mm: rename invalidate_mapping_pagevec to mapping_try_invalidate
[linux-2.6-block.git] / mm / ksm.c
CommitLineData
7a338472 1// SPDX-License-Identifier: GPL-2.0-only
f8af4da3 2/*
31dbd01f
IE
3 * Memory merging support.
4 *
5 * This code enables dynamic sharing of identical pages found in different
6 * memory areas, even if they are not shared by fork()
7 *
36b2528d 8 * Copyright (C) 2008-2009 Red Hat, Inc.
31dbd01f
IE
9 * Authors:
10 * Izik Eidus
11 * Andrea Arcangeli
12 * Chris Wright
36b2528d 13 * Hugh Dickins
f8af4da3
HD
14 */
15
16#include <linux/errno.h>
31dbd01f 17#include <linux/mm.h>
36090def 18#include <linux/mm_inline.h>
31dbd01f 19#include <linux/fs.h>
f8af4da3 20#include <linux/mman.h>
31dbd01f 21#include <linux/sched.h>
6e84f315 22#include <linux/sched/mm.h>
f7ccbae4 23#include <linux/sched/coredump.h>
31dbd01f
IE
24#include <linux/rwsem.h>
25#include <linux/pagemap.h>
26#include <linux/rmap.h>
27#include <linux/spinlock.h>
59e1a2f4 28#include <linux/xxhash.h>
31dbd01f
IE
29#include <linux/delay.h>
30#include <linux/kthread.h>
31#include <linux/wait.h>
32#include <linux/slab.h>
33#include <linux/rbtree.h>
62b61f61 34#include <linux/memory.h>
31dbd01f 35#include <linux/mmu_notifier.h>
2c6854fd 36#include <linux/swap.h>
f8af4da3 37#include <linux/ksm.h>
4ca3a69b 38#include <linux/hashtable.h>
878aee7d 39#include <linux/freezer.h>
72788c38 40#include <linux/oom.h>
90bd6fd3 41#include <linux/numa.h>
d7c0e68d 42#include <linux/pagewalk.h>
f8af4da3 43
31dbd01f 44#include <asm/tlbflush.h>
73848b46 45#include "internal.h"
58730ab6 46#include "mm_slot.h"
31dbd01f 47
739100c8
SR
48#define CREATE_TRACE_POINTS
49#include <trace/events/ksm.h>
50
e850dcf5
HD
51#ifdef CONFIG_NUMA
52#define NUMA(x) (x)
53#define DO_NUMA(x) do { (x); } while (0)
54#else
55#define NUMA(x) (0)
56#define DO_NUMA(x) do { } while (0)
57#endif
58
5a2ca3ef
MR
59/**
60 * DOC: Overview
61 *
31dbd01f
IE
62 * A few notes about the KSM scanning process,
63 * to make it easier to understand the data structures below:
64 *
65 * In order to reduce excessive scanning, KSM sorts the memory pages by their
66 * contents into a data structure that holds pointers to the pages' locations.
67 *
68 * Since the contents of the pages may change at any moment, KSM cannot just
69 * insert the pages into a normal sorted tree and expect it to find anything.
70 * Therefore KSM uses two data structures - the stable and the unstable tree.
71 *
72 * The stable tree holds pointers to all the merged pages (ksm pages), sorted
73 * by their contents. Because each such page is write-protected, searching on
74 * this tree is fully assured to be working (except when pages are unmapped),
75 * and therefore this tree is called the stable tree.
76 *
5a2ca3ef
MR
77 * The stable tree node includes information required for reverse
78 * mapping from a KSM page to virtual addresses that map this page.
79 *
80 * In order to avoid large latencies of the rmap walks on KSM pages,
81 * KSM maintains two types of nodes in the stable tree:
82 *
83 * * the regular nodes that keep the reverse mapping structures in a
84 * linked list
85 * * the "chains" that link nodes ("dups") that represent the same
86 * write protected memory content, but each "dup" corresponds to a
87 * different KSM page copy of that content
88 *
89 * Internally, the regular nodes, "dups" and "chains" are represented
21fbd591 90 * using the same struct ksm_stable_node structure.
5a2ca3ef 91 *
31dbd01f
IE
92 * In addition to the stable tree, KSM uses a second data structure called the
93 * unstable tree: this tree holds pointers to pages which have been found to
94 * be "unchanged for a period of time". The unstable tree sorts these pages
95 * by their contents, but since they are not write-protected, KSM cannot rely
96 * upon the unstable tree to work correctly - the unstable tree is liable to
97 * be corrupted as its contents are modified, and so it is called unstable.
98 *
99 * KSM solves this problem by several techniques:
100 *
101 * 1) The unstable tree is flushed every time KSM completes scanning all
102 * memory areas, and then the tree is rebuilt again from the beginning.
103 * 2) KSM will only insert into the unstable tree, pages whose hash value
104 * has not changed since the previous scan of all memory areas.
105 * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
106 * colors of the nodes and not on their contents, assuring that even when
107 * the tree gets "corrupted" it won't get out of balance, so scanning time
108 * remains the same (also, searching and inserting nodes in an rbtree uses
109 * the same algorithm, so we have no overhead when we flush and rebuild).
110 * 4) KSM never flushes the stable tree, which means that even if it were to
111 * take 10 attempts to find a page in the unstable tree, once it is found,
112 * it is secured in the stable tree. (When we scan a new page, we first
113 * compare it against the stable tree, and then against the unstable tree.)
8fdb3dbf
HD
114 *
115 * If the merge_across_nodes tunable is unset, then KSM maintains multiple
116 * stable trees and multiple unstable trees: one of each for each NUMA node.
31dbd01f
IE
117 */
118
119/**
21fbd591 120 * struct ksm_mm_slot - ksm information per mm that is being scanned
58730ab6 121 * @slot: hash lookup from mm to mm_slot
6514d511 122 * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
31dbd01f 123 */
21fbd591 124struct ksm_mm_slot {
58730ab6 125 struct mm_slot slot;
21fbd591 126 struct ksm_rmap_item *rmap_list;
31dbd01f
IE
127};
128
129/**
130 * struct ksm_scan - cursor for scanning
131 * @mm_slot: the current mm_slot we are scanning
132 * @address: the next address inside that to be scanned
6514d511 133 * @rmap_list: link to the next rmap to be scanned in the rmap_list
31dbd01f
IE
134 * @seqnr: count of completed full scans (needed when removing unstable node)
135 *
136 * There is only the one ksm_scan instance of this cursor structure.
137 */
138struct ksm_scan {
21fbd591 139 struct ksm_mm_slot *mm_slot;
31dbd01f 140 unsigned long address;
21fbd591 141 struct ksm_rmap_item **rmap_list;
31dbd01f
IE
142 unsigned long seqnr;
143};
144
7b6ba2c7 145/**
21fbd591 146 * struct ksm_stable_node - node of the stable rbtree
7b6ba2c7 147 * @node: rb node of this ksm page in the stable tree
4146d2d6 148 * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
2c653d0e 149 * @hlist_dup: linked into the stable_node->hlist with a stable_node chain
4146d2d6 150 * @list: linked into migrate_nodes, pending placement in the proper node tree
7b6ba2c7 151 * @hlist: hlist head of rmap_items using this ksm page
4146d2d6 152 * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
2c653d0e
AA
153 * @chain_prune_time: time of the last full garbage collection
154 * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN
4146d2d6 155 * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
7b6ba2c7 156 */
21fbd591 157struct ksm_stable_node {
4146d2d6
HD
158 union {
159 struct rb_node node; /* when node of stable tree */
160 struct { /* when listed for migration */
161 struct list_head *head;
2c653d0e
AA
162 struct {
163 struct hlist_node hlist_dup;
164 struct list_head list;
165 };
4146d2d6
HD
166 };
167 };
7b6ba2c7 168 struct hlist_head hlist;
2c653d0e
AA
169 union {
170 unsigned long kpfn;
171 unsigned long chain_prune_time;
172 };
173 /*
174 * STABLE_NODE_CHAIN can be any negative number in
175 * rmap_hlist_len negative range, but better not -1 to be able
176 * to reliably detect underflows.
177 */
178#define STABLE_NODE_CHAIN -1024
179 int rmap_hlist_len;
4146d2d6
HD
180#ifdef CONFIG_NUMA
181 int nid;
182#endif
7b6ba2c7
HD
183};
184
31dbd01f 185/**
21fbd591 186 * struct ksm_rmap_item - reverse mapping item for virtual addresses
6514d511 187 * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
db114b83 188 * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
bc56620b 189 * @nid: NUMA node id of unstable tree in which linked (may not match page)
31dbd01f
IE
190 * @mm: the memory structure this rmap_item is pointing into
191 * @address: the virtual address this rmap_item tracks (+ flags in low bits)
192 * @oldchecksum: previous checksum of the page at that virtual address
7b6ba2c7
HD
193 * @node: rb node of this rmap_item in the unstable tree
194 * @head: pointer to stable_node heading this list in the stable tree
195 * @hlist: link into hlist of rmap_items hanging off that stable_node
31dbd01f 196 */
21fbd591
QZ
197struct ksm_rmap_item {
198 struct ksm_rmap_item *rmap_list;
bc56620b
HD
199 union {
200 struct anon_vma *anon_vma; /* when stable */
201#ifdef CONFIG_NUMA
202 int nid; /* when node of unstable tree */
203#endif
204 };
31dbd01f
IE
205 struct mm_struct *mm;
206 unsigned long address; /* + low bits used for flags below */
7b6ba2c7 207 unsigned int oldchecksum; /* when unstable */
31dbd01f 208 union {
7b6ba2c7
HD
209 struct rb_node node; /* when node of unstable tree */
210 struct { /* when listed from stable tree */
21fbd591 211 struct ksm_stable_node *head;
7b6ba2c7
HD
212 struct hlist_node hlist;
213 };
31dbd01f
IE
214 };
215};
216
217#define SEQNR_MASK 0x0ff /* low bits of unstable tree seqnr */
7b6ba2c7
HD
218#define UNSTABLE_FLAG 0x100 /* is a node of the unstable tree */
219#define STABLE_FLAG 0x200 /* is listed from the stable tree */
31dbd01f
IE
220
221/* The stable and unstable tree heads */
ef53d16c
HD
222static struct rb_root one_stable_tree[1] = { RB_ROOT };
223static struct rb_root one_unstable_tree[1] = { RB_ROOT };
224static struct rb_root *root_stable_tree = one_stable_tree;
225static struct rb_root *root_unstable_tree = one_unstable_tree;
31dbd01f 226
4146d2d6
HD
227/* Recently migrated nodes of stable tree, pending proper placement */
228static LIST_HEAD(migrate_nodes);
2c653d0e 229#define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev)
4146d2d6 230
4ca3a69b
SL
231#define MM_SLOTS_HASH_BITS 10
232static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
31dbd01f 233
21fbd591 234static struct ksm_mm_slot ksm_mm_head = {
58730ab6 235 .slot.mm_node = LIST_HEAD_INIT(ksm_mm_head.slot.mm_node),
31dbd01f
IE
236};
237static struct ksm_scan ksm_scan = {
238 .mm_slot = &ksm_mm_head,
239};
240
241static struct kmem_cache *rmap_item_cache;
7b6ba2c7 242static struct kmem_cache *stable_node_cache;
31dbd01f
IE
243static struct kmem_cache *mm_slot_cache;
244
245/* The number of nodes in the stable tree */
b4028260 246static unsigned long ksm_pages_shared;
31dbd01f 247
e178dfde 248/* The number of page slots additionally sharing those nodes */
b4028260 249static unsigned long ksm_pages_sharing;
31dbd01f 250
473b0ce4
HD
251/* The number of nodes in the unstable tree */
252static unsigned long ksm_pages_unshared;
253
254/* The number of rmap_items in use: to calculate pages_volatile */
255static unsigned long ksm_rmap_items;
256
2c653d0e
AA
257/* The number of stable_node chains */
258static unsigned long ksm_stable_node_chains;
259
260/* The number of stable_node dups linked to the stable_node chains */
261static unsigned long ksm_stable_node_dups;
262
263/* Delay in pruning stale stable_node_dups in the stable_node_chains */
584ff0df 264static unsigned int ksm_stable_node_chains_prune_millisecs = 2000;
2c653d0e
AA
265
266/* Maximum number of page slots sharing a stable node */
267static int ksm_max_page_sharing = 256;
268
31dbd01f 269/* Number of pages ksmd should scan in one batch */
2c6854fd 270static unsigned int ksm_thread_pages_to_scan = 100;
31dbd01f
IE
271
272/* Milliseconds ksmd should sleep between batches */
2ffd8679 273static unsigned int ksm_thread_sleep_millisecs = 20;
31dbd01f 274
e86c59b1
CI
275/* Checksum of an empty (zeroed) page */
276static unsigned int zero_checksum __read_mostly;
277
278/* Whether to merge empty (zeroed) pages with actual zero pages */
279static bool ksm_use_zero_pages __read_mostly;
280
e850dcf5 281#ifdef CONFIG_NUMA
90bd6fd3
PH
282/* Zeroed when merging across nodes is not allowed */
283static unsigned int ksm_merge_across_nodes = 1;
ef53d16c 284static int ksm_nr_node_ids = 1;
e850dcf5
HD
285#else
286#define ksm_merge_across_nodes 1U
ef53d16c 287#define ksm_nr_node_ids 1
e850dcf5 288#endif
90bd6fd3 289
31dbd01f
IE
290#define KSM_RUN_STOP 0
291#define KSM_RUN_MERGE 1
292#define KSM_RUN_UNMERGE 2
ef4d43a8
HD
293#define KSM_RUN_OFFLINE 4
294static unsigned long ksm_run = KSM_RUN_STOP;
295static void wait_while_offlining(void);
31dbd01f
IE
296
297static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
fcf9a0ef 298static DECLARE_WAIT_QUEUE_HEAD(ksm_iter_wait);
31dbd01f
IE
299static DEFINE_MUTEX(ksm_thread_mutex);
300static DEFINE_SPINLOCK(ksm_mmlist_lock);
301
21fbd591 302#define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create(#__struct,\
31dbd01f
IE
303 sizeof(struct __struct), __alignof__(struct __struct),\
304 (__flags), NULL)
305
306static int __init ksm_slab_init(void)
307{
21fbd591 308 rmap_item_cache = KSM_KMEM_CACHE(ksm_rmap_item, 0);
31dbd01f
IE
309 if (!rmap_item_cache)
310 goto out;
311
21fbd591 312 stable_node_cache = KSM_KMEM_CACHE(ksm_stable_node, 0);
7b6ba2c7
HD
313 if (!stable_node_cache)
314 goto out_free1;
315
21fbd591 316 mm_slot_cache = KSM_KMEM_CACHE(ksm_mm_slot, 0);
31dbd01f 317 if (!mm_slot_cache)
7b6ba2c7 318 goto out_free2;
31dbd01f
IE
319
320 return 0;
321
7b6ba2c7
HD
322out_free2:
323 kmem_cache_destroy(stable_node_cache);
324out_free1:
31dbd01f
IE
325 kmem_cache_destroy(rmap_item_cache);
326out:
327 return -ENOMEM;
328}
329
330static void __init ksm_slab_free(void)
331{
332 kmem_cache_destroy(mm_slot_cache);
7b6ba2c7 333 kmem_cache_destroy(stable_node_cache);
31dbd01f
IE
334 kmem_cache_destroy(rmap_item_cache);
335 mm_slot_cache = NULL;
336}
337
21fbd591 338static __always_inline bool is_stable_node_chain(struct ksm_stable_node *chain)
2c653d0e
AA
339{
340 return chain->rmap_hlist_len == STABLE_NODE_CHAIN;
341}
342
21fbd591 343static __always_inline bool is_stable_node_dup(struct ksm_stable_node *dup)
2c653d0e
AA
344{
345 return dup->head == STABLE_NODE_DUP_HEAD;
346}
347
21fbd591
QZ
348static inline void stable_node_chain_add_dup(struct ksm_stable_node *dup,
349 struct ksm_stable_node *chain)
2c653d0e
AA
350{
351 VM_BUG_ON(is_stable_node_dup(dup));
352 dup->head = STABLE_NODE_DUP_HEAD;
353 VM_BUG_ON(!is_stable_node_chain(chain));
354 hlist_add_head(&dup->hlist_dup, &chain->hlist);
355 ksm_stable_node_dups++;
356}
357
21fbd591 358static inline void __stable_node_dup_del(struct ksm_stable_node *dup)
2c653d0e 359{
b4fecc67 360 VM_BUG_ON(!is_stable_node_dup(dup));
2c653d0e
AA
361 hlist_del(&dup->hlist_dup);
362 ksm_stable_node_dups--;
363}
364
21fbd591 365static inline void stable_node_dup_del(struct ksm_stable_node *dup)
2c653d0e
AA
366{
367 VM_BUG_ON(is_stable_node_chain(dup));
368 if (is_stable_node_dup(dup))
369 __stable_node_dup_del(dup);
370 else
371 rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid));
372#ifdef CONFIG_DEBUG_VM
373 dup->head = NULL;
374#endif
375}
376
21fbd591 377static inline struct ksm_rmap_item *alloc_rmap_item(void)
31dbd01f 378{
21fbd591 379 struct ksm_rmap_item *rmap_item;
473b0ce4 380
5b398e41 381 rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL |
382 __GFP_NORETRY | __GFP_NOWARN);
473b0ce4
HD
383 if (rmap_item)
384 ksm_rmap_items++;
385 return rmap_item;
31dbd01f
IE
386}
387
21fbd591 388static inline void free_rmap_item(struct ksm_rmap_item *rmap_item)
31dbd01f 389{
473b0ce4 390 ksm_rmap_items--;
cb4df4ca 391 rmap_item->mm->ksm_rmap_items--;
31dbd01f
IE
392 rmap_item->mm = NULL; /* debug safety */
393 kmem_cache_free(rmap_item_cache, rmap_item);
394}
395
21fbd591 396static inline struct ksm_stable_node *alloc_stable_node(void)
7b6ba2c7 397{
6213055f 398 /*
399 * The allocation can take too long with GFP_KERNEL when memory is under
400 * pressure, which may lead to hung task warnings. Adding __GFP_HIGH
401 * grants access to memory reserves, helping to avoid this problem.
402 */
403 return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH);
7b6ba2c7
HD
404}
405
21fbd591 406static inline void free_stable_node(struct ksm_stable_node *stable_node)
7b6ba2c7 407{
2c653d0e
AA
408 VM_BUG_ON(stable_node->rmap_hlist_len &&
409 !is_stable_node_chain(stable_node));
7b6ba2c7
HD
410 kmem_cache_free(stable_node_cache, stable_node);
411}
412
a913e182
HD
413/*
414 * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
415 * page tables after it has passed through ksm_exit() - which, if necessary,
c1e8d7c6 416 * takes mmap_lock briefly to serialize against them. ksm_exit() does not set
a913e182
HD
417 * a special flag: they can just back out as soon as mm_users goes to zero.
418 * ksm_test_exit() is used throughout to make this test for exit: in some
419 * places for correctness, in some places just to avoid unnecessary work.
420 */
421static inline bool ksm_test_exit(struct mm_struct *mm)
422{
423 return atomic_read(&mm->mm_users) == 0;
424}
425
d7c0e68d
DH
426static int break_ksm_pmd_entry(pmd_t *pmd, unsigned long addr, unsigned long next,
427 struct mm_walk *walk)
428{
429 struct page *page = NULL;
430 spinlock_t *ptl;
431 pte_t *pte;
c33c7948 432 pte_t ptent;
d7c0e68d
DH
433 int ret;
434
d7c0e68d 435 pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
04dee9e8
HD
436 if (!pte)
437 return 0;
c33c7948
RR
438 ptent = ptep_get(pte);
439 if (pte_present(ptent)) {
440 page = vm_normal_page(walk->vma, addr, ptent);
441 } else if (!pte_none(ptent)) {
442 swp_entry_t entry = pte_to_swp_entry(ptent);
d7c0e68d
DH
443
444 /*
445 * As KSM pages remain KSM pages until freed, no need to wait
446 * here for migration to end.
447 */
448 if (is_migration_entry(entry))
449 page = pfn_swap_entry_to_page(entry);
450 }
451 ret = page && PageKsm(page);
452 pte_unmap_unlock(pte, ptl);
453 return ret;
454}
455
456static const struct mm_walk_ops break_ksm_ops = {
457 .pmd_entry = break_ksm_pmd_entry,
458};
459
31dbd01f 460/*
6cce3314
DH
461 * We use break_ksm to break COW on a ksm page by triggering unsharing,
462 * such that the ksm page will get replaced by an exclusive anonymous page.
31dbd01f 463 *
6cce3314 464 * We take great care only to touch a ksm page, in a VM_MERGEABLE vma,
31dbd01f
IE
465 * in case the application has unmapped and remapped mm,addr meanwhile.
466 * Could a ksm page appear anywhere else? Actually yes, in a VM_PFNMAP
bbcd53c9 467 * mmap of /dev/mem, where we would not want to touch it.
1b2ee126 468 *
6cce3314 469 * FAULT_FLAG_REMOTE/FOLL_REMOTE are because we do this outside the context
1b2ee126
DH
470 * of the process that owns 'vma'. We also do not want to enforce
471 * protection keys here anyway.
31dbd01f 472 */
d952b791 473static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
31dbd01f 474{
50a7ca3c 475 vm_fault_t ret = 0;
31dbd01f
IE
476
477 do {
d7c0e68d 478 int ksm_page;
58f595c6 479
31dbd01f 480 cond_resched();
d7c0e68d
DH
481 ksm_page = walk_page_range_vma(vma, addr, addr + 1,
482 &break_ksm_ops, NULL);
483 if (WARN_ON_ONCE(ksm_page < 0))
484 return ksm_page;
58f595c6
DH
485 if (!ksm_page)
486 return 0;
487 ret = handle_mm_fault(vma, addr,
6cce3314 488 FAULT_FLAG_UNSHARE | FAULT_FLAG_REMOTE,
58f595c6
DH
489 NULL);
490 } while (!(ret & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
d952b791 491 /*
58f595c6
DH
492 * We must loop until we no longer find a KSM page because
493 * handle_mm_fault() may back out if there's any difficulty e.g. if
494 * pte accessed bit gets updated concurrently.
d952b791
HD
495 *
496 * VM_FAULT_SIGBUS could occur if we race with truncation of the
497 * backing file, which also invalidates anonymous pages: that's
498 * okay, that truncation will have unmapped the PageKsm for us.
499 *
500 * VM_FAULT_OOM: at the time of writing (late July 2009), setting
501 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
502 * current task has TIF_MEMDIE set, and will be OOM killed on return
503 * to user; and ksmd, having no mm, would never be chosen for that.
504 *
505 * But if the mm is in a limited mem_cgroup, then the fault may fail
506 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
507 * even ksmd can fail in this way - though it's usually breaking ksm
508 * just to undo a merge it made a moment before, so unlikely to oom.
509 *
510 * That's a pity: we might therefore have more kernel pages allocated
511 * than we're counting as nodes in the stable tree; but ksm_do_scan
512 * will retry to break_cow on each pass, so should recover the page
513 * in due course. The important thing is to not let VM_MERGEABLE
514 * be cleared while any such pages might remain in the area.
515 */
516 return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
31dbd01f
IE
517}
518
d7597f59
SR
519static bool vma_ksm_compatible(struct vm_area_struct *vma)
520{
521 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE | VM_PFNMAP |
522 VM_IO | VM_DONTEXPAND | VM_HUGETLB |
523 VM_MIXEDMAP))
524 return false; /* just ignore the advice */
525
526 if (vma_is_dax(vma))
527 return false;
528
529#ifdef VM_SAO
530 if (vma->vm_flags & VM_SAO)
531 return false;
532#endif
533#ifdef VM_SPARC_ADI
534 if (vma->vm_flags & VM_SPARC_ADI)
535 return false;
536#endif
537
538 return true;
539}
540
ef694222
BL
541static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
542 unsigned long addr)
543{
544 struct vm_area_struct *vma;
545 if (ksm_test_exit(mm))
546 return NULL;
ff69fb81
LH
547 vma = vma_lookup(mm, addr);
548 if (!vma || !(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
ef694222
BL
549 return NULL;
550 return vma;
551}
552
21fbd591 553static void break_cow(struct ksm_rmap_item *rmap_item)
31dbd01f 554{
8dd3557a
HD
555 struct mm_struct *mm = rmap_item->mm;
556 unsigned long addr = rmap_item->address;
31dbd01f
IE
557 struct vm_area_struct *vma;
558
4035c07a
HD
559 /*
560 * It is not an accident that whenever we want to break COW
561 * to undo, we also need to drop a reference to the anon_vma.
562 */
9e60109f 563 put_anon_vma(rmap_item->anon_vma);
4035c07a 564
d8ed45c5 565 mmap_read_lock(mm);
ef694222
BL
566 vma = find_mergeable_vma(mm, addr);
567 if (vma)
568 break_ksm(vma, addr);
d8ed45c5 569 mmap_read_unlock(mm);
31dbd01f
IE
570}
571
21fbd591 572static struct page *get_mergeable_page(struct ksm_rmap_item *rmap_item)
31dbd01f
IE
573{
574 struct mm_struct *mm = rmap_item->mm;
575 unsigned long addr = rmap_item->address;
576 struct vm_area_struct *vma;
577 struct page *page;
578
d8ed45c5 579 mmap_read_lock(mm);
ef694222
BL
580 vma = find_mergeable_vma(mm, addr);
581 if (!vma)
31dbd01f
IE
582 goto out;
583
584 page = follow_page(vma, addr, FOLL_GET);
f7091ed6 585 if (IS_ERR_OR_NULL(page))
31dbd01f 586 goto out;
f7091ed6
HW
587 if (is_zone_device_page(page))
588 goto out_putpage;
f765f540 589 if (PageAnon(page)) {
31dbd01f
IE
590 flush_anon_page(vma, page, addr);
591 flush_dcache_page(page);
592 } else {
f7091ed6 593out_putpage:
31dbd01f 594 put_page(page);
c8f95ed1
AA
595out:
596 page = NULL;
31dbd01f 597 }
d8ed45c5 598 mmap_read_unlock(mm);
31dbd01f
IE
599 return page;
600}
601
90bd6fd3
PH
602/*
603 * This helper is used for getting right index into array of tree roots.
604 * When merge_across_nodes knob is set to 1, there are only two rb-trees for
605 * stable and unstable pages from all nodes with roots in index 0. Otherwise,
606 * every node has its own stable and unstable tree.
607 */
608static inline int get_kpfn_nid(unsigned long kpfn)
609{
d8fc16a8 610 return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
90bd6fd3
PH
611}
612
21fbd591 613static struct ksm_stable_node *alloc_stable_node_chain(struct ksm_stable_node *dup,
2c653d0e
AA
614 struct rb_root *root)
615{
21fbd591 616 struct ksm_stable_node *chain = alloc_stable_node();
2c653d0e
AA
617 VM_BUG_ON(is_stable_node_chain(dup));
618 if (likely(chain)) {
619 INIT_HLIST_HEAD(&chain->hlist);
620 chain->chain_prune_time = jiffies;
621 chain->rmap_hlist_len = STABLE_NODE_CHAIN;
622#if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA)
98fa15f3 623 chain->nid = NUMA_NO_NODE; /* debug */
2c653d0e
AA
624#endif
625 ksm_stable_node_chains++;
626
627 /*
628 * Put the stable node chain in the first dimension of
629 * the stable tree and at the same time remove the old
630 * stable node.
631 */
632 rb_replace_node(&dup->node, &chain->node, root);
633
634 /*
635 * Move the old stable node to the second dimension
636 * queued in the hlist_dup. The invariant is that all
637 * dup stable_nodes in the chain->hlist point to pages
457aef94 638 * that are write protected and have the exact same
2c653d0e
AA
639 * content.
640 */
641 stable_node_chain_add_dup(dup, chain);
642 }
643 return chain;
644}
645
21fbd591 646static inline void free_stable_node_chain(struct ksm_stable_node *chain,
2c653d0e
AA
647 struct rb_root *root)
648{
649 rb_erase(&chain->node, root);
650 free_stable_node(chain);
651 ksm_stable_node_chains--;
652}
653
21fbd591 654static void remove_node_from_stable_tree(struct ksm_stable_node *stable_node)
4035c07a 655{
21fbd591 656 struct ksm_rmap_item *rmap_item;
4035c07a 657
2c653d0e
AA
658 /* check it's not STABLE_NODE_CHAIN or negative */
659 BUG_ON(stable_node->rmap_hlist_len < 0);
660
b67bfe0d 661 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
739100c8 662 if (rmap_item->hlist.next) {
4035c07a 663 ksm_pages_sharing--;
739100c8
SR
664 trace_ksm_remove_rmap_item(stable_node->kpfn, rmap_item, rmap_item->mm);
665 } else {
4035c07a 666 ksm_pages_shared--;
739100c8 667 }
76093853 668
669 rmap_item->mm->ksm_merging_pages--;
670
2c653d0e
AA
671 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
672 stable_node->rmap_hlist_len--;
9e60109f 673 put_anon_vma(rmap_item->anon_vma);
4035c07a
HD
674 rmap_item->address &= PAGE_MASK;
675 cond_resched();
676 }
677
2c653d0e
AA
678 /*
679 * We need the second aligned pointer of the migrate_nodes
680 * list_head to stay clear from the rb_parent_color union
681 * (aligned and different than any node) and also different
682 * from &migrate_nodes. This will verify that future list.h changes
815f0ddb 683 * don't break STABLE_NODE_DUP_HEAD. Only recent gcc can handle it.
2c653d0e 684 */
2c653d0e
AA
685 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes);
686 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1);
2c653d0e 687
739100c8 688 trace_ksm_remove_ksm_page(stable_node->kpfn);
4146d2d6
HD
689 if (stable_node->head == &migrate_nodes)
690 list_del(&stable_node->list);
691 else
2c653d0e 692 stable_node_dup_del(stable_node);
4035c07a
HD
693 free_stable_node(stable_node);
694}
695
2cee57d1
YS
696enum get_ksm_page_flags {
697 GET_KSM_PAGE_NOLOCK,
698 GET_KSM_PAGE_LOCK,
699 GET_KSM_PAGE_TRYLOCK
700};
701
4035c07a
HD
702/*
703 * get_ksm_page: checks if the page indicated by the stable node
704 * is still its ksm page, despite having held no reference to it.
705 * In which case we can trust the content of the page, and it
706 * returns the gotten page; but if the page has now been zapped,
707 * remove the stale node from the stable tree and return NULL.
c8d6553b 708 * But beware, the stable node's page might be being migrated.
4035c07a
HD
709 *
710 * You would expect the stable_node to hold a reference to the ksm page.
711 * But if it increments the page's count, swapping out has to wait for
712 * ksmd to come around again before it can free the page, which may take
713 * seconds or even minutes: much too unresponsive. So instead we use a
714 * "keyhole reference": access to the ksm page from the stable node peeps
715 * out through its keyhole to see if that page still holds the right key,
716 * pointing back to this stable node. This relies on freeing a PageAnon
717 * page to reset its page->mapping to NULL, and relies on no other use of
718 * a page to put something that might look like our key in page->mapping.
4035c07a
HD
719 * is on its way to being freed; but it is an anomaly to bear in mind.
720 */
21fbd591 721static struct page *get_ksm_page(struct ksm_stable_node *stable_node,
2cee57d1 722 enum get_ksm_page_flags flags)
4035c07a
HD
723{
724 struct page *page;
725 void *expected_mapping;
c8d6553b 726 unsigned long kpfn;
4035c07a 727
bda807d4
MK
728 expected_mapping = (void *)((unsigned long)stable_node |
729 PAGE_MAPPING_KSM);
c8d6553b 730again:
08df4774 731 kpfn = READ_ONCE(stable_node->kpfn); /* Address dependency. */
c8d6553b 732 page = pfn_to_page(kpfn);
4db0c3c2 733 if (READ_ONCE(page->mapping) != expected_mapping)
4035c07a 734 goto stale;
c8d6553b
HD
735
736 /*
737 * We cannot do anything with the page while its refcount is 0.
738 * Usually 0 means free, or tail of a higher-order page: in which
739 * case this node is no longer referenced, and should be freed;
1c4c3b99 740 * however, it might mean that the page is under page_ref_freeze().
c8d6553b 741 * The __remove_mapping() case is easy, again the node is now stale;
52d1e606 742 * the same is in reuse_ksm_page() case; but if page is swapcache
9800562f 743 * in folio_migrate_mapping(), it might still be our page,
52d1e606 744 * in which case it's essential to keep the node.
c8d6553b
HD
745 */
746 while (!get_page_unless_zero(page)) {
747 /*
748 * Another check for page->mapping != expected_mapping would
749 * work here too. We have chosen the !PageSwapCache test to
750 * optimize the common case, when the page is or is about to
751 * be freed: PageSwapCache is cleared (under spin_lock_irq)
1c4c3b99 752 * in the ref_freeze section of __remove_mapping(); but Anon
c8d6553b
HD
753 * page->mapping reset to NULL later, in free_pages_prepare().
754 */
755 if (!PageSwapCache(page))
756 goto stale;
757 cpu_relax();
758 }
759
4db0c3c2 760 if (READ_ONCE(page->mapping) != expected_mapping) {
4035c07a
HD
761 put_page(page);
762 goto stale;
763 }
c8d6553b 764
2cee57d1
YS
765 if (flags == GET_KSM_PAGE_TRYLOCK) {
766 if (!trylock_page(page)) {
767 put_page(page);
768 return ERR_PTR(-EBUSY);
769 }
770 } else if (flags == GET_KSM_PAGE_LOCK)
8aafa6a4 771 lock_page(page);
2cee57d1
YS
772
773 if (flags != GET_KSM_PAGE_NOLOCK) {
4db0c3c2 774 if (READ_ONCE(page->mapping) != expected_mapping) {
8aafa6a4
HD
775 unlock_page(page);
776 put_page(page);
777 goto stale;
778 }
779 }
4035c07a 780 return page;
c8d6553b 781
4035c07a 782stale:
c8d6553b
HD
783 /*
784 * We come here from above when page->mapping or !PageSwapCache
785 * suggests that the node is stale; but it might be under migration.
19138349 786 * We need smp_rmb(), matching the smp_wmb() in folio_migrate_ksm(),
c8d6553b
HD
787 * before checking whether node->kpfn has been changed.
788 */
789 smp_rmb();
4db0c3c2 790 if (READ_ONCE(stable_node->kpfn) != kpfn)
c8d6553b 791 goto again;
4035c07a
HD
792 remove_node_from_stable_tree(stable_node);
793 return NULL;
794}
795
31dbd01f
IE
796/*
797 * Removing rmap_item from stable or unstable tree.
798 * This function will clean the information from the stable/unstable tree.
799 */
21fbd591 800static void remove_rmap_item_from_tree(struct ksm_rmap_item *rmap_item)
31dbd01f 801{
7b6ba2c7 802 if (rmap_item->address & STABLE_FLAG) {
21fbd591 803 struct ksm_stable_node *stable_node;
5ad64688 804 struct page *page;
31dbd01f 805
7b6ba2c7 806 stable_node = rmap_item->head;
62862290 807 page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK);
4035c07a
HD
808 if (!page)
809 goto out;
5ad64688 810
7b6ba2c7 811 hlist_del(&rmap_item->hlist);
62862290 812 unlock_page(page);
4035c07a 813 put_page(page);
08beca44 814
98666f8a 815 if (!hlist_empty(&stable_node->hlist))
4035c07a
HD
816 ksm_pages_sharing--;
817 else
7b6ba2c7 818 ksm_pages_shared--;
76093853 819
820 rmap_item->mm->ksm_merging_pages--;
821
2c653d0e
AA
822 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
823 stable_node->rmap_hlist_len--;
31dbd01f 824
9e60109f 825 put_anon_vma(rmap_item->anon_vma);
c89a384e 826 rmap_item->head = NULL;
93d17715 827 rmap_item->address &= PAGE_MASK;
31dbd01f 828
7b6ba2c7 829 } else if (rmap_item->address & UNSTABLE_FLAG) {
31dbd01f
IE
830 unsigned char age;
831 /*
9ba69294 832 * Usually ksmd can and must skip the rb_erase, because
31dbd01f 833 * root_unstable_tree was already reset to RB_ROOT.
9ba69294
HD
834 * But be careful when an mm is exiting: do the rb_erase
835 * if this rmap_item was inserted by this scan, rather
836 * than left over from before.
31dbd01f
IE
837 */
838 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
cd551f97 839 BUG_ON(age > 1);
31dbd01f 840 if (!age)
90bd6fd3 841 rb_erase(&rmap_item->node,
ef53d16c 842 root_unstable_tree + NUMA(rmap_item->nid));
473b0ce4 843 ksm_pages_unshared--;
93d17715 844 rmap_item->address &= PAGE_MASK;
31dbd01f 845 }
4035c07a 846out:
31dbd01f
IE
847 cond_resched(); /* we're called from many long loops */
848}
849
21fbd591 850static void remove_trailing_rmap_items(struct ksm_rmap_item **rmap_list)
31dbd01f 851{
6514d511 852 while (*rmap_list) {
21fbd591 853 struct ksm_rmap_item *rmap_item = *rmap_list;
6514d511 854 *rmap_list = rmap_item->rmap_list;
31dbd01f 855 remove_rmap_item_from_tree(rmap_item);
31dbd01f
IE
856 free_rmap_item(rmap_item);
857 }
858}
859
860/*
e850dcf5 861 * Though it's very tempting to unmerge rmap_items from stable tree rather
31dbd01f
IE
862 * than check every pte of a given vma, the locking doesn't quite work for
863 * that - an rmap_item is assigned to the stable tree after inserting ksm
c1e8d7c6 864 * page and upping mmap_lock. Nor does it fit with the way we skip dup'ing
31dbd01f
IE
865 * rmap_items from parent to child at fork time (so as not to waste time
866 * if exit comes before the next scan reaches it).
81464e30
HD
867 *
868 * Similarly, although we'd like to remove rmap_items (so updating counts
869 * and freeing memory) when unmerging an area, it's easier to leave that
870 * to the next pass of ksmd - consider, for example, how ksmd might be
871 * in cmp_and_merge_page on one of the rmap_items we would be removing.
31dbd01f 872 */
d952b791
HD
873static int unmerge_ksm_pages(struct vm_area_struct *vma,
874 unsigned long start, unsigned long end)
31dbd01f
IE
875{
876 unsigned long addr;
d952b791 877 int err = 0;
31dbd01f 878
d952b791 879 for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
9ba69294
HD
880 if (ksm_test_exit(vma->vm_mm))
881 break;
d952b791
HD
882 if (signal_pending(current))
883 err = -ERESTARTSYS;
884 else
885 err = break_ksm(vma, addr);
886 }
887 return err;
31dbd01f
IE
888}
889
21fbd591 890static inline struct ksm_stable_node *folio_stable_node(struct folio *folio)
19138349
MWO
891{
892 return folio_test_ksm(folio) ? folio_raw_mapping(folio) : NULL;
893}
894
21fbd591 895static inline struct ksm_stable_node *page_stable_node(struct page *page)
88484826 896{
19138349 897 return folio_stable_node(page_folio(page));
88484826
MR
898}
899
900static inline void set_page_stable_node(struct page *page,
21fbd591 901 struct ksm_stable_node *stable_node)
88484826 902{
6c287605 903 VM_BUG_ON_PAGE(PageAnon(page) && PageAnonExclusive(page), page);
88484826
MR
904 page->mapping = (void *)((unsigned long)stable_node | PAGE_MAPPING_KSM);
905}
906
2ffd8679
HD
907#ifdef CONFIG_SYSFS
908/*
909 * Only called through the sysfs control interface:
910 */
21fbd591 911static int remove_stable_node(struct ksm_stable_node *stable_node)
cbf86cfe
HD
912{
913 struct page *page;
914 int err;
915
2cee57d1 916 page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK);
cbf86cfe
HD
917 if (!page) {
918 /*
919 * get_ksm_page did remove_node_from_stable_tree itself.
920 */
921 return 0;
922 }
923
9a63236f
AR
924 /*
925 * Page could be still mapped if this races with __mmput() running in
926 * between ksm_exit() and exit_mmap(). Just refuse to let
927 * merge_across_nodes/max_page_sharing be switched.
928 */
929 err = -EBUSY;
930 if (!page_mapped(page)) {
cbf86cfe 931 /*
8fdb3dbf
HD
932 * The stable node did not yet appear stale to get_ksm_page(),
933 * since that allows for an unmapped ksm page to be recognized
934 * right up until it is freed; but the node is safe to remove.
cbf86cfe
HD
935 * This page might be in a pagevec waiting to be freed,
936 * or it might be PageSwapCache (perhaps under writeback),
937 * or it might have been removed from swapcache a moment ago.
938 */
939 set_page_stable_node(page, NULL);
940 remove_node_from_stable_tree(stable_node);
941 err = 0;
942 }
943
944 unlock_page(page);
945 put_page(page);
946 return err;
947}
948
21fbd591 949static int remove_stable_node_chain(struct ksm_stable_node *stable_node,
2c653d0e
AA
950 struct rb_root *root)
951{
21fbd591 952 struct ksm_stable_node *dup;
2c653d0e
AA
953 struct hlist_node *hlist_safe;
954
955 if (!is_stable_node_chain(stable_node)) {
956 VM_BUG_ON(is_stable_node_dup(stable_node));
957 if (remove_stable_node(stable_node))
958 return true;
959 else
960 return false;
961 }
962
963 hlist_for_each_entry_safe(dup, hlist_safe,
964 &stable_node->hlist, hlist_dup) {
965 VM_BUG_ON(!is_stable_node_dup(dup));
966 if (remove_stable_node(dup))
967 return true;
968 }
969 BUG_ON(!hlist_empty(&stable_node->hlist));
970 free_stable_node_chain(stable_node, root);
971 return false;
972}
973
cbf86cfe
HD
974static int remove_all_stable_nodes(void)
975{
21fbd591 976 struct ksm_stable_node *stable_node, *next;
cbf86cfe
HD
977 int nid;
978 int err = 0;
979
ef53d16c 980 for (nid = 0; nid < ksm_nr_node_ids; nid++) {
cbf86cfe
HD
981 while (root_stable_tree[nid].rb_node) {
982 stable_node = rb_entry(root_stable_tree[nid].rb_node,
21fbd591 983 struct ksm_stable_node, node);
2c653d0e
AA
984 if (remove_stable_node_chain(stable_node,
985 root_stable_tree + nid)) {
cbf86cfe
HD
986 err = -EBUSY;
987 break; /* proceed to next nid */
988 }
989 cond_resched();
990 }
991 }
03640418 992 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
4146d2d6
HD
993 if (remove_stable_node(stable_node))
994 err = -EBUSY;
995 cond_resched();
996 }
cbf86cfe
HD
997 return err;
998}
999
d952b791 1000static int unmerge_and_remove_all_rmap_items(void)
31dbd01f 1001{
21fbd591 1002 struct ksm_mm_slot *mm_slot;
58730ab6 1003 struct mm_slot *slot;
31dbd01f
IE
1004 struct mm_struct *mm;
1005 struct vm_area_struct *vma;
d952b791
HD
1006 int err = 0;
1007
1008 spin_lock(&ksm_mmlist_lock);
58730ab6
QZ
1009 slot = list_entry(ksm_mm_head.slot.mm_node.next,
1010 struct mm_slot, mm_node);
1011 ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
d952b791 1012 spin_unlock(&ksm_mmlist_lock);
31dbd01f 1013
a5f18ba0
MWO
1014 for (mm_slot = ksm_scan.mm_slot; mm_slot != &ksm_mm_head;
1015 mm_slot = ksm_scan.mm_slot) {
58730ab6 1016 VMA_ITERATOR(vmi, mm_slot->slot.mm, 0);
a5f18ba0 1017
58730ab6 1018 mm = mm_slot->slot.mm;
d8ed45c5 1019 mmap_read_lock(mm);
6db504ce
LH
1020
1021 /*
1022 * Exit right away if mm is exiting to avoid lockdep issue in
1023 * the maple tree
1024 */
1025 if (ksm_test_exit(mm))
1026 goto mm_exiting;
1027
a5f18ba0 1028 for_each_vma(vmi, vma) {
31dbd01f
IE
1029 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
1030 continue;
d952b791
HD
1031 err = unmerge_ksm_pages(vma,
1032 vma->vm_start, vma->vm_end);
9ba69294
HD
1033 if (err)
1034 goto error;
31dbd01f 1035 }
9ba69294 1036
6db504ce 1037mm_exiting:
420be4ed 1038 remove_trailing_rmap_items(&mm_slot->rmap_list);
d8ed45c5 1039 mmap_read_unlock(mm);
d952b791
HD
1040
1041 spin_lock(&ksm_mmlist_lock);
58730ab6
QZ
1042 slot = list_entry(mm_slot->slot.mm_node.next,
1043 struct mm_slot, mm_node);
1044 ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
9ba69294 1045 if (ksm_test_exit(mm)) {
58730ab6
QZ
1046 hash_del(&mm_slot->slot.hash);
1047 list_del(&mm_slot->slot.mm_node);
9ba69294
HD
1048 spin_unlock(&ksm_mmlist_lock);
1049
58730ab6 1050 mm_slot_free(mm_slot_cache, mm_slot);
9ba69294 1051 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
d7597f59 1052 clear_bit(MMF_VM_MERGE_ANY, &mm->flags);
9ba69294 1053 mmdrop(mm);
7496fea9 1054 } else
9ba69294 1055 spin_unlock(&ksm_mmlist_lock);
31dbd01f
IE
1056 }
1057
cbf86cfe
HD
1058 /* Clean up stable nodes, but don't worry if some are still busy */
1059 remove_all_stable_nodes();
d952b791 1060 ksm_scan.seqnr = 0;
9ba69294
HD
1061 return 0;
1062
1063error:
d8ed45c5 1064 mmap_read_unlock(mm);
31dbd01f 1065 spin_lock(&ksm_mmlist_lock);
d952b791 1066 ksm_scan.mm_slot = &ksm_mm_head;
31dbd01f 1067 spin_unlock(&ksm_mmlist_lock);
d952b791 1068 return err;
31dbd01f 1069}
2ffd8679 1070#endif /* CONFIG_SYSFS */
31dbd01f 1071
31dbd01f
IE
1072static u32 calc_checksum(struct page *page)
1073{
1074 u32 checksum;
9b04c5fe 1075 void *addr = kmap_atomic(page);
59e1a2f4 1076 checksum = xxhash(addr, PAGE_SIZE, 0);
9b04c5fe 1077 kunmap_atomic(addr);
31dbd01f
IE
1078 return checksum;
1079}
1080
31dbd01f
IE
1081static int write_protect_page(struct vm_area_struct *vma, struct page *page,
1082 pte_t *orig_pte)
1083{
1084 struct mm_struct *mm = vma->vm_mm;
eed05e54 1085 DEFINE_PAGE_VMA_WALK(pvmw, page, vma, 0, 0);
31dbd01f
IE
1086 int swapped;
1087 int err = -EFAULT;
ac46d4f3 1088 struct mmu_notifier_range range;
6c287605 1089 bool anon_exclusive;
c33c7948 1090 pte_t entry;
31dbd01f 1091
36eaff33
KS
1092 pvmw.address = page_address_in_vma(page, vma);
1093 if (pvmw.address == -EFAULT)
31dbd01f
IE
1094 goto out;
1095
29ad768c 1096 BUG_ON(PageTransCompound(page));
6bdb913f 1097
7d4a8be0 1098 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, pvmw.address,
ac46d4f3
JG
1099 pvmw.address + PAGE_SIZE);
1100 mmu_notifier_invalidate_range_start(&range);
6bdb913f 1101
36eaff33 1102 if (!page_vma_mapped_walk(&pvmw))
6bdb913f 1103 goto out_mn;
36eaff33
KS
1104 if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?"))
1105 goto out_unlock;
31dbd01f 1106
6c287605 1107 anon_exclusive = PageAnonExclusive(page);
c33c7948
RR
1108 entry = ptep_get(pvmw.pte);
1109 if (pte_write(entry) || pte_dirty(entry) ||
6c287605 1110 anon_exclusive || mm_tlb_flush_pending(mm)) {
31dbd01f 1111 swapped = PageSwapCache(page);
36eaff33 1112 flush_cache_page(vma, pvmw.address, page_to_pfn(page));
31dbd01f 1113 /*
25985edc 1114 * Ok this is tricky, when get_user_pages_fast() run it doesn't
31dbd01f 1115 * take any lock, therefore the check that we are going to make
f0953a1b 1116 * with the pagecount against the mapcount is racy and
31dbd01f
IE
1117 * O_DIRECT can happen right after the check.
1118 * So we clear the pte and flush the tlb before the check
1119 * this assure us that no O_DIRECT can happen after the check
1120 * or in the middle of the check.
0f10851e
JG
1121 *
1122 * No need to notify as we are downgrading page table to read
1123 * only not changing it to point to a new page.
1124 *
ee65728e 1125 * See Documentation/mm/mmu_notifier.rst
31dbd01f 1126 */
0f10851e 1127 entry = ptep_clear_flush(vma, pvmw.address, pvmw.pte);
31dbd01f
IE
1128 /*
1129 * Check that no O_DIRECT or similar I/O is in progress on the
1130 * page
1131 */
31e855ea 1132 if (page_mapcount(page) + 1 + swapped != page_count(page)) {
36eaff33 1133 set_pte_at(mm, pvmw.address, pvmw.pte, entry);
31dbd01f
IE
1134 goto out_unlock;
1135 }
6c287605 1136
088b8aa5 1137 /* See page_try_share_anon_rmap(): clear PTE first. */
6c287605
DH
1138 if (anon_exclusive && page_try_share_anon_rmap(page)) {
1139 set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1140 goto out_unlock;
1141 }
1142
4e31635c
HD
1143 if (pte_dirty(entry))
1144 set_page_dirty(page);
6a56ccbc
DH
1145 entry = pte_mkclean(entry);
1146
1147 if (pte_write(entry))
1148 entry = pte_wrprotect(entry);
595cd8f2 1149
36eaff33 1150 set_pte_at_notify(mm, pvmw.address, pvmw.pte, entry);
31dbd01f 1151 }
c33c7948 1152 *orig_pte = entry;
31dbd01f
IE
1153 err = 0;
1154
1155out_unlock:
36eaff33 1156 page_vma_mapped_walk_done(&pvmw);
6bdb913f 1157out_mn:
ac46d4f3 1158 mmu_notifier_invalidate_range_end(&range);
31dbd01f
IE
1159out:
1160 return err;
1161}
1162
1163/**
1164 * replace_page - replace page in vma by new ksm page
8dd3557a
HD
1165 * @vma: vma that holds the pte pointing to page
1166 * @page: the page we are replacing by kpage
1167 * @kpage: the ksm page we replace page by
31dbd01f
IE
1168 * @orig_pte: the original value of the pte
1169 *
1170 * Returns 0 on success, -EFAULT on failure.
1171 */
8dd3557a
HD
1172static int replace_page(struct vm_area_struct *vma, struct page *page,
1173 struct page *kpage, pte_t orig_pte)
31dbd01f
IE
1174{
1175 struct mm_struct *mm = vma->vm_mm;
b4e6f66e 1176 struct folio *folio;
31dbd01f 1177 pmd_t *pmd;
50722804 1178 pmd_t pmde;
31dbd01f 1179 pte_t *ptep;
e86c59b1 1180 pte_t newpte;
31dbd01f
IE
1181 spinlock_t *ptl;
1182 unsigned long addr;
31dbd01f 1183 int err = -EFAULT;
ac46d4f3 1184 struct mmu_notifier_range range;
31dbd01f 1185
8dd3557a 1186 addr = page_address_in_vma(page, vma);
31dbd01f
IE
1187 if (addr == -EFAULT)
1188 goto out;
1189
6219049a
BL
1190 pmd = mm_find_pmd(mm, addr);
1191 if (!pmd)
31dbd01f 1192 goto out;
50722804
ZK
1193 /*
1194 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
1195 * without holding anon_vma lock for write. So when looking for a
1196 * genuine pmde (in which to find pte), test present and !THP together.
1197 */
26e1a0c3 1198 pmde = pmdp_get_lockless(pmd);
50722804
ZK
1199 if (!pmd_present(pmde) || pmd_trans_huge(pmde))
1200 goto out;
31dbd01f 1201
7d4a8be0 1202 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, addr,
6f4f13e8 1203 addr + PAGE_SIZE);
ac46d4f3 1204 mmu_notifier_invalidate_range_start(&range);
6bdb913f 1205
31dbd01f 1206 ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
04dee9e8
HD
1207 if (!ptep)
1208 goto out_mn;
c33c7948 1209 if (!pte_same(ptep_get(ptep), orig_pte)) {
31dbd01f 1210 pte_unmap_unlock(ptep, ptl);
6bdb913f 1211 goto out_mn;
31dbd01f 1212 }
6c287605
DH
1213 VM_BUG_ON_PAGE(PageAnonExclusive(page), page);
1214 VM_BUG_ON_PAGE(PageAnon(kpage) && PageAnonExclusive(kpage), kpage);
31dbd01f 1215
e86c59b1
CI
1216 /*
1217 * No need to check ksm_use_zero_pages here: we can only have a
457aef94 1218 * zero_page here if ksm_use_zero_pages was enabled already.
e86c59b1
CI
1219 */
1220 if (!is_zero_pfn(page_to_pfn(kpage))) {
1221 get_page(kpage);
f1e2db12 1222 page_add_anon_rmap(kpage, vma, addr, RMAP_NONE);
e86c59b1
CI
1223 newpte = mk_pte(kpage, vma->vm_page_prot);
1224 } else {
1225 newpte = pte_mkspecial(pfn_pte(page_to_pfn(kpage),
1226 vma->vm_page_prot));
a38c015f
CI
1227 /*
1228 * We're replacing an anonymous page with a zero page, which is
1229 * not anonymous. We need to do proper accounting otherwise we
1230 * will get wrong values in /proc, and a BUG message in dmesg
1231 * when tearing down the mm.
1232 */
1233 dec_mm_counter(mm, MM_ANONPAGES);
e86c59b1 1234 }
31dbd01f 1235
c33c7948 1236 flush_cache_page(vma, addr, pte_pfn(ptep_get(ptep)));
0f10851e
JG
1237 /*
1238 * No need to notify as we are replacing a read only page with another
1239 * read only page with the same content.
1240 *
ee65728e 1241 * See Documentation/mm/mmu_notifier.rst
0f10851e
JG
1242 */
1243 ptep_clear_flush(vma, addr, ptep);
e86c59b1 1244 set_pte_at_notify(mm, addr, ptep, newpte);
31dbd01f 1245
b4e6f66e 1246 folio = page_folio(page);
cea86fe2 1247 page_remove_rmap(page, vma, false);
b4e6f66e
MWO
1248 if (!folio_mapped(folio))
1249 folio_free_swap(folio);
1250 folio_put(folio);
31dbd01f
IE
1251
1252 pte_unmap_unlock(ptep, ptl);
1253 err = 0;
6bdb913f 1254out_mn:
ac46d4f3 1255 mmu_notifier_invalidate_range_end(&range);
31dbd01f
IE
1256out:
1257 return err;
1258}
1259
1260/*
1261 * try_to_merge_one_page - take two pages and merge them into one
8dd3557a
HD
1262 * @vma: the vma that holds the pte pointing to page
1263 * @page: the PageAnon page that we want to replace with kpage
80e14822
HD
1264 * @kpage: the PageKsm page that we want to map instead of page,
1265 * or NULL the first time when we want to use page as kpage.
31dbd01f
IE
1266 *
1267 * This function returns 0 if the pages were merged, -EFAULT otherwise.
1268 */
1269static int try_to_merge_one_page(struct vm_area_struct *vma,
8dd3557a 1270 struct page *page, struct page *kpage)
31dbd01f
IE
1271{
1272 pte_t orig_pte = __pte(0);
1273 int err = -EFAULT;
1274
db114b83
HD
1275 if (page == kpage) /* ksm page forked */
1276 return 0;
1277
8dd3557a 1278 if (!PageAnon(page))
31dbd01f
IE
1279 goto out;
1280
31dbd01f
IE
1281 /*
1282 * We need the page lock to read a stable PageSwapCache in
1283 * write_protect_page(). We use trylock_page() instead of
1284 * lock_page() because we don't want to wait here - we
1285 * prefer to continue scanning and merging different pages,
1286 * then come back to this page when it is unlocked.
1287 */
8dd3557a 1288 if (!trylock_page(page))
31e855ea 1289 goto out;
f765f540
KS
1290
1291 if (PageTransCompound(page)) {
a7306c34 1292 if (split_huge_page(page))
f765f540
KS
1293 goto out_unlock;
1294 }
1295
31dbd01f
IE
1296 /*
1297 * If this anonymous page is mapped only here, its pte may need
1298 * to be write-protected. If it's mapped elsewhere, all of its
1299 * ptes are necessarily already write-protected. But in either
1300 * case, we need to lock and check page_count is not raised.
1301 */
80e14822
HD
1302 if (write_protect_page(vma, page, &orig_pte) == 0) {
1303 if (!kpage) {
1304 /*
1305 * While we hold page lock, upgrade page from
1306 * PageAnon+anon_vma to PageKsm+NULL stable_node:
1307 * stable_tree_insert() will update stable_node.
1308 */
1309 set_page_stable_node(page, NULL);
1310 mark_page_accessed(page);
337ed7eb
MK
1311 /*
1312 * Page reclaim just frees a clean page with no dirty
1313 * ptes: make sure that the ksm page would be swapped.
1314 */
1315 if (!PageDirty(page))
1316 SetPageDirty(page);
80e14822
HD
1317 err = 0;
1318 } else if (pages_identical(page, kpage))
1319 err = replace_page(vma, page, kpage, orig_pte);
1320 }
31dbd01f 1321
f765f540 1322out_unlock:
8dd3557a 1323 unlock_page(page);
31dbd01f
IE
1324out:
1325 return err;
1326}
1327
81464e30
HD
1328/*
1329 * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1330 * but no new kernel page is allocated: kpage must already be a ksm page.
8dd3557a
HD
1331 *
1332 * This function returns 0 if the pages were merged, -EFAULT otherwise.
81464e30 1333 */
21fbd591 1334static int try_to_merge_with_ksm_page(struct ksm_rmap_item *rmap_item,
8dd3557a 1335 struct page *page, struct page *kpage)
81464e30 1336{
8dd3557a 1337 struct mm_struct *mm = rmap_item->mm;
81464e30
HD
1338 struct vm_area_struct *vma;
1339 int err = -EFAULT;
1340
d8ed45c5 1341 mmap_read_lock(mm);
85c6e8dd
AA
1342 vma = find_mergeable_vma(mm, rmap_item->address);
1343 if (!vma)
81464e30
HD
1344 goto out;
1345
8dd3557a 1346 err = try_to_merge_one_page(vma, page, kpage);
db114b83
HD
1347 if (err)
1348 goto out;
1349
bc56620b
HD
1350 /* Unstable nid is in union with stable anon_vma: remove first */
1351 remove_rmap_item_from_tree(rmap_item);
1352
c1e8d7c6 1353 /* Must get reference to anon_vma while still holding mmap_lock */
9e60109f
PZ
1354 rmap_item->anon_vma = vma->anon_vma;
1355 get_anon_vma(vma->anon_vma);
81464e30 1356out:
d8ed45c5 1357 mmap_read_unlock(mm);
739100c8
SR
1358 trace_ksm_merge_with_ksm_page(kpage, page_to_pfn(kpage ? kpage : page),
1359 rmap_item, mm, err);
81464e30
HD
1360 return err;
1361}
1362
31dbd01f
IE
1363/*
1364 * try_to_merge_two_pages - take two identical pages and prepare them
1365 * to be merged into one page.
1366 *
8dd3557a
HD
1367 * This function returns the kpage if we successfully merged two identical
1368 * pages into one ksm page, NULL otherwise.
31dbd01f 1369 *
80e14822 1370 * Note that this function upgrades page to ksm page: if one of the pages
31dbd01f
IE
1371 * is already a ksm page, try_to_merge_with_ksm_page should be used.
1372 */
21fbd591 1373static struct page *try_to_merge_two_pages(struct ksm_rmap_item *rmap_item,
8dd3557a 1374 struct page *page,
21fbd591 1375 struct ksm_rmap_item *tree_rmap_item,
8dd3557a 1376 struct page *tree_page)
31dbd01f 1377{
80e14822 1378 int err;
31dbd01f 1379
80e14822 1380 err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
31dbd01f 1381 if (!err) {
8dd3557a 1382 err = try_to_merge_with_ksm_page(tree_rmap_item,
80e14822 1383 tree_page, page);
31dbd01f 1384 /*
81464e30
HD
1385 * If that fails, we have a ksm page with only one pte
1386 * pointing to it: so break it.
31dbd01f 1387 */
4035c07a 1388 if (err)
8dd3557a 1389 break_cow(rmap_item);
31dbd01f 1390 }
80e14822 1391 return err ? NULL : page;
31dbd01f
IE
1392}
1393
2c653d0e 1394static __always_inline
21fbd591 1395bool __is_page_sharing_candidate(struct ksm_stable_node *stable_node, int offset)
2c653d0e
AA
1396{
1397 VM_BUG_ON(stable_node->rmap_hlist_len < 0);
1398 /*
1399 * Check that at least one mapping still exists, otherwise
1400 * there's no much point to merge and share with this
1401 * stable_node, as the underlying tree_page of the other
1402 * sharer is going to be freed soon.
1403 */
1404 return stable_node->rmap_hlist_len &&
1405 stable_node->rmap_hlist_len + offset < ksm_max_page_sharing;
1406}
1407
1408static __always_inline
21fbd591 1409bool is_page_sharing_candidate(struct ksm_stable_node *stable_node)
2c653d0e
AA
1410{
1411 return __is_page_sharing_candidate(stable_node, 0);
1412}
1413
21fbd591
QZ
1414static struct page *stable_node_dup(struct ksm_stable_node **_stable_node_dup,
1415 struct ksm_stable_node **_stable_node,
c01f0b54
CIK
1416 struct rb_root *root,
1417 bool prune_stale_stable_nodes)
2c653d0e 1418{
21fbd591 1419 struct ksm_stable_node *dup, *found = NULL, *stable_node = *_stable_node;
2c653d0e 1420 struct hlist_node *hlist_safe;
8dc5ffcd 1421 struct page *_tree_page, *tree_page = NULL;
2c653d0e
AA
1422 int nr = 0;
1423 int found_rmap_hlist_len;
1424
1425 if (!prune_stale_stable_nodes ||
1426 time_before(jiffies, stable_node->chain_prune_time +
1427 msecs_to_jiffies(
1428 ksm_stable_node_chains_prune_millisecs)))
1429 prune_stale_stable_nodes = false;
1430 else
1431 stable_node->chain_prune_time = jiffies;
1432
1433 hlist_for_each_entry_safe(dup, hlist_safe,
1434 &stable_node->hlist, hlist_dup) {
1435 cond_resched();
1436 /*
1437 * We must walk all stable_node_dup to prune the stale
1438 * stable nodes during lookup.
1439 *
1440 * get_ksm_page can drop the nodes from the
1441 * stable_node->hlist if they point to freed pages
1442 * (that's why we do a _safe walk). The "dup"
1443 * stable_node parameter itself will be freed from
1444 * under us if it returns NULL.
1445 */
2cee57d1 1446 _tree_page = get_ksm_page(dup, GET_KSM_PAGE_NOLOCK);
2c653d0e
AA
1447 if (!_tree_page)
1448 continue;
1449 nr += 1;
1450 if (is_page_sharing_candidate(dup)) {
1451 if (!found ||
1452 dup->rmap_hlist_len > found_rmap_hlist_len) {
1453 if (found)
8dc5ffcd 1454 put_page(tree_page);
2c653d0e
AA
1455 found = dup;
1456 found_rmap_hlist_len = found->rmap_hlist_len;
8dc5ffcd 1457 tree_page = _tree_page;
2c653d0e 1458
8dc5ffcd 1459 /* skip put_page for found dup */
2c653d0e
AA
1460 if (!prune_stale_stable_nodes)
1461 break;
2c653d0e
AA
1462 continue;
1463 }
1464 }
1465 put_page(_tree_page);
1466 }
1467
80b18dfa
AA
1468 if (found) {
1469 /*
1470 * nr is counting all dups in the chain only if
1471 * prune_stale_stable_nodes is true, otherwise we may
1472 * break the loop at nr == 1 even if there are
1473 * multiple entries.
1474 */
1475 if (prune_stale_stable_nodes && nr == 1) {
2c653d0e
AA
1476 /*
1477 * If there's not just one entry it would
1478 * corrupt memory, better BUG_ON. In KSM
1479 * context with no lock held it's not even
1480 * fatal.
1481 */
1482 BUG_ON(stable_node->hlist.first->next);
1483
1484 /*
1485 * There's just one entry and it is below the
1486 * deduplication limit so drop the chain.
1487 */
1488 rb_replace_node(&stable_node->node, &found->node,
1489 root);
1490 free_stable_node(stable_node);
1491 ksm_stable_node_chains--;
1492 ksm_stable_node_dups--;
b4fecc67 1493 /*
0ba1d0f7
AA
1494 * NOTE: the caller depends on the stable_node
1495 * to be equal to stable_node_dup if the chain
1496 * was collapsed.
b4fecc67 1497 */
0ba1d0f7
AA
1498 *_stable_node = found;
1499 /*
f0953a1b 1500 * Just for robustness, as stable_node is
0ba1d0f7
AA
1501 * otherwise left as a stable pointer, the
1502 * compiler shall optimize it away at build
1503 * time.
1504 */
1505 stable_node = NULL;
80b18dfa
AA
1506 } else if (stable_node->hlist.first != &found->hlist_dup &&
1507 __is_page_sharing_candidate(found, 1)) {
2c653d0e 1508 /*
80b18dfa
AA
1509 * If the found stable_node dup can accept one
1510 * more future merge (in addition to the one
1511 * that is underway) and is not at the head of
1512 * the chain, put it there so next search will
1513 * be quicker in the !prune_stale_stable_nodes
1514 * case.
1515 *
1516 * NOTE: it would be inaccurate to use nr > 1
1517 * instead of checking the hlist.first pointer
1518 * directly, because in the
1519 * prune_stale_stable_nodes case "nr" isn't
1520 * the position of the found dup in the chain,
1521 * but the total number of dups in the chain.
2c653d0e
AA
1522 */
1523 hlist_del(&found->hlist_dup);
1524 hlist_add_head(&found->hlist_dup,
1525 &stable_node->hlist);
1526 }
1527 }
1528
8dc5ffcd
AA
1529 *_stable_node_dup = found;
1530 return tree_page;
2c653d0e
AA
1531}
1532
21fbd591 1533static struct ksm_stable_node *stable_node_dup_any(struct ksm_stable_node *stable_node,
2c653d0e
AA
1534 struct rb_root *root)
1535{
1536 if (!is_stable_node_chain(stable_node))
1537 return stable_node;
1538 if (hlist_empty(&stable_node->hlist)) {
1539 free_stable_node_chain(stable_node, root);
1540 return NULL;
1541 }
1542 return hlist_entry(stable_node->hlist.first,
1543 typeof(*stable_node), hlist_dup);
1544}
1545
8dc5ffcd
AA
1546/*
1547 * Like for get_ksm_page, this function can free the *_stable_node and
1548 * *_stable_node_dup if the returned tree_page is NULL.
1549 *
1550 * It can also free and overwrite *_stable_node with the found
1551 * stable_node_dup if the chain is collapsed (in which case
1552 * *_stable_node will be equal to *_stable_node_dup like if the chain
1553 * never existed). It's up to the caller to verify tree_page is not
1554 * NULL before dereferencing *_stable_node or *_stable_node_dup.
1555 *
1556 * *_stable_node_dup is really a second output parameter of this
1557 * function and will be overwritten in all cases, the caller doesn't
1558 * need to initialize it.
1559 */
21fbd591
QZ
1560static struct page *__stable_node_chain(struct ksm_stable_node **_stable_node_dup,
1561 struct ksm_stable_node **_stable_node,
8dc5ffcd
AA
1562 struct rb_root *root,
1563 bool prune_stale_stable_nodes)
2c653d0e 1564{
21fbd591 1565 struct ksm_stable_node *stable_node = *_stable_node;
2c653d0e
AA
1566 if (!is_stable_node_chain(stable_node)) {
1567 if (is_page_sharing_candidate(stable_node)) {
8dc5ffcd 1568 *_stable_node_dup = stable_node;
2cee57d1 1569 return get_ksm_page(stable_node, GET_KSM_PAGE_NOLOCK);
2c653d0e 1570 }
8dc5ffcd
AA
1571 /*
1572 * _stable_node_dup set to NULL means the stable_node
1573 * reached the ksm_max_page_sharing limit.
1574 */
1575 *_stable_node_dup = NULL;
2c653d0e
AA
1576 return NULL;
1577 }
8dc5ffcd 1578 return stable_node_dup(_stable_node_dup, _stable_node, root,
2c653d0e
AA
1579 prune_stale_stable_nodes);
1580}
1581
21fbd591
QZ
1582static __always_inline struct page *chain_prune(struct ksm_stable_node **s_n_d,
1583 struct ksm_stable_node **s_n,
8dc5ffcd 1584 struct rb_root *root)
2c653d0e 1585{
8dc5ffcd 1586 return __stable_node_chain(s_n_d, s_n, root, true);
2c653d0e
AA
1587}
1588
21fbd591
QZ
1589static __always_inline struct page *chain(struct ksm_stable_node **s_n_d,
1590 struct ksm_stable_node *s_n,
8dc5ffcd 1591 struct rb_root *root)
2c653d0e 1592{
21fbd591 1593 struct ksm_stable_node *old_stable_node = s_n;
8dc5ffcd
AA
1594 struct page *tree_page;
1595
1596 tree_page = __stable_node_chain(s_n_d, &s_n, root, false);
1597 /* not pruning dups so s_n cannot have changed */
1598 VM_BUG_ON(s_n != old_stable_node);
1599 return tree_page;
2c653d0e
AA
1600}
1601
31dbd01f 1602/*
8dd3557a 1603 * stable_tree_search - search for page inside the stable tree
31dbd01f
IE
1604 *
1605 * This function checks if there is a page inside the stable tree
1606 * with identical content to the page that we are scanning right now.
1607 *
7b6ba2c7 1608 * This function returns the stable tree node of identical content if found,
31dbd01f
IE
1609 * NULL otherwise.
1610 */
62b61f61 1611static struct page *stable_tree_search(struct page *page)
31dbd01f 1612{
90bd6fd3 1613 int nid;
ef53d16c 1614 struct rb_root *root;
4146d2d6
HD
1615 struct rb_node **new;
1616 struct rb_node *parent;
21fbd591
QZ
1617 struct ksm_stable_node *stable_node, *stable_node_dup, *stable_node_any;
1618 struct ksm_stable_node *page_node;
31dbd01f 1619
4146d2d6
HD
1620 page_node = page_stable_node(page);
1621 if (page_node && page_node->head != &migrate_nodes) {
1622 /* ksm page forked */
08beca44 1623 get_page(page);
62b61f61 1624 return page;
08beca44
HD
1625 }
1626
90bd6fd3 1627 nid = get_kpfn_nid(page_to_pfn(page));
ef53d16c 1628 root = root_stable_tree + nid;
4146d2d6 1629again:
ef53d16c 1630 new = &root->rb_node;
4146d2d6 1631 parent = NULL;
90bd6fd3 1632
4146d2d6 1633 while (*new) {
4035c07a 1634 struct page *tree_page;
31dbd01f
IE
1635 int ret;
1636
08beca44 1637 cond_resched();
21fbd591 1638 stable_node = rb_entry(*new, struct ksm_stable_node, node);
2c653d0e 1639 stable_node_any = NULL;
8dc5ffcd 1640 tree_page = chain_prune(&stable_node_dup, &stable_node, root);
b4fecc67
AA
1641 /*
1642 * NOTE: stable_node may have been freed by
1643 * chain_prune() if the returned stable_node_dup is
1644 * not NULL. stable_node_dup may have been inserted in
1645 * the rbtree instead as a regular stable_node (in
1646 * order to collapse the stable_node chain if a single
0ba1d0f7 1647 * stable_node dup was found in it). In such case the
3413b2c8 1648 * stable_node is overwritten by the callee to point
0ba1d0f7
AA
1649 * to the stable_node_dup that was collapsed in the
1650 * stable rbtree and stable_node will be equal to
1651 * stable_node_dup like if the chain never existed.
b4fecc67 1652 */
2c653d0e
AA
1653 if (!stable_node_dup) {
1654 /*
1655 * Either all stable_node dups were full in
1656 * this stable_node chain, or this chain was
1657 * empty and should be rb_erased.
1658 */
1659 stable_node_any = stable_node_dup_any(stable_node,
1660 root);
1661 if (!stable_node_any) {
1662 /* rb_erase just run */
1663 goto again;
1664 }
1665 /*
1666 * Take any of the stable_node dups page of
1667 * this stable_node chain to let the tree walk
1668 * continue. All KSM pages belonging to the
1669 * stable_node dups in a stable_node chain
1670 * have the same content and they're
457aef94 1671 * write protected at all times. Any will work
2c653d0e
AA
1672 * fine to continue the walk.
1673 */
2cee57d1
YS
1674 tree_page = get_ksm_page(stable_node_any,
1675 GET_KSM_PAGE_NOLOCK);
2c653d0e
AA
1676 }
1677 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
f2e5ff85
AA
1678 if (!tree_page) {
1679 /*
1680 * If we walked over a stale stable_node,
1681 * get_ksm_page() will call rb_erase() and it
1682 * may rebalance the tree from under us. So
1683 * restart the search from scratch. Returning
1684 * NULL would be safe too, but we'd generate
1685 * false negative insertions just because some
1686 * stable_node was stale.
1687 */
1688 goto again;
1689 }
31dbd01f 1690
4035c07a 1691 ret = memcmp_pages(page, tree_page);
c8d6553b 1692 put_page(tree_page);
31dbd01f 1693
4146d2d6 1694 parent = *new;
c8d6553b 1695 if (ret < 0)
4146d2d6 1696 new = &parent->rb_left;
c8d6553b 1697 else if (ret > 0)
4146d2d6 1698 new = &parent->rb_right;
c8d6553b 1699 else {
2c653d0e
AA
1700 if (page_node) {
1701 VM_BUG_ON(page_node->head != &migrate_nodes);
1702 /*
1703 * Test if the migrated page should be merged
1704 * into a stable node dup. If the mapcount is
1705 * 1 we can migrate it with another KSM page
1706 * without adding it to the chain.
1707 */
1708 if (page_mapcount(page) > 1)
1709 goto chain_append;
1710 }
1711
1712 if (!stable_node_dup) {
1713 /*
1714 * If the stable_node is a chain and
1715 * we got a payload match in memcmp
1716 * but we cannot merge the scanned
1717 * page in any of the existing
1718 * stable_node dups because they're
1719 * all full, we need to wait the
1720 * scanned page to find itself a match
1721 * in the unstable tree to create a
1722 * brand new KSM page to add later to
1723 * the dups of this stable_node.
1724 */
1725 return NULL;
1726 }
1727
c8d6553b
HD
1728 /*
1729 * Lock and unlock the stable_node's page (which
1730 * might already have been migrated) so that page
1731 * migration is sure to notice its raised count.
1732 * It would be more elegant to return stable_node
1733 * than kpage, but that involves more changes.
1734 */
2cee57d1
YS
1735 tree_page = get_ksm_page(stable_node_dup,
1736 GET_KSM_PAGE_TRYLOCK);
1737
1738 if (PTR_ERR(tree_page) == -EBUSY)
1739 return ERR_PTR(-EBUSY);
1740
2c653d0e
AA
1741 if (unlikely(!tree_page))
1742 /*
1743 * The tree may have been rebalanced,
1744 * so re-evaluate parent and new.
1745 */
4146d2d6 1746 goto again;
2c653d0e
AA
1747 unlock_page(tree_page);
1748
1749 if (get_kpfn_nid(stable_node_dup->kpfn) !=
1750 NUMA(stable_node_dup->nid)) {
1751 put_page(tree_page);
1752 goto replace;
1753 }
1754 return tree_page;
c8d6553b 1755 }
31dbd01f
IE
1756 }
1757
4146d2d6
HD
1758 if (!page_node)
1759 return NULL;
1760
1761 list_del(&page_node->list);
1762 DO_NUMA(page_node->nid = nid);
1763 rb_link_node(&page_node->node, parent, new);
ef53d16c 1764 rb_insert_color(&page_node->node, root);
2c653d0e
AA
1765out:
1766 if (is_page_sharing_candidate(page_node)) {
1767 get_page(page);
1768 return page;
1769 } else
1770 return NULL;
4146d2d6
HD
1771
1772replace:
b4fecc67
AA
1773 /*
1774 * If stable_node was a chain and chain_prune collapsed it,
0ba1d0f7
AA
1775 * stable_node has been updated to be the new regular
1776 * stable_node. A collapse of the chain is indistinguishable
1777 * from the case there was no chain in the stable
1778 * rbtree. Otherwise stable_node is the chain and
1779 * stable_node_dup is the dup to replace.
b4fecc67 1780 */
0ba1d0f7 1781 if (stable_node_dup == stable_node) {
b4fecc67
AA
1782 VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1783 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
2c653d0e
AA
1784 /* there is no chain */
1785 if (page_node) {
1786 VM_BUG_ON(page_node->head != &migrate_nodes);
1787 list_del(&page_node->list);
1788 DO_NUMA(page_node->nid = nid);
b4fecc67
AA
1789 rb_replace_node(&stable_node_dup->node,
1790 &page_node->node,
2c653d0e
AA
1791 root);
1792 if (is_page_sharing_candidate(page_node))
1793 get_page(page);
1794 else
1795 page = NULL;
1796 } else {
b4fecc67 1797 rb_erase(&stable_node_dup->node, root);
2c653d0e
AA
1798 page = NULL;
1799 }
4146d2d6 1800 } else {
2c653d0e
AA
1801 VM_BUG_ON(!is_stable_node_chain(stable_node));
1802 __stable_node_dup_del(stable_node_dup);
1803 if (page_node) {
1804 VM_BUG_ON(page_node->head != &migrate_nodes);
1805 list_del(&page_node->list);
1806 DO_NUMA(page_node->nid = nid);
1807 stable_node_chain_add_dup(page_node, stable_node);
1808 if (is_page_sharing_candidate(page_node))
1809 get_page(page);
1810 else
1811 page = NULL;
1812 } else {
1813 page = NULL;
1814 }
4146d2d6 1815 }
2c653d0e
AA
1816 stable_node_dup->head = &migrate_nodes;
1817 list_add(&stable_node_dup->list, stable_node_dup->head);
4146d2d6 1818 return page;
2c653d0e
AA
1819
1820chain_append:
1821 /* stable_node_dup could be null if it reached the limit */
1822 if (!stable_node_dup)
1823 stable_node_dup = stable_node_any;
b4fecc67
AA
1824 /*
1825 * If stable_node was a chain and chain_prune collapsed it,
0ba1d0f7
AA
1826 * stable_node has been updated to be the new regular
1827 * stable_node. A collapse of the chain is indistinguishable
1828 * from the case there was no chain in the stable
1829 * rbtree. Otherwise stable_node is the chain and
1830 * stable_node_dup is the dup to replace.
b4fecc67 1831 */
0ba1d0f7 1832 if (stable_node_dup == stable_node) {
b4fecc67 1833 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
2c653d0e
AA
1834 /* chain is missing so create it */
1835 stable_node = alloc_stable_node_chain(stable_node_dup,
1836 root);
1837 if (!stable_node)
1838 return NULL;
1839 }
1840 /*
1841 * Add this stable_node dup that was
1842 * migrated to the stable_node chain
1843 * of the current nid for this page
1844 * content.
1845 */
b4fecc67 1846 VM_BUG_ON(!is_stable_node_dup(stable_node_dup));
2c653d0e
AA
1847 VM_BUG_ON(page_node->head != &migrate_nodes);
1848 list_del(&page_node->list);
1849 DO_NUMA(page_node->nid = nid);
1850 stable_node_chain_add_dup(page_node, stable_node);
1851 goto out;
31dbd01f
IE
1852}
1853
1854/*
e850dcf5 1855 * stable_tree_insert - insert stable tree node pointing to new ksm page
31dbd01f
IE
1856 * into the stable tree.
1857 *
7b6ba2c7
HD
1858 * This function returns the stable tree node just allocated on success,
1859 * NULL otherwise.
31dbd01f 1860 */
21fbd591 1861static struct ksm_stable_node *stable_tree_insert(struct page *kpage)
31dbd01f 1862{
90bd6fd3
PH
1863 int nid;
1864 unsigned long kpfn;
ef53d16c 1865 struct rb_root *root;
90bd6fd3 1866 struct rb_node **new;
f2e5ff85 1867 struct rb_node *parent;
21fbd591 1868 struct ksm_stable_node *stable_node, *stable_node_dup, *stable_node_any;
2c653d0e 1869 bool need_chain = false;
31dbd01f 1870
90bd6fd3
PH
1871 kpfn = page_to_pfn(kpage);
1872 nid = get_kpfn_nid(kpfn);
ef53d16c 1873 root = root_stable_tree + nid;
f2e5ff85
AA
1874again:
1875 parent = NULL;
ef53d16c 1876 new = &root->rb_node;
90bd6fd3 1877
31dbd01f 1878 while (*new) {
4035c07a 1879 struct page *tree_page;
31dbd01f
IE
1880 int ret;
1881
08beca44 1882 cond_resched();
21fbd591 1883 stable_node = rb_entry(*new, struct ksm_stable_node, node);
2c653d0e 1884 stable_node_any = NULL;
8dc5ffcd 1885 tree_page = chain(&stable_node_dup, stable_node, root);
2c653d0e
AA
1886 if (!stable_node_dup) {
1887 /*
1888 * Either all stable_node dups were full in
1889 * this stable_node chain, or this chain was
1890 * empty and should be rb_erased.
1891 */
1892 stable_node_any = stable_node_dup_any(stable_node,
1893 root);
1894 if (!stable_node_any) {
1895 /* rb_erase just run */
1896 goto again;
1897 }
1898 /*
1899 * Take any of the stable_node dups page of
1900 * this stable_node chain to let the tree walk
1901 * continue. All KSM pages belonging to the
1902 * stable_node dups in a stable_node chain
1903 * have the same content and they're
457aef94 1904 * write protected at all times. Any will work
2c653d0e
AA
1905 * fine to continue the walk.
1906 */
2cee57d1
YS
1907 tree_page = get_ksm_page(stable_node_any,
1908 GET_KSM_PAGE_NOLOCK);
2c653d0e
AA
1909 }
1910 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
f2e5ff85
AA
1911 if (!tree_page) {
1912 /*
1913 * If we walked over a stale stable_node,
1914 * get_ksm_page() will call rb_erase() and it
1915 * may rebalance the tree from under us. So
1916 * restart the search from scratch. Returning
1917 * NULL would be safe too, but we'd generate
1918 * false negative insertions just because some
1919 * stable_node was stale.
1920 */
1921 goto again;
1922 }
31dbd01f 1923
4035c07a
HD
1924 ret = memcmp_pages(kpage, tree_page);
1925 put_page(tree_page);
31dbd01f
IE
1926
1927 parent = *new;
1928 if (ret < 0)
1929 new = &parent->rb_left;
1930 else if (ret > 0)
1931 new = &parent->rb_right;
1932 else {
2c653d0e
AA
1933 need_chain = true;
1934 break;
31dbd01f
IE
1935 }
1936 }
1937
2c653d0e
AA
1938 stable_node_dup = alloc_stable_node();
1939 if (!stable_node_dup)
7b6ba2c7 1940 return NULL;
31dbd01f 1941
2c653d0e
AA
1942 INIT_HLIST_HEAD(&stable_node_dup->hlist);
1943 stable_node_dup->kpfn = kpfn;
1944 set_page_stable_node(kpage, stable_node_dup);
1945 stable_node_dup->rmap_hlist_len = 0;
1946 DO_NUMA(stable_node_dup->nid = nid);
1947 if (!need_chain) {
1948 rb_link_node(&stable_node_dup->node, parent, new);
1949 rb_insert_color(&stable_node_dup->node, root);
1950 } else {
1951 if (!is_stable_node_chain(stable_node)) {
21fbd591 1952 struct ksm_stable_node *orig = stable_node;
2c653d0e
AA
1953 /* chain is missing so create it */
1954 stable_node = alloc_stable_node_chain(orig, root);
1955 if (!stable_node) {
1956 free_stable_node(stable_node_dup);
1957 return NULL;
1958 }
1959 }
1960 stable_node_chain_add_dup(stable_node_dup, stable_node);
1961 }
08beca44 1962
2c653d0e 1963 return stable_node_dup;
31dbd01f
IE
1964}
1965
1966/*
8dd3557a
HD
1967 * unstable_tree_search_insert - search for identical page,
1968 * else insert rmap_item into the unstable tree.
31dbd01f
IE
1969 *
1970 * This function searches for a page in the unstable tree identical to the
1971 * page currently being scanned; and if no identical page is found in the
1972 * tree, we insert rmap_item as a new object into the unstable tree.
1973 *
1974 * This function returns pointer to rmap_item found to be identical
1975 * to the currently scanned page, NULL otherwise.
1976 *
1977 * This function does both searching and inserting, because they share
1978 * the same walking algorithm in an rbtree.
1979 */
8dd3557a 1980static
21fbd591 1981struct ksm_rmap_item *unstable_tree_search_insert(struct ksm_rmap_item *rmap_item,
8dd3557a
HD
1982 struct page *page,
1983 struct page **tree_pagep)
31dbd01f 1984{
90bd6fd3
PH
1985 struct rb_node **new;
1986 struct rb_root *root;
31dbd01f 1987 struct rb_node *parent = NULL;
90bd6fd3
PH
1988 int nid;
1989
1990 nid = get_kpfn_nid(page_to_pfn(page));
ef53d16c 1991 root = root_unstable_tree + nid;
90bd6fd3 1992 new = &root->rb_node;
31dbd01f
IE
1993
1994 while (*new) {
21fbd591 1995 struct ksm_rmap_item *tree_rmap_item;
8dd3557a 1996 struct page *tree_page;
31dbd01f
IE
1997 int ret;
1998
d178f27f 1999 cond_resched();
21fbd591 2000 tree_rmap_item = rb_entry(*new, struct ksm_rmap_item, node);
8dd3557a 2001 tree_page = get_mergeable_page(tree_rmap_item);
c8f95ed1 2002 if (!tree_page)
31dbd01f
IE
2003 return NULL;
2004
2005 /*
8dd3557a 2006 * Don't substitute a ksm page for a forked page.
31dbd01f 2007 */
8dd3557a
HD
2008 if (page == tree_page) {
2009 put_page(tree_page);
31dbd01f
IE
2010 return NULL;
2011 }
2012
8dd3557a 2013 ret = memcmp_pages(page, tree_page);
31dbd01f
IE
2014
2015 parent = *new;
2016 if (ret < 0) {
8dd3557a 2017 put_page(tree_page);
31dbd01f
IE
2018 new = &parent->rb_left;
2019 } else if (ret > 0) {
8dd3557a 2020 put_page(tree_page);
31dbd01f 2021 new = &parent->rb_right;
b599cbdf
HD
2022 } else if (!ksm_merge_across_nodes &&
2023 page_to_nid(tree_page) != nid) {
2024 /*
2025 * If tree_page has been migrated to another NUMA node,
2026 * it will be flushed out and put in the right unstable
2027 * tree next time: only merge with it when across_nodes.
2028 */
2029 put_page(tree_page);
2030 return NULL;
31dbd01f 2031 } else {
8dd3557a 2032 *tree_pagep = tree_page;
31dbd01f
IE
2033 return tree_rmap_item;
2034 }
2035 }
2036
7b6ba2c7 2037 rmap_item->address |= UNSTABLE_FLAG;
31dbd01f 2038 rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
e850dcf5 2039 DO_NUMA(rmap_item->nid = nid);
31dbd01f 2040 rb_link_node(&rmap_item->node, parent, new);
90bd6fd3 2041 rb_insert_color(&rmap_item->node, root);
31dbd01f 2042
473b0ce4 2043 ksm_pages_unshared++;
31dbd01f
IE
2044 return NULL;
2045}
2046
2047/*
2048 * stable_tree_append - add another rmap_item to the linked list of
2049 * rmap_items hanging off a given node of the stable tree, all sharing
2050 * the same ksm page.
2051 */
21fbd591
QZ
2052static void stable_tree_append(struct ksm_rmap_item *rmap_item,
2053 struct ksm_stable_node *stable_node,
2c653d0e 2054 bool max_page_sharing_bypass)
31dbd01f 2055{
2c653d0e
AA
2056 /*
2057 * rmap won't find this mapping if we don't insert the
2058 * rmap_item in the right stable_node
2059 * duplicate. page_migration could break later if rmap breaks,
2060 * so we can as well crash here. We really need to check for
2061 * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check
457aef94 2062 * for other negative values as an underflow if detected here
2c653d0e
AA
2063 * for the first time (and not when decreasing rmap_hlist_len)
2064 * would be sign of memory corruption in the stable_node.
2065 */
2066 BUG_ON(stable_node->rmap_hlist_len < 0);
2067
2068 stable_node->rmap_hlist_len++;
2069 if (!max_page_sharing_bypass)
2070 /* possibly non fatal but unexpected overflow, only warn */
2071 WARN_ON_ONCE(stable_node->rmap_hlist_len >
2072 ksm_max_page_sharing);
2073
7b6ba2c7 2074 rmap_item->head = stable_node;
31dbd01f 2075 rmap_item->address |= STABLE_FLAG;
7b6ba2c7 2076 hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
e178dfde 2077
7b6ba2c7
HD
2078 if (rmap_item->hlist.next)
2079 ksm_pages_sharing++;
2080 else
2081 ksm_pages_shared++;
76093853 2082
2083 rmap_item->mm->ksm_merging_pages++;
31dbd01f
IE
2084}
2085
2086/*
81464e30
HD
2087 * cmp_and_merge_page - first see if page can be merged into the stable tree;
2088 * if not, compare checksum to previous and if it's the same, see if page can
2089 * be inserted into the unstable tree, or merged with a page already there and
2090 * both transferred to the stable tree.
31dbd01f
IE
2091 *
2092 * @page: the page that we are searching identical page to.
2093 * @rmap_item: the reverse mapping into the virtual address of this page
2094 */
21fbd591 2095static void cmp_and_merge_page(struct page *page, struct ksm_rmap_item *rmap_item)
31dbd01f 2096{
4b22927f 2097 struct mm_struct *mm = rmap_item->mm;
21fbd591 2098 struct ksm_rmap_item *tree_rmap_item;
8dd3557a 2099 struct page *tree_page = NULL;
21fbd591 2100 struct ksm_stable_node *stable_node;
8dd3557a 2101 struct page *kpage;
31dbd01f
IE
2102 unsigned int checksum;
2103 int err;
2c653d0e 2104 bool max_page_sharing_bypass = false;
31dbd01f 2105
4146d2d6
HD
2106 stable_node = page_stable_node(page);
2107 if (stable_node) {
2108 if (stable_node->head != &migrate_nodes &&
2c653d0e
AA
2109 get_kpfn_nid(READ_ONCE(stable_node->kpfn)) !=
2110 NUMA(stable_node->nid)) {
2111 stable_node_dup_del(stable_node);
4146d2d6
HD
2112 stable_node->head = &migrate_nodes;
2113 list_add(&stable_node->list, stable_node->head);
2114 }
2115 if (stable_node->head != &migrate_nodes &&
2116 rmap_item->head == stable_node)
2117 return;
2c653d0e
AA
2118 /*
2119 * If it's a KSM fork, allow it to go over the sharing limit
2120 * without warnings.
2121 */
2122 if (!is_page_sharing_candidate(stable_node))
2123 max_page_sharing_bypass = true;
4146d2d6 2124 }
31dbd01f
IE
2125
2126 /* We first start with searching the page inside the stable tree */
62b61f61 2127 kpage = stable_tree_search(page);
4146d2d6
HD
2128 if (kpage == page && rmap_item->head == stable_node) {
2129 put_page(kpage);
2130 return;
2131 }
2132
2133 remove_rmap_item_from_tree(rmap_item);
2134
62b61f61 2135 if (kpage) {
2cee57d1
YS
2136 if (PTR_ERR(kpage) == -EBUSY)
2137 return;
2138
08beca44 2139 err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
31dbd01f
IE
2140 if (!err) {
2141 /*
2142 * The page was successfully merged:
2143 * add its rmap_item to the stable tree.
2144 */
5ad64688 2145 lock_page(kpage);
2c653d0e
AA
2146 stable_tree_append(rmap_item, page_stable_node(kpage),
2147 max_page_sharing_bypass);
5ad64688 2148 unlock_page(kpage);
31dbd01f 2149 }
8dd3557a 2150 put_page(kpage);
31dbd01f
IE
2151 return;
2152 }
2153
2154 /*
4035c07a
HD
2155 * If the hash value of the page has changed from the last time
2156 * we calculated it, this page is changing frequently: therefore we
2157 * don't want to insert it in the unstable tree, and we don't want
2158 * to waste our time searching for something identical to it there.
31dbd01f
IE
2159 */
2160 checksum = calc_checksum(page);
2161 if (rmap_item->oldchecksum != checksum) {
2162 rmap_item->oldchecksum = checksum;
2163 return;
2164 }
2165
e86c59b1
CI
2166 /*
2167 * Same checksum as an empty page. We attempt to merge it with the
2168 * appropriate zero page if the user enabled this via sysfs.
2169 */
2170 if (ksm_use_zero_pages && (checksum == zero_checksum)) {
2171 struct vm_area_struct *vma;
2172
d8ed45c5 2173 mmap_read_lock(mm);
4b22927f 2174 vma = find_mergeable_vma(mm, rmap_item->address);
56df70a6
MS
2175 if (vma) {
2176 err = try_to_merge_one_page(vma, page,
2177 ZERO_PAGE(rmap_item->address));
739100c8
SR
2178 trace_ksm_merge_one_page(
2179 page_to_pfn(ZERO_PAGE(rmap_item->address)),
2180 rmap_item, mm, err);
56df70a6
MS
2181 } else {
2182 /*
2183 * If the vma is out of date, we do not need to
2184 * continue.
2185 */
2186 err = 0;
2187 }
d8ed45c5 2188 mmap_read_unlock(mm);
e86c59b1
CI
2189 /*
2190 * In case of failure, the page was not really empty, so we
2191 * need to continue. Otherwise we're done.
2192 */
2193 if (!err)
2194 return;
2195 }
8dd3557a
HD
2196 tree_rmap_item =
2197 unstable_tree_search_insert(rmap_item, page, &tree_page);
31dbd01f 2198 if (tree_rmap_item) {
77da2ba0
CI
2199 bool split;
2200
8dd3557a
HD
2201 kpage = try_to_merge_two_pages(rmap_item, page,
2202 tree_rmap_item, tree_page);
77da2ba0
CI
2203 /*
2204 * If both pages we tried to merge belong to the same compound
2205 * page, then we actually ended up increasing the reference
2206 * count of the same compound page twice, and split_huge_page
2207 * failed.
2208 * Here we set a flag if that happened, and we use it later to
2209 * try split_huge_page again. Since we call put_page right
2210 * afterwards, the reference count will be correct and
2211 * split_huge_page should succeed.
2212 */
2213 split = PageTransCompound(page)
2214 && compound_head(page) == compound_head(tree_page);
8dd3557a 2215 put_page(tree_page);
8dd3557a 2216 if (kpage) {
bc56620b
HD
2217 /*
2218 * The pages were successfully merged: insert new
2219 * node in the stable tree and add both rmap_items.
2220 */
5ad64688 2221 lock_page(kpage);
7b6ba2c7
HD
2222 stable_node = stable_tree_insert(kpage);
2223 if (stable_node) {
2c653d0e
AA
2224 stable_tree_append(tree_rmap_item, stable_node,
2225 false);
2226 stable_tree_append(rmap_item, stable_node,
2227 false);
7b6ba2c7 2228 }
5ad64688 2229 unlock_page(kpage);
7b6ba2c7 2230
31dbd01f
IE
2231 /*
2232 * If we fail to insert the page into the stable tree,
2233 * we will have 2 virtual addresses that are pointing
2234 * to a ksm page left outside the stable tree,
2235 * in which case we need to break_cow on both.
2236 */
7b6ba2c7 2237 if (!stable_node) {
8dd3557a
HD
2238 break_cow(tree_rmap_item);
2239 break_cow(rmap_item);
31dbd01f 2240 }
77da2ba0
CI
2241 } else if (split) {
2242 /*
2243 * We are here if we tried to merge two pages and
2244 * failed because they both belonged to the same
2245 * compound page. We will split the page now, but no
2246 * merging will take place.
2247 * We do not want to add the cost of a full lock; if
2248 * the page is locked, it is better to skip it and
2249 * perhaps try again later.
2250 */
2251 if (!trylock_page(page))
2252 return;
2253 split_huge_page(page);
2254 unlock_page(page);
31dbd01f 2255 }
31dbd01f
IE
2256 }
2257}
2258
21fbd591
QZ
2259static struct ksm_rmap_item *get_next_rmap_item(struct ksm_mm_slot *mm_slot,
2260 struct ksm_rmap_item **rmap_list,
31dbd01f
IE
2261 unsigned long addr)
2262{
21fbd591 2263 struct ksm_rmap_item *rmap_item;
31dbd01f 2264
6514d511
HD
2265 while (*rmap_list) {
2266 rmap_item = *rmap_list;
93d17715 2267 if ((rmap_item->address & PAGE_MASK) == addr)
31dbd01f 2268 return rmap_item;
31dbd01f
IE
2269 if (rmap_item->address > addr)
2270 break;
6514d511 2271 *rmap_list = rmap_item->rmap_list;
31dbd01f 2272 remove_rmap_item_from_tree(rmap_item);
31dbd01f
IE
2273 free_rmap_item(rmap_item);
2274 }
2275
2276 rmap_item = alloc_rmap_item();
2277 if (rmap_item) {
2278 /* It has already been zeroed */
58730ab6 2279 rmap_item->mm = mm_slot->slot.mm;
cb4df4ca 2280 rmap_item->mm->ksm_rmap_items++;
31dbd01f 2281 rmap_item->address = addr;
6514d511
HD
2282 rmap_item->rmap_list = *rmap_list;
2283 *rmap_list = rmap_item;
31dbd01f
IE
2284 }
2285 return rmap_item;
2286}
2287
21fbd591 2288static struct ksm_rmap_item *scan_get_next_rmap_item(struct page **page)
31dbd01f
IE
2289{
2290 struct mm_struct *mm;
58730ab6
QZ
2291 struct ksm_mm_slot *mm_slot;
2292 struct mm_slot *slot;
31dbd01f 2293 struct vm_area_struct *vma;
21fbd591 2294 struct ksm_rmap_item *rmap_item;
a5f18ba0 2295 struct vma_iterator vmi;
90bd6fd3 2296 int nid;
31dbd01f 2297
58730ab6 2298 if (list_empty(&ksm_mm_head.slot.mm_node))
31dbd01f
IE
2299 return NULL;
2300
58730ab6
QZ
2301 mm_slot = ksm_scan.mm_slot;
2302 if (mm_slot == &ksm_mm_head) {
739100c8
SR
2303 trace_ksm_start_scan(ksm_scan.seqnr, ksm_rmap_items);
2304
2919bfd0
HD
2305 /*
2306 * A number of pages can hang around indefinitely on per-cpu
2307 * pagevecs, raised page count preventing write_protect_page
2308 * from merging them. Though it doesn't really matter much,
2309 * it is puzzling to see some stuck in pages_volatile until
2310 * other activity jostles them out, and they also prevented
2311 * LTP's KSM test from succeeding deterministically; so drain
2312 * them here (here rather than on entry to ksm_do_scan(),
2313 * so we don't IPI too often when pages_to_scan is set low).
2314 */
2315 lru_add_drain_all();
2316
4146d2d6
HD
2317 /*
2318 * Whereas stale stable_nodes on the stable_tree itself
2319 * get pruned in the regular course of stable_tree_search(),
2320 * those moved out to the migrate_nodes list can accumulate:
2321 * so prune them once before each full scan.
2322 */
2323 if (!ksm_merge_across_nodes) {
21fbd591 2324 struct ksm_stable_node *stable_node, *next;
4146d2d6
HD
2325 struct page *page;
2326
03640418
GT
2327 list_for_each_entry_safe(stable_node, next,
2328 &migrate_nodes, list) {
2cee57d1
YS
2329 page = get_ksm_page(stable_node,
2330 GET_KSM_PAGE_NOLOCK);
4146d2d6
HD
2331 if (page)
2332 put_page(page);
2333 cond_resched();
2334 }
2335 }
2336
ef53d16c 2337 for (nid = 0; nid < ksm_nr_node_ids; nid++)
90bd6fd3 2338 root_unstable_tree[nid] = RB_ROOT;
31dbd01f
IE
2339
2340 spin_lock(&ksm_mmlist_lock);
58730ab6
QZ
2341 slot = list_entry(mm_slot->slot.mm_node.next,
2342 struct mm_slot, mm_node);
2343 mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
2344 ksm_scan.mm_slot = mm_slot;
31dbd01f 2345 spin_unlock(&ksm_mmlist_lock);
2b472611
HD
2346 /*
2347 * Although we tested list_empty() above, a racing __ksm_exit
2348 * of the last mm on the list may have removed it since then.
2349 */
58730ab6 2350 if (mm_slot == &ksm_mm_head)
2b472611 2351 return NULL;
31dbd01f
IE
2352next_mm:
2353 ksm_scan.address = 0;
58730ab6 2354 ksm_scan.rmap_list = &mm_slot->rmap_list;
31dbd01f
IE
2355 }
2356
58730ab6 2357 slot = &mm_slot->slot;
31dbd01f 2358 mm = slot->mm;
a5f18ba0
MWO
2359 vma_iter_init(&vmi, mm, ksm_scan.address);
2360
d8ed45c5 2361 mmap_read_lock(mm);
9ba69294 2362 if (ksm_test_exit(mm))
a5f18ba0 2363 goto no_vmas;
9ba69294 2364
a5f18ba0 2365 for_each_vma(vmi, vma) {
31dbd01f
IE
2366 if (!(vma->vm_flags & VM_MERGEABLE))
2367 continue;
2368 if (ksm_scan.address < vma->vm_start)
2369 ksm_scan.address = vma->vm_start;
2370 if (!vma->anon_vma)
2371 ksm_scan.address = vma->vm_end;
2372
2373 while (ksm_scan.address < vma->vm_end) {
9ba69294
HD
2374 if (ksm_test_exit(mm))
2375 break;
31dbd01f 2376 *page = follow_page(vma, ksm_scan.address, FOLL_GET);
f7091ed6 2377 if (IS_ERR_OR_NULL(*page)) {
21ae5b01
AA
2378 ksm_scan.address += PAGE_SIZE;
2379 cond_resched();
2380 continue;
2381 }
f7091ed6
HW
2382 if (is_zone_device_page(*page))
2383 goto next_page;
f765f540 2384 if (PageAnon(*page)) {
31dbd01f
IE
2385 flush_anon_page(vma, *page, ksm_scan.address);
2386 flush_dcache_page(*page);
58730ab6 2387 rmap_item = get_next_rmap_item(mm_slot,
6514d511 2388 ksm_scan.rmap_list, ksm_scan.address);
31dbd01f 2389 if (rmap_item) {
6514d511
HD
2390 ksm_scan.rmap_list =
2391 &rmap_item->rmap_list;
31dbd01f
IE
2392 ksm_scan.address += PAGE_SIZE;
2393 } else
2394 put_page(*page);
d8ed45c5 2395 mmap_read_unlock(mm);
31dbd01f
IE
2396 return rmap_item;
2397 }
f7091ed6 2398next_page:
21ae5b01 2399 put_page(*page);
31dbd01f
IE
2400 ksm_scan.address += PAGE_SIZE;
2401 cond_resched();
2402 }
2403 }
2404
9ba69294 2405 if (ksm_test_exit(mm)) {
a5f18ba0 2406no_vmas:
9ba69294 2407 ksm_scan.address = 0;
58730ab6 2408 ksm_scan.rmap_list = &mm_slot->rmap_list;
9ba69294 2409 }
31dbd01f
IE
2410 /*
2411 * Nuke all the rmap_items that are above this current rmap:
2412 * because there were no VM_MERGEABLE vmas with such addresses.
2413 */
420be4ed 2414 remove_trailing_rmap_items(ksm_scan.rmap_list);
31dbd01f
IE
2415
2416 spin_lock(&ksm_mmlist_lock);
58730ab6
QZ
2417 slot = list_entry(mm_slot->slot.mm_node.next,
2418 struct mm_slot, mm_node);
2419 ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
cd551f97
HD
2420 if (ksm_scan.address == 0) {
2421 /*
c1e8d7c6 2422 * We've completed a full scan of all vmas, holding mmap_lock
cd551f97
HD
2423 * throughout, and found no VM_MERGEABLE: so do the same as
2424 * __ksm_exit does to remove this mm from all our lists now.
9ba69294
HD
2425 * This applies either when cleaning up after __ksm_exit
2426 * (but beware: we can reach here even before __ksm_exit),
2427 * or when all VM_MERGEABLE areas have been unmapped (and
c1e8d7c6 2428 * mmap_lock then protects against race with MADV_MERGEABLE).
cd551f97 2429 */
58730ab6
QZ
2430 hash_del(&mm_slot->slot.hash);
2431 list_del(&mm_slot->slot.mm_node);
9ba69294
HD
2432 spin_unlock(&ksm_mmlist_lock);
2433
58730ab6 2434 mm_slot_free(mm_slot_cache, mm_slot);
cd551f97 2435 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
d7597f59 2436 clear_bit(MMF_VM_MERGE_ANY, &mm->flags);
d8ed45c5 2437 mmap_read_unlock(mm);
9ba69294
HD
2438 mmdrop(mm);
2439 } else {
d8ed45c5 2440 mmap_read_unlock(mm);
7496fea9 2441 /*
3e4e28c5 2442 * mmap_read_unlock(mm) first because after
7496fea9
ZC
2443 * spin_unlock(&ksm_mmlist_lock) run, the "mm" may
2444 * already have been freed under us by __ksm_exit()
2445 * because the "mm_slot" is still hashed and
2446 * ksm_scan.mm_slot doesn't point to it anymore.
2447 */
2448 spin_unlock(&ksm_mmlist_lock);
cd551f97 2449 }
31dbd01f
IE
2450
2451 /* Repeat until we've completed scanning the whole list */
58730ab6
QZ
2452 mm_slot = ksm_scan.mm_slot;
2453 if (mm_slot != &ksm_mm_head)
31dbd01f
IE
2454 goto next_mm;
2455
739100c8 2456 trace_ksm_stop_scan(ksm_scan.seqnr, ksm_rmap_items);
31dbd01f
IE
2457 ksm_scan.seqnr++;
2458 return NULL;
2459}
2460
2461/**
2462 * ksm_do_scan - the ksm scanner main worker function.
b7701a5f 2463 * @scan_npages: number of pages we want to scan before we return.
31dbd01f
IE
2464 */
2465static void ksm_do_scan(unsigned int scan_npages)
2466{
21fbd591 2467 struct ksm_rmap_item *rmap_item;
3f649ab7 2468 struct page *page;
31dbd01f 2469
878aee7d 2470 while (scan_npages-- && likely(!freezing(current))) {
31dbd01f
IE
2471 cond_resched();
2472 rmap_item = scan_get_next_rmap_item(&page);
2473 if (!rmap_item)
2474 return;
4146d2d6 2475 cmp_and_merge_page(page, rmap_item);
31dbd01f
IE
2476 put_page(page);
2477 }
2478}
2479
6e158384
HD
2480static int ksmd_should_run(void)
2481{
58730ab6 2482 return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.slot.mm_node);
6e158384
HD
2483}
2484
31dbd01f
IE
2485static int ksm_scan_thread(void *nothing)
2486{
fcf9a0ef
KT
2487 unsigned int sleep_ms;
2488
878aee7d 2489 set_freezable();
339aa624 2490 set_user_nice(current, 5);
31dbd01f
IE
2491
2492 while (!kthread_should_stop()) {
6e158384 2493 mutex_lock(&ksm_thread_mutex);
ef4d43a8 2494 wait_while_offlining();
6e158384 2495 if (ksmd_should_run())
31dbd01f 2496 ksm_do_scan(ksm_thread_pages_to_scan);
6e158384
HD
2497 mutex_unlock(&ksm_thread_mutex);
2498
878aee7d
AA
2499 try_to_freeze();
2500
6e158384 2501 if (ksmd_should_run()) {
fcf9a0ef
KT
2502 sleep_ms = READ_ONCE(ksm_thread_sleep_millisecs);
2503 wait_event_interruptible_timeout(ksm_iter_wait,
2504 sleep_ms != READ_ONCE(ksm_thread_sleep_millisecs),
2505 msecs_to_jiffies(sleep_ms));
31dbd01f 2506 } else {
878aee7d 2507 wait_event_freezable(ksm_thread_wait,
6e158384 2508 ksmd_should_run() || kthread_should_stop());
31dbd01f
IE
2509 }
2510 }
2511 return 0;
2512}
2513
d7597f59
SR
2514static void __ksm_add_vma(struct vm_area_struct *vma)
2515{
2516 unsigned long vm_flags = vma->vm_flags;
2517
2518 if (vm_flags & VM_MERGEABLE)
2519 return;
2520
2521 if (vma_ksm_compatible(vma))
2522 vm_flags_set(vma, VM_MERGEABLE);
2523}
2524
24139c07
DH
2525static int __ksm_del_vma(struct vm_area_struct *vma)
2526{
2527 int err;
2528
2529 if (!(vma->vm_flags & VM_MERGEABLE))
2530 return 0;
2531
2532 if (vma->anon_vma) {
2533 err = unmerge_ksm_pages(vma, vma->vm_start, vma->vm_end);
2534 if (err)
2535 return err;
2536 }
2537
2538 vm_flags_clear(vma, VM_MERGEABLE);
2539 return 0;
2540}
d7597f59
SR
2541/**
2542 * ksm_add_vma - Mark vma as mergeable if compatible
2543 *
2544 * @vma: Pointer to vma
2545 */
2546void ksm_add_vma(struct vm_area_struct *vma)
2547{
2548 struct mm_struct *mm = vma->vm_mm;
2549
2550 if (test_bit(MMF_VM_MERGE_ANY, &mm->flags))
2551 __ksm_add_vma(vma);
2552}
2553
2554static void ksm_add_vmas(struct mm_struct *mm)
2555{
2556 struct vm_area_struct *vma;
2557
2558 VMA_ITERATOR(vmi, mm, 0);
2559 for_each_vma(vmi, vma)
2560 __ksm_add_vma(vma);
2561}
2562
24139c07
DH
2563static int ksm_del_vmas(struct mm_struct *mm)
2564{
2565 struct vm_area_struct *vma;
2566 int err;
2567
2568 VMA_ITERATOR(vmi, mm, 0);
2569 for_each_vma(vmi, vma) {
2570 err = __ksm_del_vma(vma);
2571 if (err)
2572 return err;
2573 }
2574 return 0;
2575}
2576
d7597f59
SR
2577/**
2578 * ksm_enable_merge_any - Add mm to mm ksm list and enable merging on all
2579 * compatible VMA's
2580 *
2581 * @mm: Pointer to mm
2582 *
2583 * Returns 0 on success, otherwise error code
2584 */
2585int ksm_enable_merge_any(struct mm_struct *mm)
2586{
2587 int err;
2588
2589 if (test_bit(MMF_VM_MERGE_ANY, &mm->flags))
2590 return 0;
2591
2592 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2593 err = __ksm_enter(mm);
2594 if (err)
2595 return err;
2596 }
2597
2598 set_bit(MMF_VM_MERGE_ANY, &mm->flags);
2599 ksm_add_vmas(mm);
2600
2601 return 0;
2602}
2603
24139c07
DH
2604/**
2605 * ksm_disable_merge_any - Disable merging on all compatible VMA's of the mm,
2606 * previously enabled via ksm_enable_merge_any().
2607 *
2608 * Disabling merging implies unmerging any merged pages, like setting
2609 * MADV_UNMERGEABLE would. If unmerging fails, the whole operation fails and
2610 * merging on all compatible VMA's remains enabled.
2611 *
2612 * @mm: Pointer to mm
2613 *
2614 * Returns 0 on success, otherwise error code
2615 */
2616int ksm_disable_merge_any(struct mm_struct *mm)
2617{
2618 int err;
2619
2620 if (!test_bit(MMF_VM_MERGE_ANY, &mm->flags))
2621 return 0;
2622
2623 err = ksm_del_vmas(mm);
2624 if (err) {
2625 ksm_add_vmas(mm);
2626 return err;
2627 }
2628
2629 clear_bit(MMF_VM_MERGE_ANY, &mm->flags);
2630 return 0;
2631}
2632
2c281f54
DH
2633int ksm_disable(struct mm_struct *mm)
2634{
2635 mmap_assert_write_locked(mm);
2636
2637 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags))
2638 return 0;
2639 if (test_bit(MMF_VM_MERGE_ANY, &mm->flags))
2640 return ksm_disable_merge_any(mm);
2641 return ksm_del_vmas(mm);
2642}
2643
f8af4da3
HD
2644int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
2645 unsigned long end, int advice, unsigned long *vm_flags)
2646{
2647 struct mm_struct *mm = vma->vm_mm;
d952b791 2648 int err;
f8af4da3
HD
2649
2650 switch (advice) {
2651 case MADV_MERGEABLE:
d7597f59 2652 if (vma->vm_flags & VM_MERGEABLE)
e1fb4a08 2653 return 0;
d7597f59 2654 if (!vma_ksm_compatible(vma))
74a04967 2655 return 0;
cc2383ec 2656
d952b791
HD
2657 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2658 err = __ksm_enter(mm);
2659 if (err)
2660 return err;
2661 }
f8af4da3
HD
2662
2663 *vm_flags |= VM_MERGEABLE;
2664 break;
2665
2666 case MADV_UNMERGEABLE:
2667 if (!(*vm_flags & VM_MERGEABLE))
2668 return 0; /* just ignore the advice */
2669
d952b791
HD
2670 if (vma->anon_vma) {
2671 err = unmerge_ksm_pages(vma, start, end);
2672 if (err)
2673 return err;
2674 }
f8af4da3
HD
2675
2676 *vm_flags &= ~VM_MERGEABLE;
2677 break;
2678 }
2679
2680 return 0;
2681}
33cf1707 2682EXPORT_SYMBOL_GPL(ksm_madvise);
f8af4da3
HD
2683
2684int __ksm_enter(struct mm_struct *mm)
2685{
21fbd591 2686 struct ksm_mm_slot *mm_slot;
58730ab6 2687 struct mm_slot *slot;
6e158384
HD
2688 int needs_wakeup;
2689
58730ab6 2690 mm_slot = mm_slot_alloc(mm_slot_cache);
31dbd01f
IE
2691 if (!mm_slot)
2692 return -ENOMEM;
2693
58730ab6
QZ
2694 slot = &mm_slot->slot;
2695
6e158384 2696 /* Check ksm_run too? Would need tighter locking */
58730ab6 2697 needs_wakeup = list_empty(&ksm_mm_head.slot.mm_node);
6e158384 2698
31dbd01f 2699 spin_lock(&ksm_mmlist_lock);
58730ab6 2700 mm_slot_insert(mm_slots_hash, mm, slot);
31dbd01f 2701 /*
cbf86cfe
HD
2702 * When KSM_RUN_MERGE (or KSM_RUN_STOP),
2703 * insert just behind the scanning cursor, to let the area settle
31dbd01f
IE
2704 * down a little; when fork is followed by immediate exec, we don't
2705 * want ksmd to waste time setting up and tearing down an rmap_list.
cbf86cfe
HD
2706 *
2707 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
2708 * scanning cursor, otherwise KSM pages in newly forked mms will be
2709 * missed: then we might as well insert at the end of the list.
31dbd01f 2710 */
cbf86cfe 2711 if (ksm_run & KSM_RUN_UNMERGE)
58730ab6 2712 list_add_tail(&slot->mm_node, &ksm_mm_head.slot.mm_node);
cbf86cfe 2713 else
58730ab6 2714 list_add_tail(&slot->mm_node, &ksm_scan.mm_slot->slot.mm_node);
31dbd01f
IE
2715 spin_unlock(&ksm_mmlist_lock);
2716
f8af4da3 2717 set_bit(MMF_VM_MERGEABLE, &mm->flags);
f1f10076 2718 mmgrab(mm);
6e158384
HD
2719
2720 if (needs_wakeup)
2721 wake_up_interruptible(&ksm_thread_wait);
2722
739100c8 2723 trace_ksm_enter(mm);
f8af4da3
HD
2724 return 0;
2725}
2726
1c2fb7a4 2727void __ksm_exit(struct mm_struct *mm)
f8af4da3 2728{
21fbd591 2729 struct ksm_mm_slot *mm_slot;
58730ab6 2730 struct mm_slot *slot;
9ba69294 2731 int easy_to_free = 0;
cd551f97 2732
31dbd01f 2733 /*
9ba69294
HD
2734 * This process is exiting: if it's straightforward (as is the
2735 * case when ksmd was never running), free mm_slot immediately.
2736 * But if it's at the cursor or has rmap_items linked to it, use
c1e8d7c6 2737 * mmap_lock to synchronize with any break_cows before pagetables
9ba69294
HD
2738 * are freed, and leave the mm_slot on the list for ksmd to free.
2739 * Beware: ksm may already have noticed it exiting and freed the slot.
31dbd01f 2740 */
9ba69294 2741
cd551f97 2742 spin_lock(&ksm_mmlist_lock);
58730ab6
QZ
2743 slot = mm_slot_lookup(mm_slots_hash, mm);
2744 mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
9ba69294 2745 if (mm_slot && ksm_scan.mm_slot != mm_slot) {
6514d511 2746 if (!mm_slot->rmap_list) {
58730ab6
QZ
2747 hash_del(&slot->hash);
2748 list_del(&slot->mm_node);
9ba69294
HD
2749 easy_to_free = 1;
2750 } else {
58730ab6
QZ
2751 list_move(&slot->mm_node,
2752 &ksm_scan.mm_slot->slot.mm_node);
9ba69294 2753 }
cd551f97 2754 }
cd551f97
HD
2755 spin_unlock(&ksm_mmlist_lock);
2756
9ba69294 2757 if (easy_to_free) {
58730ab6 2758 mm_slot_free(mm_slot_cache, mm_slot);
d7597f59 2759 clear_bit(MMF_VM_MERGE_ANY, &mm->flags);
9ba69294
HD
2760 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2761 mmdrop(mm);
2762 } else if (mm_slot) {
d8ed45c5
ML
2763 mmap_write_lock(mm);
2764 mmap_write_unlock(mm);
9ba69294 2765 }
739100c8
SR
2766
2767 trace_ksm_exit(mm);
31dbd01f
IE
2768}
2769
cbf86cfe 2770struct page *ksm_might_need_to_copy(struct page *page,
5ad64688
HD
2771 struct vm_area_struct *vma, unsigned long address)
2772{
e05b3453
MWO
2773 struct folio *folio = page_folio(page);
2774 struct anon_vma *anon_vma = folio_anon_vma(folio);
5ad64688
HD
2775 struct page *new_page;
2776
cbf86cfe
HD
2777 if (PageKsm(page)) {
2778 if (page_stable_node(page) &&
2779 !(ksm_run & KSM_RUN_UNMERGE))
2780 return page; /* no need to copy it */
2781 } else if (!anon_vma) {
2782 return page; /* no need to copy it */
e1c63e11
NS
2783 } else if (page->index == linear_page_index(vma, address) &&
2784 anon_vma->root == vma->anon_vma->root) {
cbf86cfe
HD
2785 return page; /* still no need to copy it */
2786 }
2787 if (!PageUptodate(page))
2788 return page; /* let do_swap_page report the error */
2789
5ad64688 2790 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
8f425e4e
MWO
2791 if (new_page &&
2792 mem_cgroup_charge(page_folio(new_page), vma->vm_mm, GFP_KERNEL)) {
62fdb163
HD
2793 put_page(new_page);
2794 new_page = NULL;
2795 }
5ad64688 2796 if (new_page) {
6b970599
KW
2797 if (copy_mc_user_highpage(new_page, page, address, vma)) {
2798 put_page(new_page);
2799 memory_failure_queue(page_to_pfn(page), 0);
2800 return ERR_PTR(-EHWPOISON);
2801 }
5ad64688
HD
2802 SetPageDirty(new_page);
2803 __SetPageUptodate(new_page);
48c935ad 2804 __SetPageLocked(new_page);
4d45c3af
YY
2805#ifdef CONFIG_SWAP
2806 count_vm_event(KSM_SWPIN_COPY);
2807#endif
5ad64688
HD
2808 }
2809
5ad64688
HD
2810 return new_page;
2811}
2812
6d4675e6 2813void rmap_walk_ksm(struct folio *folio, struct rmap_walk_control *rwc)
e9995ef9 2814{
21fbd591
QZ
2815 struct ksm_stable_node *stable_node;
2816 struct ksm_rmap_item *rmap_item;
e9995ef9
HD
2817 int search_new_forks = 0;
2818
2f031c6f 2819 VM_BUG_ON_FOLIO(!folio_test_ksm(folio), folio);
9f32624b
JK
2820
2821 /*
2822 * Rely on the page lock to protect against concurrent modifications
2823 * to that page's node of the stable tree.
2824 */
2f031c6f 2825 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
e9995ef9 2826
2f031c6f 2827 stable_node = folio_stable_node(folio);
e9995ef9 2828 if (!stable_node)
1df631ae 2829 return;
e9995ef9 2830again:
b67bfe0d 2831 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
e9995ef9 2832 struct anon_vma *anon_vma = rmap_item->anon_vma;
5beb4930 2833 struct anon_vma_chain *vmac;
e9995ef9
HD
2834 struct vm_area_struct *vma;
2835
ad12695f 2836 cond_resched();
6d4675e6
MK
2837 if (!anon_vma_trylock_read(anon_vma)) {
2838 if (rwc->try_lock) {
2839 rwc->contended = true;
2840 return;
2841 }
2842 anon_vma_lock_read(anon_vma);
2843 }
bf181b9f
ML
2844 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
2845 0, ULONG_MAX) {
1105a2fc
JH
2846 unsigned long addr;
2847
ad12695f 2848 cond_resched();
5beb4930 2849 vma = vmac->vma;
1105a2fc
JH
2850
2851 /* Ignore the stable/unstable/sqnr flags */
cd7fae26 2852 addr = rmap_item->address & PAGE_MASK;
1105a2fc
JH
2853
2854 if (addr < vma->vm_start || addr >= vma->vm_end)
e9995ef9
HD
2855 continue;
2856 /*
2857 * Initially we examine only the vma which covers this
2858 * rmap_item; but later, if there is still work to do,
2859 * we examine covering vmas in other mms: in case they
2860 * were forked from the original since ksmd passed.
2861 */
2862 if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
2863 continue;
2864
0dd1c7bb
JK
2865 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2866 continue;
2867
2f031c6f 2868 if (!rwc->rmap_one(folio, vma, addr, rwc->arg)) {
b6b19f25 2869 anon_vma_unlock_read(anon_vma);
1df631ae 2870 return;
e9995ef9 2871 }
2f031c6f 2872 if (rwc->done && rwc->done(folio)) {
0dd1c7bb 2873 anon_vma_unlock_read(anon_vma);
1df631ae 2874 return;
0dd1c7bb 2875 }
e9995ef9 2876 }
b6b19f25 2877 anon_vma_unlock_read(anon_vma);
e9995ef9
HD
2878 }
2879 if (!search_new_forks++)
2880 goto again;
e9995ef9
HD
2881}
2882
4248d008
LX
2883#ifdef CONFIG_MEMORY_FAILURE
2884/*
2885 * Collect processes when the error hit an ksm page.
2886 */
2887void collect_procs_ksm(struct page *page, struct list_head *to_kill,
2888 int force_early)
2889{
2890 struct ksm_stable_node *stable_node;
2891 struct ksm_rmap_item *rmap_item;
2892 struct folio *folio = page_folio(page);
2893 struct vm_area_struct *vma;
2894 struct task_struct *tsk;
2895
2896 stable_node = folio_stable_node(folio);
2897 if (!stable_node)
2898 return;
2899 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
2900 struct anon_vma *av = rmap_item->anon_vma;
2901
2902 anon_vma_lock_read(av);
2903 read_lock(&tasklist_lock);
2904 for_each_process(tsk) {
2905 struct anon_vma_chain *vmac;
2906 unsigned long addr;
2907 struct task_struct *t =
2908 task_early_kill(tsk, force_early);
2909 if (!t)
2910 continue;
2911 anon_vma_interval_tree_foreach(vmac, &av->rb_root, 0,
2912 ULONG_MAX)
2913 {
2914 vma = vmac->vma;
2915 if (vma->vm_mm == t->mm) {
2916 addr = rmap_item->address & PAGE_MASK;
2917 add_to_kill_ksm(t, page, vma, to_kill,
2918 addr);
2919 }
2920 }
2921 }
2922 read_unlock(&tasklist_lock);
2923 anon_vma_unlock_read(av);
2924 }
2925}
2926#endif
2927
52629506 2928#ifdef CONFIG_MIGRATION
19138349 2929void folio_migrate_ksm(struct folio *newfolio, struct folio *folio)
e9995ef9 2930{
21fbd591 2931 struct ksm_stable_node *stable_node;
e9995ef9 2932
19138349
MWO
2933 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2934 VM_BUG_ON_FOLIO(!folio_test_locked(newfolio), newfolio);
2935 VM_BUG_ON_FOLIO(newfolio->mapping != folio->mapping, newfolio);
e9995ef9 2936
19138349 2937 stable_node = folio_stable_node(folio);
e9995ef9 2938 if (stable_node) {
19138349
MWO
2939 VM_BUG_ON_FOLIO(stable_node->kpfn != folio_pfn(folio), folio);
2940 stable_node->kpfn = folio_pfn(newfolio);
c8d6553b 2941 /*
19138349 2942 * newfolio->mapping was set in advance; now we need smp_wmb()
c8d6553b 2943 * to make sure that the new stable_node->kpfn is visible
19138349
MWO
2944 * to get_ksm_page() before it can see that folio->mapping
2945 * has gone stale (or that folio_test_swapcache has been cleared).
c8d6553b
HD
2946 */
2947 smp_wmb();
19138349 2948 set_page_stable_node(&folio->page, NULL);
e9995ef9
HD
2949 }
2950}
2951#endif /* CONFIG_MIGRATION */
2952
62b61f61 2953#ifdef CONFIG_MEMORY_HOTREMOVE
ef4d43a8
HD
2954static void wait_while_offlining(void)
2955{
2956 while (ksm_run & KSM_RUN_OFFLINE) {
2957 mutex_unlock(&ksm_thread_mutex);
2958 wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
74316201 2959 TASK_UNINTERRUPTIBLE);
ef4d43a8
HD
2960 mutex_lock(&ksm_thread_mutex);
2961 }
2962}
2963
21fbd591 2964static bool stable_node_dup_remove_range(struct ksm_stable_node *stable_node,
2c653d0e
AA
2965 unsigned long start_pfn,
2966 unsigned long end_pfn)
2967{
2968 if (stable_node->kpfn >= start_pfn &&
2969 stable_node->kpfn < end_pfn) {
2970 /*
2971 * Don't get_ksm_page, page has already gone:
2972 * which is why we keep kpfn instead of page*
2973 */
2974 remove_node_from_stable_tree(stable_node);
2975 return true;
2976 }
2977 return false;
2978}
2979
21fbd591 2980static bool stable_node_chain_remove_range(struct ksm_stable_node *stable_node,
2c653d0e
AA
2981 unsigned long start_pfn,
2982 unsigned long end_pfn,
2983 struct rb_root *root)
2984{
21fbd591 2985 struct ksm_stable_node *dup;
2c653d0e
AA
2986 struct hlist_node *hlist_safe;
2987
2988 if (!is_stable_node_chain(stable_node)) {
2989 VM_BUG_ON(is_stable_node_dup(stable_node));
2990 return stable_node_dup_remove_range(stable_node, start_pfn,
2991 end_pfn);
2992 }
2993
2994 hlist_for_each_entry_safe(dup, hlist_safe,
2995 &stable_node->hlist, hlist_dup) {
2996 VM_BUG_ON(!is_stable_node_dup(dup));
2997 stable_node_dup_remove_range(dup, start_pfn, end_pfn);
2998 }
2999 if (hlist_empty(&stable_node->hlist)) {
3000 free_stable_node_chain(stable_node, root);
3001 return true; /* notify caller that tree was rebalanced */
3002 } else
3003 return false;
3004}
3005
ee0ea59c
HD
3006static void ksm_check_stable_tree(unsigned long start_pfn,
3007 unsigned long end_pfn)
62b61f61 3008{
21fbd591 3009 struct ksm_stable_node *stable_node, *next;
62b61f61 3010 struct rb_node *node;
90bd6fd3 3011 int nid;
62b61f61 3012
ef53d16c
HD
3013 for (nid = 0; nid < ksm_nr_node_ids; nid++) {
3014 node = rb_first(root_stable_tree + nid);
ee0ea59c 3015 while (node) {
21fbd591 3016 stable_node = rb_entry(node, struct ksm_stable_node, node);
2c653d0e
AA
3017 if (stable_node_chain_remove_range(stable_node,
3018 start_pfn, end_pfn,
3019 root_stable_tree +
3020 nid))
ef53d16c 3021 node = rb_first(root_stable_tree + nid);
2c653d0e 3022 else
ee0ea59c
HD
3023 node = rb_next(node);
3024 cond_resched();
90bd6fd3 3025 }
ee0ea59c 3026 }
03640418 3027 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
4146d2d6
HD
3028 if (stable_node->kpfn >= start_pfn &&
3029 stable_node->kpfn < end_pfn)
3030 remove_node_from_stable_tree(stable_node);
3031 cond_resched();
3032 }
62b61f61
HD
3033}
3034
3035static int ksm_memory_callback(struct notifier_block *self,
3036 unsigned long action, void *arg)
3037{
3038 struct memory_notify *mn = arg;
62b61f61
HD
3039
3040 switch (action) {
3041 case MEM_GOING_OFFLINE:
3042 /*
ef4d43a8
HD
3043 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
3044 * and remove_all_stable_nodes() while memory is going offline:
3045 * it is unsafe for them to touch the stable tree at this time.
3046 * But unmerge_ksm_pages(), rmap lookups and other entry points
3047 * which do not need the ksm_thread_mutex are all safe.
62b61f61 3048 */
ef4d43a8
HD
3049 mutex_lock(&ksm_thread_mutex);
3050 ksm_run |= KSM_RUN_OFFLINE;
3051 mutex_unlock(&ksm_thread_mutex);
62b61f61
HD
3052 break;
3053
3054 case MEM_OFFLINE:
3055 /*
3056 * Most of the work is done by page migration; but there might
3057 * be a few stable_nodes left over, still pointing to struct
ee0ea59c
HD
3058 * pages which have been offlined: prune those from the tree,
3059 * otherwise get_ksm_page() might later try to access a
3060 * non-existent struct page.
62b61f61 3061 */
ee0ea59c
HD
3062 ksm_check_stable_tree(mn->start_pfn,
3063 mn->start_pfn + mn->nr_pages);
e4a9bc58 3064 fallthrough;
62b61f61 3065 case MEM_CANCEL_OFFLINE:
ef4d43a8
HD
3066 mutex_lock(&ksm_thread_mutex);
3067 ksm_run &= ~KSM_RUN_OFFLINE;
62b61f61 3068 mutex_unlock(&ksm_thread_mutex);
ef4d43a8
HD
3069
3070 smp_mb(); /* wake_up_bit advises this */
3071 wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
62b61f61
HD
3072 break;
3073 }
3074 return NOTIFY_OK;
3075}
ef4d43a8
HD
3076#else
3077static void wait_while_offlining(void)
3078{
3079}
62b61f61
HD
3080#endif /* CONFIG_MEMORY_HOTREMOVE */
3081
d21077fb
SR
3082#ifdef CONFIG_PROC_FS
3083long ksm_process_profit(struct mm_struct *mm)
3084{
3085 return mm->ksm_merging_pages * PAGE_SIZE -
3086 mm->ksm_rmap_items * sizeof(struct ksm_rmap_item);
3087}
3088#endif /* CONFIG_PROC_FS */
3089
2ffd8679
HD
3090#ifdef CONFIG_SYSFS
3091/*
3092 * This all compiles without CONFIG_SYSFS, but is a waste of space.
3093 */
3094
31dbd01f
IE
3095#define KSM_ATTR_RO(_name) \
3096 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3097#define KSM_ATTR(_name) \
1bad2e5c 3098 static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
31dbd01f
IE
3099
3100static ssize_t sleep_millisecs_show(struct kobject *kobj,
3101 struct kobj_attribute *attr, char *buf)
3102{
ae7a927d 3103 return sysfs_emit(buf, "%u\n", ksm_thread_sleep_millisecs);
31dbd01f
IE
3104}
3105
3106static ssize_t sleep_millisecs_store(struct kobject *kobj,
3107 struct kobj_attribute *attr,
3108 const char *buf, size_t count)
3109{
dfefd226 3110 unsigned int msecs;
31dbd01f
IE
3111 int err;
3112
dfefd226
AD
3113 err = kstrtouint(buf, 10, &msecs);
3114 if (err)
31dbd01f
IE
3115 return -EINVAL;
3116
3117 ksm_thread_sleep_millisecs = msecs;
fcf9a0ef 3118 wake_up_interruptible(&ksm_iter_wait);
31dbd01f
IE
3119
3120 return count;
3121}
3122KSM_ATTR(sleep_millisecs);
3123
3124static ssize_t pages_to_scan_show(struct kobject *kobj,
3125 struct kobj_attribute *attr, char *buf)
3126{
ae7a927d 3127 return sysfs_emit(buf, "%u\n", ksm_thread_pages_to_scan);
31dbd01f
IE
3128}
3129
3130static ssize_t pages_to_scan_store(struct kobject *kobj,
3131 struct kobj_attribute *attr,
3132 const char *buf, size_t count)
3133{
dfefd226 3134 unsigned int nr_pages;
31dbd01f 3135 int err;
31dbd01f 3136
dfefd226
AD
3137 err = kstrtouint(buf, 10, &nr_pages);
3138 if (err)
31dbd01f
IE
3139 return -EINVAL;
3140
3141 ksm_thread_pages_to_scan = nr_pages;
3142
3143 return count;
3144}
3145KSM_ATTR(pages_to_scan);
3146
3147static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
3148 char *buf)
3149{
ae7a927d 3150 return sysfs_emit(buf, "%lu\n", ksm_run);
31dbd01f
IE
3151}
3152
3153static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
3154 const char *buf, size_t count)
3155{
dfefd226 3156 unsigned int flags;
31dbd01f 3157 int err;
31dbd01f 3158
dfefd226
AD
3159 err = kstrtouint(buf, 10, &flags);
3160 if (err)
31dbd01f
IE
3161 return -EINVAL;
3162 if (flags > KSM_RUN_UNMERGE)
3163 return -EINVAL;
3164
3165 /*
3166 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
3167 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
d0f209f6
HD
3168 * breaking COW to free the pages_shared (but leaves mm_slots
3169 * on the list for when ksmd may be set running again).
31dbd01f
IE
3170 */
3171
3172 mutex_lock(&ksm_thread_mutex);
ef4d43a8 3173 wait_while_offlining();
31dbd01f
IE
3174 if (ksm_run != flags) {
3175 ksm_run = flags;
d952b791 3176 if (flags & KSM_RUN_UNMERGE) {
e1e12d2f 3177 set_current_oom_origin();
d952b791 3178 err = unmerge_and_remove_all_rmap_items();
e1e12d2f 3179 clear_current_oom_origin();
d952b791
HD
3180 if (err) {
3181 ksm_run = KSM_RUN_STOP;
3182 count = err;
3183 }
3184 }
31dbd01f
IE
3185 }
3186 mutex_unlock(&ksm_thread_mutex);
3187
3188 if (flags & KSM_RUN_MERGE)
3189 wake_up_interruptible(&ksm_thread_wait);
3190
3191 return count;
3192}
3193KSM_ATTR(run);
3194
90bd6fd3
PH
3195#ifdef CONFIG_NUMA
3196static ssize_t merge_across_nodes_show(struct kobject *kobj,
ae7a927d 3197 struct kobj_attribute *attr, char *buf)
90bd6fd3 3198{
ae7a927d 3199 return sysfs_emit(buf, "%u\n", ksm_merge_across_nodes);
90bd6fd3
PH
3200}
3201
3202static ssize_t merge_across_nodes_store(struct kobject *kobj,
3203 struct kobj_attribute *attr,
3204 const char *buf, size_t count)
3205{
3206 int err;
3207 unsigned long knob;
3208
3209 err = kstrtoul(buf, 10, &knob);
3210 if (err)
3211 return err;
3212 if (knob > 1)
3213 return -EINVAL;
3214
3215 mutex_lock(&ksm_thread_mutex);
ef4d43a8 3216 wait_while_offlining();
90bd6fd3 3217 if (ksm_merge_across_nodes != knob) {
cbf86cfe 3218 if (ksm_pages_shared || remove_all_stable_nodes())
90bd6fd3 3219 err = -EBUSY;
ef53d16c
HD
3220 else if (root_stable_tree == one_stable_tree) {
3221 struct rb_root *buf;
3222 /*
3223 * This is the first time that we switch away from the
3224 * default of merging across nodes: must now allocate
3225 * a buffer to hold as many roots as may be needed.
3226 * Allocate stable and unstable together:
3227 * MAXSMP NODES_SHIFT 10 will use 16kB.
3228 */
bafe1e14
JP
3229 buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
3230 GFP_KERNEL);
ef53d16c
HD
3231 /* Let us assume that RB_ROOT is NULL is zero */
3232 if (!buf)
3233 err = -ENOMEM;
3234 else {
3235 root_stable_tree = buf;
3236 root_unstable_tree = buf + nr_node_ids;
3237 /* Stable tree is empty but not the unstable */
3238 root_unstable_tree[0] = one_unstable_tree[0];
3239 }
3240 }
3241 if (!err) {
90bd6fd3 3242 ksm_merge_across_nodes = knob;
ef53d16c
HD
3243 ksm_nr_node_ids = knob ? 1 : nr_node_ids;
3244 }
90bd6fd3
PH
3245 }
3246 mutex_unlock(&ksm_thread_mutex);
3247
3248 return err ? err : count;
3249}
3250KSM_ATTR(merge_across_nodes);
3251#endif
3252
e86c59b1 3253static ssize_t use_zero_pages_show(struct kobject *kobj,
ae7a927d 3254 struct kobj_attribute *attr, char *buf)
e86c59b1 3255{
ae7a927d 3256 return sysfs_emit(buf, "%u\n", ksm_use_zero_pages);
e86c59b1
CI
3257}
3258static ssize_t use_zero_pages_store(struct kobject *kobj,
3259 struct kobj_attribute *attr,
3260 const char *buf, size_t count)
3261{
3262 int err;
3263 bool value;
3264
3265 err = kstrtobool(buf, &value);
3266 if (err)
3267 return -EINVAL;
3268
3269 ksm_use_zero_pages = value;
3270
3271 return count;
3272}
3273KSM_ATTR(use_zero_pages);
3274
2c653d0e
AA
3275static ssize_t max_page_sharing_show(struct kobject *kobj,
3276 struct kobj_attribute *attr, char *buf)
3277{
ae7a927d 3278 return sysfs_emit(buf, "%u\n", ksm_max_page_sharing);
2c653d0e
AA
3279}
3280
3281static ssize_t max_page_sharing_store(struct kobject *kobj,
3282 struct kobj_attribute *attr,
3283 const char *buf, size_t count)
3284{
3285 int err;
3286 int knob;
3287
3288 err = kstrtoint(buf, 10, &knob);
3289 if (err)
3290 return err;
3291 /*
3292 * When a KSM page is created it is shared by 2 mappings. This
3293 * being a signed comparison, it implicitly verifies it's not
3294 * negative.
3295 */
3296 if (knob < 2)
3297 return -EINVAL;
3298
3299 if (READ_ONCE(ksm_max_page_sharing) == knob)
3300 return count;
3301
3302 mutex_lock(&ksm_thread_mutex);
3303 wait_while_offlining();
3304 if (ksm_max_page_sharing != knob) {
3305 if (ksm_pages_shared || remove_all_stable_nodes())
3306 err = -EBUSY;
3307 else
3308 ksm_max_page_sharing = knob;
3309 }
3310 mutex_unlock(&ksm_thread_mutex);
3311
3312 return err ? err : count;
3313}
3314KSM_ATTR(max_page_sharing);
3315
b4028260
HD
3316static ssize_t pages_shared_show(struct kobject *kobj,
3317 struct kobj_attribute *attr, char *buf)
3318{
ae7a927d 3319 return sysfs_emit(buf, "%lu\n", ksm_pages_shared);
b4028260
HD
3320}
3321KSM_ATTR_RO(pages_shared);
3322
3323static ssize_t pages_sharing_show(struct kobject *kobj,
3324 struct kobj_attribute *attr, char *buf)
3325{
ae7a927d 3326 return sysfs_emit(buf, "%lu\n", ksm_pages_sharing);
b4028260
HD
3327}
3328KSM_ATTR_RO(pages_sharing);
3329
473b0ce4
HD
3330static ssize_t pages_unshared_show(struct kobject *kobj,
3331 struct kobj_attribute *attr, char *buf)
3332{
ae7a927d 3333 return sysfs_emit(buf, "%lu\n", ksm_pages_unshared);
473b0ce4
HD
3334}
3335KSM_ATTR_RO(pages_unshared);
3336
3337static ssize_t pages_volatile_show(struct kobject *kobj,
3338 struct kobj_attribute *attr, char *buf)
3339{
3340 long ksm_pages_volatile;
3341
3342 ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
3343 - ksm_pages_sharing - ksm_pages_unshared;
3344 /*
3345 * It was not worth any locking to calculate that statistic,
3346 * but it might therefore sometimes be negative: conceal that.
3347 */
3348 if (ksm_pages_volatile < 0)
3349 ksm_pages_volatile = 0;
ae7a927d 3350 return sysfs_emit(buf, "%ld\n", ksm_pages_volatile);
473b0ce4
HD
3351}
3352KSM_ATTR_RO(pages_volatile);
3353
d21077fb
SR
3354static ssize_t general_profit_show(struct kobject *kobj,
3355 struct kobj_attribute *attr, char *buf)
3356{
3357 long general_profit;
3358
3359 general_profit = ksm_pages_sharing * PAGE_SIZE -
3360 ksm_rmap_items * sizeof(struct ksm_rmap_item);
3361
3362 return sysfs_emit(buf, "%ld\n", general_profit);
3363}
3364KSM_ATTR_RO(general_profit);
3365
2c653d0e
AA
3366static ssize_t stable_node_dups_show(struct kobject *kobj,
3367 struct kobj_attribute *attr, char *buf)
3368{
ae7a927d 3369 return sysfs_emit(buf, "%lu\n", ksm_stable_node_dups);
2c653d0e
AA
3370}
3371KSM_ATTR_RO(stable_node_dups);
3372
3373static ssize_t stable_node_chains_show(struct kobject *kobj,
3374 struct kobj_attribute *attr, char *buf)
3375{
ae7a927d 3376 return sysfs_emit(buf, "%lu\n", ksm_stable_node_chains);
2c653d0e
AA
3377}
3378KSM_ATTR_RO(stable_node_chains);
3379
3380static ssize_t
3381stable_node_chains_prune_millisecs_show(struct kobject *kobj,
3382 struct kobj_attribute *attr,
3383 char *buf)
3384{
ae7a927d 3385 return sysfs_emit(buf, "%u\n", ksm_stable_node_chains_prune_millisecs);
2c653d0e
AA
3386}
3387
3388static ssize_t
3389stable_node_chains_prune_millisecs_store(struct kobject *kobj,
3390 struct kobj_attribute *attr,
3391 const char *buf, size_t count)
3392{
584ff0df 3393 unsigned int msecs;
2c653d0e
AA
3394 int err;
3395
584ff0df
ZB
3396 err = kstrtouint(buf, 10, &msecs);
3397 if (err)
2c653d0e
AA
3398 return -EINVAL;
3399
3400 ksm_stable_node_chains_prune_millisecs = msecs;
3401
3402 return count;
3403}
3404KSM_ATTR(stable_node_chains_prune_millisecs);
3405
473b0ce4
HD
3406static ssize_t full_scans_show(struct kobject *kobj,
3407 struct kobj_attribute *attr, char *buf)
3408{
ae7a927d 3409 return sysfs_emit(buf, "%lu\n", ksm_scan.seqnr);
473b0ce4
HD
3410}
3411KSM_ATTR_RO(full_scans);
3412
31dbd01f
IE
3413static struct attribute *ksm_attrs[] = {
3414 &sleep_millisecs_attr.attr,
3415 &pages_to_scan_attr.attr,
3416 &run_attr.attr,
b4028260
HD
3417 &pages_shared_attr.attr,
3418 &pages_sharing_attr.attr,
473b0ce4
HD
3419 &pages_unshared_attr.attr,
3420 &pages_volatile_attr.attr,
3421 &full_scans_attr.attr,
90bd6fd3
PH
3422#ifdef CONFIG_NUMA
3423 &merge_across_nodes_attr.attr,
3424#endif
2c653d0e
AA
3425 &max_page_sharing_attr.attr,
3426 &stable_node_chains_attr.attr,
3427 &stable_node_dups_attr.attr,
3428 &stable_node_chains_prune_millisecs_attr.attr,
e86c59b1 3429 &use_zero_pages_attr.attr,
d21077fb 3430 &general_profit_attr.attr,
31dbd01f
IE
3431 NULL,
3432};
3433
f907c26a 3434static const struct attribute_group ksm_attr_group = {
31dbd01f
IE
3435 .attrs = ksm_attrs,
3436 .name = "ksm",
3437};
2ffd8679 3438#endif /* CONFIG_SYSFS */
31dbd01f
IE
3439
3440static int __init ksm_init(void)
3441{
3442 struct task_struct *ksm_thread;
3443 int err;
3444
e86c59b1
CI
3445 /* The correct value depends on page size and endianness */
3446 zero_checksum = calc_checksum(ZERO_PAGE(0));
3447 /* Default to false for backwards compatibility */
3448 ksm_use_zero_pages = false;
3449
31dbd01f
IE
3450 err = ksm_slab_init();
3451 if (err)
3452 goto out;
3453
31dbd01f
IE
3454 ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
3455 if (IS_ERR(ksm_thread)) {
25acde31 3456 pr_err("ksm: creating kthread failed\n");
31dbd01f 3457 err = PTR_ERR(ksm_thread);
d9f8984c 3458 goto out_free;
31dbd01f
IE
3459 }
3460
2ffd8679 3461#ifdef CONFIG_SYSFS
31dbd01f
IE
3462 err = sysfs_create_group(mm_kobj, &ksm_attr_group);
3463 if (err) {
25acde31 3464 pr_err("ksm: register sysfs failed\n");
2ffd8679 3465 kthread_stop(ksm_thread);
d9f8984c 3466 goto out_free;
31dbd01f 3467 }
c73602ad
HD
3468#else
3469 ksm_run = KSM_RUN_MERGE; /* no way for user to start it */
3470
2ffd8679 3471#endif /* CONFIG_SYSFS */
31dbd01f 3472
62b61f61 3473#ifdef CONFIG_MEMORY_HOTREMOVE
ef4d43a8 3474 /* There is no significance to this priority 100 */
1eeaa4fd 3475 hotplug_memory_notifier(ksm_memory_callback, KSM_CALLBACK_PRI);
62b61f61 3476#endif
31dbd01f
IE
3477 return 0;
3478
d9f8984c 3479out_free:
31dbd01f
IE
3480 ksm_slab_free();
3481out:
3482 return err;
f8af4da3 3483}
a64fb3cd 3484subsys_initcall(ksm_init);