selftests/vm: add test to measure MADV_UNMERGEABLE performance
[linux-block.git] / mm / ksm.c
CommitLineData
7a338472 1// SPDX-License-Identifier: GPL-2.0-only
f8af4da3 2/*
31dbd01f
IE
3 * Memory merging support.
4 *
5 * This code enables dynamic sharing of identical pages found in different
6 * memory areas, even if they are not shared by fork()
7 *
36b2528d 8 * Copyright (C) 2008-2009 Red Hat, Inc.
31dbd01f
IE
9 * Authors:
10 * Izik Eidus
11 * Andrea Arcangeli
12 * Chris Wright
36b2528d 13 * Hugh Dickins
f8af4da3
HD
14 */
15
16#include <linux/errno.h>
31dbd01f 17#include <linux/mm.h>
36090def 18#include <linux/mm_inline.h>
31dbd01f 19#include <linux/fs.h>
f8af4da3 20#include <linux/mman.h>
31dbd01f 21#include <linux/sched.h>
6e84f315 22#include <linux/sched/mm.h>
f7ccbae4 23#include <linux/sched/coredump.h>
31dbd01f
IE
24#include <linux/rwsem.h>
25#include <linux/pagemap.h>
26#include <linux/rmap.h>
27#include <linux/spinlock.h>
59e1a2f4 28#include <linux/xxhash.h>
31dbd01f
IE
29#include <linux/delay.h>
30#include <linux/kthread.h>
31#include <linux/wait.h>
32#include <linux/slab.h>
33#include <linux/rbtree.h>
62b61f61 34#include <linux/memory.h>
31dbd01f 35#include <linux/mmu_notifier.h>
2c6854fd 36#include <linux/swap.h>
f8af4da3 37#include <linux/ksm.h>
4ca3a69b 38#include <linux/hashtable.h>
878aee7d 39#include <linux/freezer.h>
72788c38 40#include <linux/oom.h>
90bd6fd3 41#include <linux/numa.h>
f8af4da3 42
31dbd01f 43#include <asm/tlbflush.h>
73848b46 44#include "internal.h"
58730ab6 45#include "mm_slot.h"
31dbd01f 46
e850dcf5
HD
47#ifdef CONFIG_NUMA
48#define NUMA(x) (x)
49#define DO_NUMA(x) do { (x); } while (0)
50#else
51#define NUMA(x) (0)
52#define DO_NUMA(x) do { } while (0)
53#endif
54
5a2ca3ef
MR
55/**
56 * DOC: Overview
57 *
31dbd01f
IE
58 * A few notes about the KSM scanning process,
59 * to make it easier to understand the data structures below:
60 *
61 * In order to reduce excessive scanning, KSM sorts the memory pages by their
62 * contents into a data structure that holds pointers to the pages' locations.
63 *
64 * Since the contents of the pages may change at any moment, KSM cannot just
65 * insert the pages into a normal sorted tree and expect it to find anything.
66 * Therefore KSM uses two data structures - the stable and the unstable tree.
67 *
68 * The stable tree holds pointers to all the merged pages (ksm pages), sorted
69 * by their contents. Because each such page is write-protected, searching on
70 * this tree is fully assured to be working (except when pages are unmapped),
71 * and therefore this tree is called the stable tree.
72 *
5a2ca3ef
MR
73 * The stable tree node includes information required for reverse
74 * mapping from a KSM page to virtual addresses that map this page.
75 *
76 * In order to avoid large latencies of the rmap walks on KSM pages,
77 * KSM maintains two types of nodes in the stable tree:
78 *
79 * * the regular nodes that keep the reverse mapping structures in a
80 * linked list
81 * * the "chains" that link nodes ("dups") that represent the same
82 * write protected memory content, but each "dup" corresponds to a
83 * different KSM page copy of that content
84 *
85 * Internally, the regular nodes, "dups" and "chains" are represented
21fbd591 86 * using the same struct ksm_stable_node structure.
5a2ca3ef 87 *
31dbd01f
IE
88 * In addition to the stable tree, KSM uses a second data structure called the
89 * unstable tree: this tree holds pointers to pages which have been found to
90 * be "unchanged for a period of time". The unstable tree sorts these pages
91 * by their contents, but since they are not write-protected, KSM cannot rely
92 * upon the unstable tree to work correctly - the unstable tree is liable to
93 * be corrupted as its contents are modified, and so it is called unstable.
94 *
95 * KSM solves this problem by several techniques:
96 *
97 * 1) The unstable tree is flushed every time KSM completes scanning all
98 * memory areas, and then the tree is rebuilt again from the beginning.
99 * 2) KSM will only insert into the unstable tree, pages whose hash value
100 * has not changed since the previous scan of all memory areas.
101 * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
102 * colors of the nodes and not on their contents, assuring that even when
103 * the tree gets "corrupted" it won't get out of balance, so scanning time
104 * remains the same (also, searching and inserting nodes in an rbtree uses
105 * the same algorithm, so we have no overhead when we flush and rebuild).
106 * 4) KSM never flushes the stable tree, which means that even if it were to
107 * take 10 attempts to find a page in the unstable tree, once it is found,
108 * it is secured in the stable tree. (When we scan a new page, we first
109 * compare it against the stable tree, and then against the unstable tree.)
8fdb3dbf
HD
110 *
111 * If the merge_across_nodes tunable is unset, then KSM maintains multiple
112 * stable trees and multiple unstable trees: one of each for each NUMA node.
31dbd01f
IE
113 */
114
115/**
21fbd591 116 * struct ksm_mm_slot - ksm information per mm that is being scanned
58730ab6 117 * @slot: hash lookup from mm to mm_slot
6514d511 118 * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
31dbd01f 119 */
21fbd591 120struct ksm_mm_slot {
58730ab6 121 struct mm_slot slot;
21fbd591 122 struct ksm_rmap_item *rmap_list;
31dbd01f
IE
123};
124
125/**
126 * struct ksm_scan - cursor for scanning
127 * @mm_slot: the current mm_slot we are scanning
128 * @address: the next address inside that to be scanned
6514d511 129 * @rmap_list: link to the next rmap to be scanned in the rmap_list
31dbd01f
IE
130 * @seqnr: count of completed full scans (needed when removing unstable node)
131 *
132 * There is only the one ksm_scan instance of this cursor structure.
133 */
134struct ksm_scan {
21fbd591 135 struct ksm_mm_slot *mm_slot;
31dbd01f 136 unsigned long address;
21fbd591 137 struct ksm_rmap_item **rmap_list;
31dbd01f
IE
138 unsigned long seqnr;
139};
140
7b6ba2c7 141/**
21fbd591 142 * struct ksm_stable_node - node of the stable rbtree
7b6ba2c7 143 * @node: rb node of this ksm page in the stable tree
4146d2d6 144 * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
2c653d0e 145 * @hlist_dup: linked into the stable_node->hlist with a stable_node chain
4146d2d6 146 * @list: linked into migrate_nodes, pending placement in the proper node tree
7b6ba2c7 147 * @hlist: hlist head of rmap_items using this ksm page
4146d2d6 148 * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
2c653d0e
AA
149 * @chain_prune_time: time of the last full garbage collection
150 * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN
4146d2d6 151 * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
7b6ba2c7 152 */
21fbd591 153struct ksm_stable_node {
4146d2d6
HD
154 union {
155 struct rb_node node; /* when node of stable tree */
156 struct { /* when listed for migration */
157 struct list_head *head;
2c653d0e
AA
158 struct {
159 struct hlist_node hlist_dup;
160 struct list_head list;
161 };
4146d2d6
HD
162 };
163 };
7b6ba2c7 164 struct hlist_head hlist;
2c653d0e
AA
165 union {
166 unsigned long kpfn;
167 unsigned long chain_prune_time;
168 };
169 /*
170 * STABLE_NODE_CHAIN can be any negative number in
171 * rmap_hlist_len negative range, but better not -1 to be able
172 * to reliably detect underflows.
173 */
174#define STABLE_NODE_CHAIN -1024
175 int rmap_hlist_len;
4146d2d6
HD
176#ifdef CONFIG_NUMA
177 int nid;
178#endif
7b6ba2c7
HD
179};
180
31dbd01f 181/**
21fbd591 182 * struct ksm_rmap_item - reverse mapping item for virtual addresses
6514d511 183 * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
db114b83 184 * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
bc56620b 185 * @nid: NUMA node id of unstable tree in which linked (may not match page)
31dbd01f
IE
186 * @mm: the memory structure this rmap_item is pointing into
187 * @address: the virtual address this rmap_item tracks (+ flags in low bits)
188 * @oldchecksum: previous checksum of the page at that virtual address
7b6ba2c7
HD
189 * @node: rb node of this rmap_item in the unstable tree
190 * @head: pointer to stable_node heading this list in the stable tree
191 * @hlist: link into hlist of rmap_items hanging off that stable_node
31dbd01f 192 */
21fbd591
QZ
193struct ksm_rmap_item {
194 struct ksm_rmap_item *rmap_list;
bc56620b
HD
195 union {
196 struct anon_vma *anon_vma; /* when stable */
197#ifdef CONFIG_NUMA
198 int nid; /* when node of unstable tree */
199#endif
200 };
31dbd01f
IE
201 struct mm_struct *mm;
202 unsigned long address; /* + low bits used for flags below */
7b6ba2c7 203 unsigned int oldchecksum; /* when unstable */
31dbd01f 204 union {
7b6ba2c7
HD
205 struct rb_node node; /* when node of unstable tree */
206 struct { /* when listed from stable tree */
21fbd591 207 struct ksm_stable_node *head;
7b6ba2c7
HD
208 struct hlist_node hlist;
209 };
31dbd01f
IE
210 };
211};
212
213#define SEQNR_MASK 0x0ff /* low bits of unstable tree seqnr */
7b6ba2c7
HD
214#define UNSTABLE_FLAG 0x100 /* is a node of the unstable tree */
215#define STABLE_FLAG 0x200 /* is listed from the stable tree */
31dbd01f
IE
216
217/* The stable and unstable tree heads */
ef53d16c
HD
218static struct rb_root one_stable_tree[1] = { RB_ROOT };
219static struct rb_root one_unstable_tree[1] = { RB_ROOT };
220static struct rb_root *root_stable_tree = one_stable_tree;
221static struct rb_root *root_unstable_tree = one_unstable_tree;
31dbd01f 222
4146d2d6
HD
223/* Recently migrated nodes of stable tree, pending proper placement */
224static LIST_HEAD(migrate_nodes);
2c653d0e 225#define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev)
4146d2d6 226
4ca3a69b
SL
227#define MM_SLOTS_HASH_BITS 10
228static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
31dbd01f 229
21fbd591 230static struct ksm_mm_slot ksm_mm_head = {
58730ab6 231 .slot.mm_node = LIST_HEAD_INIT(ksm_mm_head.slot.mm_node),
31dbd01f
IE
232};
233static struct ksm_scan ksm_scan = {
234 .mm_slot = &ksm_mm_head,
235};
236
237static struct kmem_cache *rmap_item_cache;
7b6ba2c7 238static struct kmem_cache *stable_node_cache;
31dbd01f
IE
239static struct kmem_cache *mm_slot_cache;
240
241/* The number of nodes in the stable tree */
b4028260 242static unsigned long ksm_pages_shared;
31dbd01f 243
e178dfde 244/* The number of page slots additionally sharing those nodes */
b4028260 245static unsigned long ksm_pages_sharing;
31dbd01f 246
473b0ce4
HD
247/* The number of nodes in the unstable tree */
248static unsigned long ksm_pages_unshared;
249
250/* The number of rmap_items in use: to calculate pages_volatile */
251static unsigned long ksm_rmap_items;
252
2c653d0e
AA
253/* The number of stable_node chains */
254static unsigned long ksm_stable_node_chains;
255
256/* The number of stable_node dups linked to the stable_node chains */
257static unsigned long ksm_stable_node_dups;
258
259/* Delay in pruning stale stable_node_dups in the stable_node_chains */
584ff0df 260static unsigned int ksm_stable_node_chains_prune_millisecs = 2000;
2c653d0e
AA
261
262/* Maximum number of page slots sharing a stable node */
263static int ksm_max_page_sharing = 256;
264
31dbd01f 265/* Number of pages ksmd should scan in one batch */
2c6854fd 266static unsigned int ksm_thread_pages_to_scan = 100;
31dbd01f
IE
267
268/* Milliseconds ksmd should sleep between batches */
2ffd8679 269static unsigned int ksm_thread_sleep_millisecs = 20;
31dbd01f 270
e86c59b1
CI
271/* Checksum of an empty (zeroed) page */
272static unsigned int zero_checksum __read_mostly;
273
274/* Whether to merge empty (zeroed) pages with actual zero pages */
275static bool ksm_use_zero_pages __read_mostly;
276
e850dcf5 277#ifdef CONFIG_NUMA
90bd6fd3
PH
278/* Zeroed when merging across nodes is not allowed */
279static unsigned int ksm_merge_across_nodes = 1;
ef53d16c 280static int ksm_nr_node_ids = 1;
e850dcf5
HD
281#else
282#define ksm_merge_across_nodes 1U
ef53d16c 283#define ksm_nr_node_ids 1
e850dcf5 284#endif
90bd6fd3 285
31dbd01f
IE
286#define KSM_RUN_STOP 0
287#define KSM_RUN_MERGE 1
288#define KSM_RUN_UNMERGE 2
ef4d43a8
HD
289#define KSM_RUN_OFFLINE 4
290static unsigned long ksm_run = KSM_RUN_STOP;
291static void wait_while_offlining(void);
31dbd01f
IE
292
293static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
fcf9a0ef 294static DECLARE_WAIT_QUEUE_HEAD(ksm_iter_wait);
31dbd01f
IE
295static DEFINE_MUTEX(ksm_thread_mutex);
296static DEFINE_SPINLOCK(ksm_mmlist_lock);
297
21fbd591 298#define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create(#__struct,\
31dbd01f
IE
299 sizeof(struct __struct), __alignof__(struct __struct),\
300 (__flags), NULL)
301
302static int __init ksm_slab_init(void)
303{
21fbd591 304 rmap_item_cache = KSM_KMEM_CACHE(ksm_rmap_item, 0);
31dbd01f
IE
305 if (!rmap_item_cache)
306 goto out;
307
21fbd591 308 stable_node_cache = KSM_KMEM_CACHE(ksm_stable_node, 0);
7b6ba2c7
HD
309 if (!stable_node_cache)
310 goto out_free1;
311
21fbd591 312 mm_slot_cache = KSM_KMEM_CACHE(ksm_mm_slot, 0);
31dbd01f 313 if (!mm_slot_cache)
7b6ba2c7 314 goto out_free2;
31dbd01f
IE
315
316 return 0;
317
7b6ba2c7
HD
318out_free2:
319 kmem_cache_destroy(stable_node_cache);
320out_free1:
31dbd01f
IE
321 kmem_cache_destroy(rmap_item_cache);
322out:
323 return -ENOMEM;
324}
325
326static void __init ksm_slab_free(void)
327{
328 kmem_cache_destroy(mm_slot_cache);
7b6ba2c7 329 kmem_cache_destroy(stable_node_cache);
31dbd01f
IE
330 kmem_cache_destroy(rmap_item_cache);
331 mm_slot_cache = NULL;
332}
333
21fbd591 334static __always_inline bool is_stable_node_chain(struct ksm_stable_node *chain)
2c653d0e
AA
335{
336 return chain->rmap_hlist_len == STABLE_NODE_CHAIN;
337}
338
21fbd591 339static __always_inline bool is_stable_node_dup(struct ksm_stable_node *dup)
2c653d0e
AA
340{
341 return dup->head == STABLE_NODE_DUP_HEAD;
342}
343
21fbd591
QZ
344static inline void stable_node_chain_add_dup(struct ksm_stable_node *dup,
345 struct ksm_stable_node *chain)
2c653d0e
AA
346{
347 VM_BUG_ON(is_stable_node_dup(dup));
348 dup->head = STABLE_NODE_DUP_HEAD;
349 VM_BUG_ON(!is_stable_node_chain(chain));
350 hlist_add_head(&dup->hlist_dup, &chain->hlist);
351 ksm_stable_node_dups++;
352}
353
21fbd591 354static inline void __stable_node_dup_del(struct ksm_stable_node *dup)
2c653d0e 355{
b4fecc67 356 VM_BUG_ON(!is_stable_node_dup(dup));
2c653d0e
AA
357 hlist_del(&dup->hlist_dup);
358 ksm_stable_node_dups--;
359}
360
21fbd591 361static inline void stable_node_dup_del(struct ksm_stable_node *dup)
2c653d0e
AA
362{
363 VM_BUG_ON(is_stable_node_chain(dup));
364 if (is_stable_node_dup(dup))
365 __stable_node_dup_del(dup);
366 else
367 rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid));
368#ifdef CONFIG_DEBUG_VM
369 dup->head = NULL;
370#endif
371}
372
21fbd591 373static inline struct ksm_rmap_item *alloc_rmap_item(void)
31dbd01f 374{
21fbd591 375 struct ksm_rmap_item *rmap_item;
473b0ce4 376
5b398e41 377 rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL |
378 __GFP_NORETRY | __GFP_NOWARN);
473b0ce4
HD
379 if (rmap_item)
380 ksm_rmap_items++;
381 return rmap_item;
31dbd01f
IE
382}
383
21fbd591 384static inline void free_rmap_item(struct ksm_rmap_item *rmap_item)
31dbd01f 385{
473b0ce4 386 ksm_rmap_items--;
cb4df4ca 387 rmap_item->mm->ksm_rmap_items--;
31dbd01f
IE
388 rmap_item->mm = NULL; /* debug safety */
389 kmem_cache_free(rmap_item_cache, rmap_item);
390}
391
21fbd591 392static inline struct ksm_stable_node *alloc_stable_node(void)
7b6ba2c7 393{
6213055f 394 /*
395 * The allocation can take too long with GFP_KERNEL when memory is under
396 * pressure, which may lead to hung task warnings. Adding __GFP_HIGH
397 * grants access to memory reserves, helping to avoid this problem.
398 */
399 return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH);
7b6ba2c7
HD
400}
401
21fbd591 402static inline void free_stable_node(struct ksm_stable_node *stable_node)
7b6ba2c7 403{
2c653d0e
AA
404 VM_BUG_ON(stable_node->rmap_hlist_len &&
405 !is_stable_node_chain(stable_node));
7b6ba2c7
HD
406 kmem_cache_free(stable_node_cache, stable_node);
407}
408
a913e182
HD
409/*
410 * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
411 * page tables after it has passed through ksm_exit() - which, if necessary,
c1e8d7c6 412 * takes mmap_lock briefly to serialize against them. ksm_exit() does not set
a913e182
HD
413 * a special flag: they can just back out as soon as mm_users goes to zero.
414 * ksm_test_exit() is used throughout to make this test for exit: in some
415 * places for correctness, in some places just to avoid unnecessary work.
416 */
417static inline bool ksm_test_exit(struct mm_struct *mm)
418{
419 return atomic_read(&mm->mm_users) == 0;
420}
421
31dbd01f
IE
422/*
423 * We use break_ksm to break COW on a ksm page: it's a stripped down
424 *
7a9547fd 425 * if (get_user_pages(addr, 1, FOLL_WRITE, &page, NULL) == 1)
31dbd01f
IE
426 * put_page(page);
427 *
428 * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
429 * in case the application has unmapped and remapped mm,addr meanwhile.
430 * Could a ksm page appear anywhere else? Actually yes, in a VM_PFNMAP
bbcd53c9 431 * mmap of /dev/mem, where we would not want to touch it.
1b2ee126
DH
432 *
433 * FAULT_FLAG/FOLL_REMOTE are because we do this outside the context
434 * of the process that owns 'vma'. We also do not want to enforce
435 * protection keys here anyway.
31dbd01f 436 */
d952b791 437static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
31dbd01f
IE
438{
439 struct page *page;
50a7ca3c 440 vm_fault_t ret = 0;
31dbd01f
IE
441
442 do {
443 cond_resched();
1b2ee126
DH
444 page = follow_page(vma, addr,
445 FOLL_GET | FOLL_MIGRATION | FOLL_REMOTE);
f7091ed6 446 if (IS_ERR_OR_NULL(page))
31dbd01f
IE
447 break;
448 if (PageKsm(page))
dcddffd4 449 ret = handle_mm_fault(vma, addr,
bce617ed
PX
450 FAULT_FLAG_WRITE | FAULT_FLAG_REMOTE,
451 NULL);
31dbd01f
IE
452 else
453 ret = VM_FAULT_WRITE;
454 put_page(page);
33692f27 455 } while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
d952b791
HD
456 /*
457 * We must loop because handle_mm_fault() may back out if there's
458 * any difficulty e.g. if pte accessed bit gets updated concurrently.
459 *
460 * VM_FAULT_WRITE is what we have been hoping for: it indicates that
461 * COW has been broken, even if the vma does not permit VM_WRITE;
462 * but note that a concurrent fault might break PageKsm for us.
463 *
464 * VM_FAULT_SIGBUS could occur if we race with truncation of the
465 * backing file, which also invalidates anonymous pages: that's
466 * okay, that truncation will have unmapped the PageKsm for us.
467 *
468 * VM_FAULT_OOM: at the time of writing (late July 2009), setting
469 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
470 * current task has TIF_MEMDIE set, and will be OOM killed on return
471 * to user; and ksmd, having no mm, would never be chosen for that.
472 *
473 * But if the mm is in a limited mem_cgroup, then the fault may fail
474 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
475 * even ksmd can fail in this way - though it's usually breaking ksm
476 * just to undo a merge it made a moment before, so unlikely to oom.
477 *
478 * That's a pity: we might therefore have more kernel pages allocated
479 * than we're counting as nodes in the stable tree; but ksm_do_scan
480 * will retry to break_cow on each pass, so should recover the page
481 * in due course. The important thing is to not let VM_MERGEABLE
482 * be cleared while any such pages might remain in the area.
483 */
484 return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
31dbd01f
IE
485}
486
ef694222
BL
487static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
488 unsigned long addr)
489{
490 struct vm_area_struct *vma;
491 if (ksm_test_exit(mm))
492 return NULL;
ff69fb81
LH
493 vma = vma_lookup(mm, addr);
494 if (!vma || !(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
ef694222
BL
495 return NULL;
496 return vma;
497}
498
21fbd591 499static void break_cow(struct ksm_rmap_item *rmap_item)
31dbd01f 500{
8dd3557a
HD
501 struct mm_struct *mm = rmap_item->mm;
502 unsigned long addr = rmap_item->address;
31dbd01f
IE
503 struct vm_area_struct *vma;
504
4035c07a
HD
505 /*
506 * It is not an accident that whenever we want to break COW
507 * to undo, we also need to drop a reference to the anon_vma.
508 */
9e60109f 509 put_anon_vma(rmap_item->anon_vma);
4035c07a 510
d8ed45c5 511 mmap_read_lock(mm);
ef694222
BL
512 vma = find_mergeable_vma(mm, addr);
513 if (vma)
514 break_ksm(vma, addr);
d8ed45c5 515 mmap_read_unlock(mm);
31dbd01f
IE
516}
517
21fbd591 518static struct page *get_mergeable_page(struct ksm_rmap_item *rmap_item)
31dbd01f
IE
519{
520 struct mm_struct *mm = rmap_item->mm;
521 unsigned long addr = rmap_item->address;
522 struct vm_area_struct *vma;
523 struct page *page;
524
d8ed45c5 525 mmap_read_lock(mm);
ef694222
BL
526 vma = find_mergeable_vma(mm, addr);
527 if (!vma)
31dbd01f
IE
528 goto out;
529
530 page = follow_page(vma, addr, FOLL_GET);
f7091ed6 531 if (IS_ERR_OR_NULL(page))
31dbd01f 532 goto out;
f7091ed6
HW
533 if (is_zone_device_page(page))
534 goto out_putpage;
f765f540 535 if (PageAnon(page)) {
31dbd01f
IE
536 flush_anon_page(vma, page, addr);
537 flush_dcache_page(page);
538 } else {
f7091ed6 539out_putpage:
31dbd01f 540 put_page(page);
c8f95ed1
AA
541out:
542 page = NULL;
31dbd01f 543 }
d8ed45c5 544 mmap_read_unlock(mm);
31dbd01f
IE
545 return page;
546}
547
90bd6fd3
PH
548/*
549 * This helper is used for getting right index into array of tree roots.
550 * When merge_across_nodes knob is set to 1, there are only two rb-trees for
551 * stable and unstable pages from all nodes with roots in index 0. Otherwise,
552 * every node has its own stable and unstable tree.
553 */
554static inline int get_kpfn_nid(unsigned long kpfn)
555{
d8fc16a8 556 return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
90bd6fd3
PH
557}
558
21fbd591 559static struct ksm_stable_node *alloc_stable_node_chain(struct ksm_stable_node *dup,
2c653d0e
AA
560 struct rb_root *root)
561{
21fbd591 562 struct ksm_stable_node *chain = alloc_stable_node();
2c653d0e
AA
563 VM_BUG_ON(is_stable_node_chain(dup));
564 if (likely(chain)) {
565 INIT_HLIST_HEAD(&chain->hlist);
566 chain->chain_prune_time = jiffies;
567 chain->rmap_hlist_len = STABLE_NODE_CHAIN;
568#if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA)
98fa15f3 569 chain->nid = NUMA_NO_NODE; /* debug */
2c653d0e
AA
570#endif
571 ksm_stable_node_chains++;
572
573 /*
574 * Put the stable node chain in the first dimension of
575 * the stable tree and at the same time remove the old
576 * stable node.
577 */
578 rb_replace_node(&dup->node, &chain->node, root);
579
580 /*
581 * Move the old stable node to the second dimension
582 * queued in the hlist_dup. The invariant is that all
583 * dup stable_nodes in the chain->hlist point to pages
457aef94 584 * that are write protected and have the exact same
2c653d0e
AA
585 * content.
586 */
587 stable_node_chain_add_dup(dup, chain);
588 }
589 return chain;
590}
591
21fbd591 592static inline void free_stable_node_chain(struct ksm_stable_node *chain,
2c653d0e
AA
593 struct rb_root *root)
594{
595 rb_erase(&chain->node, root);
596 free_stable_node(chain);
597 ksm_stable_node_chains--;
598}
599
21fbd591 600static void remove_node_from_stable_tree(struct ksm_stable_node *stable_node)
4035c07a 601{
21fbd591 602 struct ksm_rmap_item *rmap_item;
4035c07a 603
2c653d0e
AA
604 /* check it's not STABLE_NODE_CHAIN or negative */
605 BUG_ON(stable_node->rmap_hlist_len < 0);
606
b67bfe0d 607 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
4035c07a
HD
608 if (rmap_item->hlist.next)
609 ksm_pages_sharing--;
610 else
611 ksm_pages_shared--;
76093853 612
613 rmap_item->mm->ksm_merging_pages--;
614
2c653d0e
AA
615 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
616 stable_node->rmap_hlist_len--;
9e60109f 617 put_anon_vma(rmap_item->anon_vma);
4035c07a
HD
618 rmap_item->address &= PAGE_MASK;
619 cond_resched();
620 }
621
2c653d0e
AA
622 /*
623 * We need the second aligned pointer of the migrate_nodes
624 * list_head to stay clear from the rb_parent_color union
625 * (aligned and different than any node) and also different
626 * from &migrate_nodes. This will verify that future list.h changes
815f0ddb 627 * don't break STABLE_NODE_DUP_HEAD. Only recent gcc can handle it.
2c653d0e 628 */
2c653d0e
AA
629 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes);
630 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1);
2c653d0e 631
4146d2d6
HD
632 if (stable_node->head == &migrate_nodes)
633 list_del(&stable_node->list);
634 else
2c653d0e 635 stable_node_dup_del(stable_node);
4035c07a
HD
636 free_stable_node(stable_node);
637}
638
2cee57d1
YS
639enum get_ksm_page_flags {
640 GET_KSM_PAGE_NOLOCK,
641 GET_KSM_PAGE_LOCK,
642 GET_KSM_PAGE_TRYLOCK
643};
644
4035c07a
HD
645/*
646 * get_ksm_page: checks if the page indicated by the stable node
647 * is still its ksm page, despite having held no reference to it.
648 * In which case we can trust the content of the page, and it
649 * returns the gotten page; but if the page has now been zapped,
650 * remove the stale node from the stable tree and return NULL.
c8d6553b 651 * But beware, the stable node's page might be being migrated.
4035c07a
HD
652 *
653 * You would expect the stable_node to hold a reference to the ksm page.
654 * But if it increments the page's count, swapping out has to wait for
655 * ksmd to come around again before it can free the page, which may take
656 * seconds or even minutes: much too unresponsive. So instead we use a
657 * "keyhole reference": access to the ksm page from the stable node peeps
658 * out through its keyhole to see if that page still holds the right key,
659 * pointing back to this stable node. This relies on freeing a PageAnon
660 * page to reset its page->mapping to NULL, and relies on no other use of
661 * a page to put something that might look like our key in page->mapping.
4035c07a
HD
662 * is on its way to being freed; but it is an anomaly to bear in mind.
663 */
21fbd591 664static struct page *get_ksm_page(struct ksm_stable_node *stable_node,
2cee57d1 665 enum get_ksm_page_flags flags)
4035c07a
HD
666{
667 struct page *page;
668 void *expected_mapping;
c8d6553b 669 unsigned long kpfn;
4035c07a 670
bda807d4
MK
671 expected_mapping = (void *)((unsigned long)stable_node |
672 PAGE_MAPPING_KSM);
c8d6553b 673again:
08df4774 674 kpfn = READ_ONCE(stable_node->kpfn); /* Address dependency. */
c8d6553b 675 page = pfn_to_page(kpfn);
4db0c3c2 676 if (READ_ONCE(page->mapping) != expected_mapping)
4035c07a 677 goto stale;
c8d6553b
HD
678
679 /*
680 * We cannot do anything with the page while its refcount is 0.
681 * Usually 0 means free, or tail of a higher-order page: in which
682 * case this node is no longer referenced, and should be freed;
1c4c3b99 683 * however, it might mean that the page is under page_ref_freeze().
c8d6553b 684 * The __remove_mapping() case is easy, again the node is now stale;
52d1e606 685 * the same is in reuse_ksm_page() case; but if page is swapcache
9800562f 686 * in folio_migrate_mapping(), it might still be our page,
52d1e606 687 * in which case it's essential to keep the node.
c8d6553b
HD
688 */
689 while (!get_page_unless_zero(page)) {
690 /*
691 * Another check for page->mapping != expected_mapping would
692 * work here too. We have chosen the !PageSwapCache test to
693 * optimize the common case, when the page is or is about to
694 * be freed: PageSwapCache is cleared (under spin_lock_irq)
1c4c3b99 695 * in the ref_freeze section of __remove_mapping(); but Anon
c8d6553b
HD
696 * page->mapping reset to NULL later, in free_pages_prepare().
697 */
698 if (!PageSwapCache(page))
699 goto stale;
700 cpu_relax();
701 }
702
4db0c3c2 703 if (READ_ONCE(page->mapping) != expected_mapping) {
4035c07a
HD
704 put_page(page);
705 goto stale;
706 }
c8d6553b 707
2cee57d1
YS
708 if (flags == GET_KSM_PAGE_TRYLOCK) {
709 if (!trylock_page(page)) {
710 put_page(page);
711 return ERR_PTR(-EBUSY);
712 }
713 } else if (flags == GET_KSM_PAGE_LOCK)
8aafa6a4 714 lock_page(page);
2cee57d1
YS
715
716 if (flags != GET_KSM_PAGE_NOLOCK) {
4db0c3c2 717 if (READ_ONCE(page->mapping) != expected_mapping) {
8aafa6a4
HD
718 unlock_page(page);
719 put_page(page);
720 goto stale;
721 }
722 }
4035c07a 723 return page;
c8d6553b 724
4035c07a 725stale:
c8d6553b
HD
726 /*
727 * We come here from above when page->mapping or !PageSwapCache
728 * suggests that the node is stale; but it might be under migration.
19138349 729 * We need smp_rmb(), matching the smp_wmb() in folio_migrate_ksm(),
c8d6553b
HD
730 * before checking whether node->kpfn has been changed.
731 */
732 smp_rmb();
4db0c3c2 733 if (READ_ONCE(stable_node->kpfn) != kpfn)
c8d6553b 734 goto again;
4035c07a
HD
735 remove_node_from_stable_tree(stable_node);
736 return NULL;
737}
738
31dbd01f
IE
739/*
740 * Removing rmap_item from stable or unstable tree.
741 * This function will clean the information from the stable/unstable tree.
742 */
21fbd591 743static void remove_rmap_item_from_tree(struct ksm_rmap_item *rmap_item)
31dbd01f 744{
7b6ba2c7 745 if (rmap_item->address & STABLE_FLAG) {
21fbd591 746 struct ksm_stable_node *stable_node;
5ad64688 747 struct page *page;
31dbd01f 748
7b6ba2c7 749 stable_node = rmap_item->head;
62862290 750 page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK);
4035c07a
HD
751 if (!page)
752 goto out;
5ad64688 753
7b6ba2c7 754 hlist_del(&rmap_item->hlist);
62862290 755 unlock_page(page);
4035c07a 756 put_page(page);
08beca44 757
98666f8a 758 if (!hlist_empty(&stable_node->hlist))
4035c07a
HD
759 ksm_pages_sharing--;
760 else
7b6ba2c7 761 ksm_pages_shared--;
76093853 762
763 rmap_item->mm->ksm_merging_pages--;
764
2c653d0e
AA
765 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
766 stable_node->rmap_hlist_len--;
31dbd01f 767
9e60109f 768 put_anon_vma(rmap_item->anon_vma);
c89a384e 769 rmap_item->head = NULL;
93d17715 770 rmap_item->address &= PAGE_MASK;
31dbd01f 771
7b6ba2c7 772 } else if (rmap_item->address & UNSTABLE_FLAG) {
31dbd01f
IE
773 unsigned char age;
774 /*
9ba69294 775 * Usually ksmd can and must skip the rb_erase, because
31dbd01f 776 * root_unstable_tree was already reset to RB_ROOT.
9ba69294
HD
777 * But be careful when an mm is exiting: do the rb_erase
778 * if this rmap_item was inserted by this scan, rather
779 * than left over from before.
31dbd01f
IE
780 */
781 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
cd551f97 782 BUG_ON(age > 1);
31dbd01f 783 if (!age)
90bd6fd3 784 rb_erase(&rmap_item->node,
ef53d16c 785 root_unstable_tree + NUMA(rmap_item->nid));
473b0ce4 786 ksm_pages_unshared--;
93d17715 787 rmap_item->address &= PAGE_MASK;
31dbd01f 788 }
4035c07a 789out:
31dbd01f
IE
790 cond_resched(); /* we're called from many long loops */
791}
792
21fbd591 793static void remove_trailing_rmap_items(struct ksm_rmap_item **rmap_list)
31dbd01f 794{
6514d511 795 while (*rmap_list) {
21fbd591 796 struct ksm_rmap_item *rmap_item = *rmap_list;
6514d511 797 *rmap_list = rmap_item->rmap_list;
31dbd01f 798 remove_rmap_item_from_tree(rmap_item);
31dbd01f
IE
799 free_rmap_item(rmap_item);
800 }
801}
802
803/*
e850dcf5 804 * Though it's very tempting to unmerge rmap_items from stable tree rather
31dbd01f
IE
805 * than check every pte of a given vma, the locking doesn't quite work for
806 * that - an rmap_item is assigned to the stable tree after inserting ksm
c1e8d7c6 807 * page and upping mmap_lock. Nor does it fit with the way we skip dup'ing
31dbd01f
IE
808 * rmap_items from parent to child at fork time (so as not to waste time
809 * if exit comes before the next scan reaches it).
81464e30
HD
810 *
811 * Similarly, although we'd like to remove rmap_items (so updating counts
812 * and freeing memory) when unmerging an area, it's easier to leave that
813 * to the next pass of ksmd - consider, for example, how ksmd might be
814 * in cmp_and_merge_page on one of the rmap_items we would be removing.
31dbd01f 815 */
d952b791
HD
816static int unmerge_ksm_pages(struct vm_area_struct *vma,
817 unsigned long start, unsigned long end)
31dbd01f
IE
818{
819 unsigned long addr;
d952b791 820 int err = 0;
31dbd01f 821
d952b791 822 for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
9ba69294
HD
823 if (ksm_test_exit(vma->vm_mm))
824 break;
d952b791
HD
825 if (signal_pending(current))
826 err = -ERESTARTSYS;
827 else
828 err = break_ksm(vma, addr);
829 }
830 return err;
31dbd01f
IE
831}
832
21fbd591 833static inline struct ksm_stable_node *folio_stable_node(struct folio *folio)
19138349
MWO
834{
835 return folio_test_ksm(folio) ? folio_raw_mapping(folio) : NULL;
836}
837
21fbd591 838static inline struct ksm_stable_node *page_stable_node(struct page *page)
88484826 839{
19138349 840 return folio_stable_node(page_folio(page));
88484826
MR
841}
842
843static inline void set_page_stable_node(struct page *page,
21fbd591 844 struct ksm_stable_node *stable_node)
88484826 845{
6c287605 846 VM_BUG_ON_PAGE(PageAnon(page) && PageAnonExclusive(page), page);
88484826
MR
847 page->mapping = (void *)((unsigned long)stable_node | PAGE_MAPPING_KSM);
848}
849
2ffd8679
HD
850#ifdef CONFIG_SYSFS
851/*
852 * Only called through the sysfs control interface:
853 */
21fbd591 854static int remove_stable_node(struct ksm_stable_node *stable_node)
cbf86cfe
HD
855{
856 struct page *page;
857 int err;
858
2cee57d1 859 page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK);
cbf86cfe
HD
860 if (!page) {
861 /*
862 * get_ksm_page did remove_node_from_stable_tree itself.
863 */
864 return 0;
865 }
866
9a63236f
AR
867 /*
868 * Page could be still mapped if this races with __mmput() running in
869 * between ksm_exit() and exit_mmap(). Just refuse to let
870 * merge_across_nodes/max_page_sharing be switched.
871 */
872 err = -EBUSY;
873 if (!page_mapped(page)) {
cbf86cfe 874 /*
8fdb3dbf
HD
875 * The stable node did not yet appear stale to get_ksm_page(),
876 * since that allows for an unmapped ksm page to be recognized
877 * right up until it is freed; but the node is safe to remove.
cbf86cfe
HD
878 * This page might be in a pagevec waiting to be freed,
879 * or it might be PageSwapCache (perhaps under writeback),
880 * or it might have been removed from swapcache a moment ago.
881 */
882 set_page_stable_node(page, NULL);
883 remove_node_from_stable_tree(stable_node);
884 err = 0;
885 }
886
887 unlock_page(page);
888 put_page(page);
889 return err;
890}
891
21fbd591 892static int remove_stable_node_chain(struct ksm_stable_node *stable_node,
2c653d0e
AA
893 struct rb_root *root)
894{
21fbd591 895 struct ksm_stable_node *dup;
2c653d0e
AA
896 struct hlist_node *hlist_safe;
897
898 if (!is_stable_node_chain(stable_node)) {
899 VM_BUG_ON(is_stable_node_dup(stable_node));
900 if (remove_stable_node(stable_node))
901 return true;
902 else
903 return false;
904 }
905
906 hlist_for_each_entry_safe(dup, hlist_safe,
907 &stable_node->hlist, hlist_dup) {
908 VM_BUG_ON(!is_stable_node_dup(dup));
909 if (remove_stable_node(dup))
910 return true;
911 }
912 BUG_ON(!hlist_empty(&stable_node->hlist));
913 free_stable_node_chain(stable_node, root);
914 return false;
915}
916
cbf86cfe
HD
917static int remove_all_stable_nodes(void)
918{
21fbd591 919 struct ksm_stable_node *stable_node, *next;
cbf86cfe
HD
920 int nid;
921 int err = 0;
922
ef53d16c 923 for (nid = 0; nid < ksm_nr_node_ids; nid++) {
cbf86cfe
HD
924 while (root_stable_tree[nid].rb_node) {
925 stable_node = rb_entry(root_stable_tree[nid].rb_node,
21fbd591 926 struct ksm_stable_node, node);
2c653d0e
AA
927 if (remove_stable_node_chain(stable_node,
928 root_stable_tree + nid)) {
cbf86cfe
HD
929 err = -EBUSY;
930 break; /* proceed to next nid */
931 }
932 cond_resched();
933 }
934 }
03640418 935 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
4146d2d6
HD
936 if (remove_stable_node(stable_node))
937 err = -EBUSY;
938 cond_resched();
939 }
cbf86cfe
HD
940 return err;
941}
942
d952b791 943static int unmerge_and_remove_all_rmap_items(void)
31dbd01f 944{
21fbd591 945 struct ksm_mm_slot *mm_slot;
58730ab6 946 struct mm_slot *slot;
31dbd01f
IE
947 struct mm_struct *mm;
948 struct vm_area_struct *vma;
d952b791
HD
949 int err = 0;
950
951 spin_lock(&ksm_mmlist_lock);
58730ab6
QZ
952 slot = list_entry(ksm_mm_head.slot.mm_node.next,
953 struct mm_slot, mm_node);
954 ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
d952b791 955 spin_unlock(&ksm_mmlist_lock);
31dbd01f 956
a5f18ba0
MWO
957 for (mm_slot = ksm_scan.mm_slot; mm_slot != &ksm_mm_head;
958 mm_slot = ksm_scan.mm_slot) {
58730ab6 959 VMA_ITERATOR(vmi, mm_slot->slot.mm, 0);
a5f18ba0 960
58730ab6 961 mm = mm_slot->slot.mm;
d8ed45c5 962 mmap_read_lock(mm);
a5f18ba0 963 for_each_vma(vmi, vma) {
9ba69294
HD
964 if (ksm_test_exit(mm))
965 break;
31dbd01f
IE
966 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
967 continue;
d952b791
HD
968 err = unmerge_ksm_pages(vma,
969 vma->vm_start, vma->vm_end);
9ba69294
HD
970 if (err)
971 goto error;
31dbd01f 972 }
9ba69294 973
420be4ed 974 remove_trailing_rmap_items(&mm_slot->rmap_list);
d8ed45c5 975 mmap_read_unlock(mm);
d952b791
HD
976
977 spin_lock(&ksm_mmlist_lock);
58730ab6
QZ
978 slot = list_entry(mm_slot->slot.mm_node.next,
979 struct mm_slot, mm_node);
980 ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
9ba69294 981 if (ksm_test_exit(mm)) {
58730ab6
QZ
982 hash_del(&mm_slot->slot.hash);
983 list_del(&mm_slot->slot.mm_node);
9ba69294
HD
984 spin_unlock(&ksm_mmlist_lock);
985
58730ab6 986 mm_slot_free(mm_slot_cache, mm_slot);
9ba69294 987 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
9ba69294 988 mmdrop(mm);
7496fea9 989 } else
9ba69294 990 spin_unlock(&ksm_mmlist_lock);
31dbd01f
IE
991 }
992
cbf86cfe
HD
993 /* Clean up stable nodes, but don't worry if some are still busy */
994 remove_all_stable_nodes();
d952b791 995 ksm_scan.seqnr = 0;
9ba69294
HD
996 return 0;
997
998error:
d8ed45c5 999 mmap_read_unlock(mm);
31dbd01f 1000 spin_lock(&ksm_mmlist_lock);
d952b791 1001 ksm_scan.mm_slot = &ksm_mm_head;
31dbd01f 1002 spin_unlock(&ksm_mmlist_lock);
d952b791 1003 return err;
31dbd01f 1004}
2ffd8679 1005#endif /* CONFIG_SYSFS */
31dbd01f 1006
31dbd01f
IE
1007static u32 calc_checksum(struct page *page)
1008{
1009 u32 checksum;
9b04c5fe 1010 void *addr = kmap_atomic(page);
59e1a2f4 1011 checksum = xxhash(addr, PAGE_SIZE, 0);
9b04c5fe 1012 kunmap_atomic(addr);
31dbd01f
IE
1013 return checksum;
1014}
1015
31dbd01f
IE
1016static int write_protect_page(struct vm_area_struct *vma, struct page *page,
1017 pte_t *orig_pte)
1018{
1019 struct mm_struct *mm = vma->vm_mm;
eed05e54 1020 DEFINE_PAGE_VMA_WALK(pvmw, page, vma, 0, 0);
31dbd01f
IE
1021 int swapped;
1022 int err = -EFAULT;
ac46d4f3 1023 struct mmu_notifier_range range;
6c287605 1024 bool anon_exclusive;
31dbd01f 1025
36eaff33
KS
1026 pvmw.address = page_address_in_vma(page, vma);
1027 if (pvmw.address == -EFAULT)
31dbd01f
IE
1028 goto out;
1029
29ad768c 1030 BUG_ON(PageTransCompound(page));
6bdb913f 1031
7269f999 1032 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
6f4f13e8 1033 pvmw.address,
ac46d4f3
JG
1034 pvmw.address + PAGE_SIZE);
1035 mmu_notifier_invalidate_range_start(&range);
6bdb913f 1036
36eaff33 1037 if (!page_vma_mapped_walk(&pvmw))
6bdb913f 1038 goto out_mn;
36eaff33
KS
1039 if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?"))
1040 goto out_unlock;
31dbd01f 1041
6c287605 1042 anon_exclusive = PageAnonExclusive(page);
595cd8f2 1043 if (pte_write(*pvmw.pte) || pte_dirty(*pvmw.pte) ||
6c287605 1044 anon_exclusive || mm_tlb_flush_pending(mm)) {
31dbd01f
IE
1045 pte_t entry;
1046
1047 swapped = PageSwapCache(page);
36eaff33 1048 flush_cache_page(vma, pvmw.address, page_to_pfn(page));
31dbd01f 1049 /*
25985edc 1050 * Ok this is tricky, when get_user_pages_fast() run it doesn't
31dbd01f 1051 * take any lock, therefore the check that we are going to make
f0953a1b 1052 * with the pagecount against the mapcount is racy and
31dbd01f
IE
1053 * O_DIRECT can happen right after the check.
1054 * So we clear the pte and flush the tlb before the check
1055 * this assure us that no O_DIRECT can happen after the check
1056 * or in the middle of the check.
0f10851e
JG
1057 *
1058 * No need to notify as we are downgrading page table to read
1059 * only not changing it to point to a new page.
1060 *
ee65728e 1061 * See Documentation/mm/mmu_notifier.rst
31dbd01f 1062 */
0f10851e 1063 entry = ptep_clear_flush(vma, pvmw.address, pvmw.pte);
31dbd01f
IE
1064 /*
1065 * Check that no O_DIRECT or similar I/O is in progress on the
1066 * page
1067 */
31e855ea 1068 if (page_mapcount(page) + 1 + swapped != page_count(page)) {
36eaff33 1069 set_pte_at(mm, pvmw.address, pvmw.pte, entry);
31dbd01f
IE
1070 goto out_unlock;
1071 }
6c287605 1072
088b8aa5 1073 /* See page_try_share_anon_rmap(): clear PTE first. */
6c287605
DH
1074 if (anon_exclusive && page_try_share_anon_rmap(page)) {
1075 set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1076 goto out_unlock;
1077 }
1078
4e31635c
HD
1079 if (pte_dirty(entry))
1080 set_page_dirty(page);
6a56ccbc
DH
1081 entry = pte_mkclean(entry);
1082
1083 if (pte_write(entry))
1084 entry = pte_wrprotect(entry);
595cd8f2 1085
36eaff33 1086 set_pte_at_notify(mm, pvmw.address, pvmw.pte, entry);
31dbd01f 1087 }
36eaff33 1088 *orig_pte = *pvmw.pte;
31dbd01f
IE
1089 err = 0;
1090
1091out_unlock:
36eaff33 1092 page_vma_mapped_walk_done(&pvmw);
6bdb913f 1093out_mn:
ac46d4f3 1094 mmu_notifier_invalidate_range_end(&range);
31dbd01f
IE
1095out:
1096 return err;
1097}
1098
1099/**
1100 * replace_page - replace page in vma by new ksm page
8dd3557a
HD
1101 * @vma: vma that holds the pte pointing to page
1102 * @page: the page we are replacing by kpage
1103 * @kpage: the ksm page we replace page by
31dbd01f
IE
1104 * @orig_pte: the original value of the pte
1105 *
1106 * Returns 0 on success, -EFAULT on failure.
1107 */
8dd3557a
HD
1108static int replace_page(struct vm_area_struct *vma, struct page *page,
1109 struct page *kpage, pte_t orig_pte)
31dbd01f
IE
1110{
1111 struct mm_struct *mm = vma->vm_mm;
b4e6f66e 1112 struct folio *folio;
31dbd01f 1113 pmd_t *pmd;
50722804 1114 pmd_t pmde;
31dbd01f 1115 pte_t *ptep;
e86c59b1 1116 pte_t newpte;
31dbd01f
IE
1117 spinlock_t *ptl;
1118 unsigned long addr;
31dbd01f 1119 int err = -EFAULT;
ac46d4f3 1120 struct mmu_notifier_range range;
31dbd01f 1121
8dd3557a 1122 addr = page_address_in_vma(page, vma);
31dbd01f
IE
1123 if (addr == -EFAULT)
1124 goto out;
1125
6219049a
BL
1126 pmd = mm_find_pmd(mm, addr);
1127 if (!pmd)
31dbd01f 1128 goto out;
50722804
ZK
1129 /*
1130 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
1131 * without holding anon_vma lock for write. So when looking for a
1132 * genuine pmde (in which to find pte), test present and !THP together.
1133 */
1134 pmde = *pmd;
1135 barrier();
1136 if (!pmd_present(pmde) || pmd_trans_huge(pmde))
1137 goto out;
31dbd01f 1138
7269f999 1139 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, addr,
6f4f13e8 1140 addr + PAGE_SIZE);
ac46d4f3 1141 mmu_notifier_invalidate_range_start(&range);
6bdb913f 1142
31dbd01f
IE
1143 ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
1144 if (!pte_same(*ptep, orig_pte)) {
1145 pte_unmap_unlock(ptep, ptl);
6bdb913f 1146 goto out_mn;
31dbd01f 1147 }
6c287605
DH
1148 VM_BUG_ON_PAGE(PageAnonExclusive(page), page);
1149 VM_BUG_ON_PAGE(PageAnon(kpage) && PageAnonExclusive(kpage), kpage);
31dbd01f 1150
e86c59b1
CI
1151 /*
1152 * No need to check ksm_use_zero_pages here: we can only have a
457aef94 1153 * zero_page here if ksm_use_zero_pages was enabled already.
e86c59b1
CI
1154 */
1155 if (!is_zero_pfn(page_to_pfn(kpage))) {
1156 get_page(kpage);
f1e2db12 1157 page_add_anon_rmap(kpage, vma, addr, RMAP_NONE);
e86c59b1
CI
1158 newpte = mk_pte(kpage, vma->vm_page_prot);
1159 } else {
1160 newpte = pte_mkspecial(pfn_pte(page_to_pfn(kpage),
1161 vma->vm_page_prot));
a38c015f
CI
1162 /*
1163 * We're replacing an anonymous page with a zero page, which is
1164 * not anonymous. We need to do proper accounting otherwise we
1165 * will get wrong values in /proc, and a BUG message in dmesg
1166 * when tearing down the mm.
1167 */
1168 dec_mm_counter(mm, MM_ANONPAGES);
e86c59b1 1169 }
31dbd01f
IE
1170
1171 flush_cache_page(vma, addr, pte_pfn(*ptep));
0f10851e
JG
1172 /*
1173 * No need to notify as we are replacing a read only page with another
1174 * read only page with the same content.
1175 *
ee65728e 1176 * See Documentation/mm/mmu_notifier.rst
0f10851e
JG
1177 */
1178 ptep_clear_flush(vma, addr, ptep);
e86c59b1 1179 set_pte_at_notify(mm, addr, ptep, newpte);
31dbd01f 1180
b4e6f66e 1181 folio = page_folio(page);
cea86fe2 1182 page_remove_rmap(page, vma, false);
b4e6f66e
MWO
1183 if (!folio_mapped(folio))
1184 folio_free_swap(folio);
1185 folio_put(folio);
31dbd01f
IE
1186
1187 pte_unmap_unlock(ptep, ptl);
1188 err = 0;
6bdb913f 1189out_mn:
ac46d4f3 1190 mmu_notifier_invalidate_range_end(&range);
31dbd01f
IE
1191out:
1192 return err;
1193}
1194
1195/*
1196 * try_to_merge_one_page - take two pages and merge them into one
8dd3557a
HD
1197 * @vma: the vma that holds the pte pointing to page
1198 * @page: the PageAnon page that we want to replace with kpage
80e14822
HD
1199 * @kpage: the PageKsm page that we want to map instead of page,
1200 * or NULL the first time when we want to use page as kpage.
31dbd01f
IE
1201 *
1202 * This function returns 0 if the pages were merged, -EFAULT otherwise.
1203 */
1204static int try_to_merge_one_page(struct vm_area_struct *vma,
8dd3557a 1205 struct page *page, struct page *kpage)
31dbd01f
IE
1206{
1207 pte_t orig_pte = __pte(0);
1208 int err = -EFAULT;
1209
db114b83
HD
1210 if (page == kpage) /* ksm page forked */
1211 return 0;
1212
8dd3557a 1213 if (!PageAnon(page))
31dbd01f
IE
1214 goto out;
1215
31dbd01f
IE
1216 /*
1217 * We need the page lock to read a stable PageSwapCache in
1218 * write_protect_page(). We use trylock_page() instead of
1219 * lock_page() because we don't want to wait here - we
1220 * prefer to continue scanning and merging different pages,
1221 * then come back to this page when it is unlocked.
1222 */
8dd3557a 1223 if (!trylock_page(page))
31e855ea 1224 goto out;
f765f540
KS
1225
1226 if (PageTransCompound(page)) {
a7306c34 1227 if (split_huge_page(page))
f765f540
KS
1228 goto out_unlock;
1229 }
1230
31dbd01f
IE
1231 /*
1232 * If this anonymous page is mapped only here, its pte may need
1233 * to be write-protected. If it's mapped elsewhere, all of its
1234 * ptes are necessarily already write-protected. But in either
1235 * case, we need to lock and check page_count is not raised.
1236 */
80e14822
HD
1237 if (write_protect_page(vma, page, &orig_pte) == 0) {
1238 if (!kpage) {
1239 /*
1240 * While we hold page lock, upgrade page from
1241 * PageAnon+anon_vma to PageKsm+NULL stable_node:
1242 * stable_tree_insert() will update stable_node.
1243 */
1244 set_page_stable_node(page, NULL);
1245 mark_page_accessed(page);
337ed7eb
MK
1246 /*
1247 * Page reclaim just frees a clean page with no dirty
1248 * ptes: make sure that the ksm page would be swapped.
1249 */
1250 if (!PageDirty(page))
1251 SetPageDirty(page);
80e14822
HD
1252 err = 0;
1253 } else if (pages_identical(page, kpage))
1254 err = replace_page(vma, page, kpage, orig_pte);
1255 }
31dbd01f 1256
f765f540 1257out_unlock:
8dd3557a 1258 unlock_page(page);
31dbd01f
IE
1259out:
1260 return err;
1261}
1262
81464e30
HD
1263/*
1264 * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1265 * but no new kernel page is allocated: kpage must already be a ksm page.
8dd3557a
HD
1266 *
1267 * This function returns 0 if the pages were merged, -EFAULT otherwise.
81464e30 1268 */
21fbd591 1269static int try_to_merge_with_ksm_page(struct ksm_rmap_item *rmap_item,
8dd3557a 1270 struct page *page, struct page *kpage)
81464e30 1271{
8dd3557a 1272 struct mm_struct *mm = rmap_item->mm;
81464e30
HD
1273 struct vm_area_struct *vma;
1274 int err = -EFAULT;
1275
d8ed45c5 1276 mmap_read_lock(mm);
85c6e8dd
AA
1277 vma = find_mergeable_vma(mm, rmap_item->address);
1278 if (!vma)
81464e30
HD
1279 goto out;
1280
8dd3557a 1281 err = try_to_merge_one_page(vma, page, kpage);
db114b83
HD
1282 if (err)
1283 goto out;
1284
bc56620b
HD
1285 /* Unstable nid is in union with stable anon_vma: remove first */
1286 remove_rmap_item_from_tree(rmap_item);
1287
c1e8d7c6 1288 /* Must get reference to anon_vma while still holding mmap_lock */
9e60109f
PZ
1289 rmap_item->anon_vma = vma->anon_vma;
1290 get_anon_vma(vma->anon_vma);
81464e30 1291out:
d8ed45c5 1292 mmap_read_unlock(mm);
81464e30
HD
1293 return err;
1294}
1295
31dbd01f
IE
1296/*
1297 * try_to_merge_two_pages - take two identical pages and prepare them
1298 * to be merged into one page.
1299 *
8dd3557a
HD
1300 * This function returns the kpage if we successfully merged two identical
1301 * pages into one ksm page, NULL otherwise.
31dbd01f 1302 *
80e14822 1303 * Note that this function upgrades page to ksm page: if one of the pages
31dbd01f
IE
1304 * is already a ksm page, try_to_merge_with_ksm_page should be used.
1305 */
21fbd591 1306static struct page *try_to_merge_two_pages(struct ksm_rmap_item *rmap_item,
8dd3557a 1307 struct page *page,
21fbd591 1308 struct ksm_rmap_item *tree_rmap_item,
8dd3557a 1309 struct page *tree_page)
31dbd01f 1310{
80e14822 1311 int err;
31dbd01f 1312
80e14822 1313 err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
31dbd01f 1314 if (!err) {
8dd3557a 1315 err = try_to_merge_with_ksm_page(tree_rmap_item,
80e14822 1316 tree_page, page);
31dbd01f 1317 /*
81464e30
HD
1318 * If that fails, we have a ksm page with only one pte
1319 * pointing to it: so break it.
31dbd01f 1320 */
4035c07a 1321 if (err)
8dd3557a 1322 break_cow(rmap_item);
31dbd01f 1323 }
80e14822 1324 return err ? NULL : page;
31dbd01f
IE
1325}
1326
2c653d0e 1327static __always_inline
21fbd591 1328bool __is_page_sharing_candidate(struct ksm_stable_node *stable_node, int offset)
2c653d0e
AA
1329{
1330 VM_BUG_ON(stable_node->rmap_hlist_len < 0);
1331 /*
1332 * Check that at least one mapping still exists, otherwise
1333 * there's no much point to merge and share with this
1334 * stable_node, as the underlying tree_page of the other
1335 * sharer is going to be freed soon.
1336 */
1337 return stable_node->rmap_hlist_len &&
1338 stable_node->rmap_hlist_len + offset < ksm_max_page_sharing;
1339}
1340
1341static __always_inline
21fbd591 1342bool is_page_sharing_candidate(struct ksm_stable_node *stable_node)
2c653d0e
AA
1343{
1344 return __is_page_sharing_candidate(stable_node, 0);
1345}
1346
21fbd591
QZ
1347static struct page *stable_node_dup(struct ksm_stable_node **_stable_node_dup,
1348 struct ksm_stable_node **_stable_node,
c01f0b54
CIK
1349 struct rb_root *root,
1350 bool prune_stale_stable_nodes)
2c653d0e 1351{
21fbd591 1352 struct ksm_stable_node *dup, *found = NULL, *stable_node = *_stable_node;
2c653d0e 1353 struct hlist_node *hlist_safe;
8dc5ffcd 1354 struct page *_tree_page, *tree_page = NULL;
2c653d0e
AA
1355 int nr = 0;
1356 int found_rmap_hlist_len;
1357
1358 if (!prune_stale_stable_nodes ||
1359 time_before(jiffies, stable_node->chain_prune_time +
1360 msecs_to_jiffies(
1361 ksm_stable_node_chains_prune_millisecs)))
1362 prune_stale_stable_nodes = false;
1363 else
1364 stable_node->chain_prune_time = jiffies;
1365
1366 hlist_for_each_entry_safe(dup, hlist_safe,
1367 &stable_node->hlist, hlist_dup) {
1368 cond_resched();
1369 /*
1370 * We must walk all stable_node_dup to prune the stale
1371 * stable nodes during lookup.
1372 *
1373 * get_ksm_page can drop the nodes from the
1374 * stable_node->hlist if they point to freed pages
1375 * (that's why we do a _safe walk). The "dup"
1376 * stable_node parameter itself will be freed from
1377 * under us if it returns NULL.
1378 */
2cee57d1 1379 _tree_page = get_ksm_page(dup, GET_KSM_PAGE_NOLOCK);
2c653d0e
AA
1380 if (!_tree_page)
1381 continue;
1382 nr += 1;
1383 if (is_page_sharing_candidate(dup)) {
1384 if (!found ||
1385 dup->rmap_hlist_len > found_rmap_hlist_len) {
1386 if (found)
8dc5ffcd 1387 put_page(tree_page);
2c653d0e
AA
1388 found = dup;
1389 found_rmap_hlist_len = found->rmap_hlist_len;
8dc5ffcd 1390 tree_page = _tree_page;
2c653d0e 1391
8dc5ffcd 1392 /* skip put_page for found dup */
2c653d0e
AA
1393 if (!prune_stale_stable_nodes)
1394 break;
2c653d0e
AA
1395 continue;
1396 }
1397 }
1398 put_page(_tree_page);
1399 }
1400
80b18dfa
AA
1401 if (found) {
1402 /*
1403 * nr is counting all dups in the chain only if
1404 * prune_stale_stable_nodes is true, otherwise we may
1405 * break the loop at nr == 1 even if there are
1406 * multiple entries.
1407 */
1408 if (prune_stale_stable_nodes && nr == 1) {
2c653d0e
AA
1409 /*
1410 * If there's not just one entry it would
1411 * corrupt memory, better BUG_ON. In KSM
1412 * context with no lock held it's not even
1413 * fatal.
1414 */
1415 BUG_ON(stable_node->hlist.first->next);
1416
1417 /*
1418 * There's just one entry and it is below the
1419 * deduplication limit so drop the chain.
1420 */
1421 rb_replace_node(&stable_node->node, &found->node,
1422 root);
1423 free_stable_node(stable_node);
1424 ksm_stable_node_chains--;
1425 ksm_stable_node_dups--;
b4fecc67 1426 /*
0ba1d0f7
AA
1427 * NOTE: the caller depends on the stable_node
1428 * to be equal to stable_node_dup if the chain
1429 * was collapsed.
b4fecc67 1430 */
0ba1d0f7
AA
1431 *_stable_node = found;
1432 /*
f0953a1b 1433 * Just for robustness, as stable_node is
0ba1d0f7
AA
1434 * otherwise left as a stable pointer, the
1435 * compiler shall optimize it away at build
1436 * time.
1437 */
1438 stable_node = NULL;
80b18dfa
AA
1439 } else if (stable_node->hlist.first != &found->hlist_dup &&
1440 __is_page_sharing_candidate(found, 1)) {
2c653d0e 1441 /*
80b18dfa
AA
1442 * If the found stable_node dup can accept one
1443 * more future merge (in addition to the one
1444 * that is underway) and is not at the head of
1445 * the chain, put it there so next search will
1446 * be quicker in the !prune_stale_stable_nodes
1447 * case.
1448 *
1449 * NOTE: it would be inaccurate to use nr > 1
1450 * instead of checking the hlist.first pointer
1451 * directly, because in the
1452 * prune_stale_stable_nodes case "nr" isn't
1453 * the position of the found dup in the chain,
1454 * but the total number of dups in the chain.
2c653d0e
AA
1455 */
1456 hlist_del(&found->hlist_dup);
1457 hlist_add_head(&found->hlist_dup,
1458 &stable_node->hlist);
1459 }
1460 }
1461
8dc5ffcd
AA
1462 *_stable_node_dup = found;
1463 return tree_page;
2c653d0e
AA
1464}
1465
21fbd591 1466static struct ksm_stable_node *stable_node_dup_any(struct ksm_stable_node *stable_node,
2c653d0e
AA
1467 struct rb_root *root)
1468{
1469 if (!is_stable_node_chain(stable_node))
1470 return stable_node;
1471 if (hlist_empty(&stable_node->hlist)) {
1472 free_stable_node_chain(stable_node, root);
1473 return NULL;
1474 }
1475 return hlist_entry(stable_node->hlist.first,
1476 typeof(*stable_node), hlist_dup);
1477}
1478
8dc5ffcd
AA
1479/*
1480 * Like for get_ksm_page, this function can free the *_stable_node and
1481 * *_stable_node_dup if the returned tree_page is NULL.
1482 *
1483 * It can also free and overwrite *_stable_node with the found
1484 * stable_node_dup if the chain is collapsed (in which case
1485 * *_stable_node will be equal to *_stable_node_dup like if the chain
1486 * never existed). It's up to the caller to verify tree_page is not
1487 * NULL before dereferencing *_stable_node or *_stable_node_dup.
1488 *
1489 * *_stable_node_dup is really a second output parameter of this
1490 * function and will be overwritten in all cases, the caller doesn't
1491 * need to initialize it.
1492 */
21fbd591
QZ
1493static struct page *__stable_node_chain(struct ksm_stable_node **_stable_node_dup,
1494 struct ksm_stable_node **_stable_node,
8dc5ffcd
AA
1495 struct rb_root *root,
1496 bool prune_stale_stable_nodes)
2c653d0e 1497{
21fbd591 1498 struct ksm_stable_node *stable_node = *_stable_node;
2c653d0e
AA
1499 if (!is_stable_node_chain(stable_node)) {
1500 if (is_page_sharing_candidate(stable_node)) {
8dc5ffcd 1501 *_stable_node_dup = stable_node;
2cee57d1 1502 return get_ksm_page(stable_node, GET_KSM_PAGE_NOLOCK);
2c653d0e 1503 }
8dc5ffcd
AA
1504 /*
1505 * _stable_node_dup set to NULL means the stable_node
1506 * reached the ksm_max_page_sharing limit.
1507 */
1508 *_stable_node_dup = NULL;
2c653d0e
AA
1509 return NULL;
1510 }
8dc5ffcd 1511 return stable_node_dup(_stable_node_dup, _stable_node, root,
2c653d0e
AA
1512 prune_stale_stable_nodes);
1513}
1514
21fbd591
QZ
1515static __always_inline struct page *chain_prune(struct ksm_stable_node **s_n_d,
1516 struct ksm_stable_node **s_n,
8dc5ffcd 1517 struct rb_root *root)
2c653d0e 1518{
8dc5ffcd 1519 return __stable_node_chain(s_n_d, s_n, root, true);
2c653d0e
AA
1520}
1521
21fbd591
QZ
1522static __always_inline struct page *chain(struct ksm_stable_node **s_n_d,
1523 struct ksm_stable_node *s_n,
8dc5ffcd 1524 struct rb_root *root)
2c653d0e 1525{
21fbd591 1526 struct ksm_stable_node *old_stable_node = s_n;
8dc5ffcd
AA
1527 struct page *tree_page;
1528
1529 tree_page = __stable_node_chain(s_n_d, &s_n, root, false);
1530 /* not pruning dups so s_n cannot have changed */
1531 VM_BUG_ON(s_n != old_stable_node);
1532 return tree_page;
2c653d0e
AA
1533}
1534
31dbd01f 1535/*
8dd3557a 1536 * stable_tree_search - search for page inside the stable tree
31dbd01f
IE
1537 *
1538 * This function checks if there is a page inside the stable tree
1539 * with identical content to the page that we are scanning right now.
1540 *
7b6ba2c7 1541 * This function returns the stable tree node of identical content if found,
31dbd01f
IE
1542 * NULL otherwise.
1543 */
62b61f61 1544static struct page *stable_tree_search(struct page *page)
31dbd01f 1545{
90bd6fd3 1546 int nid;
ef53d16c 1547 struct rb_root *root;
4146d2d6
HD
1548 struct rb_node **new;
1549 struct rb_node *parent;
21fbd591
QZ
1550 struct ksm_stable_node *stable_node, *stable_node_dup, *stable_node_any;
1551 struct ksm_stable_node *page_node;
31dbd01f 1552
4146d2d6
HD
1553 page_node = page_stable_node(page);
1554 if (page_node && page_node->head != &migrate_nodes) {
1555 /* ksm page forked */
08beca44 1556 get_page(page);
62b61f61 1557 return page;
08beca44
HD
1558 }
1559
90bd6fd3 1560 nid = get_kpfn_nid(page_to_pfn(page));
ef53d16c 1561 root = root_stable_tree + nid;
4146d2d6 1562again:
ef53d16c 1563 new = &root->rb_node;
4146d2d6 1564 parent = NULL;
90bd6fd3 1565
4146d2d6 1566 while (*new) {
4035c07a 1567 struct page *tree_page;
31dbd01f
IE
1568 int ret;
1569
08beca44 1570 cond_resched();
21fbd591 1571 stable_node = rb_entry(*new, struct ksm_stable_node, node);
2c653d0e 1572 stable_node_any = NULL;
8dc5ffcd 1573 tree_page = chain_prune(&stable_node_dup, &stable_node, root);
b4fecc67
AA
1574 /*
1575 * NOTE: stable_node may have been freed by
1576 * chain_prune() if the returned stable_node_dup is
1577 * not NULL. stable_node_dup may have been inserted in
1578 * the rbtree instead as a regular stable_node (in
1579 * order to collapse the stable_node chain if a single
0ba1d0f7 1580 * stable_node dup was found in it). In such case the
3413b2c8 1581 * stable_node is overwritten by the callee to point
0ba1d0f7
AA
1582 * to the stable_node_dup that was collapsed in the
1583 * stable rbtree and stable_node will be equal to
1584 * stable_node_dup like if the chain never existed.
b4fecc67 1585 */
2c653d0e
AA
1586 if (!stable_node_dup) {
1587 /*
1588 * Either all stable_node dups were full in
1589 * this stable_node chain, or this chain was
1590 * empty and should be rb_erased.
1591 */
1592 stable_node_any = stable_node_dup_any(stable_node,
1593 root);
1594 if (!stable_node_any) {
1595 /* rb_erase just run */
1596 goto again;
1597 }
1598 /*
1599 * Take any of the stable_node dups page of
1600 * this stable_node chain to let the tree walk
1601 * continue. All KSM pages belonging to the
1602 * stable_node dups in a stable_node chain
1603 * have the same content and they're
457aef94 1604 * write protected at all times. Any will work
2c653d0e
AA
1605 * fine to continue the walk.
1606 */
2cee57d1
YS
1607 tree_page = get_ksm_page(stable_node_any,
1608 GET_KSM_PAGE_NOLOCK);
2c653d0e
AA
1609 }
1610 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
f2e5ff85
AA
1611 if (!tree_page) {
1612 /*
1613 * If we walked over a stale stable_node,
1614 * get_ksm_page() will call rb_erase() and it
1615 * may rebalance the tree from under us. So
1616 * restart the search from scratch. Returning
1617 * NULL would be safe too, but we'd generate
1618 * false negative insertions just because some
1619 * stable_node was stale.
1620 */
1621 goto again;
1622 }
31dbd01f 1623
4035c07a 1624 ret = memcmp_pages(page, tree_page);
c8d6553b 1625 put_page(tree_page);
31dbd01f 1626
4146d2d6 1627 parent = *new;
c8d6553b 1628 if (ret < 0)
4146d2d6 1629 new = &parent->rb_left;
c8d6553b 1630 else if (ret > 0)
4146d2d6 1631 new = &parent->rb_right;
c8d6553b 1632 else {
2c653d0e
AA
1633 if (page_node) {
1634 VM_BUG_ON(page_node->head != &migrate_nodes);
1635 /*
1636 * Test if the migrated page should be merged
1637 * into a stable node dup. If the mapcount is
1638 * 1 we can migrate it with another KSM page
1639 * without adding it to the chain.
1640 */
1641 if (page_mapcount(page) > 1)
1642 goto chain_append;
1643 }
1644
1645 if (!stable_node_dup) {
1646 /*
1647 * If the stable_node is a chain and
1648 * we got a payload match in memcmp
1649 * but we cannot merge the scanned
1650 * page in any of the existing
1651 * stable_node dups because they're
1652 * all full, we need to wait the
1653 * scanned page to find itself a match
1654 * in the unstable tree to create a
1655 * brand new KSM page to add later to
1656 * the dups of this stable_node.
1657 */
1658 return NULL;
1659 }
1660
c8d6553b
HD
1661 /*
1662 * Lock and unlock the stable_node's page (which
1663 * might already have been migrated) so that page
1664 * migration is sure to notice its raised count.
1665 * It would be more elegant to return stable_node
1666 * than kpage, but that involves more changes.
1667 */
2cee57d1
YS
1668 tree_page = get_ksm_page(stable_node_dup,
1669 GET_KSM_PAGE_TRYLOCK);
1670
1671 if (PTR_ERR(tree_page) == -EBUSY)
1672 return ERR_PTR(-EBUSY);
1673
2c653d0e
AA
1674 if (unlikely(!tree_page))
1675 /*
1676 * The tree may have been rebalanced,
1677 * so re-evaluate parent and new.
1678 */
4146d2d6 1679 goto again;
2c653d0e
AA
1680 unlock_page(tree_page);
1681
1682 if (get_kpfn_nid(stable_node_dup->kpfn) !=
1683 NUMA(stable_node_dup->nid)) {
1684 put_page(tree_page);
1685 goto replace;
1686 }
1687 return tree_page;
c8d6553b 1688 }
31dbd01f
IE
1689 }
1690
4146d2d6
HD
1691 if (!page_node)
1692 return NULL;
1693
1694 list_del(&page_node->list);
1695 DO_NUMA(page_node->nid = nid);
1696 rb_link_node(&page_node->node, parent, new);
ef53d16c 1697 rb_insert_color(&page_node->node, root);
2c653d0e
AA
1698out:
1699 if (is_page_sharing_candidate(page_node)) {
1700 get_page(page);
1701 return page;
1702 } else
1703 return NULL;
4146d2d6
HD
1704
1705replace:
b4fecc67
AA
1706 /*
1707 * If stable_node was a chain and chain_prune collapsed it,
0ba1d0f7
AA
1708 * stable_node has been updated to be the new regular
1709 * stable_node. A collapse of the chain is indistinguishable
1710 * from the case there was no chain in the stable
1711 * rbtree. Otherwise stable_node is the chain and
1712 * stable_node_dup is the dup to replace.
b4fecc67 1713 */
0ba1d0f7 1714 if (stable_node_dup == stable_node) {
b4fecc67
AA
1715 VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1716 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
2c653d0e
AA
1717 /* there is no chain */
1718 if (page_node) {
1719 VM_BUG_ON(page_node->head != &migrate_nodes);
1720 list_del(&page_node->list);
1721 DO_NUMA(page_node->nid = nid);
b4fecc67
AA
1722 rb_replace_node(&stable_node_dup->node,
1723 &page_node->node,
2c653d0e
AA
1724 root);
1725 if (is_page_sharing_candidate(page_node))
1726 get_page(page);
1727 else
1728 page = NULL;
1729 } else {
b4fecc67 1730 rb_erase(&stable_node_dup->node, root);
2c653d0e
AA
1731 page = NULL;
1732 }
4146d2d6 1733 } else {
2c653d0e
AA
1734 VM_BUG_ON(!is_stable_node_chain(stable_node));
1735 __stable_node_dup_del(stable_node_dup);
1736 if (page_node) {
1737 VM_BUG_ON(page_node->head != &migrate_nodes);
1738 list_del(&page_node->list);
1739 DO_NUMA(page_node->nid = nid);
1740 stable_node_chain_add_dup(page_node, stable_node);
1741 if (is_page_sharing_candidate(page_node))
1742 get_page(page);
1743 else
1744 page = NULL;
1745 } else {
1746 page = NULL;
1747 }
4146d2d6 1748 }
2c653d0e
AA
1749 stable_node_dup->head = &migrate_nodes;
1750 list_add(&stable_node_dup->list, stable_node_dup->head);
4146d2d6 1751 return page;
2c653d0e
AA
1752
1753chain_append:
1754 /* stable_node_dup could be null if it reached the limit */
1755 if (!stable_node_dup)
1756 stable_node_dup = stable_node_any;
b4fecc67
AA
1757 /*
1758 * If stable_node was a chain and chain_prune collapsed it,
0ba1d0f7
AA
1759 * stable_node has been updated to be the new regular
1760 * stable_node. A collapse of the chain is indistinguishable
1761 * from the case there was no chain in the stable
1762 * rbtree. Otherwise stable_node is the chain and
1763 * stable_node_dup is the dup to replace.
b4fecc67 1764 */
0ba1d0f7 1765 if (stable_node_dup == stable_node) {
b4fecc67 1766 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
2c653d0e
AA
1767 /* chain is missing so create it */
1768 stable_node = alloc_stable_node_chain(stable_node_dup,
1769 root);
1770 if (!stable_node)
1771 return NULL;
1772 }
1773 /*
1774 * Add this stable_node dup that was
1775 * migrated to the stable_node chain
1776 * of the current nid for this page
1777 * content.
1778 */
b4fecc67 1779 VM_BUG_ON(!is_stable_node_dup(stable_node_dup));
2c653d0e
AA
1780 VM_BUG_ON(page_node->head != &migrate_nodes);
1781 list_del(&page_node->list);
1782 DO_NUMA(page_node->nid = nid);
1783 stable_node_chain_add_dup(page_node, stable_node);
1784 goto out;
31dbd01f
IE
1785}
1786
1787/*
e850dcf5 1788 * stable_tree_insert - insert stable tree node pointing to new ksm page
31dbd01f
IE
1789 * into the stable tree.
1790 *
7b6ba2c7
HD
1791 * This function returns the stable tree node just allocated on success,
1792 * NULL otherwise.
31dbd01f 1793 */
21fbd591 1794static struct ksm_stable_node *stable_tree_insert(struct page *kpage)
31dbd01f 1795{
90bd6fd3
PH
1796 int nid;
1797 unsigned long kpfn;
ef53d16c 1798 struct rb_root *root;
90bd6fd3 1799 struct rb_node **new;
f2e5ff85 1800 struct rb_node *parent;
21fbd591 1801 struct ksm_stable_node *stable_node, *stable_node_dup, *stable_node_any;
2c653d0e 1802 bool need_chain = false;
31dbd01f 1803
90bd6fd3
PH
1804 kpfn = page_to_pfn(kpage);
1805 nid = get_kpfn_nid(kpfn);
ef53d16c 1806 root = root_stable_tree + nid;
f2e5ff85
AA
1807again:
1808 parent = NULL;
ef53d16c 1809 new = &root->rb_node;
90bd6fd3 1810
31dbd01f 1811 while (*new) {
4035c07a 1812 struct page *tree_page;
31dbd01f
IE
1813 int ret;
1814
08beca44 1815 cond_resched();
21fbd591 1816 stable_node = rb_entry(*new, struct ksm_stable_node, node);
2c653d0e 1817 stable_node_any = NULL;
8dc5ffcd 1818 tree_page = chain(&stable_node_dup, stable_node, root);
2c653d0e
AA
1819 if (!stable_node_dup) {
1820 /*
1821 * Either all stable_node dups were full in
1822 * this stable_node chain, or this chain was
1823 * empty and should be rb_erased.
1824 */
1825 stable_node_any = stable_node_dup_any(stable_node,
1826 root);
1827 if (!stable_node_any) {
1828 /* rb_erase just run */
1829 goto again;
1830 }
1831 /*
1832 * Take any of the stable_node dups page of
1833 * this stable_node chain to let the tree walk
1834 * continue. All KSM pages belonging to the
1835 * stable_node dups in a stable_node chain
1836 * have the same content and they're
457aef94 1837 * write protected at all times. Any will work
2c653d0e
AA
1838 * fine to continue the walk.
1839 */
2cee57d1
YS
1840 tree_page = get_ksm_page(stable_node_any,
1841 GET_KSM_PAGE_NOLOCK);
2c653d0e
AA
1842 }
1843 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
f2e5ff85
AA
1844 if (!tree_page) {
1845 /*
1846 * If we walked over a stale stable_node,
1847 * get_ksm_page() will call rb_erase() and it
1848 * may rebalance the tree from under us. So
1849 * restart the search from scratch. Returning
1850 * NULL would be safe too, but we'd generate
1851 * false negative insertions just because some
1852 * stable_node was stale.
1853 */
1854 goto again;
1855 }
31dbd01f 1856
4035c07a
HD
1857 ret = memcmp_pages(kpage, tree_page);
1858 put_page(tree_page);
31dbd01f
IE
1859
1860 parent = *new;
1861 if (ret < 0)
1862 new = &parent->rb_left;
1863 else if (ret > 0)
1864 new = &parent->rb_right;
1865 else {
2c653d0e
AA
1866 need_chain = true;
1867 break;
31dbd01f
IE
1868 }
1869 }
1870
2c653d0e
AA
1871 stable_node_dup = alloc_stable_node();
1872 if (!stable_node_dup)
7b6ba2c7 1873 return NULL;
31dbd01f 1874
2c653d0e
AA
1875 INIT_HLIST_HEAD(&stable_node_dup->hlist);
1876 stable_node_dup->kpfn = kpfn;
1877 set_page_stable_node(kpage, stable_node_dup);
1878 stable_node_dup->rmap_hlist_len = 0;
1879 DO_NUMA(stable_node_dup->nid = nid);
1880 if (!need_chain) {
1881 rb_link_node(&stable_node_dup->node, parent, new);
1882 rb_insert_color(&stable_node_dup->node, root);
1883 } else {
1884 if (!is_stable_node_chain(stable_node)) {
21fbd591 1885 struct ksm_stable_node *orig = stable_node;
2c653d0e
AA
1886 /* chain is missing so create it */
1887 stable_node = alloc_stable_node_chain(orig, root);
1888 if (!stable_node) {
1889 free_stable_node(stable_node_dup);
1890 return NULL;
1891 }
1892 }
1893 stable_node_chain_add_dup(stable_node_dup, stable_node);
1894 }
08beca44 1895
2c653d0e 1896 return stable_node_dup;
31dbd01f
IE
1897}
1898
1899/*
8dd3557a
HD
1900 * unstable_tree_search_insert - search for identical page,
1901 * else insert rmap_item into the unstable tree.
31dbd01f
IE
1902 *
1903 * This function searches for a page in the unstable tree identical to the
1904 * page currently being scanned; and if no identical page is found in the
1905 * tree, we insert rmap_item as a new object into the unstable tree.
1906 *
1907 * This function returns pointer to rmap_item found to be identical
1908 * to the currently scanned page, NULL otherwise.
1909 *
1910 * This function does both searching and inserting, because they share
1911 * the same walking algorithm in an rbtree.
1912 */
8dd3557a 1913static
21fbd591 1914struct ksm_rmap_item *unstable_tree_search_insert(struct ksm_rmap_item *rmap_item,
8dd3557a
HD
1915 struct page *page,
1916 struct page **tree_pagep)
31dbd01f 1917{
90bd6fd3
PH
1918 struct rb_node **new;
1919 struct rb_root *root;
31dbd01f 1920 struct rb_node *parent = NULL;
90bd6fd3
PH
1921 int nid;
1922
1923 nid = get_kpfn_nid(page_to_pfn(page));
ef53d16c 1924 root = root_unstable_tree + nid;
90bd6fd3 1925 new = &root->rb_node;
31dbd01f
IE
1926
1927 while (*new) {
21fbd591 1928 struct ksm_rmap_item *tree_rmap_item;
8dd3557a 1929 struct page *tree_page;
31dbd01f
IE
1930 int ret;
1931
d178f27f 1932 cond_resched();
21fbd591 1933 tree_rmap_item = rb_entry(*new, struct ksm_rmap_item, node);
8dd3557a 1934 tree_page = get_mergeable_page(tree_rmap_item);
c8f95ed1 1935 if (!tree_page)
31dbd01f
IE
1936 return NULL;
1937
1938 /*
8dd3557a 1939 * Don't substitute a ksm page for a forked page.
31dbd01f 1940 */
8dd3557a
HD
1941 if (page == tree_page) {
1942 put_page(tree_page);
31dbd01f
IE
1943 return NULL;
1944 }
1945
8dd3557a 1946 ret = memcmp_pages(page, tree_page);
31dbd01f
IE
1947
1948 parent = *new;
1949 if (ret < 0) {
8dd3557a 1950 put_page(tree_page);
31dbd01f
IE
1951 new = &parent->rb_left;
1952 } else if (ret > 0) {
8dd3557a 1953 put_page(tree_page);
31dbd01f 1954 new = &parent->rb_right;
b599cbdf
HD
1955 } else if (!ksm_merge_across_nodes &&
1956 page_to_nid(tree_page) != nid) {
1957 /*
1958 * If tree_page has been migrated to another NUMA node,
1959 * it will be flushed out and put in the right unstable
1960 * tree next time: only merge with it when across_nodes.
1961 */
1962 put_page(tree_page);
1963 return NULL;
31dbd01f 1964 } else {
8dd3557a 1965 *tree_pagep = tree_page;
31dbd01f
IE
1966 return tree_rmap_item;
1967 }
1968 }
1969
7b6ba2c7 1970 rmap_item->address |= UNSTABLE_FLAG;
31dbd01f 1971 rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
e850dcf5 1972 DO_NUMA(rmap_item->nid = nid);
31dbd01f 1973 rb_link_node(&rmap_item->node, parent, new);
90bd6fd3 1974 rb_insert_color(&rmap_item->node, root);
31dbd01f 1975
473b0ce4 1976 ksm_pages_unshared++;
31dbd01f
IE
1977 return NULL;
1978}
1979
1980/*
1981 * stable_tree_append - add another rmap_item to the linked list of
1982 * rmap_items hanging off a given node of the stable tree, all sharing
1983 * the same ksm page.
1984 */
21fbd591
QZ
1985static void stable_tree_append(struct ksm_rmap_item *rmap_item,
1986 struct ksm_stable_node *stable_node,
2c653d0e 1987 bool max_page_sharing_bypass)
31dbd01f 1988{
2c653d0e
AA
1989 /*
1990 * rmap won't find this mapping if we don't insert the
1991 * rmap_item in the right stable_node
1992 * duplicate. page_migration could break later if rmap breaks,
1993 * so we can as well crash here. We really need to check for
1994 * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check
457aef94 1995 * for other negative values as an underflow if detected here
2c653d0e
AA
1996 * for the first time (and not when decreasing rmap_hlist_len)
1997 * would be sign of memory corruption in the stable_node.
1998 */
1999 BUG_ON(stable_node->rmap_hlist_len < 0);
2000
2001 stable_node->rmap_hlist_len++;
2002 if (!max_page_sharing_bypass)
2003 /* possibly non fatal but unexpected overflow, only warn */
2004 WARN_ON_ONCE(stable_node->rmap_hlist_len >
2005 ksm_max_page_sharing);
2006
7b6ba2c7 2007 rmap_item->head = stable_node;
31dbd01f 2008 rmap_item->address |= STABLE_FLAG;
7b6ba2c7 2009 hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
e178dfde 2010
7b6ba2c7
HD
2011 if (rmap_item->hlist.next)
2012 ksm_pages_sharing++;
2013 else
2014 ksm_pages_shared++;
76093853 2015
2016 rmap_item->mm->ksm_merging_pages++;
31dbd01f
IE
2017}
2018
2019/*
81464e30
HD
2020 * cmp_and_merge_page - first see if page can be merged into the stable tree;
2021 * if not, compare checksum to previous and if it's the same, see if page can
2022 * be inserted into the unstable tree, or merged with a page already there and
2023 * both transferred to the stable tree.
31dbd01f
IE
2024 *
2025 * @page: the page that we are searching identical page to.
2026 * @rmap_item: the reverse mapping into the virtual address of this page
2027 */
21fbd591 2028static void cmp_and_merge_page(struct page *page, struct ksm_rmap_item *rmap_item)
31dbd01f 2029{
4b22927f 2030 struct mm_struct *mm = rmap_item->mm;
21fbd591 2031 struct ksm_rmap_item *tree_rmap_item;
8dd3557a 2032 struct page *tree_page = NULL;
21fbd591 2033 struct ksm_stable_node *stable_node;
8dd3557a 2034 struct page *kpage;
31dbd01f
IE
2035 unsigned int checksum;
2036 int err;
2c653d0e 2037 bool max_page_sharing_bypass = false;
31dbd01f 2038
4146d2d6
HD
2039 stable_node = page_stable_node(page);
2040 if (stable_node) {
2041 if (stable_node->head != &migrate_nodes &&
2c653d0e
AA
2042 get_kpfn_nid(READ_ONCE(stable_node->kpfn)) !=
2043 NUMA(stable_node->nid)) {
2044 stable_node_dup_del(stable_node);
4146d2d6
HD
2045 stable_node->head = &migrate_nodes;
2046 list_add(&stable_node->list, stable_node->head);
2047 }
2048 if (stable_node->head != &migrate_nodes &&
2049 rmap_item->head == stable_node)
2050 return;
2c653d0e
AA
2051 /*
2052 * If it's a KSM fork, allow it to go over the sharing limit
2053 * without warnings.
2054 */
2055 if (!is_page_sharing_candidate(stable_node))
2056 max_page_sharing_bypass = true;
4146d2d6 2057 }
31dbd01f
IE
2058
2059 /* We first start with searching the page inside the stable tree */
62b61f61 2060 kpage = stable_tree_search(page);
4146d2d6
HD
2061 if (kpage == page && rmap_item->head == stable_node) {
2062 put_page(kpage);
2063 return;
2064 }
2065
2066 remove_rmap_item_from_tree(rmap_item);
2067
62b61f61 2068 if (kpage) {
2cee57d1
YS
2069 if (PTR_ERR(kpage) == -EBUSY)
2070 return;
2071
08beca44 2072 err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
31dbd01f
IE
2073 if (!err) {
2074 /*
2075 * The page was successfully merged:
2076 * add its rmap_item to the stable tree.
2077 */
5ad64688 2078 lock_page(kpage);
2c653d0e
AA
2079 stable_tree_append(rmap_item, page_stable_node(kpage),
2080 max_page_sharing_bypass);
5ad64688 2081 unlock_page(kpage);
31dbd01f 2082 }
8dd3557a 2083 put_page(kpage);
31dbd01f
IE
2084 return;
2085 }
2086
2087 /*
4035c07a
HD
2088 * If the hash value of the page has changed from the last time
2089 * we calculated it, this page is changing frequently: therefore we
2090 * don't want to insert it in the unstable tree, and we don't want
2091 * to waste our time searching for something identical to it there.
31dbd01f
IE
2092 */
2093 checksum = calc_checksum(page);
2094 if (rmap_item->oldchecksum != checksum) {
2095 rmap_item->oldchecksum = checksum;
2096 return;
2097 }
2098
e86c59b1
CI
2099 /*
2100 * Same checksum as an empty page. We attempt to merge it with the
2101 * appropriate zero page if the user enabled this via sysfs.
2102 */
2103 if (ksm_use_zero_pages && (checksum == zero_checksum)) {
2104 struct vm_area_struct *vma;
2105
d8ed45c5 2106 mmap_read_lock(mm);
4b22927f 2107 vma = find_mergeable_vma(mm, rmap_item->address);
56df70a6
MS
2108 if (vma) {
2109 err = try_to_merge_one_page(vma, page,
2110 ZERO_PAGE(rmap_item->address));
2111 } else {
2112 /*
2113 * If the vma is out of date, we do not need to
2114 * continue.
2115 */
2116 err = 0;
2117 }
d8ed45c5 2118 mmap_read_unlock(mm);
e86c59b1
CI
2119 /*
2120 * In case of failure, the page was not really empty, so we
2121 * need to continue. Otherwise we're done.
2122 */
2123 if (!err)
2124 return;
2125 }
8dd3557a
HD
2126 tree_rmap_item =
2127 unstable_tree_search_insert(rmap_item, page, &tree_page);
31dbd01f 2128 if (tree_rmap_item) {
77da2ba0
CI
2129 bool split;
2130
8dd3557a
HD
2131 kpage = try_to_merge_two_pages(rmap_item, page,
2132 tree_rmap_item, tree_page);
77da2ba0
CI
2133 /*
2134 * If both pages we tried to merge belong to the same compound
2135 * page, then we actually ended up increasing the reference
2136 * count of the same compound page twice, and split_huge_page
2137 * failed.
2138 * Here we set a flag if that happened, and we use it later to
2139 * try split_huge_page again. Since we call put_page right
2140 * afterwards, the reference count will be correct and
2141 * split_huge_page should succeed.
2142 */
2143 split = PageTransCompound(page)
2144 && compound_head(page) == compound_head(tree_page);
8dd3557a 2145 put_page(tree_page);
8dd3557a 2146 if (kpage) {
bc56620b
HD
2147 /*
2148 * The pages were successfully merged: insert new
2149 * node in the stable tree and add both rmap_items.
2150 */
5ad64688 2151 lock_page(kpage);
7b6ba2c7
HD
2152 stable_node = stable_tree_insert(kpage);
2153 if (stable_node) {
2c653d0e
AA
2154 stable_tree_append(tree_rmap_item, stable_node,
2155 false);
2156 stable_tree_append(rmap_item, stable_node,
2157 false);
7b6ba2c7 2158 }
5ad64688 2159 unlock_page(kpage);
7b6ba2c7 2160
31dbd01f
IE
2161 /*
2162 * If we fail to insert the page into the stable tree,
2163 * we will have 2 virtual addresses that are pointing
2164 * to a ksm page left outside the stable tree,
2165 * in which case we need to break_cow on both.
2166 */
7b6ba2c7 2167 if (!stable_node) {
8dd3557a
HD
2168 break_cow(tree_rmap_item);
2169 break_cow(rmap_item);
31dbd01f 2170 }
77da2ba0
CI
2171 } else if (split) {
2172 /*
2173 * We are here if we tried to merge two pages and
2174 * failed because they both belonged to the same
2175 * compound page. We will split the page now, but no
2176 * merging will take place.
2177 * We do not want to add the cost of a full lock; if
2178 * the page is locked, it is better to skip it and
2179 * perhaps try again later.
2180 */
2181 if (!trylock_page(page))
2182 return;
2183 split_huge_page(page);
2184 unlock_page(page);
31dbd01f 2185 }
31dbd01f
IE
2186 }
2187}
2188
21fbd591
QZ
2189static struct ksm_rmap_item *get_next_rmap_item(struct ksm_mm_slot *mm_slot,
2190 struct ksm_rmap_item **rmap_list,
31dbd01f
IE
2191 unsigned long addr)
2192{
21fbd591 2193 struct ksm_rmap_item *rmap_item;
31dbd01f 2194
6514d511
HD
2195 while (*rmap_list) {
2196 rmap_item = *rmap_list;
93d17715 2197 if ((rmap_item->address & PAGE_MASK) == addr)
31dbd01f 2198 return rmap_item;
31dbd01f
IE
2199 if (rmap_item->address > addr)
2200 break;
6514d511 2201 *rmap_list = rmap_item->rmap_list;
31dbd01f 2202 remove_rmap_item_from_tree(rmap_item);
31dbd01f
IE
2203 free_rmap_item(rmap_item);
2204 }
2205
2206 rmap_item = alloc_rmap_item();
2207 if (rmap_item) {
2208 /* It has already been zeroed */
58730ab6 2209 rmap_item->mm = mm_slot->slot.mm;
cb4df4ca 2210 rmap_item->mm->ksm_rmap_items++;
31dbd01f 2211 rmap_item->address = addr;
6514d511
HD
2212 rmap_item->rmap_list = *rmap_list;
2213 *rmap_list = rmap_item;
31dbd01f
IE
2214 }
2215 return rmap_item;
2216}
2217
21fbd591 2218static struct ksm_rmap_item *scan_get_next_rmap_item(struct page **page)
31dbd01f
IE
2219{
2220 struct mm_struct *mm;
58730ab6
QZ
2221 struct ksm_mm_slot *mm_slot;
2222 struct mm_slot *slot;
31dbd01f 2223 struct vm_area_struct *vma;
21fbd591 2224 struct ksm_rmap_item *rmap_item;
a5f18ba0 2225 struct vma_iterator vmi;
90bd6fd3 2226 int nid;
31dbd01f 2227
58730ab6 2228 if (list_empty(&ksm_mm_head.slot.mm_node))
31dbd01f
IE
2229 return NULL;
2230
58730ab6
QZ
2231 mm_slot = ksm_scan.mm_slot;
2232 if (mm_slot == &ksm_mm_head) {
2919bfd0
HD
2233 /*
2234 * A number of pages can hang around indefinitely on per-cpu
2235 * pagevecs, raised page count preventing write_protect_page
2236 * from merging them. Though it doesn't really matter much,
2237 * it is puzzling to see some stuck in pages_volatile until
2238 * other activity jostles them out, and they also prevented
2239 * LTP's KSM test from succeeding deterministically; so drain
2240 * them here (here rather than on entry to ksm_do_scan(),
2241 * so we don't IPI too often when pages_to_scan is set low).
2242 */
2243 lru_add_drain_all();
2244
4146d2d6
HD
2245 /*
2246 * Whereas stale stable_nodes on the stable_tree itself
2247 * get pruned in the regular course of stable_tree_search(),
2248 * those moved out to the migrate_nodes list can accumulate:
2249 * so prune them once before each full scan.
2250 */
2251 if (!ksm_merge_across_nodes) {
21fbd591 2252 struct ksm_stable_node *stable_node, *next;
4146d2d6
HD
2253 struct page *page;
2254
03640418
GT
2255 list_for_each_entry_safe(stable_node, next,
2256 &migrate_nodes, list) {
2cee57d1
YS
2257 page = get_ksm_page(stable_node,
2258 GET_KSM_PAGE_NOLOCK);
4146d2d6
HD
2259 if (page)
2260 put_page(page);
2261 cond_resched();
2262 }
2263 }
2264
ef53d16c 2265 for (nid = 0; nid < ksm_nr_node_ids; nid++)
90bd6fd3 2266 root_unstable_tree[nid] = RB_ROOT;
31dbd01f
IE
2267
2268 spin_lock(&ksm_mmlist_lock);
58730ab6
QZ
2269 slot = list_entry(mm_slot->slot.mm_node.next,
2270 struct mm_slot, mm_node);
2271 mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
2272 ksm_scan.mm_slot = mm_slot;
31dbd01f 2273 spin_unlock(&ksm_mmlist_lock);
2b472611
HD
2274 /*
2275 * Although we tested list_empty() above, a racing __ksm_exit
2276 * of the last mm on the list may have removed it since then.
2277 */
58730ab6 2278 if (mm_slot == &ksm_mm_head)
2b472611 2279 return NULL;
31dbd01f
IE
2280next_mm:
2281 ksm_scan.address = 0;
58730ab6 2282 ksm_scan.rmap_list = &mm_slot->rmap_list;
31dbd01f
IE
2283 }
2284
58730ab6 2285 slot = &mm_slot->slot;
31dbd01f 2286 mm = slot->mm;
a5f18ba0
MWO
2287 vma_iter_init(&vmi, mm, ksm_scan.address);
2288
d8ed45c5 2289 mmap_read_lock(mm);
9ba69294 2290 if (ksm_test_exit(mm))
a5f18ba0 2291 goto no_vmas;
9ba69294 2292
a5f18ba0 2293 for_each_vma(vmi, vma) {
31dbd01f
IE
2294 if (!(vma->vm_flags & VM_MERGEABLE))
2295 continue;
2296 if (ksm_scan.address < vma->vm_start)
2297 ksm_scan.address = vma->vm_start;
2298 if (!vma->anon_vma)
2299 ksm_scan.address = vma->vm_end;
2300
2301 while (ksm_scan.address < vma->vm_end) {
9ba69294
HD
2302 if (ksm_test_exit(mm))
2303 break;
31dbd01f 2304 *page = follow_page(vma, ksm_scan.address, FOLL_GET);
f7091ed6 2305 if (IS_ERR_OR_NULL(*page)) {
21ae5b01
AA
2306 ksm_scan.address += PAGE_SIZE;
2307 cond_resched();
2308 continue;
2309 }
f7091ed6
HW
2310 if (is_zone_device_page(*page))
2311 goto next_page;
f765f540 2312 if (PageAnon(*page)) {
31dbd01f
IE
2313 flush_anon_page(vma, *page, ksm_scan.address);
2314 flush_dcache_page(*page);
58730ab6 2315 rmap_item = get_next_rmap_item(mm_slot,
6514d511 2316 ksm_scan.rmap_list, ksm_scan.address);
31dbd01f 2317 if (rmap_item) {
6514d511
HD
2318 ksm_scan.rmap_list =
2319 &rmap_item->rmap_list;
31dbd01f
IE
2320 ksm_scan.address += PAGE_SIZE;
2321 } else
2322 put_page(*page);
d8ed45c5 2323 mmap_read_unlock(mm);
31dbd01f
IE
2324 return rmap_item;
2325 }
f7091ed6 2326next_page:
21ae5b01 2327 put_page(*page);
31dbd01f
IE
2328 ksm_scan.address += PAGE_SIZE;
2329 cond_resched();
2330 }
2331 }
2332
9ba69294 2333 if (ksm_test_exit(mm)) {
a5f18ba0 2334no_vmas:
9ba69294 2335 ksm_scan.address = 0;
58730ab6 2336 ksm_scan.rmap_list = &mm_slot->rmap_list;
9ba69294 2337 }
31dbd01f
IE
2338 /*
2339 * Nuke all the rmap_items that are above this current rmap:
2340 * because there were no VM_MERGEABLE vmas with such addresses.
2341 */
420be4ed 2342 remove_trailing_rmap_items(ksm_scan.rmap_list);
31dbd01f
IE
2343
2344 spin_lock(&ksm_mmlist_lock);
58730ab6
QZ
2345 slot = list_entry(mm_slot->slot.mm_node.next,
2346 struct mm_slot, mm_node);
2347 ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
cd551f97
HD
2348 if (ksm_scan.address == 0) {
2349 /*
c1e8d7c6 2350 * We've completed a full scan of all vmas, holding mmap_lock
cd551f97
HD
2351 * throughout, and found no VM_MERGEABLE: so do the same as
2352 * __ksm_exit does to remove this mm from all our lists now.
9ba69294
HD
2353 * This applies either when cleaning up after __ksm_exit
2354 * (but beware: we can reach here even before __ksm_exit),
2355 * or when all VM_MERGEABLE areas have been unmapped (and
c1e8d7c6 2356 * mmap_lock then protects against race with MADV_MERGEABLE).
cd551f97 2357 */
58730ab6
QZ
2358 hash_del(&mm_slot->slot.hash);
2359 list_del(&mm_slot->slot.mm_node);
9ba69294
HD
2360 spin_unlock(&ksm_mmlist_lock);
2361
58730ab6 2362 mm_slot_free(mm_slot_cache, mm_slot);
cd551f97 2363 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
d8ed45c5 2364 mmap_read_unlock(mm);
9ba69294
HD
2365 mmdrop(mm);
2366 } else {
d8ed45c5 2367 mmap_read_unlock(mm);
7496fea9 2368 /*
3e4e28c5 2369 * mmap_read_unlock(mm) first because after
7496fea9
ZC
2370 * spin_unlock(&ksm_mmlist_lock) run, the "mm" may
2371 * already have been freed under us by __ksm_exit()
2372 * because the "mm_slot" is still hashed and
2373 * ksm_scan.mm_slot doesn't point to it anymore.
2374 */
2375 spin_unlock(&ksm_mmlist_lock);
cd551f97 2376 }
31dbd01f
IE
2377
2378 /* Repeat until we've completed scanning the whole list */
58730ab6
QZ
2379 mm_slot = ksm_scan.mm_slot;
2380 if (mm_slot != &ksm_mm_head)
31dbd01f
IE
2381 goto next_mm;
2382
31dbd01f
IE
2383 ksm_scan.seqnr++;
2384 return NULL;
2385}
2386
2387/**
2388 * ksm_do_scan - the ksm scanner main worker function.
b7701a5f 2389 * @scan_npages: number of pages we want to scan before we return.
31dbd01f
IE
2390 */
2391static void ksm_do_scan(unsigned int scan_npages)
2392{
21fbd591 2393 struct ksm_rmap_item *rmap_item;
3f649ab7 2394 struct page *page;
31dbd01f 2395
878aee7d 2396 while (scan_npages-- && likely(!freezing(current))) {
31dbd01f
IE
2397 cond_resched();
2398 rmap_item = scan_get_next_rmap_item(&page);
2399 if (!rmap_item)
2400 return;
4146d2d6 2401 cmp_and_merge_page(page, rmap_item);
31dbd01f
IE
2402 put_page(page);
2403 }
2404}
2405
6e158384
HD
2406static int ksmd_should_run(void)
2407{
58730ab6 2408 return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.slot.mm_node);
6e158384
HD
2409}
2410
31dbd01f
IE
2411static int ksm_scan_thread(void *nothing)
2412{
fcf9a0ef
KT
2413 unsigned int sleep_ms;
2414
878aee7d 2415 set_freezable();
339aa624 2416 set_user_nice(current, 5);
31dbd01f
IE
2417
2418 while (!kthread_should_stop()) {
6e158384 2419 mutex_lock(&ksm_thread_mutex);
ef4d43a8 2420 wait_while_offlining();
6e158384 2421 if (ksmd_should_run())
31dbd01f 2422 ksm_do_scan(ksm_thread_pages_to_scan);
6e158384
HD
2423 mutex_unlock(&ksm_thread_mutex);
2424
878aee7d
AA
2425 try_to_freeze();
2426
6e158384 2427 if (ksmd_should_run()) {
fcf9a0ef
KT
2428 sleep_ms = READ_ONCE(ksm_thread_sleep_millisecs);
2429 wait_event_interruptible_timeout(ksm_iter_wait,
2430 sleep_ms != READ_ONCE(ksm_thread_sleep_millisecs),
2431 msecs_to_jiffies(sleep_ms));
31dbd01f 2432 } else {
878aee7d 2433 wait_event_freezable(ksm_thread_wait,
6e158384 2434 ksmd_should_run() || kthread_should_stop());
31dbd01f
IE
2435 }
2436 }
2437 return 0;
2438}
2439
f8af4da3
HD
2440int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
2441 unsigned long end, int advice, unsigned long *vm_flags)
2442{
2443 struct mm_struct *mm = vma->vm_mm;
d952b791 2444 int err;
f8af4da3
HD
2445
2446 switch (advice) {
2447 case MADV_MERGEABLE:
2448 /*
2449 * Be somewhat over-protective for now!
2450 */
2451 if (*vm_flags & (VM_MERGEABLE | VM_SHARED | VM_MAYSHARE |
2452 VM_PFNMAP | VM_IO | VM_DONTEXPAND |
0661a336 2453 VM_HUGETLB | VM_MIXEDMAP))
f8af4da3
HD
2454 return 0; /* just ignore the advice */
2455
e1fb4a08
DJ
2456 if (vma_is_dax(vma))
2457 return 0;
2458
12564485
SA
2459#ifdef VM_SAO
2460 if (*vm_flags & VM_SAO)
2461 return 0;
2462#endif
74a04967
KA
2463#ifdef VM_SPARC_ADI
2464 if (*vm_flags & VM_SPARC_ADI)
2465 return 0;
2466#endif
cc2383ec 2467
d952b791
HD
2468 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2469 err = __ksm_enter(mm);
2470 if (err)
2471 return err;
2472 }
f8af4da3
HD
2473
2474 *vm_flags |= VM_MERGEABLE;
2475 break;
2476
2477 case MADV_UNMERGEABLE:
2478 if (!(*vm_flags & VM_MERGEABLE))
2479 return 0; /* just ignore the advice */
2480
d952b791
HD
2481 if (vma->anon_vma) {
2482 err = unmerge_ksm_pages(vma, start, end);
2483 if (err)
2484 return err;
2485 }
f8af4da3
HD
2486
2487 *vm_flags &= ~VM_MERGEABLE;
2488 break;
2489 }
2490
2491 return 0;
2492}
33cf1707 2493EXPORT_SYMBOL_GPL(ksm_madvise);
f8af4da3
HD
2494
2495int __ksm_enter(struct mm_struct *mm)
2496{
21fbd591 2497 struct ksm_mm_slot *mm_slot;
58730ab6 2498 struct mm_slot *slot;
6e158384
HD
2499 int needs_wakeup;
2500
58730ab6 2501 mm_slot = mm_slot_alloc(mm_slot_cache);
31dbd01f
IE
2502 if (!mm_slot)
2503 return -ENOMEM;
2504
58730ab6
QZ
2505 slot = &mm_slot->slot;
2506
6e158384 2507 /* Check ksm_run too? Would need tighter locking */
58730ab6 2508 needs_wakeup = list_empty(&ksm_mm_head.slot.mm_node);
6e158384 2509
31dbd01f 2510 spin_lock(&ksm_mmlist_lock);
58730ab6 2511 mm_slot_insert(mm_slots_hash, mm, slot);
31dbd01f 2512 /*
cbf86cfe
HD
2513 * When KSM_RUN_MERGE (or KSM_RUN_STOP),
2514 * insert just behind the scanning cursor, to let the area settle
31dbd01f
IE
2515 * down a little; when fork is followed by immediate exec, we don't
2516 * want ksmd to waste time setting up and tearing down an rmap_list.
cbf86cfe
HD
2517 *
2518 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
2519 * scanning cursor, otherwise KSM pages in newly forked mms will be
2520 * missed: then we might as well insert at the end of the list.
31dbd01f 2521 */
cbf86cfe 2522 if (ksm_run & KSM_RUN_UNMERGE)
58730ab6 2523 list_add_tail(&slot->mm_node, &ksm_mm_head.slot.mm_node);
cbf86cfe 2524 else
58730ab6 2525 list_add_tail(&slot->mm_node, &ksm_scan.mm_slot->slot.mm_node);
31dbd01f
IE
2526 spin_unlock(&ksm_mmlist_lock);
2527
f8af4da3 2528 set_bit(MMF_VM_MERGEABLE, &mm->flags);
f1f10076 2529 mmgrab(mm);
6e158384
HD
2530
2531 if (needs_wakeup)
2532 wake_up_interruptible(&ksm_thread_wait);
2533
f8af4da3
HD
2534 return 0;
2535}
2536
1c2fb7a4 2537void __ksm_exit(struct mm_struct *mm)
f8af4da3 2538{
21fbd591 2539 struct ksm_mm_slot *mm_slot;
58730ab6 2540 struct mm_slot *slot;
9ba69294 2541 int easy_to_free = 0;
cd551f97 2542
31dbd01f 2543 /*
9ba69294
HD
2544 * This process is exiting: if it's straightforward (as is the
2545 * case when ksmd was never running), free mm_slot immediately.
2546 * But if it's at the cursor or has rmap_items linked to it, use
c1e8d7c6 2547 * mmap_lock to synchronize with any break_cows before pagetables
9ba69294
HD
2548 * are freed, and leave the mm_slot on the list for ksmd to free.
2549 * Beware: ksm may already have noticed it exiting and freed the slot.
31dbd01f 2550 */
9ba69294 2551
cd551f97 2552 spin_lock(&ksm_mmlist_lock);
58730ab6
QZ
2553 slot = mm_slot_lookup(mm_slots_hash, mm);
2554 mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
9ba69294 2555 if (mm_slot && ksm_scan.mm_slot != mm_slot) {
6514d511 2556 if (!mm_slot->rmap_list) {
58730ab6
QZ
2557 hash_del(&slot->hash);
2558 list_del(&slot->mm_node);
9ba69294
HD
2559 easy_to_free = 1;
2560 } else {
58730ab6
QZ
2561 list_move(&slot->mm_node,
2562 &ksm_scan.mm_slot->slot.mm_node);
9ba69294 2563 }
cd551f97 2564 }
cd551f97
HD
2565 spin_unlock(&ksm_mmlist_lock);
2566
9ba69294 2567 if (easy_to_free) {
58730ab6 2568 mm_slot_free(mm_slot_cache, mm_slot);
9ba69294
HD
2569 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2570 mmdrop(mm);
2571 } else if (mm_slot) {
d8ed45c5
ML
2572 mmap_write_lock(mm);
2573 mmap_write_unlock(mm);
9ba69294 2574 }
31dbd01f
IE
2575}
2576
cbf86cfe 2577struct page *ksm_might_need_to_copy(struct page *page,
5ad64688
HD
2578 struct vm_area_struct *vma, unsigned long address)
2579{
e05b3453
MWO
2580 struct folio *folio = page_folio(page);
2581 struct anon_vma *anon_vma = folio_anon_vma(folio);
5ad64688
HD
2582 struct page *new_page;
2583
cbf86cfe
HD
2584 if (PageKsm(page)) {
2585 if (page_stable_node(page) &&
2586 !(ksm_run & KSM_RUN_UNMERGE))
2587 return page; /* no need to copy it */
2588 } else if (!anon_vma) {
2589 return page; /* no need to copy it */
e1c63e11
NS
2590 } else if (page->index == linear_page_index(vma, address) &&
2591 anon_vma->root == vma->anon_vma->root) {
cbf86cfe
HD
2592 return page; /* still no need to copy it */
2593 }
2594 if (!PageUptodate(page))
2595 return page; /* let do_swap_page report the error */
2596
5ad64688 2597 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
8f425e4e
MWO
2598 if (new_page &&
2599 mem_cgroup_charge(page_folio(new_page), vma->vm_mm, GFP_KERNEL)) {
62fdb163
HD
2600 put_page(new_page);
2601 new_page = NULL;
2602 }
5ad64688
HD
2603 if (new_page) {
2604 copy_user_highpage(new_page, page, address, vma);
2605
2606 SetPageDirty(new_page);
2607 __SetPageUptodate(new_page);
48c935ad 2608 __SetPageLocked(new_page);
4d45c3af
YY
2609#ifdef CONFIG_SWAP
2610 count_vm_event(KSM_SWPIN_COPY);
2611#endif
5ad64688
HD
2612 }
2613
5ad64688
HD
2614 return new_page;
2615}
2616
6d4675e6 2617void rmap_walk_ksm(struct folio *folio, struct rmap_walk_control *rwc)
e9995ef9 2618{
21fbd591
QZ
2619 struct ksm_stable_node *stable_node;
2620 struct ksm_rmap_item *rmap_item;
e9995ef9
HD
2621 int search_new_forks = 0;
2622
2f031c6f 2623 VM_BUG_ON_FOLIO(!folio_test_ksm(folio), folio);
9f32624b
JK
2624
2625 /*
2626 * Rely on the page lock to protect against concurrent modifications
2627 * to that page's node of the stable tree.
2628 */
2f031c6f 2629 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
e9995ef9 2630
2f031c6f 2631 stable_node = folio_stable_node(folio);
e9995ef9 2632 if (!stable_node)
1df631ae 2633 return;
e9995ef9 2634again:
b67bfe0d 2635 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
e9995ef9 2636 struct anon_vma *anon_vma = rmap_item->anon_vma;
5beb4930 2637 struct anon_vma_chain *vmac;
e9995ef9
HD
2638 struct vm_area_struct *vma;
2639
ad12695f 2640 cond_resched();
6d4675e6
MK
2641 if (!anon_vma_trylock_read(anon_vma)) {
2642 if (rwc->try_lock) {
2643 rwc->contended = true;
2644 return;
2645 }
2646 anon_vma_lock_read(anon_vma);
2647 }
bf181b9f
ML
2648 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
2649 0, ULONG_MAX) {
1105a2fc
JH
2650 unsigned long addr;
2651
ad12695f 2652 cond_resched();
5beb4930 2653 vma = vmac->vma;
1105a2fc
JH
2654
2655 /* Ignore the stable/unstable/sqnr flags */
cd7fae26 2656 addr = rmap_item->address & PAGE_MASK;
1105a2fc
JH
2657
2658 if (addr < vma->vm_start || addr >= vma->vm_end)
e9995ef9
HD
2659 continue;
2660 /*
2661 * Initially we examine only the vma which covers this
2662 * rmap_item; but later, if there is still work to do,
2663 * we examine covering vmas in other mms: in case they
2664 * were forked from the original since ksmd passed.
2665 */
2666 if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
2667 continue;
2668
0dd1c7bb
JK
2669 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2670 continue;
2671
2f031c6f 2672 if (!rwc->rmap_one(folio, vma, addr, rwc->arg)) {
b6b19f25 2673 anon_vma_unlock_read(anon_vma);
1df631ae 2674 return;
e9995ef9 2675 }
2f031c6f 2676 if (rwc->done && rwc->done(folio)) {
0dd1c7bb 2677 anon_vma_unlock_read(anon_vma);
1df631ae 2678 return;
0dd1c7bb 2679 }
e9995ef9 2680 }
b6b19f25 2681 anon_vma_unlock_read(anon_vma);
e9995ef9
HD
2682 }
2683 if (!search_new_forks++)
2684 goto again;
e9995ef9
HD
2685}
2686
52629506 2687#ifdef CONFIG_MIGRATION
19138349 2688void folio_migrate_ksm(struct folio *newfolio, struct folio *folio)
e9995ef9 2689{
21fbd591 2690 struct ksm_stable_node *stable_node;
e9995ef9 2691
19138349
MWO
2692 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2693 VM_BUG_ON_FOLIO(!folio_test_locked(newfolio), newfolio);
2694 VM_BUG_ON_FOLIO(newfolio->mapping != folio->mapping, newfolio);
e9995ef9 2695
19138349 2696 stable_node = folio_stable_node(folio);
e9995ef9 2697 if (stable_node) {
19138349
MWO
2698 VM_BUG_ON_FOLIO(stable_node->kpfn != folio_pfn(folio), folio);
2699 stable_node->kpfn = folio_pfn(newfolio);
c8d6553b 2700 /*
19138349 2701 * newfolio->mapping was set in advance; now we need smp_wmb()
c8d6553b 2702 * to make sure that the new stable_node->kpfn is visible
19138349
MWO
2703 * to get_ksm_page() before it can see that folio->mapping
2704 * has gone stale (or that folio_test_swapcache has been cleared).
c8d6553b
HD
2705 */
2706 smp_wmb();
19138349 2707 set_page_stable_node(&folio->page, NULL);
e9995ef9
HD
2708 }
2709}
2710#endif /* CONFIG_MIGRATION */
2711
62b61f61 2712#ifdef CONFIG_MEMORY_HOTREMOVE
ef4d43a8
HD
2713static void wait_while_offlining(void)
2714{
2715 while (ksm_run & KSM_RUN_OFFLINE) {
2716 mutex_unlock(&ksm_thread_mutex);
2717 wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
74316201 2718 TASK_UNINTERRUPTIBLE);
ef4d43a8
HD
2719 mutex_lock(&ksm_thread_mutex);
2720 }
2721}
2722
21fbd591 2723static bool stable_node_dup_remove_range(struct ksm_stable_node *stable_node,
2c653d0e
AA
2724 unsigned long start_pfn,
2725 unsigned long end_pfn)
2726{
2727 if (stable_node->kpfn >= start_pfn &&
2728 stable_node->kpfn < end_pfn) {
2729 /*
2730 * Don't get_ksm_page, page has already gone:
2731 * which is why we keep kpfn instead of page*
2732 */
2733 remove_node_from_stable_tree(stable_node);
2734 return true;
2735 }
2736 return false;
2737}
2738
21fbd591 2739static bool stable_node_chain_remove_range(struct ksm_stable_node *stable_node,
2c653d0e
AA
2740 unsigned long start_pfn,
2741 unsigned long end_pfn,
2742 struct rb_root *root)
2743{
21fbd591 2744 struct ksm_stable_node *dup;
2c653d0e
AA
2745 struct hlist_node *hlist_safe;
2746
2747 if (!is_stable_node_chain(stable_node)) {
2748 VM_BUG_ON(is_stable_node_dup(stable_node));
2749 return stable_node_dup_remove_range(stable_node, start_pfn,
2750 end_pfn);
2751 }
2752
2753 hlist_for_each_entry_safe(dup, hlist_safe,
2754 &stable_node->hlist, hlist_dup) {
2755 VM_BUG_ON(!is_stable_node_dup(dup));
2756 stable_node_dup_remove_range(dup, start_pfn, end_pfn);
2757 }
2758 if (hlist_empty(&stable_node->hlist)) {
2759 free_stable_node_chain(stable_node, root);
2760 return true; /* notify caller that tree was rebalanced */
2761 } else
2762 return false;
2763}
2764
ee0ea59c
HD
2765static void ksm_check_stable_tree(unsigned long start_pfn,
2766 unsigned long end_pfn)
62b61f61 2767{
21fbd591 2768 struct ksm_stable_node *stable_node, *next;
62b61f61 2769 struct rb_node *node;
90bd6fd3 2770 int nid;
62b61f61 2771
ef53d16c
HD
2772 for (nid = 0; nid < ksm_nr_node_ids; nid++) {
2773 node = rb_first(root_stable_tree + nid);
ee0ea59c 2774 while (node) {
21fbd591 2775 stable_node = rb_entry(node, struct ksm_stable_node, node);
2c653d0e
AA
2776 if (stable_node_chain_remove_range(stable_node,
2777 start_pfn, end_pfn,
2778 root_stable_tree +
2779 nid))
ef53d16c 2780 node = rb_first(root_stable_tree + nid);
2c653d0e 2781 else
ee0ea59c
HD
2782 node = rb_next(node);
2783 cond_resched();
90bd6fd3 2784 }
ee0ea59c 2785 }
03640418 2786 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
4146d2d6
HD
2787 if (stable_node->kpfn >= start_pfn &&
2788 stable_node->kpfn < end_pfn)
2789 remove_node_from_stable_tree(stable_node);
2790 cond_resched();
2791 }
62b61f61
HD
2792}
2793
2794static int ksm_memory_callback(struct notifier_block *self,
2795 unsigned long action, void *arg)
2796{
2797 struct memory_notify *mn = arg;
62b61f61
HD
2798
2799 switch (action) {
2800 case MEM_GOING_OFFLINE:
2801 /*
ef4d43a8
HD
2802 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
2803 * and remove_all_stable_nodes() while memory is going offline:
2804 * it is unsafe for them to touch the stable tree at this time.
2805 * But unmerge_ksm_pages(), rmap lookups and other entry points
2806 * which do not need the ksm_thread_mutex are all safe.
62b61f61 2807 */
ef4d43a8
HD
2808 mutex_lock(&ksm_thread_mutex);
2809 ksm_run |= KSM_RUN_OFFLINE;
2810 mutex_unlock(&ksm_thread_mutex);
62b61f61
HD
2811 break;
2812
2813 case MEM_OFFLINE:
2814 /*
2815 * Most of the work is done by page migration; but there might
2816 * be a few stable_nodes left over, still pointing to struct
ee0ea59c
HD
2817 * pages which have been offlined: prune those from the tree,
2818 * otherwise get_ksm_page() might later try to access a
2819 * non-existent struct page.
62b61f61 2820 */
ee0ea59c
HD
2821 ksm_check_stable_tree(mn->start_pfn,
2822 mn->start_pfn + mn->nr_pages);
e4a9bc58 2823 fallthrough;
62b61f61 2824 case MEM_CANCEL_OFFLINE:
ef4d43a8
HD
2825 mutex_lock(&ksm_thread_mutex);
2826 ksm_run &= ~KSM_RUN_OFFLINE;
62b61f61 2827 mutex_unlock(&ksm_thread_mutex);
ef4d43a8
HD
2828
2829 smp_mb(); /* wake_up_bit advises this */
2830 wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
62b61f61
HD
2831 break;
2832 }
2833 return NOTIFY_OK;
2834}
ef4d43a8
HD
2835#else
2836static void wait_while_offlining(void)
2837{
2838}
62b61f61
HD
2839#endif /* CONFIG_MEMORY_HOTREMOVE */
2840
2ffd8679
HD
2841#ifdef CONFIG_SYSFS
2842/*
2843 * This all compiles without CONFIG_SYSFS, but is a waste of space.
2844 */
2845
31dbd01f
IE
2846#define KSM_ATTR_RO(_name) \
2847 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2848#define KSM_ATTR(_name) \
1bad2e5c 2849 static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
31dbd01f
IE
2850
2851static ssize_t sleep_millisecs_show(struct kobject *kobj,
2852 struct kobj_attribute *attr, char *buf)
2853{
ae7a927d 2854 return sysfs_emit(buf, "%u\n", ksm_thread_sleep_millisecs);
31dbd01f
IE
2855}
2856
2857static ssize_t sleep_millisecs_store(struct kobject *kobj,
2858 struct kobj_attribute *attr,
2859 const char *buf, size_t count)
2860{
dfefd226 2861 unsigned int msecs;
31dbd01f
IE
2862 int err;
2863
dfefd226
AD
2864 err = kstrtouint(buf, 10, &msecs);
2865 if (err)
31dbd01f
IE
2866 return -EINVAL;
2867
2868 ksm_thread_sleep_millisecs = msecs;
fcf9a0ef 2869 wake_up_interruptible(&ksm_iter_wait);
31dbd01f
IE
2870
2871 return count;
2872}
2873KSM_ATTR(sleep_millisecs);
2874
2875static ssize_t pages_to_scan_show(struct kobject *kobj,
2876 struct kobj_attribute *attr, char *buf)
2877{
ae7a927d 2878 return sysfs_emit(buf, "%u\n", ksm_thread_pages_to_scan);
31dbd01f
IE
2879}
2880
2881static ssize_t pages_to_scan_store(struct kobject *kobj,
2882 struct kobj_attribute *attr,
2883 const char *buf, size_t count)
2884{
dfefd226 2885 unsigned int nr_pages;
31dbd01f 2886 int err;
31dbd01f 2887
dfefd226
AD
2888 err = kstrtouint(buf, 10, &nr_pages);
2889 if (err)
31dbd01f
IE
2890 return -EINVAL;
2891
2892 ksm_thread_pages_to_scan = nr_pages;
2893
2894 return count;
2895}
2896KSM_ATTR(pages_to_scan);
2897
2898static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
2899 char *buf)
2900{
ae7a927d 2901 return sysfs_emit(buf, "%lu\n", ksm_run);
31dbd01f
IE
2902}
2903
2904static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
2905 const char *buf, size_t count)
2906{
dfefd226 2907 unsigned int flags;
31dbd01f 2908 int err;
31dbd01f 2909
dfefd226
AD
2910 err = kstrtouint(buf, 10, &flags);
2911 if (err)
31dbd01f
IE
2912 return -EINVAL;
2913 if (flags > KSM_RUN_UNMERGE)
2914 return -EINVAL;
2915
2916 /*
2917 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
2918 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
d0f209f6
HD
2919 * breaking COW to free the pages_shared (but leaves mm_slots
2920 * on the list for when ksmd may be set running again).
31dbd01f
IE
2921 */
2922
2923 mutex_lock(&ksm_thread_mutex);
ef4d43a8 2924 wait_while_offlining();
31dbd01f
IE
2925 if (ksm_run != flags) {
2926 ksm_run = flags;
d952b791 2927 if (flags & KSM_RUN_UNMERGE) {
e1e12d2f 2928 set_current_oom_origin();
d952b791 2929 err = unmerge_and_remove_all_rmap_items();
e1e12d2f 2930 clear_current_oom_origin();
d952b791
HD
2931 if (err) {
2932 ksm_run = KSM_RUN_STOP;
2933 count = err;
2934 }
2935 }
31dbd01f
IE
2936 }
2937 mutex_unlock(&ksm_thread_mutex);
2938
2939 if (flags & KSM_RUN_MERGE)
2940 wake_up_interruptible(&ksm_thread_wait);
2941
2942 return count;
2943}
2944KSM_ATTR(run);
2945
90bd6fd3
PH
2946#ifdef CONFIG_NUMA
2947static ssize_t merge_across_nodes_show(struct kobject *kobj,
ae7a927d 2948 struct kobj_attribute *attr, char *buf)
90bd6fd3 2949{
ae7a927d 2950 return sysfs_emit(buf, "%u\n", ksm_merge_across_nodes);
90bd6fd3
PH
2951}
2952
2953static ssize_t merge_across_nodes_store(struct kobject *kobj,
2954 struct kobj_attribute *attr,
2955 const char *buf, size_t count)
2956{
2957 int err;
2958 unsigned long knob;
2959
2960 err = kstrtoul(buf, 10, &knob);
2961 if (err)
2962 return err;
2963 if (knob > 1)
2964 return -EINVAL;
2965
2966 mutex_lock(&ksm_thread_mutex);
ef4d43a8 2967 wait_while_offlining();
90bd6fd3 2968 if (ksm_merge_across_nodes != knob) {
cbf86cfe 2969 if (ksm_pages_shared || remove_all_stable_nodes())
90bd6fd3 2970 err = -EBUSY;
ef53d16c
HD
2971 else if (root_stable_tree == one_stable_tree) {
2972 struct rb_root *buf;
2973 /*
2974 * This is the first time that we switch away from the
2975 * default of merging across nodes: must now allocate
2976 * a buffer to hold as many roots as may be needed.
2977 * Allocate stable and unstable together:
2978 * MAXSMP NODES_SHIFT 10 will use 16kB.
2979 */
bafe1e14
JP
2980 buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
2981 GFP_KERNEL);
ef53d16c
HD
2982 /* Let us assume that RB_ROOT is NULL is zero */
2983 if (!buf)
2984 err = -ENOMEM;
2985 else {
2986 root_stable_tree = buf;
2987 root_unstable_tree = buf + nr_node_ids;
2988 /* Stable tree is empty but not the unstable */
2989 root_unstable_tree[0] = one_unstable_tree[0];
2990 }
2991 }
2992 if (!err) {
90bd6fd3 2993 ksm_merge_across_nodes = knob;
ef53d16c
HD
2994 ksm_nr_node_ids = knob ? 1 : nr_node_ids;
2995 }
90bd6fd3
PH
2996 }
2997 mutex_unlock(&ksm_thread_mutex);
2998
2999 return err ? err : count;
3000}
3001KSM_ATTR(merge_across_nodes);
3002#endif
3003
e86c59b1 3004static ssize_t use_zero_pages_show(struct kobject *kobj,
ae7a927d 3005 struct kobj_attribute *attr, char *buf)
e86c59b1 3006{
ae7a927d 3007 return sysfs_emit(buf, "%u\n", ksm_use_zero_pages);
e86c59b1
CI
3008}
3009static ssize_t use_zero_pages_store(struct kobject *kobj,
3010 struct kobj_attribute *attr,
3011 const char *buf, size_t count)
3012{
3013 int err;
3014 bool value;
3015
3016 err = kstrtobool(buf, &value);
3017 if (err)
3018 return -EINVAL;
3019
3020 ksm_use_zero_pages = value;
3021
3022 return count;
3023}
3024KSM_ATTR(use_zero_pages);
3025
2c653d0e
AA
3026static ssize_t max_page_sharing_show(struct kobject *kobj,
3027 struct kobj_attribute *attr, char *buf)
3028{
ae7a927d 3029 return sysfs_emit(buf, "%u\n", ksm_max_page_sharing);
2c653d0e
AA
3030}
3031
3032static ssize_t max_page_sharing_store(struct kobject *kobj,
3033 struct kobj_attribute *attr,
3034 const char *buf, size_t count)
3035{
3036 int err;
3037 int knob;
3038
3039 err = kstrtoint(buf, 10, &knob);
3040 if (err)
3041 return err;
3042 /*
3043 * When a KSM page is created it is shared by 2 mappings. This
3044 * being a signed comparison, it implicitly verifies it's not
3045 * negative.
3046 */
3047 if (knob < 2)
3048 return -EINVAL;
3049
3050 if (READ_ONCE(ksm_max_page_sharing) == knob)
3051 return count;
3052
3053 mutex_lock(&ksm_thread_mutex);
3054 wait_while_offlining();
3055 if (ksm_max_page_sharing != knob) {
3056 if (ksm_pages_shared || remove_all_stable_nodes())
3057 err = -EBUSY;
3058 else
3059 ksm_max_page_sharing = knob;
3060 }
3061 mutex_unlock(&ksm_thread_mutex);
3062
3063 return err ? err : count;
3064}
3065KSM_ATTR(max_page_sharing);
3066
b4028260
HD
3067static ssize_t pages_shared_show(struct kobject *kobj,
3068 struct kobj_attribute *attr, char *buf)
3069{
ae7a927d 3070 return sysfs_emit(buf, "%lu\n", ksm_pages_shared);
b4028260
HD
3071}
3072KSM_ATTR_RO(pages_shared);
3073
3074static ssize_t pages_sharing_show(struct kobject *kobj,
3075 struct kobj_attribute *attr, char *buf)
3076{
ae7a927d 3077 return sysfs_emit(buf, "%lu\n", ksm_pages_sharing);
b4028260
HD
3078}
3079KSM_ATTR_RO(pages_sharing);
3080
473b0ce4
HD
3081static ssize_t pages_unshared_show(struct kobject *kobj,
3082 struct kobj_attribute *attr, char *buf)
3083{
ae7a927d 3084 return sysfs_emit(buf, "%lu\n", ksm_pages_unshared);
473b0ce4
HD
3085}
3086KSM_ATTR_RO(pages_unshared);
3087
3088static ssize_t pages_volatile_show(struct kobject *kobj,
3089 struct kobj_attribute *attr, char *buf)
3090{
3091 long ksm_pages_volatile;
3092
3093 ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
3094 - ksm_pages_sharing - ksm_pages_unshared;
3095 /*
3096 * It was not worth any locking to calculate that statistic,
3097 * but it might therefore sometimes be negative: conceal that.
3098 */
3099 if (ksm_pages_volatile < 0)
3100 ksm_pages_volatile = 0;
ae7a927d 3101 return sysfs_emit(buf, "%ld\n", ksm_pages_volatile);
473b0ce4
HD
3102}
3103KSM_ATTR_RO(pages_volatile);
3104
2c653d0e
AA
3105static ssize_t stable_node_dups_show(struct kobject *kobj,
3106 struct kobj_attribute *attr, char *buf)
3107{
ae7a927d 3108 return sysfs_emit(buf, "%lu\n", ksm_stable_node_dups);
2c653d0e
AA
3109}
3110KSM_ATTR_RO(stable_node_dups);
3111
3112static ssize_t stable_node_chains_show(struct kobject *kobj,
3113 struct kobj_attribute *attr, char *buf)
3114{
ae7a927d 3115 return sysfs_emit(buf, "%lu\n", ksm_stable_node_chains);
2c653d0e
AA
3116}
3117KSM_ATTR_RO(stable_node_chains);
3118
3119static ssize_t
3120stable_node_chains_prune_millisecs_show(struct kobject *kobj,
3121 struct kobj_attribute *attr,
3122 char *buf)
3123{
ae7a927d 3124 return sysfs_emit(buf, "%u\n", ksm_stable_node_chains_prune_millisecs);
2c653d0e
AA
3125}
3126
3127static ssize_t
3128stable_node_chains_prune_millisecs_store(struct kobject *kobj,
3129 struct kobj_attribute *attr,
3130 const char *buf, size_t count)
3131{
584ff0df 3132 unsigned int msecs;
2c653d0e
AA
3133 int err;
3134
584ff0df
ZB
3135 err = kstrtouint(buf, 10, &msecs);
3136 if (err)
2c653d0e
AA
3137 return -EINVAL;
3138
3139 ksm_stable_node_chains_prune_millisecs = msecs;
3140
3141 return count;
3142}
3143KSM_ATTR(stable_node_chains_prune_millisecs);
3144
473b0ce4
HD
3145static ssize_t full_scans_show(struct kobject *kobj,
3146 struct kobj_attribute *attr, char *buf)
3147{
ae7a927d 3148 return sysfs_emit(buf, "%lu\n", ksm_scan.seqnr);
473b0ce4
HD
3149}
3150KSM_ATTR_RO(full_scans);
3151
31dbd01f
IE
3152static struct attribute *ksm_attrs[] = {
3153 &sleep_millisecs_attr.attr,
3154 &pages_to_scan_attr.attr,
3155 &run_attr.attr,
b4028260
HD
3156 &pages_shared_attr.attr,
3157 &pages_sharing_attr.attr,
473b0ce4
HD
3158 &pages_unshared_attr.attr,
3159 &pages_volatile_attr.attr,
3160 &full_scans_attr.attr,
90bd6fd3
PH
3161#ifdef CONFIG_NUMA
3162 &merge_across_nodes_attr.attr,
3163#endif
2c653d0e
AA
3164 &max_page_sharing_attr.attr,
3165 &stable_node_chains_attr.attr,
3166 &stable_node_dups_attr.attr,
3167 &stable_node_chains_prune_millisecs_attr.attr,
e86c59b1 3168 &use_zero_pages_attr.attr,
31dbd01f
IE
3169 NULL,
3170};
3171
f907c26a 3172static const struct attribute_group ksm_attr_group = {
31dbd01f
IE
3173 .attrs = ksm_attrs,
3174 .name = "ksm",
3175};
2ffd8679 3176#endif /* CONFIG_SYSFS */
31dbd01f
IE
3177
3178static int __init ksm_init(void)
3179{
3180 struct task_struct *ksm_thread;
3181 int err;
3182
e86c59b1
CI
3183 /* The correct value depends on page size and endianness */
3184 zero_checksum = calc_checksum(ZERO_PAGE(0));
3185 /* Default to false for backwards compatibility */
3186 ksm_use_zero_pages = false;
3187
31dbd01f
IE
3188 err = ksm_slab_init();
3189 if (err)
3190 goto out;
3191
31dbd01f
IE
3192 ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
3193 if (IS_ERR(ksm_thread)) {
25acde31 3194 pr_err("ksm: creating kthread failed\n");
31dbd01f 3195 err = PTR_ERR(ksm_thread);
d9f8984c 3196 goto out_free;
31dbd01f
IE
3197 }
3198
2ffd8679 3199#ifdef CONFIG_SYSFS
31dbd01f
IE
3200 err = sysfs_create_group(mm_kobj, &ksm_attr_group);
3201 if (err) {
25acde31 3202 pr_err("ksm: register sysfs failed\n");
2ffd8679 3203 kthread_stop(ksm_thread);
d9f8984c 3204 goto out_free;
31dbd01f 3205 }
c73602ad
HD
3206#else
3207 ksm_run = KSM_RUN_MERGE; /* no way for user to start it */
3208
2ffd8679 3209#endif /* CONFIG_SYSFS */
31dbd01f 3210
62b61f61 3211#ifdef CONFIG_MEMORY_HOTREMOVE
ef4d43a8 3212 /* There is no significance to this priority 100 */
1eeaa4fd 3213 hotplug_memory_notifier(ksm_memory_callback, KSM_CALLBACK_PRI);
62b61f61 3214#endif
31dbd01f
IE
3215 return 0;
3216
d9f8984c 3217out_free:
31dbd01f
IE
3218 ksm_slab_free();
3219out:
3220 return err;
f8af4da3 3221}
a64fb3cd 3222subsys_initcall(ksm_init);