mm/khugepaged: stop using vma linked list
[linux-2.6-block.git] / mm / ksm.c
CommitLineData
7a338472 1// SPDX-License-Identifier: GPL-2.0-only
f8af4da3 2/*
31dbd01f
IE
3 * Memory merging support.
4 *
5 * This code enables dynamic sharing of identical pages found in different
6 * memory areas, even if they are not shared by fork()
7 *
36b2528d 8 * Copyright (C) 2008-2009 Red Hat, Inc.
31dbd01f
IE
9 * Authors:
10 * Izik Eidus
11 * Andrea Arcangeli
12 * Chris Wright
36b2528d 13 * Hugh Dickins
f8af4da3
HD
14 */
15
16#include <linux/errno.h>
31dbd01f 17#include <linux/mm.h>
36090def 18#include <linux/mm_inline.h>
31dbd01f 19#include <linux/fs.h>
f8af4da3 20#include <linux/mman.h>
31dbd01f 21#include <linux/sched.h>
6e84f315 22#include <linux/sched/mm.h>
f7ccbae4 23#include <linux/sched/coredump.h>
31dbd01f
IE
24#include <linux/rwsem.h>
25#include <linux/pagemap.h>
26#include <linux/rmap.h>
27#include <linux/spinlock.h>
59e1a2f4 28#include <linux/xxhash.h>
31dbd01f
IE
29#include <linux/delay.h>
30#include <linux/kthread.h>
31#include <linux/wait.h>
32#include <linux/slab.h>
33#include <linux/rbtree.h>
62b61f61 34#include <linux/memory.h>
31dbd01f 35#include <linux/mmu_notifier.h>
2c6854fd 36#include <linux/swap.h>
f8af4da3 37#include <linux/ksm.h>
4ca3a69b 38#include <linux/hashtable.h>
878aee7d 39#include <linux/freezer.h>
72788c38 40#include <linux/oom.h>
90bd6fd3 41#include <linux/numa.h>
f8af4da3 42
31dbd01f 43#include <asm/tlbflush.h>
73848b46 44#include "internal.h"
31dbd01f 45
e850dcf5
HD
46#ifdef CONFIG_NUMA
47#define NUMA(x) (x)
48#define DO_NUMA(x) do { (x); } while (0)
49#else
50#define NUMA(x) (0)
51#define DO_NUMA(x) do { } while (0)
52#endif
53
5a2ca3ef
MR
54/**
55 * DOC: Overview
56 *
31dbd01f
IE
57 * A few notes about the KSM scanning process,
58 * to make it easier to understand the data structures below:
59 *
60 * In order to reduce excessive scanning, KSM sorts the memory pages by their
61 * contents into a data structure that holds pointers to the pages' locations.
62 *
63 * Since the contents of the pages may change at any moment, KSM cannot just
64 * insert the pages into a normal sorted tree and expect it to find anything.
65 * Therefore KSM uses two data structures - the stable and the unstable tree.
66 *
67 * The stable tree holds pointers to all the merged pages (ksm pages), sorted
68 * by their contents. Because each such page is write-protected, searching on
69 * this tree is fully assured to be working (except when pages are unmapped),
70 * and therefore this tree is called the stable tree.
71 *
5a2ca3ef
MR
72 * The stable tree node includes information required for reverse
73 * mapping from a KSM page to virtual addresses that map this page.
74 *
75 * In order to avoid large latencies of the rmap walks on KSM pages,
76 * KSM maintains two types of nodes in the stable tree:
77 *
78 * * the regular nodes that keep the reverse mapping structures in a
79 * linked list
80 * * the "chains" that link nodes ("dups") that represent the same
81 * write protected memory content, but each "dup" corresponds to a
82 * different KSM page copy of that content
83 *
84 * Internally, the regular nodes, "dups" and "chains" are represented
9303c9d5 85 * using the same struct stable_node structure.
5a2ca3ef 86 *
31dbd01f
IE
87 * In addition to the stable tree, KSM uses a second data structure called the
88 * unstable tree: this tree holds pointers to pages which have been found to
89 * be "unchanged for a period of time". The unstable tree sorts these pages
90 * by their contents, but since they are not write-protected, KSM cannot rely
91 * upon the unstable tree to work correctly - the unstable tree is liable to
92 * be corrupted as its contents are modified, and so it is called unstable.
93 *
94 * KSM solves this problem by several techniques:
95 *
96 * 1) The unstable tree is flushed every time KSM completes scanning all
97 * memory areas, and then the tree is rebuilt again from the beginning.
98 * 2) KSM will only insert into the unstable tree, pages whose hash value
99 * has not changed since the previous scan of all memory areas.
100 * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
101 * colors of the nodes and not on their contents, assuring that even when
102 * the tree gets "corrupted" it won't get out of balance, so scanning time
103 * remains the same (also, searching and inserting nodes in an rbtree uses
104 * the same algorithm, so we have no overhead when we flush and rebuild).
105 * 4) KSM never flushes the stable tree, which means that even if it were to
106 * take 10 attempts to find a page in the unstable tree, once it is found,
107 * it is secured in the stable tree. (When we scan a new page, we first
108 * compare it against the stable tree, and then against the unstable tree.)
8fdb3dbf
HD
109 *
110 * If the merge_across_nodes tunable is unset, then KSM maintains multiple
111 * stable trees and multiple unstable trees: one of each for each NUMA node.
31dbd01f
IE
112 */
113
114/**
115 * struct mm_slot - ksm information per mm that is being scanned
116 * @link: link to the mm_slots hash list
117 * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
6514d511 118 * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
31dbd01f
IE
119 * @mm: the mm that this information is valid for
120 */
121struct mm_slot {
122 struct hlist_node link;
123 struct list_head mm_list;
6514d511 124 struct rmap_item *rmap_list;
31dbd01f
IE
125 struct mm_struct *mm;
126};
127
128/**
129 * struct ksm_scan - cursor for scanning
130 * @mm_slot: the current mm_slot we are scanning
131 * @address: the next address inside that to be scanned
6514d511 132 * @rmap_list: link to the next rmap to be scanned in the rmap_list
31dbd01f
IE
133 * @seqnr: count of completed full scans (needed when removing unstable node)
134 *
135 * There is only the one ksm_scan instance of this cursor structure.
136 */
137struct ksm_scan {
138 struct mm_slot *mm_slot;
139 unsigned long address;
6514d511 140 struct rmap_item **rmap_list;
31dbd01f
IE
141 unsigned long seqnr;
142};
143
7b6ba2c7
HD
144/**
145 * struct stable_node - node of the stable rbtree
146 * @node: rb node of this ksm page in the stable tree
4146d2d6 147 * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
2c653d0e 148 * @hlist_dup: linked into the stable_node->hlist with a stable_node chain
4146d2d6 149 * @list: linked into migrate_nodes, pending placement in the proper node tree
7b6ba2c7 150 * @hlist: hlist head of rmap_items using this ksm page
4146d2d6 151 * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
2c653d0e
AA
152 * @chain_prune_time: time of the last full garbage collection
153 * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN
4146d2d6 154 * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
7b6ba2c7
HD
155 */
156struct stable_node {
4146d2d6
HD
157 union {
158 struct rb_node node; /* when node of stable tree */
159 struct { /* when listed for migration */
160 struct list_head *head;
2c653d0e
AA
161 struct {
162 struct hlist_node hlist_dup;
163 struct list_head list;
164 };
4146d2d6
HD
165 };
166 };
7b6ba2c7 167 struct hlist_head hlist;
2c653d0e
AA
168 union {
169 unsigned long kpfn;
170 unsigned long chain_prune_time;
171 };
172 /*
173 * STABLE_NODE_CHAIN can be any negative number in
174 * rmap_hlist_len negative range, but better not -1 to be able
175 * to reliably detect underflows.
176 */
177#define STABLE_NODE_CHAIN -1024
178 int rmap_hlist_len;
4146d2d6
HD
179#ifdef CONFIG_NUMA
180 int nid;
181#endif
7b6ba2c7
HD
182};
183
31dbd01f
IE
184/**
185 * struct rmap_item - reverse mapping item for virtual addresses
6514d511 186 * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
db114b83 187 * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
bc56620b 188 * @nid: NUMA node id of unstable tree in which linked (may not match page)
31dbd01f
IE
189 * @mm: the memory structure this rmap_item is pointing into
190 * @address: the virtual address this rmap_item tracks (+ flags in low bits)
191 * @oldchecksum: previous checksum of the page at that virtual address
7b6ba2c7
HD
192 * @node: rb node of this rmap_item in the unstable tree
193 * @head: pointer to stable_node heading this list in the stable tree
194 * @hlist: link into hlist of rmap_items hanging off that stable_node
31dbd01f
IE
195 */
196struct rmap_item {
6514d511 197 struct rmap_item *rmap_list;
bc56620b
HD
198 union {
199 struct anon_vma *anon_vma; /* when stable */
200#ifdef CONFIG_NUMA
201 int nid; /* when node of unstable tree */
202#endif
203 };
31dbd01f
IE
204 struct mm_struct *mm;
205 unsigned long address; /* + low bits used for flags below */
7b6ba2c7 206 unsigned int oldchecksum; /* when unstable */
31dbd01f 207 union {
7b6ba2c7
HD
208 struct rb_node node; /* when node of unstable tree */
209 struct { /* when listed from stable tree */
210 struct stable_node *head;
211 struct hlist_node hlist;
212 };
31dbd01f
IE
213 };
214};
215
216#define SEQNR_MASK 0x0ff /* low bits of unstable tree seqnr */
7b6ba2c7
HD
217#define UNSTABLE_FLAG 0x100 /* is a node of the unstable tree */
218#define STABLE_FLAG 0x200 /* is listed from the stable tree */
31dbd01f
IE
219
220/* The stable and unstable tree heads */
ef53d16c
HD
221static struct rb_root one_stable_tree[1] = { RB_ROOT };
222static struct rb_root one_unstable_tree[1] = { RB_ROOT };
223static struct rb_root *root_stable_tree = one_stable_tree;
224static struct rb_root *root_unstable_tree = one_unstable_tree;
31dbd01f 225
4146d2d6
HD
226/* Recently migrated nodes of stable tree, pending proper placement */
227static LIST_HEAD(migrate_nodes);
2c653d0e 228#define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev)
4146d2d6 229
4ca3a69b
SL
230#define MM_SLOTS_HASH_BITS 10
231static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
31dbd01f
IE
232
233static struct mm_slot ksm_mm_head = {
234 .mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
235};
236static struct ksm_scan ksm_scan = {
237 .mm_slot = &ksm_mm_head,
238};
239
240static struct kmem_cache *rmap_item_cache;
7b6ba2c7 241static struct kmem_cache *stable_node_cache;
31dbd01f
IE
242static struct kmem_cache *mm_slot_cache;
243
244/* The number of nodes in the stable tree */
b4028260 245static unsigned long ksm_pages_shared;
31dbd01f 246
e178dfde 247/* The number of page slots additionally sharing those nodes */
b4028260 248static unsigned long ksm_pages_sharing;
31dbd01f 249
473b0ce4
HD
250/* The number of nodes in the unstable tree */
251static unsigned long ksm_pages_unshared;
252
253/* The number of rmap_items in use: to calculate pages_volatile */
254static unsigned long ksm_rmap_items;
255
2c653d0e
AA
256/* The number of stable_node chains */
257static unsigned long ksm_stable_node_chains;
258
259/* The number of stable_node dups linked to the stable_node chains */
260static unsigned long ksm_stable_node_dups;
261
262/* Delay in pruning stale stable_node_dups in the stable_node_chains */
584ff0df 263static unsigned int ksm_stable_node_chains_prune_millisecs = 2000;
2c653d0e
AA
264
265/* Maximum number of page slots sharing a stable node */
266static int ksm_max_page_sharing = 256;
267
31dbd01f 268/* Number of pages ksmd should scan in one batch */
2c6854fd 269static unsigned int ksm_thread_pages_to_scan = 100;
31dbd01f
IE
270
271/* Milliseconds ksmd should sleep between batches */
2ffd8679 272static unsigned int ksm_thread_sleep_millisecs = 20;
31dbd01f 273
e86c59b1
CI
274/* Checksum of an empty (zeroed) page */
275static unsigned int zero_checksum __read_mostly;
276
277/* Whether to merge empty (zeroed) pages with actual zero pages */
278static bool ksm_use_zero_pages __read_mostly;
279
e850dcf5 280#ifdef CONFIG_NUMA
90bd6fd3
PH
281/* Zeroed when merging across nodes is not allowed */
282static unsigned int ksm_merge_across_nodes = 1;
ef53d16c 283static int ksm_nr_node_ids = 1;
e850dcf5
HD
284#else
285#define ksm_merge_across_nodes 1U
ef53d16c 286#define ksm_nr_node_ids 1
e850dcf5 287#endif
90bd6fd3 288
31dbd01f
IE
289#define KSM_RUN_STOP 0
290#define KSM_RUN_MERGE 1
291#define KSM_RUN_UNMERGE 2
ef4d43a8
HD
292#define KSM_RUN_OFFLINE 4
293static unsigned long ksm_run = KSM_RUN_STOP;
294static void wait_while_offlining(void);
31dbd01f
IE
295
296static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
fcf9a0ef 297static DECLARE_WAIT_QUEUE_HEAD(ksm_iter_wait);
31dbd01f
IE
298static DEFINE_MUTEX(ksm_thread_mutex);
299static DEFINE_SPINLOCK(ksm_mmlist_lock);
300
301#define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
302 sizeof(struct __struct), __alignof__(struct __struct),\
303 (__flags), NULL)
304
305static int __init ksm_slab_init(void)
306{
307 rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
308 if (!rmap_item_cache)
309 goto out;
310
7b6ba2c7
HD
311 stable_node_cache = KSM_KMEM_CACHE(stable_node, 0);
312 if (!stable_node_cache)
313 goto out_free1;
314
31dbd01f
IE
315 mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
316 if (!mm_slot_cache)
7b6ba2c7 317 goto out_free2;
31dbd01f
IE
318
319 return 0;
320
7b6ba2c7
HD
321out_free2:
322 kmem_cache_destroy(stable_node_cache);
323out_free1:
31dbd01f
IE
324 kmem_cache_destroy(rmap_item_cache);
325out:
326 return -ENOMEM;
327}
328
329static void __init ksm_slab_free(void)
330{
331 kmem_cache_destroy(mm_slot_cache);
7b6ba2c7 332 kmem_cache_destroy(stable_node_cache);
31dbd01f
IE
333 kmem_cache_destroy(rmap_item_cache);
334 mm_slot_cache = NULL;
335}
336
2c653d0e
AA
337static __always_inline bool is_stable_node_chain(struct stable_node *chain)
338{
339 return chain->rmap_hlist_len == STABLE_NODE_CHAIN;
340}
341
342static __always_inline bool is_stable_node_dup(struct stable_node *dup)
343{
344 return dup->head == STABLE_NODE_DUP_HEAD;
345}
346
347static inline void stable_node_chain_add_dup(struct stable_node *dup,
348 struct stable_node *chain)
349{
350 VM_BUG_ON(is_stable_node_dup(dup));
351 dup->head = STABLE_NODE_DUP_HEAD;
352 VM_BUG_ON(!is_stable_node_chain(chain));
353 hlist_add_head(&dup->hlist_dup, &chain->hlist);
354 ksm_stable_node_dups++;
355}
356
357static inline void __stable_node_dup_del(struct stable_node *dup)
358{
b4fecc67 359 VM_BUG_ON(!is_stable_node_dup(dup));
2c653d0e
AA
360 hlist_del(&dup->hlist_dup);
361 ksm_stable_node_dups--;
362}
363
364static inline void stable_node_dup_del(struct stable_node *dup)
365{
366 VM_BUG_ON(is_stable_node_chain(dup));
367 if (is_stable_node_dup(dup))
368 __stable_node_dup_del(dup);
369 else
370 rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid));
371#ifdef CONFIG_DEBUG_VM
372 dup->head = NULL;
373#endif
374}
375
31dbd01f
IE
376static inline struct rmap_item *alloc_rmap_item(void)
377{
473b0ce4
HD
378 struct rmap_item *rmap_item;
379
5b398e41 380 rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL |
381 __GFP_NORETRY | __GFP_NOWARN);
473b0ce4
HD
382 if (rmap_item)
383 ksm_rmap_items++;
384 return rmap_item;
31dbd01f
IE
385}
386
387static inline void free_rmap_item(struct rmap_item *rmap_item)
388{
473b0ce4 389 ksm_rmap_items--;
31dbd01f
IE
390 rmap_item->mm = NULL; /* debug safety */
391 kmem_cache_free(rmap_item_cache, rmap_item);
392}
393
7b6ba2c7
HD
394static inline struct stable_node *alloc_stable_node(void)
395{
6213055f 396 /*
397 * The allocation can take too long with GFP_KERNEL when memory is under
398 * pressure, which may lead to hung task warnings. Adding __GFP_HIGH
399 * grants access to memory reserves, helping to avoid this problem.
400 */
401 return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH);
7b6ba2c7
HD
402}
403
404static inline void free_stable_node(struct stable_node *stable_node)
405{
2c653d0e
AA
406 VM_BUG_ON(stable_node->rmap_hlist_len &&
407 !is_stable_node_chain(stable_node));
7b6ba2c7
HD
408 kmem_cache_free(stable_node_cache, stable_node);
409}
410
31dbd01f
IE
411static inline struct mm_slot *alloc_mm_slot(void)
412{
413 if (!mm_slot_cache) /* initialization failed */
414 return NULL;
415 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
416}
417
418static inline void free_mm_slot(struct mm_slot *mm_slot)
419{
420 kmem_cache_free(mm_slot_cache, mm_slot);
421}
422
31dbd01f
IE
423static struct mm_slot *get_mm_slot(struct mm_struct *mm)
424{
4ca3a69b
SL
425 struct mm_slot *slot;
426
b67bfe0d 427 hash_for_each_possible(mm_slots_hash, slot, link, (unsigned long)mm)
4ca3a69b
SL
428 if (slot->mm == mm)
429 return slot;
31dbd01f 430
31dbd01f
IE
431 return NULL;
432}
433
434static void insert_to_mm_slots_hash(struct mm_struct *mm,
435 struct mm_slot *mm_slot)
436{
31dbd01f 437 mm_slot->mm = mm;
4ca3a69b 438 hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm);
31dbd01f
IE
439}
440
a913e182
HD
441/*
442 * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
443 * page tables after it has passed through ksm_exit() - which, if necessary,
c1e8d7c6 444 * takes mmap_lock briefly to serialize against them. ksm_exit() does not set
a913e182
HD
445 * a special flag: they can just back out as soon as mm_users goes to zero.
446 * ksm_test_exit() is used throughout to make this test for exit: in some
447 * places for correctness, in some places just to avoid unnecessary work.
448 */
449static inline bool ksm_test_exit(struct mm_struct *mm)
450{
451 return atomic_read(&mm->mm_users) == 0;
452}
453
31dbd01f
IE
454/*
455 * We use break_ksm to break COW on a ksm page: it's a stripped down
456 *
7a9547fd 457 * if (get_user_pages(addr, 1, FOLL_WRITE, &page, NULL) == 1)
31dbd01f
IE
458 * put_page(page);
459 *
460 * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
461 * in case the application has unmapped and remapped mm,addr meanwhile.
462 * Could a ksm page appear anywhere else? Actually yes, in a VM_PFNMAP
bbcd53c9 463 * mmap of /dev/mem, where we would not want to touch it.
1b2ee126
DH
464 *
465 * FAULT_FLAG/FOLL_REMOTE are because we do this outside the context
466 * of the process that owns 'vma'. We also do not want to enforce
467 * protection keys here anyway.
31dbd01f 468 */
d952b791 469static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
31dbd01f
IE
470{
471 struct page *page;
50a7ca3c 472 vm_fault_t ret = 0;
31dbd01f
IE
473
474 do {
475 cond_resched();
1b2ee126
DH
476 page = follow_page(vma, addr,
477 FOLL_GET | FOLL_MIGRATION | FOLL_REMOTE);
3218f871 478 if (IS_ERR_OR_NULL(page) || is_zone_device_page(page))
31dbd01f
IE
479 break;
480 if (PageKsm(page))
dcddffd4 481 ret = handle_mm_fault(vma, addr,
bce617ed
PX
482 FAULT_FLAG_WRITE | FAULT_FLAG_REMOTE,
483 NULL);
31dbd01f
IE
484 else
485 ret = VM_FAULT_WRITE;
486 put_page(page);
33692f27 487 } while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
d952b791
HD
488 /*
489 * We must loop because handle_mm_fault() may back out if there's
490 * any difficulty e.g. if pte accessed bit gets updated concurrently.
491 *
492 * VM_FAULT_WRITE is what we have been hoping for: it indicates that
493 * COW has been broken, even if the vma does not permit VM_WRITE;
494 * but note that a concurrent fault might break PageKsm for us.
495 *
496 * VM_FAULT_SIGBUS could occur if we race with truncation of the
497 * backing file, which also invalidates anonymous pages: that's
498 * okay, that truncation will have unmapped the PageKsm for us.
499 *
500 * VM_FAULT_OOM: at the time of writing (late July 2009), setting
501 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
502 * current task has TIF_MEMDIE set, and will be OOM killed on return
503 * to user; and ksmd, having no mm, would never be chosen for that.
504 *
505 * But if the mm is in a limited mem_cgroup, then the fault may fail
506 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
507 * even ksmd can fail in this way - though it's usually breaking ksm
508 * just to undo a merge it made a moment before, so unlikely to oom.
509 *
510 * That's a pity: we might therefore have more kernel pages allocated
511 * than we're counting as nodes in the stable tree; but ksm_do_scan
512 * will retry to break_cow on each pass, so should recover the page
513 * in due course. The important thing is to not let VM_MERGEABLE
514 * be cleared while any such pages might remain in the area.
515 */
516 return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
31dbd01f
IE
517}
518
ef694222
BL
519static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
520 unsigned long addr)
521{
522 struct vm_area_struct *vma;
523 if (ksm_test_exit(mm))
524 return NULL;
ff69fb81
LH
525 vma = vma_lookup(mm, addr);
526 if (!vma || !(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
ef694222
BL
527 return NULL;
528 return vma;
529}
530
8dd3557a 531static void break_cow(struct rmap_item *rmap_item)
31dbd01f 532{
8dd3557a
HD
533 struct mm_struct *mm = rmap_item->mm;
534 unsigned long addr = rmap_item->address;
31dbd01f
IE
535 struct vm_area_struct *vma;
536
4035c07a
HD
537 /*
538 * It is not an accident that whenever we want to break COW
539 * to undo, we also need to drop a reference to the anon_vma.
540 */
9e60109f 541 put_anon_vma(rmap_item->anon_vma);
4035c07a 542
d8ed45c5 543 mmap_read_lock(mm);
ef694222
BL
544 vma = find_mergeable_vma(mm, addr);
545 if (vma)
546 break_ksm(vma, addr);
d8ed45c5 547 mmap_read_unlock(mm);
31dbd01f
IE
548}
549
550static struct page *get_mergeable_page(struct rmap_item *rmap_item)
551{
552 struct mm_struct *mm = rmap_item->mm;
553 unsigned long addr = rmap_item->address;
554 struct vm_area_struct *vma;
555 struct page *page;
556
d8ed45c5 557 mmap_read_lock(mm);
ef694222
BL
558 vma = find_mergeable_vma(mm, addr);
559 if (!vma)
31dbd01f
IE
560 goto out;
561
562 page = follow_page(vma, addr, FOLL_GET);
3218f871 563 if (IS_ERR_OR_NULL(page) || is_zone_device_page(page))
31dbd01f 564 goto out;
f765f540 565 if (PageAnon(page)) {
31dbd01f
IE
566 flush_anon_page(vma, page, addr);
567 flush_dcache_page(page);
568 } else {
569 put_page(page);
c8f95ed1
AA
570out:
571 page = NULL;
31dbd01f 572 }
d8ed45c5 573 mmap_read_unlock(mm);
31dbd01f
IE
574 return page;
575}
576
90bd6fd3
PH
577/*
578 * This helper is used for getting right index into array of tree roots.
579 * When merge_across_nodes knob is set to 1, there are only two rb-trees for
580 * stable and unstable pages from all nodes with roots in index 0. Otherwise,
581 * every node has its own stable and unstable tree.
582 */
583static inline int get_kpfn_nid(unsigned long kpfn)
584{
d8fc16a8 585 return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
90bd6fd3
PH
586}
587
2c653d0e
AA
588static struct stable_node *alloc_stable_node_chain(struct stable_node *dup,
589 struct rb_root *root)
590{
591 struct stable_node *chain = alloc_stable_node();
592 VM_BUG_ON(is_stable_node_chain(dup));
593 if (likely(chain)) {
594 INIT_HLIST_HEAD(&chain->hlist);
595 chain->chain_prune_time = jiffies;
596 chain->rmap_hlist_len = STABLE_NODE_CHAIN;
597#if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA)
98fa15f3 598 chain->nid = NUMA_NO_NODE; /* debug */
2c653d0e
AA
599#endif
600 ksm_stable_node_chains++;
601
602 /*
603 * Put the stable node chain in the first dimension of
604 * the stable tree and at the same time remove the old
605 * stable node.
606 */
607 rb_replace_node(&dup->node, &chain->node, root);
608
609 /*
610 * Move the old stable node to the second dimension
611 * queued in the hlist_dup. The invariant is that all
612 * dup stable_nodes in the chain->hlist point to pages
457aef94 613 * that are write protected and have the exact same
2c653d0e
AA
614 * content.
615 */
616 stable_node_chain_add_dup(dup, chain);
617 }
618 return chain;
619}
620
621static inline void free_stable_node_chain(struct stable_node *chain,
622 struct rb_root *root)
623{
624 rb_erase(&chain->node, root);
625 free_stable_node(chain);
626 ksm_stable_node_chains--;
627}
628
4035c07a
HD
629static void remove_node_from_stable_tree(struct stable_node *stable_node)
630{
631 struct rmap_item *rmap_item;
4035c07a 632
2c653d0e
AA
633 /* check it's not STABLE_NODE_CHAIN or negative */
634 BUG_ON(stable_node->rmap_hlist_len < 0);
635
b67bfe0d 636 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
4035c07a
HD
637 if (rmap_item->hlist.next)
638 ksm_pages_sharing--;
639 else
640 ksm_pages_shared--;
76093853 641
642 rmap_item->mm->ksm_merging_pages--;
643
2c653d0e
AA
644 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
645 stable_node->rmap_hlist_len--;
9e60109f 646 put_anon_vma(rmap_item->anon_vma);
4035c07a
HD
647 rmap_item->address &= PAGE_MASK;
648 cond_resched();
649 }
650
2c653d0e
AA
651 /*
652 * We need the second aligned pointer of the migrate_nodes
653 * list_head to stay clear from the rb_parent_color union
654 * (aligned and different than any node) and also different
655 * from &migrate_nodes. This will verify that future list.h changes
815f0ddb 656 * don't break STABLE_NODE_DUP_HEAD. Only recent gcc can handle it.
2c653d0e 657 */
2c653d0e
AA
658 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes);
659 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1);
2c653d0e 660
4146d2d6
HD
661 if (stable_node->head == &migrate_nodes)
662 list_del(&stable_node->list);
663 else
2c653d0e 664 stable_node_dup_del(stable_node);
4035c07a
HD
665 free_stable_node(stable_node);
666}
667
2cee57d1
YS
668enum get_ksm_page_flags {
669 GET_KSM_PAGE_NOLOCK,
670 GET_KSM_PAGE_LOCK,
671 GET_KSM_PAGE_TRYLOCK
672};
673
4035c07a
HD
674/*
675 * get_ksm_page: checks if the page indicated by the stable node
676 * is still its ksm page, despite having held no reference to it.
677 * In which case we can trust the content of the page, and it
678 * returns the gotten page; but if the page has now been zapped,
679 * remove the stale node from the stable tree and return NULL.
c8d6553b 680 * But beware, the stable node's page might be being migrated.
4035c07a
HD
681 *
682 * You would expect the stable_node to hold a reference to the ksm page.
683 * But if it increments the page's count, swapping out has to wait for
684 * ksmd to come around again before it can free the page, which may take
685 * seconds or even minutes: much too unresponsive. So instead we use a
686 * "keyhole reference": access to the ksm page from the stable node peeps
687 * out through its keyhole to see if that page still holds the right key,
688 * pointing back to this stable node. This relies on freeing a PageAnon
689 * page to reset its page->mapping to NULL, and relies on no other use of
690 * a page to put something that might look like our key in page->mapping.
4035c07a
HD
691 * is on its way to being freed; but it is an anomaly to bear in mind.
692 */
2cee57d1
YS
693static struct page *get_ksm_page(struct stable_node *stable_node,
694 enum get_ksm_page_flags flags)
4035c07a
HD
695{
696 struct page *page;
697 void *expected_mapping;
c8d6553b 698 unsigned long kpfn;
4035c07a 699
bda807d4
MK
700 expected_mapping = (void *)((unsigned long)stable_node |
701 PAGE_MAPPING_KSM);
c8d6553b 702again:
08df4774 703 kpfn = READ_ONCE(stable_node->kpfn); /* Address dependency. */
c8d6553b 704 page = pfn_to_page(kpfn);
4db0c3c2 705 if (READ_ONCE(page->mapping) != expected_mapping)
4035c07a 706 goto stale;
c8d6553b
HD
707
708 /*
709 * We cannot do anything with the page while its refcount is 0.
710 * Usually 0 means free, or tail of a higher-order page: in which
711 * case this node is no longer referenced, and should be freed;
1c4c3b99 712 * however, it might mean that the page is under page_ref_freeze().
c8d6553b 713 * The __remove_mapping() case is easy, again the node is now stale;
52d1e606 714 * the same is in reuse_ksm_page() case; but if page is swapcache
9800562f 715 * in folio_migrate_mapping(), it might still be our page,
52d1e606 716 * in which case it's essential to keep the node.
c8d6553b
HD
717 */
718 while (!get_page_unless_zero(page)) {
719 /*
720 * Another check for page->mapping != expected_mapping would
721 * work here too. We have chosen the !PageSwapCache test to
722 * optimize the common case, when the page is or is about to
723 * be freed: PageSwapCache is cleared (under spin_lock_irq)
1c4c3b99 724 * in the ref_freeze section of __remove_mapping(); but Anon
c8d6553b
HD
725 * page->mapping reset to NULL later, in free_pages_prepare().
726 */
727 if (!PageSwapCache(page))
728 goto stale;
729 cpu_relax();
730 }
731
4db0c3c2 732 if (READ_ONCE(page->mapping) != expected_mapping) {
4035c07a
HD
733 put_page(page);
734 goto stale;
735 }
c8d6553b 736
2cee57d1
YS
737 if (flags == GET_KSM_PAGE_TRYLOCK) {
738 if (!trylock_page(page)) {
739 put_page(page);
740 return ERR_PTR(-EBUSY);
741 }
742 } else if (flags == GET_KSM_PAGE_LOCK)
8aafa6a4 743 lock_page(page);
2cee57d1
YS
744
745 if (flags != GET_KSM_PAGE_NOLOCK) {
4db0c3c2 746 if (READ_ONCE(page->mapping) != expected_mapping) {
8aafa6a4
HD
747 unlock_page(page);
748 put_page(page);
749 goto stale;
750 }
751 }
4035c07a 752 return page;
c8d6553b 753
4035c07a 754stale:
c8d6553b
HD
755 /*
756 * We come here from above when page->mapping or !PageSwapCache
757 * suggests that the node is stale; but it might be under migration.
19138349 758 * We need smp_rmb(), matching the smp_wmb() in folio_migrate_ksm(),
c8d6553b
HD
759 * before checking whether node->kpfn has been changed.
760 */
761 smp_rmb();
4db0c3c2 762 if (READ_ONCE(stable_node->kpfn) != kpfn)
c8d6553b 763 goto again;
4035c07a
HD
764 remove_node_from_stable_tree(stable_node);
765 return NULL;
766}
767
31dbd01f
IE
768/*
769 * Removing rmap_item from stable or unstable tree.
770 * This function will clean the information from the stable/unstable tree.
771 */
772static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
773{
7b6ba2c7
HD
774 if (rmap_item->address & STABLE_FLAG) {
775 struct stable_node *stable_node;
5ad64688 776 struct page *page;
31dbd01f 777
7b6ba2c7 778 stable_node = rmap_item->head;
62862290 779 page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK);
4035c07a
HD
780 if (!page)
781 goto out;
5ad64688 782
7b6ba2c7 783 hlist_del(&rmap_item->hlist);
62862290 784 unlock_page(page);
4035c07a 785 put_page(page);
08beca44 786
98666f8a 787 if (!hlist_empty(&stable_node->hlist))
4035c07a
HD
788 ksm_pages_sharing--;
789 else
7b6ba2c7 790 ksm_pages_shared--;
76093853 791
792 rmap_item->mm->ksm_merging_pages--;
793
2c653d0e
AA
794 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
795 stable_node->rmap_hlist_len--;
31dbd01f 796
9e60109f 797 put_anon_vma(rmap_item->anon_vma);
c89a384e 798 rmap_item->head = NULL;
93d17715 799 rmap_item->address &= PAGE_MASK;
31dbd01f 800
7b6ba2c7 801 } else if (rmap_item->address & UNSTABLE_FLAG) {
31dbd01f
IE
802 unsigned char age;
803 /*
9ba69294 804 * Usually ksmd can and must skip the rb_erase, because
31dbd01f 805 * root_unstable_tree was already reset to RB_ROOT.
9ba69294
HD
806 * But be careful when an mm is exiting: do the rb_erase
807 * if this rmap_item was inserted by this scan, rather
808 * than left over from before.
31dbd01f
IE
809 */
810 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
cd551f97 811 BUG_ON(age > 1);
31dbd01f 812 if (!age)
90bd6fd3 813 rb_erase(&rmap_item->node,
ef53d16c 814 root_unstable_tree + NUMA(rmap_item->nid));
473b0ce4 815 ksm_pages_unshared--;
93d17715 816 rmap_item->address &= PAGE_MASK;
31dbd01f 817 }
4035c07a 818out:
31dbd01f
IE
819 cond_resched(); /* we're called from many long loops */
820}
821
420be4ed 822static void remove_trailing_rmap_items(struct rmap_item **rmap_list)
31dbd01f 823{
6514d511
HD
824 while (*rmap_list) {
825 struct rmap_item *rmap_item = *rmap_list;
826 *rmap_list = rmap_item->rmap_list;
31dbd01f 827 remove_rmap_item_from_tree(rmap_item);
31dbd01f
IE
828 free_rmap_item(rmap_item);
829 }
830}
831
832/*
e850dcf5 833 * Though it's very tempting to unmerge rmap_items from stable tree rather
31dbd01f
IE
834 * than check every pte of a given vma, the locking doesn't quite work for
835 * that - an rmap_item is assigned to the stable tree after inserting ksm
c1e8d7c6 836 * page and upping mmap_lock. Nor does it fit with the way we skip dup'ing
31dbd01f
IE
837 * rmap_items from parent to child at fork time (so as not to waste time
838 * if exit comes before the next scan reaches it).
81464e30
HD
839 *
840 * Similarly, although we'd like to remove rmap_items (so updating counts
841 * and freeing memory) when unmerging an area, it's easier to leave that
842 * to the next pass of ksmd - consider, for example, how ksmd might be
843 * in cmp_and_merge_page on one of the rmap_items we would be removing.
31dbd01f 844 */
d952b791
HD
845static int unmerge_ksm_pages(struct vm_area_struct *vma,
846 unsigned long start, unsigned long end)
31dbd01f
IE
847{
848 unsigned long addr;
d952b791 849 int err = 0;
31dbd01f 850
d952b791 851 for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
9ba69294
HD
852 if (ksm_test_exit(vma->vm_mm))
853 break;
d952b791
HD
854 if (signal_pending(current))
855 err = -ERESTARTSYS;
856 else
857 err = break_ksm(vma, addr);
858 }
859 return err;
31dbd01f
IE
860}
861
19138349
MWO
862static inline struct stable_node *folio_stable_node(struct folio *folio)
863{
864 return folio_test_ksm(folio) ? folio_raw_mapping(folio) : NULL;
865}
866
88484826
MR
867static inline struct stable_node *page_stable_node(struct page *page)
868{
19138349 869 return folio_stable_node(page_folio(page));
88484826
MR
870}
871
872static inline void set_page_stable_node(struct page *page,
873 struct stable_node *stable_node)
874{
6c287605 875 VM_BUG_ON_PAGE(PageAnon(page) && PageAnonExclusive(page), page);
88484826
MR
876 page->mapping = (void *)((unsigned long)stable_node | PAGE_MAPPING_KSM);
877}
878
2ffd8679
HD
879#ifdef CONFIG_SYSFS
880/*
881 * Only called through the sysfs control interface:
882 */
cbf86cfe
HD
883static int remove_stable_node(struct stable_node *stable_node)
884{
885 struct page *page;
886 int err;
887
2cee57d1 888 page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK);
cbf86cfe
HD
889 if (!page) {
890 /*
891 * get_ksm_page did remove_node_from_stable_tree itself.
892 */
893 return 0;
894 }
895
9a63236f
AR
896 /*
897 * Page could be still mapped if this races with __mmput() running in
898 * between ksm_exit() and exit_mmap(). Just refuse to let
899 * merge_across_nodes/max_page_sharing be switched.
900 */
901 err = -EBUSY;
902 if (!page_mapped(page)) {
cbf86cfe 903 /*
8fdb3dbf
HD
904 * The stable node did not yet appear stale to get_ksm_page(),
905 * since that allows for an unmapped ksm page to be recognized
906 * right up until it is freed; but the node is safe to remove.
cbf86cfe
HD
907 * This page might be in a pagevec waiting to be freed,
908 * or it might be PageSwapCache (perhaps under writeback),
909 * or it might have been removed from swapcache a moment ago.
910 */
911 set_page_stable_node(page, NULL);
912 remove_node_from_stable_tree(stable_node);
913 err = 0;
914 }
915
916 unlock_page(page);
917 put_page(page);
918 return err;
919}
920
2c653d0e
AA
921static int remove_stable_node_chain(struct stable_node *stable_node,
922 struct rb_root *root)
923{
924 struct stable_node *dup;
925 struct hlist_node *hlist_safe;
926
927 if (!is_stable_node_chain(stable_node)) {
928 VM_BUG_ON(is_stable_node_dup(stable_node));
929 if (remove_stable_node(stable_node))
930 return true;
931 else
932 return false;
933 }
934
935 hlist_for_each_entry_safe(dup, hlist_safe,
936 &stable_node->hlist, hlist_dup) {
937 VM_BUG_ON(!is_stable_node_dup(dup));
938 if (remove_stable_node(dup))
939 return true;
940 }
941 BUG_ON(!hlist_empty(&stable_node->hlist));
942 free_stable_node_chain(stable_node, root);
943 return false;
944}
945
cbf86cfe
HD
946static int remove_all_stable_nodes(void)
947{
03640418 948 struct stable_node *stable_node, *next;
cbf86cfe
HD
949 int nid;
950 int err = 0;
951
ef53d16c 952 for (nid = 0; nid < ksm_nr_node_ids; nid++) {
cbf86cfe
HD
953 while (root_stable_tree[nid].rb_node) {
954 stable_node = rb_entry(root_stable_tree[nid].rb_node,
955 struct stable_node, node);
2c653d0e
AA
956 if (remove_stable_node_chain(stable_node,
957 root_stable_tree + nid)) {
cbf86cfe
HD
958 err = -EBUSY;
959 break; /* proceed to next nid */
960 }
961 cond_resched();
962 }
963 }
03640418 964 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
4146d2d6
HD
965 if (remove_stable_node(stable_node))
966 err = -EBUSY;
967 cond_resched();
968 }
cbf86cfe
HD
969 return err;
970}
971
d952b791 972static int unmerge_and_remove_all_rmap_items(void)
31dbd01f
IE
973{
974 struct mm_slot *mm_slot;
975 struct mm_struct *mm;
976 struct vm_area_struct *vma;
d952b791
HD
977 int err = 0;
978
979 spin_lock(&ksm_mmlist_lock);
9ba69294 980 ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
d952b791
HD
981 struct mm_slot, mm_list);
982 spin_unlock(&ksm_mmlist_lock);
31dbd01f 983
9ba69294
HD
984 for (mm_slot = ksm_scan.mm_slot;
985 mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
31dbd01f 986 mm = mm_slot->mm;
d8ed45c5 987 mmap_read_lock(mm);
31dbd01f 988 for (vma = mm->mmap; vma; vma = vma->vm_next) {
9ba69294
HD
989 if (ksm_test_exit(mm))
990 break;
31dbd01f
IE
991 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
992 continue;
d952b791
HD
993 err = unmerge_ksm_pages(vma,
994 vma->vm_start, vma->vm_end);
9ba69294
HD
995 if (err)
996 goto error;
31dbd01f 997 }
9ba69294 998
420be4ed 999 remove_trailing_rmap_items(&mm_slot->rmap_list);
d8ed45c5 1000 mmap_read_unlock(mm);
d952b791
HD
1001
1002 spin_lock(&ksm_mmlist_lock);
9ba69294 1003 ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
d952b791 1004 struct mm_slot, mm_list);
9ba69294 1005 if (ksm_test_exit(mm)) {
4ca3a69b 1006 hash_del(&mm_slot->link);
9ba69294
HD
1007 list_del(&mm_slot->mm_list);
1008 spin_unlock(&ksm_mmlist_lock);
1009
1010 free_mm_slot(mm_slot);
1011 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
9ba69294 1012 mmdrop(mm);
7496fea9 1013 } else
9ba69294 1014 spin_unlock(&ksm_mmlist_lock);
31dbd01f
IE
1015 }
1016
cbf86cfe
HD
1017 /* Clean up stable nodes, but don't worry if some are still busy */
1018 remove_all_stable_nodes();
d952b791 1019 ksm_scan.seqnr = 0;
9ba69294
HD
1020 return 0;
1021
1022error:
d8ed45c5 1023 mmap_read_unlock(mm);
31dbd01f 1024 spin_lock(&ksm_mmlist_lock);
d952b791 1025 ksm_scan.mm_slot = &ksm_mm_head;
31dbd01f 1026 spin_unlock(&ksm_mmlist_lock);
d952b791 1027 return err;
31dbd01f 1028}
2ffd8679 1029#endif /* CONFIG_SYSFS */
31dbd01f 1030
31dbd01f
IE
1031static u32 calc_checksum(struct page *page)
1032{
1033 u32 checksum;
9b04c5fe 1034 void *addr = kmap_atomic(page);
59e1a2f4 1035 checksum = xxhash(addr, PAGE_SIZE, 0);
9b04c5fe 1036 kunmap_atomic(addr);
31dbd01f
IE
1037 return checksum;
1038}
1039
31dbd01f
IE
1040static int write_protect_page(struct vm_area_struct *vma, struct page *page,
1041 pte_t *orig_pte)
1042{
1043 struct mm_struct *mm = vma->vm_mm;
eed05e54 1044 DEFINE_PAGE_VMA_WALK(pvmw, page, vma, 0, 0);
31dbd01f
IE
1045 int swapped;
1046 int err = -EFAULT;
ac46d4f3 1047 struct mmu_notifier_range range;
6c287605 1048 bool anon_exclusive;
31dbd01f 1049
36eaff33
KS
1050 pvmw.address = page_address_in_vma(page, vma);
1051 if (pvmw.address == -EFAULT)
31dbd01f
IE
1052 goto out;
1053
29ad768c 1054 BUG_ON(PageTransCompound(page));
6bdb913f 1055
7269f999 1056 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
6f4f13e8 1057 pvmw.address,
ac46d4f3
JG
1058 pvmw.address + PAGE_SIZE);
1059 mmu_notifier_invalidate_range_start(&range);
6bdb913f 1060
36eaff33 1061 if (!page_vma_mapped_walk(&pvmw))
6bdb913f 1062 goto out_mn;
36eaff33
KS
1063 if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?"))
1064 goto out_unlock;
31dbd01f 1065
6c287605 1066 anon_exclusive = PageAnonExclusive(page);
595cd8f2 1067 if (pte_write(*pvmw.pte) || pte_dirty(*pvmw.pte) ||
b3a81d08 1068 (pte_protnone(*pvmw.pte) && pte_savedwrite(*pvmw.pte)) ||
6c287605 1069 anon_exclusive || mm_tlb_flush_pending(mm)) {
31dbd01f
IE
1070 pte_t entry;
1071
1072 swapped = PageSwapCache(page);
36eaff33 1073 flush_cache_page(vma, pvmw.address, page_to_pfn(page));
31dbd01f 1074 /*
25985edc 1075 * Ok this is tricky, when get_user_pages_fast() run it doesn't
31dbd01f 1076 * take any lock, therefore the check that we are going to make
f0953a1b 1077 * with the pagecount against the mapcount is racy and
31dbd01f
IE
1078 * O_DIRECT can happen right after the check.
1079 * So we clear the pte and flush the tlb before the check
1080 * this assure us that no O_DIRECT can happen after the check
1081 * or in the middle of the check.
0f10851e
JG
1082 *
1083 * No need to notify as we are downgrading page table to read
1084 * only not changing it to point to a new page.
1085 *
ee65728e 1086 * See Documentation/mm/mmu_notifier.rst
31dbd01f 1087 */
0f10851e 1088 entry = ptep_clear_flush(vma, pvmw.address, pvmw.pte);
31dbd01f
IE
1089 /*
1090 * Check that no O_DIRECT or similar I/O is in progress on the
1091 * page
1092 */
31e855ea 1093 if (page_mapcount(page) + 1 + swapped != page_count(page)) {
36eaff33 1094 set_pte_at(mm, pvmw.address, pvmw.pte, entry);
31dbd01f
IE
1095 goto out_unlock;
1096 }
6c287605 1097
088b8aa5 1098 /* See page_try_share_anon_rmap(): clear PTE first. */
6c287605
DH
1099 if (anon_exclusive && page_try_share_anon_rmap(page)) {
1100 set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1101 goto out_unlock;
1102 }
1103
4e31635c
HD
1104 if (pte_dirty(entry))
1105 set_page_dirty(page);
595cd8f2
AK
1106
1107 if (pte_protnone(entry))
1108 entry = pte_mkclean(pte_clear_savedwrite(entry));
1109 else
1110 entry = pte_mkclean(pte_wrprotect(entry));
36eaff33 1111 set_pte_at_notify(mm, pvmw.address, pvmw.pte, entry);
31dbd01f 1112 }
36eaff33 1113 *orig_pte = *pvmw.pte;
31dbd01f
IE
1114 err = 0;
1115
1116out_unlock:
36eaff33 1117 page_vma_mapped_walk_done(&pvmw);
6bdb913f 1118out_mn:
ac46d4f3 1119 mmu_notifier_invalidate_range_end(&range);
31dbd01f
IE
1120out:
1121 return err;
1122}
1123
1124/**
1125 * replace_page - replace page in vma by new ksm page
8dd3557a
HD
1126 * @vma: vma that holds the pte pointing to page
1127 * @page: the page we are replacing by kpage
1128 * @kpage: the ksm page we replace page by
31dbd01f
IE
1129 * @orig_pte: the original value of the pte
1130 *
1131 * Returns 0 on success, -EFAULT on failure.
1132 */
8dd3557a
HD
1133static int replace_page(struct vm_area_struct *vma, struct page *page,
1134 struct page *kpage, pte_t orig_pte)
31dbd01f
IE
1135{
1136 struct mm_struct *mm = vma->vm_mm;
31dbd01f 1137 pmd_t *pmd;
50722804 1138 pmd_t pmde;
31dbd01f 1139 pte_t *ptep;
e86c59b1 1140 pte_t newpte;
31dbd01f
IE
1141 spinlock_t *ptl;
1142 unsigned long addr;
31dbd01f 1143 int err = -EFAULT;
ac46d4f3 1144 struct mmu_notifier_range range;
31dbd01f 1145
8dd3557a 1146 addr = page_address_in_vma(page, vma);
31dbd01f
IE
1147 if (addr == -EFAULT)
1148 goto out;
1149
6219049a
BL
1150 pmd = mm_find_pmd(mm, addr);
1151 if (!pmd)
31dbd01f 1152 goto out;
50722804
ZK
1153 /*
1154 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
1155 * without holding anon_vma lock for write. So when looking for a
1156 * genuine pmde (in which to find pte), test present and !THP together.
1157 */
1158 pmde = *pmd;
1159 barrier();
1160 if (!pmd_present(pmde) || pmd_trans_huge(pmde))
1161 goto out;
31dbd01f 1162
7269f999 1163 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, addr,
6f4f13e8 1164 addr + PAGE_SIZE);
ac46d4f3 1165 mmu_notifier_invalidate_range_start(&range);
6bdb913f 1166
31dbd01f
IE
1167 ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
1168 if (!pte_same(*ptep, orig_pte)) {
1169 pte_unmap_unlock(ptep, ptl);
6bdb913f 1170 goto out_mn;
31dbd01f 1171 }
6c287605
DH
1172 VM_BUG_ON_PAGE(PageAnonExclusive(page), page);
1173 VM_BUG_ON_PAGE(PageAnon(kpage) && PageAnonExclusive(kpage), kpage);
31dbd01f 1174
e86c59b1
CI
1175 /*
1176 * No need to check ksm_use_zero_pages here: we can only have a
457aef94 1177 * zero_page here if ksm_use_zero_pages was enabled already.
e86c59b1
CI
1178 */
1179 if (!is_zero_pfn(page_to_pfn(kpage))) {
1180 get_page(kpage);
f1e2db12 1181 page_add_anon_rmap(kpage, vma, addr, RMAP_NONE);
e86c59b1
CI
1182 newpte = mk_pte(kpage, vma->vm_page_prot);
1183 } else {
1184 newpte = pte_mkspecial(pfn_pte(page_to_pfn(kpage),
1185 vma->vm_page_prot));
a38c015f
CI
1186 /*
1187 * We're replacing an anonymous page with a zero page, which is
1188 * not anonymous. We need to do proper accounting otherwise we
1189 * will get wrong values in /proc, and a BUG message in dmesg
1190 * when tearing down the mm.
1191 */
1192 dec_mm_counter(mm, MM_ANONPAGES);
e86c59b1 1193 }
31dbd01f
IE
1194
1195 flush_cache_page(vma, addr, pte_pfn(*ptep));
0f10851e
JG
1196 /*
1197 * No need to notify as we are replacing a read only page with another
1198 * read only page with the same content.
1199 *
ee65728e 1200 * See Documentation/mm/mmu_notifier.rst
0f10851e
JG
1201 */
1202 ptep_clear_flush(vma, addr, ptep);
e86c59b1 1203 set_pte_at_notify(mm, addr, ptep, newpte);
31dbd01f 1204
cea86fe2 1205 page_remove_rmap(page, vma, false);
ae52a2ad
HD
1206 if (!page_mapped(page))
1207 try_to_free_swap(page);
8dd3557a 1208 put_page(page);
31dbd01f
IE
1209
1210 pte_unmap_unlock(ptep, ptl);
1211 err = 0;
6bdb913f 1212out_mn:
ac46d4f3 1213 mmu_notifier_invalidate_range_end(&range);
31dbd01f
IE
1214out:
1215 return err;
1216}
1217
1218/*
1219 * try_to_merge_one_page - take two pages and merge them into one
8dd3557a
HD
1220 * @vma: the vma that holds the pte pointing to page
1221 * @page: the PageAnon page that we want to replace with kpage
80e14822
HD
1222 * @kpage: the PageKsm page that we want to map instead of page,
1223 * or NULL the first time when we want to use page as kpage.
31dbd01f
IE
1224 *
1225 * This function returns 0 if the pages were merged, -EFAULT otherwise.
1226 */
1227static int try_to_merge_one_page(struct vm_area_struct *vma,
8dd3557a 1228 struct page *page, struct page *kpage)
31dbd01f
IE
1229{
1230 pte_t orig_pte = __pte(0);
1231 int err = -EFAULT;
1232
db114b83
HD
1233 if (page == kpage) /* ksm page forked */
1234 return 0;
1235
8dd3557a 1236 if (!PageAnon(page))
31dbd01f
IE
1237 goto out;
1238
31dbd01f
IE
1239 /*
1240 * We need the page lock to read a stable PageSwapCache in
1241 * write_protect_page(). We use trylock_page() instead of
1242 * lock_page() because we don't want to wait here - we
1243 * prefer to continue scanning and merging different pages,
1244 * then come back to this page when it is unlocked.
1245 */
8dd3557a 1246 if (!trylock_page(page))
31e855ea 1247 goto out;
f765f540
KS
1248
1249 if (PageTransCompound(page)) {
a7306c34 1250 if (split_huge_page(page))
f765f540
KS
1251 goto out_unlock;
1252 }
1253
31dbd01f
IE
1254 /*
1255 * If this anonymous page is mapped only here, its pte may need
1256 * to be write-protected. If it's mapped elsewhere, all of its
1257 * ptes are necessarily already write-protected. But in either
1258 * case, we need to lock and check page_count is not raised.
1259 */
80e14822
HD
1260 if (write_protect_page(vma, page, &orig_pte) == 0) {
1261 if (!kpage) {
1262 /*
1263 * While we hold page lock, upgrade page from
1264 * PageAnon+anon_vma to PageKsm+NULL stable_node:
1265 * stable_tree_insert() will update stable_node.
1266 */
1267 set_page_stable_node(page, NULL);
1268 mark_page_accessed(page);
337ed7eb
MK
1269 /*
1270 * Page reclaim just frees a clean page with no dirty
1271 * ptes: make sure that the ksm page would be swapped.
1272 */
1273 if (!PageDirty(page))
1274 SetPageDirty(page);
80e14822
HD
1275 err = 0;
1276 } else if (pages_identical(page, kpage))
1277 err = replace_page(vma, page, kpage, orig_pte);
1278 }
31dbd01f 1279
f765f540 1280out_unlock:
8dd3557a 1281 unlock_page(page);
31dbd01f
IE
1282out:
1283 return err;
1284}
1285
81464e30
HD
1286/*
1287 * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1288 * but no new kernel page is allocated: kpage must already be a ksm page.
8dd3557a
HD
1289 *
1290 * This function returns 0 if the pages were merged, -EFAULT otherwise.
81464e30 1291 */
8dd3557a
HD
1292static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item,
1293 struct page *page, struct page *kpage)
81464e30 1294{
8dd3557a 1295 struct mm_struct *mm = rmap_item->mm;
81464e30
HD
1296 struct vm_area_struct *vma;
1297 int err = -EFAULT;
1298
d8ed45c5 1299 mmap_read_lock(mm);
85c6e8dd
AA
1300 vma = find_mergeable_vma(mm, rmap_item->address);
1301 if (!vma)
81464e30
HD
1302 goto out;
1303
8dd3557a 1304 err = try_to_merge_one_page(vma, page, kpage);
db114b83
HD
1305 if (err)
1306 goto out;
1307
bc56620b
HD
1308 /* Unstable nid is in union with stable anon_vma: remove first */
1309 remove_rmap_item_from_tree(rmap_item);
1310
c1e8d7c6 1311 /* Must get reference to anon_vma while still holding mmap_lock */
9e60109f
PZ
1312 rmap_item->anon_vma = vma->anon_vma;
1313 get_anon_vma(vma->anon_vma);
81464e30 1314out:
d8ed45c5 1315 mmap_read_unlock(mm);
81464e30
HD
1316 return err;
1317}
1318
31dbd01f
IE
1319/*
1320 * try_to_merge_two_pages - take two identical pages and prepare them
1321 * to be merged into one page.
1322 *
8dd3557a
HD
1323 * This function returns the kpage if we successfully merged two identical
1324 * pages into one ksm page, NULL otherwise.
31dbd01f 1325 *
80e14822 1326 * Note that this function upgrades page to ksm page: if one of the pages
31dbd01f
IE
1327 * is already a ksm page, try_to_merge_with_ksm_page should be used.
1328 */
8dd3557a
HD
1329static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item,
1330 struct page *page,
1331 struct rmap_item *tree_rmap_item,
1332 struct page *tree_page)
31dbd01f 1333{
80e14822 1334 int err;
31dbd01f 1335
80e14822 1336 err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
31dbd01f 1337 if (!err) {
8dd3557a 1338 err = try_to_merge_with_ksm_page(tree_rmap_item,
80e14822 1339 tree_page, page);
31dbd01f 1340 /*
81464e30
HD
1341 * If that fails, we have a ksm page with only one pte
1342 * pointing to it: so break it.
31dbd01f 1343 */
4035c07a 1344 if (err)
8dd3557a 1345 break_cow(rmap_item);
31dbd01f 1346 }
80e14822 1347 return err ? NULL : page;
31dbd01f
IE
1348}
1349
2c653d0e
AA
1350static __always_inline
1351bool __is_page_sharing_candidate(struct stable_node *stable_node, int offset)
1352{
1353 VM_BUG_ON(stable_node->rmap_hlist_len < 0);
1354 /*
1355 * Check that at least one mapping still exists, otherwise
1356 * there's no much point to merge and share with this
1357 * stable_node, as the underlying tree_page of the other
1358 * sharer is going to be freed soon.
1359 */
1360 return stable_node->rmap_hlist_len &&
1361 stable_node->rmap_hlist_len + offset < ksm_max_page_sharing;
1362}
1363
1364static __always_inline
1365bool is_page_sharing_candidate(struct stable_node *stable_node)
1366{
1367 return __is_page_sharing_candidate(stable_node, 0);
1368}
1369
c01f0b54
CIK
1370static struct page *stable_node_dup(struct stable_node **_stable_node_dup,
1371 struct stable_node **_stable_node,
1372 struct rb_root *root,
1373 bool prune_stale_stable_nodes)
2c653d0e 1374{
b4fecc67 1375 struct stable_node *dup, *found = NULL, *stable_node = *_stable_node;
2c653d0e 1376 struct hlist_node *hlist_safe;
8dc5ffcd 1377 struct page *_tree_page, *tree_page = NULL;
2c653d0e
AA
1378 int nr = 0;
1379 int found_rmap_hlist_len;
1380
1381 if (!prune_stale_stable_nodes ||
1382 time_before(jiffies, stable_node->chain_prune_time +
1383 msecs_to_jiffies(
1384 ksm_stable_node_chains_prune_millisecs)))
1385 prune_stale_stable_nodes = false;
1386 else
1387 stable_node->chain_prune_time = jiffies;
1388
1389 hlist_for_each_entry_safe(dup, hlist_safe,
1390 &stable_node->hlist, hlist_dup) {
1391 cond_resched();
1392 /*
1393 * We must walk all stable_node_dup to prune the stale
1394 * stable nodes during lookup.
1395 *
1396 * get_ksm_page can drop the nodes from the
1397 * stable_node->hlist if they point to freed pages
1398 * (that's why we do a _safe walk). The "dup"
1399 * stable_node parameter itself will be freed from
1400 * under us if it returns NULL.
1401 */
2cee57d1 1402 _tree_page = get_ksm_page(dup, GET_KSM_PAGE_NOLOCK);
2c653d0e
AA
1403 if (!_tree_page)
1404 continue;
1405 nr += 1;
1406 if (is_page_sharing_candidate(dup)) {
1407 if (!found ||
1408 dup->rmap_hlist_len > found_rmap_hlist_len) {
1409 if (found)
8dc5ffcd 1410 put_page(tree_page);
2c653d0e
AA
1411 found = dup;
1412 found_rmap_hlist_len = found->rmap_hlist_len;
8dc5ffcd 1413 tree_page = _tree_page;
2c653d0e 1414
8dc5ffcd 1415 /* skip put_page for found dup */
2c653d0e
AA
1416 if (!prune_stale_stable_nodes)
1417 break;
2c653d0e
AA
1418 continue;
1419 }
1420 }
1421 put_page(_tree_page);
1422 }
1423
80b18dfa
AA
1424 if (found) {
1425 /*
1426 * nr is counting all dups in the chain only if
1427 * prune_stale_stable_nodes is true, otherwise we may
1428 * break the loop at nr == 1 even if there are
1429 * multiple entries.
1430 */
1431 if (prune_stale_stable_nodes && nr == 1) {
2c653d0e
AA
1432 /*
1433 * If there's not just one entry it would
1434 * corrupt memory, better BUG_ON. In KSM
1435 * context with no lock held it's not even
1436 * fatal.
1437 */
1438 BUG_ON(stable_node->hlist.first->next);
1439
1440 /*
1441 * There's just one entry and it is below the
1442 * deduplication limit so drop the chain.
1443 */
1444 rb_replace_node(&stable_node->node, &found->node,
1445 root);
1446 free_stable_node(stable_node);
1447 ksm_stable_node_chains--;
1448 ksm_stable_node_dups--;
b4fecc67 1449 /*
0ba1d0f7
AA
1450 * NOTE: the caller depends on the stable_node
1451 * to be equal to stable_node_dup if the chain
1452 * was collapsed.
b4fecc67 1453 */
0ba1d0f7
AA
1454 *_stable_node = found;
1455 /*
f0953a1b 1456 * Just for robustness, as stable_node is
0ba1d0f7
AA
1457 * otherwise left as a stable pointer, the
1458 * compiler shall optimize it away at build
1459 * time.
1460 */
1461 stable_node = NULL;
80b18dfa
AA
1462 } else if (stable_node->hlist.first != &found->hlist_dup &&
1463 __is_page_sharing_candidate(found, 1)) {
2c653d0e 1464 /*
80b18dfa
AA
1465 * If the found stable_node dup can accept one
1466 * more future merge (in addition to the one
1467 * that is underway) and is not at the head of
1468 * the chain, put it there so next search will
1469 * be quicker in the !prune_stale_stable_nodes
1470 * case.
1471 *
1472 * NOTE: it would be inaccurate to use nr > 1
1473 * instead of checking the hlist.first pointer
1474 * directly, because in the
1475 * prune_stale_stable_nodes case "nr" isn't
1476 * the position of the found dup in the chain,
1477 * but the total number of dups in the chain.
2c653d0e
AA
1478 */
1479 hlist_del(&found->hlist_dup);
1480 hlist_add_head(&found->hlist_dup,
1481 &stable_node->hlist);
1482 }
1483 }
1484
8dc5ffcd
AA
1485 *_stable_node_dup = found;
1486 return tree_page;
2c653d0e
AA
1487}
1488
1489static struct stable_node *stable_node_dup_any(struct stable_node *stable_node,
1490 struct rb_root *root)
1491{
1492 if (!is_stable_node_chain(stable_node))
1493 return stable_node;
1494 if (hlist_empty(&stable_node->hlist)) {
1495 free_stable_node_chain(stable_node, root);
1496 return NULL;
1497 }
1498 return hlist_entry(stable_node->hlist.first,
1499 typeof(*stable_node), hlist_dup);
1500}
1501
8dc5ffcd
AA
1502/*
1503 * Like for get_ksm_page, this function can free the *_stable_node and
1504 * *_stable_node_dup if the returned tree_page is NULL.
1505 *
1506 * It can also free and overwrite *_stable_node with the found
1507 * stable_node_dup if the chain is collapsed (in which case
1508 * *_stable_node will be equal to *_stable_node_dup like if the chain
1509 * never existed). It's up to the caller to verify tree_page is not
1510 * NULL before dereferencing *_stable_node or *_stable_node_dup.
1511 *
1512 * *_stable_node_dup is really a second output parameter of this
1513 * function and will be overwritten in all cases, the caller doesn't
1514 * need to initialize it.
1515 */
1516static struct page *__stable_node_chain(struct stable_node **_stable_node_dup,
1517 struct stable_node **_stable_node,
1518 struct rb_root *root,
1519 bool prune_stale_stable_nodes)
2c653d0e 1520{
b4fecc67 1521 struct stable_node *stable_node = *_stable_node;
2c653d0e
AA
1522 if (!is_stable_node_chain(stable_node)) {
1523 if (is_page_sharing_candidate(stable_node)) {
8dc5ffcd 1524 *_stable_node_dup = stable_node;
2cee57d1 1525 return get_ksm_page(stable_node, GET_KSM_PAGE_NOLOCK);
2c653d0e 1526 }
8dc5ffcd
AA
1527 /*
1528 * _stable_node_dup set to NULL means the stable_node
1529 * reached the ksm_max_page_sharing limit.
1530 */
1531 *_stable_node_dup = NULL;
2c653d0e
AA
1532 return NULL;
1533 }
8dc5ffcd 1534 return stable_node_dup(_stable_node_dup, _stable_node, root,
2c653d0e
AA
1535 prune_stale_stable_nodes);
1536}
1537
8dc5ffcd
AA
1538static __always_inline struct page *chain_prune(struct stable_node **s_n_d,
1539 struct stable_node **s_n,
1540 struct rb_root *root)
2c653d0e 1541{
8dc5ffcd 1542 return __stable_node_chain(s_n_d, s_n, root, true);
2c653d0e
AA
1543}
1544
8dc5ffcd
AA
1545static __always_inline struct page *chain(struct stable_node **s_n_d,
1546 struct stable_node *s_n,
1547 struct rb_root *root)
2c653d0e 1548{
8dc5ffcd
AA
1549 struct stable_node *old_stable_node = s_n;
1550 struct page *tree_page;
1551
1552 tree_page = __stable_node_chain(s_n_d, &s_n, root, false);
1553 /* not pruning dups so s_n cannot have changed */
1554 VM_BUG_ON(s_n != old_stable_node);
1555 return tree_page;
2c653d0e
AA
1556}
1557
31dbd01f 1558/*
8dd3557a 1559 * stable_tree_search - search for page inside the stable tree
31dbd01f
IE
1560 *
1561 * This function checks if there is a page inside the stable tree
1562 * with identical content to the page that we are scanning right now.
1563 *
7b6ba2c7 1564 * This function returns the stable tree node of identical content if found,
31dbd01f
IE
1565 * NULL otherwise.
1566 */
62b61f61 1567static struct page *stable_tree_search(struct page *page)
31dbd01f 1568{
90bd6fd3 1569 int nid;
ef53d16c 1570 struct rb_root *root;
4146d2d6
HD
1571 struct rb_node **new;
1572 struct rb_node *parent;
2c653d0e 1573 struct stable_node *stable_node, *stable_node_dup, *stable_node_any;
4146d2d6 1574 struct stable_node *page_node;
31dbd01f 1575
4146d2d6
HD
1576 page_node = page_stable_node(page);
1577 if (page_node && page_node->head != &migrate_nodes) {
1578 /* ksm page forked */
08beca44 1579 get_page(page);
62b61f61 1580 return page;
08beca44
HD
1581 }
1582
90bd6fd3 1583 nid = get_kpfn_nid(page_to_pfn(page));
ef53d16c 1584 root = root_stable_tree + nid;
4146d2d6 1585again:
ef53d16c 1586 new = &root->rb_node;
4146d2d6 1587 parent = NULL;
90bd6fd3 1588
4146d2d6 1589 while (*new) {
4035c07a 1590 struct page *tree_page;
31dbd01f
IE
1591 int ret;
1592
08beca44 1593 cond_resched();
4146d2d6 1594 stable_node = rb_entry(*new, struct stable_node, node);
2c653d0e 1595 stable_node_any = NULL;
8dc5ffcd 1596 tree_page = chain_prune(&stable_node_dup, &stable_node, root);
b4fecc67
AA
1597 /*
1598 * NOTE: stable_node may have been freed by
1599 * chain_prune() if the returned stable_node_dup is
1600 * not NULL. stable_node_dup may have been inserted in
1601 * the rbtree instead as a regular stable_node (in
1602 * order to collapse the stable_node chain if a single
0ba1d0f7 1603 * stable_node dup was found in it). In such case the
3413b2c8 1604 * stable_node is overwritten by the callee to point
0ba1d0f7
AA
1605 * to the stable_node_dup that was collapsed in the
1606 * stable rbtree and stable_node will be equal to
1607 * stable_node_dup like if the chain never existed.
b4fecc67 1608 */
2c653d0e
AA
1609 if (!stable_node_dup) {
1610 /*
1611 * Either all stable_node dups were full in
1612 * this stable_node chain, or this chain was
1613 * empty and should be rb_erased.
1614 */
1615 stable_node_any = stable_node_dup_any(stable_node,
1616 root);
1617 if (!stable_node_any) {
1618 /* rb_erase just run */
1619 goto again;
1620 }
1621 /*
1622 * Take any of the stable_node dups page of
1623 * this stable_node chain to let the tree walk
1624 * continue. All KSM pages belonging to the
1625 * stable_node dups in a stable_node chain
1626 * have the same content and they're
457aef94 1627 * write protected at all times. Any will work
2c653d0e
AA
1628 * fine to continue the walk.
1629 */
2cee57d1
YS
1630 tree_page = get_ksm_page(stable_node_any,
1631 GET_KSM_PAGE_NOLOCK);
2c653d0e
AA
1632 }
1633 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
f2e5ff85
AA
1634 if (!tree_page) {
1635 /*
1636 * If we walked over a stale stable_node,
1637 * get_ksm_page() will call rb_erase() and it
1638 * may rebalance the tree from under us. So
1639 * restart the search from scratch. Returning
1640 * NULL would be safe too, but we'd generate
1641 * false negative insertions just because some
1642 * stable_node was stale.
1643 */
1644 goto again;
1645 }
31dbd01f 1646
4035c07a 1647 ret = memcmp_pages(page, tree_page);
c8d6553b 1648 put_page(tree_page);
31dbd01f 1649
4146d2d6 1650 parent = *new;
c8d6553b 1651 if (ret < 0)
4146d2d6 1652 new = &parent->rb_left;
c8d6553b 1653 else if (ret > 0)
4146d2d6 1654 new = &parent->rb_right;
c8d6553b 1655 else {
2c653d0e
AA
1656 if (page_node) {
1657 VM_BUG_ON(page_node->head != &migrate_nodes);
1658 /*
1659 * Test if the migrated page should be merged
1660 * into a stable node dup. If the mapcount is
1661 * 1 we can migrate it with another KSM page
1662 * without adding it to the chain.
1663 */
1664 if (page_mapcount(page) > 1)
1665 goto chain_append;
1666 }
1667
1668 if (!stable_node_dup) {
1669 /*
1670 * If the stable_node is a chain and
1671 * we got a payload match in memcmp
1672 * but we cannot merge the scanned
1673 * page in any of the existing
1674 * stable_node dups because they're
1675 * all full, we need to wait the
1676 * scanned page to find itself a match
1677 * in the unstable tree to create a
1678 * brand new KSM page to add later to
1679 * the dups of this stable_node.
1680 */
1681 return NULL;
1682 }
1683
c8d6553b
HD
1684 /*
1685 * Lock and unlock the stable_node's page (which
1686 * might already have been migrated) so that page
1687 * migration is sure to notice its raised count.
1688 * It would be more elegant to return stable_node
1689 * than kpage, but that involves more changes.
1690 */
2cee57d1
YS
1691 tree_page = get_ksm_page(stable_node_dup,
1692 GET_KSM_PAGE_TRYLOCK);
1693
1694 if (PTR_ERR(tree_page) == -EBUSY)
1695 return ERR_PTR(-EBUSY);
1696
2c653d0e
AA
1697 if (unlikely(!tree_page))
1698 /*
1699 * The tree may have been rebalanced,
1700 * so re-evaluate parent and new.
1701 */
4146d2d6 1702 goto again;
2c653d0e
AA
1703 unlock_page(tree_page);
1704
1705 if (get_kpfn_nid(stable_node_dup->kpfn) !=
1706 NUMA(stable_node_dup->nid)) {
1707 put_page(tree_page);
1708 goto replace;
1709 }
1710 return tree_page;
c8d6553b 1711 }
31dbd01f
IE
1712 }
1713
4146d2d6
HD
1714 if (!page_node)
1715 return NULL;
1716
1717 list_del(&page_node->list);
1718 DO_NUMA(page_node->nid = nid);
1719 rb_link_node(&page_node->node, parent, new);
ef53d16c 1720 rb_insert_color(&page_node->node, root);
2c653d0e
AA
1721out:
1722 if (is_page_sharing_candidate(page_node)) {
1723 get_page(page);
1724 return page;
1725 } else
1726 return NULL;
4146d2d6
HD
1727
1728replace:
b4fecc67
AA
1729 /*
1730 * If stable_node was a chain and chain_prune collapsed it,
0ba1d0f7
AA
1731 * stable_node has been updated to be the new regular
1732 * stable_node. A collapse of the chain is indistinguishable
1733 * from the case there was no chain in the stable
1734 * rbtree. Otherwise stable_node is the chain and
1735 * stable_node_dup is the dup to replace.
b4fecc67 1736 */
0ba1d0f7 1737 if (stable_node_dup == stable_node) {
b4fecc67
AA
1738 VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1739 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
2c653d0e
AA
1740 /* there is no chain */
1741 if (page_node) {
1742 VM_BUG_ON(page_node->head != &migrate_nodes);
1743 list_del(&page_node->list);
1744 DO_NUMA(page_node->nid = nid);
b4fecc67
AA
1745 rb_replace_node(&stable_node_dup->node,
1746 &page_node->node,
2c653d0e
AA
1747 root);
1748 if (is_page_sharing_candidate(page_node))
1749 get_page(page);
1750 else
1751 page = NULL;
1752 } else {
b4fecc67 1753 rb_erase(&stable_node_dup->node, root);
2c653d0e
AA
1754 page = NULL;
1755 }
4146d2d6 1756 } else {
2c653d0e
AA
1757 VM_BUG_ON(!is_stable_node_chain(stable_node));
1758 __stable_node_dup_del(stable_node_dup);
1759 if (page_node) {
1760 VM_BUG_ON(page_node->head != &migrate_nodes);
1761 list_del(&page_node->list);
1762 DO_NUMA(page_node->nid = nid);
1763 stable_node_chain_add_dup(page_node, stable_node);
1764 if (is_page_sharing_candidate(page_node))
1765 get_page(page);
1766 else
1767 page = NULL;
1768 } else {
1769 page = NULL;
1770 }
4146d2d6 1771 }
2c653d0e
AA
1772 stable_node_dup->head = &migrate_nodes;
1773 list_add(&stable_node_dup->list, stable_node_dup->head);
4146d2d6 1774 return page;
2c653d0e
AA
1775
1776chain_append:
1777 /* stable_node_dup could be null if it reached the limit */
1778 if (!stable_node_dup)
1779 stable_node_dup = stable_node_any;
b4fecc67
AA
1780 /*
1781 * If stable_node was a chain and chain_prune collapsed it,
0ba1d0f7
AA
1782 * stable_node has been updated to be the new regular
1783 * stable_node. A collapse of the chain is indistinguishable
1784 * from the case there was no chain in the stable
1785 * rbtree. Otherwise stable_node is the chain and
1786 * stable_node_dup is the dup to replace.
b4fecc67 1787 */
0ba1d0f7 1788 if (stable_node_dup == stable_node) {
b4fecc67 1789 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
2c653d0e
AA
1790 /* chain is missing so create it */
1791 stable_node = alloc_stable_node_chain(stable_node_dup,
1792 root);
1793 if (!stable_node)
1794 return NULL;
1795 }
1796 /*
1797 * Add this stable_node dup that was
1798 * migrated to the stable_node chain
1799 * of the current nid for this page
1800 * content.
1801 */
b4fecc67 1802 VM_BUG_ON(!is_stable_node_dup(stable_node_dup));
2c653d0e
AA
1803 VM_BUG_ON(page_node->head != &migrate_nodes);
1804 list_del(&page_node->list);
1805 DO_NUMA(page_node->nid = nid);
1806 stable_node_chain_add_dup(page_node, stable_node);
1807 goto out;
31dbd01f
IE
1808}
1809
1810/*
e850dcf5 1811 * stable_tree_insert - insert stable tree node pointing to new ksm page
31dbd01f
IE
1812 * into the stable tree.
1813 *
7b6ba2c7
HD
1814 * This function returns the stable tree node just allocated on success,
1815 * NULL otherwise.
31dbd01f 1816 */
7b6ba2c7 1817static struct stable_node *stable_tree_insert(struct page *kpage)
31dbd01f 1818{
90bd6fd3
PH
1819 int nid;
1820 unsigned long kpfn;
ef53d16c 1821 struct rb_root *root;
90bd6fd3 1822 struct rb_node **new;
f2e5ff85 1823 struct rb_node *parent;
2c653d0e
AA
1824 struct stable_node *stable_node, *stable_node_dup, *stable_node_any;
1825 bool need_chain = false;
31dbd01f 1826
90bd6fd3
PH
1827 kpfn = page_to_pfn(kpage);
1828 nid = get_kpfn_nid(kpfn);
ef53d16c 1829 root = root_stable_tree + nid;
f2e5ff85
AA
1830again:
1831 parent = NULL;
ef53d16c 1832 new = &root->rb_node;
90bd6fd3 1833
31dbd01f 1834 while (*new) {
4035c07a 1835 struct page *tree_page;
31dbd01f
IE
1836 int ret;
1837
08beca44 1838 cond_resched();
7b6ba2c7 1839 stable_node = rb_entry(*new, struct stable_node, node);
2c653d0e 1840 stable_node_any = NULL;
8dc5ffcd 1841 tree_page = chain(&stable_node_dup, stable_node, root);
2c653d0e
AA
1842 if (!stable_node_dup) {
1843 /*
1844 * Either all stable_node dups were full in
1845 * this stable_node chain, or this chain was
1846 * empty and should be rb_erased.
1847 */
1848 stable_node_any = stable_node_dup_any(stable_node,
1849 root);
1850 if (!stable_node_any) {
1851 /* rb_erase just run */
1852 goto again;
1853 }
1854 /*
1855 * Take any of the stable_node dups page of
1856 * this stable_node chain to let the tree walk
1857 * continue. All KSM pages belonging to the
1858 * stable_node dups in a stable_node chain
1859 * have the same content and they're
457aef94 1860 * write protected at all times. Any will work
2c653d0e
AA
1861 * fine to continue the walk.
1862 */
2cee57d1
YS
1863 tree_page = get_ksm_page(stable_node_any,
1864 GET_KSM_PAGE_NOLOCK);
2c653d0e
AA
1865 }
1866 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
f2e5ff85
AA
1867 if (!tree_page) {
1868 /*
1869 * If we walked over a stale stable_node,
1870 * get_ksm_page() will call rb_erase() and it
1871 * may rebalance the tree from under us. So
1872 * restart the search from scratch. Returning
1873 * NULL would be safe too, but we'd generate
1874 * false negative insertions just because some
1875 * stable_node was stale.
1876 */
1877 goto again;
1878 }
31dbd01f 1879
4035c07a
HD
1880 ret = memcmp_pages(kpage, tree_page);
1881 put_page(tree_page);
31dbd01f
IE
1882
1883 parent = *new;
1884 if (ret < 0)
1885 new = &parent->rb_left;
1886 else if (ret > 0)
1887 new = &parent->rb_right;
1888 else {
2c653d0e
AA
1889 need_chain = true;
1890 break;
31dbd01f
IE
1891 }
1892 }
1893
2c653d0e
AA
1894 stable_node_dup = alloc_stable_node();
1895 if (!stable_node_dup)
7b6ba2c7 1896 return NULL;
31dbd01f 1897
2c653d0e
AA
1898 INIT_HLIST_HEAD(&stable_node_dup->hlist);
1899 stable_node_dup->kpfn = kpfn;
1900 set_page_stable_node(kpage, stable_node_dup);
1901 stable_node_dup->rmap_hlist_len = 0;
1902 DO_NUMA(stable_node_dup->nid = nid);
1903 if (!need_chain) {
1904 rb_link_node(&stable_node_dup->node, parent, new);
1905 rb_insert_color(&stable_node_dup->node, root);
1906 } else {
1907 if (!is_stable_node_chain(stable_node)) {
1908 struct stable_node *orig = stable_node;
1909 /* chain is missing so create it */
1910 stable_node = alloc_stable_node_chain(orig, root);
1911 if (!stable_node) {
1912 free_stable_node(stable_node_dup);
1913 return NULL;
1914 }
1915 }
1916 stable_node_chain_add_dup(stable_node_dup, stable_node);
1917 }
08beca44 1918
2c653d0e 1919 return stable_node_dup;
31dbd01f
IE
1920}
1921
1922/*
8dd3557a
HD
1923 * unstable_tree_search_insert - search for identical page,
1924 * else insert rmap_item into the unstable tree.
31dbd01f
IE
1925 *
1926 * This function searches for a page in the unstable tree identical to the
1927 * page currently being scanned; and if no identical page is found in the
1928 * tree, we insert rmap_item as a new object into the unstable tree.
1929 *
1930 * This function returns pointer to rmap_item found to be identical
1931 * to the currently scanned page, NULL otherwise.
1932 *
1933 * This function does both searching and inserting, because they share
1934 * the same walking algorithm in an rbtree.
1935 */
8dd3557a
HD
1936static
1937struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item,
1938 struct page *page,
1939 struct page **tree_pagep)
31dbd01f 1940{
90bd6fd3
PH
1941 struct rb_node **new;
1942 struct rb_root *root;
31dbd01f 1943 struct rb_node *parent = NULL;
90bd6fd3
PH
1944 int nid;
1945
1946 nid = get_kpfn_nid(page_to_pfn(page));
ef53d16c 1947 root = root_unstable_tree + nid;
90bd6fd3 1948 new = &root->rb_node;
31dbd01f
IE
1949
1950 while (*new) {
1951 struct rmap_item *tree_rmap_item;
8dd3557a 1952 struct page *tree_page;
31dbd01f
IE
1953 int ret;
1954
d178f27f 1955 cond_resched();
31dbd01f 1956 tree_rmap_item = rb_entry(*new, struct rmap_item, node);
8dd3557a 1957 tree_page = get_mergeable_page(tree_rmap_item);
c8f95ed1 1958 if (!tree_page)
31dbd01f
IE
1959 return NULL;
1960
1961 /*
8dd3557a 1962 * Don't substitute a ksm page for a forked page.
31dbd01f 1963 */
8dd3557a
HD
1964 if (page == tree_page) {
1965 put_page(tree_page);
31dbd01f
IE
1966 return NULL;
1967 }
1968
8dd3557a 1969 ret = memcmp_pages(page, tree_page);
31dbd01f
IE
1970
1971 parent = *new;
1972 if (ret < 0) {
8dd3557a 1973 put_page(tree_page);
31dbd01f
IE
1974 new = &parent->rb_left;
1975 } else if (ret > 0) {
8dd3557a 1976 put_page(tree_page);
31dbd01f 1977 new = &parent->rb_right;
b599cbdf
HD
1978 } else if (!ksm_merge_across_nodes &&
1979 page_to_nid(tree_page) != nid) {
1980 /*
1981 * If tree_page has been migrated to another NUMA node,
1982 * it will be flushed out and put in the right unstable
1983 * tree next time: only merge with it when across_nodes.
1984 */
1985 put_page(tree_page);
1986 return NULL;
31dbd01f 1987 } else {
8dd3557a 1988 *tree_pagep = tree_page;
31dbd01f
IE
1989 return tree_rmap_item;
1990 }
1991 }
1992
7b6ba2c7 1993 rmap_item->address |= UNSTABLE_FLAG;
31dbd01f 1994 rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
e850dcf5 1995 DO_NUMA(rmap_item->nid = nid);
31dbd01f 1996 rb_link_node(&rmap_item->node, parent, new);
90bd6fd3 1997 rb_insert_color(&rmap_item->node, root);
31dbd01f 1998
473b0ce4 1999 ksm_pages_unshared++;
31dbd01f
IE
2000 return NULL;
2001}
2002
2003/*
2004 * stable_tree_append - add another rmap_item to the linked list of
2005 * rmap_items hanging off a given node of the stable tree, all sharing
2006 * the same ksm page.
2007 */
2008static void stable_tree_append(struct rmap_item *rmap_item,
2c653d0e
AA
2009 struct stable_node *stable_node,
2010 bool max_page_sharing_bypass)
31dbd01f 2011{
2c653d0e
AA
2012 /*
2013 * rmap won't find this mapping if we don't insert the
2014 * rmap_item in the right stable_node
2015 * duplicate. page_migration could break later if rmap breaks,
2016 * so we can as well crash here. We really need to check for
2017 * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check
457aef94 2018 * for other negative values as an underflow if detected here
2c653d0e
AA
2019 * for the first time (and not when decreasing rmap_hlist_len)
2020 * would be sign of memory corruption in the stable_node.
2021 */
2022 BUG_ON(stable_node->rmap_hlist_len < 0);
2023
2024 stable_node->rmap_hlist_len++;
2025 if (!max_page_sharing_bypass)
2026 /* possibly non fatal but unexpected overflow, only warn */
2027 WARN_ON_ONCE(stable_node->rmap_hlist_len >
2028 ksm_max_page_sharing);
2029
7b6ba2c7 2030 rmap_item->head = stable_node;
31dbd01f 2031 rmap_item->address |= STABLE_FLAG;
7b6ba2c7 2032 hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
e178dfde 2033
7b6ba2c7
HD
2034 if (rmap_item->hlist.next)
2035 ksm_pages_sharing++;
2036 else
2037 ksm_pages_shared++;
76093853 2038
2039 rmap_item->mm->ksm_merging_pages++;
31dbd01f
IE
2040}
2041
2042/*
81464e30
HD
2043 * cmp_and_merge_page - first see if page can be merged into the stable tree;
2044 * if not, compare checksum to previous and if it's the same, see if page can
2045 * be inserted into the unstable tree, or merged with a page already there and
2046 * both transferred to the stable tree.
31dbd01f
IE
2047 *
2048 * @page: the page that we are searching identical page to.
2049 * @rmap_item: the reverse mapping into the virtual address of this page
2050 */
2051static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
2052{
4b22927f 2053 struct mm_struct *mm = rmap_item->mm;
31dbd01f 2054 struct rmap_item *tree_rmap_item;
8dd3557a 2055 struct page *tree_page = NULL;
7b6ba2c7 2056 struct stable_node *stable_node;
8dd3557a 2057 struct page *kpage;
31dbd01f
IE
2058 unsigned int checksum;
2059 int err;
2c653d0e 2060 bool max_page_sharing_bypass = false;
31dbd01f 2061
4146d2d6
HD
2062 stable_node = page_stable_node(page);
2063 if (stable_node) {
2064 if (stable_node->head != &migrate_nodes &&
2c653d0e
AA
2065 get_kpfn_nid(READ_ONCE(stable_node->kpfn)) !=
2066 NUMA(stable_node->nid)) {
2067 stable_node_dup_del(stable_node);
4146d2d6
HD
2068 stable_node->head = &migrate_nodes;
2069 list_add(&stable_node->list, stable_node->head);
2070 }
2071 if (stable_node->head != &migrate_nodes &&
2072 rmap_item->head == stable_node)
2073 return;
2c653d0e
AA
2074 /*
2075 * If it's a KSM fork, allow it to go over the sharing limit
2076 * without warnings.
2077 */
2078 if (!is_page_sharing_candidate(stable_node))
2079 max_page_sharing_bypass = true;
4146d2d6 2080 }
31dbd01f
IE
2081
2082 /* We first start with searching the page inside the stable tree */
62b61f61 2083 kpage = stable_tree_search(page);
4146d2d6
HD
2084 if (kpage == page && rmap_item->head == stable_node) {
2085 put_page(kpage);
2086 return;
2087 }
2088
2089 remove_rmap_item_from_tree(rmap_item);
2090
62b61f61 2091 if (kpage) {
2cee57d1
YS
2092 if (PTR_ERR(kpage) == -EBUSY)
2093 return;
2094
08beca44 2095 err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
31dbd01f
IE
2096 if (!err) {
2097 /*
2098 * The page was successfully merged:
2099 * add its rmap_item to the stable tree.
2100 */
5ad64688 2101 lock_page(kpage);
2c653d0e
AA
2102 stable_tree_append(rmap_item, page_stable_node(kpage),
2103 max_page_sharing_bypass);
5ad64688 2104 unlock_page(kpage);
31dbd01f 2105 }
8dd3557a 2106 put_page(kpage);
31dbd01f
IE
2107 return;
2108 }
2109
2110 /*
4035c07a
HD
2111 * If the hash value of the page has changed from the last time
2112 * we calculated it, this page is changing frequently: therefore we
2113 * don't want to insert it in the unstable tree, and we don't want
2114 * to waste our time searching for something identical to it there.
31dbd01f
IE
2115 */
2116 checksum = calc_checksum(page);
2117 if (rmap_item->oldchecksum != checksum) {
2118 rmap_item->oldchecksum = checksum;
2119 return;
2120 }
2121
e86c59b1
CI
2122 /*
2123 * Same checksum as an empty page. We attempt to merge it with the
2124 * appropriate zero page if the user enabled this via sysfs.
2125 */
2126 if (ksm_use_zero_pages && (checksum == zero_checksum)) {
2127 struct vm_area_struct *vma;
2128
d8ed45c5 2129 mmap_read_lock(mm);
4b22927f 2130 vma = find_mergeable_vma(mm, rmap_item->address);
56df70a6
MS
2131 if (vma) {
2132 err = try_to_merge_one_page(vma, page,
2133 ZERO_PAGE(rmap_item->address));
2134 } else {
2135 /*
2136 * If the vma is out of date, we do not need to
2137 * continue.
2138 */
2139 err = 0;
2140 }
d8ed45c5 2141 mmap_read_unlock(mm);
e86c59b1
CI
2142 /*
2143 * In case of failure, the page was not really empty, so we
2144 * need to continue. Otherwise we're done.
2145 */
2146 if (!err)
2147 return;
2148 }
8dd3557a
HD
2149 tree_rmap_item =
2150 unstable_tree_search_insert(rmap_item, page, &tree_page);
31dbd01f 2151 if (tree_rmap_item) {
77da2ba0
CI
2152 bool split;
2153
8dd3557a
HD
2154 kpage = try_to_merge_two_pages(rmap_item, page,
2155 tree_rmap_item, tree_page);
77da2ba0
CI
2156 /*
2157 * If both pages we tried to merge belong to the same compound
2158 * page, then we actually ended up increasing the reference
2159 * count of the same compound page twice, and split_huge_page
2160 * failed.
2161 * Here we set a flag if that happened, and we use it later to
2162 * try split_huge_page again. Since we call put_page right
2163 * afterwards, the reference count will be correct and
2164 * split_huge_page should succeed.
2165 */
2166 split = PageTransCompound(page)
2167 && compound_head(page) == compound_head(tree_page);
8dd3557a 2168 put_page(tree_page);
8dd3557a 2169 if (kpage) {
bc56620b
HD
2170 /*
2171 * The pages were successfully merged: insert new
2172 * node in the stable tree and add both rmap_items.
2173 */
5ad64688 2174 lock_page(kpage);
7b6ba2c7
HD
2175 stable_node = stable_tree_insert(kpage);
2176 if (stable_node) {
2c653d0e
AA
2177 stable_tree_append(tree_rmap_item, stable_node,
2178 false);
2179 stable_tree_append(rmap_item, stable_node,
2180 false);
7b6ba2c7 2181 }
5ad64688 2182 unlock_page(kpage);
7b6ba2c7 2183
31dbd01f
IE
2184 /*
2185 * If we fail to insert the page into the stable tree,
2186 * we will have 2 virtual addresses that are pointing
2187 * to a ksm page left outside the stable tree,
2188 * in which case we need to break_cow on both.
2189 */
7b6ba2c7 2190 if (!stable_node) {
8dd3557a
HD
2191 break_cow(tree_rmap_item);
2192 break_cow(rmap_item);
31dbd01f 2193 }
77da2ba0
CI
2194 } else if (split) {
2195 /*
2196 * We are here if we tried to merge two pages and
2197 * failed because they both belonged to the same
2198 * compound page. We will split the page now, but no
2199 * merging will take place.
2200 * We do not want to add the cost of a full lock; if
2201 * the page is locked, it is better to skip it and
2202 * perhaps try again later.
2203 */
2204 if (!trylock_page(page))
2205 return;
2206 split_huge_page(page);
2207 unlock_page(page);
31dbd01f 2208 }
31dbd01f
IE
2209 }
2210}
2211
2212static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
6514d511 2213 struct rmap_item **rmap_list,
31dbd01f
IE
2214 unsigned long addr)
2215{
2216 struct rmap_item *rmap_item;
2217
6514d511
HD
2218 while (*rmap_list) {
2219 rmap_item = *rmap_list;
93d17715 2220 if ((rmap_item->address & PAGE_MASK) == addr)
31dbd01f 2221 return rmap_item;
31dbd01f
IE
2222 if (rmap_item->address > addr)
2223 break;
6514d511 2224 *rmap_list = rmap_item->rmap_list;
31dbd01f 2225 remove_rmap_item_from_tree(rmap_item);
31dbd01f
IE
2226 free_rmap_item(rmap_item);
2227 }
2228
2229 rmap_item = alloc_rmap_item();
2230 if (rmap_item) {
2231 /* It has already been zeroed */
2232 rmap_item->mm = mm_slot->mm;
2233 rmap_item->address = addr;
6514d511
HD
2234 rmap_item->rmap_list = *rmap_list;
2235 *rmap_list = rmap_item;
31dbd01f
IE
2236 }
2237 return rmap_item;
2238}
2239
2240static struct rmap_item *scan_get_next_rmap_item(struct page **page)
2241{
2242 struct mm_struct *mm;
2243 struct mm_slot *slot;
2244 struct vm_area_struct *vma;
2245 struct rmap_item *rmap_item;
90bd6fd3 2246 int nid;
31dbd01f
IE
2247
2248 if (list_empty(&ksm_mm_head.mm_list))
2249 return NULL;
2250
2251 slot = ksm_scan.mm_slot;
2252 if (slot == &ksm_mm_head) {
2919bfd0
HD
2253 /*
2254 * A number of pages can hang around indefinitely on per-cpu
2255 * pagevecs, raised page count preventing write_protect_page
2256 * from merging them. Though it doesn't really matter much,
2257 * it is puzzling to see some stuck in pages_volatile until
2258 * other activity jostles them out, and they also prevented
2259 * LTP's KSM test from succeeding deterministically; so drain
2260 * them here (here rather than on entry to ksm_do_scan(),
2261 * so we don't IPI too often when pages_to_scan is set low).
2262 */
2263 lru_add_drain_all();
2264
4146d2d6
HD
2265 /*
2266 * Whereas stale stable_nodes on the stable_tree itself
2267 * get pruned in the regular course of stable_tree_search(),
2268 * those moved out to the migrate_nodes list can accumulate:
2269 * so prune them once before each full scan.
2270 */
2271 if (!ksm_merge_across_nodes) {
03640418 2272 struct stable_node *stable_node, *next;
4146d2d6
HD
2273 struct page *page;
2274
03640418
GT
2275 list_for_each_entry_safe(stable_node, next,
2276 &migrate_nodes, list) {
2cee57d1
YS
2277 page = get_ksm_page(stable_node,
2278 GET_KSM_PAGE_NOLOCK);
4146d2d6
HD
2279 if (page)
2280 put_page(page);
2281 cond_resched();
2282 }
2283 }
2284
ef53d16c 2285 for (nid = 0; nid < ksm_nr_node_ids; nid++)
90bd6fd3 2286 root_unstable_tree[nid] = RB_ROOT;
31dbd01f
IE
2287
2288 spin_lock(&ksm_mmlist_lock);
2289 slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
2290 ksm_scan.mm_slot = slot;
2291 spin_unlock(&ksm_mmlist_lock);
2b472611
HD
2292 /*
2293 * Although we tested list_empty() above, a racing __ksm_exit
2294 * of the last mm on the list may have removed it since then.
2295 */
2296 if (slot == &ksm_mm_head)
2297 return NULL;
31dbd01f
IE
2298next_mm:
2299 ksm_scan.address = 0;
6514d511 2300 ksm_scan.rmap_list = &slot->rmap_list;
31dbd01f
IE
2301 }
2302
2303 mm = slot->mm;
d8ed45c5 2304 mmap_read_lock(mm);
9ba69294
HD
2305 if (ksm_test_exit(mm))
2306 vma = NULL;
2307 else
2308 vma = find_vma(mm, ksm_scan.address);
2309
2310 for (; vma; vma = vma->vm_next) {
31dbd01f
IE
2311 if (!(vma->vm_flags & VM_MERGEABLE))
2312 continue;
2313 if (ksm_scan.address < vma->vm_start)
2314 ksm_scan.address = vma->vm_start;
2315 if (!vma->anon_vma)
2316 ksm_scan.address = vma->vm_end;
2317
2318 while (ksm_scan.address < vma->vm_end) {
9ba69294
HD
2319 if (ksm_test_exit(mm))
2320 break;
31dbd01f 2321 *page = follow_page(vma, ksm_scan.address, FOLL_GET);
3218f871 2322 if (IS_ERR_OR_NULL(*page) || is_zone_device_page(*page)) {
21ae5b01
AA
2323 ksm_scan.address += PAGE_SIZE;
2324 cond_resched();
2325 continue;
2326 }
f765f540 2327 if (PageAnon(*page)) {
31dbd01f
IE
2328 flush_anon_page(vma, *page, ksm_scan.address);
2329 flush_dcache_page(*page);
2330 rmap_item = get_next_rmap_item(slot,
6514d511 2331 ksm_scan.rmap_list, ksm_scan.address);
31dbd01f 2332 if (rmap_item) {
6514d511
HD
2333 ksm_scan.rmap_list =
2334 &rmap_item->rmap_list;
31dbd01f
IE
2335 ksm_scan.address += PAGE_SIZE;
2336 } else
2337 put_page(*page);
d8ed45c5 2338 mmap_read_unlock(mm);
31dbd01f
IE
2339 return rmap_item;
2340 }
21ae5b01 2341 put_page(*page);
31dbd01f
IE
2342 ksm_scan.address += PAGE_SIZE;
2343 cond_resched();
2344 }
2345 }
2346
9ba69294
HD
2347 if (ksm_test_exit(mm)) {
2348 ksm_scan.address = 0;
6514d511 2349 ksm_scan.rmap_list = &slot->rmap_list;
9ba69294 2350 }
31dbd01f
IE
2351 /*
2352 * Nuke all the rmap_items that are above this current rmap:
2353 * because there were no VM_MERGEABLE vmas with such addresses.
2354 */
420be4ed 2355 remove_trailing_rmap_items(ksm_scan.rmap_list);
31dbd01f
IE
2356
2357 spin_lock(&ksm_mmlist_lock);
cd551f97
HD
2358 ksm_scan.mm_slot = list_entry(slot->mm_list.next,
2359 struct mm_slot, mm_list);
2360 if (ksm_scan.address == 0) {
2361 /*
c1e8d7c6 2362 * We've completed a full scan of all vmas, holding mmap_lock
cd551f97
HD
2363 * throughout, and found no VM_MERGEABLE: so do the same as
2364 * __ksm_exit does to remove this mm from all our lists now.
9ba69294
HD
2365 * This applies either when cleaning up after __ksm_exit
2366 * (but beware: we can reach here even before __ksm_exit),
2367 * or when all VM_MERGEABLE areas have been unmapped (and
c1e8d7c6 2368 * mmap_lock then protects against race with MADV_MERGEABLE).
cd551f97 2369 */
4ca3a69b 2370 hash_del(&slot->link);
cd551f97 2371 list_del(&slot->mm_list);
9ba69294
HD
2372 spin_unlock(&ksm_mmlist_lock);
2373
cd551f97
HD
2374 free_mm_slot(slot);
2375 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
d8ed45c5 2376 mmap_read_unlock(mm);
9ba69294
HD
2377 mmdrop(mm);
2378 } else {
d8ed45c5 2379 mmap_read_unlock(mm);
7496fea9 2380 /*
3e4e28c5 2381 * mmap_read_unlock(mm) first because after
7496fea9
ZC
2382 * spin_unlock(&ksm_mmlist_lock) run, the "mm" may
2383 * already have been freed under us by __ksm_exit()
2384 * because the "mm_slot" is still hashed and
2385 * ksm_scan.mm_slot doesn't point to it anymore.
2386 */
2387 spin_unlock(&ksm_mmlist_lock);
cd551f97 2388 }
31dbd01f
IE
2389
2390 /* Repeat until we've completed scanning the whole list */
cd551f97 2391 slot = ksm_scan.mm_slot;
31dbd01f
IE
2392 if (slot != &ksm_mm_head)
2393 goto next_mm;
2394
31dbd01f
IE
2395 ksm_scan.seqnr++;
2396 return NULL;
2397}
2398
2399/**
2400 * ksm_do_scan - the ksm scanner main worker function.
b7701a5f 2401 * @scan_npages: number of pages we want to scan before we return.
31dbd01f
IE
2402 */
2403static void ksm_do_scan(unsigned int scan_npages)
2404{
2405 struct rmap_item *rmap_item;
3f649ab7 2406 struct page *page;
31dbd01f 2407
878aee7d 2408 while (scan_npages-- && likely(!freezing(current))) {
31dbd01f
IE
2409 cond_resched();
2410 rmap_item = scan_get_next_rmap_item(&page);
2411 if (!rmap_item)
2412 return;
4146d2d6 2413 cmp_and_merge_page(page, rmap_item);
31dbd01f
IE
2414 put_page(page);
2415 }
2416}
2417
6e158384
HD
2418static int ksmd_should_run(void)
2419{
2420 return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
2421}
2422
31dbd01f
IE
2423static int ksm_scan_thread(void *nothing)
2424{
fcf9a0ef
KT
2425 unsigned int sleep_ms;
2426
878aee7d 2427 set_freezable();
339aa624 2428 set_user_nice(current, 5);
31dbd01f
IE
2429
2430 while (!kthread_should_stop()) {
6e158384 2431 mutex_lock(&ksm_thread_mutex);
ef4d43a8 2432 wait_while_offlining();
6e158384 2433 if (ksmd_should_run())
31dbd01f 2434 ksm_do_scan(ksm_thread_pages_to_scan);
6e158384
HD
2435 mutex_unlock(&ksm_thread_mutex);
2436
878aee7d
AA
2437 try_to_freeze();
2438
6e158384 2439 if (ksmd_should_run()) {
fcf9a0ef
KT
2440 sleep_ms = READ_ONCE(ksm_thread_sleep_millisecs);
2441 wait_event_interruptible_timeout(ksm_iter_wait,
2442 sleep_ms != READ_ONCE(ksm_thread_sleep_millisecs),
2443 msecs_to_jiffies(sleep_ms));
31dbd01f 2444 } else {
878aee7d 2445 wait_event_freezable(ksm_thread_wait,
6e158384 2446 ksmd_should_run() || kthread_should_stop());
31dbd01f
IE
2447 }
2448 }
2449 return 0;
2450}
2451
f8af4da3
HD
2452int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
2453 unsigned long end, int advice, unsigned long *vm_flags)
2454{
2455 struct mm_struct *mm = vma->vm_mm;
d952b791 2456 int err;
f8af4da3
HD
2457
2458 switch (advice) {
2459 case MADV_MERGEABLE:
2460 /*
2461 * Be somewhat over-protective for now!
2462 */
2463 if (*vm_flags & (VM_MERGEABLE | VM_SHARED | VM_MAYSHARE |
2464 VM_PFNMAP | VM_IO | VM_DONTEXPAND |
0661a336 2465 VM_HUGETLB | VM_MIXEDMAP))
f8af4da3
HD
2466 return 0; /* just ignore the advice */
2467
e1fb4a08
DJ
2468 if (vma_is_dax(vma))
2469 return 0;
2470
12564485
SA
2471#ifdef VM_SAO
2472 if (*vm_flags & VM_SAO)
2473 return 0;
2474#endif
74a04967
KA
2475#ifdef VM_SPARC_ADI
2476 if (*vm_flags & VM_SPARC_ADI)
2477 return 0;
2478#endif
cc2383ec 2479
d952b791
HD
2480 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2481 err = __ksm_enter(mm);
2482 if (err)
2483 return err;
2484 }
f8af4da3
HD
2485
2486 *vm_flags |= VM_MERGEABLE;
2487 break;
2488
2489 case MADV_UNMERGEABLE:
2490 if (!(*vm_flags & VM_MERGEABLE))
2491 return 0; /* just ignore the advice */
2492
d952b791
HD
2493 if (vma->anon_vma) {
2494 err = unmerge_ksm_pages(vma, start, end);
2495 if (err)
2496 return err;
2497 }
f8af4da3
HD
2498
2499 *vm_flags &= ~VM_MERGEABLE;
2500 break;
2501 }
2502
2503 return 0;
2504}
33cf1707 2505EXPORT_SYMBOL_GPL(ksm_madvise);
f8af4da3
HD
2506
2507int __ksm_enter(struct mm_struct *mm)
2508{
6e158384
HD
2509 struct mm_slot *mm_slot;
2510 int needs_wakeup;
2511
2512 mm_slot = alloc_mm_slot();
31dbd01f
IE
2513 if (!mm_slot)
2514 return -ENOMEM;
2515
6e158384
HD
2516 /* Check ksm_run too? Would need tighter locking */
2517 needs_wakeup = list_empty(&ksm_mm_head.mm_list);
2518
31dbd01f
IE
2519 spin_lock(&ksm_mmlist_lock);
2520 insert_to_mm_slots_hash(mm, mm_slot);
2521 /*
cbf86cfe
HD
2522 * When KSM_RUN_MERGE (or KSM_RUN_STOP),
2523 * insert just behind the scanning cursor, to let the area settle
31dbd01f
IE
2524 * down a little; when fork is followed by immediate exec, we don't
2525 * want ksmd to waste time setting up and tearing down an rmap_list.
cbf86cfe
HD
2526 *
2527 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
2528 * scanning cursor, otherwise KSM pages in newly forked mms will be
2529 * missed: then we might as well insert at the end of the list.
31dbd01f 2530 */
cbf86cfe
HD
2531 if (ksm_run & KSM_RUN_UNMERGE)
2532 list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list);
2533 else
2534 list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
31dbd01f
IE
2535 spin_unlock(&ksm_mmlist_lock);
2536
f8af4da3 2537 set_bit(MMF_VM_MERGEABLE, &mm->flags);
f1f10076 2538 mmgrab(mm);
6e158384
HD
2539
2540 if (needs_wakeup)
2541 wake_up_interruptible(&ksm_thread_wait);
2542
f8af4da3
HD
2543 return 0;
2544}
2545
1c2fb7a4 2546void __ksm_exit(struct mm_struct *mm)
f8af4da3 2547{
cd551f97 2548 struct mm_slot *mm_slot;
9ba69294 2549 int easy_to_free = 0;
cd551f97 2550
31dbd01f 2551 /*
9ba69294
HD
2552 * This process is exiting: if it's straightforward (as is the
2553 * case when ksmd was never running), free mm_slot immediately.
2554 * But if it's at the cursor or has rmap_items linked to it, use
c1e8d7c6 2555 * mmap_lock to synchronize with any break_cows before pagetables
9ba69294
HD
2556 * are freed, and leave the mm_slot on the list for ksmd to free.
2557 * Beware: ksm may already have noticed it exiting and freed the slot.
31dbd01f 2558 */
9ba69294 2559
cd551f97
HD
2560 spin_lock(&ksm_mmlist_lock);
2561 mm_slot = get_mm_slot(mm);
9ba69294 2562 if (mm_slot && ksm_scan.mm_slot != mm_slot) {
6514d511 2563 if (!mm_slot->rmap_list) {
4ca3a69b 2564 hash_del(&mm_slot->link);
9ba69294
HD
2565 list_del(&mm_slot->mm_list);
2566 easy_to_free = 1;
2567 } else {
2568 list_move(&mm_slot->mm_list,
2569 &ksm_scan.mm_slot->mm_list);
2570 }
cd551f97 2571 }
cd551f97
HD
2572 spin_unlock(&ksm_mmlist_lock);
2573
9ba69294
HD
2574 if (easy_to_free) {
2575 free_mm_slot(mm_slot);
2576 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2577 mmdrop(mm);
2578 } else if (mm_slot) {
d8ed45c5
ML
2579 mmap_write_lock(mm);
2580 mmap_write_unlock(mm);
9ba69294 2581 }
31dbd01f
IE
2582}
2583
cbf86cfe 2584struct page *ksm_might_need_to_copy(struct page *page,
5ad64688
HD
2585 struct vm_area_struct *vma, unsigned long address)
2586{
e05b3453
MWO
2587 struct folio *folio = page_folio(page);
2588 struct anon_vma *anon_vma = folio_anon_vma(folio);
5ad64688
HD
2589 struct page *new_page;
2590
cbf86cfe
HD
2591 if (PageKsm(page)) {
2592 if (page_stable_node(page) &&
2593 !(ksm_run & KSM_RUN_UNMERGE))
2594 return page; /* no need to copy it */
2595 } else if (!anon_vma) {
2596 return page; /* no need to copy it */
e1c63e11
NS
2597 } else if (page->index == linear_page_index(vma, address) &&
2598 anon_vma->root == vma->anon_vma->root) {
cbf86cfe
HD
2599 return page; /* still no need to copy it */
2600 }
2601 if (!PageUptodate(page))
2602 return page; /* let do_swap_page report the error */
2603
5ad64688 2604 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
8f425e4e
MWO
2605 if (new_page &&
2606 mem_cgroup_charge(page_folio(new_page), vma->vm_mm, GFP_KERNEL)) {
62fdb163
HD
2607 put_page(new_page);
2608 new_page = NULL;
2609 }
5ad64688
HD
2610 if (new_page) {
2611 copy_user_highpage(new_page, page, address, vma);
2612
2613 SetPageDirty(new_page);
2614 __SetPageUptodate(new_page);
48c935ad 2615 __SetPageLocked(new_page);
4d45c3af
YY
2616#ifdef CONFIG_SWAP
2617 count_vm_event(KSM_SWPIN_COPY);
2618#endif
5ad64688
HD
2619 }
2620
5ad64688
HD
2621 return new_page;
2622}
2623
6d4675e6 2624void rmap_walk_ksm(struct folio *folio, struct rmap_walk_control *rwc)
e9995ef9
HD
2625{
2626 struct stable_node *stable_node;
e9995ef9 2627 struct rmap_item *rmap_item;
e9995ef9
HD
2628 int search_new_forks = 0;
2629
2f031c6f 2630 VM_BUG_ON_FOLIO(!folio_test_ksm(folio), folio);
9f32624b
JK
2631
2632 /*
2633 * Rely on the page lock to protect against concurrent modifications
2634 * to that page's node of the stable tree.
2635 */
2f031c6f 2636 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
e9995ef9 2637
2f031c6f 2638 stable_node = folio_stable_node(folio);
e9995ef9 2639 if (!stable_node)
1df631ae 2640 return;
e9995ef9 2641again:
b67bfe0d 2642 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
e9995ef9 2643 struct anon_vma *anon_vma = rmap_item->anon_vma;
5beb4930 2644 struct anon_vma_chain *vmac;
e9995ef9
HD
2645 struct vm_area_struct *vma;
2646
ad12695f 2647 cond_resched();
6d4675e6
MK
2648 if (!anon_vma_trylock_read(anon_vma)) {
2649 if (rwc->try_lock) {
2650 rwc->contended = true;
2651 return;
2652 }
2653 anon_vma_lock_read(anon_vma);
2654 }
bf181b9f
ML
2655 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
2656 0, ULONG_MAX) {
1105a2fc
JH
2657 unsigned long addr;
2658
ad12695f 2659 cond_resched();
5beb4930 2660 vma = vmac->vma;
1105a2fc
JH
2661
2662 /* Ignore the stable/unstable/sqnr flags */
cd7fae26 2663 addr = rmap_item->address & PAGE_MASK;
1105a2fc
JH
2664
2665 if (addr < vma->vm_start || addr >= vma->vm_end)
e9995ef9
HD
2666 continue;
2667 /*
2668 * Initially we examine only the vma which covers this
2669 * rmap_item; but later, if there is still work to do,
2670 * we examine covering vmas in other mms: in case they
2671 * were forked from the original since ksmd passed.
2672 */
2673 if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
2674 continue;
2675
0dd1c7bb
JK
2676 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2677 continue;
2678
2f031c6f 2679 if (!rwc->rmap_one(folio, vma, addr, rwc->arg)) {
b6b19f25 2680 anon_vma_unlock_read(anon_vma);
1df631ae 2681 return;
e9995ef9 2682 }
2f031c6f 2683 if (rwc->done && rwc->done(folio)) {
0dd1c7bb 2684 anon_vma_unlock_read(anon_vma);
1df631ae 2685 return;
0dd1c7bb 2686 }
e9995ef9 2687 }
b6b19f25 2688 anon_vma_unlock_read(anon_vma);
e9995ef9
HD
2689 }
2690 if (!search_new_forks++)
2691 goto again;
e9995ef9
HD
2692}
2693
52629506 2694#ifdef CONFIG_MIGRATION
19138349 2695void folio_migrate_ksm(struct folio *newfolio, struct folio *folio)
e9995ef9
HD
2696{
2697 struct stable_node *stable_node;
2698
19138349
MWO
2699 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2700 VM_BUG_ON_FOLIO(!folio_test_locked(newfolio), newfolio);
2701 VM_BUG_ON_FOLIO(newfolio->mapping != folio->mapping, newfolio);
e9995ef9 2702
19138349 2703 stable_node = folio_stable_node(folio);
e9995ef9 2704 if (stable_node) {
19138349
MWO
2705 VM_BUG_ON_FOLIO(stable_node->kpfn != folio_pfn(folio), folio);
2706 stable_node->kpfn = folio_pfn(newfolio);
c8d6553b 2707 /*
19138349 2708 * newfolio->mapping was set in advance; now we need smp_wmb()
c8d6553b 2709 * to make sure that the new stable_node->kpfn is visible
19138349
MWO
2710 * to get_ksm_page() before it can see that folio->mapping
2711 * has gone stale (or that folio_test_swapcache has been cleared).
c8d6553b
HD
2712 */
2713 smp_wmb();
19138349 2714 set_page_stable_node(&folio->page, NULL);
e9995ef9
HD
2715 }
2716}
2717#endif /* CONFIG_MIGRATION */
2718
62b61f61 2719#ifdef CONFIG_MEMORY_HOTREMOVE
ef4d43a8
HD
2720static void wait_while_offlining(void)
2721{
2722 while (ksm_run & KSM_RUN_OFFLINE) {
2723 mutex_unlock(&ksm_thread_mutex);
2724 wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
74316201 2725 TASK_UNINTERRUPTIBLE);
ef4d43a8
HD
2726 mutex_lock(&ksm_thread_mutex);
2727 }
2728}
2729
2c653d0e
AA
2730static bool stable_node_dup_remove_range(struct stable_node *stable_node,
2731 unsigned long start_pfn,
2732 unsigned long end_pfn)
2733{
2734 if (stable_node->kpfn >= start_pfn &&
2735 stable_node->kpfn < end_pfn) {
2736 /*
2737 * Don't get_ksm_page, page has already gone:
2738 * which is why we keep kpfn instead of page*
2739 */
2740 remove_node_from_stable_tree(stable_node);
2741 return true;
2742 }
2743 return false;
2744}
2745
2746static bool stable_node_chain_remove_range(struct stable_node *stable_node,
2747 unsigned long start_pfn,
2748 unsigned long end_pfn,
2749 struct rb_root *root)
2750{
2751 struct stable_node *dup;
2752 struct hlist_node *hlist_safe;
2753
2754 if (!is_stable_node_chain(stable_node)) {
2755 VM_BUG_ON(is_stable_node_dup(stable_node));
2756 return stable_node_dup_remove_range(stable_node, start_pfn,
2757 end_pfn);
2758 }
2759
2760 hlist_for_each_entry_safe(dup, hlist_safe,
2761 &stable_node->hlist, hlist_dup) {
2762 VM_BUG_ON(!is_stable_node_dup(dup));
2763 stable_node_dup_remove_range(dup, start_pfn, end_pfn);
2764 }
2765 if (hlist_empty(&stable_node->hlist)) {
2766 free_stable_node_chain(stable_node, root);
2767 return true; /* notify caller that tree was rebalanced */
2768 } else
2769 return false;
2770}
2771
ee0ea59c
HD
2772static void ksm_check_stable_tree(unsigned long start_pfn,
2773 unsigned long end_pfn)
62b61f61 2774{
03640418 2775 struct stable_node *stable_node, *next;
62b61f61 2776 struct rb_node *node;
90bd6fd3 2777 int nid;
62b61f61 2778
ef53d16c
HD
2779 for (nid = 0; nid < ksm_nr_node_ids; nid++) {
2780 node = rb_first(root_stable_tree + nid);
ee0ea59c 2781 while (node) {
90bd6fd3 2782 stable_node = rb_entry(node, struct stable_node, node);
2c653d0e
AA
2783 if (stable_node_chain_remove_range(stable_node,
2784 start_pfn, end_pfn,
2785 root_stable_tree +
2786 nid))
ef53d16c 2787 node = rb_first(root_stable_tree + nid);
2c653d0e 2788 else
ee0ea59c
HD
2789 node = rb_next(node);
2790 cond_resched();
90bd6fd3 2791 }
ee0ea59c 2792 }
03640418 2793 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
4146d2d6
HD
2794 if (stable_node->kpfn >= start_pfn &&
2795 stable_node->kpfn < end_pfn)
2796 remove_node_from_stable_tree(stable_node);
2797 cond_resched();
2798 }
62b61f61
HD
2799}
2800
2801static int ksm_memory_callback(struct notifier_block *self,
2802 unsigned long action, void *arg)
2803{
2804 struct memory_notify *mn = arg;
62b61f61
HD
2805
2806 switch (action) {
2807 case MEM_GOING_OFFLINE:
2808 /*
ef4d43a8
HD
2809 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
2810 * and remove_all_stable_nodes() while memory is going offline:
2811 * it is unsafe for them to touch the stable tree at this time.
2812 * But unmerge_ksm_pages(), rmap lookups and other entry points
2813 * which do not need the ksm_thread_mutex are all safe.
62b61f61 2814 */
ef4d43a8
HD
2815 mutex_lock(&ksm_thread_mutex);
2816 ksm_run |= KSM_RUN_OFFLINE;
2817 mutex_unlock(&ksm_thread_mutex);
62b61f61
HD
2818 break;
2819
2820 case MEM_OFFLINE:
2821 /*
2822 * Most of the work is done by page migration; but there might
2823 * be a few stable_nodes left over, still pointing to struct
ee0ea59c
HD
2824 * pages which have been offlined: prune those from the tree,
2825 * otherwise get_ksm_page() might later try to access a
2826 * non-existent struct page.
62b61f61 2827 */
ee0ea59c
HD
2828 ksm_check_stable_tree(mn->start_pfn,
2829 mn->start_pfn + mn->nr_pages);
e4a9bc58 2830 fallthrough;
62b61f61 2831 case MEM_CANCEL_OFFLINE:
ef4d43a8
HD
2832 mutex_lock(&ksm_thread_mutex);
2833 ksm_run &= ~KSM_RUN_OFFLINE;
62b61f61 2834 mutex_unlock(&ksm_thread_mutex);
ef4d43a8
HD
2835
2836 smp_mb(); /* wake_up_bit advises this */
2837 wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
62b61f61
HD
2838 break;
2839 }
2840 return NOTIFY_OK;
2841}
ef4d43a8
HD
2842#else
2843static void wait_while_offlining(void)
2844{
2845}
62b61f61
HD
2846#endif /* CONFIG_MEMORY_HOTREMOVE */
2847
2ffd8679
HD
2848#ifdef CONFIG_SYSFS
2849/*
2850 * This all compiles without CONFIG_SYSFS, but is a waste of space.
2851 */
2852
31dbd01f
IE
2853#define KSM_ATTR_RO(_name) \
2854 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2855#define KSM_ATTR(_name) \
1bad2e5c 2856 static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
31dbd01f
IE
2857
2858static ssize_t sleep_millisecs_show(struct kobject *kobj,
2859 struct kobj_attribute *attr, char *buf)
2860{
ae7a927d 2861 return sysfs_emit(buf, "%u\n", ksm_thread_sleep_millisecs);
31dbd01f
IE
2862}
2863
2864static ssize_t sleep_millisecs_store(struct kobject *kobj,
2865 struct kobj_attribute *attr,
2866 const char *buf, size_t count)
2867{
dfefd226 2868 unsigned int msecs;
31dbd01f
IE
2869 int err;
2870
dfefd226
AD
2871 err = kstrtouint(buf, 10, &msecs);
2872 if (err)
31dbd01f
IE
2873 return -EINVAL;
2874
2875 ksm_thread_sleep_millisecs = msecs;
fcf9a0ef 2876 wake_up_interruptible(&ksm_iter_wait);
31dbd01f
IE
2877
2878 return count;
2879}
2880KSM_ATTR(sleep_millisecs);
2881
2882static ssize_t pages_to_scan_show(struct kobject *kobj,
2883 struct kobj_attribute *attr, char *buf)
2884{
ae7a927d 2885 return sysfs_emit(buf, "%u\n", ksm_thread_pages_to_scan);
31dbd01f
IE
2886}
2887
2888static ssize_t pages_to_scan_store(struct kobject *kobj,
2889 struct kobj_attribute *attr,
2890 const char *buf, size_t count)
2891{
dfefd226 2892 unsigned int nr_pages;
31dbd01f 2893 int err;
31dbd01f 2894
dfefd226
AD
2895 err = kstrtouint(buf, 10, &nr_pages);
2896 if (err)
31dbd01f
IE
2897 return -EINVAL;
2898
2899 ksm_thread_pages_to_scan = nr_pages;
2900
2901 return count;
2902}
2903KSM_ATTR(pages_to_scan);
2904
2905static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
2906 char *buf)
2907{
ae7a927d 2908 return sysfs_emit(buf, "%lu\n", ksm_run);
31dbd01f
IE
2909}
2910
2911static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
2912 const char *buf, size_t count)
2913{
dfefd226 2914 unsigned int flags;
31dbd01f 2915 int err;
31dbd01f 2916
dfefd226
AD
2917 err = kstrtouint(buf, 10, &flags);
2918 if (err)
31dbd01f
IE
2919 return -EINVAL;
2920 if (flags > KSM_RUN_UNMERGE)
2921 return -EINVAL;
2922
2923 /*
2924 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
2925 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
d0f209f6
HD
2926 * breaking COW to free the pages_shared (but leaves mm_slots
2927 * on the list for when ksmd may be set running again).
31dbd01f
IE
2928 */
2929
2930 mutex_lock(&ksm_thread_mutex);
ef4d43a8 2931 wait_while_offlining();
31dbd01f
IE
2932 if (ksm_run != flags) {
2933 ksm_run = flags;
d952b791 2934 if (flags & KSM_RUN_UNMERGE) {
e1e12d2f 2935 set_current_oom_origin();
d952b791 2936 err = unmerge_and_remove_all_rmap_items();
e1e12d2f 2937 clear_current_oom_origin();
d952b791
HD
2938 if (err) {
2939 ksm_run = KSM_RUN_STOP;
2940 count = err;
2941 }
2942 }
31dbd01f
IE
2943 }
2944 mutex_unlock(&ksm_thread_mutex);
2945
2946 if (flags & KSM_RUN_MERGE)
2947 wake_up_interruptible(&ksm_thread_wait);
2948
2949 return count;
2950}
2951KSM_ATTR(run);
2952
90bd6fd3
PH
2953#ifdef CONFIG_NUMA
2954static ssize_t merge_across_nodes_show(struct kobject *kobj,
ae7a927d 2955 struct kobj_attribute *attr, char *buf)
90bd6fd3 2956{
ae7a927d 2957 return sysfs_emit(buf, "%u\n", ksm_merge_across_nodes);
90bd6fd3
PH
2958}
2959
2960static ssize_t merge_across_nodes_store(struct kobject *kobj,
2961 struct kobj_attribute *attr,
2962 const char *buf, size_t count)
2963{
2964 int err;
2965 unsigned long knob;
2966
2967 err = kstrtoul(buf, 10, &knob);
2968 if (err)
2969 return err;
2970 if (knob > 1)
2971 return -EINVAL;
2972
2973 mutex_lock(&ksm_thread_mutex);
ef4d43a8 2974 wait_while_offlining();
90bd6fd3 2975 if (ksm_merge_across_nodes != knob) {
cbf86cfe 2976 if (ksm_pages_shared || remove_all_stable_nodes())
90bd6fd3 2977 err = -EBUSY;
ef53d16c
HD
2978 else if (root_stable_tree == one_stable_tree) {
2979 struct rb_root *buf;
2980 /*
2981 * This is the first time that we switch away from the
2982 * default of merging across nodes: must now allocate
2983 * a buffer to hold as many roots as may be needed.
2984 * Allocate stable and unstable together:
2985 * MAXSMP NODES_SHIFT 10 will use 16kB.
2986 */
bafe1e14
JP
2987 buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
2988 GFP_KERNEL);
ef53d16c
HD
2989 /* Let us assume that RB_ROOT is NULL is zero */
2990 if (!buf)
2991 err = -ENOMEM;
2992 else {
2993 root_stable_tree = buf;
2994 root_unstable_tree = buf + nr_node_ids;
2995 /* Stable tree is empty but not the unstable */
2996 root_unstable_tree[0] = one_unstable_tree[0];
2997 }
2998 }
2999 if (!err) {
90bd6fd3 3000 ksm_merge_across_nodes = knob;
ef53d16c
HD
3001 ksm_nr_node_ids = knob ? 1 : nr_node_ids;
3002 }
90bd6fd3
PH
3003 }
3004 mutex_unlock(&ksm_thread_mutex);
3005
3006 return err ? err : count;
3007}
3008KSM_ATTR(merge_across_nodes);
3009#endif
3010
e86c59b1 3011static ssize_t use_zero_pages_show(struct kobject *kobj,
ae7a927d 3012 struct kobj_attribute *attr, char *buf)
e86c59b1 3013{
ae7a927d 3014 return sysfs_emit(buf, "%u\n", ksm_use_zero_pages);
e86c59b1
CI
3015}
3016static ssize_t use_zero_pages_store(struct kobject *kobj,
3017 struct kobj_attribute *attr,
3018 const char *buf, size_t count)
3019{
3020 int err;
3021 bool value;
3022
3023 err = kstrtobool(buf, &value);
3024 if (err)
3025 return -EINVAL;
3026
3027 ksm_use_zero_pages = value;
3028
3029 return count;
3030}
3031KSM_ATTR(use_zero_pages);
3032
2c653d0e
AA
3033static ssize_t max_page_sharing_show(struct kobject *kobj,
3034 struct kobj_attribute *attr, char *buf)
3035{
ae7a927d 3036 return sysfs_emit(buf, "%u\n", ksm_max_page_sharing);
2c653d0e
AA
3037}
3038
3039static ssize_t max_page_sharing_store(struct kobject *kobj,
3040 struct kobj_attribute *attr,
3041 const char *buf, size_t count)
3042{
3043 int err;
3044 int knob;
3045
3046 err = kstrtoint(buf, 10, &knob);
3047 if (err)
3048 return err;
3049 /*
3050 * When a KSM page is created it is shared by 2 mappings. This
3051 * being a signed comparison, it implicitly verifies it's not
3052 * negative.
3053 */
3054 if (knob < 2)
3055 return -EINVAL;
3056
3057 if (READ_ONCE(ksm_max_page_sharing) == knob)
3058 return count;
3059
3060 mutex_lock(&ksm_thread_mutex);
3061 wait_while_offlining();
3062 if (ksm_max_page_sharing != knob) {
3063 if (ksm_pages_shared || remove_all_stable_nodes())
3064 err = -EBUSY;
3065 else
3066 ksm_max_page_sharing = knob;
3067 }
3068 mutex_unlock(&ksm_thread_mutex);
3069
3070 return err ? err : count;
3071}
3072KSM_ATTR(max_page_sharing);
3073
b4028260
HD
3074static ssize_t pages_shared_show(struct kobject *kobj,
3075 struct kobj_attribute *attr, char *buf)
3076{
ae7a927d 3077 return sysfs_emit(buf, "%lu\n", ksm_pages_shared);
b4028260
HD
3078}
3079KSM_ATTR_RO(pages_shared);
3080
3081static ssize_t pages_sharing_show(struct kobject *kobj,
3082 struct kobj_attribute *attr, char *buf)
3083{
ae7a927d 3084 return sysfs_emit(buf, "%lu\n", ksm_pages_sharing);
b4028260
HD
3085}
3086KSM_ATTR_RO(pages_sharing);
3087
473b0ce4
HD
3088static ssize_t pages_unshared_show(struct kobject *kobj,
3089 struct kobj_attribute *attr, char *buf)
3090{
ae7a927d 3091 return sysfs_emit(buf, "%lu\n", ksm_pages_unshared);
473b0ce4
HD
3092}
3093KSM_ATTR_RO(pages_unshared);
3094
3095static ssize_t pages_volatile_show(struct kobject *kobj,
3096 struct kobj_attribute *attr, char *buf)
3097{
3098 long ksm_pages_volatile;
3099
3100 ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
3101 - ksm_pages_sharing - ksm_pages_unshared;
3102 /*
3103 * It was not worth any locking to calculate that statistic,
3104 * but it might therefore sometimes be negative: conceal that.
3105 */
3106 if (ksm_pages_volatile < 0)
3107 ksm_pages_volatile = 0;
ae7a927d 3108 return sysfs_emit(buf, "%ld\n", ksm_pages_volatile);
473b0ce4
HD
3109}
3110KSM_ATTR_RO(pages_volatile);
3111
2c653d0e
AA
3112static ssize_t stable_node_dups_show(struct kobject *kobj,
3113 struct kobj_attribute *attr, char *buf)
3114{
ae7a927d 3115 return sysfs_emit(buf, "%lu\n", ksm_stable_node_dups);
2c653d0e
AA
3116}
3117KSM_ATTR_RO(stable_node_dups);
3118
3119static ssize_t stable_node_chains_show(struct kobject *kobj,
3120 struct kobj_attribute *attr, char *buf)
3121{
ae7a927d 3122 return sysfs_emit(buf, "%lu\n", ksm_stable_node_chains);
2c653d0e
AA
3123}
3124KSM_ATTR_RO(stable_node_chains);
3125
3126static ssize_t
3127stable_node_chains_prune_millisecs_show(struct kobject *kobj,
3128 struct kobj_attribute *attr,
3129 char *buf)
3130{
ae7a927d 3131 return sysfs_emit(buf, "%u\n", ksm_stable_node_chains_prune_millisecs);
2c653d0e
AA
3132}
3133
3134static ssize_t
3135stable_node_chains_prune_millisecs_store(struct kobject *kobj,
3136 struct kobj_attribute *attr,
3137 const char *buf, size_t count)
3138{
584ff0df 3139 unsigned int msecs;
2c653d0e
AA
3140 int err;
3141
584ff0df
ZB
3142 err = kstrtouint(buf, 10, &msecs);
3143 if (err)
2c653d0e
AA
3144 return -EINVAL;
3145
3146 ksm_stable_node_chains_prune_millisecs = msecs;
3147
3148 return count;
3149}
3150KSM_ATTR(stable_node_chains_prune_millisecs);
3151
473b0ce4
HD
3152static ssize_t full_scans_show(struct kobject *kobj,
3153 struct kobj_attribute *attr, char *buf)
3154{
ae7a927d 3155 return sysfs_emit(buf, "%lu\n", ksm_scan.seqnr);
473b0ce4
HD
3156}
3157KSM_ATTR_RO(full_scans);
3158
31dbd01f
IE
3159static struct attribute *ksm_attrs[] = {
3160 &sleep_millisecs_attr.attr,
3161 &pages_to_scan_attr.attr,
3162 &run_attr.attr,
b4028260
HD
3163 &pages_shared_attr.attr,
3164 &pages_sharing_attr.attr,
473b0ce4
HD
3165 &pages_unshared_attr.attr,
3166 &pages_volatile_attr.attr,
3167 &full_scans_attr.attr,
90bd6fd3
PH
3168#ifdef CONFIG_NUMA
3169 &merge_across_nodes_attr.attr,
3170#endif
2c653d0e
AA
3171 &max_page_sharing_attr.attr,
3172 &stable_node_chains_attr.attr,
3173 &stable_node_dups_attr.attr,
3174 &stable_node_chains_prune_millisecs_attr.attr,
e86c59b1 3175 &use_zero_pages_attr.attr,
31dbd01f
IE
3176 NULL,
3177};
3178
f907c26a 3179static const struct attribute_group ksm_attr_group = {
31dbd01f
IE
3180 .attrs = ksm_attrs,
3181 .name = "ksm",
3182};
2ffd8679 3183#endif /* CONFIG_SYSFS */
31dbd01f
IE
3184
3185static int __init ksm_init(void)
3186{
3187 struct task_struct *ksm_thread;
3188 int err;
3189
e86c59b1
CI
3190 /* The correct value depends on page size and endianness */
3191 zero_checksum = calc_checksum(ZERO_PAGE(0));
3192 /* Default to false for backwards compatibility */
3193 ksm_use_zero_pages = false;
3194
31dbd01f
IE
3195 err = ksm_slab_init();
3196 if (err)
3197 goto out;
3198
31dbd01f
IE
3199 ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
3200 if (IS_ERR(ksm_thread)) {
25acde31 3201 pr_err("ksm: creating kthread failed\n");
31dbd01f 3202 err = PTR_ERR(ksm_thread);
d9f8984c 3203 goto out_free;
31dbd01f
IE
3204 }
3205
2ffd8679 3206#ifdef CONFIG_SYSFS
31dbd01f
IE
3207 err = sysfs_create_group(mm_kobj, &ksm_attr_group);
3208 if (err) {
25acde31 3209 pr_err("ksm: register sysfs failed\n");
2ffd8679 3210 kthread_stop(ksm_thread);
d9f8984c 3211 goto out_free;
31dbd01f 3212 }
c73602ad
HD
3213#else
3214 ksm_run = KSM_RUN_MERGE; /* no way for user to start it */
3215
2ffd8679 3216#endif /* CONFIG_SYSFS */
31dbd01f 3217
62b61f61 3218#ifdef CONFIG_MEMORY_HOTREMOVE
ef4d43a8 3219 /* There is no significance to this priority 100 */
62b61f61
HD
3220 hotplug_memory_notifier(ksm_memory_callback, 100);
3221#endif
31dbd01f
IE
3222 return 0;
3223
d9f8984c 3224out_free:
31dbd01f
IE
3225 ksm_slab_free();
3226out:
3227 return err;
f8af4da3 3228}
a64fb3cd 3229subsys_initcall(ksm_init);