ksm: introduce ksm_max_page_sharing per page deduplication limit
[linux-block.git] / mm / ksm.c
CommitLineData
f8af4da3 1/*
31dbd01f
IE
2 * Memory merging support.
3 *
4 * This code enables dynamic sharing of identical pages found in different
5 * memory areas, even if they are not shared by fork()
6 *
36b2528d 7 * Copyright (C) 2008-2009 Red Hat, Inc.
31dbd01f
IE
8 * Authors:
9 * Izik Eidus
10 * Andrea Arcangeli
11 * Chris Wright
36b2528d 12 * Hugh Dickins
31dbd01f
IE
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2.
f8af4da3
HD
15 */
16
17#include <linux/errno.h>
31dbd01f
IE
18#include <linux/mm.h>
19#include <linux/fs.h>
f8af4da3 20#include <linux/mman.h>
31dbd01f 21#include <linux/sched.h>
6e84f315 22#include <linux/sched/mm.h>
f7ccbae4 23#include <linux/sched/coredump.h>
31dbd01f
IE
24#include <linux/rwsem.h>
25#include <linux/pagemap.h>
26#include <linux/rmap.h>
27#include <linux/spinlock.h>
28#include <linux/jhash.h>
29#include <linux/delay.h>
30#include <linux/kthread.h>
31#include <linux/wait.h>
32#include <linux/slab.h>
33#include <linux/rbtree.h>
62b61f61 34#include <linux/memory.h>
31dbd01f 35#include <linux/mmu_notifier.h>
2c6854fd 36#include <linux/swap.h>
f8af4da3 37#include <linux/ksm.h>
4ca3a69b 38#include <linux/hashtable.h>
878aee7d 39#include <linux/freezer.h>
72788c38 40#include <linux/oom.h>
90bd6fd3 41#include <linux/numa.h>
f8af4da3 42
31dbd01f 43#include <asm/tlbflush.h>
73848b46 44#include "internal.h"
31dbd01f 45
e850dcf5
HD
46#ifdef CONFIG_NUMA
47#define NUMA(x) (x)
48#define DO_NUMA(x) do { (x); } while (0)
49#else
50#define NUMA(x) (0)
51#define DO_NUMA(x) do { } while (0)
52#endif
53
31dbd01f
IE
54/*
55 * A few notes about the KSM scanning process,
56 * to make it easier to understand the data structures below:
57 *
58 * In order to reduce excessive scanning, KSM sorts the memory pages by their
59 * contents into a data structure that holds pointers to the pages' locations.
60 *
61 * Since the contents of the pages may change at any moment, KSM cannot just
62 * insert the pages into a normal sorted tree and expect it to find anything.
63 * Therefore KSM uses two data structures - the stable and the unstable tree.
64 *
65 * The stable tree holds pointers to all the merged pages (ksm pages), sorted
66 * by their contents. Because each such page is write-protected, searching on
67 * this tree is fully assured to be working (except when pages are unmapped),
68 * and therefore this tree is called the stable tree.
69 *
70 * In addition to the stable tree, KSM uses a second data structure called the
71 * unstable tree: this tree holds pointers to pages which have been found to
72 * be "unchanged for a period of time". The unstable tree sorts these pages
73 * by their contents, but since they are not write-protected, KSM cannot rely
74 * upon the unstable tree to work correctly - the unstable tree is liable to
75 * be corrupted as its contents are modified, and so it is called unstable.
76 *
77 * KSM solves this problem by several techniques:
78 *
79 * 1) The unstable tree is flushed every time KSM completes scanning all
80 * memory areas, and then the tree is rebuilt again from the beginning.
81 * 2) KSM will only insert into the unstable tree, pages whose hash value
82 * has not changed since the previous scan of all memory areas.
83 * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
84 * colors of the nodes and not on their contents, assuring that even when
85 * the tree gets "corrupted" it won't get out of balance, so scanning time
86 * remains the same (also, searching and inserting nodes in an rbtree uses
87 * the same algorithm, so we have no overhead when we flush and rebuild).
88 * 4) KSM never flushes the stable tree, which means that even if it were to
89 * take 10 attempts to find a page in the unstable tree, once it is found,
90 * it is secured in the stable tree. (When we scan a new page, we first
91 * compare it against the stable tree, and then against the unstable tree.)
8fdb3dbf
HD
92 *
93 * If the merge_across_nodes tunable is unset, then KSM maintains multiple
94 * stable trees and multiple unstable trees: one of each for each NUMA node.
31dbd01f
IE
95 */
96
97/**
98 * struct mm_slot - ksm information per mm that is being scanned
99 * @link: link to the mm_slots hash list
100 * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
6514d511 101 * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
31dbd01f
IE
102 * @mm: the mm that this information is valid for
103 */
104struct mm_slot {
105 struct hlist_node link;
106 struct list_head mm_list;
6514d511 107 struct rmap_item *rmap_list;
31dbd01f
IE
108 struct mm_struct *mm;
109};
110
111/**
112 * struct ksm_scan - cursor for scanning
113 * @mm_slot: the current mm_slot we are scanning
114 * @address: the next address inside that to be scanned
6514d511 115 * @rmap_list: link to the next rmap to be scanned in the rmap_list
31dbd01f
IE
116 * @seqnr: count of completed full scans (needed when removing unstable node)
117 *
118 * There is only the one ksm_scan instance of this cursor structure.
119 */
120struct ksm_scan {
121 struct mm_slot *mm_slot;
122 unsigned long address;
6514d511 123 struct rmap_item **rmap_list;
31dbd01f
IE
124 unsigned long seqnr;
125};
126
7b6ba2c7
HD
127/**
128 * struct stable_node - node of the stable rbtree
129 * @node: rb node of this ksm page in the stable tree
4146d2d6 130 * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
2c653d0e 131 * @hlist_dup: linked into the stable_node->hlist with a stable_node chain
4146d2d6 132 * @list: linked into migrate_nodes, pending placement in the proper node tree
7b6ba2c7 133 * @hlist: hlist head of rmap_items using this ksm page
4146d2d6 134 * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
2c653d0e
AA
135 * @chain_prune_time: time of the last full garbage collection
136 * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN
4146d2d6 137 * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
7b6ba2c7
HD
138 */
139struct stable_node {
4146d2d6
HD
140 union {
141 struct rb_node node; /* when node of stable tree */
142 struct { /* when listed for migration */
143 struct list_head *head;
2c653d0e
AA
144 struct {
145 struct hlist_node hlist_dup;
146 struct list_head list;
147 };
4146d2d6
HD
148 };
149 };
7b6ba2c7 150 struct hlist_head hlist;
2c653d0e
AA
151 union {
152 unsigned long kpfn;
153 unsigned long chain_prune_time;
154 };
155 /*
156 * STABLE_NODE_CHAIN can be any negative number in
157 * rmap_hlist_len negative range, but better not -1 to be able
158 * to reliably detect underflows.
159 */
160#define STABLE_NODE_CHAIN -1024
161 int rmap_hlist_len;
4146d2d6
HD
162#ifdef CONFIG_NUMA
163 int nid;
164#endif
7b6ba2c7
HD
165};
166
31dbd01f
IE
167/**
168 * struct rmap_item - reverse mapping item for virtual addresses
6514d511 169 * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
db114b83 170 * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
bc56620b 171 * @nid: NUMA node id of unstable tree in which linked (may not match page)
31dbd01f
IE
172 * @mm: the memory structure this rmap_item is pointing into
173 * @address: the virtual address this rmap_item tracks (+ flags in low bits)
174 * @oldchecksum: previous checksum of the page at that virtual address
7b6ba2c7
HD
175 * @node: rb node of this rmap_item in the unstable tree
176 * @head: pointer to stable_node heading this list in the stable tree
177 * @hlist: link into hlist of rmap_items hanging off that stable_node
31dbd01f
IE
178 */
179struct rmap_item {
6514d511 180 struct rmap_item *rmap_list;
bc56620b
HD
181 union {
182 struct anon_vma *anon_vma; /* when stable */
183#ifdef CONFIG_NUMA
184 int nid; /* when node of unstable tree */
185#endif
186 };
31dbd01f
IE
187 struct mm_struct *mm;
188 unsigned long address; /* + low bits used for flags below */
7b6ba2c7 189 unsigned int oldchecksum; /* when unstable */
31dbd01f 190 union {
7b6ba2c7
HD
191 struct rb_node node; /* when node of unstable tree */
192 struct { /* when listed from stable tree */
193 struct stable_node *head;
194 struct hlist_node hlist;
195 };
31dbd01f
IE
196 };
197};
198
199#define SEQNR_MASK 0x0ff /* low bits of unstable tree seqnr */
7b6ba2c7
HD
200#define UNSTABLE_FLAG 0x100 /* is a node of the unstable tree */
201#define STABLE_FLAG 0x200 /* is listed from the stable tree */
31dbd01f
IE
202
203/* The stable and unstable tree heads */
ef53d16c
HD
204static struct rb_root one_stable_tree[1] = { RB_ROOT };
205static struct rb_root one_unstable_tree[1] = { RB_ROOT };
206static struct rb_root *root_stable_tree = one_stable_tree;
207static struct rb_root *root_unstable_tree = one_unstable_tree;
31dbd01f 208
4146d2d6
HD
209/* Recently migrated nodes of stable tree, pending proper placement */
210static LIST_HEAD(migrate_nodes);
2c653d0e 211#define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev)
4146d2d6 212
4ca3a69b
SL
213#define MM_SLOTS_HASH_BITS 10
214static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
31dbd01f
IE
215
216static struct mm_slot ksm_mm_head = {
217 .mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
218};
219static struct ksm_scan ksm_scan = {
220 .mm_slot = &ksm_mm_head,
221};
222
223static struct kmem_cache *rmap_item_cache;
7b6ba2c7 224static struct kmem_cache *stable_node_cache;
31dbd01f
IE
225static struct kmem_cache *mm_slot_cache;
226
227/* The number of nodes in the stable tree */
b4028260 228static unsigned long ksm_pages_shared;
31dbd01f 229
e178dfde 230/* The number of page slots additionally sharing those nodes */
b4028260 231static unsigned long ksm_pages_sharing;
31dbd01f 232
473b0ce4
HD
233/* The number of nodes in the unstable tree */
234static unsigned long ksm_pages_unshared;
235
236/* The number of rmap_items in use: to calculate pages_volatile */
237static unsigned long ksm_rmap_items;
238
2c653d0e
AA
239/* The number of stable_node chains */
240static unsigned long ksm_stable_node_chains;
241
242/* The number of stable_node dups linked to the stable_node chains */
243static unsigned long ksm_stable_node_dups;
244
245/* Delay in pruning stale stable_node_dups in the stable_node_chains */
246static int ksm_stable_node_chains_prune_millisecs = 2000;
247
248/* Maximum number of page slots sharing a stable node */
249static int ksm_max_page_sharing = 256;
250
31dbd01f 251/* Number of pages ksmd should scan in one batch */
2c6854fd 252static unsigned int ksm_thread_pages_to_scan = 100;
31dbd01f
IE
253
254/* Milliseconds ksmd should sleep between batches */
2ffd8679 255static unsigned int ksm_thread_sleep_millisecs = 20;
31dbd01f 256
e86c59b1
CI
257/* Checksum of an empty (zeroed) page */
258static unsigned int zero_checksum __read_mostly;
259
260/* Whether to merge empty (zeroed) pages with actual zero pages */
261static bool ksm_use_zero_pages __read_mostly;
262
e850dcf5 263#ifdef CONFIG_NUMA
90bd6fd3
PH
264/* Zeroed when merging across nodes is not allowed */
265static unsigned int ksm_merge_across_nodes = 1;
ef53d16c 266static int ksm_nr_node_ids = 1;
e850dcf5
HD
267#else
268#define ksm_merge_across_nodes 1U
ef53d16c 269#define ksm_nr_node_ids 1
e850dcf5 270#endif
90bd6fd3 271
31dbd01f
IE
272#define KSM_RUN_STOP 0
273#define KSM_RUN_MERGE 1
274#define KSM_RUN_UNMERGE 2
ef4d43a8
HD
275#define KSM_RUN_OFFLINE 4
276static unsigned long ksm_run = KSM_RUN_STOP;
277static void wait_while_offlining(void);
31dbd01f
IE
278
279static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
280static DEFINE_MUTEX(ksm_thread_mutex);
281static DEFINE_SPINLOCK(ksm_mmlist_lock);
282
283#define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
284 sizeof(struct __struct), __alignof__(struct __struct),\
285 (__flags), NULL)
286
287static int __init ksm_slab_init(void)
288{
289 rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
290 if (!rmap_item_cache)
291 goto out;
292
7b6ba2c7
HD
293 stable_node_cache = KSM_KMEM_CACHE(stable_node, 0);
294 if (!stable_node_cache)
295 goto out_free1;
296
31dbd01f
IE
297 mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
298 if (!mm_slot_cache)
7b6ba2c7 299 goto out_free2;
31dbd01f
IE
300
301 return 0;
302
7b6ba2c7
HD
303out_free2:
304 kmem_cache_destroy(stable_node_cache);
305out_free1:
31dbd01f
IE
306 kmem_cache_destroy(rmap_item_cache);
307out:
308 return -ENOMEM;
309}
310
311static void __init ksm_slab_free(void)
312{
313 kmem_cache_destroy(mm_slot_cache);
7b6ba2c7 314 kmem_cache_destroy(stable_node_cache);
31dbd01f
IE
315 kmem_cache_destroy(rmap_item_cache);
316 mm_slot_cache = NULL;
317}
318
2c653d0e
AA
319static __always_inline bool is_stable_node_chain(struct stable_node *chain)
320{
321 return chain->rmap_hlist_len == STABLE_NODE_CHAIN;
322}
323
324static __always_inline bool is_stable_node_dup(struct stable_node *dup)
325{
326 return dup->head == STABLE_NODE_DUP_HEAD;
327}
328
329static inline void stable_node_chain_add_dup(struct stable_node *dup,
330 struct stable_node *chain)
331{
332 VM_BUG_ON(is_stable_node_dup(dup));
333 dup->head = STABLE_NODE_DUP_HEAD;
334 VM_BUG_ON(!is_stable_node_chain(chain));
335 hlist_add_head(&dup->hlist_dup, &chain->hlist);
336 ksm_stable_node_dups++;
337}
338
339static inline void __stable_node_dup_del(struct stable_node *dup)
340{
341 hlist_del(&dup->hlist_dup);
342 ksm_stable_node_dups--;
343}
344
345static inline void stable_node_dup_del(struct stable_node *dup)
346{
347 VM_BUG_ON(is_stable_node_chain(dup));
348 if (is_stable_node_dup(dup))
349 __stable_node_dup_del(dup);
350 else
351 rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid));
352#ifdef CONFIG_DEBUG_VM
353 dup->head = NULL;
354#endif
355}
356
31dbd01f
IE
357static inline struct rmap_item *alloc_rmap_item(void)
358{
473b0ce4
HD
359 struct rmap_item *rmap_item;
360
5b398e41 361 rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL |
362 __GFP_NORETRY | __GFP_NOWARN);
473b0ce4
HD
363 if (rmap_item)
364 ksm_rmap_items++;
365 return rmap_item;
31dbd01f
IE
366}
367
368static inline void free_rmap_item(struct rmap_item *rmap_item)
369{
473b0ce4 370 ksm_rmap_items--;
31dbd01f
IE
371 rmap_item->mm = NULL; /* debug safety */
372 kmem_cache_free(rmap_item_cache, rmap_item);
373}
374
7b6ba2c7
HD
375static inline struct stable_node *alloc_stable_node(void)
376{
6213055f 377 /*
378 * The allocation can take too long with GFP_KERNEL when memory is under
379 * pressure, which may lead to hung task warnings. Adding __GFP_HIGH
380 * grants access to memory reserves, helping to avoid this problem.
381 */
382 return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH);
7b6ba2c7
HD
383}
384
385static inline void free_stable_node(struct stable_node *stable_node)
386{
2c653d0e
AA
387 VM_BUG_ON(stable_node->rmap_hlist_len &&
388 !is_stable_node_chain(stable_node));
7b6ba2c7
HD
389 kmem_cache_free(stable_node_cache, stable_node);
390}
391
31dbd01f
IE
392static inline struct mm_slot *alloc_mm_slot(void)
393{
394 if (!mm_slot_cache) /* initialization failed */
395 return NULL;
396 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
397}
398
399static inline void free_mm_slot(struct mm_slot *mm_slot)
400{
401 kmem_cache_free(mm_slot_cache, mm_slot);
402}
403
31dbd01f
IE
404static struct mm_slot *get_mm_slot(struct mm_struct *mm)
405{
4ca3a69b
SL
406 struct mm_slot *slot;
407
b67bfe0d 408 hash_for_each_possible(mm_slots_hash, slot, link, (unsigned long)mm)
4ca3a69b
SL
409 if (slot->mm == mm)
410 return slot;
31dbd01f 411
31dbd01f
IE
412 return NULL;
413}
414
415static void insert_to_mm_slots_hash(struct mm_struct *mm,
416 struct mm_slot *mm_slot)
417{
31dbd01f 418 mm_slot->mm = mm;
4ca3a69b 419 hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm);
31dbd01f
IE
420}
421
a913e182
HD
422/*
423 * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
424 * page tables after it has passed through ksm_exit() - which, if necessary,
425 * takes mmap_sem briefly to serialize against them. ksm_exit() does not set
426 * a special flag: they can just back out as soon as mm_users goes to zero.
427 * ksm_test_exit() is used throughout to make this test for exit: in some
428 * places for correctness, in some places just to avoid unnecessary work.
429 */
430static inline bool ksm_test_exit(struct mm_struct *mm)
431{
432 return atomic_read(&mm->mm_users) == 0;
433}
434
31dbd01f
IE
435/*
436 * We use break_ksm to break COW on a ksm page: it's a stripped down
437 *
d4edcf0d 438 * if (get_user_pages(addr, 1, 1, 1, &page, NULL) == 1)
31dbd01f
IE
439 * put_page(page);
440 *
441 * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
442 * in case the application has unmapped and remapped mm,addr meanwhile.
443 * Could a ksm page appear anywhere else? Actually yes, in a VM_PFNMAP
444 * mmap of /dev/mem or /dev/kmem, where we would not want to touch it.
1b2ee126
DH
445 *
446 * FAULT_FLAG/FOLL_REMOTE are because we do this outside the context
447 * of the process that owns 'vma'. We also do not want to enforce
448 * protection keys here anyway.
31dbd01f 449 */
d952b791 450static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
31dbd01f
IE
451{
452 struct page *page;
d952b791 453 int ret = 0;
31dbd01f
IE
454
455 do {
456 cond_resched();
1b2ee126
DH
457 page = follow_page(vma, addr,
458 FOLL_GET | FOLL_MIGRATION | FOLL_REMOTE);
22eccdd7 459 if (IS_ERR_OR_NULL(page))
31dbd01f
IE
460 break;
461 if (PageKsm(page))
dcddffd4
KS
462 ret = handle_mm_fault(vma, addr,
463 FAULT_FLAG_WRITE | FAULT_FLAG_REMOTE);
31dbd01f
IE
464 else
465 ret = VM_FAULT_WRITE;
466 put_page(page);
33692f27 467 } while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
d952b791
HD
468 /*
469 * We must loop because handle_mm_fault() may back out if there's
470 * any difficulty e.g. if pte accessed bit gets updated concurrently.
471 *
472 * VM_FAULT_WRITE is what we have been hoping for: it indicates that
473 * COW has been broken, even if the vma does not permit VM_WRITE;
474 * but note that a concurrent fault might break PageKsm for us.
475 *
476 * VM_FAULT_SIGBUS could occur if we race with truncation of the
477 * backing file, which also invalidates anonymous pages: that's
478 * okay, that truncation will have unmapped the PageKsm for us.
479 *
480 * VM_FAULT_OOM: at the time of writing (late July 2009), setting
481 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
482 * current task has TIF_MEMDIE set, and will be OOM killed on return
483 * to user; and ksmd, having no mm, would never be chosen for that.
484 *
485 * But if the mm is in a limited mem_cgroup, then the fault may fail
486 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
487 * even ksmd can fail in this way - though it's usually breaking ksm
488 * just to undo a merge it made a moment before, so unlikely to oom.
489 *
490 * That's a pity: we might therefore have more kernel pages allocated
491 * than we're counting as nodes in the stable tree; but ksm_do_scan
492 * will retry to break_cow on each pass, so should recover the page
493 * in due course. The important thing is to not let VM_MERGEABLE
494 * be cleared while any such pages might remain in the area.
495 */
496 return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
31dbd01f
IE
497}
498
ef694222
BL
499static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
500 unsigned long addr)
501{
502 struct vm_area_struct *vma;
503 if (ksm_test_exit(mm))
504 return NULL;
505 vma = find_vma(mm, addr);
506 if (!vma || vma->vm_start > addr)
507 return NULL;
508 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
509 return NULL;
510 return vma;
511}
512
8dd3557a 513static void break_cow(struct rmap_item *rmap_item)
31dbd01f 514{
8dd3557a
HD
515 struct mm_struct *mm = rmap_item->mm;
516 unsigned long addr = rmap_item->address;
31dbd01f
IE
517 struct vm_area_struct *vma;
518
4035c07a
HD
519 /*
520 * It is not an accident that whenever we want to break COW
521 * to undo, we also need to drop a reference to the anon_vma.
522 */
9e60109f 523 put_anon_vma(rmap_item->anon_vma);
4035c07a 524
81464e30 525 down_read(&mm->mmap_sem);
ef694222
BL
526 vma = find_mergeable_vma(mm, addr);
527 if (vma)
528 break_ksm(vma, addr);
31dbd01f
IE
529 up_read(&mm->mmap_sem);
530}
531
532static struct page *get_mergeable_page(struct rmap_item *rmap_item)
533{
534 struct mm_struct *mm = rmap_item->mm;
535 unsigned long addr = rmap_item->address;
536 struct vm_area_struct *vma;
537 struct page *page;
538
539 down_read(&mm->mmap_sem);
ef694222
BL
540 vma = find_mergeable_vma(mm, addr);
541 if (!vma)
31dbd01f
IE
542 goto out;
543
544 page = follow_page(vma, addr, FOLL_GET);
22eccdd7 545 if (IS_ERR_OR_NULL(page))
31dbd01f 546 goto out;
f765f540 547 if (PageAnon(page)) {
31dbd01f
IE
548 flush_anon_page(vma, page, addr);
549 flush_dcache_page(page);
550 } else {
551 put_page(page);
c8f95ed1
AA
552out:
553 page = NULL;
31dbd01f
IE
554 }
555 up_read(&mm->mmap_sem);
556 return page;
557}
558
90bd6fd3
PH
559/*
560 * This helper is used for getting right index into array of tree roots.
561 * When merge_across_nodes knob is set to 1, there are only two rb-trees for
562 * stable and unstable pages from all nodes with roots in index 0. Otherwise,
563 * every node has its own stable and unstable tree.
564 */
565static inline int get_kpfn_nid(unsigned long kpfn)
566{
d8fc16a8 567 return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
90bd6fd3
PH
568}
569
2c653d0e
AA
570static struct stable_node *alloc_stable_node_chain(struct stable_node *dup,
571 struct rb_root *root)
572{
573 struct stable_node *chain = alloc_stable_node();
574 VM_BUG_ON(is_stable_node_chain(dup));
575 if (likely(chain)) {
576 INIT_HLIST_HEAD(&chain->hlist);
577 chain->chain_prune_time = jiffies;
578 chain->rmap_hlist_len = STABLE_NODE_CHAIN;
579#if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA)
580 chain->nid = -1; /* debug */
581#endif
582 ksm_stable_node_chains++;
583
584 /*
585 * Put the stable node chain in the first dimension of
586 * the stable tree and at the same time remove the old
587 * stable node.
588 */
589 rb_replace_node(&dup->node, &chain->node, root);
590
591 /*
592 * Move the old stable node to the second dimension
593 * queued in the hlist_dup. The invariant is that all
594 * dup stable_nodes in the chain->hlist point to pages
595 * that are wrprotected and have the exact same
596 * content.
597 */
598 stable_node_chain_add_dup(dup, chain);
599 }
600 return chain;
601}
602
603static inline void free_stable_node_chain(struct stable_node *chain,
604 struct rb_root *root)
605{
606 rb_erase(&chain->node, root);
607 free_stable_node(chain);
608 ksm_stable_node_chains--;
609}
610
4035c07a
HD
611static void remove_node_from_stable_tree(struct stable_node *stable_node)
612{
613 struct rmap_item *rmap_item;
4035c07a 614
2c653d0e
AA
615 /* check it's not STABLE_NODE_CHAIN or negative */
616 BUG_ON(stable_node->rmap_hlist_len < 0);
617
b67bfe0d 618 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
4035c07a
HD
619 if (rmap_item->hlist.next)
620 ksm_pages_sharing--;
621 else
622 ksm_pages_shared--;
2c653d0e
AA
623 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
624 stable_node->rmap_hlist_len--;
9e60109f 625 put_anon_vma(rmap_item->anon_vma);
4035c07a
HD
626 rmap_item->address &= PAGE_MASK;
627 cond_resched();
628 }
629
2c653d0e
AA
630 /*
631 * We need the second aligned pointer of the migrate_nodes
632 * list_head to stay clear from the rb_parent_color union
633 * (aligned and different than any node) and also different
634 * from &migrate_nodes. This will verify that future list.h changes
635 * don't break STABLE_NODE_DUP_HEAD.
636 */
637#if GCC_VERSION >= 40903 /* only recent gcc can handle it */
638 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes);
639 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1);
640#endif
641
4146d2d6
HD
642 if (stable_node->head == &migrate_nodes)
643 list_del(&stable_node->list);
644 else
2c653d0e 645 stable_node_dup_del(stable_node);
4035c07a
HD
646 free_stable_node(stable_node);
647}
648
649/*
650 * get_ksm_page: checks if the page indicated by the stable node
651 * is still its ksm page, despite having held no reference to it.
652 * In which case we can trust the content of the page, and it
653 * returns the gotten page; but if the page has now been zapped,
654 * remove the stale node from the stable tree and return NULL.
c8d6553b 655 * But beware, the stable node's page might be being migrated.
4035c07a
HD
656 *
657 * You would expect the stable_node to hold a reference to the ksm page.
658 * But if it increments the page's count, swapping out has to wait for
659 * ksmd to come around again before it can free the page, which may take
660 * seconds or even minutes: much too unresponsive. So instead we use a
661 * "keyhole reference": access to the ksm page from the stable node peeps
662 * out through its keyhole to see if that page still holds the right key,
663 * pointing back to this stable node. This relies on freeing a PageAnon
664 * page to reset its page->mapping to NULL, and relies on no other use of
665 * a page to put something that might look like our key in page->mapping.
4035c07a
HD
666 * is on its way to being freed; but it is an anomaly to bear in mind.
667 */
8fdb3dbf 668static struct page *get_ksm_page(struct stable_node *stable_node, bool lock_it)
4035c07a
HD
669{
670 struct page *page;
671 void *expected_mapping;
c8d6553b 672 unsigned long kpfn;
4035c07a 673
bda807d4
MK
674 expected_mapping = (void *)((unsigned long)stable_node |
675 PAGE_MAPPING_KSM);
c8d6553b 676again:
4db0c3c2 677 kpfn = READ_ONCE(stable_node->kpfn);
c8d6553b
HD
678 page = pfn_to_page(kpfn);
679
680 /*
681 * page is computed from kpfn, so on most architectures reading
682 * page->mapping is naturally ordered after reading node->kpfn,
683 * but on Alpha we need to be more careful.
684 */
685 smp_read_barrier_depends();
4db0c3c2 686 if (READ_ONCE(page->mapping) != expected_mapping)
4035c07a 687 goto stale;
c8d6553b
HD
688
689 /*
690 * We cannot do anything with the page while its refcount is 0.
691 * Usually 0 means free, or tail of a higher-order page: in which
692 * case this node is no longer referenced, and should be freed;
693 * however, it might mean that the page is under page_freeze_refs().
694 * The __remove_mapping() case is easy, again the node is now stale;
695 * but if page is swapcache in migrate_page_move_mapping(), it might
696 * still be our page, in which case it's essential to keep the node.
697 */
698 while (!get_page_unless_zero(page)) {
699 /*
700 * Another check for page->mapping != expected_mapping would
701 * work here too. We have chosen the !PageSwapCache test to
702 * optimize the common case, when the page is or is about to
703 * be freed: PageSwapCache is cleared (under spin_lock_irq)
704 * in the freeze_refs section of __remove_mapping(); but Anon
705 * page->mapping reset to NULL later, in free_pages_prepare().
706 */
707 if (!PageSwapCache(page))
708 goto stale;
709 cpu_relax();
710 }
711
4db0c3c2 712 if (READ_ONCE(page->mapping) != expected_mapping) {
4035c07a
HD
713 put_page(page);
714 goto stale;
715 }
c8d6553b 716
8fdb3dbf 717 if (lock_it) {
8aafa6a4 718 lock_page(page);
4db0c3c2 719 if (READ_ONCE(page->mapping) != expected_mapping) {
8aafa6a4
HD
720 unlock_page(page);
721 put_page(page);
722 goto stale;
723 }
724 }
4035c07a 725 return page;
c8d6553b 726
4035c07a 727stale:
c8d6553b
HD
728 /*
729 * We come here from above when page->mapping or !PageSwapCache
730 * suggests that the node is stale; but it might be under migration.
731 * We need smp_rmb(), matching the smp_wmb() in ksm_migrate_page(),
732 * before checking whether node->kpfn has been changed.
733 */
734 smp_rmb();
4db0c3c2 735 if (READ_ONCE(stable_node->kpfn) != kpfn)
c8d6553b 736 goto again;
4035c07a
HD
737 remove_node_from_stable_tree(stable_node);
738 return NULL;
739}
740
31dbd01f
IE
741/*
742 * Removing rmap_item from stable or unstable tree.
743 * This function will clean the information from the stable/unstable tree.
744 */
745static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
746{
7b6ba2c7
HD
747 if (rmap_item->address & STABLE_FLAG) {
748 struct stable_node *stable_node;
5ad64688 749 struct page *page;
31dbd01f 750
7b6ba2c7 751 stable_node = rmap_item->head;
8aafa6a4 752 page = get_ksm_page(stable_node, true);
4035c07a
HD
753 if (!page)
754 goto out;
5ad64688 755
7b6ba2c7 756 hlist_del(&rmap_item->hlist);
4035c07a
HD
757 unlock_page(page);
758 put_page(page);
08beca44 759
98666f8a 760 if (!hlist_empty(&stable_node->hlist))
4035c07a
HD
761 ksm_pages_sharing--;
762 else
7b6ba2c7 763 ksm_pages_shared--;
2c653d0e
AA
764 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
765 stable_node->rmap_hlist_len--;
31dbd01f 766
9e60109f 767 put_anon_vma(rmap_item->anon_vma);
93d17715 768 rmap_item->address &= PAGE_MASK;
31dbd01f 769
7b6ba2c7 770 } else if (rmap_item->address & UNSTABLE_FLAG) {
31dbd01f
IE
771 unsigned char age;
772 /*
9ba69294 773 * Usually ksmd can and must skip the rb_erase, because
31dbd01f 774 * root_unstable_tree was already reset to RB_ROOT.
9ba69294
HD
775 * But be careful when an mm is exiting: do the rb_erase
776 * if this rmap_item was inserted by this scan, rather
777 * than left over from before.
31dbd01f
IE
778 */
779 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
cd551f97 780 BUG_ON(age > 1);
31dbd01f 781 if (!age)
90bd6fd3 782 rb_erase(&rmap_item->node,
ef53d16c 783 root_unstable_tree + NUMA(rmap_item->nid));
473b0ce4 784 ksm_pages_unshared--;
93d17715 785 rmap_item->address &= PAGE_MASK;
31dbd01f 786 }
4035c07a 787out:
31dbd01f
IE
788 cond_resched(); /* we're called from many long loops */
789}
790
31dbd01f 791static void remove_trailing_rmap_items(struct mm_slot *mm_slot,
6514d511 792 struct rmap_item **rmap_list)
31dbd01f 793{
6514d511
HD
794 while (*rmap_list) {
795 struct rmap_item *rmap_item = *rmap_list;
796 *rmap_list = rmap_item->rmap_list;
31dbd01f 797 remove_rmap_item_from_tree(rmap_item);
31dbd01f
IE
798 free_rmap_item(rmap_item);
799 }
800}
801
802/*
e850dcf5 803 * Though it's very tempting to unmerge rmap_items from stable tree rather
31dbd01f
IE
804 * than check every pte of a given vma, the locking doesn't quite work for
805 * that - an rmap_item is assigned to the stable tree after inserting ksm
806 * page and upping mmap_sem. Nor does it fit with the way we skip dup'ing
807 * rmap_items from parent to child at fork time (so as not to waste time
808 * if exit comes before the next scan reaches it).
81464e30
HD
809 *
810 * Similarly, although we'd like to remove rmap_items (so updating counts
811 * and freeing memory) when unmerging an area, it's easier to leave that
812 * to the next pass of ksmd - consider, for example, how ksmd might be
813 * in cmp_and_merge_page on one of the rmap_items we would be removing.
31dbd01f 814 */
d952b791
HD
815static int unmerge_ksm_pages(struct vm_area_struct *vma,
816 unsigned long start, unsigned long end)
31dbd01f
IE
817{
818 unsigned long addr;
d952b791 819 int err = 0;
31dbd01f 820
d952b791 821 for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
9ba69294
HD
822 if (ksm_test_exit(vma->vm_mm))
823 break;
d952b791
HD
824 if (signal_pending(current))
825 err = -ERESTARTSYS;
826 else
827 err = break_ksm(vma, addr);
828 }
829 return err;
31dbd01f
IE
830}
831
2ffd8679
HD
832#ifdef CONFIG_SYSFS
833/*
834 * Only called through the sysfs control interface:
835 */
cbf86cfe
HD
836static int remove_stable_node(struct stable_node *stable_node)
837{
838 struct page *page;
839 int err;
840
841 page = get_ksm_page(stable_node, true);
842 if (!page) {
843 /*
844 * get_ksm_page did remove_node_from_stable_tree itself.
845 */
846 return 0;
847 }
848
8fdb3dbf
HD
849 if (WARN_ON_ONCE(page_mapped(page))) {
850 /*
851 * This should not happen: but if it does, just refuse to let
852 * merge_across_nodes be switched - there is no need to panic.
853 */
cbf86cfe 854 err = -EBUSY;
8fdb3dbf 855 } else {
cbf86cfe 856 /*
8fdb3dbf
HD
857 * The stable node did not yet appear stale to get_ksm_page(),
858 * since that allows for an unmapped ksm page to be recognized
859 * right up until it is freed; but the node is safe to remove.
cbf86cfe
HD
860 * This page might be in a pagevec waiting to be freed,
861 * or it might be PageSwapCache (perhaps under writeback),
862 * or it might have been removed from swapcache a moment ago.
863 */
864 set_page_stable_node(page, NULL);
865 remove_node_from_stable_tree(stable_node);
866 err = 0;
867 }
868
869 unlock_page(page);
870 put_page(page);
871 return err;
872}
873
2c653d0e
AA
874static int remove_stable_node_chain(struct stable_node *stable_node,
875 struct rb_root *root)
876{
877 struct stable_node *dup;
878 struct hlist_node *hlist_safe;
879
880 if (!is_stable_node_chain(stable_node)) {
881 VM_BUG_ON(is_stable_node_dup(stable_node));
882 if (remove_stable_node(stable_node))
883 return true;
884 else
885 return false;
886 }
887
888 hlist_for_each_entry_safe(dup, hlist_safe,
889 &stable_node->hlist, hlist_dup) {
890 VM_BUG_ON(!is_stable_node_dup(dup));
891 if (remove_stable_node(dup))
892 return true;
893 }
894 BUG_ON(!hlist_empty(&stable_node->hlist));
895 free_stable_node_chain(stable_node, root);
896 return false;
897}
898
cbf86cfe
HD
899static int remove_all_stable_nodes(void)
900{
03640418 901 struct stable_node *stable_node, *next;
cbf86cfe
HD
902 int nid;
903 int err = 0;
904
ef53d16c 905 for (nid = 0; nid < ksm_nr_node_ids; nid++) {
cbf86cfe
HD
906 while (root_stable_tree[nid].rb_node) {
907 stable_node = rb_entry(root_stable_tree[nid].rb_node,
908 struct stable_node, node);
2c653d0e
AA
909 if (remove_stable_node_chain(stable_node,
910 root_stable_tree + nid)) {
cbf86cfe
HD
911 err = -EBUSY;
912 break; /* proceed to next nid */
913 }
914 cond_resched();
915 }
916 }
03640418 917 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
4146d2d6
HD
918 if (remove_stable_node(stable_node))
919 err = -EBUSY;
920 cond_resched();
921 }
cbf86cfe
HD
922 return err;
923}
924
d952b791 925static int unmerge_and_remove_all_rmap_items(void)
31dbd01f
IE
926{
927 struct mm_slot *mm_slot;
928 struct mm_struct *mm;
929 struct vm_area_struct *vma;
d952b791
HD
930 int err = 0;
931
932 spin_lock(&ksm_mmlist_lock);
9ba69294 933 ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
d952b791
HD
934 struct mm_slot, mm_list);
935 spin_unlock(&ksm_mmlist_lock);
31dbd01f 936
9ba69294
HD
937 for (mm_slot = ksm_scan.mm_slot;
938 mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
31dbd01f
IE
939 mm = mm_slot->mm;
940 down_read(&mm->mmap_sem);
941 for (vma = mm->mmap; vma; vma = vma->vm_next) {
9ba69294
HD
942 if (ksm_test_exit(mm))
943 break;
31dbd01f
IE
944 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
945 continue;
d952b791
HD
946 err = unmerge_ksm_pages(vma,
947 vma->vm_start, vma->vm_end);
9ba69294
HD
948 if (err)
949 goto error;
31dbd01f 950 }
9ba69294 951
6514d511 952 remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list);
7496fea9 953 up_read(&mm->mmap_sem);
d952b791
HD
954
955 spin_lock(&ksm_mmlist_lock);
9ba69294 956 ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
d952b791 957 struct mm_slot, mm_list);
9ba69294 958 if (ksm_test_exit(mm)) {
4ca3a69b 959 hash_del(&mm_slot->link);
9ba69294
HD
960 list_del(&mm_slot->mm_list);
961 spin_unlock(&ksm_mmlist_lock);
962
963 free_mm_slot(mm_slot);
964 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
9ba69294 965 mmdrop(mm);
7496fea9 966 } else
9ba69294 967 spin_unlock(&ksm_mmlist_lock);
31dbd01f
IE
968 }
969
cbf86cfe
HD
970 /* Clean up stable nodes, but don't worry if some are still busy */
971 remove_all_stable_nodes();
d952b791 972 ksm_scan.seqnr = 0;
9ba69294
HD
973 return 0;
974
975error:
976 up_read(&mm->mmap_sem);
31dbd01f 977 spin_lock(&ksm_mmlist_lock);
d952b791 978 ksm_scan.mm_slot = &ksm_mm_head;
31dbd01f 979 spin_unlock(&ksm_mmlist_lock);
d952b791 980 return err;
31dbd01f 981}
2ffd8679 982#endif /* CONFIG_SYSFS */
31dbd01f 983
31dbd01f
IE
984static u32 calc_checksum(struct page *page)
985{
986 u32 checksum;
9b04c5fe 987 void *addr = kmap_atomic(page);
31dbd01f 988 checksum = jhash2(addr, PAGE_SIZE / 4, 17);
9b04c5fe 989 kunmap_atomic(addr);
31dbd01f
IE
990 return checksum;
991}
992
993static int memcmp_pages(struct page *page1, struct page *page2)
994{
995 char *addr1, *addr2;
996 int ret;
997
9b04c5fe
CW
998 addr1 = kmap_atomic(page1);
999 addr2 = kmap_atomic(page2);
31dbd01f 1000 ret = memcmp(addr1, addr2, PAGE_SIZE);
9b04c5fe
CW
1001 kunmap_atomic(addr2);
1002 kunmap_atomic(addr1);
31dbd01f
IE
1003 return ret;
1004}
1005
1006static inline int pages_identical(struct page *page1, struct page *page2)
1007{
1008 return !memcmp_pages(page1, page2);
1009}
1010
1011static int write_protect_page(struct vm_area_struct *vma, struct page *page,
1012 pte_t *orig_pte)
1013{
1014 struct mm_struct *mm = vma->vm_mm;
36eaff33
KS
1015 struct page_vma_mapped_walk pvmw = {
1016 .page = page,
1017 .vma = vma,
1018 };
31dbd01f
IE
1019 int swapped;
1020 int err = -EFAULT;
6bdb913f
HE
1021 unsigned long mmun_start; /* For mmu_notifiers */
1022 unsigned long mmun_end; /* For mmu_notifiers */
31dbd01f 1023
36eaff33
KS
1024 pvmw.address = page_address_in_vma(page, vma);
1025 if (pvmw.address == -EFAULT)
31dbd01f
IE
1026 goto out;
1027
29ad768c 1028 BUG_ON(PageTransCompound(page));
6bdb913f 1029
36eaff33
KS
1030 mmun_start = pvmw.address;
1031 mmun_end = pvmw.address + PAGE_SIZE;
6bdb913f
HE
1032 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1033
36eaff33 1034 if (!page_vma_mapped_walk(&pvmw))
6bdb913f 1035 goto out_mn;
36eaff33
KS
1036 if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?"))
1037 goto out_unlock;
31dbd01f 1038
595cd8f2
AK
1039 if (pte_write(*pvmw.pte) || pte_dirty(*pvmw.pte) ||
1040 (pte_protnone(*pvmw.pte) && pte_savedwrite(*pvmw.pte))) {
31dbd01f
IE
1041 pte_t entry;
1042
1043 swapped = PageSwapCache(page);
36eaff33 1044 flush_cache_page(vma, pvmw.address, page_to_pfn(page));
31dbd01f 1045 /*
25985edc 1046 * Ok this is tricky, when get_user_pages_fast() run it doesn't
31dbd01f
IE
1047 * take any lock, therefore the check that we are going to make
1048 * with the pagecount against the mapcount is racey and
1049 * O_DIRECT can happen right after the check.
1050 * So we clear the pte and flush the tlb before the check
1051 * this assure us that no O_DIRECT can happen after the check
1052 * or in the middle of the check.
1053 */
36eaff33 1054 entry = ptep_clear_flush_notify(vma, pvmw.address, pvmw.pte);
31dbd01f
IE
1055 /*
1056 * Check that no O_DIRECT or similar I/O is in progress on the
1057 * page
1058 */
31e855ea 1059 if (page_mapcount(page) + 1 + swapped != page_count(page)) {
36eaff33 1060 set_pte_at(mm, pvmw.address, pvmw.pte, entry);
31dbd01f
IE
1061 goto out_unlock;
1062 }
4e31635c
HD
1063 if (pte_dirty(entry))
1064 set_page_dirty(page);
595cd8f2
AK
1065
1066 if (pte_protnone(entry))
1067 entry = pte_mkclean(pte_clear_savedwrite(entry));
1068 else
1069 entry = pte_mkclean(pte_wrprotect(entry));
36eaff33 1070 set_pte_at_notify(mm, pvmw.address, pvmw.pte, entry);
31dbd01f 1071 }
36eaff33 1072 *orig_pte = *pvmw.pte;
31dbd01f
IE
1073 err = 0;
1074
1075out_unlock:
36eaff33 1076 page_vma_mapped_walk_done(&pvmw);
6bdb913f
HE
1077out_mn:
1078 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
31dbd01f
IE
1079out:
1080 return err;
1081}
1082
1083/**
1084 * replace_page - replace page in vma by new ksm page
8dd3557a
HD
1085 * @vma: vma that holds the pte pointing to page
1086 * @page: the page we are replacing by kpage
1087 * @kpage: the ksm page we replace page by
31dbd01f
IE
1088 * @orig_pte: the original value of the pte
1089 *
1090 * Returns 0 on success, -EFAULT on failure.
1091 */
8dd3557a
HD
1092static int replace_page(struct vm_area_struct *vma, struct page *page,
1093 struct page *kpage, pte_t orig_pte)
31dbd01f
IE
1094{
1095 struct mm_struct *mm = vma->vm_mm;
31dbd01f
IE
1096 pmd_t *pmd;
1097 pte_t *ptep;
e86c59b1 1098 pte_t newpte;
31dbd01f
IE
1099 spinlock_t *ptl;
1100 unsigned long addr;
31dbd01f 1101 int err = -EFAULT;
6bdb913f
HE
1102 unsigned long mmun_start; /* For mmu_notifiers */
1103 unsigned long mmun_end; /* For mmu_notifiers */
31dbd01f 1104
8dd3557a 1105 addr = page_address_in_vma(page, vma);
31dbd01f
IE
1106 if (addr == -EFAULT)
1107 goto out;
1108
6219049a
BL
1109 pmd = mm_find_pmd(mm, addr);
1110 if (!pmd)
31dbd01f 1111 goto out;
31dbd01f 1112
6bdb913f
HE
1113 mmun_start = addr;
1114 mmun_end = addr + PAGE_SIZE;
1115 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1116
31dbd01f
IE
1117 ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
1118 if (!pte_same(*ptep, orig_pte)) {
1119 pte_unmap_unlock(ptep, ptl);
6bdb913f 1120 goto out_mn;
31dbd01f
IE
1121 }
1122
e86c59b1
CI
1123 /*
1124 * No need to check ksm_use_zero_pages here: we can only have a
1125 * zero_page here if ksm_use_zero_pages was enabled alreaady.
1126 */
1127 if (!is_zero_pfn(page_to_pfn(kpage))) {
1128 get_page(kpage);
1129 page_add_anon_rmap(kpage, vma, addr, false);
1130 newpte = mk_pte(kpage, vma->vm_page_prot);
1131 } else {
1132 newpte = pte_mkspecial(pfn_pte(page_to_pfn(kpage),
1133 vma->vm_page_prot));
1134 }
31dbd01f
IE
1135
1136 flush_cache_page(vma, addr, pte_pfn(*ptep));
34ee645e 1137 ptep_clear_flush_notify(vma, addr, ptep);
e86c59b1 1138 set_pte_at_notify(mm, addr, ptep, newpte);
31dbd01f 1139
d281ee61 1140 page_remove_rmap(page, false);
ae52a2ad
HD
1141 if (!page_mapped(page))
1142 try_to_free_swap(page);
8dd3557a 1143 put_page(page);
31dbd01f
IE
1144
1145 pte_unmap_unlock(ptep, ptl);
1146 err = 0;
6bdb913f
HE
1147out_mn:
1148 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
31dbd01f
IE
1149out:
1150 return err;
1151}
1152
1153/*
1154 * try_to_merge_one_page - take two pages and merge them into one
8dd3557a
HD
1155 * @vma: the vma that holds the pte pointing to page
1156 * @page: the PageAnon page that we want to replace with kpage
80e14822
HD
1157 * @kpage: the PageKsm page that we want to map instead of page,
1158 * or NULL the first time when we want to use page as kpage.
31dbd01f
IE
1159 *
1160 * This function returns 0 if the pages were merged, -EFAULT otherwise.
1161 */
1162static int try_to_merge_one_page(struct vm_area_struct *vma,
8dd3557a 1163 struct page *page, struct page *kpage)
31dbd01f
IE
1164{
1165 pte_t orig_pte = __pte(0);
1166 int err = -EFAULT;
1167
db114b83
HD
1168 if (page == kpage) /* ksm page forked */
1169 return 0;
1170
8dd3557a 1171 if (!PageAnon(page))
31dbd01f
IE
1172 goto out;
1173
31dbd01f
IE
1174 /*
1175 * We need the page lock to read a stable PageSwapCache in
1176 * write_protect_page(). We use trylock_page() instead of
1177 * lock_page() because we don't want to wait here - we
1178 * prefer to continue scanning and merging different pages,
1179 * then come back to this page when it is unlocked.
1180 */
8dd3557a 1181 if (!trylock_page(page))
31e855ea 1182 goto out;
f765f540
KS
1183
1184 if (PageTransCompound(page)) {
a7306c34 1185 if (split_huge_page(page))
f765f540
KS
1186 goto out_unlock;
1187 }
1188
31dbd01f
IE
1189 /*
1190 * If this anonymous page is mapped only here, its pte may need
1191 * to be write-protected. If it's mapped elsewhere, all of its
1192 * ptes are necessarily already write-protected. But in either
1193 * case, we need to lock and check page_count is not raised.
1194 */
80e14822
HD
1195 if (write_protect_page(vma, page, &orig_pte) == 0) {
1196 if (!kpage) {
1197 /*
1198 * While we hold page lock, upgrade page from
1199 * PageAnon+anon_vma to PageKsm+NULL stable_node:
1200 * stable_tree_insert() will update stable_node.
1201 */
1202 set_page_stable_node(page, NULL);
1203 mark_page_accessed(page);
337ed7eb
MK
1204 /*
1205 * Page reclaim just frees a clean page with no dirty
1206 * ptes: make sure that the ksm page would be swapped.
1207 */
1208 if (!PageDirty(page))
1209 SetPageDirty(page);
80e14822
HD
1210 err = 0;
1211 } else if (pages_identical(page, kpage))
1212 err = replace_page(vma, page, kpage, orig_pte);
1213 }
31dbd01f 1214
80e14822 1215 if ((vma->vm_flags & VM_LOCKED) && kpage && !err) {
73848b46 1216 munlock_vma_page(page);
5ad64688
HD
1217 if (!PageMlocked(kpage)) {
1218 unlock_page(page);
5ad64688
HD
1219 lock_page(kpage);
1220 mlock_vma_page(kpage);
1221 page = kpage; /* for final unlock */
1222 }
1223 }
73848b46 1224
f765f540 1225out_unlock:
8dd3557a 1226 unlock_page(page);
31dbd01f
IE
1227out:
1228 return err;
1229}
1230
81464e30
HD
1231/*
1232 * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1233 * but no new kernel page is allocated: kpage must already be a ksm page.
8dd3557a
HD
1234 *
1235 * This function returns 0 if the pages were merged, -EFAULT otherwise.
81464e30 1236 */
8dd3557a
HD
1237static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item,
1238 struct page *page, struct page *kpage)
81464e30 1239{
8dd3557a 1240 struct mm_struct *mm = rmap_item->mm;
81464e30
HD
1241 struct vm_area_struct *vma;
1242 int err = -EFAULT;
1243
8dd3557a 1244 down_read(&mm->mmap_sem);
85c6e8dd
AA
1245 vma = find_mergeable_vma(mm, rmap_item->address);
1246 if (!vma)
81464e30
HD
1247 goto out;
1248
8dd3557a 1249 err = try_to_merge_one_page(vma, page, kpage);
db114b83
HD
1250 if (err)
1251 goto out;
1252
bc56620b
HD
1253 /* Unstable nid is in union with stable anon_vma: remove first */
1254 remove_rmap_item_from_tree(rmap_item);
1255
db114b83 1256 /* Must get reference to anon_vma while still holding mmap_sem */
9e60109f
PZ
1257 rmap_item->anon_vma = vma->anon_vma;
1258 get_anon_vma(vma->anon_vma);
81464e30 1259out:
8dd3557a 1260 up_read(&mm->mmap_sem);
81464e30
HD
1261 return err;
1262}
1263
31dbd01f
IE
1264/*
1265 * try_to_merge_two_pages - take two identical pages and prepare them
1266 * to be merged into one page.
1267 *
8dd3557a
HD
1268 * This function returns the kpage if we successfully merged two identical
1269 * pages into one ksm page, NULL otherwise.
31dbd01f 1270 *
80e14822 1271 * Note that this function upgrades page to ksm page: if one of the pages
31dbd01f
IE
1272 * is already a ksm page, try_to_merge_with_ksm_page should be used.
1273 */
8dd3557a
HD
1274static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item,
1275 struct page *page,
1276 struct rmap_item *tree_rmap_item,
1277 struct page *tree_page)
31dbd01f 1278{
80e14822 1279 int err;
31dbd01f 1280
80e14822 1281 err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
31dbd01f 1282 if (!err) {
8dd3557a 1283 err = try_to_merge_with_ksm_page(tree_rmap_item,
80e14822 1284 tree_page, page);
31dbd01f 1285 /*
81464e30
HD
1286 * If that fails, we have a ksm page with only one pte
1287 * pointing to it: so break it.
31dbd01f 1288 */
4035c07a 1289 if (err)
8dd3557a 1290 break_cow(rmap_item);
31dbd01f 1291 }
80e14822 1292 return err ? NULL : page;
31dbd01f
IE
1293}
1294
2c653d0e
AA
1295static __always_inline
1296bool __is_page_sharing_candidate(struct stable_node *stable_node, int offset)
1297{
1298 VM_BUG_ON(stable_node->rmap_hlist_len < 0);
1299 /*
1300 * Check that at least one mapping still exists, otherwise
1301 * there's no much point to merge and share with this
1302 * stable_node, as the underlying tree_page of the other
1303 * sharer is going to be freed soon.
1304 */
1305 return stable_node->rmap_hlist_len &&
1306 stable_node->rmap_hlist_len + offset < ksm_max_page_sharing;
1307}
1308
1309static __always_inline
1310bool is_page_sharing_candidate(struct stable_node *stable_node)
1311{
1312 return __is_page_sharing_candidate(stable_node, 0);
1313}
1314
1315static struct stable_node *stable_node_dup(struct stable_node *stable_node,
1316 struct page **tree_page,
1317 struct rb_root *root,
1318 bool prune_stale_stable_nodes)
1319{
1320 struct stable_node *dup, *found = NULL;
1321 struct hlist_node *hlist_safe;
1322 struct page *_tree_page;
1323 int nr = 0;
1324 int found_rmap_hlist_len;
1325
1326 if (!prune_stale_stable_nodes ||
1327 time_before(jiffies, stable_node->chain_prune_time +
1328 msecs_to_jiffies(
1329 ksm_stable_node_chains_prune_millisecs)))
1330 prune_stale_stable_nodes = false;
1331 else
1332 stable_node->chain_prune_time = jiffies;
1333
1334 hlist_for_each_entry_safe(dup, hlist_safe,
1335 &stable_node->hlist, hlist_dup) {
1336 cond_resched();
1337 /*
1338 * We must walk all stable_node_dup to prune the stale
1339 * stable nodes during lookup.
1340 *
1341 * get_ksm_page can drop the nodes from the
1342 * stable_node->hlist if they point to freed pages
1343 * (that's why we do a _safe walk). The "dup"
1344 * stable_node parameter itself will be freed from
1345 * under us if it returns NULL.
1346 */
1347 _tree_page = get_ksm_page(dup, false);
1348 if (!_tree_page)
1349 continue;
1350 nr += 1;
1351 if (is_page_sharing_candidate(dup)) {
1352 if (!found ||
1353 dup->rmap_hlist_len > found_rmap_hlist_len) {
1354 if (found)
1355 put_page(*tree_page);
1356 found = dup;
1357 found_rmap_hlist_len = found->rmap_hlist_len;
1358 *tree_page = _tree_page;
1359
1360 if (!prune_stale_stable_nodes)
1361 break;
1362 /* skip put_page */
1363 continue;
1364 }
1365 }
1366 put_page(_tree_page);
1367 }
1368
1369 /*
1370 * nr is relevant only if prune_stale_stable_nodes is true,
1371 * otherwise we may break the loop at nr == 1 even if there
1372 * are multiple entries.
1373 */
1374 if (prune_stale_stable_nodes && found) {
1375 if (nr == 1) {
1376 /*
1377 * If there's not just one entry it would
1378 * corrupt memory, better BUG_ON. In KSM
1379 * context with no lock held it's not even
1380 * fatal.
1381 */
1382 BUG_ON(stable_node->hlist.first->next);
1383
1384 /*
1385 * There's just one entry and it is below the
1386 * deduplication limit so drop the chain.
1387 */
1388 rb_replace_node(&stable_node->node, &found->node,
1389 root);
1390 free_stable_node(stable_node);
1391 ksm_stable_node_chains--;
1392 ksm_stable_node_dups--;
1393 } else if (__is_page_sharing_candidate(found, 1)) {
1394 /*
1395 * Refile our candidate at the head
1396 * after the prune if our candidate
1397 * can accept one more future sharing
1398 * in addition to the one underway.
1399 */
1400 hlist_del(&found->hlist_dup);
1401 hlist_add_head(&found->hlist_dup,
1402 &stable_node->hlist);
1403 }
1404 }
1405
1406 return found;
1407}
1408
1409static struct stable_node *stable_node_dup_any(struct stable_node *stable_node,
1410 struct rb_root *root)
1411{
1412 if (!is_stable_node_chain(stable_node))
1413 return stable_node;
1414 if (hlist_empty(&stable_node->hlist)) {
1415 free_stable_node_chain(stable_node, root);
1416 return NULL;
1417 }
1418 return hlist_entry(stable_node->hlist.first,
1419 typeof(*stable_node), hlist_dup);
1420}
1421
1422static struct stable_node *__stable_node_chain(struct stable_node *stable_node,
1423 struct page **tree_page,
1424 struct rb_root *root,
1425 bool prune_stale_stable_nodes)
1426{
1427 if (!is_stable_node_chain(stable_node)) {
1428 if (is_page_sharing_candidate(stable_node)) {
1429 *tree_page = get_ksm_page(stable_node, false);
1430 return stable_node;
1431 }
1432 return NULL;
1433 }
1434 return stable_node_dup(stable_node, tree_page, root,
1435 prune_stale_stable_nodes);
1436}
1437
1438static __always_inline struct stable_node *chain_prune(struct stable_node *s_n,
1439 struct page **t_p,
1440 struct rb_root *root)
1441{
1442 return __stable_node_chain(s_n, t_p, root, true);
1443}
1444
1445static __always_inline struct stable_node *chain(struct stable_node *s_n,
1446 struct page **t_p,
1447 struct rb_root *root)
1448{
1449 return __stable_node_chain(s_n, t_p, root, false);
1450}
1451
31dbd01f 1452/*
8dd3557a 1453 * stable_tree_search - search for page inside the stable tree
31dbd01f
IE
1454 *
1455 * This function checks if there is a page inside the stable tree
1456 * with identical content to the page that we are scanning right now.
1457 *
7b6ba2c7 1458 * This function returns the stable tree node of identical content if found,
31dbd01f
IE
1459 * NULL otherwise.
1460 */
62b61f61 1461static struct page *stable_tree_search(struct page *page)
31dbd01f 1462{
90bd6fd3 1463 int nid;
ef53d16c 1464 struct rb_root *root;
4146d2d6
HD
1465 struct rb_node **new;
1466 struct rb_node *parent;
2c653d0e 1467 struct stable_node *stable_node, *stable_node_dup, *stable_node_any;
4146d2d6 1468 struct stable_node *page_node;
31dbd01f 1469
4146d2d6
HD
1470 page_node = page_stable_node(page);
1471 if (page_node && page_node->head != &migrate_nodes) {
1472 /* ksm page forked */
08beca44 1473 get_page(page);
62b61f61 1474 return page;
08beca44
HD
1475 }
1476
90bd6fd3 1477 nid = get_kpfn_nid(page_to_pfn(page));
ef53d16c 1478 root = root_stable_tree + nid;
4146d2d6 1479again:
ef53d16c 1480 new = &root->rb_node;
4146d2d6 1481 parent = NULL;
90bd6fd3 1482
4146d2d6 1483 while (*new) {
4035c07a 1484 struct page *tree_page;
31dbd01f
IE
1485 int ret;
1486
08beca44 1487 cond_resched();
4146d2d6 1488 stable_node = rb_entry(*new, struct stable_node, node);
2c653d0e
AA
1489 stable_node_any = NULL;
1490 stable_node_dup = chain_prune(stable_node, &tree_page, root);
1491 if (!stable_node_dup) {
1492 /*
1493 * Either all stable_node dups were full in
1494 * this stable_node chain, or this chain was
1495 * empty and should be rb_erased.
1496 */
1497 stable_node_any = stable_node_dup_any(stable_node,
1498 root);
1499 if (!stable_node_any) {
1500 /* rb_erase just run */
1501 goto again;
1502 }
1503 /*
1504 * Take any of the stable_node dups page of
1505 * this stable_node chain to let the tree walk
1506 * continue. All KSM pages belonging to the
1507 * stable_node dups in a stable_node chain
1508 * have the same content and they're
1509 * wrprotected at all times. Any will work
1510 * fine to continue the walk.
1511 */
1512 tree_page = get_ksm_page(stable_node_any, false);
1513 }
1514 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
f2e5ff85
AA
1515 if (!tree_page) {
1516 /*
1517 * If we walked over a stale stable_node,
1518 * get_ksm_page() will call rb_erase() and it
1519 * may rebalance the tree from under us. So
1520 * restart the search from scratch. Returning
1521 * NULL would be safe too, but we'd generate
1522 * false negative insertions just because some
1523 * stable_node was stale.
1524 */
1525 goto again;
1526 }
31dbd01f 1527
4035c07a 1528 ret = memcmp_pages(page, tree_page);
c8d6553b 1529 put_page(tree_page);
31dbd01f 1530
4146d2d6 1531 parent = *new;
c8d6553b 1532 if (ret < 0)
4146d2d6 1533 new = &parent->rb_left;
c8d6553b 1534 else if (ret > 0)
4146d2d6 1535 new = &parent->rb_right;
c8d6553b 1536 else {
2c653d0e
AA
1537 if (page_node) {
1538 VM_BUG_ON(page_node->head != &migrate_nodes);
1539 /*
1540 * Test if the migrated page should be merged
1541 * into a stable node dup. If the mapcount is
1542 * 1 we can migrate it with another KSM page
1543 * without adding it to the chain.
1544 */
1545 if (page_mapcount(page) > 1)
1546 goto chain_append;
1547 }
1548
1549 if (!stable_node_dup) {
1550 /*
1551 * If the stable_node is a chain and
1552 * we got a payload match in memcmp
1553 * but we cannot merge the scanned
1554 * page in any of the existing
1555 * stable_node dups because they're
1556 * all full, we need to wait the
1557 * scanned page to find itself a match
1558 * in the unstable tree to create a
1559 * brand new KSM page to add later to
1560 * the dups of this stable_node.
1561 */
1562 return NULL;
1563 }
1564
c8d6553b
HD
1565 /*
1566 * Lock and unlock the stable_node's page (which
1567 * might already have been migrated) so that page
1568 * migration is sure to notice its raised count.
1569 * It would be more elegant to return stable_node
1570 * than kpage, but that involves more changes.
1571 */
2c653d0e
AA
1572 tree_page = get_ksm_page(stable_node_dup, true);
1573 if (unlikely(!tree_page))
1574 /*
1575 * The tree may have been rebalanced,
1576 * so re-evaluate parent and new.
1577 */
4146d2d6 1578 goto again;
2c653d0e
AA
1579 unlock_page(tree_page);
1580
1581 if (get_kpfn_nid(stable_node_dup->kpfn) !=
1582 NUMA(stable_node_dup->nid)) {
1583 put_page(tree_page);
1584 goto replace;
1585 }
1586 return tree_page;
c8d6553b 1587 }
31dbd01f
IE
1588 }
1589
4146d2d6
HD
1590 if (!page_node)
1591 return NULL;
1592
1593 list_del(&page_node->list);
1594 DO_NUMA(page_node->nid = nid);
1595 rb_link_node(&page_node->node, parent, new);
ef53d16c 1596 rb_insert_color(&page_node->node, root);
2c653d0e
AA
1597out:
1598 if (is_page_sharing_candidate(page_node)) {
1599 get_page(page);
1600 return page;
1601 } else
1602 return NULL;
4146d2d6
HD
1603
1604replace:
2c653d0e
AA
1605 if (stable_node_dup == stable_node) {
1606 /* there is no chain */
1607 if (page_node) {
1608 VM_BUG_ON(page_node->head != &migrate_nodes);
1609 list_del(&page_node->list);
1610 DO_NUMA(page_node->nid = nid);
1611 rb_replace_node(&stable_node->node, &page_node->node,
1612 root);
1613 if (is_page_sharing_candidate(page_node))
1614 get_page(page);
1615 else
1616 page = NULL;
1617 } else {
1618 rb_erase(&stable_node->node, root);
1619 page = NULL;
1620 }
4146d2d6 1621 } else {
2c653d0e
AA
1622 VM_BUG_ON(!is_stable_node_chain(stable_node));
1623 __stable_node_dup_del(stable_node_dup);
1624 if (page_node) {
1625 VM_BUG_ON(page_node->head != &migrate_nodes);
1626 list_del(&page_node->list);
1627 DO_NUMA(page_node->nid = nid);
1628 stable_node_chain_add_dup(page_node, stable_node);
1629 if (is_page_sharing_candidate(page_node))
1630 get_page(page);
1631 else
1632 page = NULL;
1633 } else {
1634 page = NULL;
1635 }
4146d2d6 1636 }
2c653d0e
AA
1637 stable_node_dup->head = &migrate_nodes;
1638 list_add(&stable_node_dup->list, stable_node_dup->head);
4146d2d6 1639 return page;
2c653d0e
AA
1640
1641chain_append:
1642 /* stable_node_dup could be null if it reached the limit */
1643 if (!stable_node_dup)
1644 stable_node_dup = stable_node_any;
1645 if (stable_node_dup == stable_node) {
1646 /* chain is missing so create it */
1647 stable_node = alloc_stable_node_chain(stable_node_dup,
1648 root);
1649 if (!stable_node)
1650 return NULL;
1651 }
1652 /*
1653 * Add this stable_node dup that was
1654 * migrated to the stable_node chain
1655 * of the current nid for this page
1656 * content.
1657 */
1658 VM_BUG_ON(page_node->head != &migrate_nodes);
1659 list_del(&page_node->list);
1660 DO_NUMA(page_node->nid = nid);
1661 stable_node_chain_add_dup(page_node, stable_node);
1662 goto out;
31dbd01f
IE
1663}
1664
1665/*
e850dcf5 1666 * stable_tree_insert - insert stable tree node pointing to new ksm page
31dbd01f
IE
1667 * into the stable tree.
1668 *
7b6ba2c7
HD
1669 * This function returns the stable tree node just allocated on success,
1670 * NULL otherwise.
31dbd01f 1671 */
7b6ba2c7 1672static struct stable_node *stable_tree_insert(struct page *kpage)
31dbd01f 1673{
90bd6fd3
PH
1674 int nid;
1675 unsigned long kpfn;
ef53d16c 1676 struct rb_root *root;
90bd6fd3 1677 struct rb_node **new;
f2e5ff85 1678 struct rb_node *parent;
2c653d0e
AA
1679 struct stable_node *stable_node, *stable_node_dup, *stable_node_any;
1680 bool need_chain = false;
31dbd01f 1681
90bd6fd3
PH
1682 kpfn = page_to_pfn(kpage);
1683 nid = get_kpfn_nid(kpfn);
ef53d16c 1684 root = root_stable_tree + nid;
f2e5ff85
AA
1685again:
1686 parent = NULL;
ef53d16c 1687 new = &root->rb_node;
90bd6fd3 1688
31dbd01f 1689 while (*new) {
4035c07a 1690 struct page *tree_page;
31dbd01f
IE
1691 int ret;
1692
08beca44 1693 cond_resched();
7b6ba2c7 1694 stable_node = rb_entry(*new, struct stable_node, node);
2c653d0e
AA
1695 stable_node_any = NULL;
1696 stable_node_dup = chain(stable_node, &tree_page, root);
1697 if (!stable_node_dup) {
1698 /*
1699 * Either all stable_node dups were full in
1700 * this stable_node chain, or this chain was
1701 * empty and should be rb_erased.
1702 */
1703 stable_node_any = stable_node_dup_any(stable_node,
1704 root);
1705 if (!stable_node_any) {
1706 /* rb_erase just run */
1707 goto again;
1708 }
1709 /*
1710 * Take any of the stable_node dups page of
1711 * this stable_node chain to let the tree walk
1712 * continue. All KSM pages belonging to the
1713 * stable_node dups in a stable_node chain
1714 * have the same content and they're
1715 * wrprotected at all times. Any will work
1716 * fine to continue the walk.
1717 */
1718 tree_page = get_ksm_page(stable_node_any, false);
1719 }
1720 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
f2e5ff85
AA
1721 if (!tree_page) {
1722 /*
1723 * If we walked over a stale stable_node,
1724 * get_ksm_page() will call rb_erase() and it
1725 * may rebalance the tree from under us. So
1726 * restart the search from scratch. Returning
1727 * NULL would be safe too, but we'd generate
1728 * false negative insertions just because some
1729 * stable_node was stale.
1730 */
1731 goto again;
1732 }
31dbd01f 1733
4035c07a
HD
1734 ret = memcmp_pages(kpage, tree_page);
1735 put_page(tree_page);
31dbd01f
IE
1736
1737 parent = *new;
1738 if (ret < 0)
1739 new = &parent->rb_left;
1740 else if (ret > 0)
1741 new = &parent->rb_right;
1742 else {
2c653d0e
AA
1743 need_chain = true;
1744 break;
31dbd01f
IE
1745 }
1746 }
1747
2c653d0e
AA
1748 stable_node_dup = alloc_stable_node();
1749 if (!stable_node_dup)
7b6ba2c7 1750 return NULL;
31dbd01f 1751
2c653d0e
AA
1752 INIT_HLIST_HEAD(&stable_node_dup->hlist);
1753 stable_node_dup->kpfn = kpfn;
1754 set_page_stable_node(kpage, stable_node_dup);
1755 stable_node_dup->rmap_hlist_len = 0;
1756 DO_NUMA(stable_node_dup->nid = nid);
1757 if (!need_chain) {
1758 rb_link_node(&stable_node_dup->node, parent, new);
1759 rb_insert_color(&stable_node_dup->node, root);
1760 } else {
1761 if (!is_stable_node_chain(stable_node)) {
1762 struct stable_node *orig = stable_node;
1763 /* chain is missing so create it */
1764 stable_node = alloc_stable_node_chain(orig, root);
1765 if (!stable_node) {
1766 free_stable_node(stable_node_dup);
1767 return NULL;
1768 }
1769 }
1770 stable_node_chain_add_dup(stable_node_dup, stable_node);
1771 }
08beca44 1772
2c653d0e 1773 return stable_node_dup;
31dbd01f
IE
1774}
1775
1776/*
8dd3557a
HD
1777 * unstable_tree_search_insert - search for identical page,
1778 * else insert rmap_item into the unstable tree.
31dbd01f
IE
1779 *
1780 * This function searches for a page in the unstable tree identical to the
1781 * page currently being scanned; and if no identical page is found in the
1782 * tree, we insert rmap_item as a new object into the unstable tree.
1783 *
1784 * This function returns pointer to rmap_item found to be identical
1785 * to the currently scanned page, NULL otherwise.
1786 *
1787 * This function does both searching and inserting, because they share
1788 * the same walking algorithm in an rbtree.
1789 */
8dd3557a
HD
1790static
1791struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item,
1792 struct page *page,
1793 struct page **tree_pagep)
31dbd01f 1794{
90bd6fd3
PH
1795 struct rb_node **new;
1796 struct rb_root *root;
31dbd01f 1797 struct rb_node *parent = NULL;
90bd6fd3
PH
1798 int nid;
1799
1800 nid = get_kpfn_nid(page_to_pfn(page));
ef53d16c 1801 root = root_unstable_tree + nid;
90bd6fd3 1802 new = &root->rb_node;
31dbd01f
IE
1803
1804 while (*new) {
1805 struct rmap_item *tree_rmap_item;
8dd3557a 1806 struct page *tree_page;
31dbd01f
IE
1807 int ret;
1808
d178f27f 1809 cond_resched();
31dbd01f 1810 tree_rmap_item = rb_entry(*new, struct rmap_item, node);
8dd3557a 1811 tree_page = get_mergeable_page(tree_rmap_item);
c8f95ed1 1812 if (!tree_page)
31dbd01f
IE
1813 return NULL;
1814
1815 /*
8dd3557a 1816 * Don't substitute a ksm page for a forked page.
31dbd01f 1817 */
8dd3557a
HD
1818 if (page == tree_page) {
1819 put_page(tree_page);
31dbd01f
IE
1820 return NULL;
1821 }
1822
8dd3557a 1823 ret = memcmp_pages(page, tree_page);
31dbd01f
IE
1824
1825 parent = *new;
1826 if (ret < 0) {
8dd3557a 1827 put_page(tree_page);
31dbd01f
IE
1828 new = &parent->rb_left;
1829 } else if (ret > 0) {
8dd3557a 1830 put_page(tree_page);
31dbd01f 1831 new = &parent->rb_right;
b599cbdf
HD
1832 } else if (!ksm_merge_across_nodes &&
1833 page_to_nid(tree_page) != nid) {
1834 /*
1835 * If tree_page has been migrated to another NUMA node,
1836 * it will be flushed out and put in the right unstable
1837 * tree next time: only merge with it when across_nodes.
1838 */
1839 put_page(tree_page);
1840 return NULL;
31dbd01f 1841 } else {
8dd3557a 1842 *tree_pagep = tree_page;
31dbd01f
IE
1843 return tree_rmap_item;
1844 }
1845 }
1846
7b6ba2c7 1847 rmap_item->address |= UNSTABLE_FLAG;
31dbd01f 1848 rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
e850dcf5 1849 DO_NUMA(rmap_item->nid = nid);
31dbd01f 1850 rb_link_node(&rmap_item->node, parent, new);
90bd6fd3 1851 rb_insert_color(&rmap_item->node, root);
31dbd01f 1852
473b0ce4 1853 ksm_pages_unshared++;
31dbd01f
IE
1854 return NULL;
1855}
1856
1857/*
1858 * stable_tree_append - add another rmap_item to the linked list of
1859 * rmap_items hanging off a given node of the stable tree, all sharing
1860 * the same ksm page.
1861 */
1862static void stable_tree_append(struct rmap_item *rmap_item,
2c653d0e
AA
1863 struct stable_node *stable_node,
1864 bool max_page_sharing_bypass)
31dbd01f 1865{
2c653d0e
AA
1866 /*
1867 * rmap won't find this mapping if we don't insert the
1868 * rmap_item in the right stable_node
1869 * duplicate. page_migration could break later if rmap breaks,
1870 * so we can as well crash here. We really need to check for
1871 * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check
1872 * for other negative values as an undeflow if detected here
1873 * for the first time (and not when decreasing rmap_hlist_len)
1874 * would be sign of memory corruption in the stable_node.
1875 */
1876 BUG_ON(stable_node->rmap_hlist_len < 0);
1877
1878 stable_node->rmap_hlist_len++;
1879 if (!max_page_sharing_bypass)
1880 /* possibly non fatal but unexpected overflow, only warn */
1881 WARN_ON_ONCE(stable_node->rmap_hlist_len >
1882 ksm_max_page_sharing);
1883
7b6ba2c7 1884 rmap_item->head = stable_node;
31dbd01f 1885 rmap_item->address |= STABLE_FLAG;
7b6ba2c7 1886 hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
e178dfde 1887
7b6ba2c7
HD
1888 if (rmap_item->hlist.next)
1889 ksm_pages_sharing++;
1890 else
1891 ksm_pages_shared++;
31dbd01f
IE
1892}
1893
1894/*
81464e30
HD
1895 * cmp_and_merge_page - first see if page can be merged into the stable tree;
1896 * if not, compare checksum to previous and if it's the same, see if page can
1897 * be inserted into the unstable tree, or merged with a page already there and
1898 * both transferred to the stable tree.
31dbd01f
IE
1899 *
1900 * @page: the page that we are searching identical page to.
1901 * @rmap_item: the reverse mapping into the virtual address of this page
1902 */
1903static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
1904{
31dbd01f 1905 struct rmap_item *tree_rmap_item;
8dd3557a 1906 struct page *tree_page = NULL;
7b6ba2c7 1907 struct stable_node *stable_node;
8dd3557a 1908 struct page *kpage;
31dbd01f
IE
1909 unsigned int checksum;
1910 int err;
2c653d0e 1911 bool max_page_sharing_bypass = false;
31dbd01f 1912
4146d2d6
HD
1913 stable_node = page_stable_node(page);
1914 if (stable_node) {
1915 if (stable_node->head != &migrate_nodes &&
2c653d0e
AA
1916 get_kpfn_nid(READ_ONCE(stable_node->kpfn)) !=
1917 NUMA(stable_node->nid)) {
1918 stable_node_dup_del(stable_node);
4146d2d6
HD
1919 stable_node->head = &migrate_nodes;
1920 list_add(&stable_node->list, stable_node->head);
1921 }
1922 if (stable_node->head != &migrate_nodes &&
1923 rmap_item->head == stable_node)
1924 return;
2c653d0e
AA
1925 /*
1926 * If it's a KSM fork, allow it to go over the sharing limit
1927 * without warnings.
1928 */
1929 if (!is_page_sharing_candidate(stable_node))
1930 max_page_sharing_bypass = true;
4146d2d6 1931 }
31dbd01f
IE
1932
1933 /* We first start with searching the page inside the stable tree */
62b61f61 1934 kpage = stable_tree_search(page);
4146d2d6
HD
1935 if (kpage == page && rmap_item->head == stable_node) {
1936 put_page(kpage);
1937 return;
1938 }
1939
1940 remove_rmap_item_from_tree(rmap_item);
1941
62b61f61 1942 if (kpage) {
08beca44 1943 err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
31dbd01f
IE
1944 if (!err) {
1945 /*
1946 * The page was successfully merged:
1947 * add its rmap_item to the stable tree.
1948 */
5ad64688 1949 lock_page(kpage);
2c653d0e
AA
1950 stable_tree_append(rmap_item, page_stable_node(kpage),
1951 max_page_sharing_bypass);
5ad64688 1952 unlock_page(kpage);
31dbd01f 1953 }
8dd3557a 1954 put_page(kpage);
31dbd01f
IE
1955 return;
1956 }
1957
1958 /*
4035c07a
HD
1959 * If the hash value of the page has changed from the last time
1960 * we calculated it, this page is changing frequently: therefore we
1961 * don't want to insert it in the unstable tree, and we don't want
1962 * to waste our time searching for something identical to it there.
31dbd01f
IE
1963 */
1964 checksum = calc_checksum(page);
1965 if (rmap_item->oldchecksum != checksum) {
1966 rmap_item->oldchecksum = checksum;
1967 return;
1968 }
1969
e86c59b1
CI
1970 /*
1971 * Same checksum as an empty page. We attempt to merge it with the
1972 * appropriate zero page if the user enabled this via sysfs.
1973 */
1974 if (ksm_use_zero_pages && (checksum == zero_checksum)) {
1975 struct vm_area_struct *vma;
1976
1977 vma = find_mergeable_vma(rmap_item->mm, rmap_item->address);
1978 err = try_to_merge_one_page(vma, page,
1979 ZERO_PAGE(rmap_item->address));
1980 /*
1981 * In case of failure, the page was not really empty, so we
1982 * need to continue. Otherwise we're done.
1983 */
1984 if (!err)
1985 return;
1986 }
8dd3557a
HD
1987 tree_rmap_item =
1988 unstable_tree_search_insert(rmap_item, page, &tree_page);
31dbd01f 1989 if (tree_rmap_item) {
8dd3557a
HD
1990 kpage = try_to_merge_two_pages(rmap_item, page,
1991 tree_rmap_item, tree_page);
1992 put_page(tree_page);
8dd3557a 1993 if (kpage) {
bc56620b
HD
1994 /*
1995 * The pages were successfully merged: insert new
1996 * node in the stable tree and add both rmap_items.
1997 */
5ad64688 1998 lock_page(kpage);
7b6ba2c7
HD
1999 stable_node = stable_tree_insert(kpage);
2000 if (stable_node) {
2c653d0e
AA
2001 stable_tree_append(tree_rmap_item, stable_node,
2002 false);
2003 stable_tree_append(rmap_item, stable_node,
2004 false);
7b6ba2c7 2005 }
5ad64688 2006 unlock_page(kpage);
7b6ba2c7 2007
31dbd01f
IE
2008 /*
2009 * If we fail to insert the page into the stable tree,
2010 * we will have 2 virtual addresses that are pointing
2011 * to a ksm page left outside the stable tree,
2012 * in which case we need to break_cow on both.
2013 */
7b6ba2c7 2014 if (!stable_node) {
8dd3557a
HD
2015 break_cow(tree_rmap_item);
2016 break_cow(rmap_item);
31dbd01f
IE
2017 }
2018 }
31dbd01f
IE
2019 }
2020}
2021
2022static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
6514d511 2023 struct rmap_item **rmap_list,
31dbd01f
IE
2024 unsigned long addr)
2025{
2026 struct rmap_item *rmap_item;
2027
6514d511
HD
2028 while (*rmap_list) {
2029 rmap_item = *rmap_list;
93d17715 2030 if ((rmap_item->address & PAGE_MASK) == addr)
31dbd01f 2031 return rmap_item;
31dbd01f
IE
2032 if (rmap_item->address > addr)
2033 break;
6514d511 2034 *rmap_list = rmap_item->rmap_list;
31dbd01f 2035 remove_rmap_item_from_tree(rmap_item);
31dbd01f
IE
2036 free_rmap_item(rmap_item);
2037 }
2038
2039 rmap_item = alloc_rmap_item();
2040 if (rmap_item) {
2041 /* It has already been zeroed */
2042 rmap_item->mm = mm_slot->mm;
2043 rmap_item->address = addr;
6514d511
HD
2044 rmap_item->rmap_list = *rmap_list;
2045 *rmap_list = rmap_item;
31dbd01f
IE
2046 }
2047 return rmap_item;
2048}
2049
2050static struct rmap_item *scan_get_next_rmap_item(struct page **page)
2051{
2052 struct mm_struct *mm;
2053 struct mm_slot *slot;
2054 struct vm_area_struct *vma;
2055 struct rmap_item *rmap_item;
90bd6fd3 2056 int nid;
31dbd01f
IE
2057
2058 if (list_empty(&ksm_mm_head.mm_list))
2059 return NULL;
2060
2061 slot = ksm_scan.mm_slot;
2062 if (slot == &ksm_mm_head) {
2919bfd0
HD
2063 /*
2064 * A number of pages can hang around indefinitely on per-cpu
2065 * pagevecs, raised page count preventing write_protect_page
2066 * from merging them. Though it doesn't really matter much,
2067 * it is puzzling to see some stuck in pages_volatile until
2068 * other activity jostles them out, and they also prevented
2069 * LTP's KSM test from succeeding deterministically; so drain
2070 * them here (here rather than on entry to ksm_do_scan(),
2071 * so we don't IPI too often when pages_to_scan is set low).
2072 */
2073 lru_add_drain_all();
2074
4146d2d6
HD
2075 /*
2076 * Whereas stale stable_nodes on the stable_tree itself
2077 * get pruned in the regular course of stable_tree_search(),
2078 * those moved out to the migrate_nodes list can accumulate:
2079 * so prune them once before each full scan.
2080 */
2081 if (!ksm_merge_across_nodes) {
03640418 2082 struct stable_node *stable_node, *next;
4146d2d6
HD
2083 struct page *page;
2084
03640418
GT
2085 list_for_each_entry_safe(stable_node, next,
2086 &migrate_nodes, list) {
4146d2d6
HD
2087 page = get_ksm_page(stable_node, false);
2088 if (page)
2089 put_page(page);
2090 cond_resched();
2091 }
2092 }
2093
ef53d16c 2094 for (nid = 0; nid < ksm_nr_node_ids; nid++)
90bd6fd3 2095 root_unstable_tree[nid] = RB_ROOT;
31dbd01f
IE
2096
2097 spin_lock(&ksm_mmlist_lock);
2098 slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
2099 ksm_scan.mm_slot = slot;
2100 spin_unlock(&ksm_mmlist_lock);
2b472611
HD
2101 /*
2102 * Although we tested list_empty() above, a racing __ksm_exit
2103 * of the last mm on the list may have removed it since then.
2104 */
2105 if (slot == &ksm_mm_head)
2106 return NULL;
31dbd01f
IE
2107next_mm:
2108 ksm_scan.address = 0;
6514d511 2109 ksm_scan.rmap_list = &slot->rmap_list;
31dbd01f
IE
2110 }
2111
2112 mm = slot->mm;
2113 down_read(&mm->mmap_sem);
9ba69294
HD
2114 if (ksm_test_exit(mm))
2115 vma = NULL;
2116 else
2117 vma = find_vma(mm, ksm_scan.address);
2118
2119 for (; vma; vma = vma->vm_next) {
31dbd01f
IE
2120 if (!(vma->vm_flags & VM_MERGEABLE))
2121 continue;
2122 if (ksm_scan.address < vma->vm_start)
2123 ksm_scan.address = vma->vm_start;
2124 if (!vma->anon_vma)
2125 ksm_scan.address = vma->vm_end;
2126
2127 while (ksm_scan.address < vma->vm_end) {
9ba69294
HD
2128 if (ksm_test_exit(mm))
2129 break;
31dbd01f 2130 *page = follow_page(vma, ksm_scan.address, FOLL_GET);
21ae5b01
AA
2131 if (IS_ERR_OR_NULL(*page)) {
2132 ksm_scan.address += PAGE_SIZE;
2133 cond_resched();
2134 continue;
2135 }
f765f540 2136 if (PageAnon(*page)) {
31dbd01f
IE
2137 flush_anon_page(vma, *page, ksm_scan.address);
2138 flush_dcache_page(*page);
2139 rmap_item = get_next_rmap_item(slot,
6514d511 2140 ksm_scan.rmap_list, ksm_scan.address);
31dbd01f 2141 if (rmap_item) {
6514d511
HD
2142 ksm_scan.rmap_list =
2143 &rmap_item->rmap_list;
31dbd01f
IE
2144 ksm_scan.address += PAGE_SIZE;
2145 } else
2146 put_page(*page);
2147 up_read(&mm->mmap_sem);
2148 return rmap_item;
2149 }
21ae5b01 2150 put_page(*page);
31dbd01f
IE
2151 ksm_scan.address += PAGE_SIZE;
2152 cond_resched();
2153 }
2154 }
2155
9ba69294
HD
2156 if (ksm_test_exit(mm)) {
2157 ksm_scan.address = 0;
6514d511 2158 ksm_scan.rmap_list = &slot->rmap_list;
9ba69294 2159 }
31dbd01f
IE
2160 /*
2161 * Nuke all the rmap_items that are above this current rmap:
2162 * because there were no VM_MERGEABLE vmas with such addresses.
2163 */
6514d511 2164 remove_trailing_rmap_items(slot, ksm_scan.rmap_list);
31dbd01f
IE
2165
2166 spin_lock(&ksm_mmlist_lock);
cd551f97
HD
2167 ksm_scan.mm_slot = list_entry(slot->mm_list.next,
2168 struct mm_slot, mm_list);
2169 if (ksm_scan.address == 0) {
2170 /*
2171 * We've completed a full scan of all vmas, holding mmap_sem
2172 * throughout, and found no VM_MERGEABLE: so do the same as
2173 * __ksm_exit does to remove this mm from all our lists now.
9ba69294
HD
2174 * This applies either when cleaning up after __ksm_exit
2175 * (but beware: we can reach here even before __ksm_exit),
2176 * or when all VM_MERGEABLE areas have been unmapped (and
2177 * mmap_sem then protects against race with MADV_MERGEABLE).
cd551f97 2178 */
4ca3a69b 2179 hash_del(&slot->link);
cd551f97 2180 list_del(&slot->mm_list);
9ba69294
HD
2181 spin_unlock(&ksm_mmlist_lock);
2182
cd551f97
HD
2183 free_mm_slot(slot);
2184 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
9ba69294
HD
2185 up_read(&mm->mmap_sem);
2186 mmdrop(mm);
2187 } else {
9ba69294 2188 up_read(&mm->mmap_sem);
7496fea9
ZC
2189 /*
2190 * up_read(&mm->mmap_sem) first because after
2191 * spin_unlock(&ksm_mmlist_lock) run, the "mm" may
2192 * already have been freed under us by __ksm_exit()
2193 * because the "mm_slot" is still hashed and
2194 * ksm_scan.mm_slot doesn't point to it anymore.
2195 */
2196 spin_unlock(&ksm_mmlist_lock);
cd551f97 2197 }
31dbd01f
IE
2198
2199 /* Repeat until we've completed scanning the whole list */
cd551f97 2200 slot = ksm_scan.mm_slot;
31dbd01f
IE
2201 if (slot != &ksm_mm_head)
2202 goto next_mm;
2203
31dbd01f
IE
2204 ksm_scan.seqnr++;
2205 return NULL;
2206}
2207
2208/**
2209 * ksm_do_scan - the ksm scanner main worker function.
2210 * @scan_npages - number of pages we want to scan before we return.
2211 */
2212static void ksm_do_scan(unsigned int scan_npages)
2213{
2214 struct rmap_item *rmap_item;
22eccdd7 2215 struct page *uninitialized_var(page);
31dbd01f 2216
878aee7d 2217 while (scan_npages-- && likely(!freezing(current))) {
31dbd01f
IE
2218 cond_resched();
2219 rmap_item = scan_get_next_rmap_item(&page);
2220 if (!rmap_item)
2221 return;
4146d2d6 2222 cmp_and_merge_page(page, rmap_item);
31dbd01f
IE
2223 put_page(page);
2224 }
2225}
2226
6e158384
HD
2227static int ksmd_should_run(void)
2228{
2229 return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
2230}
2231
31dbd01f
IE
2232static int ksm_scan_thread(void *nothing)
2233{
878aee7d 2234 set_freezable();
339aa624 2235 set_user_nice(current, 5);
31dbd01f
IE
2236
2237 while (!kthread_should_stop()) {
6e158384 2238 mutex_lock(&ksm_thread_mutex);
ef4d43a8 2239 wait_while_offlining();
6e158384 2240 if (ksmd_should_run())
31dbd01f 2241 ksm_do_scan(ksm_thread_pages_to_scan);
6e158384
HD
2242 mutex_unlock(&ksm_thread_mutex);
2243
878aee7d
AA
2244 try_to_freeze();
2245
6e158384 2246 if (ksmd_should_run()) {
31dbd01f
IE
2247 schedule_timeout_interruptible(
2248 msecs_to_jiffies(ksm_thread_sleep_millisecs));
2249 } else {
878aee7d 2250 wait_event_freezable(ksm_thread_wait,
6e158384 2251 ksmd_should_run() || kthread_should_stop());
31dbd01f
IE
2252 }
2253 }
2254 return 0;
2255}
2256
f8af4da3
HD
2257int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
2258 unsigned long end, int advice, unsigned long *vm_flags)
2259{
2260 struct mm_struct *mm = vma->vm_mm;
d952b791 2261 int err;
f8af4da3
HD
2262
2263 switch (advice) {
2264 case MADV_MERGEABLE:
2265 /*
2266 * Be somewhat over-protective for now!
2267 */
2268 if (*vm_flags & (VM_MERGEABLE | VM_SHARED | VM_MAYSHARE |
2269 VM_PFNMAP | VM_IO | VM_DONTEXPAND |
0661a336 2270 VM_HUGETLB | VM_MIXEDMAP))
f8af4da3
HD
2271 return 0; /* just ignore the advice */
2272
cc2383ec
KK
2273#ifdef VM_SAO
2274 if (*vm_flags & VM_SAO)
2275 return 0;
2276#endif
2277
d952b791
HD
2278 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2279 err = __ksm_enter(mm);
2280 if (err)
2281 return err;
2282 }
f8af4da3
HD
2283
2284 *vm_flags |= VM_MERGEABLE;
2285 break;
2286
2287 case MADV_UNMERGEABLE:
2288 if (!(*vm_flags & VM_MERGEABLE))
2289 return 0; /* just ignore the advice */
2290
d952b791
HD
2291 if (vma->anon_vma) {
2292 err = unmerge_ksm_pages(vma, start, end);
2293 if (err)
2294 return err;
2295 }
f8af4da3
HD
2296
2297 *vm_flags &= ~VM_MERGEABLE;
2298 break;
2299 }
2300
2301 return 0;
2302}
2303
2304int __ksm_enter(struct mm_struct *mm)
2305{
6e158384
HD
2306 struct mm_slot *mm_slot;
2307 int needs_wakeup;
2308
2309 mm_slot = alloc_mm_slot();
31dbd01f
IE
2310 if (!mm_slot)
2311 return -ENOMEM;
2312
6e158384
HD
2313 /* Check ksm_run too? Would need tighter locking */
2314 needs_wakeup = list_empty(&ksm_mm_head.mm_list);
2315
31dbd01f
IE
2316 spin_lock(&ksm_mmlist_lock);
2317 insert_to_mm_slots_hash(mm, mm_slot);
2318 /*
cbf86cfe
HD
2319 * When KSM_RUN_MERGE (or KSM_RUN_STOP),
2320 * insert just behind the scanning cursor, to let the area settle
31dbd01f
IE
2321 * down a little; when fork is followed by immediate exec, we don't
2322 * want ksmd to waste time setting up and tearing down an rmap_list.
cbf86cfe
HD
2323 *
2324 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
2325 * scanning cursor, otherwise KSM pages in newly forked mms will be
2326 * missed: then we might as well insert at the end of the list.
31dbd01f 2327 */
cbf86cfe
HD
2328 if (ksm_run & KSM_RUN_UNMERGE)
2329 list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list);
2330 else
2331 list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
31dbd01f
IE
2332 spin_unlock(&ksm_mmlist_lock);
2333
f8af4da3 2334 set_bit(MMF_VM_MERGEABLE, &mm->flags);
f1f10076 2335 mmgrab(mm);
6e158384
HD
2336
2337 if (needs_wakeup)
2338 wake_up_interruptible(&ksm_thread_wait);
2339
f8af4da3
HD
2340 return 0;
2341}
2342
1c2fb7a4 2343void __ksm_exit(struct mm_struct *mm)
f8af4da3 2344{
cd551f97 2345 struct mm_slot *mm_slot;
9ba69294 2346 int easy_to_free = 0;
cd551f97 2347
31dbd01f 2348 /*
9ba69294
HD
2349 * This process is exiting: if it's straightforward (as is the
2350 * case when ksmd was never running), free mm_slot immediately.
2351 * But if it's at the cursor or has rmap_items linked to it, use
2352 * mmap_sem to synchronize with any break_cows before pagetables
2353 * are freed, and leave the mm_slot on the list for ksmd to free.
2354 * Beware: ksm may already have noticed it exiting and freed the slot.
31dbd01f 2355 */
9ba69294 2356
cd551f97
HD
2357 spin_lock(&ksm_mmlist_lock);
2358 mm_slot = get_mm_slot(mm);
9ba69294 2359 if (mm_slot && ksm_scan.mm_slot != mm_slot) {
6514d511 2360 if (!mm_slot->rmap_list) {
4ca3a69b 2361 hash_del(&mm_slot->link);
9ba69294
HD
2362 list_del(&mm_slot->mm_list);
2363 easy_to_free = 1;
2364 } else {
2365 list_move(&mm_slot->mm_list,
2366 &ksm_scan.mm_slot->mm_list);
2367 }
cd551f97 2368 }
cd551f97
HD
2369 spin_unlock(&ksm_mmlist_lock);
2370
9ba69294
HD
2371 if (easy_to_free) {
2372 free_mm_slot(mm_slot);
2373 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2374 mmdrop(mm);
2375 } else if (mm_slot) {
9ba69294
HD
2376 down_write(&mm->mmap_sem);
2377 up_write(&mm->mmap_sem);
9ba69294 2378 }
31dbd01f
IE
2379}
2380
cbf86cfe 2381struct page *ksm_might_need_to_copy(struct page *page,
5ad64688
HD
2382 struct vm_area_struct *vma, unsigned long address)
2383{
cbf86cfe 2384 struct anon_vma *anon_vma = page_anon_vma(page);
5ad64688
HD
2385 struct page *new_page;
2386
cbf86cfe
HD
2387 if (PageKsm(page)) {
2388 if (page_stable_node(page) &&
2389 !(ksm_run & KSM_RUN_UNMERGE))
2390 return page; /* no need to copy it */
2391 } else if (!anon_vma) {
2392 return page; /* no need to copy it */
2393 } else if (anon_vma->root == vma->anon_vma->root &&
2394 page->index == linear_page_index(vma, address)) {
2395 return page; /* still no need to copy it */
2396 }
2397 if (!PageUptodate(page))
2398 return page; /* let do_swap_page report the error */
2399
5ad64688
HD
2400 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2401 if (new_page) {
2402 copy_user_highpage(new_page, page, address, vma);
2403
2404 SetPageDirty(new_page);
2405 __SetPageUptodate(new_page);
48c935ad 2406 __SetPageLocked(new_page);
5ad64688
HD
2407 }
2408
5ad64688
HD
2409 return new_page;
2410}
2411
1df631ae 2412void rmap_walk_ksm(struct page *page, struct rmap_walk_control *rwc)
e9995ef9
HD
2413{
2414 struct stable_node *stable_node;
e9995ef9 2415 struct rmap_item *rmap_item;
e9995ef9
HD
2416 int search_new_forks = 0;
2417
309381fe 2418 VM_BUG_ON_PAGE(!PageKsm(page), page);
9f32624b
JK
2419
2420 /*
2421 * Rely on the page lock to protect against concurrent modifications
2422 * to that page's node of the stable tree.
2423 */
309381fe 2424 VM_BUG_ON_PAGE(!PageLocked(page), page);
e9995ef9
HD
2425
2426 stable_node = page_stable_node(page);
2427 if (!stable_node)
1df631ae 2428 return;
e9995ef9 2429again:
b67bfe0d 2430 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
e9995ef9 2431 struct anon_vma *anon_vma = rmap_item->anon_vma;
5beb4930 2432 struct anon_vma_chain *vmac;
e9995ef9
HD
2433 struct vm_area_struct *vma;
2434
ad12695f 2435 cond_resched();
b6b19f25 2436 anon_vma_lock_read(anon_vma);
bf181b9f
ML
2437 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
2438 0, ULONG_MAX) {
ad12695f 2439 cond_resched();
5beb4930 2440 vma = vmac->vma;
e9995ef9
HD
2441 if (rmap_item->address < vma->vm_start ||
2442 rmap_item->address >= vma->vm_end)
2443 continue;
2444 /*
2445 * Initially we examine only the vma which covers this
2446 * rmap_item; but later, if there is still work to do,
2447 * we examine covering vmas in other mms: in case they
2448 * were forked from the original since ksmd passed.
2449 */
2450 if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
2451 continue;
2452
0dd1c7bb
JK
2453 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2454 continue;
2455
e4b82222 2456 if (!rwc->rmap_one(page, vma,
1df631ae 2457 rmap_item->address, rwc->arg)) {
b6b19f25 2458 anon_vma_unlock_read(anon_vma);
1df631ae 2459 return;
e9995ef9 2460 }
0dd1c7bb
JK
2461 if (rwc->done && rwc->done(page)) {
2462 anon_vma_unlock_read(anon_vma);
1df631ae 2463 return;
0dd1c7bb 2464 }
e9995ef9 2465 }
b6b19f25 2466 anon_vma_unlock_read(anon_vma);
e9995ef9
HD
2467 }
2468 if (!search_new_forks++)
2469 goto again;
e9995ef9
HD
2470}
2471
52629506 2472#ifdef CONFIG_MIGRATION
e9995ef9
HD
2473void ksm_migrate_page(struct page *newpage, struct page *oldpage)
2474{
2475 struct stable_node *stable_node;
2476
309381fe
SL
2477 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
2478 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
2479 VM_BUG_ON_PAGE(newpage->mapping != oldpage->mapping, newpage);
e9995ef9
HD
2480
2481 stable_node = page_stable_node(newpage);
2482 if (stable_node) {
309381fe 2483 VM_BUG_ON_PAGE(stable_node->kpfn != page_to_pfn(oldpage), oldpage);
62b61f61 2484 stable_node->kpfn = page_to_pfn(newpage);
c8d6553b
HD
2485 /*
2486 * newpage->mapping was set in advance; now we need smp_wmb()
2487 * to make sure that the new stable_node->kpfn is visible
2488 * to get_ksm_page() before it can see that oldpage->mapping
2489 * has gone stale (or that PageSwapCache has been cleared).
2490 */
2491 smp_wmb();
2492 set_page_stable_node(oldpage, NULL);
e9995ef9
HD
2493 }
2494}
2495#endif /* CONFIG_MIGRATION */
2496
62b61f61 2497#ifdef CONFIG_MEMORY_HOTREMOVE
ef4d43a8
HD
2498static void wait_while_offlining(void)
2499{
2500 while (ksm_run & KSM_RUN_OFFLINE) {
2501 mutex_unlock(&ksm_thread_mutex);
2502 wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
74316201 2503 TASK_UNINTERRUPTIBLE);
ef4d43a8
HD
2504 mutex_lock(&ksm_thread_mutex);
2505 }
2506}
2507
2c653d0e
AA
2508static bool stable_node_dup_remove_range(struct stable_node *stable_node,
2509 unsigned long start_pfn,
2510 unsigned long end_pfn)
2511{
2512 if (stable_node->kpfn >= start_pfn &&
2513 stable_node->kpfn < end_pfn) {
2514 /*
2515 * Don't get_ksm_page, page has already gone:
2516 * which is why we keep kpfn instead of page*
2517 */
2518 remove_node_from_stable_tree(stable_node);
2519 return true;
2520 }
2521 return false;
2522}
2523
2524static bool stable_node_chain_remove_range(struct stable_node *stable_node,
2525 unsigned long start_pfn,
2526 unsigned long end_pfn,
2527 struct rb_root *root)
2528{
2529 struct stable_node *dup;
2530 struct hlist_node *hlist_safe;
2531
2532 if (!is_stable_node_chain(stable_node)) {
2533 VM_BUG_ON(is_stable_node_dup(stable_node));
2534 return stable_node_dup_remove_range(stable_node, start_pfn,
2535 end_pfn);
2536 }
2537
2538 hlist_for_each_entry_safe(dup, hlist_safe,
2539 &stable_node->hlist, hlist_dup) {
2540 VM_BUG_ON(!is_stable_node_dup(dup));
2541 stable_node_dup_remove_range(dup, start_pfn, end_pfn);
2542 }
2543 if (hlist_empty(&stable_node->hlist)) {
2544 free_stable_node_chain(stable_node, root);
2545 return true; /* notify caller that tree was rebalanced */
2546 } else
2547 return false;
2548}
2549
ee0ea59c
HD
2550static void ksm_check_stable_tree(unsigned long start_pfn,
2551 unsigned long end_pfn)
62b61f61 2552{
03640418 2553 struct stable_node *stable_node, *next;
62b61f61 2554 struct rb_node *node;
90bd6fd3 2555 int nid;
62b61f61 2556
ef53d16c
HD
2557 for (nid = 0; nid < ksm_nr_node_ids; nid++) {
2558 node = rb_first(root_stable_tree + nid);
ee0ea59c 2559 while (node) {
90bd6fd3 2560 stable_node = rb_entry(node, struct stable_node, node);
2c653d0e
AA
2561 if (stable_node_chain_remove_range(stable_node,
2562 start_pfn, end_pfn,
2563 root_stable_tree +
2564 nid))
ef53d16c 2565 node = rb_first(root_stable_tree + nid);
2c653d0e 2566 else
ee0ea59c
HD
2567 node = rb_next(node);
2568 cond_resched();
90bd6fd3 2569 }
ee0ea59c 2570 }
03640418 2571 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
4146d2d6
HD
2572 if (stable_node->kpfn >= start_pfn &&
2573 stable_node->kpfn < end_pfn)
2574 remove_node_from_stable_tree(stable_node);
2575 cond_resched();
2576 }
62b61f61
HD
2577}
2578
2579static int ksm_memory_callback(struct notifier_block *self,
2580 unsigned long action, void *arg)
2581{
2582 struct memory_notify *mn = arg;
62b61f61
HD
2583
2584 switch (action) {
2585 case MEM_GOING_OFFLINE:
2586 /*
ef4d43a8
HD
2587 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
2588 * and remove_all_stable_nodes() while memory is going offline:
2589 * it is unsafe for them to touch the stable tree at this time.
2590 * But unmerge_ksm_pages(), rmap lookups and other entry points
2591 * which do not need the ksm_thread_mutex are all safe.
62b61f61 2592 */
ef4d43a8
HD
2593 mutex_lock(&ksm_thread_mutex);
2594 ksm_run |= KSM_RUN_OFFLINE;
2595 mutex_unlock(&ksm_thread_mutex);
62b61f61
HD
2596 break;
2597
2598 case MEM_OFFLINE:
2599 /*
2600 * Most of the work is done by page migration; but there might
2601 * be a few stable_nodes left over, still pointing to struct
ee0ea59c
HD
2602 * pages which have been offlined: prune those from the tree,
2603 * otherwise get_ksm_page() might later try to access a
2604 * non-existent struct page.
62b61f61 2605 */
ee0ea59c
HD
2606 ksm_check_stable_tree(mn->start_pfn,
2607 mn->start_pfn + mn->nr_pages);
62b61f61
HD
2608 /* fallthrough */
2609
2610 case MEM_CANCEL_OFFLINE:
ef4d43a8
HD
2611 mutex_lock(&ksm_thread_mutex);
2612 ksm_run &= ~KSM_RUN_OFFLINE;
62b61f61 2613 mutex_unlock(&ksm_thread_mutex);
ef4d43a8
HD
2614
2615 smp_mb(); /* wake_up_bit advises this */
2616 wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
62b61f61
HD
2617 break;
2618 }
2619 return NOTIFY_OK;
2620}
ef4d43a8
HD
2621#else
2622static void wait_while_offlining(void)
2623{
2624}
62b61f61
HD
2625#endif /* CONFIG_MEMORY_HOTREMOVE */
2626
2ffd8679
HD
2627#ifdef CONFIG_SYSFS
2628/*
2629 * This all compiles without CONFIG_SYSFS, but is a waste of space.
2630 */
2631
31dbd01f
IE
2632#define KSM_ATTR_RO(_name) \
2633 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2634#define KSM_ATTR(_name) \
2635 static struct kobj_attribute _name##_attr = \
2636 __ATTR(_name, 0644, _name##_show, _name##_store)
2637
2638static ssize_t sleep_millisecs_show(struct kobject *kobj,
2639 struct kobj_attribute *attr, char *buf)
2640{
2641 return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs);
2642}
2643
2644static ssize_t sleep_millisecs_store(struct kobject *kobj,
2645 struct kobj_attribute *attr,
2646 const char *buf, size_t count)
2647{
2648 unsigned long msecs;
2649 int err;
2650
3dbb95f7 2651 err = kstrtoul(buf, 10, &msecs);
31dbd01f
IE
2652 if (err || msecs > UINT_MAX)
2653 return -EINVAL;
2654
2655 ksm_thread_sleep_millisecs = msecs;
2656
2657 return count;
2658}
2659KSM_ATTR(sleep_millisecs);
2660
2661static ssize_t pages_to_scan_show(struct kobject *kobj,
2662 struct kobj_attribute *attr, char *buf)
2663{
2664 return sprintf(buf, "%u\n", ksm_thread_pages_to_scan);
2665}
2666
2667static ssize_t pages_to_scan_store(struct kobject *kobj,
2668 struct kobj_attribute *attr,
2669 const char *buf, size_t count)
2670{
2671 int err;
2672 unsigned long nr_pages;
2673
3dbb95f7 2674 err = kstrtoul(buf, 10, &nr_pages);
31dbd01f
IE
2675 if (err || nr_pages > UINT_MAX)
2676 return -EINVAL;
2677
2678 ksm_thread_pages_to_scan = nr_pages;
2679
2680 return count;
2681}
2682KSM_ATTR(pages_to_scan);
2683
2684static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
2685 char *buf)
2686{
ef4d43a8 2687 return sprintf(buf, "%lu\n", ksm_run);
31dbd01f
IE
2688}
2689
2690static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
2691 const char *buf, size_t count)
2692{
2693 int err;
2694 unsigned long flags;
2695
3dbb95f7 2696 err = kstrtoul(buf, 10, &flags);
31dbd01f
IE
2697 if (err || flags > UINT_MAX)
2698 return -EINVAL;
2699 if (flags > KSM_RUN_UNMERGE)
2700 return -EINVAL;
2701
2702 /*
2703 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
2704 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
d0f209f6
HD
2705 * breaking COW to free the pages_shared (but leaves mm_slots
2706 * on the list for when ksmd may be set running again).
31dbd01f
IE
2707 */
2708
2709 mutex_lock(&ksm_thread_mutex);
ef4d43a8 2710 wait_while_offlining();
31dbd01f
IE
2711 if (ksm_run != flags) {
2712 ksm_run = flags;
d952b791 2713 if (flags & KSM_RUN_UNMERGE) {
e1e12d2f 2714 set_current_oom_origin();
d952b791 2715 err = unmerge_and_remove_all_rmap_items();
e1e12d2f 2716 clear_current_oom_origin();
d952b791
HD
2717 if (err) {
2718 ksm_run = KSM_RUN_STOP;
2719 count = err;
2720 }
2721 }
31dbd01f
IE
2722 }
2723 mutex_unlock(&ksm_thread_mutex);
2724
2725 if (flags & KSM_RUN_MERGE)
2726 wake_up_interruptible(&ksm_thread_wait);
2727
2728 return count;
2729}
2730KSM_ATTR(run);
2731
90bd6fd3
PH
2732#ifdef CONFIG_NUMA
2733static ssize_t merge_across_nodes_show(struct kobject *kobj,
2734 struct kobj_attribute *attr, char *buf)
2735{
2736 return sprintf(buf, "%u\n", ksm_merge_across_nodes);
2737}
2738
2739static ssize_t merge_across_nodes_store(struct kobject *kobj,
2740 struct kobj_attribute *attr,
2741 const char *buf, size_t count)
2742{
2743 int err;
2744 unsigned long knob;
2745
2746 err = kstrtoul(buf, 10, &knob);
2747 if (err)
2748 return err;
2749 if (knob > 1)
2750 return -EINVAL;
2751
2752 mutex_lock(&ksm_thread_mutex);
ef4d43a8 2753 wait_while_offlining();
90bd6fd3 2754 if (ksm_merge_across_nodes != knob) {
cbf86cfe 2755 if (ksm_pages_shared || remove_all_stable_nodes())
90bd6fd3 2756 err = -EBUSY;
ef53d16c
HD
2757 else if (root_stable_tree == one_stable_tree) {
2758 struct rb_root *buf;
2759 /*
2760 * This is the first time that we switch away from the
2761 * default of merging across nodes: must now allocate
2762 * a buffer to hold as many roots as may be needed.
2763 * Allocate stable and unstable together:
2764 * MAXSMP NODES_SHIFT 10 will use 16kB.
2765 */
bafe1e14
JP
2766 buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
2767 GFP_KERNEL);
ef53d16c
HD
2768 /* Let us assume that RB_ROOT is NULL is zero */
2769 if (!buf)
2770 err = -ENOMEM;
2771 else {
2772 root_stable_tree = buf;
2773 root_unstable_tree = buf + nr_node_ids;
2774 /* Stable tree is empty but not the unstable */
2775 root_unstable_tree[0] = one_unstable_tree[0];
2776 }
2777 }
2778 if (!err) {
90bd6fd3 2779 ksm_merge_across_nodes = knob;
ef53d16c
HD
2780 ksm_nr_node_ids = knob ? 1 : nr_node_ids;
2781 }
90bd6fd3
PH
2782 }
2783 mutex_unlock(&ksm_thread_mutex);
2784
2785 return err ? err : count;
2786}
2787KSM_ATTR(merge_across_nodes);
2788#endif
2789
e86c59b1
CI
2790static ssize_t use_zero_pages_show(struct kobject *kobj,
2791 struct kobj_attribute *attr, char *buf)
2792{
2793 return sprintf(buf, "%u\n", ksm_use_zero_pages);
2794}
2795static ssize_t use_zero_pages_store(struct kobject *kobj,
2796 struct kobj_attribute *attr,
2797 const char *buf, size_t count)
2798{
2799 int err;
2800 bool value;
2801
2802 err = kstrtobool(buf, &value);
2803 if (err)
2804 return -EINVAL;
2805
2806 ksm_use_zero_pages = value;
2807
2808 return count;
2809}
2810KSM_ATTR(use_zero_pages);
2811
2c653d0e
AA
2812static ssize_t max_page_sharing_show(struct kobject *kobj,
2813 struct kobj_attribute *attr, char *buf)
2814{
2815 return sprintf(buf, "%u\n", ksm_max_page_sharing);
2816}
2817
2818static ssize_t max_page_sharing_store(struct kobject *kobj,
2819 struct kobj_attribute *attr,
2820 const char *buf, size_t count)
2821{
2822 int err;
2823 int knob;
2824
2825 err = kstrtoint(buf, 10, &knob);
2826 if (err)
2827 return err;
2828 /*
2829 * When a KSM page is created it is shared by 2 mappings. This
2830 * being a signed comparison, it implicitly verifies it's not
2831 * negative.
2832 */
2833 if (knob < 2)
2834 return -EINVAL;
2835
2836 if (READ_ONCE(ksm_max_page_sharing) == knob)
2837 return count;
2838
2839 mutex_lock(&ksm_thread_mutex);
2840 wait_while_offlining();
2841 if (ksm_max_page_sharing != knob) {
2842 if (ksm_pages_shared || remove_all_stable_nodes())
2843 err = -EBUSY;
2844 else
2845 ksm_max_page_sharing = knob;
2846 }
2847 mutex_unlock(&ksm_thread_mutex);
2848
2849 return err ? err : count;
2850}
2851KSM_ATTR(max_page_sharing);
2852
b4028260
HD
2853static ssize_t pages_shared_show(struct kobject *kobj,
2854 struct kobj_attribute *attr, char *buf)
2855{
2856 return sprintf(buf, "%lu\n", ksm_pages_shared);
2857}
2858KSM_ATTR_RO(pages_shared);
2859
2860static ssize_t pages_sharing_show(struct kobject *kobj,
2861 struct kobj_attribute *attr, char *buf)
2862{
e178dfde 2863 return sprintf(buf, "%lu\n", ksm_pages_sharing);
b4028260
HD
2864}
2865KSM_ATTR_RO(pages_sharing);
2866
473b0ce4
HD
2867static ssize_t pages_unshared_show(struct kobject *kobj,
2868 struct kobj_attribute *attr, char *buf)
2869{
2870 return sprintf(buf, "%lu\n", ksm_pages_unshared);
2871}
2872KSM_ATTR_RO(pages_unshared);
2873
2874static ssize_t pages_volatile_show(struct kobject *kobj,
2875 struct kobj_attribute *attr, char *buf)
2876{
2877 long ksm_pages_volatile;
2878
2879 ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
2880 - ksm_pages_sharing - ksm_pages_unshared;
2881 /*
2882 * It was not worth any locking to calculate that statistic,
2883 * but it might therefore sometimes be negative: conceal that.
2884 */
2885 if (ksm_pages_volatile < 0)
2886 ksm_pages_volatile = 0;
2887 return sprintf(buf, "%ld\n", ksm_pages_volatile);
2888}
2889KSM_ATTR_RO(pages_volatile);
2890
2c653d0e
AA
2891static ssize_t stable_node_dups_show(struct kobject *kobj,
2892 struct kobj_attribute *attr, char *buf)
2893{
2894 return sprintf(buf, "%lu\n", ksm_stable_node_dups);
2895}
2896KSM_ATTR_RO(stable_node_dups);
2897
2898static ssize_t stable_node_chains_show(struct kobject *kobj,
2899 struct kobj_attribute *attr, char *buf)
2900{
2901 return sprintf(buf, "%lu\n", ksm_stable_node_chains);
2902}
2903KSM_ATTR_RO(stable_node_chains);
2904
2905static ssize_t
2906stable_node_chains_prune_millisecs_show(struct kobject *kobj,
2907 struct kobj_attribute *attr,
2908 char *buf)
2909{
2910 return sprintf(buf, "%u\n", ksm_stable_node_chains_prune_millisecs);
2911}
2912
2913static ssize_t
2914stable_node_chains_prune_millisecs_store(struct kobject *kobj,
2915 struct kobj_attribute *attr,
2916 const char *buf, size_t count)
2917{
2918 unsigned long msecs;
2919 int err;
2920
2921 err = kstrtoul(buf, 10, &msecs);
2922 if (err || msecs > UINT_MAX)
2923 return -EINVAL;
2924
2925 ksm_stable_node_chains_prune_millisecs = msecs;
2926
2927 return count;
2928}
2929KSM_ATTR(stable_node_chains_prune_millisecs);
2930
473b0ce4
HD
2931static ssize_t full_scans_show(struct kobject *kobj,
2932 struct kobj_attribute *attr, char *buf)
2933{
2934 return sprintf(buf, "%lu\n", ksm_scan.seqnr);
2935}
2936KSM_ATTR_RO(full_scans);
2937
31dbd01f
IE
2938static struct attribute *ksm_attrs[] = {
2939 &sleep_millisecs_attr.attr,
2940 &pages_to_scan_attr.attr,
2941 &run_attr.attr,
b4028260
HD
2942 &pages_shared_attr.attr,
2943 &pages_sharing_attr.attr,
473b0ce4
HD
2944 &pages_unshared_attr.attr,
2945 &pages_volatile_attr.attr,
2946 &full_scans_attr.attr,
90bd6fd3
PH
2947#ifdef CONFIG_NUMA
2948 &merge_across_nodes_attr.attr,
2949#endif
2c653d0e
AA
2950 &max_page_sharing_attr.attr,
2951 &stable_node_chains_attr.attr,
2952 &stable_node_dups_attr.attr,
2953 &stable_node_chains_prune_millisecs_attr.attr,
e86c59b1 2954 &use_zero_pages_attr.attr,
31dbd01f
IE
2955 NULL,
2956};
2957
2958static struct attribute_group ksm_attr_group = {
2959 .attrs = ksm_attrs,
2960 .name = "ksm",
2961};
2ffd8679 2962#endif /* CONFIG_SYSFS */
31dbd01f
IE
2963
2964static int __init ksm_init(void)
2965{
2966 struct task_struct *ksm_thread;
2967 int err;
2968
e86c59b1
CI
2969 /* The correct value depends on page size and endianness */
2970 zero_checksum = calc_checksum(ZERO_PAGE(0));
2971 /* Default to false for backwards compatibility */
2972 ksm_use_zero_pages = false;
2973
31dbd01f
IE
2974 err = ksm_slab_init();
2975 if (err)
2976 goto out;
2977
31dbd01f
IE
2978 ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
2979 if (IS_ERR(ksm_thread)) {
25acde31 2980 pr_err("ksm: creating kthread failed\n");
31dbd01f 2981 err = PTR_ERR(ksm_thread);
d9f8984c 2982 goto out_free;
31dbd01f
IE
2983 }
2984
2ffd8679 2985#ifdef CONFIG_SYSFS
31dbd01f
IE
2986 err = sysfs_create_group(mm_kobj, &ksm_attr_group);
2987 if (err) {
25acde31 2988 pr_err("ksm: register sysfs failed\n");
2ffd8679 2989 kthread_stop(ksm_thread);
d9f8984c 2990 goto out_free;
31dbd01f 2991 }
c73602ad
HD
2992#else
2993 ksm_run = KSM_RUN_MERGE; /* no way for user to start it */
2994
2ffd8679 2995#endif /* CONFIG_SYSFS */
31dbd01f 2996
62b61f61 2997#ifdef CONFIG_MEMORY_HOTREMOVE
ef4d43a8 2998 /* There is no significance to this priority 100 */
62b61f61
HD
2999 hotplug_memory_notifier(ksm_memory_callback, 100);
3000#endif
31dbd01f
IE
3001 return 0;
3002
d9f8984c 3003out_free:
31dbd01f
IE
3004 ksm_slab_free();
3005out:
3006 return err;
f8af4da3 3007}
a64fb3cd 3008subsys_initcall(ksm_init);