ksm page to be recognized
725 * right up until it is freed; but the node is safe to remove.
cbf86cfe
HD
726 * This page might be in a pagevec waiting to be freed,
727 * or it might be PageSwapCache (perhaps under writeback),
728 * or it might have been removed from swapcache a moment ago.
729 */
730 set_page_stable_node(page, NULL);
731 remove_node_from_stable_tree(stable_node);
732 err = 0;
733 }
734
735 unlock_page(page);
736 put_page(page);
737 return err;
738}
739
740static int remove_all_stable_nodes(void)
741{
742 struct stable_node *stable_node;
4146d2d6 743 struct list_head *this, *next;
cbf86cfe
HD
744 int nid;
745 int err = 0;
746
ef53d16c 747 for (nid = 0; nid < ksm_nr_node_ids; nid++) {
cbf86cfe
HD
748 while (root_stable_tree[nid].rb_node) {
749 stable_node = rb_entry(root_stable_tree[nid].rb_node,
750 struct stable_node, node);
751 if (remove_stable_node(stable_node)) {
752 err = -EBUSY;
753 break; /* proceed to next nid */
754 }
755 cond_resched();
756 }
757 }
4146d2d6
HD
758 list_for_each_safe(this, next, &migrate_nodes) {
759 stable_node = list_entry(this, struct stable_node, list);
760 if (remove_stable_node(stable_node))
761 err = -EBUSY;
762 cond_resched();
763 }
cbf86cfe
HD
764 return err;
765}
766
d952b791 767static int unmerge_and_remove_all_rmap_items(void)
31dbd01f
IE
768{
769 struct mm_slot *mm_slot;
770 struct mm_struct *mm;
771 struct vm_area_struct *vma;
d952b791
HD
772 int err = 0;
773
774 spin_lock(&ksm_mmlist_lock);
9ba69294 775 ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
d952b791
HD
776 struct mm_slot, mm_list);
777 spin_unlock(&ksm_mmlist_lock);
31dbd01f 778
9ba69294
HD
779 for (mm_slot = ksm_scan.mm_slot;
780 mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
31dbd01f
IE
781 mm = mm_slot->mm;
782 down_read(&mm->mmap_sem);
783 for (vma = mm->mmap; vma; vma = vma->vm_next) {
9ba69294
HD
784 if (ksm_test_exit(mm))
785 break;
31dbd01f
IE
786 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
787 continue;
d952b791
HD
788 err = unmerge_ksm_pages(vma,
789 vma->vm_start, vma->vm_end);
9ba69294
HD
790 if (err)
791 goto error;
31dbd01f 792 }
9ba69294 793
6514d511 794 remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list);
d952b791
HD
795
796 spin_lock(&ksm_mmlist_lock);
9ba69294 797 ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
d952b791 798 struct mm_slot, mm_list);
9ba69294 799 if (ksm_test_exit(mm)) {
4ca3a69b 800 hash_del(&mm_slot->link);
9ba69294
HD
801 list_del(&mm_slot->mm_list);
802 spin_unlock(&ksm_mmlist_lock);
803
804 free_mm_slot(mm_slot);
805 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
806 up_read(&mm->mmap_sem);
807 mmdrop(mm);
808 } else {
809 spin_unlock(&ksm_mmlist_lock);
810 up_read(&mm->mmap_sem);
811 }
31dbd01f
IE
812 }
813
cbf86cfe
HD
814 /* Clean up stable nodes, but don't worry if some are still busy */
815 remove_all_stable_nodes();
d952b791 816 ksm_scan.seqnr = 0;
9ba69294
HD
817 return 0;
818
819error:
820 up_read(&mm->mmap_sem);
31dbd01f 821 spin_lock(&ksm_mmlist_lock);
d952b791 822 ksm_scan.mm_slot = &ksm_mm_head;
31dbd01f 823 spin_unlock(&ksm_mmlist_lock);
d952b791 824 return err;
31dbd01f 825}
2ffd8679 826#endif /* CONFIG_SYSFS */
31dbd01f 827
31dbd01f
IE
828static u32 calc_checksum(struct page *page)
829{
830 u32 checksum;
9b04c5fe 831 void *addr = kmap_atomic(page);
31dbd01f 832 checksum = jhash2(addr, PAGE_SIZE / 4, 17);
9b04c5fe 833 kunmap_atomic(addr);
31dbd01f
IE
834 return checksum;
835}
836
837static int memcmp_pages(struct page *page1, struct page *page2)
838{
839 char *addr1, *addr2;
840 int ret;
841
9b04c5fe
CW
842 addr1 = kmap_atomic(page1);
843 addr2 = kmap_atomic(page2);
31dbd01f 844 ret = memcmp(addr1, addr2, PAGE_SIZE);
9b04c5fe
CW
845 kunmap_atomic(addr2);
846 kunmap_atomic(addr1);
31dbd01f
IE
847 return ret;
848}
849
850static inline int pages_identical(struct page *page1, struct page *page2)
851{
852 return !memcmp_pages(page1, page2);
853}
854
855static int write_protect_page(struct vm_area_struct *vma, struct page *page,
856 pte_t *orig_pte)
857{
858 struct mm_struct *mm = vma->vm_mm;
859 unsigned long addr;
860 pte_t *ptep;
861 spinlock_t *ptl;
862 int swapped;
863 int err = -EFAULT;
6bdb913f
HE
864 unsigned long mmun_start; /* For mmu_notifiers */
865 unsigned long mmun_end; /* For mmu_notifiers */
31dbd01f
IE
866
867 addr = page_address_in_vma(page, vma);
868 if (addr == -EFAULT)
869 goto out;
870
29ad768c 871 BUG_ON(PageTransCompound(page));
6bdb913f
HE
872
873 mmun_start = addr;
874 mmun_end = addr + PAGE_SIZE;
875 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
876
31dbd01f
IE
877 ptep = page_check_address(page, mm, addr, &ptl, 0);
878 if (!ptep)
6bdb913f 879 goto out_mn;
31dbd01f 880
4e31635c 881 if (pte_write(*ptep) || pte_dirty(*ptep)) {
31dbd01f
IE
882 pte_t entry;
883
884 swapped = PageSwapCache(page);
885 flush_cache_page(vma, addr, page_to_pfn(page));
886 /*
25985edc 887 * Ok this is tricky, when get_user_pages_fast() run it doesn't
31dbd01f
IE
888 * take any lock, therefore the check that we are going to make
889 * with the pagecount against the mapcount is racey and
890 * O_DIRECT can happen right after the check.
891 * So we clear the pte and flush the tlb before the check
892 * this assure us that no O_DIRECT can happen after the check
893 * or in the middle of the check.
894 */
34ee645e 895 entry = ptep_clear_flush_notify(vma, addr, ptep);
31dbd01f
IE
896 /*
897 * Check that no O_DIRECT or similar I/O is in progress on the
898 * page
899 */
31e855ea 900 if (page_mapcount(page) + 1 + swapped != page_count(page)) {
cb532375 901 set_pte_at(mm, addr, ptep, entry);
31dbd01f
IE
902 goto out_unlock;
903 }
4e31635c
HD
904 if (pte_dirty(entry))
905 set_page_dirty(page);
906 entry = pte_mkclean(pte_wrprotect(entry));
31dbd01f
IE
907 set_pte_at_notify(mm, addr, ptep, entry);
908 }
909 *orig_pte = *ptep;
910 err = 0;
911
912out_unlock:
913 pte_unmap_unlock(ptep, ptl);
6bdb913f
HE
914out_mn:
915 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
31dbd01f
IE
916out:
917 return err;
918}
919
920/**
921 * replace_page - replace page in vma by new ksm page
8dd3557a
HD
922 * @vma: vma that holds the pte pointing to page
923 * @page: the page we are replacing by kpage
924 * @kpage: the ksm page we replace page by
31dbd01f
IE
925 * @orig_pte: the original value of the pte
926 *
927 * Returns 0 on success, -EFAULT on failure.
928 */
8dd3557a
HD
929static int replace_page(struct vm_area_struct *vma, struct page *page,
930 struct page *kpage, pte_t orig_pte)
31dbd01f
IE
931{
932 struct mm_struct *mm = vma->vm_mm;
31dbd01f
IE
933 pmd_t *pmd;
934 pte_t *ptep;
935 spinlock_t *ptl;
936 unsigned long addr;
31dbd01f 937 int err = -EFAULT;
6bdb913f
HE
938 unsigned long mmun_start; /* For mmu_notifiers */
939 unsigned long mmun_end; /* For mmu_notifiers */
31dbd01f 940
8dd3557a 941 addr = page_address_in_vma(page, vma);
31dbd01f
IE
942 if (addr == -EFAULT)
943 goto out;
944
6219049a
BL
945 pmd = mm_find_pmd(mm, addr);
946 if (!pmd)
31dbd01f 947 goto out;
31dbd01f 948
6bdb913f
HE
949 mmun_start = addr;
950 mmun_end = addr + PAGE_SIZE;
951 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
952
31dbd01f
IE
953 ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
954 if (!pte_same(*ptep, orig_pte)) {
955 pte_unmap_unlock(ptep, ptl);
6bdb913f 956 goto out_mn;
31dbd01f
IE
957 }
958
8dd3557a 959 get_page(kpage);
5ad64688 960 page_add_anon_rmap(kpage, vma, addr);
31dbd01f
IE
961
962 flush_cache_page(vma, addr, pte_pfn(*ptep));
34ee645e 963 ptep_clear_flush_notify(vma, addr, ptep);
8dd3557a 964 set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));
31dbd01f 965
8dd3557a 966 page_remove_rmap(page);
ae52a2ad
HD
967 if (!page_mapped(page))
968 try_to_free_swap(page);
8dd3557a 969 put_page(page);
31dbd01f
IE
970
971 pte_unmap_unlock(ptep, ptl);
972 err = 0;
6bdb913f
HE
973out_mn:
974 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
31dbd01f
IE
975out:
976 return err;
977}
978
29ad768c
AA
979static int page_trans_compound_anon_split(struct page *page)
980{
981 int ret = 0;
982 struct page *transhuge_head = page_trans_compound_anon(page);
983 if (transhuge_head) {
984 /* Get the reference on the head to split it. */
985 if (get_page_unless_zero(transhuge_head)) {
986 /*
987 * Recheck we got the reference while the head
988 * was still anonymous.
989 */
990 if (PageAnon(transhuge_head))
991 ret = split_huge_page(transhuge_head);
992 else
993 /*
994 * Retry later if split_huge_page run
995 * from under us.
996 */
997 ret = 1;
998 put_page(transhuge_head);
999 } else
1000 /* Retry later if split_huge_page run from under us. */
1001 ret = 1;
1002 }
1003 return ret;
1004}
1005
31dbd01f
IE
1006/*
1007 * try_to_merge_one_page - take two pages and merge them into one
8dd3557a
HD
1008 * @vma: the vma that holds the pte pointing to page
1009 * @page: the PageAnon page that we want to replace with kpage
80e14822
HD
1010 * @kpage: the PageKsm page that we want to map instead of page,
1011 * or NULL the first time when we want to use page as kpage.
31dbd01f
IE
1012 *
1013 * This function returns 0 if the pages were merged, -EFAULT otherwise.
1014 */
1015static int try_to_merge_one_page(struct vm_area_struct *vma,
8dd3557a 1016 struct page *page, struct page *kpage)
31dbd01f
IE
1017{
1018 pte_t orig_pte = __pte(0);
1019 int err = -EFAULT;
1020
db114b83
HD
1021 if (page == kpage) /* ksm page forked */
1022 return 0;
1023
29ad768c
AA
1024 if (PageTransCompound(page) && page_trans_compound_anon_split(page))
1025 goto out;
1026 BUG_ON(PageTransCompound(page));
8dd3557a 1027 if (!PageAnon(page))
31dbd01f
IE
1028 goto out;
1029
31dbd01f
IE
1030 /*
1031 * We need the page lock to read a stable PageSwapCache in
1032 * write_protect_page(). We use trylock_page() instead of
1033 * lock_page() because we don't want to wait here - we
1034 * prefer to continue scanning and merging different pages,
1035 * then come back to this page when it is unlocked.
1036 */
8dd3557a 1037 if (!trylock_page(page))
31e855ea 1038 goto out;
31dbd01f
IE
1039 /*
1040 * If this anonymous page is mapped only here, its pte may need
1041 * to be write-protected. If it's mapped elsewhere, all of its
1042 * ptes are necessarily already write-protected. But in either
1043 * case, we need to lock and check page_count is not raised.
1044 */
80e14822
HD
1045 if (write_protect_page(vma, page, &orig_pte) == 0) {
1046 if (!kpage) {
1047 /*
1048 * While we hold page lock, upgrade page from
1049 * PageAnon+anon_vma to PageKsm+NULL stable_node:
1050 * stable_tree_insert() will update stable_node.
1051 */
1052 set_page_stable_node(page, NULL);
1053 mark_page_accessed(page);
1054 err = 0;
1055 } else if (pages_identical(page, kpage))
1056 err = replace_page(vma, page, kpage, orig_pte);
1057 }
31dbd01f 1058
80e14822 1059 if ((vma->vm_flags & VM_LOCKED) && kpage && !err) {
73848b46 1060 munlock_vma_page(page);
5ad64688
HD
1061 if (!PageMlocked(kpage)) {
1062 unlock_page(page);
5ad64688
HD
1063 lock_page(kpage);
1064 mlock_vma_page(kpage);
1065 page = kpage; /* for final unlock */
1066 }
1067 }
73848b46 1068
8dd3557a 1069 unlock_page(page);
31dbd01f
IE
1070out:
1071 return err;
1072}
1073
81464e30
HD
1074/*
1075 * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1076 * but no new kernel page is allocated: kpage must already be a ksm page.
8dd3557a
HD
1077 *
1078 * This function returns 0 if the pages were merged, -EFAULT otherwise.
81464e30 1079 */
8dd3557a
HD
1080static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item,
1081 struct page *page, struct page *kpage)
81464e30 1082{
8dd3557a 1083 struct mm_struct *mm = rmap_item->mm;
81464e30
HD
1084 struct vm_area_struct *vma;
1085 int err = -EFAULT;
1086
8dd3557a 1087 down_read(&mm->mmap_sem);
85c6e8dd
AA
1088 vma = find_mergeable_vma(mm, rmap_item->address);
1089 if (!vma)
81464e30
HD
1090 goto out;
1091
8dd3557a 1092 err = try_to_merge_one_page(vma, page, kpage);
db114b83
HD
1093 if (err)
1094 goto out;
1095
bc56620b
HD
1096 /* Unstable nid is in union with stable anon_vma: remove first */
1097 remove_rmap_item_from_tree(rmap_item);
1098
db114b83 1099 /* Must get reference to anon_vma while still holding mmap_sem */
9e60109f
PZ
1100 rmap_item->anon_vma = vma->anon_vma;
1101 get_anon_vma(vma->anon_vma);
81464e30 1102out:
8dd3557a 1103 up_read(&mm->mmap_sem);
81464e30
HD
1104 return err;
1105}
1106
31dbd01f
IE
1107/*
1108 * try_to_merge_two_pages - take two identical pages and prepare them
1109 * to be merged into one page.
1110 *
8dd3557a
HD
1111 * This function returns the kpage if we successfully merged two identical
1112 * pages into one ksm page, NULL otherwise.
31dbd01f 1113 *
80e14822 1114 * Note that this function upgrades page to ksm page: if one of the pages
31dbd01f
IE
1115 * is already a ksm page, try_to_merge_with_ksm_page should be used.
1116 */
8dd3557a
HD
1117static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item,
1118 struct page *page,
1119 struct rmap_item *tree_rmap_item,
1120 struct page *tree_page)
31dbd01f 1121{
80e14822 1122 int err;
31dbd01f 1123
80e14822 1124 err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
31dbd01f 1125 if (!err) {
8dd3557a 1126 err = try_to_merge_with_ksm_page(tree_rmap_item,
80e14822 1127 tree_page, page);
31dbd01f 1128 /*
81464e30
HD
1129 * If that fails, we have a ksm page with only one pte
1130 * pointing to it: so break it.
31dbd01f 1131 */
4035c07a 1132 if (err)
8dd3557a 1133 break_cow(rmap_item);
31dbd01f 1134 }
80e14822 1135 return err ? NULL : page;
31dbd01f
IE
1136}
1137
31dbd01f 1138/*
8dd3557a 1139 * stable_tree_search - search for page inside the stable tree
31dbd01f
IE
1140 *
1141 * This function checks if there is a page inside the stable tree
1142 * with identical content to the page that we are scanning right now.
1143 *
7b6ba2c7 1144 * This function returns the stable tree node of identical content if found,
31dbd01f
IE
1145 * NULL otherwise.
1146 */
62b61f61 1147static struct page *stable_tree_search(struct page *page)
31dbd01f 1148{
90bd6fd3 1149 int nid;
ef53d16c 1150 struct rb_root *root;
4146d2d6
HD
1151 struct rb_node **new;
1152 struct rb_node *parent;
1153 struct stable_node *stable_node;
1154 struct stable_node *page_node;
31dbd01f 1155
4146d2d6
HD
1156 page_node = page_stable_node(page);
1157 if (page_node && page_node->head != &migrate_nodes) {
1158 /* ksm page forked */
08beca44 1159 get_page(page);
62b61f61 1160 return page;
08beca44
HD
1161 }
1162
90bd6fd3 1163 nid = get_kpfn_nid(page_to_pfn(page));
ef53d16c 1164 root = root_stable_tree + nid;
4146d2d6 1165again:
ef53d16c 1166 new = &root->rb_node;
4146d2d6 1167 parent = NULL;
90bd6fd3 1168
4146d2d6 1169 while (*new) {
4035c07a 1170 struct page *tree_page;
31dbd01f
IE
1171 int ret;
1172
08beca44 1173 cond_resched();
4146d2d6 1174 stable_node = rb_entry(*new, struct stable_node, node);
8aafa6a4 1175 tree_page = get_ksm_page(stable_node, false);
f2e5ff85
AA
1176 if (!tree_page) {
1177 /*
1178 * If we walked over a stale stable_node,
1179 * get_ksm_page() will call rb_erase() and it
1180 * may rebalance the tree from under us. So
1181 * restart the search from scratch. Returning
1182 * NULL would be safe too, but we'd generate
1183 * false negative insertions just because some
1184 * stable_node was stale.
1185 */
1186 goto again;
1187 }
31dbd01f 1188
4035c07a 1189 ret = memcmp_pages(page, tree_page);
c8d6553b 1190 put_page(tree_page);
31dbd01f 1191
4146d2d6 1192 parent = *new;
c8d6553b 1193 if (ret < 0)
4146d2d6 1194 new = &parent->rb_left;
c8d6553b 1195 else if (ret > 0)
4146d2d6 1196 new = &parent->rb_right;
c8d6553b
HD
1197 else {
1198 /*
1199 * Lock and unlock the stable_node's page (which
1200 * might already have been migrated) so that page
1201 * migration is sure to notice its raised count.
1202 * It would be more elegant to return stable_node
1203 * than kpage, but that involves more changes.
1204 */
1205 tree_page = get_ksm_page(stable_node, true);
4146d2d6 1206 if (tree_page) {
c8d6553b 1207 unlock_page(tree_page);
4146d2d6
HD
1208 if (get_kpfn_nid(stable_node->kpfn) !=
1209 NUMA(stable_node->nid)) {
1210 put_page(tree_page);
1211 goto replace;
1212 }
1213 return tree_page;
1214 }
1215 /*
1216 * There is now a place for page_node, but the tree may
1217 * have been rebalanced, so re-evaluate parent and new.
1218 */
1219 if (page_node)
1220 goto again;
1221 return NULL;
c8d6553b 1222 }
31dbd01f
IE
1223 }
1224
4146d2d6
HD
1225 if (!page_node)
1226 return NULL;
1227
1228 list_del(&page_node->list);
1229 DO_NUMA(page_node->nid = nid);
1230 rb_link_node(&page_node->node, parent, new);
ef53d16c 1231 rb_insert_color(&page_node->node, root);
4146d2d6
HD
1232 get_page(page);
1233 return page;
1234
1235replace:
1236 if (page_node) {
1237 list_del(&page_node->list);
1238 DO_NUMA(page_node->nid = nid);
ef53d16c 1239 rb_replace_node(&stable_node->node, &page_node->node, root);
4146d2d6
HD
1240 get_page(page);
1241 } else {
ef53d16c 1242 rb_erase(&stable_node->node, root);
4146d2d6
HD
1243 page = NULL;
1244 }
1245 stable_node->head = &migrate_nodes;
1246 list_add(&stable_node->list, stable_node->head);
1247 return page;
31dbd01f
IE
1248}
1249
1250/*
e850dcf5 1251 * stable_tree_insert - insert stable tree node pointing to new ksm page
31dbd01f
IE
1252 * into the stable tree.
1253 *
7b6ba2c7
HD
1254 * This function returns the stable tree node just allocated on success,
1255 * NULL otherwise.
31dbd01f 1256 */
7b6ba2c7 1257static struct stable_node *stable_tree_insert(struct page *kpage)
31dbd01f 1258{
90bd6fd3
PH
1259 int nid;
1260 unsigned long kpfn;
ef53d16c 1261 struct rb_root *root;
90bd6fd3 1262 struct rb_node **new;
f2e5ff85 1263 struct rb_node *parent;
7b6ba2c7 1264 struct stable_node *stable_node;
31dbd01f 1265
90bd6fd3
PH
1266 kpfn = page_to_pfn(kpage);
1267 nid = get_kpfn_nid(kpfn);
ef53d16c 1268 root = root_stable_tree + nid;
f2e5ff85
AA
1269again:
1270 parent = NULL;
ef53d16c 1271 new = &root->rb_node;
90bd6fd3 1272
31dbd01f 1273 while (*new) {
4035c07a 1274 struct page *tree_page;
31dbd01f
IE
1275 int ret;
1276
08beca44 1277 cond_resched();
7b6ba2c7 1278 stable_node = rb_entry(*new, struct stable_node, node);
8aafa6a4 1279 tree_page = get_ksm_page(stable_node, false);
f2e5ff85
AA
1280 if (!tree_page) {
1281 /*
1282 * If we walked over a stale stable_node,
1283 * get_ksm_page() will call rb_erase() and it
1284 * may rebalance the tree from under us. So
1285 * restart the search from scratch. Returning
1286 * NULL would be safe too, but we'd generate
1287 * false negative insertions just because some
1288 * stable_node was stale.
1289 */
1290 goto again;
1291 }
31dbd01f 1292
4035c07a
HD
1293 ret = memcmp_pages(kpage, tree_page);
1294 put_page(tree_page);
31dbd01f
IE
1295
1296 parent = *new;
1297 if (ret < 0)
1298 new = &parent->rb_left;
1299 else if (ret > 0)
1300 new = &parent->rb_right;
1301 else {
1302 /*
1303 * It is not a bug that stable_tree_search() didn't
1304 * find this node: because at that time our page was
1305 * not yet write-protected, so may have changed since.
1306 */
1307 return NULL;
1308 }
1309 }
1310
7b6ba2c7
HD
1311 stable_node = alloc_stable_node();
1312 if (!stable_node)
1313 return NULL;
31dbd01f 1314
7b6ba2c7 1315 INIT_HLIST_HEAD(&stable_node->hlist);
90bd6fd3 1316 stable_node->kpfn = kpfn;
08beca44 1317 set_page_stable_node(kpage, stable_node);
4146d2d6 1318 DO_NUMA(stable_node->nid = nid);
e850dcf5 1319 rb_link_node(&stable_node->node, parent, new);
ef53d16c 1320 rb_insert_color(&stable_node->node, root);
08beca44 1321
7b6ba2c7 1322 return stable_node;
31dbd01f
IE
1323}
1324
1325/*
8dd3557a
HD
1326 * unstable_tree_search_insert - search for identical page,
1327 * else insert rmap_item into the unstable tree.
31dbd01f
IE
1328 *
1329 * This function searches for a page in the unstable tree identical to the
1330 * page currently being scanned; and if no identical page is found in the
1331 * tree, we insert rmap_item as a new object into the unstable tree.
1332 *
1333 * This function returns pointer to rmap_item found to be identical
1334 * to the currently scanned page, NULL otherwise.
1335 *
1336 * This function does both searching and inserting, because they share
1337 * the same walking algorithm in an rbtree.
1338 */
8dd3557a
HD
1339static
1340struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item,
1341 struct page *page,
1342 struct page **tree_pagep)
31dbd01f 1343{
90bd6fd3
PH
1344 struct rb_node **new;
1345 struct rb_root *root;
31dbd01f 1346 struct rb_node *parent = NULL;
90bd6fd3
PH
1347 int nid;
1348
1349 nid = get_kpfn_nid(page_to_pfn(page));
ef53d16c 1350 root = root_unstable_tree + nid;
90bd6fd3 1351 new = &root->rb_node;
31dbd01f
IE
1352
1353 while (*new) {
1354 struct rmap_item *tree_rmap_item;
8dd3557a 1355 struct page *tree_page;
31dbd01f
IE
1356 int ret;
1357
d178f27f 1358 cond_resched();
31dbd01f 1359 tree_rmap_item = rb_entry(*new, struct rmap_item, node);
8dd3557a 1360 tree_page = get_mergeable_page(tree_rmap_item);
22eccdd7 1361 if (IS_ERR_OR_NULL(tree_page))
31dbd01f
IE
1362 return NULL;
1363
1364 /*
8dd3557a 1365 * Don't substitute a ksm page for a forked page.
31dbd01f 1366 */
8dd3557a
HD
1367 if (page == tree_page) {
1368 put_page(tree_page);
31dbd01f
IE
1369 return NULL;
1370 }
1371
8dd3557a 1372 ret = memcmp_pages(page, tree_page);
31dbd01f
IE
1373
1374 parent = *new;
1375 if (ret < 0) {
8dd3557a 1376 put_page(tree_page);
31dbd01f
IE
1377 new = &parent->rb_left;
1378 } else if (ret > 0) {
8dd3557a 1379 put_page(tree_page);
31dbd01f 1380 new = &parent->rb_right;
b599cbdf
HD
1381 } else if (!ksm_merge_across_nodes &&
1382 page_to_nid(tree_page) != nid) {
1383 /*
1384 * If tree_page has been migrated to another NUMA node,
1385 * it will be flushed out and put in the right unstable
1386 * tree next time: only merge with it when across_nodes.
1387 */
1388 put_page(tree_page);
1389 return NULL;
31dbd01f 1390 } else {
8dd3557a 1391 *tree_pagep = tree_page;
31dbd01f
IE
1392 return tree_rmap_item;
1393 }
1394 }
1395
7b6ba2c7 1396 rmap_item->address |= UNSTABLE_FLAG;
31dbd01f 1397 rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
e850dcf5 1398 DO_NUMA(rmap_item->nid = nid);
31dbd01f 1399 rb_link_node(&rmap_item->node, parent, new);
90bd6fd3 1400 rb_insert_color(&rmap_item->node, root);
31dbd01f 1401
473b0ce4 1402 ksm_pages_unshared++;
31dbd01f
IE
1403 return NULL;
1404}
1405
1406/*
1407 * stable_tree_append - add another rmap_item to the linked list of
1408 * rmap_items hanging off a given node of the stable tree, all sharing
1409 * the same ksm page.
1410 */
1411static void stable_tree_append(struct rmap_item *rmap_item,
7b6ba2c7 1412 struct stable_node *stable_node)
31dbd01f 1413{
7b6ba2c7 1414 rmap_item->head = stable_node;
31dbd01f 1415 rmap_item->address |= STABLE_FLAG;
7b6ba2c7 1416 hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
e178dfde 1417
7b6ba2c7
HD
1418 if (rmap_item->hlist.next)
1419 ksm_pages_sharing++;
1420 else
1421 ksm_pages_shared++;
31dbd01f
IE
1422}
1423
1424/*
81464e30
HD
1425 * cmp_and_merge_page - first see if page can be merged into the stable tree;
1426 * if not, compare checksum to previous and if it's the same, see if page can
1427 * be inserted into the unstable tree, or merged with a page already there and
1428 * both transferred to the stable tree.
31dbd01f
IE
1429 *
1430 * @page: the page that we are searching identical page to.
1431 * @rmap_item: the reverse mapping into the virtual address of this page
1432 */
1433static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
1434{
31dbd01f 1435 struct rmap_item *tree_rmap_item;
8dd3557a 1436 struct page *tree_page = NULL;
7b6ba2c7 1437 struct stable_node *stable_node;
8dd3557a 1438 struct page *kpage;
31dbd01f
IE
1439 unsigned int checksum;
1440 int err;
1441
4146d2d6
HD
1442 stable_node = page_stable_node(page);
1443 if (stable_node) {
1444 if (stable_node->head != &migrate_nodes &&
1445 get_kpfn_nid(stable_node->kpfn) != NUMA(stable_node->nid)) {
1446 rb_erase(&stable_node->node,
ef53d16c 1447 root_stable_tree + NUMA(stable_node->nid));
4146d2d6
HD
1448 stable_node->head = &migrate_nodes;
1449 list_add(&stable_node->list, stable_node->head);
1450 }
1451 if (stable_node->head != &migrate_nodes &&
1452 rmap_item->head == stable_node)
1453 return;
1454 }
31dbd01f
IE
1455
1456 /* We first start with searching the page inside the stable tree */
62b61f61 1457 kpage = stable_tree_search(page);
4146d2d6
HD
1458 if (kpage == page && rmap_item->head == stable_node) {
1459 put_page(kpage);
1460 return;
1461 }
1462
1463 remove_rmap_item_from_tree(rmap_item);
1464
62b61f61 1465 if (kpage) {
08beca44 1466 err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
31dbd01f
IE
1467 if (!err) {
1468 /*
1469 * The page was successfully merged:
1470 * add its rmap_item to the stable tree.
1471 */
5ad64688 1472 lock_page(kpage);
62b61f61 1473 stable_tree_append(rmap_item, page_stable_node(kpage));
5ad64688 1474 unlock_page(kpage);
31dbd01f 1475 }
8dd3557a 1476 put_page(kpage);
31dbd01f
IE
1477 return;
1478 }
1479
1480 /*
4035c07a
HD
1481 * If the hash value of the page has changed from the last time
1482 * we calculated it, this page is changing frequently: therefore we
1483 * don't want to insert it in the unstable tree, and we don't want
1484 * to waste our time searching for something identical to it there.
31dbd01f
IE
1485 */
1486 checksum = calc_checksum(page);
1487 if (rmap_item->oldchecksum != checksum) {
1488 rmap_item->oldchecksum = checksum;
1489 return;
1490 }
1491
8dd3557a
HD
1492 tree_rmap_item =
1493 unstable_tree_search_insert(rmap_item, page, &tree_page);
31dbd01f 1494 if (tree_rmap_item) {
8dd3557a
HD
1495 kpage = try_to_merge_two_pages(rmap_item, page,
1496 tree_rmap_item, tree_page);
1497 put_page(tree_page);
8dd3557a 1498 if (kpage) {
bc56620b
HD
1499 /*
1500 * The pages were successfully merged: insert new
1501 * node in the stable tree and add both rmap_items.
1502 */
5ad64688 1503 lock_page(kpage);
7b6ba2c7
HD
1504 stable_node = stable_tree_insert(kpage);
1505 if (stable_node) {
1506 stable_tree_append(tree_rmap_item, stable_node);
1507 stable_tree_append(rmap_item, stable_node);
1508 }
5ad64688 1509 unlock_page(kpage);
7b6ba2c7 1510
31dbd01f
IE
1511 /*
1512 * If we fail to insert the page into the stable tree,
1513 * we will have 2 virtual addresses that are pointing
1514 * to a ksm page left outside the stable tree,
1515 * in which case we need to break_cow on both.
1516 */
7b6ba2c7 1517 if (!stable_node) {
8dd3557a
HD
1518 break_cow(tree_rmap_item);
1519 break_cow(rmap_item);
31dbd01f
IE
1520 }
1521 }
31dbd01f
IE
1522 }
1523}
1524
1525static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
6514d511 1526 struct rmap_item **rmap_list,
31dbd01f
IE
1527 unsigned long addr)
1528{
1529 struct rmap_item *rmap_item;
1530
6514d511
HD
1531 while (*rmap_list) {
1532 rmap_item = *rmap_list;
93d17715 1533 if ((rmap_item->address & PAGE_MASK) == addr)
31dbd01f 1534 return rmap_item;
31dbd01f
IE
1535 if (rmap_item->address > addr)
1536 break;
6514d511 1537 *rmap_list = rmap_item->rmap_list;
31dbd01f 1538 remove_rmap_item_from_tree(rmap_item);
31dbd01f
IE
1539 free_rmap_item(rmap_item);
1540 }
1541
1542 rmap_item = alloc_rmap_item();
1543 if (rmap_item) {
1544 /* It has already been zeroed */
1545 rmap_item->mm = mm_slot->mm;
1546 rmap_item->address = addr;
6514d511
HD
1547 rmap_item->rmap_list = *rmap_list;
1548 *rmap_list = rmap_item;
31dbd01f
IE
1549 }
1550 return rmap_item;
1551}
1552
1553static struct rmap_item *scan_get_next_rmap_item(struct page **page)
1554{
1555 struct mm_struct *mm;
1556 struct mm_slot *slot;
1557 struct vm_area_struct *vma;
1558 struct rmap_item *rmap_item;
90bd6fd3 1559 int nid;
31dbd01f
IE
1560
1561 if (list_empty(&ksm_mm_head.mm_list))
1562 return NULL;
1563
1564 slot = ksm_scan.mm_slot;
1565 if (slot == &ksm_mm_head) {
2919bfd0
HD
1566 /*
1567 * A number of pages can hang around indefinitely on per-cpu
1568 * pagevecs, raised page count preventing write_protect_page
1569 * from merging them. Though it doesn't really matter much,
1570 * it is puzzling to see some stuck in pages_volatile until
1571 * other activity jostles them out, and they also prevented
1572 * LTP's KSM test from succeeding deterministically; so drain
1573 * them here (here rather than on entry to ksm_do_scan(),
1574 * so we don't IPI too often when pages_to_scan is set low).
1575 */
1576 lru_add_drain_all();
1577
4146d2d6
HD
1578 /*
1579 * Whereas stale stable_nodes on the stable_tree itself
1580 * get pruned in the regular course of stable_tree_search(),
1581 * those moved out to the migrate_nodes list can accumulate:
1582 * so prune them once before each full scan.
1583 */
1584 if (!ksm_merge_across_nodes) {
1585 struct stable_node *stable_node;
1586 struct list_head *this, *next;
1587 struct page *page;
1588
1589 list_for_each_safe(this, next, &migrate_nodes) {
1590 stable_node = list_entry(this,
1591 struct stable_node, list);
1592 page = get_ksm_page(stable_node, false);
1593 if (page)
1594 put_page(page);
1595 cond_resched();
1596 }
1597 }
1598
ef53d16c 1599 for (nid = 0; nid < ksm_nr_node_ids; nid++)
90bd6fd3 1600 root_unstable_tree[nid] = RB_ROOT;
31dbd01f
IE
1601
1602 spin_lock(&ksm_mmlist_lock);
1603 slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
1604 ksm_scan.mm_slot = slot;
1605 spin_unlock(&ksm_mmlist_lock);
2b472611
HD
1606 /*
1607 * Although we tested list_empty() above, a racing __ksm_exit
1608 * of the last mm on the list may have removed it since then.
1609 */
1610 if (slot == &ksm_mm_head)
1611 return NULL;
31dbd01f
IE
1612next_mm:
1613 ksm_scan.address = 0;
6514d511 1614 ksm_scan.rmap_list = &slot->rmap_list;
31dbd01f
IE
1615 }
1616
1617 mm = slot->mm;
1618 down_read(&mm->mmap_sem);
9ba69294
HD
1619 if (ksm_test_exit(mm))
1620 vma = NULL;
1621 else
1622 vma = find_vma(mm, ksm_scan.address);
1623
1624 for (; vma; vma = vma->vm_next) {
31dbd01f
IE
1625 if (!(vma->vm_flags & VM_MERGEABLE))
1626 continue;
1627 if (ksm_scan.address < vma->vm_start)
1628 ksm_scan.address = vma->vm_start;
1629 if (!vma->anon_vma)
1630 ksm_scan.address = vma->vm_end;
1631
1632 while (ksm_scan.address < vma->vm_end) {
9ba69294
HD
1633 if (ksm_test_exit(mm))
1634 break;
31dbd01f 1635 *page = follow_page(vma, ksm_scan.address, FOLL_GET);
21ae5b01
AA
1636 if (IS_ERR_OR_NULL(*page)) {
1637 ksm_scan.address += PAGE_SIZE;
1638 cond_resched();
1639 continue;
1640 }
29ad768c
AA
1641 if (PageAnon(*page) ||
1642 page_trans_compound_anon(*page)) {
31dbd01f
IE
1643 flush_anon_page(vma, *page, ksm_scan.address);
1644 flush_dcache_page(*page);
1645 rmap_item = get_next_rmap_item(slot,
6514d511 1646 ksm_scan.rmap_list, ksm_scan.address);
31dbd01f 1647 if (rmap_item) {
6514d511
HD
1648 ksm_scan.rmap_list =
1649 &rmap_item->rmap_list;
31dbd01f
IE
1650 ksm_scan.address += PAGE_SIZE;
1651 } else
1652 put_page(*page);
1653 up_read(&mm->mmap_sem);
1654 return rmap_item;
1655 }
21ae5b01 1656 put_page(*page);
31dbd01f
IE
1657 ksm_scan.address += PAGE_SIZE;
1658 cond_resched();
1659 }
1660 }
1661
9ba69294
HD
1662 if (ksm_test_exit(mm)) {
1663 ksm_scan.address = 0;
6514d511 1664 ksm_scan.rmap_list = &slot->rmap_list;
9ba69294 1665 }
31dbd01f
IE
1666 /*
1667 * Nuke all the rmap_items that are above this current rmap:
1668 * because there were no VM_MERGEABLE vmas with such addresses.
1669 */
6514d511 1670 remove_trailing_rmap_items(slot, ksm_scan.rmap_list);
31dbd01f
IE
1671
1672 spin_lock(&ksm_mmlist_lock);
cd551f97
HD
1673 ksm_scan.mm_slot = list_entry(slot->mm_list.next,
1674 struct mm_slot, mm_list);
1675 if (ksm_scan.address == 0) {
1676 /*
1677 * We've completed a full scan of all vmas, holding mmap_sem
1678 * throughout, and found no VM_MERGEABLE: so do the same as
1679 * __ksm_exit does to remove this mm from all our lists now.
9ba69294
HD
1680 * This applies either when cleaning up after __ksm_exit
1681 * (but beware: we can reach here even before __ksm_exit),
1682 * or when all VM_MERGEABLE areas have been unmapped (and
1683 * mmap_sem then protects against race with MADV_MERGEABLE).
cd551f97 1684 */
4ca3a69b 1685 hash_del(&slot->link);
cd551f97 1686 list_del(&slot->mm_list);
9ba69294
HD
1687 spin_unlock(&ksm_mmlist_lock);
1688
cd551f97
HD
1689 free_mm_slot(slot);
1690 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
9ba69294
HD
1691 up_read(&mm->mmap_sem);
1692 mmdrop(mm);
1693 } else {
1694 spin_unlock(&ksm_mmlist_lock);
1695 up_read(&mm->mmap_sem);
cd551f97 1696 }
31dbd01f
IE
1697
1698 /* Repeat until we've completed scanning the whole list */
cd551f97 1699 slot = ksm_scan.mm_slot;
31dbd01f
IE
1700 if (slot != &ksm_mm_head)
1701 goto next_mm;
1702
31dbd01f
IE
1703 ksm_scan.seqnr++;
1704 return NULL;
1705}
1706
1707/**
1708 * ksm_do_scan - the ksm scanner main worker function.
1709 * @scan_npages - number of pages we want to scan before we return.
1710 */
1711static void ksm_do_scan(unsigned int scan_npages)
1712{
1713 struct rmap_item *rmap_item;
22eccdd7 1714 struct page *uninitialized_var(page);
31dbd01f 1715
878aee7d 1716 while (scan_npages-- && likely(!freezing(current))) {
31dbd01f
IE
1717 cond_resched();
1718 rmap_item = scan_get_next_rmap_item(&page);
1719 if (!rmap_item)
1720 return;
4146d2d6 1721 cmp_and_merge_page(page, rmap_item);
31dbd01f
IE
1722 put_page(page);
1723 }
1724}
1725
6e158384
HD
1726static int ksmd_should_run(void)
1727{
1728 return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
1729}
1730
31dbd01f
IE
1731static int ksm_scan_thread(void *nothing)
1732{
878aee7d 1733 set_freezable();
339aa624 1734 set_user_nice(current, 5);
31dbd01f
IE
1735
1736 while (!kthread_should_stop()) {
6e158384 1737 mutex_lock(&ksm_thread_mutex);
ef4d43a8 1738 wait_while_offlining();
6e158384 1739 if (ksmd_should_run())
31dbd01f 1740 ksm_do_scan(ksm_thread_pages_to_scan);
6e158384
HD
1741 mutex_unlock(&ksm_thread_mutex);
1742
878aee7d
AA
1743 try_to_freeze();
1744
6e158384 1745 if (ksmd_should_run()) {
31dbd01f
IE
1746 schedule_timeout_interruptible(
1747 msecs_to_jiffies(ksm_thread_sleep_millisecs));
1748 } else {
878aee7d 1749 wait_event_freezable(ksm_thread_wait,
6e158384 1750 ksmd_should_run() || kthread_should_stop());
31dbd01f
IE
1751 }
1752 }
1753 return 0;
1754}
1755
f8af4da3
HD
1756int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
1757 unsigned long end, int advice, unsigned long *vm_flags)
1758{
1759 struct mm_struct *mm = vma->vm_mm;
d952b791 1760 int err;
f8af4da3
HD
1761
1762 switch (advice) {
1763 case MADV_MERGEABLE:
1764 /*
1765 * Be somewhat over-protective for now!
1766 */
1767 if (*vm_flags & (VM_MERGEABLE | VM_SHARED | VM_MAYSHARE |
1768 VM_PFNMAP | VM_IO | VM_DONTEXPAND |
0661a336 1769 VM_HUGETLB | VM_MIXEDMAP))
f8af4da3
HD
1770 return 0; /* just ignore the advice */
1771
cc2383ec
KK
1772#ifdef VM_SAO
1773 if (*vm_flags & VM_SAO)
1774 return 0;
1775#endif
1776
d952b791
HD
1777 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
1778 err = __ksm_enter(mm);
1779 if (err)
1780 return err;
1781 }
f8af4da3
HD
1782
1783 *vm_flags |= VM_MERGEABLE;
1784 break;
1785
1786 case MADV_UNMERGEABLE:
1787 if (!(*vm_flags & VM_MERGEABLE))
1788 return 0; /* just ignore the advice */
1789
d952b791
HD
1790 if (vma->anon_vma) {
1791 err = unmerge_ksm_pages(vma, start, end);
1792 if (err)
1793 return err;
1794 }
f8af4da3
HD
1795
1796 *vm_flags &= ~VM_MERGEABLE;
1797 break;
1798 }
1799
1800 return 0;
1801}
1802
1803int __ksm_enter(struct mm_struct *mm)
1804{
6e158384
HD
1805 struct mm_slot *mm_slot;
1806 int needs_wakeup;
1807
1808 mm_slot = alloc_mm_slot();
31dbd01f
IE
1809 if (!mm_slot)
1810 return -ENOMEM;
1811
6e158384
HD
1812 /* Check ksm_run too? Would need tighter locking */
1813 needs_wakeup = list_empty(&ksm_mm_head.mm_list);
1814
31dbd01f
IE
1815 spin_lock(&ksm_mmlist_lock);
1816 insert_to_mm_slots_hash(mm, mm_slot);
1817 /*
cbf86cfe
HD
1818 * When KSM_RUN_MERGE (or KSM_RUN_STOP),
1819 * insert just behind the scanning cursor, to let the area settle
31dbd01f
IE
1820 * down a little; when fork is followed by immediate exec, we don't
1821 * want ksmd to waste time setting up and tearing down an rmap_list.
cbf86cfe
HD
1822 *
1823 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
1824 * scanning cursor, otherwise KSM pages in newly forked mms will be
1825 * missed: then we might as well insert at the end of the list.
31dbd01f 1826 */
cbf86cfe
HD
1827 if (ksm_run & KSM_RUN_UNMERGE)
1828 list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list);
1829 else
1830 list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
31dbd01f
IE
1831 spin_unlock(&ksm_mmlist_lock);
1832
f8af4da3 1833 set_bit(MMF_VM_MERGEABLE, &mm->flags);
9ba69294 1834 atomic_inc(&mm->mm_count);
6e158384
HD
1835
1836 if (needs_wakeup)
1837 wake_up_interruptible(&ksm_thread_wait);
1838
f8af4da3
HD
1839 return 0;
1840}
1841
1c2fb7a4 1842void __ksm_exit(struct mm_struct *mm)
f8af4da3 1843{
cd551f97 1844 struct mm_slot *mm_slot;
9ba69294 1845 int easy_to_free = 0;
cd551f97 1846
31dbd01f 1847 /*
9ba69294
HD
1848 * This process is exiting: if it's straightforward (as is the
1849 * case when ksmd was never running), free mm_slot immediately.
1850 * But if it's at the cursor or has rmap_items linked to it, use
1851 * mmap_sem to synchronize with any break_cows before pagetables
1852 * are freed, and leave the mm_slot on the list for ksmd to free.
1853 * Beware: ksm may already have noticed it exiting and freed the slot.
31dbd01f 1854 */
9ba69294 1855
cd551f97
HD
1856 spin_lock(&ksm_mmlist_lock);
1857 mm_slot = get_mm_slot(mm);
9ba69294 1858 if (mm_slot && ksm_scan.mm_slot != mm_slot) {
6514d511 1859 if (!mm_slot->rmap_list) {
4ca3a69b 1860 hash_del(&mm_slot->link);
9ba69294
HD
1861 list_del(&mm_slot->mm_list);
1862 easy_to_free = 1;
1863 } else {
1864 list_move(&mm_slot->mm_list,
1865 &ksm_scan.mm_slot->mm_list);
1866 }
cd551f97 1867 }
cd551f97
HD
1868 spin_unlock(&ksm_mmlist_lock);
1869
9ba69294
HD
1870 if (easy_to_free) {
1871 free_mm_slot(mm_slot);
1872 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1873 mmdrop(mm);
1874 } else if (mm_slot) {
9ba69294
HD
1875 down_write(&mm->mmap_sem);
1876 up_write(&mm->mmap_sem);
9ba69294 1877 }
31dbd01f
IE
1878}
1879
cbf86cfe 1880struct page *ksm_might_need_to_copy(struct page *page,
5ad64688
HD
1881 struct vm_area_struct *vma, unsigned long address)
1882{
cbf86cfe 1883 struct anon_vma *anon_vma = page_anon_vma(page);
5ad64688
HD
1884 struct page *new_page;
1885
cbf86cfe
HD
1886 if (PageKsm(page)) {
1887 if (page_stable_node(page) &&
1888 !(ksm_run & KSM_RUN_UNMERGE))
1889 return page; /* no need to copy it */
1890 } else if (!anon_vma) {
1891 return page; /* no need to copy it */
1892 } else if (anon_vma->root == vma->anon_vma->root &&
1893 page->index == linear_page_index(vma, address)) {
1894 return page; /* still no need to copy it */
1895 }
1896 if (!PageUptodate(page))
1897 return page; /* let do_swap_page report the error */
1898
5ad64688
HD
1899 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1900 if (new_page) {
1901 copy_user_highpage(new_page, page, address, vma);
1902
1903 SetPageDirty(new_page);
1904 __SetPageUptodate(new_page);
5ad64688 1905 __set_page_locked(new_page);
5ad64688
HD
1906 }
1907
5ad64688
HD
1908 return new_page;
1909}
1910
051ac83a 1911int rmap_walk_ksm(struct page *page, struct rmap_walk_control *rwc)
e9995ef9
HD
1912{
1913 struct stable_node *stable_node;
e9995ef9
HD
1914 struct rmap_item *rmap_item;
1915 int ret = SWAP_AGAIN;
1916 int search_new_forks = 0;
1917
309381fe 1918 VM_BUG_ON_PAGE(!PageKsm(page), page);
9f32624b
JK
1919
1920 /*
1921 * Rely on the page lock to protect against concurrent modifications
1922 * to that page's node of the stable tree.
1923 */
309381fe 1924 VM_BUG_ON_PAGE(!PageLocked(page), page);
e9995ef9
HD
1925
1926 stable_node = page_stable_node(page);
1927 if (!stable_node)
1928 return ret;
1929again:
b67bfe0d 1930 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
e9995ef9 1931 struct anon_vma *anon_vma = rmap_item->anon_vma;
5beb4930 1932 struct anon_vma_chain *vmac;
e9995ef9
HD
1933 struct vm_area_struct *vma;
1934
ad12695f 1935 cond_resched();
b6b19f25 1936 anon_vma_lock_read(anon_vma);
bf181b9f
ML
1937 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
1938 0, ULONG_MAX) {
ad12695f 1939 cond_resched();
5beb4930 1940 vma = vmac->vma;
e9995ef9
HD
1941 if (rmap_item->address < vma->vm_start ||
1942 rmap_item->address >= vma->vm_end)
1943 continue;
1944 /*
1945 * Initially we examine only the vma which covers this
1946 * rmap_item; but later, if there is still work to do,
1947 * we examine covering vmas in other mms: in case they
1948 * were forked from the original since ksmd passed.
1949 */
1950 if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
1951 continue;
1952
0dd1c7bb
JK
1953 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1954 continue;
1955
051ac83a
JK
1956 ret = rwc->rmap_one(page, vma,
1957 rmap_item->address, rwc->arg);
e9995ef9 1958 if (ret != SWAP_AGAIN) {
b6b19f25 1959 anon_vma_unlock_read(anon_vma);
e9995ef9
HD
1960 goto out;
1961 }
0dd1c7bb
JK
1962 if (rwc->done && rwc->done(page)) {
1963 anon_vma_unlock_read(anon_vma);
1964 goto out;
1965 }
e9995ef9 1966 }
b6b19f25 1967 anon_vma_unlock_read(anon_vma);
e9995ef9
HD
1968 }
1969 if (!search_new_forks++)
1970 goto again;
1971out:
1972 return ret;
1973}
1974
52629506 1975#ifdef CONFIG_MIGRATION
e9995ef9
HD
1976void ksm_migrate_page(struct page *newpage, struct page *oldpage)
1977{
1978 struct stable_node *stable_node;
1979
309381fe
SL
1980 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
1981 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
1982 VM_BUG_ON_PAGE(newpage->mapping != oldpage->mapping, newpage);
e9995ef9
HD
1983
1984 stable_node = page_stable_node(newpage);
1985 if (stable_node) {
309381fe 1986 VM_BUG_ON_PAGE(stable_node->kpfn != page_to_pfn(oldpage), oldpage);
62b61f61 1987 stable_node->kpfn = page_to_pfn(newpage);
c8d6553b
HD
1988 /*
1989 * newpage->mapping was set in advance; now we need smp_wmb()
1990 * to make sure that the new stable_node->kpfn is visible
1991 * to get_ksm_page() before it can see that oldpage->mapping
1992 * has gone stale (or that PageSwapCache has been cleared).
1993 */
1994 smp_wmb();
1995 set_page_stable_node(oldpage, NULL);
e9995ef9
HD
1996 }
1997}
1998#endif /* CONFIG_MIGRATION */
1999
62b61f61 2000#ifdef CONFIG_MEMORY_HOTREMOVE
ef4d43a8
HD
2001static void wait_while_offlining(void)
2002{
2003 while (ksm_run & KSM_RUN_OFFLINE) {
2004 mutex_unlock(&ksm_thread_mutex);
2005 wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
74316201 2006 TASK_UNINTERRUPTIBLE);
ef4d43a8
HD
2007 mutex_lock(&ksm_thread_mutex);
2008 }
2009}
2010
ee0ea59c
HD
2011static void ksm_check_stable_tree(unsigned long start_pfn,
2012 unsigned long end_pfn)
62b61f61 2013{
ee0ea59c 2014 struct stable_node *stable_node;
4146d2d6 2015 struct list_head *this, *next;
62b61f61 2016 struct rb_node *node;
90bd6fd3 2017 int nid;
62b61f61 2018
ef53d16c
HD
2019 for (nid = 0; nid < ksm_nr_node_ids; nid++) {
2020 node = rb_first(root_stable_tree + nid);
ee0ea59c 2021 while (node) {
90bd6fd3
PH
2022 stable_node = rb_entry(node, struct stable_node, node);
2023 if (stable_node->kpfn >= start_pfn &&
ee0ea59c
HD
2024 stable_node->kpfn < end_pfn) {
2025 /*
2026 * Don't get_ksm_page, page has already gone:
2027 * which is why we keep kpfn instead of page*
2028 */
2029 remove_node_from_stable_tree(stable_node);
ef53d16c 2030 node = rb_first(root_stable_tree + nid);
ee0ea59c
HD
2031 } else
2032 node = rb_next(node);
2033 cond_resched();
90bd6fd3 2034 }
ee0ea59c 2035 }
4146d2d6
HD
2036 list_for_each_safe(this, next, &migrate_nodes) {
2037 stable_node = list_entry(this, struct stable_node, list);
2038 if (stable_node->kpfn >= start_pfn &&
2039 stable_node->kpfn < end_pfn)
2040 remove_node_from_stable_tree(stable_node);
2041 cond_resched();
2042 }
62b61f61
HD
2043}
2044
2045static int ksm_memory_callback(struct notifier_block *self,
2046 unsigned long action, void *arg)
2047{
2048 struct memory_notify *mn = arg;
62b61f61
HD
2049
2050 switch (action) {
2051 case MEM_GOING_OFFLINE:
2052 /*
ef4d43a8
HD
2053 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
2054 * and remove_all_stable_nodes() while memory is going offline:
2055 * it is unsafe for them to touch the stable tree at this time.
2056 * But unmerge_ksm_pages(), rmap lookups and other entry points
2057 * which do not need the ksm_thread_mutex are all safe.
62b61f61 2058 */
ef4d43a8
HD
2059 mutex_lock(&ksm_thread_mutex);
2060 ksm_run |= KSM_RUN_OFFLINE;
2061 mutex_unlock(&ksm_thread_mutex);
62b61f61
HD
2062 break;
2063
2064 case MEM_OFFLINE:
2065 /*
2066 * Most of the work is done by page migration; but there might
2067 * be a few stable_nodes left over, still pointing to struct
ee0ea59c
HD
2068 * pages which have been offlined: prune those from the tree,
2069 * otherwise get_ksm_page() might later try to access a
2070 * non-existent struct page.
62b61f61 2071 */
ee0ea59c
HD
2072 ksm_check_stable_tree(mn->start_pfn,
2073 mn->start_pfn + mn->nr_pages);
62b61f61
HD
2074 /* fallthrough */
2075
2076 case MEM_CANCEL_OFFLINE:
ef4d43a8
HD
2077 mutex_lock(&ksm_thread_mutex);
2078 ksm_run &= ~KSM_RUN_OFFLINE;
62b61f61 2079 mutex_unlock(&ksm_thread_mutex);
ef4d43a8
HD
2080
2081 smp_mb(); /* wake_up_bit advises this */
2082 wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
62b61f61
HD
2083 break;
2084 }
2085 return NOTIFY_OK;
2086}
ef4d43a8
HD
2087#else
2088static void wait_while_offlining(void)
2089{
2090}
62b61f61
HD
2091#endif /* CONFIG_MEMORY_HOTREMOVE */
2092
2ffd8679
HD
2093#ifdef CONFIG_SYSFS
2094/*
2095 * This all compiles without CONFIG_SYSFS, but is a waste of space.
2096 */
2097
31dbd01f
IE
2098#define KSM_ATTR_RO(_name) \
2099 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2100#define KSM_ATTR(_name) \
2101 static struct kobj_attribute _name##_attr = \
2102 __ATTR(_name, 0644, _name##_show, _name##_store)
2103
2104static ssize_t sleep_millisecs_show(struct kobject *kobj,
2105 struct kobj_attribute *attr, char *buf)
2106{
2107 return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs);
2108}
2109
2110static ssize_t sleep_millisecs_store(struct kobject *kobj,
2111 struct kobj_attribute *attr,
2112 const char *buf, size_t count)
2113{
2114 unsigned long msecs;
2115 int err;
2116
3dbb95f7 2117 err = kstrtoul(buf, 10, &msecs);
31dbd01f
IE
2118 if (err || msecs > UINT_MAX)
2119 return -EINVAL;
2120
2121 ksm_thread_sleep_millisecs = msecs;
2122
2123 return count;
2124}
2125KSM_ATTR(sleep_millisecs);
2126
2127static ssize_t pages_to_scan_show(struct kobject *kobj,
2128 struct kobj_attribute *attr, char *buf)
2129{
2130 return sprintf(buf, "%u\n", ksm_thread_pages_to_scan);
2131}
2132
2133static ssize_t pages_to_scan_store(struct kobject *kobj,
2134 struct kobj_attribute *attr,
2135 const char *buf, size_t count)
2136{
2137 int err;
2138 unsigned long nr_pages;
2139
3dbb95f7 2140 err = kstrtoul(buf, 10, &nr_pages);
31dbd01f
IE
2141 if (err || nr_pages > UINT_MAX)
2142 return -EINVAL;
2143
2144 ksm_thread_pages_to_scan = nr_pages;
2145
2146 return count;
2147}
2148KSM_ATTR(pages_to_scan);
2149
2150static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
2151 char *buf)
2152{
ef4d43a8 2153 return sprintf(buf, "%lu\n", ksm_run);
31dbd01f
IE
2154}
2155
2156static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
2157 const char *buf, size_t count)
2158{
2159 int err;
2160 unsigned long flags;
2161
3dbb95f7 2162 err = kstrtoul(buf, 10, &flags);
31dbd01f
IE
2163 if (err || flags > UINT_MAX)
2164 return -EINVAL;
2165 if (flags > KSM_RUN_UNMERGE)
2166 return -EINVAL;
2167
2168 /*
2169 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
2170 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
d0f209f6
HD
2171 * breaking COW to free the pages_shared (but leaves mm_slots
2172 * on the list for when ksmd may be set running again).
31dbd01f
IE
2173 */
2174
2175 mutex_lock(&ksm_thread_mutex);
ef4d43a8 2176 wait_while_offlining();
31dbd01f
IE
2177 if (ksm_run != flags) {
2178 ksm_run = flags;
d952b791 2179 if (flags & KSM_RUN_UNMERGE) {
e1e12d2f 2180 set_current_oom_origin();
d952b791 2181 err = unmerge_and_remove_all_rmap_items();
e1e12d2f 2182 clear_current_oom_origin();
d952b791
HD
2183 if (err) {
2184 ksm_run = KSM_RUN_STOP;
2185 count = err;
2186 }
2187 }
31dbd01f
IE
2188 }
2189 mutex_unlock(&ksm_thread_mutex);
2190
2191 if (flags & KSM_RUN_MERGE)
2192 wake_up_interruptible(&ksm_thread_wait);
2193
2194 return count;
2195}
2196KSM_ATTR(run);
2197
90bd6fd3
PH
2198#ifdef CONFIG_NUMA
2199static ssize_t merge_across_nodes_show(struct kobject *kobj,
2200 struct kobj_attribute *attr, char *buf)
2201{
2202 return sprintf(buf, "%u\n", ksm_merge_across_nodes);
2203}
2204
2205static ssize_t merge_across_nodes_store(struct kobject *kobj,
2206 struct kobj_attribute *attr,
2207 const char *buf, size_t count)
2208{
2209 int err;
2210 unsigned long knob;
2211
2212 err = kstrtoul(buf, 10, &knob);
2213 if (err)
2214 return err;
2215 if (knob > 1)
2216 return -EINVAL;
2217
2218 mutex_lock(&ksm_thread_mutex);
ef4d43a8 2219 wait_while_offlining();
90bd6fd3 2220 if (ksm_merge_across_nodes != knob) {
cbf86cfe 2221 if (ksm_pages_shared || remove_all_stable_nodes())
90bd6fd3 2222 err = -EBUSY;
ef53d16c
HD
2223 else if (root_stable_tree == one_stable_tree) {
2224 struct rb_root *buf;
2225 /*
2226 * This is the first time that we switch away from the
2227 * default of merging across nodes: must now allocate
2228 * a buffer to hold as many roots as may be needed.
2229 * Allocate stable and unstable together:
2230 * MAXSMP NODES_SHIFT 10 will use 16kB.
2231 */
bafe1e14
JP
2232 buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
2233 GFP_KERNEL);
ef53d16c
HD
2234 /* Let us assume that RB_ROOT is NULL is zero */
2235 if (!buf)
2236 err = -ENOMEM;
2237 else {
2238 root_stable_tree = buf;
2239 root_unstable_tree = buf + nr_node_ids;
2240 /* Stable tree is empty but not the unstable */
2241 root_unstable_tree[0] = one_unstable_tree[0];
2242 }
2243 }
2244 if (!err) {
90bd6fd3 2245 ksm_merge_across_nodes = knob;
ef53d16c
HD
2246 ksm_nr_node_ids = knob ? 1 : nr_node_ids;
2247 }
90bd6fd3
PH
2248 }
2249 mutex_unlock(&ksm_thread_mutex);
2250
2251 return err ? err : count;
2252}
2253KSM_ATTR(merge_across_nodes);
2254#endif
2255
b4028260
HD
2256static ssize_t pages_shared_show(struct kobject *kobj,
2257 struct kobj_attribute *attr, char *buf)
2258{
2259 return sprintf(buf, "%lu\n", ksm_pages_shared);
2260}
2261KSM_ATTR_RO(pages_shared);
2262
2263static ssize_t pages_sharing_show(struct kobject *kobj,
2264 struct kobj_attribute *attr, char *buf)
2265{
e178dfde 2266 return sprintf(buf, "%lu\n", ksm_pages_sharing);
b4028260
HD
2267}
2268KSM_ATTR_RO(pages_sharing);
2269
473b0ce4
HD
2270static ssize_t pages_unshared_show(struct kobject *kobj,
2271 struct kobj_attribute *attr, char *buf)
2272{
2273 return sprintf(buf, "%lu\n", ksm_pages_unshared);
2274}
2275KSM_ATTR_RO(pages_unshared);
2276
2277static ssize_t pages_volatile_show(struct kobject *kobj,
2278 struct kobj_attribute *attr, char *buf)
2279{
2280 long ksm_pages_volatile;
2281
2282 ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
2283 - ksm_pages_sharing - ksm_pages_unshared;
2284 /*
2285 * It was not worth any locking to calculate that statistic,
2286 * but it might therefore sometimes be negative: conceal that.
2287 */
2288 if (ksm_pages_volatile < 0)
2289 ksm_pages_volatile = 0;
2290 return sprintf(buf, "%ld\n", ksm_pages_volatile);
2291}
2292KSM_ATTR_RO(pages_volatile);
2293
2294static ssize_t full_scans_show(struct kobject *kobj,
2295 struct kobj_attribute *attr, char *buf)
2296{
2297 return sprintf(buf, "%lu\n", ksm_scan.seqnr);
2298}
2299KSM_ATTR_RO(full_scans);
2300
31dbd01f
IE
2301static struct attribute *ksm_attrs[] = {
2302 &sleep_millisecs_attr.attr,
2303 &pages_to_scan_attr.attr,
2304 &run_attr.attr,
b4028260
HD
2305 &pages_shared_attr.attr,
2306 &pages_sharing_attr.attr,
473b0ce4
HD
2307 &pages_unshared_attr.attr,
2308 &pages_volatile_attr.attr,
2309 &full_scans_attr.attr,
90bd6fd3
PH
2310#ifdef CONFIG_NUMA
2311 &merge_across_nodes_attr.attr,
2312#endif
31dbd01f
IE
2313 NULL,
2314};
2315
2316static struct attribute_group ksm_attr_group = {
2317 .attrs = ksm_attrs,
2318 .name = "ksm",
2319};
2ffd8679 2320#endif /* CONFIG_SYSFS */
31dbd01f
IE
2321
2322static int __init ksm_init(void)
2323{
2324 struct task_struct *ksm_thread;
2325 int err;
2326
2327 err = ksm_slab_init();
2328 if (err)
2329 goto out;
2330
31dbd01f
IE
2331 ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
2332 if (IS_ERR(ksm_thread)) {
25acde31 2333 pr_err("ksm: creating kthread failed\n");
31dbd01f 2334 err = PTR_ERR(ksm_thread);
d9f8984c 2335 goto out_free;
31dbd01f
IE
2336 }
2337
2ffd8679 2338#ifdef CONFIG_SYSFS
31dbd01f
IE
2339 err = sysfs_create_group(mm_kobj, &ksm_attr_group);
2340 if (err) {
25acde31 2341 pr_err("ksm: register sysfs failed\n");
2ffd8679 2342 kthread_stop(ksm_thread);
d9f8984c 2343 goto out_free;
31dbd01f 2344 }
c73602ad
HD
2345#else
2346 ksm_run = KSM_RUN_MERGE; /* no way for user to start it */
2347
2ffd8679 2348#endif /* CONFIG_SYSFS */
31dbd01f 2349
62b61f61 2350#ifdef CONFIG_MEMORY_HOTREMOVE
ef4d43a8 2351 /* There is no significance to this priority 100 */
62b61f61
HD
2352 hotplug_memory_notifier(ksm_memory_callback, 100);
2353#endif
31dbd01f
IE
2354 return 0;
2355
d9f8984c 2356out_free:
31dbd01f
IE
2357 ksm_slab_free();
2358out:
2359 return err;
f8af4da3 2360}
a64fb3cd 2361subsys_initcall(ksm_init);