Merge tag 'for-linus' of git://git.armlinux.org.uk/~rmk/linux-arm
[linux-block.git] / mm / ksm.c
CommitLineData
7a338472 1// SPDX-License-Identifier: GPL-2.0-only
f8af4da3 2/*
31dbd01f
IE
3 * Memory merging support.
4 *
5 * This code enables dynamic sharing of identical pages found in different
6 * memory areas, even if they are not shared by fork()
7 *
36b2528d 8 * Copyright (C) 2008-2009 Red Hat, Inc.
31dbd01f
IE
9 * Authors:
10 * Izik Eidus
11 * Andrea Arcangeli
12 * Chris Wright
36b2528d 13 * Hugh Dickins
f8af4da3
HD
14 */
15
16#include <linux/errno.h>
31dbd01f 17#include <linux/mm.h>
36090def 18#include <linux/mm_inline.h>
31dbd01f 19#include <linux/fs.h>
f8af4da3 20#include <linux/mman.h>
31dbd01f 21#include <linux/sched.h>
6e84f315 22#include <linux/sched/mm.h>
f7ccbae4 23#include <linux/sched/coredump.h>
31dbd01f
IE
24#include <linux/rwsem.h>
25#include <linux/pagemap.h>
26#include <linux/rmap.h>
27#include <linux/spinlock.h>
59e1a2f4 28#include <linux/xxhash.h>
31dbd01f
IE
29#include <linux/delay.h>
30#include <linux/kthread.h>
31#include <linux/wait.h>
32#include <linux/slab.h>
33#include <linux/rbtree.h>
62b61f61 34#include <linux/memory.h>
31dbd01f 35#include <linux/mmu_notifier.h>
2c6854fd 36#include <linux/swap.h>
f8af4da3 37#include <linux/ksm.h>
4ca3a69b 38#include <linux/hashtable.h>
878aee7d 39#include <linux/freezer.h>
72788c38 40#include <linux/oom.h>
90bd6fd3 41#include <linux/numa.h>
d7c0e68d 42#include <linux/pagewalk.h>
f8af4da3 43
31dbd01f 44#include <asm/tlbflush.h>
73848b46 45#include "internal.h"
58730ab6 46#include "mm_slot.h"
31dbd01f 47
e850dcf5
HD
48#ifdef CONFIG_NUMA
49#define NUMA(x) (x)
50#define DO_NUMA(x) do { (x); } while (0)
51#else
52#define NUMA(x) (0)
53#define DO_NUMA(x) do { } while (0)
54#endif
55
5a2ca3ef
MR
56/**
57 * DOC: Overview
58 *
31dbd01f
IE
59 * A few notes about the KSM scanning process,
60 * to make it easier to understand the data structures below:
61 *
62 * In order to reduce excessive scanning, KSM sorts the memory pages by their
63 * contents into a data structure that holds pointers to the pages' locations.
64 *
65 * Since the contents of the pages may change at any moment, KSM cannot just
66 * insert the pages into a normal sorted tree and expect it to find anything.
67 * Therefore KSM uses two data structures - the stable and the unstable tree.
68 *
69 * The stable tree holds pointers to all the merged pages (ksm pages), sorted
70 * by their contents. Because each such page is write-protected, searching on
71 * this tree is fully assured to be working (except when pages are unmapped),
72 * and therefore this tree is called the stable tree.
73 *
5a2ca3ef
MR
74 * The stable tree node includes information required for reverse
75 * mapping from a KSM page to virtual addresses that map this page.
76 *
77 * In order to avoid large latencies of the rmap walks on KSM pages,
78 * KSM maintains two types of nodes in the stable tree:
79 *
80 * * the regular nodes that keep the reverse mapping structures in a
81 * linked list
82 * * the "chains" that link nodes ("dups") that represent the same
83 * write protected memory content, but each "dup" corresponds to a
84 * different KSM page copy of that content
85 *
86 * Internally, the regular nodes, "dups" and "chains" are represented
21fbd591 87 * using the same struct ksm_stable_node structure.
5a2ca3ef 88 *
31dbd01f
IE
89 * In addition to the stable tree, KSM uses a second data structure called the
90 * unstable tree: this tree holds pointers to pages which have been found to
91 * be "unchanged for a period of time". The unstable tree sorts these pages
92 * by their contents, but since they are not write-protected, KSM cannot rely
93 * upon the unstable tree to work correctly - the unstable tree is liable to
94 * be corrupted as its contents are modified, and so it is called unstable.
95 *
96 * KSM solves this problem by several techniques:
97 *
98 * 1) The unstable tree is flushed every time KSM completes scanning all
99 * memory areas, and then the tree is rebuilt again from the beginning.
100 * 2) KSM will only insert into the unstable tree, pages whose hash value
101 * has not changed since the previous scan of all memory areas.
102 * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
103 * colors of the nodes and not on their contents, assuring that even when
104 * the tree gets "corrupted" it won't get out of balance, so scanning time
105 * remains the same (also, searching and inserting nodes in an rbtree uses
106 * the same algorithm, so we have no overhead when we flush and rebuild).
107 * 4) KSM never flushes the stable tree, which means that even if it were to
108 * take 10 attempts to find a page in the unstable tree, once it is found,
109 * it is secured in the stable tree. (When we scan a new page, we first
110 * compare it against the stable tree, and then against the unstable tree.)
8fdb3dbf
HD
111 *
112 * If the merge_across_nodes tunable is unset, then KSM maintains multiple
113 * stable trees and multiple unstable trees: one of each for each NUMA node.
31dbd01f
IE
114 */
115
116/**
21fbd591 117 * struct ksm_mm_slot - ksm information per mm that is being scanned
58730ab6 118 * @slot: hash lookup from mm to mm_slot
6514d511 119 * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
31dbd01f 120 */
21fbd591 121struct ksm_mm_slot {
58730ab6 122 struct mm_slot slot;
21fbd591 123 struct ksm_rmap_item *rmap_list;
31dbd01f
IE
124};
125
126/**
127 * struct ksm_scan - cursor for scanning
128 * @mm_slot: the current mm_slot we are scanning
129 * @address: the next address inside that to be scanned
6514d511 130 * @rmap_list: link to the next rmap to be scanned in the rmap_list
31dbd01f
IE
131 * @seqnr: count of completed full scans (needed when removing unstable node)
132 *
133 * There is only the one ksm_scan instance of this cursor structure.
134 */
135struct ksm_scan {
21fbd591 136 struct ksm_mm_slot *mm_slot;
31dbd01f 137 unsigned long address;
21fbd591 138 struct ksm_rmap_item **rmap_list;
31dbd01f
IE
139 unsigned long seqnr;
140};
141
7b6ba2c7 142/**
21fbd591 143 * struct ksm_stable_node - node of the stable rbtree
7b6ba2c7 144 * @node: rb node of this ksm page in the stable tree
4146d2d6 145 * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
2c653d0e 146 * @hlist_dup: linked into the stable_node->hlist with a stable_node chain
4146d2d6 147 * @list: linked into migrate_nodes, pending placement in the proper node tree
7b6ba2c7 148 * @hlist: hlist head of rmap_items using this ksm page
4146d2d6 149 * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
2c653d0e
AA
150 * @chain_prune_time: time of the last full garbage collection
151 * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN
4146d2d6 152 * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
7b6ba2c7 153 */
21fbd591 154struct ksm_stable_node {
4146d2d6
HD
155 union {
156 struct rb_node node; /* when node of stable tree */
157 struct { /* when listed for migration */
158 struct list_head *head;
2c653d0e
AA
159 struct {
160 struct hlist_node hlist_dup;
161 struct list_head list;
162 };
4146d2d6
HD
163 };
164 };
7b6ba2c7 165 struct hlist_head hlist;
2c653d0e
AA
166 union {
167 unsigned long kpfn;
168 unsigned long chain_prune_time;
169 };
170 /*
171 * STABLE_NODE_CHAIN can be any negative number in
172 * rmap_hlist_len negative range, but better not -1 to be able
173 * to reliably detect underflows.
174 */
175#define STABLE_NODE_CHAIN -1024
176 int rmap_hlist_len;
4146d2d6
HD
177#ifdef CONFIG_NUMA
178 int nid;
179#endif
7b6ba2c7
HD
180};
181
31dbd01f 182/**
21fbd591 183 * struct ksm_rmap_item - reverse mapping item for virtual addresses
6514d511 184 * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
db114b83 185 * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
bc56620b 186 * @nid: NUMA node id of unstable tree in which linked (may not match page)
31dbd01f
IE
187 * @mm: the memory structure this rmap_item is pointing into
188 * @address: the virtual address this rmap_item tracks (+ flags in low bits)
189 * @oldchecksum: previous checksum of the page at that virtual address
7b6ba2c7
HD
190 * @node: rb node of this rmap_item in the unstable tree
191 * @head: pointer to stable_node heading this list in the stable tree
192 * @hlist: link into hlist of rmap_items hanging off that stable_node
31dbd01f 193 */
21fbd591
QZ
194struct ksm_rmap_item {
195 struct ksm_rmap_item *rmap_list;
bc56620b
HD
196 union {
197 struct anon_vma *anon_vma; /* when stable */
198#ifdef CONFIG_NUMA
199 int nid; /* when node of unstable tree */
200#endif
201 };
31dbd01f
IE
202 struct mm_struct *mm;
203 unsigned long address; /* + low bits used for flags below */
7b6ba2c7 204 unsigned int oldchecksum; /* when unstable */
31dbd01f 205 union {
7b6ba2c7
HD
206 struct rb_node node; /* when node of unstable tree */
207 struct { /* when listed from stable tree */
21fbd591 208 struct ksm_stable_node *head;
7b6ba2c7
HD
209 struct hlist_node hlist;
210 };
31dbd01f
IE
211 };
212};
213
214#define SEQNR_MASK 0x0ff /* low bits of unstable tree seqnr */
7b6ba2c7
HD
215#define UNSTABLE_FLAG 0x100 /* is a node of the unstable tree */
216#define STABLE_FLAG 0x200 /* is listed from the stable tree */
31dbd01f
IE
217
218/* The stable and unstable tree heads */
ef53d16c
HD
219static struct rb_root one_stable_tree[1] = { RB_ROOT };
220static struct rb_root one_unstable_tree[1] = { RB_ROOT };
221static struct rb_root *root_stable_tree = one_stable_tree;
222static struct rb_root *root_unstable_tree = one_unstable_tree;
31dbd01f 223
4146d2d6
HD
224/* Recently migrated nodes of stable tree, pending proper placement */
225static LIST_HEAD(migrate_nodes);
2c653d0e 226#define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev)
4146d2d6 227
4ca3a69b
SL
228#define MM_SLOTS_HASH_BITS 10
229static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
31dbd01f 230
21fbd591 231static struct ksm_mm_slot ksm_mm_head = {
58730ab6 232 .slot.mm_node = LIST_HEAD_INIT(ksm_mm_head.slot.mm_node),
31dbd01f
IE
233};
234static struct ksm_scan ksm_scan = {
235 .mm_slot = &ksm_mm_head,
236};
237
238static struct kmem_cache *rmap_item_cache;
7b6ba2c7 239static struct kmem_cache *stable_node_cache;
31dbd01f
IE
240static struct kmem_cache *mm_slot_cache;
241
242/* The number of nodes in the stable tree */
b4028260 243static unsigned long ksm_pages_shared;
31dbd01f 244
e178dfde 245/* The number of page slots additionally sharing those nodes */
b4028260 246static unsigned long ksm_pages_sharing;
31dbd01f 247
473b0ce4
HD
248/* The number of nodes in the unstable tree */
249static unsigned long ksm_pages_unshared;
250
251/* The number of rmap_items in use: to calculate pages_volatile */
252static unsigned long ksm_rmap_items;
253
2c653d0e
AA
254/* The number of stable_node chains */
255static unsigned long ksm_stable_node_chains;
256
257/* The number of stable_node dups linked to the stable_node chains */
258static unsigned long ksm_stable_node_dups;
259
260/* Delay in pruning stale stable_node_dups in the stable_node_chains */
584ff0df 261static unsigned int ksm_stable_node_chains_prune_millisecs = 2000;
2c653d0e
AA
262
263/* Maximum number of page slots sharing a stable node */
264static int ksm_max_page_sharing = 256;
265
31dbd01f 266/* Number of pages ksmd should scan in one batch */
2c6854fd 267static unsigned int ksm_thread_pages_to_scan = 100;
31dbd01f
IE
268
269/* Milliseconds ksmd should sleep between batches */
2ffd8679 270static unsigned int ksm_thread_sleep_millisecs = 20;
31dbd01f 271
e86c59b1
CI
272/* Checksum of an empty (zeroed) page */
273static unsigned int zero_checksum __read_mostly;
274
275/* Whether to merge empty (zeroed) pages with actual zero pages */
276static bool ksm_use_zero_pages __read_mostly;
277
e850dcf5 278#ifdef CONFIG_NUMA
90bd6fd3
PH
279/* Zeroed when merging across nodes is not allowed */
280static unsigned int ksm_merge_across_nodes = 1;
ef53d16c 281static int ksm_nr_node_ids = 1;
e850dcf5
HD
282#else
283#define ksm_merge_across_nodes 1U
ef53d16c 284#define ksm_nr_node_ids 1
e850dcf5 285#endif
90bd6fd3 286
31dbd01f
IE
287#define KSM_RUN_STOP 0
288#define KSM_RUN_MERGE 1
289#define KSM_RUN_UNMERGE 2
ef4d43a8
HD
290#define KSM_RUN_OFFLINE 4
291static unsigned long ksm_run = KSM_RUN_STOP;
292static void wait_while_offlining(void);
31dbd01f
IE
293
294static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
fcf9a0ef 295static DECLARE_WAIT_QUEUE_HEAD(ksm_iter_wait);
31dbd01f
IE
296static DEFINE_MUTEX(ksm_thread_mutex);
297static DEFINE_SPINLOCK(ksm_mmlist_lock);
298
21fbd591 299#define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create(#__struct,\
31dbd01f
IE
300 sizeof(struct __struct), __alignof__(struct __struct),\
301 (__flags), NULL)
302
303static int __init ksm_slab_init(void)
304{
21fbd591 305 rmap_item_cache = KSM_KMEM_CACHE(ksm_rmap_item, 0);
31dbd01f
IE
306 if (!rmap_item_cache)
307 goto out;
308
21fbd591 309 stable_node_cache = KSM_KMEM_CACHE(ksm_stable_node, 0);
7b6ba2c7
HD
310 if (!stable_node_cache)
311 goto out_free1;
312
21fbd591 313 mm_slot_cache = KSM_KMEM_CACHE(ksm_mm_slot, 0);
31dbd01f 314 if (!mm_slot_cache)
7b6ba2c7 315 goto out_free2;
31dbd01f
IE
316
317 return 0;
318
7b6ba2c7
HD
319out_free2:
320 kmem_cache_destroy(stable_node_cache);
321out_free1:
31dbd01f
IE
322 kmem_cache_destroy(rmap_item_cache);
323out:
324 return -ENOMEM;
325}
326
327static void __init ksm_slab_free(void)
328{
329 kmem_cache_destroy(mm_slot_cache);
7b6ba2c7 330 kmem_cache_destroy(stable_node_cache);
31dbd01f
IE
331 kmem_cache_destroy(rmap_item_cache);
332 mm_slot_cache = NULL;
333}
334
21fbd591 335static __always_inline bool is_stable_node_chain(struct ksm_stable_node *chain)
2c653d0e
AA
336{
337 return chain->rmap_hlist_len == STABLE_NODE_CHAIN;
338}
339
21fbd591 340static __always_inline bool is_stable_node_dup(struct ksm_stable_node *dup)
2c653d0e
AA
341{
342 return dup->head == STABLE_NODE_DUP_HEAD;
343}
344
21fbd591
QZ
345static inline void stable_node_chain_add_dup(struct ksm_stable_node *dup,
346 struct ksm_stable_node *chain)
2c653d0e
AA
347{
348 VM_BUG_ON(is_stable_node_dup(dup));
349 dup->head = STABLE_NODE_DUP_HEAD;
350 VM_BUG_ON(!is_stable_node_chain(chain));
351 hlist_add_head(&dup->hlist_dup, &chain->hlist);
352 ksm_stable_node_dups++;
353}
354
21fbd591 355static inline void __stable_node_dup_del(struct ksm_stable_node *dup)
2c653d0e 356{
b4fecc67 357 VM_BUG_ON(!is_stable_node_dup(dup));
2c653d0e
AA
358 hlist_del(&dup->hlist_dup);
359 ksm_stable_node_dups--;
360}
361
21fbd591 362static inline void stable_node_dup_del(struct ksm_stable_node *dup)
2c653d0e
AA
363{
364 VM_BUG_ON(is_stable_node_chain(dup));
365 if (is_stable_node_dup(dup))
366 __stable_node_dup_del(dup);
367 else
368 rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid));
369#ifdef CONFIG_DEBUG_VM
370 dup->head = NULL;
371#endif
372}
373
21fbd591 374static inline struct ksm_rmap_item *alloc_rmap_item(void)
31dbd01f 375{
21fbd591 376 struct ksm_rmap_item *rmap_item;
473b0ce4 377
5b398e41 378 rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL |
379 __GFP_NORETRY | __GFP_NOWARN);
473b0ce4
HD
380 if (rmap_item)
381 ksm_rmap_items++;
382 return rmap_item;
31dbd01f
IE
383}
384
21fbd591 385static inline void free_rmap_item(struct ksm_rmap_item *rmap_item)
31dbd01f 386{
473b0ce4 387 ksm_rmap_items--;
cb4df4ca 388 rmap_item->mm->ksm_rmap_items--;
31dbd01f
IE
389 rmap_item->mm = NULL; /* debug safety */
390 kmem_cache_free(rmap_item_cache, rmap_item);
391}
392
21fbd591 393static inline struct ksm_stable_node *alloc_stable_node(void)
7b6ba2c7 394{
6213055f 395 /*
396 * The allocation can take too long with GFP_KERNEL when memory is under
397 * pressure, which may lead to hung task warnings. Adding __GFP_HIGH
398 * grants access to memory reserves, helping to avoid this problem.
399 */
400 return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH);
7b6ba2c7
HD
401}
402
21fbd591 403static inline void free_stable_node(struct ksm_stable_node *stable_node)
7b6ba2c7 404{
2c653d0e
AA
405 VM_BUG_ON(stable_node->rmap_hlist_len &&
406 !is_stable_node_chain(stable_node));
7b6ba2c7
HD
407 kmem_cache_free(stable_node_cache, stable_node);
408}
409
a913e182
HD
410/*
411 * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
412 * page tables after it has passed through ksm_exit() - which, if necessary,
c1e8d7c6 413 * takes mmap_lock briefly to serialize against them. ksm_exit() does not set
a913e182
HD
414 * a special flag: they can just back out as soon as mm_users goes to zero.
415 * ksm_test_exit() is used throughout to make this test for exit: in some
416 * places for correctness, in some places just to avoid unnecessary work.
417 */
418static inline bool ksm_test_exit(struct mm_struct *mm)
419{
420 return atomic_read(&mm->mm_users) == 0;
421}
422
d7c0e68d
DH
423static int break_ksm_pmd_entry(pmd_t *pmd, unsigned long addr, unsigned long next,
424 struct mm_walk *walk)
425{
426 struct page *page = NULL;
427 spinlock_t *ptl;
428 pte_t *pte;
429 int ret;
430
431 if (pmd_leaf(*pmd) || !pmd_present(*pmd))
432 return 0;
433
434 pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
435 if (pte_present(*pte)) {
436 page = vm_normal_page(walk->vma, addr, *pte);
437 } else if (!pte_none(*pte)) {
438 swp_entry_t entry = pte_to_swp_entry(*pte);
439
440 /*
441 * As KSM pages remain KSM pages until freed, no need to wait
442 * here for migration to end.
443 */
444 if (is_migration_entry(entry))
445 page = pfn_swap_entry_to_page(entry);
446 }
447 ret = page && PageKsm(page);
448 pte_unmap_unlock(pte, ptl);
449 return ret;
450}
451
452static const struct mm_walk_ops break_ksm_ops = {
453 .pmd_entry = break_ksm_pmd_entry,
454};
455
31dbd01f 456/*
6cce3314
DH
457 * We use break_ksm to break COW on a ksm page by triggering unsharing,
458 * such that the ksm page will get replaced by an exclusive anonymous page.
31dbd01f 459 *
6cce3314 460 * We take great care only to touch a ksm page, in a VM_MERGEABLE vma,
31dbd01f
IE
461 * in case the application has unmapped and remapped mm,addr meanwhile.
462 * Could a ksm page appear anywhere else? Actually yes, in a VM_PFNMAP
bbcd53c9 463 * mmap of /dev/mem, where we would not want to touch it.
1b2ee126 464 *
6cce3314 465 * FAULT_FLAG_REMOTE/FOLL_REMOTE are because we do this outside the context
1b2ee126
DH
466 * of the process that owns 'vma'. We also do not want to enforce
467 * protection keys here anyway.
31dbd01f 468 */
d952b791 469static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
31dbd01f 470{
50a7ca3c 471 vm_fault_t ret = 0;
31dbd01f
IE
472
473 do {
d7c0e68d 474 int ksm_page;
58f595c6 475
31dbd01f 476 cond_resched();
d7c0e68d
DH
477 ksm_page = walk_page_range_vma(vma, addr, addr + 1,
478 &break_ksm_ops, NULL);
479 if (WARN_ON_ONCE(ksm_page < 0))
480 return ksm_page;
58f595c6
DH
481 if (!ksm_page)
482 return 0;
483 ret = handle_mm_fault(vma, addr,
6cce3314 484 FAULT_FLAG_UNSHARE | FAULT_FLAG_REMOTE,
58f595c6
DH
485 NULL);
486 } while (!(ret & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
d952b791 487 /*
58f595c6
DH
488 * We must loop until we no longer find a KSM page because
489 * handle_mm_fault() may back out if there's any difficulty e.g. if
490 * pte accessed bit gets updated concurrently.
d952b791
HD
491 *
492 * VM_FAULT_SIGBUS could occur if we race with truncation of the
493 * backing file, which also invalidates anonymous pages: that's
494 * okay, that truncation will have unmapped the PageKsm for us.
495 *
496 * VM_FAULT_OOM: at the time of writing (late July 2009), setting
497 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
498 * current task has TIF_MEMDIE set, and will be OOM killed on return
499 * to user; and ksmd, having no mm, would never be chosen for that.
500 *
501 * But if the mm is in a limited mem_cgroup, then the fault may fail
502 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
503 * even ksmd can fail in this way - though it's usually breaking ksm
504 * just to undo a merge it made a moment before, so unlikely to oom.
505 *
506 * That's a pity: we might therefore have more kernel pages allocated
507 * than we're counting as nodes in the stable tree; but ksm_do_scan
508 * will retry to break_cow on each pass, so should recover the page
509 * in due course. The important thing is to not let VM_MERGEABLE
510 * be cleared while any such pages might remain in the area.
511 */
512 return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
31dbd01f
IE
513}
514
ef694222
BL
515static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
516 unsigned long addr)
517{
518 struct vm_area_struct *vma;
519 if (ksm_test_exit(mm))
520 return NULL;
ff69fb81
LH
521 vma = vma_lookup(mm, addr);
522 if (!vma || !(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
ef694222
BL
523 return NULL;
524 return vma;
525}
526
21fbd591 527static void break_cow(struct ksm_rmap_item *rmap_item)
31dbd01f 528{
8dd3557a
HD
529 struct mm_struct *mm = rmap_item->mm;
530 unsigned long addr = rmap_item->address;
31dbd01f
IE
531 struct vm_area_struct *vma;
532
4035c07a
HD
533 /*
534 * It is not an accident that whenever we want to break COW
535 * to undo, we also need to drop a reference to the anon_vma.
536 */
9e60109f 537 put_anon_vma(rmap_item->anon_vma);
4035c07a 538
d8ed45c5 539 mmap_read_lock(mm);
ef694222
BL
540 vma = find_mergeable_vma(mm, addr);
541 if (vma)
542 break_ksm(vma, addr);
d8ed45c5 543 mmap_read_unlock(mm);
31dbd01f
IE
544}
545
21fbd591 546static struct page *get_mergeable_page(struct ksm_rmap_item *rmap_item)
31dbd01f
IE
547{
548 struct mm_struct *mm = rmap_item->mm;
549 unsigned long addr = rmap_item->address;
550 struct vm_area_struct *vma;
551 struct page *page;
552
d8ed45c5 553 mmap_read_lock(mm);
ef694222
BL
554 vma = find_mergeable_vma(mm, addr);
555 if (!vma)
31dbd01f
IE
556 goto out;
557
558 page = follow_page(vma, addr, FOLL_GET);
f7091ed6 559 if (IS_ERR_OR_NULL(page))
31dbd01f 560 goto out;
f7091ed6
HW
561 if (is_zone_device_page(page))
562 goto out_putpage;
f765f540 563 if (PageAnon(page)) {
31dbd01f
IE
564 flush_anon_page(vma, page, addr);
565 flush_dcache_page(page);
566 } else {
f7091ed6 567out_putpage:
31dbd01f 568 put_page(page);
c8f95ed1
AA
569out:
570 page = NULL;
31dbd01f 571 }
d8ed45c5 572 mmap_read_unlock(mm);
31dbd01f
IE
573 return page;
574}
575
90bd6fd3
PH
576/*
577 * This helper is used for getting right index into array of tree roots.
578 * When merge_across_nodes knob is set to 1, there are only two rb-trees for
579 * stable and unstable pages from all nodes with roots in index 0. Otherwise,
580 * every node has its own stable and unstable tree.
581 */
582static inline int get_kpfn_nid(unsigned long kpfn)
583{
d8fc16a8 584 return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
90bd6fd3
PH
585}
586
21fbd591 587static struct ksm_stable_node *alloc_stable_node_chain(struct ksm_stable_node *dup,
2c653d0e
AA
588 struct rb_root *root)
589{
21fbd591 590 struct ksm_stable_node *chain = alloc_stable_node();
2c653d0e
AA
591 VM_BUG_ON(is_stable_node_chain(dup));
592 if (likely(chain)) {
593 INIT_HLIST_HEAD(&chain->hlist);
594 chain->chain_prune_time = jiffies;
595 chain->rmap_hlist_len = STABLE_NODE_CHAIN;
596#if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA)
98fa15f3 597 chain->nid = NUMA_NO_NODE; /* debug */
2c653d0e
AA
598#endif
599 ksm_stable_node_chains++;
600
601 /*
602 * Put the stable node chain in the first dimension of
603 * the stable tree and at the same time remove the old
604 * stable node.
605 */
606 rb_replace_node(&dup->node, &chain->node, root);
607
608 /*
609 * Move the old stable node to the second dimension
610 * queued in the hlist_dup. The invariant is that all
611 * dup stable_nodes in the chain->hlist point to pages
457aef94 612 * that are write protected and have the exact same
2c653d0e
AA
613 * content.
614 */
615 stable_node_chain_add_dup(dup, chain);
616 }
617 return chain;
618}
619
21fbd591 620static inline void free_stable_node_chain(struct ksm_stable_node *chain,
2c653d0e
AA
621 struct rb_root *root)
622{
623 rb_erase(&chain->node, root);
624 free_stable_node(chain);
625 ksm_stable_node_chains--;
626}
627
21fbd591 628static void remove_node_from_stable_tree(struct ksm_stable_node *stable_node)
4035c07a 629{
21fbd591 630 struct ksm_rmap_item *rmap_item;
4035c07a 631
2c653d0e
AA
632 /* check it's not STABLE_NODE_CHAIN or negative */
633 BUG_ON(stable_node->rmap_hlist_len < 0);
634
b67bfe0d 635 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
4035c07a
HD
636 if (rmap_item->hlist.next)
637 ksm_pages_sharing--;
638 else
639 ksm_pages_shared--;
76093853 640
641 rmap_item->mm->ksm_merging_pages--;
642
2c653d0e
AA
643 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
644 stable_node->rmap_hlist_len--;
9e60109f 645 put_anon_vma(rmap_item->anon_vma);
4035c07a
HD
646 rmap_item->address &= PAGE_MASK;
647 cond_resched();
648 }
649
2c653d0e
AA
650 /*
651 * We need the second aligned pointer of the migrate_nodes
652 * list_head to stay clear from the rb_parent_color union
653 * (aligned and different than any node) and also different
654 * from &migrate_nodes. This will verify that future list.h changes
815f0ddb 655 * don't break STABLE_NODE_DUP_HEAD. Only recent gcc can handle it.
2c653d0e 656 */
2c653d0e
AA
657 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes);
658 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1);
2c653d0e 659
4146d2d6
HD
660 if (stable_node->head == &migrate_nodes)
661 list_del(&stable_node->list);
662 else
2c653d0e 663 stable_node_dup_del(stable_node);
4035c07a
HD
664 free_stable_node(stable_node);
665}
666
2cee57d1
YS
667enum get_ksm_page_flags {
668 GET_KSM_PAGE_NOLOCK,
669 GET_KSM_PAGE_LOCK,
670 GET_KSM_PAGE_TRYLOCK
671};
672
4035c07a
HD
673/*
674 * get_ksm_page: checks if the page indicated by the stable node
675 * is still its ksm page, despite having held no reference to it.
676 * In which case we can trust the content of the page, and it
677 * returns the gotten page; but if the page has now been zapped,
678 * remove the stale node from the stable tree and return NULL.
c8d6553b 679 * But beware, the stable node's page might be being migrated.
4035c07a
HD
680 *
681 * You would expect the stable_node to hold a reference to the ksm page.
682 * But if it increments the page's count, swapping out has to wait for
683 * ksmd to come around again before it can free the page, which may take
684 * seconds or even minutes: much too unresponsive. So instead we use a
685 * "keyhole reference": access to the ksm page from the stable node peeps
686 * out through its keyhole to see if that page still holds the right key,
687 * pointing back to this stable node. This relies on freeing a PageAnon
688 * page to reset its page->mapping to NULL, and relies on no other use of
689 * a page to put something that might look like our key in page->mapping.
4035c07a
HD
690 * is on its way to being freed; but it is an anomaly to bear in mind.
691 */
21fbd591 692static struct page *get_ksm_page(struct ksm_stable_node *stable_node,
2cee57d1 693 enum get_ksm_page_flags flags)
4035c07a
HD
694{
695 struct page *page;
696 void *expected_mapping;
c8d6553b 697 unsigned long kpfn;
4035c07a 698
bda807d4
MK
699 expected_mapping = (void *)((unsigned long)stable_node |
700 PAGE_MAPPING_KSM);
c8d6553b 701again:
08df4774 702 kpfn = READ_ONCE(stable_node->kpfn); /* Address dependency. */
c8d6553b 703 page = pfn_to_page(kpfn);
4db0c3c2 704 if (READ_ONCE(page->mapping) != expected_mapping)
4035c07a 705 goto stale;
c8d6553b
HD
706
707 /*
708 * We cannot do anything with the page while its refcount is 0.
709 * Usually 0 means free, or tail of a higher-order page: in which
710 * case this node is no longer referenced, and should be freed;
1c4c3b99 711 * however, it might mean that the page is under page_ref_freeze().
c8d6553b 712 * The __remove_mapping() case is easy, again the node is now stale;
52d1e606 713 * the same is in reuse_ksm_page() case; but if page is swapcache
9800562f 714 * in folio_migrate_mapping(), it might still be our page,
52d1e606 715 * in which case it's essential to keep the node.
c8d6553b
HD
716 */
717 while (!get_page_unless_zero(page)) {
718 /*
719 * Another check for page->mapping != expected_mapping would
720 * work here too. We have chosen the !PageSwapCache test to
721 * optimize the common case, when the page is or is about to
722 * be freed: PageSwapCache is cleared (under spin_lock_irq)
1c4c3b99 723 * in the ref_freeze section of __remove_mapping(); but Anon
c8d6553b
HD
724 * page->mapping reset to NULL later, in free_pages_prepare().
725 */
726 if (!PageSwapCache(page))
727 goto stale;
728 cpu_relax();
729 }
730
4db0c3c2 731 if (READ_ONCE(page->mapping) != expected_mapping) {
4035c07a
HD
732 put_page(page);
733 goto stale;
734 }
c8d6553b 735
2cee57d1
YS
736 if (flags == GET_KSM_PAGE_TRYLOCK) {
737 if (!trylock_page(page)) {
738 put_page(page);
739 return ERR_PTR(-EBUSY);
740 }
741 } else if (flags == GET_KSM_PAGE_LOCK)
8aafa6a4 742 lock_page(page);
2cee57d1
YS
743
744 if (flags != GET_KSM_PAGE_NOLOCK) {
4db0c3c2 745 if (READ_ONCE(page->mapping) != expected_mapping) {
8aafa6a4
HD
746 unlock_page(page);
747 put_page(page);
748 goto stale;
749 }
750 }
4035c07a 751 return page;
c8d6553b 752
4035c07a 753stale:
c8d6553b
HD
754 /*
755 * We come here from above when page->mapping or !PageSwapCache
756 * suggests that the node is stale; but it might be under migration.
19138349 757 * We need smp_rmb(), matching the smp_wmb() in folio_migrate_ksm(),
c8d6553b
HD
758 * before checking whether node->kpfn has been changed.
759 */
760 smp_rmb();
4db0c3c2 761 if (READ_ONCE(stable_node->kpfn) != kpfn)
c8d6553b 762 goto again;
4035c07a
HD
763 remove_node_from_stable_tree(stable_node);
764 return NULL;
765}
766
31dbd01f
IE
767/*
768 * Removing rmap_item from stable or unstable tree.
769 * This function will clean the information from the stable/unstable tree.
770 */
21fbd591 771static void remove_rmap_item_from_tree(struct ksm_rmap_item *rmap_item)
31dbd01f 772{
7b6ba2c7 773 if (rmap_item->address & STABLE_FLAG) {
21fbd591 774 struct ksm_stable_node *stable_node;
5ad64688 775 struct page *page;
31dbd01f 776
7b6ba2c7 777 stable_node = rmap_item->head;
62862290 778 page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK);
4035c07a
HD
779 if (!page)
780 goto out;
5ad64688 781
7b6ba2c7 782 hlist_del(&rmap_item->hlist);
62862290 783 unlock_page(page);
4035c07a 784 put_page(page);
08beca44 785
98666f8a 786 if (!hlist_empty(&stable_node->hlist))
4035c07a
HD
787 ksm_pages_sharing--;
788 else
7b6ba2c7 789 ksm_pages_shared--;
76093853 790
791 rmap_item->mm->ksm_merging_pages--;
792
2c653d0e
AA
793 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
794 stable_node->rmap_hlist_len--;
31dbd01f 795
9e60109f 796 put_anon_vma(rmap_item->anon_vma);
c89a384e 797 rmap_item->head = NULL;
93d17715 798 rmap_item->address &= PAGE_MASK;
31dbd01f 799
7b6ba2c7 800 } else if (rmap_item->address & UNSTABLE_FLAG) {
31dbd01f
IE
801 unsigned char age;
802 /*
9ba69294 803 * Usually ksmd can and must skip the rb_erase, because
31dbd01f 804 * root_unstable_tree was already reset to RB_ROOT.
9ba69294
HD
805 * But be careful when an mm is exiting: do the rb_erase
806 * if this rmap_item was inserted by this scan, rather
807 * than left over from before.
31dbd01f
IE
808 */
809 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
cd551f97 810 BUG_ON(age > 1);
31dbd01f 811 if (!age)
90bd6fd3 812 rb_erase(&rmap_item->node,
ef53d16c 813 root_unstable_tree + NUMA(rmap_item->nid));
473b0ce4 814 ksm_pages_unshared--;
93d17715 815 rmap_item->address &= PAGE_MASK;
31dbd01f 816 }
4035c07a 817out:
31dbd01f
IE
818 cond_resched(); /* we're called from many long loops */
819}
820
21fbd591 821static void remove_trailing_rmap_items(struct ksm_rmap_item **rmap_list)
31dbd01f 822{
6514d511 823 while (*rmap_list) {
21fbd591 824 struct ksm_rmap_item *rmap_item = *rmap_list;
6514d511 825 *rmap_list = rmap_item->rmap_list;
31dbd01f 826 remove_rmap_item_from_tree(rmap_item);
31dbd01f
IE
827 free_rmap_item(rmap_item);
828 }
829}
830
831/*
e850dcf5 832 * Though it's very tempting to unmerge rmap_items from stable tree rather
31dbd01f
IE
833 * than check every pte of a given vma, the locking doesn't quite work for
834 * that - an rmap_item is assigned to the stable tree after inserting ksm
c1e8d7c6 835 * page and upping mmap_lock. Nor does it fit with the way we skip dup'ing
31dbd01f
IE
836 * rmap_items from parent to child at fork time (so as not to waste time
837 * if exit comes before the next scan reaches it).
81464e30
HD
838 *
839 * Similarly, although we'd like to remove rmap_items (so updating counts
840 * and freeing memory) when unmerging an area, it's easier to leave that
841 * to the next pass of ksmd - consider, for example, how ksmd might be
842 * in cmp_and_merge_page on one of the rmap_items we would be removing.
31dbd01f 843 */
d952b791
HD
844static int unmerge_ksm_pages(struct vm_area_struct *vma,
845 unsigned long start, unsigned long end)
31dbd01f
IE
846{
847 unsigned long addr;
d952b791 848 int err = 0;
31dbd01f 849
d952b791 850 for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
9ba69294
HD
851 if (ksm_test_exit(vma->vm_mm))
852 break;
d952b791
HD
853 if (signal_pending(current))
854 err = -ERESTARTSYS;
855 else
856 err = break_ksm(vma, addr);
857 }
858 return err;
31dbd01f
IE
859}
860
21fbd591 861static inline struct ksm_stable_node *folio_stable_node(struct folio *folio)
19138349
MWO
862{
863 return folio_test_ksm(folio) ? folio_raw_mapping(folio) : NULL;
864}
865
21fbd591 866static inline struct ksm_stable_node *page_stable_node(struct page *page)
88484826 867{
19138349 868 return folio_stable_node(page_folio(page));
88484826
MR
869}
870
871static inline void set_page_stable_node(struct page *page,
21fbd591 872 struct ksm_stable_node *stable_node)
88484826 873{
6c287605 874 VM_BUG_ON_PAGE(PageAnon(page) && PageAnonExclusive(page), page);
88484826
MR
875 page->mapping = (void *)((unsigned long)stable_node | PAGE_MAPPING_KSM);
876}
877
2ffd8679
HD
878#ifdef CONFIG_SYSFS
879/*
880 * Only called through the sysfs control interface:
881 */
21fbd591 882static int remove_stable_node(struct ksm_stable_node *stable_node)
cbf86cfe
HD
883{
884 struct page *page;
885 int err;
886
2cee57d1 887 page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK);
cbf86cfe
HD
888 if (!page) {
889 /*
890 * get_ksm_page did remove_node_from_stable_tree itself.
891 */
892 return 0;
893 }
894
9a63236f
AR
895 /*
896 * Page could be still mapped if this races with __mmput() running in
897 * between ksm_exit() and exit_mmap(). Just refuse to let
898 * merge_across_nodes/max_page_sharing be switched.
899 */
900 err = -EBUSY;
901 if (!page_mapped(page)) {
cbf86cfe 902 /*
8fdb3dbf
HD
903 * The stable node did not yet appear stale to get_ksm_page(),
904 * since that allows for an unmapped ksm page to be recognized
905 * right up until it is freed; but the node is safe to remove.
cbf86cfe
HD
906 * This page might be in a pagevec waiting to be freed,
907 * or it might be PageSwapCache (perhaps under writeback),
908 * or it might have been removed from swapcache a moment ago.
909 */
910 set_page_stable_node(page, NULL);
911 remove_node_from_stable_tree(stable_node);
912 err = 0;
913 }
914
915 unlock_page(page);
916 put_page(page);
917 return err;
918}
919
21fbd591 920static int remove_stable_node_chain(struct ksm_stable_node *stable_node,
2c653d0e
AA
921 struct rb_root *root)
922{
21fbd591 923 struct ksm_stable_node *dup;
2c653d0e
AA
924 struct hlist_node *hlist_safe;
925
926 if (!is_stable_node_chain(stable_node)) {
927 VM_BUG_ON(is_stable_node_dup(stable_node));
928 if (remove_stable_node(stable_node))
929 return true;
930 else
931 return false;
932 }
933
934 hlist_for_each_entry_safe(dup, hlist_safe,
935 &stable_node->hlist, hlist_dup) {
936 VM_BUG_ON(!is_stable_node_dup(dup));
937 if (remove_stable_node(dup))
938 return true;
939 }
940 BUG_ON(!hlist_empty(&stable_node->hlist));
941 free_stable_node_chain(stable_node, root);
942 return false;
943}
944
cbf86cfe
HD
945static int remove_all_stable_nodes(void)
946{
21fbd591 947 struct ksm_stable_node *stable_node, *next;
cbf86cfe
HD
948 int nid;
949 int err = 0;
950
ef53d16c 951 for (nid = 0; nid < ksm_nr_node_ids; nid++) {
cbf86cfe
HD
952 while (root_stable_tree[nid].rb_node) {
953 stable_node = rb_entry(root_stable_tree[nid].rb_node,
21fbd591 954 struct ksm_stable_node, node);
2c653d0e
AA
955 if (remove_stable_node_chain(stable_node,
956 root_stable_tree + nid)) {
cbf86cfe
HD
957 err = -EBUSY;
958 break; /* proceed to next nid */
959 }
960 cond_resched();
961 }
962 }
03640418 963 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
4146d2d6
HD
964 if (remove_stable_node(stable_node))
965 err = -EBUSY;
966 cond_resched();
967 }
cbf86cfe
HD
968 return err;
969}
970
d952b791 971static int unmerge_and_remove_all_rmap_items(void)
31dbd01f 972{
21fbd591 973 struct ksm_mm_slot *mm_slot;
58730ab6 974 struct mm_slot *slot;
31dbd01f
IE
975 struct mm_struct *mm;
976 struct vm_area_struct *vma;
d952b791
HD
977 int err = 0;
978
979 spin_lock(&ksm_mmlist_lock);
58730ab6
QZ
980 slot = list_entry(ksm_mm_head.slot.mm_node.next,
981 struct mm_slot, mm_node);
982 ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
d952b791 983 spin_unlock(&ksm_mmlist_lock);
31dbd01f 984
a5f18ba0
MWO
985 for (mm_slot = ksm_scan.mm_slot; mm_slot != &ksm_mm_head;
986 mm_slot = ksm_scan.mm_slot) {
58730ab6 987 VMA_ITERATOR(vmi, mm_slot->slot.mm, 0);
a5f18ba0 988
58730ab6 989 mm = mm_slot->slot.mm;
d8ed45c5 990 mmap_read_lock(mm);
a5f18ba0 991 for_each_vma(vmi, vma) {
9ba69294
HD
992 if (ksm_test_exit(mm))
993 break;
31dbd01f
IE
994 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
995 continue;
d952b791
HD
996 err = unmerge_ksm_pages(vma,
997 vma->vm_start, vma->vm_end);
9ba69294
HD
998 if (err)
999 goto error;
31dbd01f 1000 }
9ba69294 1001
420be4ed 1002 remove_trailing_rmap_items(&mm_slot->rmap_list);
d8ed45c5 1003 mmap_read_unlock(mm);
d952b791
HD
1004
1005 spin_lock(&ksm_mmlist_lock);
58730ab6
QZ
1006 slot = list_entry(mm_slot->slot.mm_node.next,
1007 struct mm_slot, mm_node);
1008 ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
9ba69294 1009 if (ksm_test_exit(mm)) {
58730ab6
QZ
1010 hash_del(&mm_slot->slot.hash);
1011 list_del(&mm_slot->slot.mm_node);
9ba69294
HD
1012 spin_unlock(&ksm_mmlist_lock);
1013
58730ab6 1014 mm_slot_free(mm_slot_cache, mm_slot);
9ba69294 1015 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
9ba69294 1016 mmdrop(mm);
7496fea9 1017 } else
9ba69294 1018 spin_unlock(&ksm_mmlist_lock);
31dbd01f
IE
1019 }
1020
cbf86cfe
HD
1021 /* Clean up stable nodes, but don't worry if some are still busy */
1022 remove_all_stable_nodes();
d952b791 1023 ksm_scan.seqnr = 0;
9ba69294
HD
1024 return 0;
1025
1026error:
d8ed45c5 1027 mmap_read_unlock(mm);
31dbd01f 1028 spin_lock(&ksm_mmlist_lock);
d952b791 1029 ksm_scan.mm_slot = &ksm_mm_head;
31dbd01f 1030 spin_unlock(&ksm_mmlist_lock);
d952b791 1031 return err;
31dbd01f 1032}
2ffd8679 1033#endif /* CONFIG_SYSFS */
31dbd01f 1034
31dbd01f
IE
1035static u32 calc_checksum(struct page *page)
1036{
1037 u32 checksum;
9b04c5fe 1038 void *addr = kmap_atomic(page);
59e1a2f4 1039 checksum = xxhash(addr, PAGE_SIZE, 0);
9b04c5fe 1040 kunmap_atomic(addr);
31dbd01f
IE
1041 return checksum;
1042}
1043
31dbd01f
IE
1044static int write_protect_page(struct vm_area_struct *vma, struct page *page,
1045 pte_t *orig_pte)
1046{
1047 struct mm_struct *mm = vma->vm_mm;
eed05e54 1048 DEFINE_PAGE_VMA_WALK(pvmw, page, vma, 0, 0);
31dbd01f
IE
1049 int swapped;
1050 int err = -EFAULT;
ac46d4f3 1051 struct mmu_notifier_range range;
6c287605 1052 bool anon_exclusive;
31dbd01f 1053
36eaff33
KS
1054 pvmw.address = page_address_in_vma(page, vma);
1055 if (pvmw.address == -EFAULT)
31dbd01f
IE
1056 goto out;
1057
29ad768c 1058 BUG_ON(PageTransCompound(page));
6bdb913f 1059
7269f999 1060 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
6f4f13e8 1061 pvmw.address,
ac46d4f3
JG
1062 pvmw.address + PAGE_SIZE);
1063 mmu_notifier_invalidate_range_start(&range);
6bdb913f 1064
36eaff33 1065 if (!page_vma_mapped_walk(&pvmw))
6bdb913f 1066 goto out_mn;
36eaff33
KS
1067 if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?"))
1068 goto out_unlock;
31dbd01f 1069
6c287605 1070 anon_exclusive = PageAnonExclusive(page);
595cd8f2 1071 if (pte_write(*pvmw.pte) || pte_dirty(*pvmw.pte) ||
6c287605 1072 anon_exclusive || mm_tlb_flush_pending(mm)) {
31dbd01f
IE
1073 pte_t entry;
1074
1075 swapped = PageSwapCache(page);
36eaff33 1076 flush_cache_page(vma, pvmw.address, page_to_pfn(page));
31dbd01f 1077 /*
25985edc 1078 * Ok this is tricky, when get_user_pages_fast() run it doesn't
31dbd01f 1079 * take any lock, therefore the check that we are going to make
f0953a1b 1080 * with the pagecount against the mapcount is racy and
31dbd01f
IE
1081 * O_DIRECT can happen right after the check.
1082 * So we clear the pte and flush the tlb before the check
1083 * this assure us that no O_DIRECT can happen after the check
1084 * or in the middle of the check.
0f10851e
JG
1085 *
1086 * No need to notify as we are downgrading page table to read
1087 * only not changing it to point to a new page.
1088 *
ee65728e 1089 * See Documentation/mm/mmu_notifier.rst
31dbd01f 1090 */
0f10851e 1091 entry = ptep_clear_flush(vma, pvmw.address, pvmw.pte);
31dbd01f
IE
1092 /*
1093 * Check that no O_DIRECT or similar I/O is in progress on the
1094 * page
1095 */
31e855ea 1096 if (page_mapcount(page) + 1 + swapped != page_count(page)) {
36eaff33 1097 set_pte_at(mm, pvmw.address, pvmw.pte, entry);
31dbd01f
IE
1098 goto out_unlock;
1099 }
6c287605 1100
088b8aa5 1101 /* See page_try_share_anon_rmap(): clear PTE first. */
6c287605
DH
1102 if (anon_exclusive && page_try_share_anon_rmap(page)) {
1103 set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1104 goto out_unlock;
1105 }
1106
4e31635c
HD
1107 if (pte_dirty(entry))
1108 set_page_dirty(page);
6a56ccbc
DH
1109 entry = pte_mkclean(entry);
1110
1111 if (pte_write(entry))
1112 entry = pte_wrprotect(entry);
595cd8f2 1113
36eaff33 1114 set_pte_at_notify(mm, pvmw.address, pvmw.pte, entry);
31dbd01f 1115 }
36eaff33 1116 *orig_pte = *pvmw.pte;
31dbd01f
IE
1117 err = 0;
1118
1119out_unlock:
36eaff33 1120 page_vma_mapped_walk_done(&pvmw);
6bdb913f 1121out_mn:
ac46d4f3 1122 mmu_notifier_invalidate_range_end(&range);
31dbd01f
IE
1123out:
1124 return err;
1125}
1126
1127/**
1128 * replace_page - replace page in vma by new ksm page
8dd3557a
HD
1129 * @vma: vma that holds the pte pointing to page
1130 * @page: the page we are replacing by kpage
1131 * @kpage: the ksm page we replace page by
31dbd01f
IE
1132 * @orig_pte: the original value of the pte
1133 *
1134 * Returns 0 on success, -EFAULT on failure.
1135 */
8dd3557a
HD
1136static int replace_page(struct vm_area_struct *vma, struct page *page,
1137 struct page *kpage, pte_t orig_pte)
31dbd01f
IE
1138{
1139 struct mm_struct *mm = vma->vm_mm;
b4e6f66e 1140 struct folio *folio;
31dbd01f 1141 pmd_t *pmd;
50722804 1142 pmd_t pmde;
31dbd01f 1143 pte_t *ptep;
e86c59b1 1144 pte_t newpte;
31dbd01f
IE
1145 spinlock_t *ptl;
1146 unsigned long addr;
31dbd01f 1147 int err = -EFAULT;
ac46d4f3 1148 struct mmu_notifier_range range;
31dbd01f 1149
8dd3557a 1150 addr = page_address_in_vma(page, vma);
31dbd01f
IE
1151 if (addr == -EFAULT)
1152 goto out;
1153
6219049a
BL
1154 pmd = mm_find_pmd(mm, addr);
1155 if (!pmd)
31dbd01f 1156 goto out;
50722804
ZK
1157 /*
1158 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
1159 * without holding anon_vma lock for write. So when looking for a
1160 * genuine pmde (in which to find pte), test present and !THP together.
1161 */
1162 pmde = *pmd;
1163 barrier();
1164 if (!pmd_present(pmde) || pmd_trans_huge(pmde))
1165 goto out;
31dbd01f 1166
7269f999 1167 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, addr,
6f4f13e8 1168 addr + PAGE_SIZE);
ac46d4f3 1169 mmu_notifier_invalidate_range_start(&range);
6bdb913f 1170
31dbd01f
IE
1171 ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
1172 if (!pte_same(*ptep, orig_pte)) {
1173 pte_unmap_unlock(ptep, ptl);
6bdb913f 1174 goto out_mn;
31dbd01f 1175 }
6c287605
DH
1176 VM_BUG_ON_PAGE(PageAnonExclusive(page), page);
1177 VM_BUG_ON_PAGE(PageAnon(kpage) && PageAnonExclusive(kpage), kpage);
31dbd01f 1178
e86c59b1
CI
1179 /*
1180 * No need to check ksm_use_zero_pages here: we can only have a
457aef94 1181 * zero_page here if ksm_use_zero_pages was enabled already.
e86c59b1
CI
1182 */
1183 if (!is_zero_pfn(page_to_pfn(kpage))) {
1184 get_page(kpage);
f1e2db12 1185 page_add_anon_rmap(kpage, vma, addr, RMAP_NONE);
e86c59b1
CI
1186 newpte = mk_pte(kpage, vma->vm_page_prot);
1187 } else {
1188 newpte = pte_mkspecial(pfn_pte(page_to_pfn(kpage),
1189 vma->vm_page_prot));
a38c015f
CI
1190 /*
1191 * We're replacing an anonymous page with a zero page, which is
1192 * not anonymous. We need to do proper accounting otherwise we
1193 * will get wrong values in /proc, and a BUG message in dmesg
1194 * when tearing down the mm.
1195 */
1196 dec_mm_counter(mm, MM_ANONPAGES);
e86c59b1 1197 }
31dbd01f
IE
1198
1199 flush_cache_page(vma, addr, pte_pfn(*ptep));
0f10851e
JG
1200 /*
1201 * No need to notify as we are replacing a read only page with another
1202 * read only page with the same content.
1203 *
ee65728e 1204 * See Documentation/mm/mmu_notifier.rst
0f10851e
JG
1205 */
1206 ptep_clear_flush(vma, addr, ptep);
e86c59b1 1207 set_pte_at_notify(mm, addr, ptep, newpte);
31dbd01f 1208
b4e6f66e 1209 folio = page_folio(page);
cea86fe2 1210 page_remove_rmap(page, vma, false);
b4e6f66e
MWO
1211 if (!folio_mapped(folio))
1212 folio_free_swap(folio);
1213 folio_put(folio);
31dbd01f
IE
1214
1215 pte_unmap_unlock(ptep, ptl);
1216 err = 0;
6bdb913f 1217out_mn:
ac46d4f3 1218 mmu_notifier_invalidate_range_end(&range);
31dbd01f
IE
1219out:
1220 return err;
1221}
1222
1223/*
1224 * try_to_merge_one_page - take two pages and merge them into one
8dd3557a
HD
1225 * @vma: the vma that holds the pte pointing to page
1226 * @page: the PageAnon page that we want to replace with kpage
80e14822
HD
1227 * @kpage: the PageKsm page that we want to map instead of page,
1228 * or NULL the first time when we want to use page as kpage.
31dbd01f
IE
1229 *
1230 * This function returns 0 if the pages were merged, -EFAULT otherwise.
1231 */
1232static int try_to_merge_one_page(struct vm_area_struct *vma,
8dd3557a 1233 struct page *page, struct page *kpage)
31dbd01f
IE
1234{
1235 pte_t orig_pte = __pte(0);
1236 int err = -EFAULT;
1237
db114b83
HD
1238 if (page == kpage) /* ksm page forked */
1239 return 0;
1240
8dd3557a 1241 if (!PageAnon(page))
31dbd01f
IE
1242 goto out;
1243
31dbd01f
IE
1244 /*
1245 * We need the page lock to read a stable PageSwapCache in
1246 * write_protect_page(). We use trylock_page() instead of
1247 * lock_page() because we don't want to wait here - we
1248 * prefer to continue scanning and merging different pages,
1249 * then come back to this page when it is unlocked.
1250 */
8dd3557a 1251 if (!trylock_page(page))
31e855ea 1252 goto out;
f765f540
KS
1253
1254 if (PageTransCompound(page)) {
a7306c34 1255 if (split_huge_page(page))
f765f540
KS
1256 goto out_unlock;
1257 }
1258
31dbd01f
IE
1259 /*
1260 * If this anonymous page is mapped only here, its pte may need
1261 * to be write-protected. If it's mapped elsewhere, all of its
1262 * ptes are necessarily already write-protected. But in either
1263 * case, we need to lock and check page_count is not raised.
1264 */
80e14822
HD
1265 if (write_protect_page(vma, page, &orig_pte) == 0) {
1266 if (!kpage) {
1267 /*
1268 * While we hold page lock, upgrade page from
1269 * PageAnon+anon_vma to PageKsm+NULL stable_node:
1270 * stable_tree_insert() will update stable_node.
1271 */
1272 set_page_stable_node(page, NULL);
1273 mark_page_accessed(page);
337ed7eb
MK
1274 /*
1275 * Page reclaim just frees a clean page with no dirty
1276 * ptes: make sure that the ksm page would be swapped.
1277 */
1278 if (!PageDirty(page))
1279 SetPageDirty(page);
80e14822
HD
1280 err = 0;
1281 } else if (pages_identical(page, kpage))
1282 err = replace_page(vma, page, kpage, orig_pte);
1283 }
31dbd01f 1284
f765f540 1285out_unlock:
8dd3557a 1286 unlock_page(page);
31dbd01f
IE
1287out:
1288 return err;
1289}
1290
81464e30
HD
1291/*
1292 * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1293 * but no new kernel page is allocated: kpage must already be a ksm page.
8dd3557a
HD
1294 *
1295 * This function returns 0 if the pages were merged, -EFAULT otherwise.
81464e30 1296 */
21fbd591 1297static int try_to_merge_with_ksm_page(struct ksm_rmap_item *rmap_item,
8dd3557a 1298 struct page *page, struct page *kpage)
81464e30 1299{
8dd3557a 1300 struct mm_struct *mm = rmap_item->mm;
81464e30
HD
1301 struct vm_area_struct *vma;
1302 int err = -EFAULT;
1303
d8ed45c5 1304 mmap_read_lock(mm);
85c6e8dd
AA
1305 vma = find_mergeable_vma(mm, rmap_item->address);
1306 if (!vma)
81464e30
HD
1307 goto out;
1308
8dd3557a 1309 err = try_to_merge_one_page(vma, page, kpage);
db114b83
HD
1310 if (err)
1311 goto out;
1312
bc56620b
HD
1313 /* Unstable nid is in union with stable anon_vma: remove first */
1314 remove_rmap_item_from_tree(rmap_item);
1315
c1e8d7c6 1316 /* Must get reference to anon_vma while still holding mmap_lock */
9e60109f
PZ
1317 rmap_item->anon_vma = vma->anon_vma;
1318 get_anon_vma(vma->anon_vma);
81464e30 1319out:
d8ed45c5 1320 mmap_read_unlock(mm);
81464e30
HD
1321 return err;
1322}
1323
31dbd01f
IE
1324/*
1325 * try_to_merge_two_pages - take two identical pages and prepare them
1326 * to be merged into one page.
1327 *
8dd3557a
HD
1328 * This function returns the kpage if we successfully merged two identical
1329 * pages into one ksm page, NULL otherwise.
31dbd01f 1330 *
80e14822 1331 * Note that this function upgrades page to ksm page: if one of the pages
31dbd01f
IE
1332 * is already a ksm page, try_to_merge_with_ksm_page should be used.
1333 */
21fbd591 1334static struct page *try_to_merge_two_pages(struct ksm_rmap_item *rmap_item,
8dd3557a 1335 struct page *page,
21fbd591 1336 struct ksm_rmap_item *tree_rmap_item,
8dd3557a 1337 struct page *tree_page)
31dbd01f 1338{
80e14822 1339 int err;
31dbd01f 1340
80e14822 1341 err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
31dbd01f 1342 if (!err) {
8dd3557a 1343 err = try_to_merge_with_ksm_page(tree_rmap_item,
80e14822 1344 tree_page, page);
31dbd01f 1345 /*
81464e30
HD
1346 * If that fails, we have a ksm page with only one pte
1347 * pointing to it: so break it.
31dbd01f 1348 */
4035c07a 1349 if (err)
8dd3557a 1350 break_cow(rmap_item);
31dbd01f 1351 }
80e14822 1352 return err ? NULL : page;
31dbd01f
IE
1353}
1354
2c653d0e 1355static __always_inline
21fbd591 1356bool __is_page_sharing_candidate(struct ksm_stable_node *stable_node, int offset)
2c653d0e
AA
1357{
1358 VM_BUG_ON(stable_node->rmap_hlist_len < 0);
1359 /*
1360 * Check that at least one mapping still exists, otherwise
1361 * there's no much point to merge and share with this
1362 * stable_node, as the underlying tree_page of the other
1363 * sharer is going to be freed soon.
1364 */
1365 return stable_node->rmap_hlist_len &&
1366 stable_node->rmap_hlist_len + offset < ksm_max_page_sharing;
1367}
1368
1369static __always_inline
21fbd591 1370bool is_page_sharing_candidate(struct ksm_stable_node *stable_node)
2c653d0e
AA
1371{
1372 return __is_page_sharing_candidate(stable_node, 0);
1373}
1374
21fbd591
QZ
1375static struct page *stable_node_dup(struct ksm_stable_node **_stable_node_dup,
1376 struct ksm_stable_node **_stable_node,
c01f0b54
CIK
1377 struct rb_root *root,
1378 bool prune_stale_stable_nodes)
2c653d0e 1379{
21fbd591 1380 struct ksm_stable_node *dup, *found = NULL, *stable_node = *_stable_node;
2c653d0e 1381 struct hlist_node *hlist_safe;
8dc5ffcd 1382 struct page *_tree_page, *tree_page = NULL;
2c653d0e
AA
1383 int nr = 0;
1384 int found_rmap_hlist_len;
1385
1386 if (!prune_stale_stable_nodes ||
1387 time_before(jiffies, stable_node->chain_prune_time +
1388 msecs_to_jiffies(
1389 ksm_stable_node_chains_prune_millisecs)))
1390 prune_stale_stable_nodes = false;
1391 else
1392 stable_node->chain_prune_time = jiffies;
1393
1394 hlist_for_each_entry_safe(dup, hlist_safe,
1395 &stable_node->hlist, hlist_dup) {
1396 cond_resched();
1397 /*
1398 * We must walk all stable_node_dup to prune the stale
1399 * stable nodes during lookup.
1400 *
1401 * get_ksm_page can drop the nodes from the
1402 * stable_node->hlist if they point to freed pages
1403 * (that's why we do a _safe walk). The "dup"
1404 * stable_node parameter itself will be freed from
1405 * under us if it returns NULL.
1406 */
2cee57d1 1407 _tree_page = get_ksm_page(dup, GET_KSM_PAGE_NOLOCK);
2c653d0e
AA
1408 if (!_tree_page)
1409 continue;
1410 nr += 1;
1411 if (is_page_sharing_candidate(dup)) {
1412 if (!found ||
1413 dup->rmap_hlist_len > found_rmap_hlist_len) {
1414 if (found)
8dc5ffcd 1415 put_page(tree_page);
2c653d0e
AA
1416 found = dup;
1417 found_rmap_hlist_len = found->rmap_hlist_len;
8dc5ffcd 1418 tree_page = _tree_page;
2c653d0e 1419
8dc5ffcd 1420 /* skip put_page for found dup */
2c653d0e
AA
1421 if (!prune_stale_stable_nodes)
1422 break;
2c653d0e
AA
1423 continue;
1424 }
1425 }
1426 put_page(_tree_page);
1427 }
1428
80b18dfa
AA
1429 if (found) {
1430 /*
1431 * nr is counting all dups in the chain only if
1432 * prune_stale_stable_nodes is true, otherwise we may
1433 * break the loop at nr == 1 even if there are
1434 * multiple entries.
1435 */
1436 if (prune_stale_stable_nodes && nr == 1) {
2c653d0e
AA
1437 /*
1438 * If there's not just one entry it would
1439 * corrupt memory, better BUG_ON. In KSM
1440 * context with no lock held it's not even
1441 * fatal.
1442 */
1443 BUG_ON(stable_node->hlist.first->next);
1444
1445 /*
1446 * There's just one entry and it is below the
1447 * deduplication limit so drop the chain.
1448 */
1449 rb_replace_node(&stable_node->node, &found->node,
1450 root);
1451 free_stable_node(stable_node);
1452 ksm_stable_node_chains--;
1453 ksm_stable_node_dups--;
b4fecc67 1454 /*
0ba1d0f7
AA
1455 * NOTE: the caller depends on the stable_node
1456 * to be equal to stable_node_dup if the chain
1457 * was collapsed.
b4fecc67 1458 */
0ba1d0f7
AA
1459 *_stable_node = found;
1460 /*
f0953a1b 1461 * Just for robustness, as stable_node is
0ba1d0f7
AA
1462 * otherwise left as a stable pointer, the
1463 * compiler shall optimize it away at build
1464 * time.
1465 */
1466 stable_node = NULL;
80b18dfa
AA
1467 } else if (stable_node->hlist.first != &found->hlist_dup &&
1468 __is_page_sharing_candidate(found, 1)) {
2c653d0e 1469 /*
80b18dfa
AA
1470 * If the found stable_node dup can accept one
1471 * more future merge (in addition to the one
1472 * that is underway) and is not at the head of
1473 * the chain, put it there so next search will
1474 * be quicker in the !prune_stale_stable_nodes
1475 * case.
1476 *
1477 * NOTE: it would be inaccurate to use nr > 1
1478 * instead of checking the hlist.first pointer
1479 * directly, because in the
1480 * prune_stale_stable_nodes case "nr" isn't
1481 * the position of the found dup in the chain,
1482 * but the total number of dups in the chain.
2c653d0e
AA
1483 */
1484 hlist_del(&found->hlist_dup);
1485 hlist_add_head(&found->hlist_dup,
1486 &stable_node->hlist);
1487 }
1488 }
1489
8dc5ffcd
AA
1490 *_stable_node_dup = found;
1491 return tree_page;
2c653d0e
AA
1492}
1493
21fbd591 1494static struct ksm_stable_node *stable_node_dup_any(struct ksm_stable_node *stable_node,
2c653d0e
AA
1495 struct rb_root *root)
1496{
1497 if (!is_stable_node_chain(stable_node))
1498 return stable_node;
1499 if (hlist_empty(&stable_node->hlist)) {
1500 free_stable_node_chain(stable_node, root);
1501 return NULL;
1502 }
1503 return hlist_entry(stable_node->hlist.first,
1504 typeof(*stable_node), hlist_dup);
1505}
1506
8dc5ffcd
AA
1507/*
1508 * Like for get_ksm_page, this function can free the *_stable_node and
1509 * *_stable_node_dup if the returned tree_page is NULL.
1510 *
1511 * It can also free and overwrite *_stable_node with the found
1512 * stable_node_dup if the chain is collapsed (in which case
1513 * *_stable_node will be equal to *_stable_node_dup like if the chain
1514 * never existed). It's up to the caller to verify tree_page is not
1515 * NULL before dereferencing *_stable_node or *_stable_node_dup.
1516 *
1517 * *_stable_node_dup is really a second output parameter of this
1518 * function and will be overwritten in all cases, the caller doesn't
1519 * need to initialize it.
1520 */
21fbd591
QZ
1521static struct page *__stable_node_chain(struct ksm_stable_node **_stable_node_dup,
1522 struct ksm_stable_node **_stable_node,
8dc5ffcd
AA
1523 struct rb_root *root,
1524 bool prune_stale_stable_nodes)
2c653d0e 1525{
21fbd591 1526 struct ksm_stable_node *stable_node = *_stable_node;
2c653d0e
AA
1527 if (!is_stable_node_chain(stable_node)) {
1528 if (is_page_sharing_candidate(stable_node)) {
8dc5ffcd 1529 *_stable_node_dup = stable_node;
2cee57d1 1530 return get_ksm_page(stable_node, GET_KSM_PAGE_NOLOCK);
2c653d0e 1531 }
8dc5ffcd
AA
1532 /*
1533 * _stable_node_dup set to NULL means the stable_node
1534 * reached the ksm_max_page_sharing limit.
1535 */
1536 *_stable_node_dup = NULL;
2c653d0e
AA
1537 return NULL;
1538 }
8dc5ffcd 1539 return stable_node_dup(_stable_node_dup, _stable_node, root,
2c653d0e
AA
1540 prune_stale_stable_nodes);
1541}
1542
21fbd591
QZ
1543static __always_inline struct page *chain_prune(struct ksm_stable_node **s_n_d,
1544 struct ksm_stable_node **s_n,
8dc5ffcd 1545 struct rb_root *root)
2c653d0e 1546{
8dc5ffcd 1547 return __stable_node_chain(s_n_d, s_n, root, true);
2c653d0e
AA
1548}
1549
21fbd591
QZ
1550static __always_inline struct page *chain(struct ksm_stable_node **s_n_d,
1551 struct ksm_stable_node *s_n,
8dc5ffcd 1552 struct rb_root *root)
2c653d0e 1553{
21fbd591 1554 struct ksm_stable_node *old_stable_node = s_n;
8dc5ffcd
AA
1555 struct page *tree_page;
1556
1557 tree_page = __stable_node_chain(s_n_d, &s_n, root, false);
1558 /* not pruning dups so s_n cannot have changed */
1559 VM_BUG_ON(s_n != old_stable_node);
1560 return tree_page;
2c653d0e
AA
1561}
1562
31dbd01f 1563/*
8dd3557a 1564 * stable_tree_search - search for page inside the stable tree
31dbd01f
IE
1565 *
1566 * This function checks if there is a page inside the stable tree
1567 * with identical content to the page that we are scanning right now.
1568 *
7b6ba2c7 1569 * This function returns the stable tree node of identical content if found,
31dbd01f
IE
1570 * NULL otherwise.
1571 */
62b61f61 1572static struct page *stable_tree_search(struct page *page)
31dbd01f 1573{
90bd6fd3 1574 int nid;
ef53d16c 1575 struct rb_root *root;
4146d2d6
HD
1576 struct rb_node **new;
1577 struct rb_node *parent;
21fbd591
QZ
1578 struct ksm_stable_node *stable_node, *stable_node_dup, *stable_node_any;
1579 struct ksm_stable_node *page_node;
31dbd01f 1580
4146d2d6
HD
1581 page_node = page_stable_node(page);
1582 if (page_node && page_node->head != &migrate_nodes) {
1583 /* ksm page forked */
08beca44 1584 get_page(page);
62b61f61 1585 return page;
08beca44
HD
1586 }
1587
90bd6fd3 1588 nid = get_kpfn_nid(page_to_pfn(page));
ef53d16c 1589 root = root_stable_tree + nid;
4146d2d6 1590again:
ef53d16c 1591 new = &root->rb_node;
4146d2d6 1592 parent = NULL;
90bd6fd3 1593
4146d2d6 1594 while (*new) {
4035c07a 1595 struct page *tree_page;
31dbd01f
IE
1596 int ret;
1597
08beca44 1598 cond_resched();
21fbd591 1599 stable_node = rb_entry(*new, struct ksm_stable_node, node);
2c653d0e 1600 stable_node_any = NULL;
8dc5ffcd 1601 tree_page = chain_prune(&stable_node_dup, &stable_node, root);
b4fecc67
AA
1602 /*
1603 * NOTE: stable_node may have been freed by
1604 * chain_prune() if the returned stable_node_dup is
1605 * not NULL. stable_node_dup may have been inserted in
1606 * the rbtree instead as a regular stable_node (in
1607 * order to collapse the stable_node chain if a single
0ba1d0f7 1608 * stable_node dup was found in it). In such case the
3413b2c8 1609 * stable_node is overwritten by the callee to point
0ba1d0f7
AA
1610 * to the stable_node_dup that was collapsed in the
1611 * stable rbtree and stable_node will be equal to
1612 * stable_node_dup like if the chain never existed.
b4fecc67 1613 */
2c653d0e
AA
1614 if (!stable_node_dup) {
1615 /*
1616 * Either all stable_node dups were full in
1617 * this stable_node chain, or this chain was
1618 * empty and should be rb_erased.
1619 */
1620 stable_node_any = stable_node_dup_any(stable_node,
1621 root);
1622 if (!stable_node_any) {
1623 /* rb_erase just run */
1624 goto again;
1625 }
1626 /*
1627 * Take any of the stable_node dups page of
1628 * this stable_node chain to let the tree walk
1629 * continue. All KSM pages belonging to the
1630 * stable_node dups in a stable_node chain
1631 * have the same content and they're
457aef94 1632 * write protected at all times. Any will work
2c653d0e
AA
1633 * fine to continue the walk.
1634 */
2cee57d1
YS
1635 tree_page = get_ksm_page(stable_node_any,
1636 GET_KSM_PAGE_NOLOCK);
2c653d0e
AA
1637 }
1638 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
f2e5ff85
AA
1639 if (!tree_page) {
1640 /*
1641 * If we walked over a stale stable_node,
1642 * get_ksm_page() will call rb_erase() and it
1643 * may rebalance the tree from under us. So
1644 * restart the search from scratch. Returning
1645 * NULL would be safe too, but we'd generate
1646 * false negative insertions just because some
1647 * stable_node was stale.
1648 */
1649 goto again;
1650 }
31dbd01f 1651
4035c07a 1652 ret = memcmp_pages(page, tree_page);
c8d6553b 1653 put_page(tree_page);
31dbd01f 1654
4146d2d6 1655 parent = *new;
c8d6553b 1656 if (ret < 0)
4146d2d6 1657 new = &parent->rb_left;
c8d6553b 1658 else if (ret > 0)
4146d2d6 1659 new = &parent->rb_right;
c8d6553b 1660 else {
2c653d0e
AA
1661 if (page_node) {
1662 VM_BUG_ON(page_node->head != &migrate_nodes);
1663 /*
1664 * Test if the migrated page should be merged
1665 * into a stable node dup. If the mapcount is
1666 * 1 we can migrate it with another KSM page
1667 * without adding it to the chain.
1668 */
1669 if (page_mapcount(page) > 1)
1670 goto chain_append;
1671 }
1672
1673 if (!stable_node_dup) {
1674 /*
1675 * If the stable_node is a chain and
1676 * we got a payload match in memcmp
1677 * but we cannot merge the scanned
1678 * page in any of the existing
1679 * stable_node dups because they're
1680 * all full, we need to wait the
1681 * scanned page to find itself a match
1682 * in the unstable tree to create a
1683 * brand new KSM page to add later to
1684 * the dups of this stable_node.
1685 */
1686 return NULL;
1687 }
1688
c8d6553b
HD
1689 /*
1690 * Lock and unlock the stable_node's page (which
1691 * might already have been migrated) so that page
1692 * migration is sure to notice its raised count.
1693 * It would be more elegant to return stable_node
1694 * than kpage, but that involves more changes.
1695 */
2cee57d1
YS
1696 tree_page = get_ksm_page(stable_node_dup,
1697 GET_KSM_PAGE_TRYLOCK);
1698
1699 if (PTR_ERR(tree_page) == -EBUSY)
1700 return ERR_PTR(-EBUSY);
1701
2c653d0e
AA
1702 if (unlikely(!tree_page))
1703 /*
1704 * The tree may have been rebalanced,
1705 * so re-evaluate parent and new.
1706 */
4146d2d6 1707 goto again;
2c653d0e
AA
1708 unlock_page(tree_page);
1709
1710 if (get_kpfn_nid(stable_node_dup->kpfn) !=
1711 NUMA(stable_node_dup->nid)) {
1712 put_page(tree_page);
1713 goto replace;
1714 }
1715 return tree_page;
c8d6553b 1716 }
31dbd01f
IE
1717 }
1718
4146d2d6
HD
1719 if (!page_node)
1720 return NULL;
1721
1722 list_del(&page_node->list);
1723 DO_NUMA(page_node->nid = nid);
1724 rb_link_node(&page_node->node, parent, new);
ef53d16c 1725 rb_insert_color(&page_node->node, root);
2c653d0e
AA
1726out:
1727 if (is_page_sharing_candidate(page_node)) {
1728 get_page(page);
1729 return page;
1730 } else
1731 return NULL;
4146d2d6
HD
1732
1733replace:
b4fecc67
AA
1734 /*
1735 * If stable_node was a chain and chain_prune collapsed it,
0ba1d0f7
AA
1736 * stable_node has been updated to be the new regular
1737 * stable_node. A collapse of the chain is indistinguishable
1738 * from the case there was no chain in the stable
1739 * rbtree. Otherwise stable_node is the chain and
1740 * stable_node_dup is the dup to replace.
b4fecc67 1741 */
0ba1d0f7 1742 if (stable_node_dup == stable_node) {
b4fecc67
AA
1743 VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1744 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
2c653d0e
AA
1745 /* there is no chain */
1746 if (page_node) {
1747 VM_BUG_ON(page_node->head != &migrate_nodes);
1748 list_del(&page_node->list);
1749 DO_NUMA(page_node->nid = nid);
b4fecc67
AA
1750 rb_replace_node(&stable_node_dup->node,
1751 &page_node->node,
2c653d0e
AA
1752 root);
1753 if (is_page_sharing_candidate(page_node))
1754 get_page(page);
1755 else
1756 page = NULL;
1757 } else {
b4fecc67 1758 rb_erase(&stable_node_dup->node, root);
2c653d0e
AA
1759 page = NULL;
1760 }
4146d2d6 1761 } else {
2c653d0e
AA
1762 VM_BUG_ON(!is_stable_node_chain(stable_node));
1763 __stable_node_dup_del(stable_node_dup);
1764 if (page_node) {
1765 VM_BUG_ON(page_node->head != &migrate_nodes);
1766 list_del(&page_node->list);
1767 DO_NUMA(page_node->nid = nid);
1768 stable_node_chain_add_dup(page_node, stable_node);
1769 if (is_page_sharing_candidate(page_node))
1770 get_page(page);
1771 else
1772 page = NULL;
1773 } else {
1774 page = NULL;
1775 }
4146d2d6 1776 }
2c653d0e
AA
1777 stable_node_dup->head = &migrate_nodes;
1778 list_add(&stable_node_dup->list, stable_node_dup->head);
4146d2d6 1779 return page;
2c653d0e
AA
1780
1781chain_append:
1782 /* stable_node_dup could be null if it reached the limit */
1783 if (!stable_node_dup)
1784 stable_node_dup = stable_node_any;
b4fecc67
AA
1785 /*
1786 * If stable_node was a chain and chain_prune collapsed it,
0ba1d0f7
AA
1787 * stable_node has been updated to be the new regular
1788 * stable_node. A collapse of the chain is indistinguishable
1789 * from the case there was no chain in the stable
1790 * rbtree. Otherwise stable_node is the chain and
1791 * stable_node_dup is the dup to replace.
b4fecc67 1792 */
0ba1d0f7 1793 if (stable_node_dup == stable_node) {
b4fecc67 1794 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
2c653d0e
AA
1795 /* chain is missing so create it */
1796 stable_node = alloc_stable_node_chain(stable_node_dup,
1797 root);
1798 if (!stable_node)
1799 return NULL;
1800 }
1801 /*
1802 * Add this stable_node dup that was
1803 * migrated to the stable_node chain
1804 * of the current nid for this page
1805 * content.
1806 */
b4fecc67 1807 VM_BUG_ON(!is_stable_node_dup(stable_node_dup));
2c653d0e
AA
1808 VM_BUG_ON(page_node->head != &migrate_nodes);
1809 list_del(&page_node->list);
1810 DO_NUMA(page_node->nid = nid);
1811 stable_node_chain_add_dup(page_node, stable_node);
1812 goto out;
31dbd01f
IE
1813}
1814
1815/*
e850dcf5 1816 * stable_tree_insert - insert stable tree node pointing to new ksm page
31dbd01f
IE
1817 * into the stable tree.
1818 *
7b6ba2c7
HD
1819 * This function returns the stable tree node just allocated on success,
1820 * NULL otherwise.
31dbd01f 1821 */
21fbd591 1822static struct ksm_stable_node *stable_tree_insert(struct page *kpage)
31dbd01f 1823{
90bd6fd3
PH
1824 int nid;
1825 unsigned long kpfn;
ef53d16c 1826 struct rb_root *root;
90bd6fd3 1827 struct rb_node **new;
f2e5ff85 1828 struct rb_node *parent;
21fbd591 1829 struct ksm_stable_node *stable_node, *stable_node_dup, *stable_node_any;
2c653d0e 1830 bool need_chain = false;
31dbd01f 1831
90bd6fd3
PH
1832 kpfn = page_to_pfn(kpage);
1833 nid = get_kpfn_nid(kpfn);
ef53d16c 1834 root = root_stable_tree + nid;
f2e5ff85
AA
1835again:
1836 parent = NULL;
ef53d16c 1837 new = &root->rb_node;
90bd6fd3 1838
31dbd01f 1839 while (*new) {
4035c07a 1840 struct page *tree_page;
31dbd01f
IE
1841 int ret;
1842
08beca44 1843 cond_resched();
21fbd591 1844 stable_node = rb_entry(*new, struct ksm_stable_node, node);
2c653d0e 1845 stable_node_any = NULL;
8dc5ffcd 1846 tree_page = chain(&stable_node_dup, stable_node, root);
2c653d0e
AA
1847 if (!stable_node_dup) {
1848 /*
1849 * Either all stable_node dups were full in
1850 * this stable_node chain, or this chain was
1851 * empty and should be rb_erased.
1852 */
1853 stable_node_any = stable_node_dup_any(stable_node,
1854 root);
1855 if (!stable_node_any) {
1856 /* rb_erase just run */
1857 goto again;
1858 }
1859 /*
1860 * Take any of the stable_node dups page of
1861 * this stable_node chain to let the tree walk
1862 * continue. All KSM pages belonging to the
1863 * stable_node dups in a stable_node chain
1864 * have the same content and they're
457aef94 1865 * write protected at all times. Any will work
2c653d0e
AA
1866 * fine to continue the walk.
1867 */
2cee57d1
YS
1868 tree_page = get_ksm_page(stable_node_any,
1869 GET_KSM_PAGE_NOLOCK);
2c653d0e
AA
1870 }
1871 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
f2e5ff85
AA
1872 if (!tree_page) {
1873 /*
1874 * If we walked over a stale stable_node,
1875 * get_ksm_page() will call rb_erase() and it
1876 * may rebalance the tree from under us. So
1877 * restart the search from scratch. Returning
1878 * NULL would be safe too, but we'd generate
1879 * false negative insertions just because some
1880 * stable_node was stale.
1881 */
1882 goto again;
1883 }
31dbd01f 1884
4035c07a
HD
1885 ret = memcmp_pages(kpage, tree_page);
1886 put_page(tree_page);
31dbd01f
IE
1887
1888 parent = *new;
1889 if (ret < 0)
1890 new = &parent->rb_left;
1891 else if (ret > 0)
1892 new = &parent->rb_right;
1893 else {
2c653d0e
AA
1894 need_chain = true;
1895 break;
31dbd01f
IE
1896 }
1897 }
1898
2c653d0e
AA
1899 stable_node_dup = alloc_stable_node();
1900 if (!stable_node_dup)
7b6ba2c7 1901 return NULL;
31dbd01f 1902
2c653d0e
AA
1903 INIT_HLIST_HEAD(&stable_node_dup->hlist);
1904 stable_node_dup->kpfn = kpfn;
1905 set_page_stable_node(kpage, stable_node_dup);
1906 stable_node_dup->rmap_hlist_len = 0;
1907 DO_NUMA(stable_node_dup->nid = nid);
1908 if (!need_chain) {
1909 rb_link_node(&stable_node_dup->node, parent, new);
1910 rb_insert_color(&stable_node_dup->node, root);
1911 } else {
1912 if (!is_stable_node_chain(stable_node)) {
21fbd591 1913 struct ksm_stable_node *orig = stable_node;
2c653d0e
AA
1914 /* chain is missing so create it */
1915 stable_node = alloc_stable_node_chain(orig, root);
1916 if (!stable_node) {
1917 free_stable_node(stable_node_dup);
1918 return NULL;
1919 }
1920 }
1921 stable_node_chain_add_dup(stable_node_dup, stable_node);
1922 }
08beca44 1923
2c653d0e 1924 return stable_node_dup;
31dbd01f
IE
1925}
1926
1927/*
8dd3557a
HD
1928 * unstable_tree_search_insert - search for identical page,
1929 * else insert rmap_item into the unstable tree.
31dbd01f
IE
1930 *
1931 * This function searches for a page in the unstable tree identical to the
1932 * page currently being scanned; and if no identical page is found in the
1933 * tree, we insert rmap_item as a new object into the unstable tree.
1934 *
1935 * This function returns pointer to rmap_item found to be identical
1936 * to the currently scanned page, NULL otherwise.
1937 *
1938 * This function does both searching and inserting, because they share
1939 * the same walking algorithm in an rbtree.
1940 */
8dd3557a 1941static
21fbd591 1942struct ksm_rmap_item *unstable_tree_search_insert(struct ksm_rmap_item *rmap_item,
8dd3557a
HD
1943 struct page *page,
1944 struct page **tree_pagep)
31dbd01f 1945{
90bd6fd3
PH
1946 struct rb_node **new;
1947 struct rb_root *root;
31dbd01f 1948 struct rb_node *parent = NULL;
90bd6fd3
PH
1949 int nid;
1950
1951 nid = get_kpfn_nid(page_to_pfn(page));
ef53d16c 1952 root = root_unstable_tree + nid;
90bd6fd3 1953 new = &root->rb_node;
31dbd01f
IE
1954
1955 while (*new) {
21fbd591 1956 struct ksm_rmap_item *tree_rmap_item;
8dd3557a 1957 struct page *tree_page;
31dbd01f
IE
1958 int ret;
1959
d178f27f 1960 cond_resched();
21fbd591 1961 tree_rmap_item = rb_entry(*new, struct ksm_rmap_item, node);
8dd3557a 1962 tree_page = get_mergeable_page(tree_rmap_item);
c8f95ed1 1963 if (!tree_page)
31dbd01f
IE
1964 return NULL;
1965
1966 /*
8dd3557a 1967 * Don't substitute a ksm page for a forked page.
31dbd01f 1968 */
8dd3557a
HD
1969 if (page == tree_page) {
1970 put_page(tree_page);
31dbd01f
IE
1971 return NULL;
1972 }
1973
8dd3557a 1974 ret = memcmp_pages(page, tree_page);
31dbd01f
IE
1975
1976 parent = *new;
1977 if (ret < 0) {
8dd3557a 1978 put_page(tree_page);
31dbd01f
IE
1979 new = &parent->rb_left;
1980 } else if (ret > 0) {
8dd3557a 1981 put_page(tree_page);
31dbd01f 1982 new = &parent->rb_right;
b599cbdf
HD
1983 } else if (!ksm_merge_across_nodes &&
1984 page_to_nid(tree_page) != nid) {
1985 /*
1986 * If tree_page has been migrated to another NUMA node,
1987 * it will be flushed out and put in the right unstable
1988 * tree next time: only merge with it when across_nodes.
1989 */
1990 put_page(tree_page);
1991 return NULL;
31dbd01f 1992 } else {
8dd3557a 1993 *tree_pagep = tree_page;
31dbd01f
IE
1994 return tree_rmap_item;
1995 }
1996 }
1997
7b6ba2c7 1998 rmap_item->address |= UNSTABLE_FLAG;
31dbd01f 1999 rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
e850dcf5 2000 DO_NUMA(rmap_item->nid = nid);
31dbd01f 2001 rb_link_node(&rmap_item->node, parent, new);
90bd6fd3 2002 rb_insert_color(&rmap_item->node, root);
31dbd01f 2003
473b0ce4 2004 ksm_pages_unshared++;
31dbd01f
IE
2005 return NULL;
2006}
2007
2008/*
2009 * stable_tree_append - add another rmap_item to the linked list of
2010 * rmap_items hanging off a given node of the stable tree, all sharing
2011 * the same ksm page.
2012 */
21fbd591
QZ
2013static void stable_tree_append(struct ksm_rmap_item *rmap_item,
2014 struct ksm_stable_node *stable_node,
2c653d0e 2015 bool max_page_sharing_bypass)
31dbd01f 2016{
2c653d0e
AA
2017 /*
2018 * rmap won't find this mapping if we don't insert the
2019 * rmap_item in the right stable_node
2020 * duplicate. page_migration could break later if rmap breaks,
2021 * so we can as well crash here. We really need to check for
2022 * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check
457aef94 2023 * for other negative values as an underflow if detected here
2c653d0e
AA
2024 * for the first time (and not when decreasing rmap_hlist_len)
2025 * would be sign of memory corruption in the stable_node.
2026 */
2027 BUG_ON(stable_node->rmap_hlist_len < 0);
2028
2029 stable_node->rmap_hlist_len++;
2030 if (!max_page_sharing_bypass)
2031 /* possibly non fatal but unexpected overflow, only warn */
2032 WARN_ON_ONCE(stable_node->rmap_hlist_len >
2033 ksm_max_page_sharing);
2034
7b6ba2c7 2035 rmap_item->head = stable_node;
31dbd01f 2036 rmap_item->address |= STABLE_FLAG;
7b6ba2c7 2037 hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
e178dfde 2038
7b6ba2c7
HD
2039 if (rmap_item->hlist.next)
2040 ksm_pages_sharing++;
2041 else
2042 ksm_pages_shared++;
76093853 2043
2044 rmap_item->mm->ksm_merging_pages++;
31dbd01f
IE
2045}
2046
2047/*
81464e30
HD
2048 * cmp_and_merge_page - first see if page can be merged into the stable tree;
2049 * if not, compare checksum to previous and if it's the same, see if page can
2050 * be inserted into the unstable tree, or merged with a page already there and
2051 * both transferred to the stable tree.
31dbd01f
IE
2052 *
2053 * @page: the page that we are searching identical page to.
2054 * @rmap_item: the reverse mapping into the virtual address of this page
2055 */
21fbd591 2056static void cmp_and_merge_page(struct page *page, struct ksm_rmap_item *rmap_item)
31dbd01f 2057{
4b22927f 2058 struct mm_struct *mm = rmap_item->mm;
21fbd591 2059 struct ksm_rmap_item *tree_rmap_item;
8dd3557a 2060 struct page *tree_page = NULL;
21fbd591 2061 struct ksm_stable_node *stable_node;
8dd3557a 2062 struct page *kpage;
31dbd01f
IE
2063 unsigned int checksum;
2064 int err;
2c653d0e 2065 bool max_page_sharing_bypass = false;
31dbd01f 2066
4146d2d6
HD
2067 stable_node = page_stable_node(page);
2068 if (stable_node) {
2069 if (stable_node->head != &migrate_nodes &&
2c653d0e
AA
2070 get_kpfn_nid(READ_ONCE(stable_node->kpfn)) !=
2071 NUMA(stable_node->nid)) {
2072 stable_node_dup_del(stable_node);
4146d2d6
HD
2073 stable_node->head = &migrate_nodes;
2074 list_add(&stable_node->list, stable_node->head);
2075 }
2076 if (stable_node->head != &migrate_nodes &&
2077 rmap_item->head == stable_node)
2078 return;
2c653d0e
AA
2079 /*
2080 * If it's a KSM fork, allow it to go over the sharing limit
2081 * without warnings.
2082 */
2083 if (!is_page_sharing_candidate(stable_node))
2084 max_page_sharing_bypass = true;
4146d2d6 2085 }
31dbd01f
IE
2086
2087 /* We first start with searching the page inside the stable tree */
62b61f61 2088 kpage = stable_tree_search(page);
4146d2d6
HD
2089 if (kpage == page && rmap_item->head == stable_node) {
2090 put_page(kpage);
2091 return;
2092 }
2093
2094 remove_rmap_item_from_tree(rmap_item);
2095
62b61f61 2096 if (kpage) {
2cee57d1
YS
2097 if (PTR_ERR(kpage) == -EBUSY)
2098 return;
2099
08beca44 2100 err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
31dbd01f
IE
2101 if (!err) {
2102 /*
2103 * The page was successfully merged:
2104 * add its rmap_item to the stable tree.
2105 */
5ad64688 2106 lock_page(kpage);
2c653d0e
AA
2107 stable_tree_append(rmap_item, page_stable_node(kpage),
2108 max_page_sharing_bypass);
5ad64688 2109 unlock_page(kpage);
31dbd01f 2110 }
8dd3557a 2111 put_page(kpage);
31dbd01f
IE
2112 return;
2113 }
2114
2115 /*
4035c07a
HD
2116 * If the hash value of the page has changed from the last time
2117 * we calculated it, this page is changing frequently: therefore we
2118 * don't want to insert it in the unstable tree, and we don't want
2119 * to waste our time searching for something identical to it there.
31dbd01f
IE
2120 */
2121 checksum = calc_checksum(page);
2122 if (rmap_item->oldchecksum != checksum) {
2123 rmap_item->oldchecksum = checksum;
2124 return;
2125 }
2126
e86c59b1
CI
2127 /*
2128 * Same checksum as an empty page. We attempt to merge it with the
2129 * appropriate zero page if the user enabled this via sysfs.
2130 */
2131 if (ksm_use_zero_pages && (checksum == zero_checksum)) {
2132 struct vm_area_struct *vma;
2133
d8ed45c5 2134 mmap_read_lock(mm);
4b22927f 2135 vma = find_mergeable_vma(mm, rmap_item->address);
56df70a6
MS
2136 if (vma) {
2137 err = try_to_merge_one_page(vma, page,
2138 ZERO_PAGE(rmap_item->address));
2139 } else {
2140 /*
2141 * If the vma is out of date, we do not need to
2142 * continue.
2143 */
2144 err = 0;
2145 }
d8ed45c5 2146 mmap_read_unlock(mm);
e86c59b1
CI
2147 /*
2148 * In case of failure, the page was not really empty, so we
2149 * need to continue. Otherwise we're done.
2150 */
2151 if (!err)
2152 return;
2153 }
8dd3557a
HD
2154 tree_rmap_item =
2155 unstable_tree_search_insert(rmap_item, page, &tree_page);
31dbd01f 2156 if (tree_rmap_item) {
77da2ba0
CI
2157 bool split;
2158
8dd3557a
HD
2159 kpage = try_to_merge_two_pages(rmap_item, page,
2160 tree_rmap_item, tree_page);
77da2ba0
CI
2161 /*
2162 * If both pages we tried to merge belong to the same compound
2163 * page, then we actually ended up increasing the reference
2164 * count of the same compound page twice, and split_huge_page
2165 * failed.
2166 * Here we set a flag if that happened, and we use it later to
2167 * try split_huge_page again. Since we call put_page right
2168 * afterwards, the reference count will be correct and
2169 * split_huge_page should succeed.
2170 */
2171 split = PageTransCompound(page)
2172 && compound_head(page) == compound_head(tree_page);
8dd3557a 2173 put_page(tree_page);
8dd3557a 2174 if (kpage) {
bc56620b
HD
2175 /*
2176 * The pages were successfully merged: insert new
2177 * node in the stable tree and add both rmap_items.
2178 */
5ad64688 2179 lock_page(kpage);
7b6ba2c7
HD
2180 stable_node = stable_tree_insert(kpage);
2181 if (stable_node) {
2c653d0e
AA
2182 stable_tree_append(tree_rmap_item, stable_node,
2183 false);
2184 stable_tree_append(rmap_item, stable_node,
2185 false);
7b6ba2c7 2186 }
5ad64688 2187 unlock_page(kpage);
7b6ba2c7 2188
31dbd01f
IE
2189 /*
2190 * If we fail to insert the page into the stable tree,
2191 * we will have 2 virtual addresses that are pointing
2192 * to a ksm page left outside the stable tree,
2193 * in which case we need to break_cow on both.
2194 */
7b6ba2c7 2195 if (!stable_node) {
8dd3557a
HD
2196 break_cow(tree_rmap_item);
2197 break_cow(rmap_item);
31dbd01f 2198 }
77da2ba0
CI
2199 } else if (split) {
2200 /*
2201 * We are here if we tried to merge two pages and
2202 * failed because they both belonged to the same
2203 * compound page. We will split the page now, but no
2204 * merging will take place.
2205 * We do not want to add the cost of a full lock; if
2206 * the page is locked, it is better to skip it and
2207 * perhaps try again later.
2208 */
2209 if (!trylock_page(page))
2210 return;
2211 split_huge_page(page);
2212 unlock_page(page);
31dbd01f 2213 }
31dbd01f
IE
2214 }
2215}
2216
21fbd591
QZ
2217static struct ksm_rmap_item *get_next_rmap_item(struct ksm_mm_slot *mm_slot,
2218 struct ksm_rmap_item **rmap_list,
31dbd01f
IE
2219 unsigned long addr)
2220{
21fbd591 2221 struct ksm_rmap_item *rmap_item;
31dbd01f 2222
6514d511
HD
2223 while (*rmap_list) {
2224 rmap_item = *rmap_list;
93d17715 2225 if ((rmap_item->address & PAGE_MASK) == addr)
31dbd01f 2226 return rmap_item;
31dbd01f
IE
2227 if (rmap_item->address > addr)
2228 break;
6514d511 2229 *rmap_list = rmap_item->rmap_list;
31dbd01f 2230 remove_rmap_item_from_tree(rmap_item);
31dbd01f
IE
2231 free_rmap_item(rmap_item);
2232 }
2233
2234 rmap_item = alloc_rmap_item();
2235 if (rmap_item) {
2236 /* It has already been zeroed */
58730ab6 2237 rmap_item->mm = mm_slot->slot.mm;
cb4df4ca 2238 rmap_item->mm->ksm_rmap_items++;
31dbd01f 2239 rmap_item->address = addr;
6514d511
HD
2240 rmap_item->rmap_list = *rmap_list;
2241 *rmap_list = rmap_item;
31dbd01f
IE
2242 }
2243 return rmap_item;
2244}
2245
21fbd591 2246static struct ksm_rmap_item *scan_get_next_rmap_item(struct page **page)
31dbd01f
IE
2247{
2248 struct mm_struct *mm;
58730ab6
QZ
2249 struct ksm_mm_slot *mm_slot;
2250 struct mm_slot *slot;
31dbd01f 2251 struct vm_area_struct *vma;
21fbd591 2252 struct ksm_rmap_item *rmap_item;
a5f18ba0 2253 struct vma_iterator vmi;
90bd6fd3 2254 int nid;
31dbd01f 2255
58730ab6 2256 if (list_empty(&ksm_mm_head.slot.mm_node))
31dbd01f
IE
2257 return NULL;
2258
58730ab6
QZ
2259 mm_slot = ksm_scan.mm_slot;
2260 if (mm_slot == &ksm_mm_head) {
2919bfd0
HD
2261 /*
2262 * A number of pages can hang around indefinitely on per-cpu
2263 * pagevecs, raised page count preventing write_protect_page
2264 * from merging them. Though it doesn't really matter much,
2265 * it is puzzling to see some stuck in pages_volatile until
2266 * other activity jostles them out, and they also prevented
2267 * LTP's KSM test from succeeding deterministically; so drain
2268 * them here (here rather than on entry to ksm_do_scan(),
2269 * so we don't IPI too often when pages_to_scan is set low).
2270 */
2271 lru_add_drain_all();
2272
4146d2d6
HD
2273 /*
2274 * Whereas stale stable_nodes on the stable_tree itself
2275 * get pruned in the regular course of stable_tree_search(),
2276 * those moved out to the migrate_nodes list can accumulate:
2277 * so prune them once before each full scan.
2278 */
2279 if (!ksm_merge_across_nodes) {
21fbd591 2280 struct ksm_stable_node *stable_node, *next;
4146d2d6
HD
2281 struct page *page;
2282
03640418
GT
2283 list_for_each_entry_safe(stable_node, next,
2284 &migrate_nodes, list) {
2cee57d1
YS
2285 page = get_ksm_page(stable_node,
2286 GET_KSM_PAGE_NOLOCK);
4146d2d6
HD
2287 if (page)
2288 put_page(page);
2289 cond_resched();
2290 }
2291 }
2292
ef53d16c 2293 for (nid = 0; nid < ksm_nr_node_ids; nid++)
90bd6fd3 2294 root_unstable_tree[nid] = RB_ROOT;
31dbd01f
IE
2295
2296 spin_lock(&ksm_mmlist_lock);
58730ab6
QZ
2297 slot = list_entry(mm_slot->slot.mm_node.next,
2298 struct mm_slot, mm_node);
2299 mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
2300 ksm_scan.mm_slot = mm_slot;
31dbd01f 2301 spin_unlock(&ksm_mmlist_lock);
2b472611
HD
2302 /*
2303 * Although we tested list_empty() above, a racing __ksm_exit
2304 * of the last mm on the list may have removed it since then.
2305 */
58730ab6 2306 if (mm_slot == &ksm_mm_head)
2b472611 2307 return NULL;
31dbd01f
IE
2308next_mm:
2309 ksm_scan.address = 0;
58730ab6 2310 ksm_scan.rmap_list = &mm_slot->rmap_list;
31dbd01f
IE
2311 }
2312
58730ab6 2313 slot = &mm_slot->slot;
31dbd01f 2314 mm = slot->mm;
a5f18ba0
MWO
2315 vma_iter_init(&vmi, mm, ksm_scan.address);
2316
d8ed45c5 2317 mmap_read_lock(mm);
9ba69294 2318 if (ksm_test_exit(mm))
a5f18ba0 2319 goto no_vmas;
9ba69294 2320
a5f18ba0 2321 for_each_vma(vmi, vma) {
31dbd01f
IE
2322 if (!(vma->vm_flags & VM_MERGEABLE))
2323 continue;
2324 if (ksm_scan.address < vma->vm_start)
2325 ksm_scan.address = vma->vm_start;
2326 if (!vma->anon_vma)
2327 ksm_scan.address = vma->vm_end;
2328
2329 while (ksm_scan.address < vma->vm_end) {
9ba69294
HD
2330 if (ksm_test_exit(mm))
2331 break;
31dbd01f 2332 *page = follow_page(vma, ksm_scan.address, FOLL_GET);
f7091ed6 2333 if (IS_ERR_OR_NULL(*page)) {
21ae5b01
AA
2334 ksm_scan.address += PAGE_SIZE;
2335 cond_resched();
2336 continue;
2337 }
f7091ed6
HW
2338 if (is_zone_device_page(*page))
2339 goto next_page;
f765f540 2340 if (PageAnon(*page)) {
31dbd01f
IE
2341 flush_anon_page(vma, *page, ksm_scan.address);
2342 flush_dcache_page(*page);
58730ab6 2343 rmap_item = get_next_rmap_item(mm_slot,
6514d511 2344 ksm_scan.rmap_list, ksm_scan.address);
31dbd01f 2345 if (rmap_item) {
6514d511
HD
2346 ksm_scan.rmap_list =
2347 &rmap_item->rmap_list;
31dbd01f
IE
2348 ksm_scan.address += PAGE_SIZE;
2349 } else
2350 put_page(*page);
d8ed45c5 2351 mmap_read_unlock(mm);
31dbd01f
IE
2352 return rmap_item;
2353 }
f7091ed6 2354next_page:
21ae5b01 2355 put_page(*page);
31dbd01f
IE
2356 ksm_scan.address += PAGE_SIZE;
2357 cond_resched();
2358 }
2359 }
2360
9ba69294 2361 if (ksm_test_exit(mm)) {
a5f18ba0 2362no_vmas:
9ba69294 2363 ksm_scan.address = 0;
58730ab6 2364 ksm_scan.rmap_list = &mm_slot->rmap_list;
9ba69294 2365 }
31dbd01f
IE
2366 /*
2367 * Nuke all the rmap_items that are above this current rmap:
2368 * because there were no VM_MERGEABLE vmas with such addresses.
2369 */
420be4ed 2370 remove_trailing_rmap_items(ksm_scan.rmap_list);
31dbd01f
IE
2371
2372 spin_lock(&ksm_mmlist_lock);
58730ab6
QZ
2373 slot = list_entry(mm_slot->slot.mm_node.next,
2374 struct mm_slot, mm_node);
2375 ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
cd551f97
HD
2376 if (ksm_scan.address == 0) {
2377 /*
c1e8d7c6 2378 * We've completed a full scan of all vmas, holding mmap_lock
cd551f97
HD
2379 * throughout, and found no VM_MERGEABLE: so do the same as
2380 * __ksm_exit does to remove this mm from all our lists now.
9ba69294
HD
2381 * This applies either when cleaning up after __ksm_exit
2382 * (but beware: we can reach here even before __ksm_exit),
2383 * or when all VM_MERGEABLE areas have been unmapped (and
c1e8d7c6 2384 * mmap_lock then protects against race with MADV_MERGEABLE).
cd551f97 2385 */
58730ab6
QZ
2386 hash_del(&mm_slot->slot.hash);
2387 list_del(&mm_slot->slot.mm_node);
9ba69294
HD
2388 spin_unlock(&ksm_mmlist_lock);
2389
58730ab6 2390 mm_slot_free(mm_slot_cache, mm_slot);
cd551f97 2391 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
d8ed45c5 2392 mmap_read_unlock(mm);
9ba69294
HD
2393 mmdrop(mm);
2394 } else {
d8ed45c5 2395 mmap_read_unlock(mm);
7496fea9 2396 /*
3e4e28c5 2397 * mmap_read_unlock(mm) first because after
7496fea9
ZC
2398 * spin_unlock(&ksm_mmlist_lock) run, the "mm" may
2399 * already have been freed under us by __ksm_exit()
2400 * because the "mm_slot" is still hashed and
2401 * ksm_scan.mm_slot doesn't point to it anymore.
2402 */
2403 spin_unlock(&ksm_mmlist_lock);
cd551f97 2404 }
31dbd01f
IE
2405
2406 /* Repeat until we've completed scanning the whole list */
58730ab6
QZ
2407 mm_slot = ksm_scan.mm_slot;
2408 if (mm_slot != &ksm_mm_head)
31dbd01f
IE
2409 goto next_mm;
2410
31dbd01f
IE
2411 ksm_scan.seqnr++;
2412 return NULL;
2413}
2414
2415/**
2416 * ksm_do_scan - the ksm scanner main worker function.
b7701a5f 2417 * @scan_npages: number of pages we want to scan before we return.
31dbd01f
IE
2418 */
2419static void ksm_do_scan(unsigned int scan_npages)
2420{
21fbd591 2421 struct ksm_rmap_item *rmap_item;
3f649ab7 2422 struct page *page;
31dbd01f 2423
878aee7d 2424 while (scan_npages-- && likely(!freezing(current))) {
31dbd01f
IE
2425 cond_resched();
2426 rmap_item = scan_get_next_rmap_item(&page);
2427 if (!rmap_item)
2428 return;
4146d2d6 2429 cmp_and_merge_page(page, rmap_item);
31dbd01f
IE
2430 put_page(page);
2431 }
2432}
2433
6e158384
HD
2434static int ksmd_should_run(void)
2435{
58730ab6 2436 return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.slot.mm_node);
6e158384
HD
2437}
2438
31dbd01f
IE
2439static int ksm_scan_thread(void *nothing)
2440{
fcf9a0ef
KT
2441 unsigned int sleep_ms;
2442
878aee7d 2443 set_freezable();
339aa624 2444 set_user_nice(current, 5);
31dbd01f
IE
2445
2446 while (!kthread_should_stop()) {
6e158384 2447 mutex_lock(&ksm_thread_mutex);
ef4d43a8 2448 wait_while_offlining();
6e158384 2449 if (ksmd_should_run())
31dbd01f 2450 ksm_do_scan(ksm_thread_pages_to_scan);
6e158384
HD
2451 mutex_unlock(&ksm_thread_mutex);
2452
878aee7d
AA
2453 try_to_freeze();
2454
6e158384 2455 if (ksmd_should_run()) {
fcf9a0ef
KT
2456 sleep_ms = READ_ONCE(ksm_thread_sleep_millisecs);
2457 wait_event_interruptible_timeout(ksm_iter_wait,
2458 sleep_ms != READ_ONCE(ksm_thread_sleep_millisecs),
2459 msecs_to_jiffies(sleep_ms));
31dbd01f 2460 } else {
878aee7d 2461 wait_event_freezable(ksm_thread_wait,
6e158384 2462 ksmd_should_run() || kthread_should_stop());
31dbd01f
IE
2463 }
2464 }
2465 return 0;
2466}
2467
f8af4da3
HD
2468int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
2469 unsigned long end, int advice, unsigned long *vm_flags)
2470{
2471 struct mm_struct *mm = vma->vm_mm;
d952b791 2472 int err;
f8af4da3
HD
2473
2474 switch (advice) {
2475 case MADV_MERGEABLE:
2476 /*
2477 * Be somewhat over-protective for now!
2478 */
2479 if (*vm_flags & (VM_MERGEABLE | VM_SHARED | VM_MAYSHARE |
2480 VM_PFNMAP | VM_IO | VM_DONTEXPAND |
0661a336 2481 VM_HUGETLB | VM_MIXEDMAP))
f8af4da3
HD
2482 return 0; /* just ignore the advice */
2483
e1fb4a08
DJ
2484 if (vma_is_dax(vma))
2485 return 0;
2486
12564485
SA
2487#ifdef VM_SAO
2488 if (*vm_flags & VM_SAO)
2489 return 0;
2490#endif
74a04967
KA
2491#ifdef VM_SPARC_ADI
2492 if (*vm_flags & VM_SPARC_ADI)
2493 return 0;
2494#endif
cc2383ec 2495
d952b791
HD
2496 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2497 err = __ksm_enter(mm);
2498 if (err)
2499 return err;
2500 }
f8af4da3
HD
2501
2502 *vm_flags |= VM_MERGEABLE;
2503 break;
2504
2505 case MADV_UNMERGEABLE:
2506 if (!(*vm_flags & VM_MERGEABLE))
2507 return 0; /* just ignore the advice */
2508
d952b791
HD
2509 if (vma->anon_vma) {
2510 err = unmerge_ksm_pages(vma, start, end);
2511 if (err)
2512 return err;
2513 }
f8af4da3
HD
2514
2515 *vm_flags &= ~VM_MERGEABLE;
2516 break;
2517 }
2518
2519 return 0;
2520}
33cf1707 2521EXPORT_SYMBOL_GPL(ksm_madvise);
f8af4da3
HD
2522
2523int __ksm_enter(struct mm_struct *mm)
2524{
21fbd591 2525 struct ksm_mm_slot *mm_slot;
58730ab6 2526 struct mm_slot *slot;
6e158384
HD
2527 int needs_wakeup;
2528
58730ab6 2529 mm_slot = mm_slot_alloc(mm_slot_cache);
31dbd01f
IE
2530 if (!mm_slot)
2531 return -ENOMEM;
2532
58730ab6
QZ
2533 slot = &mm_slot->slot;
2534
6e158384 2535 /* Check ksm_run too? Would need tighter locking */
58730ab6 2536 needs_wakeup = list_empty(&ksm_mm_head.slot.mm_node);
6e158384 2537
31dbd01f 2538 spin_lock(&ksm_mmlist_lock);
58730ab6 2539 mm_slot_insert(mm_slots_hash, mm, slot);
31dbd01f 2540 /*
cbf86cfe
HD
2541 * When KSM_RUN_MERGE (or KSM_RUN_STOP),
2542 * insert just behind the scanning cursor, to let the area settle
31dbd01f
IE
2543 * down a little; when fork is followed by immediate exec, we don't
2544 * want ksmd to waste time setting up and tearing down an rmap_list.
cbf86cfe
HD
2545 *
2546 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
2547 * scanning cursor, otherwise KSM pages in newly forked mms will be
2548 * missed: then we might as well insert at the end of the list.
31dbd01f 2549 */
cbf86cfe 2550 if (ksm_run & KSM_RUN_UNMERGE)
58730ab6 2551 list_add_tail(&slot->mm_node, &ksm_mm_head.slot.mm_node);
cbf86cfe 2552 else
58730ab6 2553 list_add_tail(&slot->mm_node, &ksm_scan.mm_slot->slot.mm_node);
31dbd01f
IE
2554 spin_unlock(&ksm_mmlist_lock);
2555
f8af4da3 2556 set_bit(MMF_VM_MERGEABLE, &mm->flags);
f1f10076 2557 mmgrab(mm);
6e158384
HD
2558
2559 if (needs_wakeup)
2560 wake_up_interruptible(&ksm_thread_wait);
2561
f8af4da3
HD
2562 return 0;
2563}
2564
1c2fb7a4 2565void __ksm_exit(struct mm_struct *mm)
f8af4da3 2566{
21fbd591 2567 struct ksm_mm_slot *mm_slot;
58730ab6 2568 struct mm_slot *slot;
9ba69294 2569 int easy_to_free = 0;
cd551f97 2570
31dbd01f 2571 /*
9ba69294
HD
2572 * This process is exiting: if it's straightforward (as is the
2573 * case when ksmd was never running), free mm_slot immediately.
2574 * But if it's at the cursor or has rmap_items linked to it, use
c1e8d7c6 2575 * mmap_lock to synchronize with any break_cows before pagetables
9ba69294
HD
2576 * are freed, and leave the mm_slot on the list for ksmd to free.
2577 * Beware: ksm may already have noticed it exiting and freed the slot.
31dbd01f 2578 */
9ba69294 2579
cd551f97 2580 spin_lock(&ksm_mmlist_lock);
58730ab6
QZ
2581 slot = mm_slot_lookup(mm_slots_hash, mm);
2582 mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
9ba69294 2583 if (mm_slot && ksm_scan.mm_slot != mm_slot) {
6514d511 2584 if (!mm_slot->rmap_list) {
58730ab6
QZ
2585 hash_del(&slot->hash);
2586 list_del(&slot->mm_node);
9ba69294
HD
2587 easy_to_free = 1;
2588 } else {
58730ab6
QZ
2589 list_move(&slot->mm_node,
2590 &ksm_scan.mm_slot->slot.mm_node);
9ba69294 2591 }
cd551f97 2592 }
cd551f97
HD
2593 spin_unlock(&ksm_mmlist_lock);
2594
9ba69294 2595 if (easy_to_free) {
58730ab6 2596 mm_slot_free(mm_slot_cache, mm_slot);
9ba69294
HD
2597 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2598 mmdrop(mm);
2599 } else if (mm_slot) {
d8ed45c5
ML
2600 mmap_write_lock(mm);
2601 mmap_write_unlock(mm);
9ba69294 2602 }
31dbd01f
IE
2603}
2604
cbf86cfe 2605struct page *ksm_might_need_to_copy(struct page *page,
5ad64688
HD
2606 struct vm_area_struct *vma, unsigned long address)
2607{
e05b3453
MWO
2608 struct folio *folio = page_folio(page);
2609 struct anon_vma *anon_vma = folio_anon_vma(folio);
5ad64688
HD
2610 struct page *new_page;
2611
cbf86cfe
HD
2612 if (PageKsm(page)) {
2613 if (page_stable_node(page) &&
2614 !(ksm_run & KSM_RUN_UNMERGE))
2615 return page; /* no need to copy it */
2616 } else if (!anon_vma) {
2617 return page; /* no need to copy it */
e1c63e11
NS
2618 } else if (page->index == linear_page_index(vma, address) &&
2619 anon_vma->root == vma->anon_vma->root) {
cbf86cfe
HD
2620 return page; /* still no need to copy it */
2621 }
2622 if (!PageUptodate(page))
2623 return page; /* let do_swap_page report the error */
2624
5ad64688 2625 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
8f425e4e
MWO
2626 if (new_page &&
2627 mem_cgroup_charge(page_folio(new_page), vma->vm_mm, GFP_KERNEL)) {
62fdb163
HD
2628 put_page(new_page);
2629 new_page = NULL;
2630 }
5ad64688
HD
2631 if (new_page) {
2632 copy_user_highpage(new_page, page, address, vma);
2633
2634 SetPageDirty(new_page);
2635 __SetPageUptodate(new_page);
48c935ad 2636 __SetPageLocked(new_page);
4d45c3af
YY
2637#ifdef CONFIG_SWAP
2638 count_vm_event(KSM_SWPIN_COPY);
2639#endif
5ad64688
HD
2640 }
2641
5ad64688
HD
2642 return new_page;
2643}
2644
6d4675e6 2645void rmap_walk_ksm(struct folio *folio, struct rmap_walk_control *rwc)
e9995ef9 2646{
21fbd591
QZ
2647 struct ksm_stable_node *stable_node;
2648 struct ksm_rmap_item *rmap_item;
e9995ef9
HD
2649 int search_new_forks = 0;
2650
2f031c6f 2651 VM_BUG_ON_FOLIO(!folio_test_ksm(folio), folio);
9f32624b
JK
2652
2653 /*
2654 * Rely on the page lock to protect against concurrent modifications
2655 * to that page's node of the stable tree.
2656 */
2f031c6f 2657 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
e9995ef9 2658
2f031c6f 2659 stable_node = folio_stable_node(folio);
e9995ef9 2660 if (!stable_node)
1df631ae 2661 return;
e9995ef9 2662again:
b67bfe0d 2663 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
e9995ef9 2664 struct anon_vma *anon_vma = rmap_item->anon_vma;
5beb4930 2665 struct anon_vma_chain *vmac;
e9995ef9
HD
2666 struct vm_area_struct *vma;
2667
ad12695f 2668 cond_resched();
6d4675e6
MK
2669 if (!anon_vma_trylock_read(anon_vma)) {
2670 if (rwc->try_lock) {
2671 rwc->contended = true;
2672 return;
2673 }
2674 anon_vma_lock_read(anon_vma);
2675 }
bf181b9f
ML
2676 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
2677 0, ULONG_MAX) {
1105a2fc
JH
2678 unsigned long addr;
2679
ad12695f 2680 cond_resched();
5beb4930 2681 vma = vmac->vma;
1105a2fc
JH
2682
2683 /* Ignore the stable/unstable/sqnr flags */
cd7fae26 2684 addr = rmap_item->address & PAGE_MASK;
1105a2fc
JH
2685
2686 if (addr < vma->vm_start || addr >= vma->vm_end)
e9995ef9
HD
2687 continue;
2688 /*
2689 * Initially we examine only the vma which covers this
2690 * rmap_item; but later, if there is still work to do,
2691 * we examine covering vmas in other mms: in case they
2692 * were forked from the original since ksmd passed.
2693 */
2694 if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
2695 continue;
2696
0dd1c7bb
JK
2697 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2698 continue;
2699
2f031c6f 2700 if (!rwc->rmap_one(folio, vma, addr, rwc->arg)) {
b6b19f25 2701 anon_vma_unlock_read(anon_vma);
1df631ae 2702 return;
e9995ef9 2703 }
2f031c6f 2704 if (rwc->done && rwc->done(folio)) {
0dd1c7bb 2705 anon_vma_unlock_read(anon_vma);
1df631ae 2706 return;
0dd1c7bb 2707 }
e9995ef9 2708 }
b6b19f25 2709 anon_vma_unlock_read(anon_vma);
e9995ef9
HD
2710 }
2711 if (!search_new_forks++)
2712 goto again;
e9995ef9
HD
2713}
2714
52629506 2715#ifdef CONFIG_MIGRATION
19138349 2716void folio_migrate_ksm(struct folio *newfolio, struct folio *folio)
e9995ef9 2717{
21fbd591 2718 struct ksm_stable_node *stable_node;
e9995ef9 2719
19138349
MWO
2720 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2721 VM_BUG_ON_FOLIO(!folio_test_locked(newfolio), newfolio);
2722 VM_BUG_ON_FOLIO(newfolio->mapping != folio->mapping, newfolio);
e9995ef9 2723
19138349 2724 stable_node = folio_stable_node(folio);
e9995ef9 2725 if (stable_node) {
19138349
MWO
2726 VM_BUG_ON_FOLIO(stable_node->kpfn != folio_pfn(folio), folio);
2727 stable_node->kpfn = folio_pfn(newfolio);
c8d6553b 2728 /*
19138349 2729 * newfolio->mapping was set in advance; now we need smp_wmb()
c8d6553b 2730 * to make sure that the new stable_node->kpfn is visible
19138349
MWO
2731 * to get_ksm_page() before it can see that folio->mapping
2732 * has gone stale (or that folio_test_swapcache has been cleared).
c8d6553b
HD
2733 */
2734 smp_wmb();
19138349 2735 set_page_stable_node(&folio->page, NULL);
e9995ef9
HD
2736 }
2737}
2738#endif /* CONFIG_MIGRATION */
2739
62b61f61 2740#ifdef CONFIG_MEMORY_HOTREMOVE
ef4d43a8
HD
2741static void wait_while_offlining(void)
2742{
2743 while (ksm_run & KSM_RUN_OFFLINE) {
2744 mutex_unlock(&ksm_thread_mutex);
2745 wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
74316201 2746 TASK_UNINTERRUPTIBLE);
ef4d43a8
HD
2747 mutex_lock(&ksm_thread_mutex);
2748 }
2749}
2750
21fbd591 2751static bool stable_node_dup_remove_range(struct ksm_stable_node *stable_node,
2c653d0e
AA
2752 unsigned long start_pfn,
2753 unsigned long end_pfn)
2754{
2755 if (stable_node->kpfn >= start_pfn &&
2756 stable_node->kpfn < end_pfn) {
2757 /*
2758 * Don't get_ksm_page, page has already gone:
2759 * which is why we keep kpfn instead of page*
2760 */
2761 remove_node_from_stable_tree(stable_node);
2762 return true;
2763 }
2764 return false;
2765}
2766
21fbd591 2767static bool stable_node_chain_remove_range(struct ksm_stable_node *stable_node,
2c653d0e
AA
2768 unsigned long start_pfn,
2769 unsigned long end_pfn,
2770 struct rb_root *root)
2771{
21fbd591 2772 struct ksm_stable_node *dup;
2c653d0e
AA
2773 struct hlist_node *hlist_safe;
2774
2775 if (!is_stable_node_chain(stable_node)) {
2776 VM_BUG_ON(is_stable_node_dup(stable_node));
2777 return stable_node_dup_remove_range(stable_node, start_pfn,
2778 end_pfn);
2779 }
2780
2781 hlist_for_each_entry_safe(dup, hlist_safe,
2782 &stable_node->hlist, hlist_dup) {
2783 VM_BUG_ON(!is_stable_node_dup(dup));
2784 stable_node_dup_remove_range(dup, start_pfn, end_pfn);
2785 }
2786 if (hlist_empty(&stable_node->hlist)) {
2787 free_stable_node_chain(stable_node, root);
2788 return true; /* notify caller that tree was rebalanced */
2789 } else
2790 return false;
2791}
2792
ee0ea59c
HD
2793static void ksm_check_stable_tree(unsigned long start_pfn,
2794 unsigned long end_pfn)
62b61f61 2795{
21fbd591 2796 struct ksm_stable_node *stable_node, *next;
62b61f61 2797 struct rb_node *node;
90bd6fd3 2798 int nid;
62b61f61 2799
ef53d16c
HD
2800 for (nid = 0; nid < ksm_nr_node_ids; nid++) {
2801 node = rb_first(root_stable_tree + nid);
ee0ea59c 2802 while (node) {
21fbd591 2803 stable_node = rb_entry(node, struct ksm_stable_node, node);
2c653d0e
AA
2804 if (stable_node_chain_remove_range(stable_node,
2805 start_pfn, end_pfn,
2806 root_stable_tree +
2807 nid))
ef53d16c 2808 node = rb_first(root_stable_tree + nid);
2c653d0e 2809 else
ee0ea59c
HD
2810 node = rb_next(node);
2811 cond_resched();
90bd6fd3 2812 }
ee0ea59c 2813 }
03640418 2814 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
4146d2d6
HD
2815 if (stable_node->kpfn >= start_pfn &&
2816 stable_node->kpfn < end_pfn)
2817 remove_node_from_stable_tree(stable_node);
2818 cond_resched();
2819 }
62b61f61
HD
2820}
2821
2822static int ksm_memory_callback(struct notifier_block *self,
2823 unsigned long action, void *arg)
2824{
2825 struct memory_notify *mn = arg;
62b61f61
HD
2826
2827 switch (action) {
2828 case MEM_GOING_OFFLINE:
2829 /*
ef4d43a8
HD
2830 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
2831 * and remove_all_stable_nodes() while memory is going offline:
2832 * it is unsafe for them to touch the stable tree at this time.
2833 * But unmerge_ksm_pages(), rmap lookups and other entry points
2834 * which do not need the ksm_thread_mutex are all safe.
62b61f61 2835 */
ef4d43a8
HD
2836 mutex_lock(&ksm_thread_mutex);
2837 ksm_run |= KSM_RUN_OFFLINE;
2838 mutex_unlock(&ksm_thread_mutex);
62b61f61
HD
2839 break;
2840
2841 case MEM_OFFLINE:
2842 /*
2843 * Most of the work is done by page migration; but there might
2844 * be a few stable_nodes left over, still pointing to struct
ee0ea59c
HD
2845 * pages which have been offlined: prune those from the tree,
2846 * otherwise get_ksm_page() might later try to access a
2847 * non-existent struct page.
62b61f61 2848 */
ee0ea59c
HD
2849 ksm_check_stable_tree(mn->start_pfn,
2850 mn->start_pfn + mn->nr_pages);
e4a9bc58 2851 fallthrough;
62b61f61 2852 case MEM_CANCEL_OFFLINE:
ef4d43a8
HD
2853 mutex_lock(&ksm_thread_mutex);
2854 ksm_run &= ~KSM_RUN_OFFLINE;
62b61f61 2855 mutex_unlock(&ksm_thread_mutex);
ef4d43a8
HD
2856
2857 smp_mb(); /* wake_up_bit advises this */
2858 wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
62b61f61
HD
2859 break;
2860 }
2861 return NOTIFY_OK;
2862}
ef4d43a8
HD
2863#else
2864static void wait_while_offlining(void)
2865{
2866}
62b61f61
HD
2867#endif /* CONFIG_MEMORY_HOTREMOVE */
2868
2ffd8679
HD
2869#ifdef CONFIG_SYSFS
2870/*
2871 * This all compiles without CONFIG_SYSFS, but is a waste of space.
2872 */
2873
31dbd01f
IE
2874#define KSM_ATTR_RO(_name) \
2875 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2876#define KSM_ATTR(_name) \
1bad2e5c 2877 static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
31dbd01f
IE
2878
2879static ssize_t sleep_millisecs_show(struct kobject *kobj,
2880 struct kobj_attribute *attr, char *buf)
2881{
ae7a927d 2882 return sysfs_emit(buf, "%u\n", ksm_thread_sleep_millisecs);
31dbd01f
IE
2883}
2884
2885static ssize_t sleep_millisecs_store(struct kobject *kobj,
2886 struct kobj_attribute *attr,
2887 const char *buf, size_t count)
2888{
dfefd226 2889 unsigned int msecs;
31dbd01f
IE
2890 int err;
2891
dfefd226
AD
2892 err = kstrtouint(buf, 10, &msecs);
2893 if (err)
31dbd01f
IE
2894 return -EINVAL;
2895
2896 ksm_thread_sleep_millisecs = msecs;
fcf9a0ef 2897 wake_up_interruptible(&ksm_iter_wait);
31dbd01f
IE
2898
2899 return count;
2900}
2901KSM_ATTR(sleep_millisecs);
2902
2903static ssize_t pages_to_scan_show(struct kobject *kobj,
2904 struct kobj_attribute *attr, char *buf)
2905{
ae7a927d 2906 return sysfs_emit(buf, "%u\n", ksm_thread_pages_to_scan);
31dbd01f
IE
2907}
2908
2909static ssize_t pages_to_scan_store(struct kobject *kobj,
2910 struct kobj_attribute *attr,
2911 const char *buf, size_t count)
2912{
dfefd226 2913 unsigned int nr_pages;
31dbd01f 2914 int err;
31dbd01f 2915
dfefd226
AD
2916 err = kstrtouint(buf, 10, &nr_pages);
2917 if (err)
31dbd01f
IE
2918 return -EINVAL;
2919
2920 ksm_thread_pages_to_scan = nr_pages;
2921
2922 return count;
2923}
2924KSM_ATTR(pages_to_scan);
2925
2926static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
2927 char *buf)
2928{
ae7a927d 2929 return sysfs_emit(buf, "%lu\n", ksm_run);
31dbd01f
IE
2930}
2931
2932static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
2933 const char *buf, size_t count)
2934{
dfefd226 2935 unsigned int flags;
31dbd01f 2936 int err;
31dbd01f 2937
dfefd226
AD
2938 err = kstrtouint(buf, 10, &flags);
2939 if (err)
31dbd01f
IE
2940 return -EINVAL;
2941 if (flags > KSM_RUN_UNMERGE)
2942 return -EINVAL;
2943
2944 /*
2945 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
2946 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
d0f209f6
HD
2947 * breaking COW to free the pages_shared (but leaves mm_slots
2948 * on the list for when ksmd may be set running again).
31dbd01f
IE
2949 */
2950
2951 mutex_lock(&ksm_thread_mutex);
ef4d43a8 2952 wait_while_offlining();
31dbd01f
IE
2953 if (ksm_run != flags) {
2954 ksm_run = flags;
d952b791 2955 if (flags & KSM_RUN_UNMERGE) {
e1e12d2f 2956 set_current_oom_origin();
d952b791 2957 err = unmerge_and_remove_all_rmap_items();
e1e12d2f 2958 clear_current_oom_origin();
d952b791
HD
2959 if (err) {
2960 ksm_run = KSM_RUN_STOP;
2961 count = err;
2962 }
2963 }
31dbd01f
IE
2964 }
2965 mutex_unlock(&ksm_thread_mutex);
2966
2967 if (flags & KSM_RUN_MERGE)
2968 wake_up_interruptible(&ksm_thread_wait);
2969
2970 return count;
2971}
2972KSM_ATTR(run);
2973
90bd6fd3
PH
2974#ifdef CONFIG_NUMA
2975static ssize_t merge_across_nodes_show(struct kobject *kobj,
ae7a927d 2976 struct kobj_attribute *attr, char *buf)
90bd6fd3 2977{
ae7a927d 2978 return sysfs_emit(buf, "%u\n", ksm_merge_across_nodes);
90bd6fd3
PH
2979}
2980
2981static ssize_t merge_across_nodes_store(struct kobject *kobj,
2982 struct kobj_attribute *attr,
2983 const char *buf, size_t count)
2984{
2985 int err;
2986 unsigned long knob;
2987
2988 err = kstrtoul(buf, 10, &knob);
2989 if (err)
2990 return err;
2991 if (knob > 1)
2992 return -EINVAL;
2993
2994 mutex_lock(&ksm_thread_mutex);
ef4d43a8 2995 wait_while_offlining();
90bd6fd3 2996 if (ksm_merge_across_nodes != knob) {
cbf86cfe 2997 if (ksm_pages_shared || remove_all_stable_nodes())
90bd6fd3 2998 err = -EBUSY;
ef53d16c
HD
2999 else if (root_stable_tree == one_stable_tree) {
3000 struct rb_root *buf;
3001 /*
3002 * This is the first time that we switch away from the
3003 * default of merging across nodes: must now allocate
3004 * a buffer to hold as many roots as may be needed.
3005 * Allocate stable and unstable together:
3006 * MAXSMP NODES_SHIFT 10 will use 16kB.
3007 */
bafe1e14
JP
3008 buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
3009 GFP_KERNEL);
ef53d16c
HD
3010 /* Let us assume that RB_ROOT is NULL is zero */
3011 if (!buf)
3012 err = -ENOMEM;
3013 else {
3014 root_stable_tree = buf;
3015 root_unstable_tree = buf + nr_node_ids;
3016 /* Stable tree is empty but not the unstable */
3017 root_unstable_tree[0] = one_unstable_tree[0];
3018 }
3019 }
3020 if (!err) {
90bd6fd3 3021 ksm_merge_across_nodes = knob;
ef53d16c
HD
3022 ksm_nr_node_ids = knob ? 1 : nr_node_ids;
3023 }
90bd6fd3
PH
3024 }
3025 mutex_unlock(&ksm_thread_mutex);
3026
3027 return err ? err : count;
3028}
3029KSM_ATTR(merge_across_nodes);
3030#endif
3031
e86c59b1 3032static ssize_t use_zero_pages_show(struct kobject *kobj,
ae7a927d 3033 struct kobj_attribute *attr, char *buf)
e86c59b1 3034{
ae7a927d 3035 return sysfs_emit(buf, "%u\n", ksm_use_zero_pages);
e86c59b1
CI
3036}
3037static ssize_t use_zero_pages_store(struct kobject *kobj,
3038 struct kobj_attribute *attr,
3039 const char *buf, size_t count)
3040{
3041 int err;
3042 bool value;
3043
3044 err = kstrtobool(buf, &value);
3045 if (err)
3046 return -EINVAL;
3047
3048 ksm_use_zero_pages = value;
3049
3050 return count;
3051}
3052KSM_ATTR(use_zero_pages);
3053
2c653d0e
AA
3054static ssize_t max_page_sharing_show(struct kobject *kobj,
3055 struct kobj_attribute *attr, char *buf)
3056{
ae7a927d 3057 return sysfs_emit(buf, "%u\n", ksm_max_page_sharing);
2c653d0e
AA
3058}
3059
3060static ssize_t max_page_sharing_store(struct kobject *kobj,
3061 struct kobj_attribute *attr,
3062 const char *buf, size_t count)
3063{
3064 int err;
3065 int knob;
3066
3067 err = kstrtoint(buf, 10, &knob);
3068 if (err)
3069 return err;
3070 /*
3071 * When a KSM page is created it is shared by 2 mappings. This
3072 * being a signed comparison, it implicitly verifies it's not
3073 * negative.
3074 */
3075 if (knob < 2)
3076 return -EINVAL;
3077
3078 if (READ_ONCE(ksm_max_page_sharing) == knob)
3079 return count;
3080
3081 mutex_lock(&ksm_thread_mutex);
3082 wait_while_offlining();
3083 if (ksm_max_page_sharing != knob) {
3084 if (ksm_pages_shared || remove_all_stable_nodes())
3085 err = -EBUSY;
3086 else
3087 ksm_max_page_sharing = knob;
3088 }
3089 mutex_unlock(&ksm_thread_mutex);
3090
3091 return err ? err : count;
3092}
3093KSM_ATTR(max_page_sharing);
3094
b4028260
HD
3095static ssize_t pages_shared_show(struct kobject *kobj,
3096 struct kobj_attribute *attr, char *buf)
3097{
ae7a927d 3098 return sysfs_emit(buf, "%lu\n", ksm_pages_shared);
b4028260
HD
3099}
3100KSM_ATTR_RO(pages_shared);
3101
3102static ssize_t pages_sharing_show(struct kobject *kobj,
3103 struct kobj_attribute *attr, char *buf)
3104{
ae7a927d 3105 return sysfs_emit(buf, "%lu\n", ksm_pages_sharing);
b4028260
HD
3106}
3107KSM_ATTR_RO(pages_sharing);
3108
473b0ce4
HD
3109static ssize_t pages_unshared_show(struct kobject *kobj,
3110 struct kobj_attribute *attr, char *buf)
3111{
ae7a927d 3112 return sysfs_emit(buf, "%lu\n", ksm_pages_unshared);
473b0ce4
HD
3113}
3114KSM_ATTR_RO(pages_unshared);
3115
3116static ssize_t pages_volatile_show(struct kobject *kobj,
3117 struct kobj_attribute *attr, char *buf)
3118{
3119 long ksm_pages_volatile;
3120
3121 ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
3122 - ksm_pages_sharing - ksm_pages_unshared;
3123 /*
3124 * It was not worth any locking to calculate that statistic,
3125 * but it might therefore sometimes be negative: conceal that.
3126 */
3127 if (ksm_pages_volatile < 0)
3128 ksm_pages_volatile = 0;
ae7a927d 3129 return sysfs_emit(buf, "%ld\n", ksm_pages_volatile);
473b0ce4
HD
3130}
3131KSM_ATTR_RO(pages_volatile);
3132
2c653d0e
AA
3133static ssize_t stable_node_dups_show(struct kobject *kobj,
3134 struct kobj_attribute *attr, char *buf)
3135{
ae7a927d 3136 return sysfs_emit(buf, "%lu\n", ksm_stable_node_dups);
2c653d0e
AA
3137}
3138KSM_ATTR_RO(stable_node_dups);
3139
3140static ssize_t stable_node_chains_show(struct kobject *kobj,
3141 struct kobj_attribute *attr, char *buf)
3142{
ae7a927d 3143 return sysfs_emit(buf, "%lu\n", ksm_stable_node_chains);
2c653d0e
AA
3144}
3145KSM_ATTR_RO(stable_node_chains);
3146
3147static ssize_t
3148stable_node_chains_prune_millisecs_show(struct kobject *kobj,
3149 struct kobj_attribute *attr,
3150 char *buf)
3151{
ae7a927d 3152 return sysfs_emit(buf, "%u\n", ksm_stable_node_chains_prune_millisecs);
2c653d0e
AA
3153}
3154
3155static ssize_t
3156stable_node_chains_prune_millisecs_store(struct kobject *kobj,
3157 struct kobj_attribute *attr,
3158 const char *buf, size_t count)
3159{
584ff0df 3160 unsigned int msecs;
2c653d0e
AA
3161 int err;
3162
584ff0df
ZB
3163 err = kstrtouint(buf, 10, &msecs);
3164 if (err)
2c653d0e
AA
3165 return -EINVAL;
3166
3167 ksm_stable_node_chains_prune_millisecs = msecs;
3168
3169 return count;
3170}
3171KSM_ATTR(stable_node_chains_prune_millisecs);
3172
473b0ce4
HD
3173static ssize_t full_scans_show(struct kobject *kobj,
3174 struct kobj_attribute *attr, char *buf)
3175{
ae7a927d 3176 return sysfs_emit(buf, "%lu\n", ksm_scan.seqnr);
473b0ce4
HD
3177}
3178KSM_ATTR_RO(full_scans);
3179
31dbd01f
IE
3180static struct attribute *ksm_attrs[] = {
3181 &sleep_millisecs_attr.attr,
3182 &pages_to_scan_attr.attr,
3183 &run_attr.attr,
b4028260
HD
3184 &pages_shared_attr.attr,
3185 &pages_sharing_attr.attr,
473b0ce4
HD
3186 &pages_unshared_attr.attr,
3187 &pages_volatile_attr.attr,
3188 &full_scans_attr.attr,
90bd6fd3
PH
3189#ifdef CONFIG_NUMA
3190 &merge_across_nodes_attr.attr,
3191#endif
2c653d0e
AA
3192 &max_page_sharing_attr.attr,
3193 &stable_node_chains_attr.attr,
3194 &stable_node_dups_attr.attr,
3195 &stable_node_chains_prune_millisecs_attr.attr,
e86c59b1 3196 &use_zero_pages_attr.attr,
31dbd01f
IE
3197 NULL,
3198};
3199
f907c26a 3200static const struct attribute_group ksm_attr_group = {
31dbd01f
IE
3201 .attrs = ksm_attrs,
3202 .name = "ksm",
3203};
2ffd8679 3204#endif /* CONFIG_SYSFS */
31dbd01f
IE
3205
3206static int __init ksm_init(void)
3207{
3208 struct task_struct *ksm_thread;
3209 int err;
3210
e86c59b1
CI
3211 /* The correct value depends on page size and endianness */
3212 zero_checksum = calc_checksum(ZERO_PAGE(0));
3213 /* Default to false for backwards compatibility */
3214 ksm_use_zero_pages = false;
3215
31dbd01f
IE
3216 err = ksm_slab_init();
3217 if (err)
3218 goto out;
3219
31dbd01f
IE
3220 ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
3221 if (IS_ERR(ksm_thread)) {
25acde31 3222 pr_err("ksm: creating kthread failed\n");
31dbd01f 3223 err = PTR_ERR(ksm_thread);
d9f8984c 3224 goto out_free;
31dbd01f
IE
3225 }
3226
2ffd8679 3227#ifdef CONFIG_SYSFS
31dbd01f
IE
3228 err = sysfs_create_group(mm_kobj, &ksm_attr_group);
3229 if (err) {
25acde31 3230 pr_err("ksm: register sysfs failed\n");
2ffd8679 3231 kthread_stop(ksm_thread);
d9f8984c 3232 goto out_free;
31dbd01f 3233 }
c73602ad
HD
3234#else
3235 ksm_run = KSM_RUN_MERGE; /* no way for user to start it */
3236
2ffd8679 3237#endif /* CONFIG_SYSFS */
31dbd01f 3238
62b61f61 3239#ifdef CONFIG_MEMORY_HOTREMOVE
ef4d43a8 3240 /* There is no significance to this priority 100 */
1eeaa4fd 3241 hotplug_memory_notifier(ksm_memory_callback, KSM_CALLBACK_PRI);
62b61f61 3242#endif
31dbd01f
IE
3243 return 0;
3244
d9f8984c 3245out_free:
31dbd01f
IE
3246 ksm_slab_free();
3247out:
3248 return err;
f8af4da3 3249}
a64fb3cd 3250subsys_initcall(ksm_init);