mm: kmemleak: make the tool tolerant to struct scan_area allocation failures
[linux-2.6-block.git] / mm / kmemleak.c
CommitLineData
45051539 1// SPDX-License-Identifier: GPL-2.0-only
3c7b4e6b
CM
2/*
3 * mm/kmemleak.c
4 *
5 * Copyright (C) 2008 ARM Limited
6 * Written by Catalin Marinas <catalin.marinas@arm.com>
7 *
3c7b4e6b 8 * For more information on the algorithm and kmemleak usage, please see
22901c6c 9 * Documentation/dev-tools/kmemleak.rst.
3c7b4e6b
CM
10 *
11 * Notes on locking
12 * ----------------
13 *
14 * The following locks and mutexes are used by kmemleak:
15 *
16 * - kmemleak_lock (rwlock): protects the object_list modifications and
17 * accesses to the object_tree_root. The object_list is the main list
18 * holding the metadata (struct kmemleak_object) for the allocated memory
85d3a316 19 * blocks. The object_tree_root is a red black tree used to look-up
3c7b4e6b
CM
20 * metadata based on a pointer to the corresponding memory block. The
21 * kmemleak_object structures are added to the object_list and
22 * object_tree_root in the create_object() function called from the
23 * kmemleak_alloc() callback and removed in delete_object() called from the
24 * kmemleak_free() callback
25 * - kmemleak_object.lock (spinlock): protects a kmemleak_object. Accesses to
26 * the metadata (e.g. count) are protected by this lock. Note that some
27 * members of this structure may be protected by other means (atomic or
28 * kmemleak_lock). This lock is also held when scanning the corresponding
29 * memory block to avoid the kernel freeing it via the kmemleak_free()
30 * callback. This is less heavyweight than holding a global lock like
31 * kmemleak_lock during scanning
32 * - scan_mutex (mutex): ensures that only one thread may scan the memory for
33 * unreferenced objects at a time. The gray_list contains the objects which
34 * are already referenced or marked as false positives and need to be
35 * scanned. This list is only modified during a scanning episode when the
36 * scan_mutex is held. At the end of a scan, the gray_list is always empty.
37 * Note that the kmemleak_object.use_count is incremented when an object is
4698c1f2
CM
38 * added to the gray_list and therefore cannot be freed. This mutex also
39 * prevents multiple users of the "kmemleak" debugfs file together with
40 * modifications to the memory scanning parameters including the scan_thread
41 * pointer
3c7b4e6b 42 *
93ada579 43 * Locks and mutexes are acquired/nested in the following order:
9d5a4c73 44 *
93ada579
CM
45 * scan_mutex [-> object->lock] -> kmemleak_lock -> other_object->lock (SINGLE_DEPTH_NESTING)
46 *
47 * No kmemleak_lock and object->lock nesting is allowed outside scan_mutex
48 * regions.
9d5a4c73 49 *
3c7b4e6b
CM
50 * The kmemleak_object structures have a use_count incremented or decremented
51 * using the get_object()/put_object() functions. When the use_count becomes
52 * 0, this count can no longer be incremented and put_object() schedules the
53 * kmemleak_object freeing via an RCU callback. All calls to the get_object()
54 * function must be protected by rcu_read_lock() to avoid accessing a freed
55 * structure.
56 */
57
ae281064
JP
58#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
59
3c7b4e6b
CM
60#include <linux/init.h>
61#include <linux/kernel.h>
62#include <linux/list.h>
3f07c014 63#include <linux/sched/signal.h>
29930025 64#include <linux/sched/task.h>
68db0cf1 65#include <linux/sched/task_stack.h>
3c7b4e6b
CM
66#include <linux/jiffies.h>
67#include <linux/delay.h>
b95f1b31 68#include <linux/export.h>
3c7b4e6b 69#include <linux/kthread.h>
85d3a316 70#include <linux/rbtree.h>
3c7b4e6b
CM
71#include <linux/fs.h>
72#include <linux/debugfs.h>
73#include <linux/seq_file.h>
74#include <linux/cpumask.h>
75#include <linux/spinlock.h>
154221c3 76#include <linux/module.h>
3c7b4e6b
CM
77#include <linux/mutex.h>
78#include <linux/rcupdate.h>
79#include <linux/stacktrace.h>
80#include <linux/cache.h>
81#include <linux/percpu.h>
57c8a661 82#include <linux/memblock.h>
9099daed 83#include <linux/pfn.h>
3c7b4e6b
CM
84#include <linux/mmzone.h>
85#include <linux/slab.h>
86#include <linux/thread_info.h>
87#include <linux/err.h>
88#include <linux/uaccess.h>
89#include <linux/string.h>
90#include <linux/nodemask.h>
91#include <linux/mm.h>
179a8100 92#include <linux/workqueue.h>
04609ccc 93#include <linux/crc32.h>
3c7b4e6b
CM
94
95#include <asm/sections.h>
96#include <asm/processor.h>
60063497 97#include <linux/atomic.h>
3c7b4e6b 98
e79ed2f1 99#include <linux/kasan.h>
3c7b4e6b 100#include <linux/kmemleak.h>
029aeff5 101#include <linux/memory_hotplug.h>
3c7b4e6b
CM
102
103/*
104 * Kmemleak configuration and common defines.
105 */
106#define MAX_TRACE 16 /* stack trace length */
3c7b4e6b 107#define MSECS_MIN_AGE 5000 /* minimum object age for reporting */
3c7b4e6b
CM
108#define SECS_FIRST_SCAN 60 /* delay before the first scan */
109#define SECS_SCAN_WAIT 600 /* subsequent auto scanning delay */
af98603d 110#define MAX_SCAN_SIZE 4096 /* maximum size of a scanned block */
3c7b4e6b
CM
111
112#define BYTES_PER_POINTER sizeof(void *)
113
216c04b0 114/* GFP bitmask for kmemleak internal allocations */
20b5c303 115#define gfp_kmemleak_mask(gfp) (((gfp) & (GFP_KERNEL | GFP_ATOMIC)) | \
6ae4bd1f 116 __GFP_NORETRY | __GFP_NOMEMALLOC | \
df9576de 117 __GFP_NOWARN)
216c04b0 118
3c7b4e6b
CM
119/* scanning area inside a memory block */
120struct kmemleak_scan_area {
121 struct hlist_node node;
c017b4be
CM
122 unsigned long start;
123 size_t size;
3c7b4e6b
CM
124};
125
a1084c87
LR
126#define KMEMLEAK_GREY 0
127#define KMEMLEAK_BLACK -1
128
3c7b4e6b
CM
129/*
130 * Structure holding the metadata for each allocated memory block.
131 * Modifications to such objects should be made while holding the
132 * object->lock. Insertions or deletions from object_list, gray_list or
85d3a316 133 * rb_node are already protected by the corresponding locks or mutex (see
3c7b4e6b
CM
134 * the notes on locking above). These objects are reference-counted
135 * (use_count) and freed using the RCU mechanism.
136 */
137struct kmemleak_object {
138 spinlock_t lock;
f66abf09 139 unsigned int flags; /* object status flags */
3c7b4e6b
CM
140 struct list_head object_list;
141 struct list_head gray_list;
85d3a316 142 struct rb_node rb_node;
3c7b4e6b
CM
143 struct rcu_head rcu; /* object_list lockless traversal */
144 /* object usage count; object freed when use_count == 0 */
145 atomic_t use_count;
146 unsigned long pointer;
147 size_t size;
94f4a161
CM
148 /* pass surplus references to this pointer */
149 unsigned long excess_ref;
3c7b4e6b
CM
150 /* minimum number of a pointers found before it is considered leak */
151 int min_count;
152 /* the total number of pointers found pointing to this object */
153 int count;
04609ccc
CM
154 /* checksum for detecting modified objects */
155 u32 checksum;
3c7b4e6b
CM
156 /* memory ranges to be scanned inside an object (empty for all) */
157 struct hlist_head area_list;
158 unsigned long trace[MAX_TRACE];
159 unsigned int trace_len;
160 unsigned long jiffies; /* creation timestamp */
161 pid_t pid; /* pid of the current task */
162 char comm[TASK_COMM_LEN]; /* executable name */
163};
164
165/* flag representing the memory block allocation status */
166#define OBJECT_ALLOCATED (1 << 0)
167/* flag set after the first reporting of an unreference object */
168#define OBJECT_REPORTED (1 << 1)
169/* flag set to not scan the object */
170#define OBJECT_NO_SCAN (1 << 2)
dba82d94
CM
171/* flag set to fully scan the object when scan_area allocation failed */
172#define OBJECT_FULL_SCAN (1 << 3)
3c7b4e6b 173
154221c3 174#define HEX_PREFIX " "
0494e082
SS
175/* number of bytes to print per line; must be 16 or 32 */
176#define HEX_ROW_SIZE 16
177/* number of bytes to print at a time (1, 2, 4, 8) */
178#define HEX_GROUP_SIZE 1
179/* include ASCII after the hex output */
180#define HEX_ASCII 1
181/* max number of lines to be printed */
182#define HEX_MAX_LINES 2
183
3c7b4e6b
CM
184/* the list of all allocated objects */
185static LIST_HEAD(object_list);
186/* the list of gray-colored objects (see color_gray comment below) */
187static LIST_HEAD(gray_list);
85d3a316
ML
188/* search tree for object boundaries */
189static struct rb_root object_tree_root = RB_ROOT;
190/* rw_lock protecting the access to object_list and object_tree_root */
3c7b4e6b
CM
191static DEFINE_RWLOCK(kmemleak_lock);
192
193/* allocation caches for kmemleak internal data */
194static struct kmem_cache *object_cache;
195static struct kmem_cache *scan_area_cache;
196
197/* set if tracing memory operations is enabled */
8910ae89 198static int kmemleak_enabled;
c5f3b1a5
CM
199/* same as above but only for the kmemleak_free() callback */
200static int kmemleak_free_enabled;
3c7b4e6b 201/* set in the late_initcall if there were no errors */
8910ae89 202static int kmemleak_initialized;
3c7b4e6b 203/* enables or disables early logging of the memory operations */
8910ae89 204static int kmemleak_early_log = 1;
5f79020c 205/* set if a kmemleak warning was issued */
8910ae89 206static int kmemleak_warning;
5f79020c 207/* set if a fatal kmemleak error has occurred */
8910ae89 208static int kmemleak_error;
3c7b4e6b
CM
209
210/* minimum and maximum address that may be valid pointers */
211static unsigned long min_addr = ULONG_MAX;
212static unsigned long max_addr;
213
3c7b4e6b 214static struct task_struct *scan_thread;
acf4968e 215/* used to avoid reporting of recently allocated objects */
3c7b4e6b 216static unsigned long jiffies_min_age;
acf4968e 217static unsigned long jiffies_last_scan;
3c7b4e6b
CM
218/* delay between automatic memory scannings */
219static signed long jiffies_scan_wait;
220/* enables or disables the task stacks scanning */
e0a2a160 221static int kmemleak_stack_scan = 1;
4698c1f2 222/* protects the memory scanning, parameters and debug/kmemleak file access */
3c7b4e6b 223static DEFINE_MUTEX(scan_mutex);
ab0155a2
JB
224/* setting kmemleak=on, will set this var, skipping the disable */
225static int kmemleak_skip_disable;
dc9b3f42
LZ
226/* If there are leaks that can be reported */
227static bool kmemleak_found_leaks;
3c7b4e6b 228
154221c3
VW
229static bool kmemleak_verbose;
230module_param_named(verbose, kmemleak_verbose, bool, 0600);
231
3c7b4e6b 232/*
2030117d 233 * Early object allocation/freeing logging. Kmemleak is initialized after the
3c7b4e6b 234 * kernel allocator. However, both the kernel allocator and kmemleak may
2030117d 235 * allocate memory blocks which need to be tracked. Kmemleak defines an
3c7b4e6b
CM
236 * arbitrary buffer to hold the allocation/freeing information before it is
237 * fully initialized.
238 */
239
240/* kmemleak operation type for early logging */
241enum {
242 KMEMLEAK_ALLOC,
f528f0b8 243 KMEMLEAK_ALLOC_PERCPU,
3c7b4e6b 244 KMEMLEAK_FREE,
53238a60 245 KMEMLEAK_FREE_PART,
f528f0b8 246 KMEMLEAK_FREE_PERCPU,
3c7b4e6b
CM
247 KMEMLEAK_NOT_LEAK,
248 KMEMLEAK_IGNORE,
249 KMEMLEAK_SCAN_AREA,
94f4a161
CM
250 KMEMLEAK_NO_SCAN,
251 KMEMLEAK_SET_EXCESS_REF
3c7b4e6b
CM
252};
253
254/*
255 * Structure holding the information passed to kmemleak callbacks during the
256 * early logging.
257 */
258struct early_log {
259 int op_type; /* kmemleak operation type */
f66abf09 260 int min_count; /* minimum reference count */
3c7b4e6b 261 const void *ptr; /* allocated/freed memory block */
94f4a161
CM
262 union {
263 size_t size; /* memory block size */
264 unsigned long excess_ref; /* surplus reference passing */
265 };
fd678967
CM
266 unsigned long trace[MAX_TRACE]; /* stack trace */
267 unsigned int trace_len; /* stack trace length */
3c7b4e6b
CM
268};
269
270/* early logging buffer and current position */
a6186d89
CM
271static struct early_log
272 early_log[CONFIG_DEBUG_KMEMLEAK_EARLY_LOG_SIZE] __initdata;
273static int crt_early_log __initdata;
3c7b4e6b
CM
274
275static void kmemleak_disable(void);
276
277/*
278 * Print a warning and dump the stack trace.
279 */
5f79020c 280#define kmemleak_warn(x...) do { \
598d8091 281 pr_warn(x); \
5f79020c 282 dump_stack(); \
8910ae89 283 kmemleak_warning = 1; \
3c7b4e6b
CM
284} while (0)
285
286/*
25985edc 287 * Macro invoked when a serious kmemleak condition occurred and cannot be
2030117d 288 * recovered from. Kmemleak will be disabled and further allocation/freeing
3c7b4e6b
CM
289 * tracing no longer available.
290 */
000814f4 291#define kmemleak_stop(x...) do { \
3c7b4e6b
CM
292 kmemleak_warn(x); \
293 kmemleak_disable(); \
294} while (0)
295
154221c3
VW
296#define warn_or_seq_printf(seq, fmt, ...) do { \
297 if (seq) \
298 seq_printf(seq, fmt, ##__VA_ARGS__); \
299 else \
300 pr_warn(fmt, ##__VA_ARGS__); \
301} while (0)
302
303static void warn_or_seq_hex_dump(struct seq_file *seq, int prefix_type,
304 int rowsize, int groupsize, const void *buf,
305 size_t len, bool ascii)
306{
307 if (seq)
308 seq_hex_dump(seq, HEX_PREFIX, prefix_type, rowsize, groupsize,
309 buf, len, ascii);
310 else
311 print_hex_dump(KERN_WARNING, pr_fmt(HEX_PREFIX), prefix_type,
312 rowsize, groupsize, buf, len, ascii);
313}
314
0494e082
SS
315/*
316 * Printing of the objects hex dump to the seq file. The number of lines to be
317 * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The
318 * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called
319 * with the object->lock held.
320 */
321static void hex_dump_object(struct seq_file *seq,
322 struct kmemleak_object *object)
323{
324 const u8 *ptr = (const u8 *)object->pointer;
6fc37c49 325 size_t len;
0494e082
SS
326
327 /* limit the number of lines to HEX_MAX_LINES */
6fc37c49 328 len = min_t(size_t, object->size, HEX_MAX_LINES * HEX_ROW_SIZE);
0494e082 329
154221c3 330 warn_or_seq_printf(seq, " hex dump (first %zu bytes):\n", len);
5c335fe0 331 kasan_disable_current();
154221c3
VW
332 warn_or_seq_hex_dump(seq, DUMP_PREFIX_NONE, HEX_ROW_SIZE,
333 HEX_GROUP_SIZE, ptr, len, HEX_ASCII);
5c335fe0 334 kasan_enable_current();
0494e082
SS
335}
336
3c7b4e6b
CM
337/*
338 * Object colors, encoded with count and min_count:
339 * - white - orphan object, not enough references to it (count < min_count)
340 * - gray - not orphan, not marked as false positive (min_count == 0) or
341 * sufficient references to it (count >= min_count)
342 * - black - ignore, it doesn't contain references (e.g. text section)
343 * (min_count == -1). No function defined for this color.
344 * Newly created objects don't have any color assigned (object->count == -1)
345 * before the next memory scan when they become white.
346 */
4a558dd6 347static bool color_white(const struct kmemleak_object *object)
3c7b4e6b 348{
a1084c87
LR
349 return object->count != KMEMLEAK_BLACK &&
350 object->count < object->min_count;
3c7b4e6b
CM
351}
352
4a558dd6 353static bool color_gray(const struct kmemleak_object *object)
3c7b4e6b 354{
a1084c87
LR
355 return object->min_count != KMEMLEAK_BLACK &&
356 object->count >= object->min_count;
3c7b4e6b
CM
357}
358
3c7b4e6b
CM
359/*
360 * Objects are considered unreferenced only if their color is white, they have
361 * not be deleted and have a minimum age to avoid false positives caused by
362 * pointers temporarily stored in CPU registers.
363 */
4a558dd6 364static bool unreferenced_object(struct kmemleak_object *object)
3c7b4e6b 365{
04609ccc 366 return (color_white(object) && object->flags & OBJECT_ALLOCATED) &&
acf4968e
CM
367 time_before_eq(object->jiffies + jiffies_min_age,
368 jiffies_last_scan);
3c7b4e6b
CM
369}
370
371/*
bab4a34a
CM
372 * Printing of the unreferenced objects information to the seq file. The
373 * print_unreferenced function must be called with the object->lock held.
3c7b4e6b 374 */
3c7b4e6b
CM
375static void print_unreferenced(struct seq_file *seq,
376 struct kmemleak_object *object)
377{
378 int i;
fefdd336 379 unsigned int msecs_age = jiffies_to_msecs(jiffies - object->jiffies);
3c7b4e6b 380
154221c3 381 warn_or_seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n",
bab4a34a 382 object->pointer, object->size);
154221c3 383 warn_or_seq_printf(seq, " comm \"%s\", pid %d, jiffies %lu (age %d.%03ds)\n",
fefdd336
CM
384 object->comm, object->pid, object->jiffies,
385 msecs_age / 1000, msecs_age % 1000);
0494e082 386 hex_dump_object(seq, object);
154221c3 387 warn_or_seq_printf(seq, " backtrace:\n");
3c7b4e6b
CM
388
389 for (i = 0; i < object->trace_len; i++) {
390 void *ptr = (void *)object->trace[i];
154221c3 391 warn_or_seq_printf(seq, " [<%p>] %pS\n", ptr, ptr);
3c7b4e6b
CM
392 }
393}
394
395/*
396 * Print the kmemleak_object information. This function is used mainly for
397 * debugging special cases when kmemleak operations. It must be called with
398 * the object->lock held.
399 */
400static void dump_object_info(struct kmemleak_object *object)
401{
ae281064 402 pr_notice("Object 0x%08lx (size %zu):\n",
85d3a316 403 object->pointer, object->size);
3c7b4e6b
CM
404 pr_notice(" comm \"%s\", pid %d, jiffies %lu\n",
405 object->comm, object->pid, object->jiffies);
406 pr_notice(" min_count = %d\n", object->min_count);
407 pr_notice(" count = %d\n", object->count);
f66abf09 408 pr_notice(" flags = 0x%x\n", object->flags);
aae0ad7a 409 pr_notice(" checksum = %u\n", object->checksum);
3c7b4e6b 410 pr_notice(" backtrace:\n");
07984aad 411 stack_trace_print(object->trace, object->trace_len, 4);
3c7b4e6b
CM
412}
413
414/*
85d3a316 415 * Look-up a memory block metadata (kmemleak_object) in the object search
3c7b4e6b
CM
416 * tree based on a pointer value. If alias is 0, only values pointing to the
417 * beginning of the memory block are allowed. The kmemleak_lock must be held
418 * when calling this function.
419 */
420static struct kmemleak_object *lookup_object(unsigned long ptr, int alias)
421{
85d3a316
ML
422 struct rb_node *rb = object_tree_root.rb_node;
423
424 while (rb) {
425 struct kmemleak_object *object =
426 rb_entry(rb, struct kmemleak_object, rb_node);
427 if (ptr < object->pointer)
428 rb = object->rb_node.rb_left;
429 else if (object->pointer + object->size <= ptr)
430 rb = object->rb_node.rb_right;
431 else if (object->pointer == ptr || alias)
432 return object;
433 else {
5f79020c
CM
434 kmemleak_warn("Found object by alias at 0x%08lx\n",
435 ptr);
a7686a45 436 dump_object_info(object);
85d3a316 437 break;
3c7b4e6b 438 }
85d3a316
ML
439 }
440 return NULL;
3c7b4e6b
CM
441}
442
443/*
444 * Increment the object use_count. Return 1 if successful or 0 otherwise. Note
445 * that once an object's use_count reached 0, the RCU freeing was already
446 * registered and the object should no longer be used. This function must be
447 * called under the protection of rcu_read_lock().
448 */
449static int get_object(struct kmemleak_object *object)
450{
451 return atomic_inc_not_zero(&object->use_count);
452}
453
454/*
455 * RCU callback to free a kmemleak_object.
456 */
457static void free_object_rcu(struct rcu_head *rcu)
458{
b67bfe0d 459 struct hlist_node *tmp;
3c7b4e6b
CM
460 struct kmemleak_scan_area *area;
461 struct kmemleak_object *object =
462 container_of(rcu, struct kmemleak_object, rcu);
463
464 /*
465 * Once use_count is 0 (guaranteed by put_object), there is no other
466 * code accessing this object, hence no need for locking.
467 */
b67bfe0d
SL
468 hlist_for_each_entry_safe(area, tmp, &object->area_list, node) {
469 hlist_del(&area->node);
3c7b4e6b
CM
470 kmem_cache_free(scan_area_cache, area);
471 }
472 kmem_cache_free(object_cache, object);
473}
474
475/*
476 * Decrement the object use_count. Once the count is 0, free the object using
477 * an RCU callback. Since put_object() may be called via the kmemleak_free() ->
478 * delete_object() path, the delayed RCU freeing ensures that there is no
479 * recursive call to the kernel allocator. Lock-less RCU object_list traversal
480 * is also possible.
481 */
482static void put_object(struct kmemleak_object *object)
483{
484 if (!atomic_dec_and_test(&object->use_count))
485 return;
486
487 /* should only get here after delete_object was called */
488 WARN_ON(object->flags & OBJECT_ALLOCATED);
489
490 call_rcu(&object->rcu, free_object_rcu);
491}
492
493/*
85d3a316 494 * Look up an object in the object search tree and increase its use_count.
3c7b4e6b
CM
495 */
496static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias)
497{
498 unsigned long flags;
9fbed254 499 struct kmemleak_object *object;
3c7b4e6b
CM
500
501 rcu_read_lock();
502 read_lock_irqsave(&kmemleak_lock, flags);
93ada579 503 object = lookup_object(ptr, alias);
3c7b4e6b
CM
504 read_unlock_irqrestore(&kmemleak_lock, flags);
505
506 /* check whether the object is still available */
507 if (object && !get_object(object))
508 object = NULL;
509 rcu_read_unlock();
510
511 return object;
512}
513
e781a9ab
CM
514/*
515 * Look up an object in the object search tree and remove it from both
516 * object_tree_root and object_list. The returned object's use_count should be
517 * at least 1, as initially set by create_object().
518 */
519static struct kmemleak_object *find_and_remove_object(unsigned long ptr, int alias)
520{
521 unsigned long flags;
522 struct kmemleak_object *object;
523
524 write_lock_irqsave(&kmemleak_lock, flags);
525 object = lookup_object(ptr, alias);
526 if (object) {
527 rb_erase(&object->rb_node, &object_tree_root);
528 list_del_rcu(&object->object_list);
529 }
530 write_unlock_irqrestore(&kmemleak_lock, flags);
531
532 return object;
533}
534
fd678967
CM
535/*
536 * Save stack trace to the given array of MAX_TRACE size.
537 */
538static int __save_stack_trace(unsigned long *trace)
539{
07984aad 540 return stack_trace_save(trace, MAX_TRACE, 2);
fd678967
CM
541}
542
3c7b4e6b
CM
543/*
544 * Create the metadata (struct kmemleak_object) corresponding to an allocated
545 * memory block and add it to the object_list and object_tree_root.
546 */
fd678967
CM
547static struct kmemleak_object *create_object(unsigned long ptr, size_t size,
548 int min_count, gfp_t gfp)
3c7b4e6b
CM
549{
550 unsigned long flags;
85d3a316
ML
551 struct kmemleak_object *object, *parent;
552 struct rb_node **link, *rb_parent;
a2f77575 553 unsigned long untagged_ptr;
3c7b4e6b 554
6ae4bd1f 555 object = kmem_cache_alloc(object_cache, gfp_kmemleak_mask(gfp));
3c7b4e6b 556 if (!object) {
598d8091 557 pr_warn("Cannot allocate a kmemleak_object structure\n");
6ae4bd1f 558 kmemleak_disable();
fd678967 559 return NULL;
3c7b4e6b
CM
560 }
561
562 INIT_LIST_HEAD(&object->object_list);
563 INIT_LIST_HEAD(&object->gray_list);
564 INIT_HLIST_HEAD(&object->area_list);
565 spin_lock_init(&object->lock);
566 atomic_set(&object->use_count, 1);
04609ccc 567 object->flags = OBJECT_ALLOCATED;
3c7b4e6b
CM
568 object->pointer = ptr;
569 object->size = size;
94f4a161 570 object->excess_ref = 0;
3c7b4e6b 571 object->min_count = min_count;
04609ccc 572 object->count = 0; /* white color initially */
3c7b4e6b 573 object->jiffies = jiffies;
04609ccc 574 object->checksum = 0;
3c7b4e6b
CM
575
576 /* task information */
577 if (in_irq()) {
578 object->pid = 0;
579 strncpy(object->comm, "hardirq", sizeof(object->comm));
6ef90569 580 } else if (in_serving_softirq()) {
3c7b4e6b
CM
581 object->pid = 0;
582 strncpy(object->comm, "softirq", sizeof(object->comm));
583 } else {
584 object->pid = current->pid;
585 /*
586 * There is a small chance of a race with set_task_comm(),
587 * however using get_task_comm() here may cause locking
588 * dependency issues with current->alloc_lock. In the worst
589 * case, the command line is not correct.
590 */
591 strncpy(object->comm, current->comm, sizeof(object->comm));
592 }
593
594 /* kernel backtrace */
fd678967 595 object->trace_len = __save_stack_trace(object->trace);
3c7b4e6b 596
3c7b4e6b 597 write_lock_irqsave(&kmemleak_lock, flags);
0580a181 598
a2f77575
AK
599 untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr);
600 min_addr = min(min_addr, untagged_ptr);
601 max_addr = max(max_addr, untagged_ptr + size);
85d3a316
ML
602 link = &object_tree_root.rb_node;
603 rb_parent = NULL;
604 while (*link) {
605 rb_parent = *link;
606 parent = rb_entry(rb_parent, struct kmemleak_object, rb_node);
607 if (ptr + size <= parent->pointer)
608 link = &parent->rb_node.rb_left;
609 else if (parent->pointer + parent->size <= ptr)
610 link = &parent->rb_node.rb_right;
611 else {
756a025f 612 kmemleak_stop("Cannot insert 0x%lx into the object search tree (overlaps existing)\n",
85d3a316 613 ptr);
9d5a4c73
CM
614 /*
615 * No need for parent->lock here since "parent" cannot
616 * be freed while the kmemleak_lock is held.
617 */
618 dump_object_info(parent);
85d3a316 619 kmem_cache_free(object_cache, object);
9d5a4c73 620 object = NULL;
85d3a316
ML
621 goto out;
622 }
3c7b4e6b 623 }
85d3a316
ML
624 rb_link_node(&object->rb_node, rb_parent, link);
625 rb_insert_color(&object->rb_node, &object_tree_root);
626
3c7b4e6b
CM
627 list_add_tail_rcu(&object->object_list, &object_list);
628out:
629 write_unlock_irqrestore(&kmemleak_lock, flags);
fd678967 630 return object;
3c7b4e6b
CM
631}
632
633/*
e781a9ab 634 * Mark the object as not allocated and schedule RCU freeing via put_object().
3c7b4e6b 635 */
53238a60 636static void __delete_object(struct kmemleak_object *object)
3c7b4e6b
CM
637{
638 unsigned long flags;
3c7b4e6b 639
3c7b4e6b 640 WARN_ON(!(object->flags & OBJECT_ALLOCATED));
e781a9ab 641 WARN_ON(atomic_read(&object->use_count) < 1);
3c7b4e6b
CM
642
643 /*
644 * Locking here also ensures that the corresponding memory block
645 * cannot be freed when it is being scanned.
646 */
647 spin_lock_irqsave(&object->lock, flags);
3c7b4e6b
CM
648 object->flags &= ~OBJECT_ALLOCATED;
649 spin_unlock_irqrestore(&object->lock, flags);
650 put_object(object);
651}
652
53238a60
CM
653/*
654 * Look up the metadata (struct kmemleak_object) corresponding to ptr and
655 * delete it.
656 */
657static void delete_object_full(unsigned long ptr)
658{
659 struct kmemleak_object *object;
660
e781a9ab 661 object = find_and_remove_object(ptr, 0);
53238a60
CM
662 if (!object) {
663#ifdef DEBUG
664 kmemleak_warn("Freeing unknown object at 0x%08lx\n",
665 ptr);
666#endif
667 return;
668 }
669 __delete_object(object);
53238a60
CM
670}
671
672/*
673 * Look up the metadata (struct kmemleak_object) corresponding to ptr and
674 * delete it. If the memory block is partially freed, the function may create
675 * additional metadata for the remaining parts of the block.
676 */
677static void delete_object_part(unsigned long ptr, size_t size)
678{
679 struct kmemleak_object *object;
680 unsigned long start, end;
681
e781a9ab 682 object = find_and_remove_object(ptr, 1);
53238a60
CM
683 if (!object) {
684#ifdef DEBUG
756a025f
JP
685 kmemleak_warn("Partially freeing unknown object at 0x%08lx (size %zu)\n",
686 ptr, size);
53238a60
CM
687#endif
688 return;
689 }
53238a60
CM
690
691 /*
692 * Create one or two objects that may result from the memory block
693 * split. Note that partial freeing is only done by free_bootmem() and
694 * this happens before kmemleak_init() is called. The path below is
695 * only executed during early log recording in kmemleak_init(), so
696 * GFP_KERNEL is enough.
697 */
698 start = object->pointer;
699 end = object->pointer + object->size;
700 if (ptr > start)
701 create_object(start, ptr - start, object->min_count,
702 GFP_KERNEL);
703 if (ptr + size < end)
704 create_object(ptr + size, end - ptr - size, object->min_count,
705 GFP_KERNEL);
706
e781a9ab 707 __delete_object(object);
53238a60 708}
a1084c87
LR
709
710static void __paint_it(struct kmemleak_object *object, int color)
711{
712 object->min_count = color;
713 if (color == KMEMLEAK_BLACK)
714 object->flags |= OBJECT_NO_SCAN;
715}
716
717static void paint_it(struct kmemleak_object *object, int color)
3c7b4e6b
CM
718{
719 unsigned long flags;
a1084c87
LR
720
721 spin_lock_irqsave(&object->lock, flags);
722 __paint_it(object, color);
723 spin_unlock_irqrestore(&object->lock, flags);
724}
725
726static void paint_ptr(unsigned long ptr, int color)
727{
3c7b4e6b
CM
728 struct kmemleak_object *object;
729
730 object = find_and_get_object(ptr, 0);
731 if (!object) {
756a025f
JP
732 kmemleak_warn("Trying to color unknown object at 0x%08lx as %s\n",
733 ptr,
a1084c87
LR
734 (color == KMEMLEAK_GREY) ? "Grey" :
735 (color == KMEMLEAK_BLACK) ? "Black" : "Unknown");
3c7b4e6b
CM
736 return;
737 }
a1084c87 738 paint_it(object, color);
3c7b4e6b
CM
739 put_object(object);
740}
741
a1084c87 742/*
145b64b9 743 * Mark an object permanently as gray-colored so that it can no longer be
a1084c87
LR
744 * reported as a leak. This is used in general to mark a false positive.
745 */
746static void make_gray_object(unsigned long ptr)
747{
748 paint_ptr(ptr, KMEMLEAK_GREY);
749}
750
3c7b4e6b
CM
751/*
752 * Mark the object as black-colored so that it is ignored from scans and
753 * reporting.
754 */
755static void make_black_object(unsigned long ptr)
756{
a1084c87 757 paint_ptr(ptr, KMEMLEAK_BLACK);
3c7b4e6b
CM
758}
759
760/*
761 * Add a scanning area to the object. If at least one such area is added,
762 * kmemleak will only scan these ranges rather than the whole memory block.
763 */
c017b4be 764static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp)
3c7b4e6b
CM
765{
766 unsigned long flags;
767 struct kmemleak_object *object;
768 struct kmemleak_scan_area *area;
769
c017b4be 770 object = find_and_get_object(ptr, 1);
3c7b4e6b 771 if (!object) {
ae281064
JP
772 kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n",
773 ptr);
3c7b4e6b
CM
774 return;
775 }
776
6ae4bd1f 777 area = kmem_cache_alloc(scan_area_cache, gfp_kmemleak_mask(gfp));
3c7b4e6b
CM
778
779 spin_lock_irqsave(&object->lock, flags);
dba82d94
CM
780 if (!area) {
781 pr_warn_once("Cannot allocate a scan area, scanning the full object\n");
782 /* mark the object for full scan to avoid false positives */
783 object->flags |= OBJECT_FULL_SCAN;
784 goto out_unlock;
785 }
7f88f88f
CM
786 if (size == SIZE_MAX) {
787 size = object->pointer + object->size - ptr;
788 } else if (ptr + size > object->pointer + object->size) {
ae281064 789 kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr);
3c7b4e6b
CM
790 dump_object_info(object);
791 kmem_cache_free(scan_area_cache, area);
792 goto out_unlock;
793 }
794
795 INIT_HLIST_NODE(&area->node);
c017b4be
CM
796 area->start = ptr;
797 area->size = size;
3c7b4e6b
CM
798
799 hlist_add_head(&area->node, &object->area_list);
800out_unlock:
801 spin_unlock_irqrestore(&object->lock, flags);
3c7b4e6b
CM
802 put_object(object);
803}
804
94f4a161
CM
805/*
806 * Any surplus references (object already gray) to 'ptr' are passed to
807 * 'excess_ref'. This is used in the vmalloc() case where a pointer to
808 * vm_struct may be used as an alternative reference to the vmalloc'ed object
809 * (see free_thread_stack()).
810 */
811static void object_set_excess_ref(unsigned long ptr, unsigned long excess_ref)
812{
813 unsigned long flags;
814 struct kmemleak_object *object;
815
816 object = find_and_get_object(ptr, 0);
817 if (!object) {
818 kmemleak_warn("Setting excess_ref on unknown object at 0x%08lx\n",
819 ptr);
820 return;
821 }
822
823 spin_lock_irqsave(&object->lock, flags);
824 object->excess_ref = excess_ref;
825 spin_unlock_irqrestore(&object->lock, flags);
826 put_object(object);
827}
828
3c7b4e6b
CM
829/*
830 * Set the OBJECT_NO_SCAN flag for the object corresponding to the give
831 * pointer. Such object will not be scanned by kmemleak but references to it
832 * are searched.
833 */
834static void object_no_scan(unsigned long ptr)
835{
836 unsigned long flags;
837 struct kmemleak_object *object;
838
839 object = find_and_get_object(ptr, 0);
840 if (!object) {
ae281064 841 kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr);
3c7b4e6b
CM
842 return;
843 }
844
845 spin_lock_irqsave(&object->lock, flags);
846 object->flags |= OBJECT_NO_SCAN;
847 spin_unlock_irqrestore(&object->lock, flags);
848 put_object(object);
849}
850
851/*
852 * Log an early kmemleak_* call to the early_log buffer. These calls will be
853 * processed later once kmemleak is fully initialized.
854 */
a6186d89 855static void __init log_early(int op_type, const void *ptr, size_t size,
c017b4be 856 int min_count)
3c7b4e6b
CM
857{
858 unsigned long flags;
859 struct early_log *log;
860
8910ae89 861 if (kmemleak_error) {
b6693005
CM
862 /* kmemleak stopped recording, just count the requests */
863 crt_early_log++;
864 return;
865 }
866
3c7b4e6b 867 if (crt_early_log >= ARRAY_SIZE(early_log)) {
21cd3a60 868 crt_early_log++;
a9d9058a 869 kmemleak_disable();
3c7b4e6b
CM
870 return;
871 }
872
873 /*
874 * There is no need for locking since the kernel is still in UP mode
875 * at this stage. Disabling the IRQs is enough.
876 */
877 local_irq_save(flags);
878 log = &early_log[crt_early_log];
879 log->op_type = op_type;
880 log->ptr = ptr;
881 log->size = size;
882 log->min_count = min_count;
5f79020c 883 log->trace_len = __save_stack_trace(log->trace);
3c7b4e6b
CM
884 crt_early_log++;
885 local_irq_restore(flags);
886}
887
fd678967
CM
888/*
889 * Log an early allocated block and populate the stack trace.
890 */
891static void early_alloc(struct early_log *log)
892{
893 struct kmemleak_object *object;
894 unsigned long flags;
895 int i;
896
8910ae89 897 if (!kmemleak_enabled || !log->ptr || IS_ERR(log->ptr))
fd678967
CM
898 return;
899
900 /*
901 * RCU locking needed to ensure object is not freed via put_object().
902 */
903 rcu_read_lock();
904 object = create_object((unsigned long)log->ptr, log->size,
c1bcd6b3 905 log->min_count, GFP_ATOMIC);
0d5d1aad
CM
906 if (!object)
907 goto out;
fd678967
CM
908 spin_lock_irqsave(&object->lock, flags);
909 for (i = 0; i < log->trace_len; i++)
910 object->trace[i] = log->trace[i];
911 object->trace_len = log->trace_len;
912 spin_unlock_irqrestore(&object->lock, flags);
0d5d1aad 913out:
fd678967
CM
914 rcu_read_unlock();
915}
916
f528f0b8
CM
917/*
918 * Log an early allocated block and populate the stack trace.
919 */
920static void early_alloc_percpu(struct early_log *log)
921{
922 unsigned int cpu;
923 const void __percpu *ptr = log->ptr;
924
925 for_each_possible_cpu(cpu) {
926 log->ptr = per_cpu_ptr(ptr, cpu);
927 early_alloc(log);
928 }
929}
930
a2b6bf63
CM
931/**
932 * kmemleak_alloc - register a newly allocated object
933 * @ptr: pointer to beginning of the object
934 * @size: size of the object
935 * @min_count: minimum number of references to this object. If during memory
936 * scanning a number of references less than @min_count is found,
937 * the object is reported as a memory leak. If @min_count is 0,
938 * the object is never reported as a leak. If @min_count is -1,
939 * the object is ignored (not scanned and not reported as a leak)
940 * @gfp: kmalloc() flags used for kmemleak internal memory allocations
941 *
942 * This function is called from the kernel allocators when a new object
94f4a161 943 * (memory block) is allocated (kmem_cache_alloc, kmalloc etc.).
3c7b4e6b 944 */
a6186d89
CM
945void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count,
946 gfp_t gfp)
3c7b4e6b
CM
947{
948 pr_debug("%s(0x%p, %zu, %d)\n", __func__, ptr, size, min_count);
949
8910ae89 950 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
3c7b4e6b 951 create_object((unsigned long)ptr, size, min_count, gfp);
8910ae89 952 else if (kmemleak_early_log)
c017b4be 953 log_early(KMEMLEAK_ALLOC, ptr, size, min_count);
3c7b4e6b
CM
954}
955EXPORT_SYMBOL_GPL(kmemleak_alloc);
956
f528f0b8
CM
957/**
958 * kmemleak_alloc_percpu - register a newly allocated __percpu object
959 * @ptr: __percpu pointer to beginning of the object
960 * @size: size of the object
8a8c35fa 961 * @gfp: flags used for kmemleak internal memory allocations
f528f0b8
CM
962 *
963 * This function is called from the kernel percpu allocator when a new object
8a8c35fa 964 * (memory block) is allocated (alloc_percpu).
f528f0b8 965 */
8a8c35fa
LF
966void __ref kmemleak_alloc_percpu(const void __percpu *ptr, size_t size,
967 gfp_t gfp)
f528f0b8
CM
968{
969 unsigned int cpu;
970
971 pr_debug("%s(0x%p, %zu)\n", __func__, ptr, size);
972
973 /*
974 * Percpu allocations are only scanned and not reported as leaks
975 * (min_count is set to 0).
976 */
8910ae89 977 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
f528f0b8
CM
978 for_each_possible_cpu(cpu)
979 create_object((unsigned long)per_cpu_ptr(ptr, cpu),
8a8c35fa 980 size, 0, gfp);
8910ae89 981 else if (kmemleak_early_log)
f528f0b8
CM
982 log_early(KMEMLEAK_ALLOC_PERCPU, ptr, size, 0);
983}
984EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu);
985
94f4a161
CM
986/**
987 * kmemleak_vmalloc - register a newly vmalloc'ed object
988 * @area: pointer to vm_struct
989 * @size: size of the object
990 * @gfp: __vmalloc() flags used for kmemleak internal memory allocations
991 *
992 * This function is called from the vmalloc() kernel allocator when a new
993 * object (memory block) is allocated.
994 */
995void __ref kmemleak_vmalloc(const struct vm_struct *area, size_t size, gfp_t gfp)
996{
997 pr_debug("%s(0x%p, %zu)\n", __func__, area, size);
998
999 /*
1000 * A min_count = 2 is needed because vm_struct contains a reference to
1001 * the virtual address of the vmalloc'ed block.
1002 */
1003 if (kmemleak_enabled) {
1004 create_object((unsigned long)area->addr, size, 2, gfp);
1005 object_set_excess_ref((unsigned long)area,
1006 (unsigned long)area->addr);
1007 } else if (kmemleak_early_log) {
1008 log_early(KMEMLEAK_ALLOC, area->addr, size, 2);
1009 /* reusing early_log.size for storing area->addr */
1010 log_early(KMEMLEAK_SET_EXCESS_REF,
1011 area, (unsigned long)area->addr, 0);
1012 }
1013}
1014EXPORT_SYMBOL_GPL(kmemleak_vmalloc);
1015
a2b6bf63
CM
1016/**
1017 * kmemleak_free - unregister a previously registered object
1018 * @ptr: pointer to beginning of the object
1019 *
1020 * This function is called from the kernel allocators when an object (memory
1021 * block) is freed (kmem_cache_free, kfree, vfree etc.).
3c7b4e6b 1022 */
a6186d89 1023void __ref kmemleak_free(const void *ptr)
3c7b4e6b
CM
1024{
1025 pr_debug("%s(0x%p)\n", __func__, ptr);
1026
c5f3b1a5 1027 if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
53238a60 1028 delete_object_full((unsigned long)ptr);
8910ae89 1029 else if (kmemleak_early_log)
c017b4be 1030 log_early(KMEMLEAK_FREE, ptr, 0, 0);
3c7b4e6b
CM
1031}
1032EXPORT_SYMBOL_GPL(kmemleak_free);
1033
a2b6bf63
CM
1034/**
1035 * kmemleak_free_part - partially unregister a previously registered object
1036 * @ptr: pointer to the beginning or inside the object. This also
1037 * represents the start of the range to be freed
1038 * @size: size to be unregistered
1039 *
1040 * This function is called when only a part of a memory block is freed
1041 * (usually from the bootmem allocator).
53238a60 1042 */
a6186d89 1043void __ref kmemleak_free_part(const void *ptr, size_t size)
53238a60
CM
1044{
1045 pr_debug("%s(0x%p)\n", __func__, ptr);
1046
8910ae89 1047 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
53238a60 1048 delete_object_part((unsigned long)ptr, size);
8910ae89 1049 else if (kmemleak_early_log)
c017b4be 1050 log_early(KMEMLEAK_FREE_PART, ptr, size, 0);
53238a60
CM
1051}
1052EXPORT_SYMBOL_GPL(kmemleak_free_part);
1053
f528f0b8
CM
1054/**
1055 * kmemleak_free_percpu - unregister a previously registered __percpu object
1056 * @ptr: __percpu pointer to beginning of the object
1057 *
1058 * This function is called from the kernel percpu allocator when an object
1059 * (memory block) is freed (free_percpu).
1060 */
1061void __ref kmemleak_free_percpu(const void __percpu *ptr)
1062{
1063 unsigned int cpu;
1064
1065 pr_debug("%s(0x%p)\n", __func__, ptr);
1066
c5f3b1a5 1067 if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
f528f0b8
CM
1068 for_each_possible_cpu(cpu)
1069 delete_object_full((unsigned long)per_cpu_ptr(ptr,
1070 cpu));
8910ae89 1071 else if (kmemleak_early_log)
f528f0b8
CM
1072 log_early(KMEMLEAK_FREE_PERCPU, ptr, 0, 0);
1073}
1074EXPORT_SYMBOL_GPL(kmemleak_free_percpu);
1075
ffe2c748
CM
1076/**
1077 * kmemleak_update_trace - update object allocation stack trace
1078 * @ptr: pointer to beginning of the object
1079 *
1080 * Override the object allocation stack trace for cases where the actual
1081 * allocation place is not always useful.
1082 */
1083void __ref kmemleak_update_trace(const void *ptr)
1084{
1085 struct kmemleak_object *object;
1086 unsigned long flags;
1087
1088 pr_debug("%s(0x%p)\n", __func__, ptr);
1089
1090 if (!kmemleak_enabled || IS_ERR_OR_NULL(ptr))
1091 return;
1092
1093 object = find_and_get_object((unsigned long)ptr, 1);
1094 if (!object) {
1095#ifdef DEBUG
1096 kmemleak_warn("Updating stack trace for unknown object at %p\n",
1097 ptr);
1098#endif
1099 return;
1100 }
1101
1102 spin_lock_irqsave(&object->lock, flags);
1103 object->trace_len = __save_stack_trace(object->trace);
1104 spin_unlock_irqrestore(&object->lock, flags);
1105
1106 put_object(object);
1107}
1108EXPORT_SYMBOL(kmemleak_update_trace);
1109
a2b6bf63
CM
1110/**
1111 * kmemleak_not_leak - mark an allocated object as false positive
1112 * @ptr: pointer to beginning of the object
1113 *
1114 * Calling this function on an object will cause the memory block to no longer
1115 * be reported as leak and always be scanned.
3c7b4e6b 1116 */
a6186d89 1117void __ref kmemleak_not_leak(const void *ptr)
3c7b4e6b
CM
1118{
1119 pr_debug("%s(0x%p)\n", __func__, ptr);
1120
8910ae89 1121 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
3c7b4e6b 1122 make_gray_object((unsigned long)ptr);
8910ae89 1123 else if (kmemleak_early_log)
c017b4be 1124 log_early(KMEMLEAK_NOT_LEAK, ptr, 0, 0);
3c7b4e6b
CM
1125}
1126EXPORT_SYMBOL(kmemleak_not_leak);
1127
a2b6bf63
CM
1128/**
1129 * kmemleak_ignore - ignore an allocated object
1130 * @ptr: pointer to beginning of the object
1131 *
1132 * Calling this function on an object will cause the memory block to be
1133 * ignored (not scanned and not reported as a leak). This is usually done when
1134 * it is known that the corresponding block is not a leak and does not contain
1135 * any references to other allocated memory blocks.
3c7b4e6b 1136 */
a6186d89 1137void __ref kmemleak_ignore(const void *ptr)
3c7b4e6b
CM
1138{
1139 pr_debug("%s(0x%p)\n", __func__, ptr);
1140
8910ae89 1141 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
3c7b4e6b 1142 make_black_object((unsigned long)ptr);
8910ae89 1143 else if (kmemleak_early_log)
c017b4be 1144 log_early(KMEMLEAK_IGNORE, ptr, 0, 0);
3c7b4e6b
CM
1145}
1146EXPORT_SYMBOL(kmemleak_ignore);
1147
a2b6bf63
CM
1148/**
1149 * kmemleak_scan_area - limit the range to be scanned in an allocated object
1150 * @ptr: pointer to beginning or inside the object. This also
1151 * represents the start of the scan area
1152 * @size: size of the scan area
1153 * @gfp: kmalloc() flags used for kmemleak internal memory allocations
1154 *
1155 * This function is used when it is known that only certain parts of an object
1156 * contain references to other objects. Kmemleak will only scan these areas
1157 * reducing the number false negatives.
3c7b4e6b 1158 */
c017b4be 1159void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp)
3c7b4e6b
CM
1160{
1161 pr_debug("%s(0x%p)\n", __func__, ptr);
1162
8910ae89 1163 if (kmemleak_enabled && ptr && size && !IS_ERR(ptr))
c017b4be 1164 add_scan_area((unsigned long)ptr, size, gfp);
8910ae89 1165 else if (kmemleak_early_log)
c017b4be 1166 log_early(KMEMLEAK_SCAN_AREA, ptr, size, 0);
3c7b4e6b
CM
1167}
1168EXPORT_SYMBOL(kmemleak_scan_area);
1169
a2b6bf63
CM
1170/**
1171 * kmemleak_no_scan - do not scan an allocated object
1172 * @ptr: pointer to beginning of the object
1173 *
1174 * This function notifies kmemleak not to scan the given memory block. Useful
1175 * in situations where it is known that the given object does not contain any
1176 * references to other objects. Kmemleak will not scan such objects reducing
1177 * the number of false negatives.
3c7b4e6b 1178 */
a6186d89 1179void __ref kmemleak_no_scan(const void *ptr)
3c7b4e6b
CM
1180{
1181 pr_debug("%s(0x%p)\n", __func__, ptr);
1182
8910ae89 1183 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
3c7b4e6b 1184 object_no_scan((unsigned long)ptr);
8910ae89 1185 else if (kmemleak_early_log)
c017b4be 1186 log_early(KMEMLEAK_NO_SCAN, ptr, 0, 0);
3c7b4e6b
CM
1187}
1188EXPORT_SYMBOL(kmemleak_no_scan);
1189
9099daed
CM
1190/**
1191 * kmemleak_alloc_phys - similar to kmemleak_alloc but taking a physical
1192 * address argument
e8b098fc
MR
1193 * @phys: physical address of the object
1194 * @size: size of the object
1195 * @min_count: minimum number of references to this object.
1196 * See kmemleak_alloc()
1197 * @gfp: kmalloc() flags used for kmemleak internal memory allocations
9099daed
CM
1198 */
1199void __ref kmemleak_alloc_phys(phys_addr_t phys, size_t size, int min_count,
1200 gfp_t gfp)
1201{
1202 if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1203 kmemleak_alloc(__va(phys), size, min_count, gfp);
1204}
1205EXPORT_SYMBOL(kmemleak_alloc_phys);
1206
1207/**
1208 * kmemleak_free_part_phys - similar to kmemleak_free_part but taking a
1209 * physical address argument
e8b098fc
MR
1210 * @phys: physical address if the beginning or inside an object. This
1211 * also represents the start of the range to be freed
1212 * @size: size to be unregistered
9099daed
CM
1213 */
1214void __ref kmemleak_free_part_phys(phys_addr_t phys, size_t size)
1215{
1216 if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1217 kmemleak_free_part(__va(phys), size);
1218}
1219EXPORT_SYMBOL(kmemleak_free_part_phys);
1220
1221/**
1222 * kmemleak_not_leak_phys - similar to kmemleak_not_leak but taking a physical
1223 * address argument
e8b098fc 1224 * @phys: physical address of the object
9099daed
CM
1225 */
1226void __ref kmemleak_not_leak_phys(phys_addr_t phys)
1227{
1228 if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1229 kmemleak_not_leak(__va(phys));
1230}
1231EXPORT_SYMBOL(kmemleak_not_leak_phys);
1232
1233/**
1234 * kmemleak_ignore_phys - similar to kmemleak_ignore but taking a physical
1235 * address argument
e8b098fc 1236 * @phys: physical address of the object
9099daed
CM
1237 */
1238void __ref kmemleak_ignore_phys(phys_addr_t phys)
1239{
1240 if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1241 kmemleak_ignore(__va(phys));
1242}
1243EXPORT_SYMBOL(kmemleak_ignore_phys);
1244
04609ccc
CM
1245/*
1246 * Update an object's checksum and return true if it was modified.
1247 */
1248static bool update_checksum(struct kmemleak_object *object)
1249{
1250 u32 old_csum = object->checksum;
1251
e79ed2f1 1252 kasan_disable_current();
04609ccc 1253 object->checksum = crc32(0, (void *)object->pointer, object->size);
e79ed2f1
AR
1254 kasan_enable_current();
1255
04609ccc
CM
1256 return object->checksum != old_csum;
1257}
1258
04f70d13
CM
1259/*
1260 * Update an object's references. object->lock must be held by the caller.
1261 */
1262static void update_refs(struct kmemleak_object *object)
1263{
1264 if (!color_white(object)) {
1265 /* non-orphan, ignored or new */
1266 return;
1267 }
1268
1269 /*
1270 * Increase the object's reference count (number of pointers to the
1271 * memory block). If this count reaches the required minimum, the
1272 * object's color will become gray and it will be added to the
1273 * gray_list.
1274 */
1275 object->count++;
1276 if (color_gray(object)) {
1277 /* put_object() called when removing from gray_list */
1278 WARN_ON(!get_object(object));
1279 list_add_tail(&object->gray_list, &gray_list);
1280 }
1281}
1282
3c7b4e6b
CM
1283/*
1284 * Memory scanning is a long process and it needs to be interruptable. This
25985edc 1285 * function checks whether such interrupt condition occurred.
3c7b4e6b
CM
1286 */
1287static int scan_should_stop(void)
1288{
8910ae89 1289 if (!kmemleak_enabled)
3c7b4e6b
CM
1290 return 1;
1291
1292 /*
1293 * This function may be called from either process or kthread context,
1294 * hence the need to check for both stop conditions.
1295 */
1296 if (current->mm)
1297 return signal_pending(current);
1298 else
1299 return kthread_should_stop();
1300
1301 return 0;
1302}
1303
1304/*
1305 * Scan a memory block (exclusive range) for valid pointers and add those
1306 * found to the gray list.
1307 */
1308static void scan_block(void *_start, void *_end,
93ada579 1309 struct kmemleak_object *scanned)
3c7b4e6b
CM
1310{
1311 unsigned long *ptr;
1312 unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER);
1313 unsigned long *end = _end - (BYTES_PER_POINTER - 1);
93ada579 1314 unsigned long flags;
a2f77575 1315 unsigned long untagged_ptr;
3c7b4e6b 1316
93ada579 1317 read_lock_irqsave(&kmemleak_lock, flags);
3c7b4e6b 1318 for (ptr = start; ptr < end; ptr++) {
3c7b4e6b 1319 struct kmemleak_object *object;
8e019366 1320 unsigned long pointer;
94f4a161 1321 unsigned long excess_ref;
3c7b4e6b
CM
1322
1323 if (scan_should_stop())
1324 break;
1325
e79ed2f1 1326 kasan_disable_current();
8e019366 1327 pointer = *ptr;
e79ed2f1 1328 kasan_enable_current();
8e019366 1329
a2f77575
AK
1330 untagged_ptr = (unsigned long)kasan_reset_tag((void *)pointer);
1331 if (untagged_ptr < min_addr || untagged_ptr >= max_addr)
93ada579
CM
1332 continue;
1333
1334 /*
1335 * No need for get_object() here since we hold kmemleak_lock.
1336 * object->use_count cannot be dropped to 0 while the object
1337 * is still present in object_tree_root and object_list
1338 * (with updates protected by kmemleak_lock).
1339 */
1340 object = lookup_object(pointer, 1);
3c7b4e6b
CM
1341 if (!object)
1342 continue;
93ada579 1343 if (object == scanned)
3c7b4e6b 1344 /* self referenced, ignore */
3c7b4e6b 1345 continue;
3c7b4e6b
CM
1346
1347 /*
1348 * Avoid the lockdep recursive warning on object->lock being
1349 * previously acquired in scan_object(). These locks are
1350 * enclosed by scan_mutex.
1351 */
93ada579 1352 spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
94f4a161
CM
1353 /* only pass surplus references (object already gray) */
1354 if (color_gray(object)) {
1355 excess_ref = object->excess_ref;
1356 /* no need for update_refs() if object already gray */
1357 } else {
1358 excess_ref = 0;
1359 update_refs(object);
1360 }
93ada579 1361 spin_unlock(&object->lock);
94f4a161
CM
1362
1363 if (excess_ref) {
1364 object = lookup_object(excess_ref, 0);
1365 if (!object)
1366 continue;
1367 if (object == scanned)
1368 /* circular reference, ignore */
1369 continue;
1370 spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
1371 update_refs(object);
1372 spin_unlock(&object->lock);
1373 }
93ada579
CM
1374 }
1375 read_unlock_irqrestore(&kmemleak_lock, flags);
1376}
0587da40 1377
93ada579
CM
1378/*
1379 * Scan a large memory block in MAX_SCAN_SIZE chunks to reduce the latency.
1380 */
dce5b0bd 1381#ifdef CONFIG_SMP
93ada579
CM
1382static void scan_large_block(void *start, void *end)
1383{
1384 void *next;
1385
1386 while (start < end) {
1387 next = min(start + MAX_SCAN_SIZE, end);
1388 scan_block(start, next, NULL);
1389 start = next;
1390 cond_resched();
3c7b4e6b
CM
1391 }
1392}
dce5b0bd 1393#endif
3c7b4e6b
CM
1394
1395/*
1396 * Scan a memory block corresponding to a kmemleak_object. A condition is
1397 * that object->use_count >= 1.
1398 */
1399static void scan_object(struct kmemleak_object *object)
1400{
1401 struct kmemleak_scan_area *area;
3c7b4e6b
CM
1402 unsigned long flags;
1403
1404 /*
21ae2956
UKK
1405 * Once the object->lock is acquired, the corresponding memory block
1406 * cannot be freed (the same lock is acquired in delete_object).
3c7b4e6b
CM
1407 */
1408 spin_lock_irqsave(&object->lock, flags);
1409 if (object->flags & OBJECT_NO_SCAN)
1410 goto out;
1411 if (!(object->flags & OBJECT_ALLOCATED))
1412 /* already freed object */
1413 goto out;
dba82d94
CM
1414 if (hlist_empty(&object->area_list) ||
1415 object->flags & OBJECT_FULL_SCAN) {
af98603d
CM
1416 void *start = (void *)object->pointer;
1417 void *end = (void *)(object->pointer + object->size);
93ada579
CM
1418 void *next;
1419
1420 do {
1421 next = min(start + MAX_SCAN_SIZE, end);
1422 scan_block(start, next, object);
af98603d 1423
93ada579
CM
1424 start = next;
1425 if (start >= end)
1426 break;
af98603d
CM
1427
1428 spin_unlock_irqrestore(&object->lock, flags);
1429 cond_resched();
1430 spin_lock_irqsave(&object->lock, flags);
93ada579 1431 } while (object->flags & OBJECT_ALLOCATED);
af98603d 1432 } else
b67bfe0d 1433 hlist_for_each_entry(area, &object->area_list, node)
c017b4be
CM
1434 scan_block((void *)area->start,
1435 (void *)(area->start + area->size),
93ada579 1436 object);
3c7b4e6b
CM
1437out:
1438 spin_unlock_irqrestore(&object->lock, flags);
1439}
1440
04609ccc
CM
1441/*
1442 * Scan the objects already referenced (gray objects). More objects will be
1443 * referenced and, if there are no memory leaks, all the objects are scanned.
1444 */
1445static void scan_gray_list(void)
1446{
1447 struct kmemleak_object *object, *tmp;
1448
1449 /*
1450 * The list traversal is safe for both tail additions and removals
1451 * from inside the loop. The kmemleak objects cannot be freed from
1452 * outside the loop because their use_count was incremented.
1453 */
1454 object = list_entry(gray_list.next, typeof(*object), gray_list);
1455 while (&object->gray_list != &gray_list) {
1456 cond_resched();
1457
1458 /* may add new objects to the list */
1459 if (!scan_should_stop())
1460 scan_object(object);
1461
1462 tmp = list_entry(object->gray_list.next, typeof(*object),
1463 gray_list);
1464
1465 /* remove the object from the list and release it */
1466 list_del(&object->gray_list);
1467 put_object(object);
1468
1469 object = tmp;
1470 }
1471 WARN_ON(!list_empty(&gray_list));
1472}
1473
3c7b4e6b
CM
1474/*
1475 * Scan data sections and all the referenced memory blocks allocated via the
1476 * kernel's standard allocators. This function must be called with the
1477 * scan_mutex held.
1478 */
1479static void kmemleak_scan(void)
1480{
1481 unsigned long flags;
04609ccc 1482 struct kmemleak_object *object;
3c7b4e6b 1483 int i;
4698c1f2 1484 int new_leaks = 0;
3c7b4e6b 1485
acf4968e
CM
1486 jiffies_last_scan = jiffies;
1487
3c7b4e6b
CM
1488 /* prepare the kmemleak_object's */
1489 rcu_read_lock();
1490 list_for_each_entry_rcu(object, &object_list, object_list) {
1491 spin_lock_irqsave(&object->lock, flags);
1492#ifdef DEBUG
1493 /*
1494 * With a few exceptions there should be a maximum of
1495 * 1 reference to any object at this point.
1496 */
1497 if (atomic_read(&object->use_count) > 1) {
ae281064 1498 pr_debug("object->use_count = %d\n",
3c7b4e6b
CM
1499 atomic_read(&object->use_count));
1500 dump_object_info(object);
1501 }
1502#endif
1503 /* reset the reference count (whiten the object) */
1504 object->count = 0;
1505 if (color_gray(object) && get_object(object))
1506 list_add_tail(&object->gray_list, &gray_list);
1507
1508 spin_unlock_irqrestore(&object->lock, flags);
1509 }
1510 rcu_read_unlock();
1511
3c7b4e6b
CM
1512#ifdef CONFIG_SMP
1513 /* per-cpu sections scanning */
1514 for_each_possible_cpu(i)
93ada579
CM
1515 scan_large_block(__per_cpu_start + per_cpu_offset(i),
1516 __per_cpu_end + per_cpu_offset(i));
3c7b4e6b
CM
1517#endif
1518
1519 /*
029aeff5 1520 * Struct page scanning for each node.
3c7b4e6b 1521 */
bfc8c901 1522 get_online_mems();
3c7b4e6b 1523 for_each_online_node(i) {
108bcc96
CS
1524 unsigned long start_pfn = node_start_pfn(i);
1525 unsigned long end_pfn = node_end_pfn(i);
3c7b4e6b
CM
1526 unsigned long pfn;
1527
1528 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
9f1eb38e 1529 struct page *page = pfn_to_online_page(pfn);
3c7b4e6b 1530
9f1eb38e
OS
1531 if (!page)
1532 continue;
1533
1534 /* only scan pages belonging to this node */
1535 if (page_to_nid(page) != i)
3c7b4e6b 1536 continue;
3c7b4e6b
CM
1537 /* only scan if page is in use */
1538 if (page_count(page) == 0)
1539 continue;
93ada579 1540 scan_block(page, page + 1, NULL);
13ab183d 1541 if (!(pfn & 63))
bde5f6bc 1542 cond_resched();
3c7b4e6b
CM
1543 }
1544 }
bfc8c901 1545 put_online_mems();
3c7b4e6b
CM
1546
1547 /*
43ed5d6e 1548 * Scanning the task stacks (may introduce false negatives).
3c7b4e6b
CM
1549 */
1550 if (kmemleak_stack_scan) {
43ed5d6e
CM
1551 struct task_struct *p, *g;
1552
3c7b4e6b 1553 read_lock(&tasklist_lock);
43ed5d6e 1554 do_each_thread(g, p) {
37df49f4
CM
1555 void *stack = try_get_task_stack(p);
1556 if (stack) {
1557 scan_block(stack, stack + THREAD_SIZE, NULL);
1558 put_task_stack(p);
1559 }
43ed5d6e 1560 } while_each_thread(g, p);
3c7b4e6b
CM
1561 read_unlock(&tasklist_lock);
1562 }
1563
1564 /*
1565 * Scan the objects already referenced from the sections scanned
04609ccc 1566 * above.
3c7b4e6b 1567 */
04609ccc 1568 scan_gray_list();
2587362e
CM
1569
1570 /*
04609ccc
CM
1571 * Check for new or unreferenced objects modified since the previous
1572 * scan and color them gray until the next scan.
2587362e
CM
1573 */
1574 rcu_read_lock();
1575 list_for_each_entry_rcu(object, &object_list, object_list) {
1576 spin_lock_irqsave(&object->lock, flags);
04609ccc
CM
1577 if (color_white(object) && (object->flags & OBJECT_ALLOCATED)
1578 && update_checksum(object) && get_object(object)) {
1579 /* color it gray temporarily */
1580 object->count = object->min_count;
2587362e
CM
1581 list_add_tail(&object->gray_list, &gray_list);
1582 }
1583 spin_unlock_irqrestore(&object->lock, flags);
1584 }
1585 rcu_read_unlock();
1586
04609ccc
CM
1587 /*
1588 * Re-scan the gray list for modified unreferenced objects.
1589 */
1590 scan_gray_list();
4698c1f2 1591
17bb9e0d 1592 /*
04609ccc 1593 * If scanning was stopped do not report any new unreferenced objects.
17bb9e0d 1594 */
04609ccc 1595 if (scan_should_stop())
17bb9e0d
CM
1596 return;
1597
4698c1f2
CM
1598 /*
1599 * Scanning result reporting.
1600 */
1601 rcu_read_lock();
1602 list_for_each_entry_rcu(object, &object_list, object_list) {
1603 spin_lock_irqsave(&object->lock, flags);
1604 if (unreferenced_object(object) &&
1605 !(object->flags & OBJECT_REPORTED)) {
1606 object->flags |= OBJECT_REPORTED;
154221c3
VW
1607
1608 if (kmemleak_verbose)
1609 print_unreferenced(NULL, object);
1610
4698c1f2
CM
1611 new_leaks++;
1612 }
1613 spin_unlock_irqrestore(&object->lock, flags);
1614 }
1615 rcu_read_unlock();
1616
dc9b3f42
LZ
1617 if (new_leaks) {
1618 kmemleak_found_leaks = true;
1619
756a025f
JP
1620 pr_info("%d new suspected memory leaks (see /sys/kernel/debug/kmemleak)\n",
1621 new_leaks);
dc9b3f42 1622 }
4698c1f2 1623
3c7b4e6b
CM
1624}
1625
1626/*
1627 * Thread function performing automatic memory scanning. Unreferenced objects
1628 * at the end of a memory scan are reported but only the first time.
1629 */
1630static int kmemleak_scan_thread(void *arg)
1631{
d53ce042 1632 static int first_run = IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN);
3c7b4e6b 1633
ae281064 1634 pr_info("Automatic memory scanning thread started\n");
bf2a76b3 1635 set_user_nice(current, 10);
3c7b4e6b
CM
1636
1637 /*
1638 * Wait before the first scan to allow the system to fully initialize.
1639 */
1640 if (first_run) {
98c42d94 1641 signed long timeout = msecs_to_jiffies(SECS_FIRST_SCAN * 1000);
3c7b4e6b 1642 first_run = 0;
98c42d94
VN
1643 while (timeout && !kthread_should_stop())
1644 timeout = schedule_timeout_interruptible(timeout);
3c7b4e6b
CM
1645 }
1646
1647 while (!kthread_should_stop()) {
3c7b4e6b
CM
1648 signed long timeout = jiffies_scan_wait;
1649
1650 mutex_lock(&scan_mutex);
3c7b4e6b 1651 kmemleak_scan();
3c7b4e6b 1652 mutex_unlock(&scan_mutex);
4698c1f2 1653
3c7b4e6b
CM
1654 /* wait before the next scan */
1655 while (timeout && !kthread_should_stop())
1656 timeout = schedule_timeout_interruptible(timeout);
1657 }
1658
ae281064 1659 pr_info("Automatic memory scanning thread ended\n");
3c7b4e6b
CM
1660
1661 return 0;
1662}
1663
1664/*
1665 * Start the automatic memory scanning thread. This function must be called
4698c1f2 1666 * with the scan_mutex held.
3c7b4e6b 1667 */
7eb0d5e5 1668static void start_scan_thread(void)
3c7b4e6b
CM
1669{
1670 if (scan_thread)
1671 return;
1672 scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak");
1673 if (IS_ERR(scan_thread)) {
598d8091 1674 pr_warn("Failed to create the scan thread\n");
3c7b4e6b
CM
1675 scan_thread = NULL;
1676 }
1677}
1678
1679/*
914b6dff 1680 * Stop the automatic memory scanning thread.
3c7b4e6b 1681 */
7eb0d5e5 1682static void stop_scan_thread(void)
3c7b4e6b
CM
1683{
1684 if (scan_thread) {
1685 kthread_stop(scan_thread);
1686 scan_thread = NULL;
1687 }
1688}
1689
1690/*
1691 * Iterate over the object_list and return the first valid object at or after
1692 * the required position with its use_count incremented. The function triggers
1693 * a memory scanning when the pos argument points to the first position.
1694 */
1695static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos)
1696{
1697 struct kmemleak_object *object;
1698 loff_t n = *pos;
b87324d0
CM
1699 int err;
1700
1701 err = mutex_lock_interruptible(&scan_mutex);
1702 if (err < 0)
1703 return ERR_PTR(err);
3c7b4e6b 1704
3c7b4e6b
CM
1705 rcu_read_lock();
1706 list_for_each_entry_rcu(object, &object_list, object_list) {
1707 if (n-- > 0)
1708 continue;
1709 if (get_object(object))
1710 goto out;
1711 }
1712 object = NULL;
1713out:
3c7b4e6b
CM
1714 return object;
1715}
1716
1717/*
1718 * Return the next object in the object_list. The function decrements the
1719 * use_count of the previous object and increases that of the next one.
1720 */
1721static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1722{
1723 struct kmemleak_object *prev_obj = v;
1724 struct kmemleak_object *next_obj = NULL;
58fac095 1725 struct kmemleak_object *obj = prev_obj;
3c7b4e6b
CM
1726
1727 ++(*pos);
3c7b4e6b 1728
58fac095 1729 list_for_each_entry_continue_rcu(obj, &object_list, object_list) {
52c3ce4e
CM
1730 if (get_object(obj)) {
1731 next_obj = obj;
3c7b4e6b 1732 break;
52c3ce4e 1733 }
3c7b4e6b 1734 }
288c857d 1735
3c7b4e6b
CM
1736 put_object(prev_obj);
1737 return next_obj;
1738}
1739
1740/*
1741 * Decrement the use_count of the last object required, if any.
1742 */
1743static void kmemleak_seq_stop(struct seq_file *seq, void *v)
1744{
b87324d0
CM
1745 if (!IS_ERR(v)) {
1746 /*
1747 * kmemleak_seq_start may return ERR_PTR if the scan_mutex
1748 * waiting was interrupted, so only release it if !IS_ERR.
1749 */
f5886c7f 1750 rcu_read_unlock();
b87324d0
CM
1751 mutex_unlock(&scan_mutex);
1752 if (v)
1753 put_object(v);
1754 }
3c7b4e6b
CM
1755}
1756
1757/*
1758 * Print the information for an unreferenced object to the seq file.
1759 */
1760static int kmemleak_seq_show(struct seq_file *seq, void *v)
1761{
1762 struct kmemleak_object *object = v;
1763 unsigned long flags;
1764
1765 spin_lock_irqsave(&object->lock, flags);
288c857d 1766 if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object))
17bb9e0d 1767 print_unreferenced(seq, object);
3c7b4e6b
CM
1768 spin_unlock_irqrestore(&object->lock, flags);
1769 return 0;
1770}
1771
1772static const struct seq_operations kmemleak_seq_ops = {
1773 .start = kmemleak_seq_start,
1774 .next = kmemleak_seq_next,
1775 .stop = kmemleak_seq_stop,
1776 .show = kmemleak_seq_show,
1777};
1778
1779static int kmemleak_open(struct inode *inode, struct file *file)
1780{
b87324d0 1781 return seq_open(file, &kmemleak_seq_ops);
3c7b4e6b
CM
1782}
1783
189d84ed
CM
1784static int dump_str_object_info(const char *str)
1785{
1786 unsigned long flags;
1787 struct kmemleak_object *object;
1788 unsigned long addr;
1789
dc053733
AP
1790 if (kstrtoul(str, 0, &addr))
1791 return -EINVAL;
189d84ed
CM
1792 object = find_and_get_object(addr, 0);
1793 if (!object) {
1794 pr_info("Unknown object at 0x%08lx\n", addr);
1795 return -EINVAL;
1796 }
1797
1798 spin_lock_irqsave(&object->lock, flags);
1799 dump_object_info(object);
1800 spin_unlock_irqrestore(&object->lock, flags);
1801
1802 put_object(object);
1803 return 0;
1804}
1805
30b37101
LR
1806/*
1807 * We use grey instead of black to ensure we can do future scans on the same
1808 * objects. If we did not do future scans these black objects could
1809 * potentially contain references to newly allocated objects in the future and
1810 * we'd end up with false positives.
1811 */
1812static void kmemleak_clear(void)
1813{
1814 struct kmemleak_object *object;
1815 unsigned long flags;
1816
1817 rcu_read_lock();
1818 list_for_each_entry_rcu(object, &object_list, object_list) {
1819 spin_lock_irqsave(&object->lock, flags);
1820 if ((object->flags & OBJECT_REPORTED) &&
1821 unreferenced_object(object))
a1084c87 1822 __paint_it(object, KMEMLEAK_GREY);
30b37101
LR
1823 spin_unlock_irqrestore(&object->lock, flags);
1824 }
1825 rcu_read_unlock();
dc9b3f42
LZ
1826
1827 kmemleak_found_leaks = false;
30b37101
LR
1828}
1829
c89da70c
LZ
1830static void __kmemleak_do_cleanup(void);
1831
3c7b4e6b
CM
1832/*
1833 * File write operation to configure kmemleak at run-time. The following
1834 * commands can be written to the /sys/kernel/debug/kmemleak file:
1835 * off - disable kmemleak (irreversible)
1836 * stack=on - enable the task stacks scanning
1837 * stack=off - disable the tasks stacks scanning
1838 * scan=on - start the automatic memory scanning thread
1839 * scan=off - stop the automatic memory scanning thread
1840 * scan=... - set the automatic memory scanning period in seconds (0 to
1841 * disable it)
4698c1f2 1842 * scan - trigger a memory scan
30b37101 1843 * clear - mark all current reported unreferenced kmemleak objects as
c89da70c
LZ
1844 * grey to ignore printing them, or free all kmemleak objects
1845 * if kmemleak has been disabled.
189d84ed 1846 * dump=... - dump information about the object found at the given address
3c7b4e6b
CM
1847 */
1848static ssize_t kmemleak_write(struct file *file, const char __user *user_buf,
1849 size_t size, loff_t *ppos)
1850{
1851 char buf[64];
1852 int buf_size;
b87324d0 1853 int ret;
3c7b4e6b
CM
1854
1855 buf_size = min(size, (sizeof(buf) - 1));
1856 if (strncpy_from_user(buf, user_buf, buf_size) < 0)
1857 return -EFAULT;
1858 buf[buf_size] = 0;
1859
b87324d0
CM
1860 ret = mutex_lock_interruptible(&scan_mutex);
1861 if (ret < 0)
1862 return ret;
1863
c89da70c 1864 if (strncmp(buf, "clear", 5) == 0) {
8910ae89 1865 if (kmemleak_enabled)
c89da70c
LZ
1866 kmemleak_clear();
1867 else
1868 __kmemleak_do_cleanup();
1869 goto out;
1870 }
1871
8910ae89 1872 if (!kmemleak_enabled) {
4e4dfce2 1873 ret = -EPERM;
c89da70c
LZ
1874 goto out;
1875 }
1876
3c7b4e6b
CM
1877 if (strncmp(buf, "off", 3) == 0)
1878 kmemleak_disable();
1879 else if (strncmp(buf, "stack=on", 8) == 0)
1880 kmemleak_stack_scan = 1;
1881 else if (strncmp(buf, "stack=off", 9) == 0)
1882 kmemleak_stack_scan = 0;
1883 else if (strncmp(buf, "scan=on", 7) == 0)
1884 start_scan_thread();
1885 else if (strncmp(buf, "scan=off", 8) == 0)
1886 stop_scan_thread();
1887 else if (strncmp(buf, "scan=", 5) == 0) {
1888 unsigned long secs;
3c7b4e6b 1889
3dbb95f7 1890 ret = kstrtoul(buf + 5, 0, &secs);
b87324d0
CM
1891 if (ret < 0)
1892 goto out;
3c7b4e6b
CM
1893 stop_scan_thread();
1894 if (secs) {
1895 jiffies_scan_wait = msecs_to_jiffies(secs * 1000);
1896 start_scan_thread();
1897 }
4698c1f2
CM
1898 } else if (strncmp(buf, "scan", 4) == 0)
1899 kmemleak_scan();
189d84ed
CM
1900 else if (strncmp(buf, "dump=", 5) == 0)
1901 ret = dump_str_object_info(buf + 5);
4698c1f2 1902 else
b87324d0
CM
1903 ret = -EINVAL;
1904
1905out:
1906 mutex_unlock(&scan_mutex);
1907 if (ret < 0)
1908 return ret;
3c7b4e6b
CM
1909
1910 /* ignore the rest of the buffer, only one command at a time */
1911 *ppos += size;
1912 return size;
1913}
1914
1915static const struct file_operations kmemleak_fops = {
1916 .owner = THIS_MODULE,
1917 .open = kmemleak_open,
1918 .read = seq_read,
1919 .write = kmemleak_write,
1920 .llseek = seq_lseek,
5f3bf19a 1921 .release = seq_release,
3c7b4e6b
CM
1922};
1923
c89da70c
LZ
1924static void __kmemleak_do_cleanup(void)
1925{
1926 struct kmemleak_object *object;
1927
1928 rcu_read_lock();
1929 list_for_each_entry_rcu(object, &object_list, object_list)
1930 delete_object_full(object->pointer);
1931 rcu_read_unlock();
1932}
1933
3c7b4e6b 1934/*
74341703
CM
1935 * Stop the memory scanning thread and free the kmemleak internal objects if
1936 * no previous scan thread (otherwise, kmemleak may still have some useful
1937 * information on memory leaks).
3c7b4e6b 1938 */
179a8100 1939static void kmemleak_do_cleanup(struct work_struct *work)
3c7b4e6b 1940{
3c7b4e6b 1941 stop_scan_thread();
3c7b4e6b 1942
914b6dff 1943 mutex_lock(&scan_mutex);
c5f3b1a5 1944 /*
914b6dff
VM
1945 * Once it is made sure that kmemleak_scan has stopped, it is safe to no
1946 * longer track object freeing. Ordering of the scan thread stopping and
1947 * the memory accesses below is guaranteed by the kthread_stop()
1948 * function.
c5f3b1a5
CM
1949 */
1950 kmemleak_free_enabled = 0;
914b6dff 1951 mutex_unlock(&scan_mutex);
c5f3b1a5 1952
c89da70c
LZ
1953 if (!kmemleak_found_leaks)
1954 __kmemleak_do_cleanup();
1955 else
756a025f 1956 pr_info("Kmemleak disabled without freeing internal data. Reclaim the memory with \"echo clear > /sys/kernel/debug/kmemleak\".\n");
3c7b4e6b
CM
1957}
1958
179a8100 1959static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup);
3c7b4e6b
CM
1960
1961/*
1962 * Disable kmemleak. No memory allocation/freeing will be traced once this
1963 * function is called. Disabling kmemleak is an irreversible operation.
1964 */
1965static void kmemleak_disable(void)
1966{
1967 /* atomically check whether it was already invoked */
8910ae89 1968 if (cmpxchg(&kmemleak_error, 0, 1))
3c7b4e6b
CM
1969 return;
1970
1971 /* stop any memory operation tracing */
8910ae89 1972 kmemleak_enabled = 0;
fcf3a5b6 1973 kmemleak_early_log = 0;
3c7b4e6b
CM
1974
1975 /* check whether it is too early for a kernel thread */
8910ae89 1976 if (kmemleak_initialized)
179a8100 1977 schedule_work(&cleanup_work);
c5f3b1a5
CM
1978 else
1979 kmemleak_free_enabled = 0;
3c7b4e6b
CM
1980
1981 pr_info("Kernel memory leak detector disabled\n");
1982}
1983
1984/*
1985 * Allow boot-time kmemleak disabling (enabled by default).
1986 */
8bd30c10 1987static int __init kmemleak_boot_config(char *str)
3c7b4e6b
CM
1988{
1989 if (!str)
1990 return -EINVAL;
1991 if (strcmp(str, "off") == 0)
1992 kmemleak_disable();
ab0155a2
JB
1993 else if (strcmp(str, "on") == 0)
1994 kmemleak_skip_disable = 1;
1995 else
3c7b4e6b
CM
1996 return -EINVAL;
1997 return 0;
1998}
1999early_param("kmemleak", kmemleak_boot_config);
2000
5f79020c
CM
2001static void __init print_log_trace(struct early_log *log)
2002{
5f79020c 2003 pr_notice("Early log backtrace:\n");
07984aad 2004 stack_trace_print(log->trace, log->trace_len, 2);
5f79020c
CM
2005}
2006
3c7b4e6b 2007/*
2030117d 2008 * Kmemleak initialization.
3c7b4e6b
CM
2009 */
2010void __init kmemleak_init(void)
2011{
2012 int i;
2013 unsigned long flags;
2014
ab0155a2
JB
2015#ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF
2016 if (!kmemleak_skip_disable) {
2017 kmemleak_disable();
2018 return;
2019 }
2020#endif
2021
3c7b4e6b
CM
2022 jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE);
2023 jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000);
2024
2025 object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE);
2026 scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE);
3c7b4e6b 2027
21cd3a60 2028 if (crt_early_log > ARRAY_SIZE(early_log))
598d8091
JP
2029 pr_warn("Early log buffer exceeded (%d), please increase DEBUG_KMEMLEAK_EARLY_LOG_SIZE\n",
2030 crt_early_log);
b6693005 2031
3c7b4e6b
CM
2032 /* the kernel is still in UP mode, so disabling the IRQs is enough */
2033 local_irq_save(flags);
3551a928 2034 kmemleak_early_log = 0;
8910ae89 2035 if (kmemleak_error) {
b6693005
CM
2036 local_irq_restore(flags);
2037 return;
c5f3b1a5 2038 } else {
8910ae89 2039 kmemleak_enabled = 1;
c5f3b1a5
CM
2040 kmemleak_free_enabled = 1;
2041 }
3c7b4e6b
CM
2042 local_irq_restore(flags);
2043
298a32b1
CM
2044 /* register the data/bss sections */
2045 create_object((unsigned long)_sdata, _edata - _sdata,
2046 KMEMLEAK_GREY, GFP_ATOMIC);
2047 create_object((unsigned long)__bss_start, __bss_stop - __bss_start,
2048 KMEMLEAK_GREY, GFP_ATOMIC);
2049 /* only register .data..ro_after_init if not within .data */
2050 if (__start_ro_after_init < _sdata || __end_ro_after_init > _edata)
2051 create_object((unsigned long)__start_ro_after_init,
2052 __end_ro_after_init - __start_ro_after_init,
2053 KMEMLEAK_GREY, GFP_ATOMIC);
2054
3c7b4e6b
CM
2055 /*
2056 * This is the point where tracking allocations is safe. Automatic
2057 * scanning is started during the late initcall. Add the early logged
2058 * callbacks to the kmemleak infrastructure.
2059 */
2060 for (i = 0; i < crt_early_log; i++) {
2061 struct early_log *log = &early_log[i];
2062
2063 switch (log->op_type) {
2064 case KMEMLEAK_ALLOC:
fd678967 2065 early_alloc(log);
3c7b4e6b 2066 break;
f528f0b8
CM
2067 case KMEMLEAK_ALLOC_PERCPU:
2068 early_alloc_percpu(log);
2069 break;
3c7b4e6b
CM
2070 case KMEMLEAK_FREE:
2071 kmemleak_free(log->ptr);
2072 break;
53238a60
CM
2073 case KMEMLEAK_FREE_PART:
2074 kmemleak_free_part(log->ptr, log->size);
2075 break;
f528f0b8
CM
2076 case KMEMLEAK_FREE_PERCPU:
2077 kmemleak_free_percpu(log->ptr);
2078 break;
3c7b4e6b
CM
2079 case KMEMLEAK_NOT_LEAK:
2080 kmemleak_not_leak(log->ptr);
2081 break;
2082 case KMEMLEAK_IGNORE:
2083 kmemleak_ignore(log->ptr);
2084 break;
2085 case KMEMLEAK_SCAN_AREA:
c017b4be 2086 kmemleak_scan_area(log->ptr, log->size, GFP_KERNEL);
3c7b4e6b
CM
2087 break;
2088 case KMEMLEAK_NO_SCAN:
2089 kmemleak_no_scan(log->ptr);
2090 break;
94f4a161
CM
2091 case KMEMLEAK_SET_EXCESS_REF:
2092 object_set_excess_ref((unsigned long)log->ptr,
2093 log->excess_ref);
2094 break;
3c7b4e6b 2095 default:
5f79020c
CM
2096 kmemleak_warn("Unknown early log operation: %d\n",
2097 log->op_type);
2098 }
2099
8910ae89 2100 if (kmemleak_warning) {
5f79020c 2101 print_log_trace(log);
8910ae89 2102 kmemleak_warning = 0;
3c7b4e6b
CM
2103 }
2104 }
2105}
2106
2107/*
2108 * Late initialization function.
2109 */
2110static int __init kmemleak_late_init(void)
2111{
8910ae89 2112 kmemleak_initialized = 1;
3c7b4e6b 2113
282401df 2114 debugfs_create_file("kmemleak", 0644, NULL, NULL, &kmemleak_fops);
b353756b 2115
8910ae89 2116 if (kmemleak_error) {
3c7b4e6b 2117 /*
25985edc 2118 * Some error occurred and kmemleak was disabled. There is a
3c7b4e6b
CM
2119 * small chance that kmemleak_disable() was called immediately
2120 * after setting kmemleak_initialized and we may end up with
2121 * two clean-up threads but serialized by scan_mutex.
2122 */
179a8100 2123 schedule_work(&cleanup_work);
3c7b4e6b
CM
2124 return -ENOMEM;
2125 }
2126
d53ce042
SK
2127 if (IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN)) {
2128 mutex_lock(&scan_mutex);
2129 start_scan_thread();
2130 mutex_unlock(&scan_mutex);
2131 }
3c7b4e6b
CM
2132
2133 pr_info("Kernel memory leak detector initialized\n");
2134
2135 return 0;
2136}
2137late_initcall(kmemleak_late_init);