brd: use XArray instead of radix-tree to index backing pages
[linux-block.git] / mm / kmemleak.c
CommitLineData
45051539 1// SPDX-License-Identifier: GPL-2.0-only
3c7b4e6b
CM
2/*
3 * mm/kmemleak.c
4 *
5 * Copyright (C) 2008 ARM Limited
6 * Written by Catalin Marinas <catalin.marinas@arm.com>
7 *
3c7b4e6b 8 * For more information on the algorithm and kmemleak usage, please see
22901c6c 9 * Documentation/dev-tools/kmemleak.rst.
3c7b4e6b
CM
10 *
11 * Notes on locking
12 * ----------------
13 *
14 * The following locks and mutexes are used by kmemleak:
15 *
782e4179
WL
16 * - kmemleak_lock (raw_spinlock_t): protects the object_list as well as
17 * del_state modifications and accesses to the object_tree_root (or
18 * object_phys_tree_root). The object_list is the main list holding the
19 * metadata (struct kmemleak_object) for the allocated memory blocks.
20 * The object_tree_root and object_phys_tree_root are red
21 * black trees used to look-up metadata based on a pointer to the
0c24e061
PW
22 * corresponding memory block. The object_phys_tree_root is for objects
23 * allocated with physical address. The kmemleak_object structures are
24 * added to the object_list and object_tree_root (or object_phys_tree_root)
25 * in the create_object() function called from the kmemleak_alloc() (or
26 * kmemleak_alloc_phys()) callback and removed in delete_object() called from
27 * the kmemleak_free() callback
8c96f1bc
HZ
28 * - kmemleak_object.lock (raw_spinlock_t): protects a kmemleak_object.
29 * Accesses to the metadata (e.g. count) are protected by this lock. Note
30 * that some members of this structure may be protected by other means
31 * (atomic or kmemleak_lock). This lock is also held when scanning the
32 * corresponding memory block to avoid the kernel freeing it via the
33 * kmemleak_free() callback. This is less heavyweight than holding a global
34 * lock like kmemleak_lock during scanning.
3c7b4e6b
CM
35 * - scan_mutex (mutex): ensures that only one thread may scan the memory for
36 * unreferenced objects at a time. The gray_list contains the objects which
37 * are already referenced or marked as false positives and need to be
38 * scanned. This list is only modified during a scanning episode when the
39 * scan_mutex is held. At the end of a scan, the gray_list is always empty.
40 * Note that the kmemleak_object.use_count is incremented when an object is
4698c1f2
CM
41 * added to the gray_list and therefore cannot be freed. This mutex also
42 * prevents multiple users of the "kmemleak" debugfs file together with
43 * modifications to the memory scanning parameters including the scan_thread
44 * pointer
3c7b4e6b 45 *
93ada579 46 * Locks and mutexes are acquired/nested in the following order:
9d5a4c73 47 *
93ada579
CM
48 * scan_mutex [-> object->lock] -> kmemleak_lock -> other_object->lock (SINGLE_DEPTH_NESTING)
49 *
50 * No kmemleak_lock and object->lock nesting is allowed outside scan_mutex
51 * regions.
9d5a4c73 52 *
3c7b4e6b
CM
53 * The kmemleak_object structures have a use_count incremented or decremented
54 * using the get_object()/put_object() functions. When the use_count becomes
55 * 0, this count can no longer be incremented and put_object() schedules the
56 * kmemleak_object freeing via an RCU callback. All calls to the get_object()
57 * function must be protected by rcu_read_lock() to avoid accessing a freed
58 * structure.
59 */
60
ae281064
JP
61#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
62
3c7b4e6b
CM
63#include <linux/init.h>
64#include <linux/kernel.h>
65#include <linux/list.h>
3f07c014 66#include <linux/sched/signal.h>
29930025 67#include <linux/sched/task.h>
68db0cf1 68#include <linux/sched/task_stack.h>
3c7b4e6b
CM
69#include <linux/jiffies.h>
70#include <linux/delay.h>
b95f1b31 71#include <linux/export.h>
3c7b4e6b 72#include <linux/kthread.h>
85d3a316 73#include <linux/rbtree.h>
3c7b4e6b
CM
74#include <linux/fs.h>
75#include <linux/debugfs.h>
76#include <linux/seq_file.h>
77#include <linux/cpumask.h>
78#include <linux/spinlock.h>
154221c3 79#include <linux/module.h>
3c7b4e6b
CM
80#include <linux/mutex.h>
81#include <linux/rcupdate.h>
82#include <linux/stacktrace.h>
56a61617 83#include <linux/stackdepot.h>
3c7b4e6b
CM
84#include <linux/cache.h>
85#include <linux/percpu.h>
57c8a661 86#include <linux/memblock.h>
9099daed 87#include <linux/pfn.h>
3c7b4e6b
CM
88#include <linux/mmzone.h>
89#include <linux/slab.h>
90#include <linux/thread_info.h>
91#include <linux/err.h>
92#include <linux/uaccess.h>
93#include <linux/string.h>
94#include <linux/nodemask.h>
95#include <linux/mm.h>
179a8100 96#include <linux/workqueue.h>
04609ccc 97#include <linux/crc32.h>
3c7b4e6b
CM
98
99#include <asm/sections.h>
100#include <asm/processor.h>
60063497 101#include <linux/atomic.h>
3c7b4e6b 102
e79ed2f1 103#include <linux/kasan.h>
95511580 104#include <linux/kfence.h>
3c7b4e6b 105#include <linux/kmemleak.h>
029aeff5 106#include <linux/memory_hotplug.h>
3c7b4e6b
CM
107
108/*
109 * Kmemleak configuration and common defines.
110 */
111#define MAX_TRACE 16 /* stack trace length */
3c7b4e6b 112#define MSECS_MIN_AGE 5000 /* minimum object age for reporting */
3c7b4e6b
CM
113#define SECS_FIRST_SCAN 60 /* delay before the first scan */
114#define SECS_SCAN_WAIT 600 /* subsequent auto scanning delay */
af98603d 115#define MAX_SCAN_SIZE 4096 /* maximum size of a scanned block */
3c7b4e6b
CM
116
117#define BYTES_PER_POINTER sizeof(void *)
118
216c04b0 119/* GFP bitmask for kmemleak internal allocations */
79d37050
NA
120#define gfp_kmemleak_mask(gfp) (((gfp) & (GFP_KERNEL | GFP_ATOMIC | \
121 __GFP_NOLOCKDEP)) | \
6ae4bd1f 122 __GFP_NORETRY | __GFP_NOMEMALLOC | \
df9576de 123 __GFP_NOWARN)
216c04b0 124
3c7b4e6b
CM
125/* scanning area inside a memory block */
126struct kmemleak_scan_area {
127 struct hlist_node node;
c017b4be
CM
128 unsigned long start;
129 size_t size;
3c7b4e6b
CM
130};
131
a1084c87
LR
132#define KMEMLEAK_GREY 0
133#define KMEMLEAK_BLACK -1
134
3c7b4e6b
CM
135/*
136 * Structure holding the metadata for each allocated memory block.
137 * Modifications to such objects should be made while holding the
138 * object->lock. Insertions or deletions from object_list, gray_list or
85d3a316 139 * rb_node are already protected by the corresponding locks or mutex (see
3c7b4e6b
CM
140 * the notes on locking above). These objects are reference-counted
141 * (use_count) and freed using the RCU mechanism.
142 */
143struct kmemleak_object {
8c96f1bc 144 raw_spinlock_t lock;
f66abf09 145 unsigned int flags; /* object status flags */
3c7b4e6b
CM
146 struct list_head object_list;
147 struct list_head gray_list;
85d3a316 148 struct rb_node rb_node;
3c7b4e6b
CM
149 struct rcu_head rcu; /* object_list lockless traversal */
150 /* object usage count; object freed when use_count == 0 */
151 atomic_t use_count;
782e4179 152 unsigned int del_state; /* deletion state */
3c7b4e6b
CM
153 unsigned long pointer;
154 size_t size;
94f4a161
CM
155 /* pass surplus references to this pointer */
156 unsigned long excess_ref;
3c7b4e6b
CM
157 /* minimum number of a pointers found before it is considered leak */
158 int min_count;
159 /* the total number of pointers found pointing to this object */
160 int count;
04609ccc
CM
161 /* checksum for detecting modified objects */
162 u32 checksum;
3c7b4e6b
CM
163 /* memory ranges to be scanned inside an object (empty for all) */
164 struct hlist_head area_list;
56a61617 165 depot_stack_handle_t trace_handle;
3c7b4e6b
CM
166 unsigned long jiffies; /* creation timestamp */
167 pid_t pid; /* pid of the current task */
168 char comm[TASK_COMM_LEN]; /* executable name */
169};
170
171/* flag representing the memory block allocation status */
172#define OBJECT_ALLOCATED (1 << 0)
173/* flag set after the first reporting of an unreference object */
174#define OBJECT_REPORTED (1 << 1)
175/* flag set to not scan the object */
176#define OBJECT_NO_SCAN (1 << 2)
dba82d94
CM
177/* flag set to fully scan the object when scan_area allocation failed */
178#define OBJECT_FULL_SCAN (1 << 3)
8e0c4ab3
PW
179/* flag set for object allocated with physical address */
180#define OBJECT_PHYS (1 << 4)
3c7b4e6b 181
782e4179
WL
182/* set when __remove_object() called */
183#define DELSTATE_REMOVED (1 << 0)
184/* set to temporarily prevent deletion from object_list */
185#define DELSTATE_NO_DELETE (1 << 1)
186
154221c3 187#define HEX_PREFIX " "
0494e082
SS
188/* number of bytes to print per line; must be 16 or 32 */
189#define HEX_ROW_SIZE 16
190/* number of bytes to print at a time (1, 2, 4, 8) */
191#define HEX_GROUP_SIZE 1
192/* include ASCII after the hex output */
193#define HEX_ASCII 1
194/* max number of lines to be printed */
195#define HEX_MAX_LINES 2
196
3c7b4e6b
CM
197/* the list of all allocated objects */
198static LIST_HEAD(object_list);
199/* the list of gray-colored objects (see color_gray comment below) */
200static LIST_HEAD(gray_list);
0647398a 201/* memory pool allocation */
c5665868 202static struct kmemleak_object mem_pool[CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE];
0647398a
CM
203static int mem_pool_free_count = ARRAY_SIZE(mem_pool);
204static LIST_HEAD(mem_pool_free_list);
85d3a316
ML
205/* search tree for object boundaries */
206static struct rb_root object_tree_root = RB_ROOT;
0c24e061
PW
207/* search tree for object (with OBJECT_PHYS flag) boundaries */
208static struct rb_root object_phys_tree_root = RB_ROOT;
209/* protecting the access to object_list, object_tree_root (or object_phys_tree_root) */
8c96f1bc 210static DEFINE_RAW_SPINLOCK(kmemleak_lock);
3c7b4e6b
CM
211
212/* allocation caches for kmemleak internal data */
213static struct kmem_cache *object_cache;
214static struct kmem_cache *scan_area_cache;
215
216/* set if tracing memory operations is enabled */
c5665868 217static int kmemleak_enabled = 1;
c5f3b1a5 218/* same as above but only for the kmemleak_free() callback */
c5665868 219static int kmemleak_free_enabled = 1;
3c7b4e6b 220/* set in the late_initcall if there were no errors */
8910ae89 221static int kmemleak_initialized;
5f79020c 222/* set if a kmemleak warning was issued */
8910ae89 223static int kmemleak_warning;
5f79020c 224/* set if a fatal kmemleak error has occurred */
8910ae89 225static int kmemleak_error;
3c7b4e6b
CM
226
227/* minimum and maximum address that may be valid pointers */
228static unsigned long min_addr = ULONG_MAX;
229static unsigned long max_addr;
230
3c7b4e6b 231static struct task_struct *scan_thread;
acf4968e 232/* used to avoid reporting of recently allocated objects */
3c7b4e6b 233static unsigned long jiffies_min_age;
acf4968e 234static unsigned long jiffies_last_scan;
3c7b4e6b 235/* delay between automatic memory scannings */
54dd200c 236static unsigned long jiffies_scan_wait;
3c7b4e6b 237/* enables or disables the task stacks scanning */
e0a2a160 238static int kmemleak_stack_scan = 1;
4698c1f2 239/* protects the memory scanning, parameters and debug/kmemleak file access */
3c7b4e6b 240static DEFINE_MUTEX(scan_mutex);
ab0155a2
JB
241/* setting kmemleak=on, will set this var, skipping the disable */
242static int kmemleak_skip_disable;
dc9b3f42
LZ
243/* If there are leaks that can be reported */
244static bool kmemleak_found_leaks;
3c7b4e6b 245
154221c3
VW
246static bool kmemleak_verbose;
247module_param_named(verbose, kmemleak_verbose, bool, 0600);
248
3c7b4e6b
CM
249static void kmemleak_disable(void);
250
251/*
252 * Print a warning and dump the stack trace.
253 */
5f79020c 254#define kmemleak_warn(x...) do { \
598d8091 255 pr_warn(x); \
5f79020c 256 dump_stack(); \
8910ae89 257 kmemleak_warning = 1; \
3c7b4e6b
CM
258} while (0)
259
260/*
25985edc 261 * Macro invoked when a serious kmemleak condition occurred and cannot be
2030117d 262 * recovered from. Kmemleak will be disabled and further allocation/freeing
3c7b4e6b
CM
263 * tracing no longer available.
264 */
000814f4 265#define kmemleak_stop(x...) do { \
3c7b4e6b
CM
266 kmemleak_warn(x); \
267 kmemleak_disable(); \
268} while (0)
269
154221c3
VW
270#define warn_or_seq_printf(seq, fmt, ...) do { \
271 if (seq) \
272 seq_printf(seq, fmt, ##__VA_ARGS__); \
273 else \
274 pr_warn(fmt, ##__VA_ARGS__); \
275} while (0)
276
277static void warn_or_seq_hex_dump(struct seq_file *seq, int prefix_type,
278 int rowsize, int groupsize, const void *buf,
279 size_t len, bool ascii)
280{
281 if (seq)
282 seq_hex_dump(seq, HEX_PREFIX, prefix_type, rowsize, groupsize,
283 buf, len, ascii);
284 else
285 print_hex_dump(KERN_WARNING, pr_fmt(HEX_PREFIX), prefix_type,
286 rowsize, groupsize, buf, len, ascii);
287}
288
0494e082
SS
289/*
290 * Printing of the objects hex dump to the seq file. The number of lines to be
291 * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The
292 * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called
293 * with the object->lock held.
294 */
295static void hex_dump_object(struct seq_file *seq,
296 struct kmemleak_object *object)
297{
298 const u8 *ptr = (const u8 *)object->pointer;
6fc37c49 299 size_t len;
0494e082 300
0c24e061
PW
301 if (WARN_ON_ONCE(object->flags & OBJECT_PHYS))
302 return;
303
0494e082 304 /* limit the number of lines to HEX_MAX_LINES */
6fc37c49 305 len = min_t(size_t, object->size, HEX_MAX_LINES * HEX_ROW_SIZE);
0494e082 306
154221c3 307 warn_or_seq_printf(seq, " hex dump (first %zu bytes):\n", len);
5c335fe0 308 kasan_disable_current();
154221c3 309 warn_or_seq_hex_dump(seq, DUMP_PREFIX_NONE, HEX_ROW_SIZE,
6c7a00b8 310 HEX_GROUP_SIZE, kasan_reset_tag((void *)ptr), len, HEX_ASCII);
5c335fe0 311 kasan_enable_current();
0494e082
SS
312}
313
3c7b4e6b
CM
314/*
315 * Object colors, encoded with count and min_count:
316 * - white - orphan object, not enough references to it (count < min_count)
317 * - gray - not orphan, not marked as false positive (min_count == 0) or
318 * sufficient references to it (count >= min_count)
319 * - black - ignore, it doesn't contain references (e.g. text section)
320 * (min_count == -1). No function defined for this color.
321 * Newly created objects don't have any color assigned (object->count == -1)
322 * before the next memory scan when they become white.
323 */
4a558dd6 324static bool color_white(const struct kmemleak_object *object)
3c7b4e6b 325{
a1084c87
LR
326 return object->count != KMEMLEAK_BLACK &&
327 object->count < object->min_count;
3c7b4e6b
CM
328}
329
4a558dd6 330static bool color_gray(const struct kmemleak_object *object)
3c7b4e6b 331{
a1084c87
LR
332 return object->min_count != KMEMLEAK_BLACK &&
333 object->count >= object->min_count;
3c7b4e6b
CM
334}
335
3c7b4e6b
CM
336/*
337 * Objects are considered unreferenced only if their color is white, they have
338 * not be deleted and have a minimum age to avoid false positives caused by
339 * pointers temporarily stored in CPU registers.
340 */
4a558dd6 341static bool unreferenced_object(struct kmemleak_object *object)
3c7b4e6b 342{
04609ccc 343 return (color_white(object) && object->flags & OBJECT_ALLOCATED) &&
acf4968e
CM
344 time_before_eq(object->jiffies + jiffies_min_age,
345 jiffies_last_scan);
3c7b4e6b
CM
346}
347
348/*
bab4a34a
CM
349 * Printing of the unreferenced objects information to the seq file. The
350 * print_unreferenced function must be called with the object->lock held.
3c7b4e6b 351 */
3c7b4e6b
CM
352static void print_unreferenced(struct seq_file *seq,
353 struct kmemleak_object *object)
354{
355 int i;
56a61617
ZH
356 unsigned long *entries;
357 unsigned int nr_entries;
fefdd336 358 unsigned int msecs_age = jiffies_to_msecs(jiffies - object->jiffies);
3c7b4e6b 359
56a61617 360 nr_entries = stack_depot_fetch(object->trace_handle, &entries);
154221c3 361 warn_or_seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n",
56a61617 362 object->pointer, object->size);
154221c3 363 warn_or_seq_printf(seq, " comm \"%s\", pid %d, jiffies %lu (age %d.%03ds)\n",
56a61617
ZH
364 object->comm, object->pid, object->jiffies,
365 msecs_age / 1000, msecs_age % 1000);
0494e082 366 hex_dump_object(seq, object);
154221c3 367 warn_or_seq_printf(seq, " backtrace:\n");
3c7b4e6b 368
56a61617
ZH
369 for (i = 0; i < nr_entries; i++) {
370 void *ptr = (void *)entries[i];
3a6f33d8 371 warn_or_seq_printf(seq, " [<%pK>] %pS\n", ptr, ptr);
3c7b4e6b
CM
372 }
373}
374
375/*
376 * Print the kmemleak_object information. This function is used mainly for
377 * debugging special cases when kmemleak operations. It must be called with
378 * the object->lock held.
379 */
380static void dump_object_info(struct kmemleak_object *object)
381{
ae281064 382 pr_notice("Object 0x%08lx (size %zu):\n",
56a61617 383 object->pointer, object->size);
3c7b4e6b 384 pr_notice(" comm \"%s\", pid %d, jiffies %lu\n",
56a61617 385 object->comm, object->pid, object->jiffies);
3c7b4e6b
CM
386 pr_notice(" min_count = %d\n", object->min_count);
387 pr_notice(" count = %d\n", object->count);
f66abf09 388 pr_notice(" flags = 0x%x\n", object->flags);
aae0ad7a 389 pr_notice(" checksum = %u\n", object->checksum);
3c7b4e6b 390 pr_notice(" backtrace:\n");
56a61617
ZH
391 if (object->trace_handle)
392 stack_depot_print(object->trace_handle);
3c7b4e6b
CM
393}
394
395/*
85d3a316 396 * Look-up a memory block metadata (kmemleak_object) in the object search
3c7b4e6b
CM
397 * tree based on a pointer value. If alias is 0, only values pointing to the
398 * beginning of the memory block are allowed. The kmemleak_lock must be held
399 * when calling this function.
400 */
0c24e061
PW
401static struct kmemleak_object *__lookup_object(unsigned long ptr, int alias,
402 bool is_phys)
3c7b4e6b 403{
0c24e061
PW
404 struct rb_node *rb = is_phys ? object_phys_tree_root.rb_node :
405 object_tree_root.rb_node;
ad1a3e15 406 unsigned long untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr);
85d3a316
ML
407
408 while (rb) {
ad1a3e15
KYL
409 struct kmemleak_object *object;
410 unsigned long untagged_objp;
411
412 object = rb_entry(rb, struct kmemleak_object, rb_node);
413 untagged_objp = (unsigned long)kasan_reset_tag((void *)object->pointer);
414
415 if (untagged_ptr < untagged_objp)
85d3a316 416 rb = object->rb_node.rb_left;
ad1a3e15 417 else if (untagged_objp + object->size <= untagged_ptr)
85d3a316 418 rb = object->rb_node.rb_right;
ad1a3e15 419 else if (untagged_objp == untagged_ptr || alias)
85d3a316
ML
420 return object;
421 else {
5f79020c
CM
422 kmemleak_warn("Found object by alias at 0x%08lx\n",
423 ptr);
a7686a45 424 dump_object_info(object);
85d3a316 425 break;
3c7b4e6b 426 }
85d3a316
ML
427 }
428 return NULL;
3c7b4e6b
CM
429}
430
0c24e061
PW
431/* Look-up a kmemleak object which allocated with virtual address. */
432static struct kmemleak_object *lookup_object(unsigned long ptr, int alias)
433{
434 return __lookup_object(ptr, alias, false);
435}
436
3c7b4e6b
CM
437/*
438 * Increment the object use_count. Return 1 if successful or 0 otherwise. Note
439 * that once an object's use_count reached 0, the RCU freeing was already
440 * registered and the object should no longer be used. This function must be
441 * called under the protection of rcu_read_lock().
442 */
443static int get_object(struct kmemleak_object *object)
444{
445 return atomic_inc_not_zero(&object->use_count);
446}
447
0647398a
CM
448/*
449 * Memory pool allocation and freeing. kmemleak_lock must not be held.
450 */
451static struct kmemleak_object *mem_pool_alloc(gfp_t gfp)
452{
453 unsigned long flags;
454 struct kmemleak_object *object;
455
456 /* try the slab allocator first */
c5665868
CM
457 if (object_cache) {
458 object = kmem_cache_alloc(object_cache, gfp_kmemleak_mask(gfp));
459 if (object)
460 return object;
461 }
0647398a
CM
462
463 /* slab allocation failed, try the memory pool */
8c96f1bc 464 raw_spin_lock_irqsave(&kmemleak_lock, flags);
0647398a
CM
465 object = list_first_entry_or_null(&mem_pool_free_list,
466 typeof(*object), object_list);
467 if (object)
468 list_del(&object->object_list);
469 else if (mem_pool_free_count)
470 object = &mem_pool[--mem_pool_free_count];
c5665868
CM
471 else
472 pr_warn_once("Memory pool empty, consider increasing CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE\n");
8c96f1bc 473 raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
0647398a
CM
474
475 return object;
476}
477
478/*
479 * Return the object to either the slab allocator or the memory pool.
480 */
481static void mem_pool_free(struct kmemleak_object *object)
482{
483 unsigned long flags;
484
485 if (object < mem_pool || object >= mem_pool + ARRAY_SIZE(mem_pool)) {
486 kmem_cache_free(object_cache, object);
487 return;
488 }
489
490 /* add the object to the memory pool free list */
8c96f1bc 491 raw_spin_lock_irqsave(&kmemleak_lock, flags);
0647398a 492 list_add(&object->object_list, &mem_pool_free_list);
8c96f1bc 493 raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
0647398a
CM
494}
495
3c7b4e6b
CM
496/*
497 * RCU callback to free a kmemleak_object.
498 */
499static void free_object_rcu(struct rcu_head *rcu)
500{
b67bfe0d 501 struct hlist_node *tmp;
3c7b4e6b
CM
502 struct kmemleak_scan_area *area;
503 struct kmemleak_object *object =
504 container_of(rcu, struct kmemleak_object, rcu);
505
506 /*
507 * Once use_count is 0 (guaranteed by put_object), there is no other
508 * code accessing this object, hence no need for locking.
509 */
b67bfe0d
SL
510 hlist_for_each_entry_safe(area, tmp, &object->area_list, node) {
511 hlist_del(&area->node);
3c7b4e6b
CM
512 kmem_cache_free(scan_area_cache, area);
513 }
0647398a 514 mem_pool_free(object);
3c7b4e6b
CM
515}
516
517/*
518 * Decrement the object use_count. Once the count is 0, free the object using
519 * an RCU callback. Since put_object() may be called via the kmemleak_free() ->
520 * delete_object() path, the delayed RCU freeing ensures that there is no
521 * recursive call to the kernel allocator. Lock-less RCU object_list traversal
522 * is also possible.
523 */
524static void put_object(struct kmemleak_object *object)
525{
526 if (!atomic_dec_and_test(&object->use_count))
527 return;
528
529 /* should only get here after delete_object was called */
530 WARN_ON(object->flags & OBJECT_ALLOCATED);
531
c5665868
CM
532 /*
533 * It may be too early for the RCU callbacks, however, there is no
534 * concurrent object_list traversal when !object_cache and all objects
535 * came from the memory pool. Free the object directly.
536 */
537 if (object_cache)
538 call_rcu(&object->rcu, free_object_rcu);
539 else
540 free_object_rcu(&object->rcu);
3c7b4e6b
CM
541}
542
543/*
85d3a316 544 * Look up an object in the object search tree and increase its use_count.
3c7b4e6b 545 */
0c24e061
PW
546static struct kmemleak_object *__find_and_get_object(unsigned long ptr, int alias,
547 bool is_phys)
3c7b4e6b
CM
548{
549 unsigned long flags;
9fbed254 550 struct kmemleak_object *object;
3c7b4e6b
CM
551
552 rcu_read_lock();
8c96f1bc 553 raw_spin_lock_irqsave(&kmemleak_lock, flags);
0c24e061 554 object = __lookup_object(ptr, alias, is_phys);
8c96f1bc 555 raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
3c7b4e6b
CM
556
557 /* check whether the object is still available */
558 if (object && !get_object(object))
559 object = NULL;
560 rcu_read_unlock();
561
562 return object;
563}
564
0c24e061
PW
565/* Look up and get an object which allocated with virtual address. */
566static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias)
567{
568 return __find_and_get_object(ptr, alias, false);
569}
570
2abd839a 571/*
0c24e061
PW
572 * Remove an object from the object_tree_root (or object_phys_tree_root)
573 * and object_list. Must be called with the kmemleak_lock held _if_ kmemleak
574 * is still enabled.
2abd839a
CM
575 */
576static void __remove_object(struct kmemleak_object *object)
577{
0c24e061
PW
578 rb_erase(&object->rb_node, object->flags & OBJECT_PHYS ?
579 &object_phys_tree_root :
580 &object_tree_root);
782e4179
WL
581 if (!(object->del_state & DELSTATE_NO_DELETE))
582 list_del_rcu(&object->object_list);
583 object->del_state |= DELSTATE_REMOVED;
2abd839a
CM
584}
585
e781a9ab
CM
586/*
587 * Look up an object in the object search tree and remove it from both
0c24e061
PW
588 * object_tree_root (or object_phys_tree_root) and object_list. The
589 * returned object's use_count should be at least 1, as initially set
590 * by create_object().
e781a9ab 591 */
0c24e061
PW
592static struct kmemleak_object *find_and_remove_object(unsigned long ptr, int alias,
593 bool is_phys)
e781a9ab
CM
594{
595 unsigned long flags;
596 struct kmemleak_object *object;
597
8c96f1bc 598 raw_spin_lock_irqsave(&kmemleak_lock, flags);
0c24e061 599 object = __lookup_object(ptr, alias, is_phys);
2abd839a
CM
600 if (object)
601 __remove_object(object);
8c96f1bc 602 raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
e781a9ab
CM
603
604 return object;
605}
606
56a61617 607static noinline depot_stack_handle_t set_track_prepare(void)
fd678967 608{
56a61617
ZH
609 depot_stack_handle_t trace_handle;
610 unsigned long entries[MAX_TRACE];
611 unsigned int nr_entries;
612
613 if (!kmemleak_initialized)
614 return 0;
615 nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3);
616 trace_handle = stack_depot_save(entries, nr_entries, GFP_NOWAIT);
617
618 return trace_handle;
fd678967
CM
619}
620
3c7b4e6b
CM
621/*
622 * Create the metadata (struct kmemleak_object) corresponding to an allocated
0c24e061
PW
623 * memory block and add it to the object_list and object_tree_root (or
624 * object_phys_tree_root).
3c7b4e6b 625 */
b955aa70
LS
626static void __create_object(unsigned long ptr, size_t size,
627 int min_count, gfp_t gfp, bool is_phys)
3c7b4e6b
CM
628{
629 unsigned long flags;
85d3a316
ML
630 struct kmemleak_object *object, *parent;
631 struct rb_node **link, *rb_parent;
a2f77575 632 unsigned long untagged_ptr;
ad1a3e15 633 unsigned long untagged_objp;
3c7b4e6b 634
0647398a 635 object = mem_pool_alloc(gfp);
3c7b4e6b 636 if (!object) {
598d8091 637 pr_warn("Cannot allocate a kmemleak_object structure\n");
6ae4bd1f 638 kmemleak_disable();
b955aa70 639 return;
3c7b4e6b
CM
640 }
641
642 INIT_LIST_HEAD(&object->object_list);
643 INIT_LIST_HEAD(&object->gray_list);
644 INIT_HLIST_HEAD(&object->area_list);
8c96f1bc 645 raw_spin_lock_init(&object->lock);
3c7b4e6b 646 atomic_set(&object->use_count, 1);
8e0c4ab3 647 object->flags = OBJECT_ALLOCATED | (is_phys ? OBJECT_PHYS : 0);
3c7b4e6b 648 object->pointer = ptr;
95511580 649 object->size = kfence_ksize((void *)ptr) ?: size;
94f4a161 650 object->excess_ref = 0;
3c7b4e6b 651 object->min_count = min_count;
04609ccc 652 object->count = 0; /* white color initially */
3c7b4e6b 653 object->jiffies = jiffies;
04609ccc 654 object->checksum = 0;
782e4179 655 object->del_state = 0;
3c7b4e6b
CM
656
657 /* task information */
ea0eafea 658 if (in_hardirq()) {
3c7b4e6b
CM
659 object->pid = 0;
660 strncpy(object->comm, "hardirq", sizeof(object->comm));
6ef90569 661 } else if (in_serving_softirq()) {
3c7b4e6b
CM
662 object->pid = 0;
663 strncpy(object->comm, "softirq", sizeof(object->comm));
664 } else {
665 object->pid = current->pid;
666 /*
667 * There is a small chance of a race with set_task_comm(),
668 * however using get_task_comm() here may cause locking
669 * dependency issues with current->alloc_lock. In the worst
670 * case, the command line is not correct.
671 */
672 strncpy(object->comm, current->comm, sizeof(object->comm));
673 }
674
675 /* kernel backtrace */
56a61617 676 object->trace_handle = set_track_prepare();
3c7b4e6b 677
8c96f1bc 678 raw_spin_lock_irqsave(&kmemleak_lock, flags);
0580a181 679
a2f77575 680 untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr);
0c24e061
PW
681 /*
682 * Only update min_addr and max_addr with object
683 * storing virtual address.
684 */
685 if (!is_phys) {
686 min_addr = min(min_addr, untagged_ptr);
687 max_addr = max(max_addr, untagged_ptr + size);
688 }
689 link = is_phys ? &object_phys_tree_root.rb_node :
690 &object_tree_root.rb_node;
85d3a316
ML
691 rb_parent = NULL;
692 while (*link) {
693 rb_parent = *link;
694 parent = rb_entry(rb_parent, struct kmemleak_object, rb_node);
ad1a3e15
KYL
695 untagged_objp = (unsigned long)kasan_reset_tag((void *)parent->pointer);
696 if (untagged_ptr + size <= untagged_objp)
85d3a316 697 link = &parent->rb_node.rb_left;
ad1a3e15 698 else if (untagged_objp + parent->size <= untagged_ptr)
85d3a316
ML
699 link = &parent->rb_node.rb_right;
700 else {
756a025f 701 kmemleak_stop("Cannot insert 0x%lx into the object search tree (overlaps existing)\n",
85d3a316 702 ptr);
9d5a4c73
CM
703 /*
704 * No need for parent->lock here since "parent" cannot
705 * be freed while the kmemleak_lock is held.
706 */
707 dump_object_info(parent);
85d3a316 708 kmem_cache_free(object_cache, object);
85d3a316
ML
709 goto out;
710 }
3c7b4e6b 711 }
85d3a316 712 rb_link_node(&object->rb_node, rb_parent, link);
0c24e061
PW
713 rb_insert_color(&object->rb_node, is_phys ? &object_phys_tree_root :
714 &object_tree_root);
3c7b4e6b
CM
715 list_add_tail_rcu(&object->object_list, &object_list);
716out:
8c96f1bc 717 raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
3c7b4e6b
CM
718}
719
8e0c4ab3 720/* Create kmemleak object which allocated with virtual address. */
b955aa70
LS
721static void create_object(unsigned long ptr, size_t size,
722 int min_count, gfp_t gfp)
8e0c4ab3 723{
b955aa70 724 __create_object(ptr, size, min_count, gfp, false);
8e0c4ab3
PW
725}
726
727/* Create kmemleak object which allocated with physical address. */
b955aa70
LS
728static void create_object_phys(unsigned long ptr, size_t size,
729 int min_count, gfp_t gfp)
8e0c4ab3 730{
b955aa70 731 __create_object(ptr, size, min_count, gfp, true);
8e0c4ab3
PW
732}
733
3c7b4e6b 734/*
e781a9ab 735 * Mark the object as not allocated and schedule RCU freeing via put_object().
3c7b4e6b 736 */
53238a60 737static void __delete_object(struct kmemleak_object *object)
3c7b4e6b
CM
738{
739 unsigned long flags;
3c7b4e6b 740
3c7b4e6b 741 WARN_ON(!(object->flags & OBJECT_ALLOCATED));
e781a9ab 742 WARN_ON(atomic_read(&object->use_count) < 1);
3c7b4e6b
CM
743
744 /*
745 * Locking here also ensures that the corresponding memory block
746 * cannot be freed when it is being scanned.
747 */
8c96f1bc 748 raw_spin_lock_irqsave(&object->lock, flags);
3c7b4e6b 749 object->flags &= ~OBJECT_ALLOCATED;
8c96f1bc 750 raw_spin_unlock_irqrestore(&object->lock, flags);
3c7b4e6b
CM
751 put_object(object);
752}
753
53238a60
CM
754/*
755 * Look up the metadata (struct kmemleak_object) corresponding to ptr and
756 * delete it.
757 */
758static void delete_object_full(unsigned long ptr)
759{
760 struct kmemleak_object *object;
761
0c24e061 762 object = find_and_remove_object(ptr, 0, false);
53238a60
CM
763 if (!object) {
764#ifdef DEBUG
765 kmemleak_warn("Freeing unknown object at 0x%08lx\n",
766 ptr);
767#endif
768 return;
769 }
770 __delete_object(object);
53238a60
CM
771}
772
773/*
774 * Look up the metadata (struct kmemleak_object) corresponding to ptr and
775 * delete it. If the memory block is partially freed, the function may create
776 * additional metadata for the remaining parts of the block.
777 */
0c24e061 778static void delete_object_part(unsigned long ptr, size_t size, bool is_phys)
53238a60
CM
779{
780 struct kmemleak_object *object;
781 unsigned long start, end;
782
0c24e061 783 object = find_and_remove_object(ptr, 1, is_phys);
53238a60
CM
784 if (!object) {
785#ifdef DEBUG
756a025f
JP
786 kmemleak_warn("Partially freeing unknown object at 0x%08lx (size %zu)\n",
787 ptr, size);
53238a60
CM
788#endif
789 return;
790 }
53238a60
CM
791
792 /*
793 * Create one or two objects that may result from the memory block
794 * split. Note that partial freeing is only done by free_bootmem() and
c5665868 795 * this happens before kmemleak_init() is called.
53238a60
CM
796 */
797 start = object->pointer;
798 end = object->pointer + object->size;
799 if (ptr > start)
8e0c4ab3 800 __create_object(start, ptr - start, object->min_count,
0c24e061 801 GFP_KERNEL, is_phys);
53238a60 802 if (ptr + size < end)
8e0c4ab3 803 __create_object(ptr + size, end - ptr - size, object->min_count,
0c24e061 804 GFP_KERNEL, is_phys);
53238a60 805
e781a9ab 806 __delete_object(object);
53238a60 807}
a1084c87
LR
808
809static void __paint_it(struct kmemleak_object *object, int color)
810{
811 object->min_count = color;
812 if (color == KMEMLEAK_BLACK)
813 object->flags |= OBJECT_NO_SCAN;
814}
815
816static void paint_it(struct kmemleak_object *object, int color)
3c7b4e6b
CM
817{
818 unsigned long flags;
a1084c87 819
8c96f1bc 820 raw_spin_lock_irqsave(&object->lock, flags);
a1084c87 821 __paint_it(object, color);
8c96f1bc 822 raw_spin_unlock_irqrestore(&object->lock, flags);
a1084c87
LR
823}
824
0c24e061 825static void paint_ptr(unsigned long ptr, int color, bool is_phys)
a1084c87 826{
3c7b4e6b
CM
827 struct kmemleak_object *object;
828
0c24e061 829 object = __find_and_get_object(ptr, 0, is_phys);
3c7b4e6b 830 if (!object) {
756a025f
JP
831 kmemleak_warn("Trying to color unknown object at 0x%08lx as %s\n",
832 ptr,
a1084c87
LR
833 (color == KMEMLEAK_GREY) ? "Grey" :
834 (color == KMEMLEAK_BLACK) ? "Black" : "Unknown");
3c7b4e6b
CM
835 return;
836 }
a1084c87 837 paint_it(object, color);
3c7b4e6b
CM
838 put_object(object);
839}
840
a1084c87 841/*
145b64b9 842 * Mark an object permanently as gray-colored so that it can no longer be
a1084c87
LR
843 * reported as a leak. This is used in general to mark a false positive.
844 */
845static void make_gray_object(unsigned long ptr)
846{
0c24e061 847 paint_ptr(ptr, KMEMLEAK_GREY, false);
a1084c87
LR
848}
849
3c7b4e6b
CM
850/*
851 * Mark the object as black-colored so that it is ignored from scans and
852 * reporting.
853 */
0c24e061 854static void make_black_object(unsigned long ptr, bool is_phys)
3c7b4e6b 855{
0c24e061 856 paint_ptr(ptr, KMEMLEAK_BLACK, is_phys);
3c7b4e6b
CM
857}
858
859/*
860 * Add a scanning area to the object. If at least one such area is added,
861 * kmemleak will only scan these ranges rather than the whole memory block.
862 */
c017b4be 863static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp)
3c7b4e6b
CM
864{
865 unsigned long flags;
866 struct kmemleak_object *object;
c5665868 867 struct kmemleak_scan_area *area = NULL;
bfc8089f
KYL
868 unsigned long untagged_ptr;
869 unsigned long untagged_objp;
3c7b4e6b 870
c017b4be 871 object = find_and_get_object(ptr, 1);
3c7b4e6b 872 if (!object) {
ae281064
JP
873 kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n",
874 ptr);
3c7b4e6b
CM
875 return;
876 }
877
bfc8089f
KYL
878 untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr);
879 untagged_objp = (unsigned long)kasan_reset_tag((void *)object->pointer);
880
c5665868
CM
881 if (scan_area_cache)
882 area = kmem_cache_alloc(scan_area_cache, gfp_kmemleak_mask(gfp));
3c7b4e6b 883
8c96f1bc 884 raw_spin_lock_irqsave(&object->lock, flags);
dba82d94
CM
885 if (!area) {
886 pr_warn_once("Cannot allocate a scan area, scanning the full object\n");
887 /* mark the object for full scan to avoid false positives */
888 object->flags |= OBJECT_FULL_SCAN;
889 goto out_unlock;
890 }
7f88f88f 891 if (size == SIZE_MAX) {
bfc8089f
KYL
892 size = untagged_objp + object->size - untagged_ptr;
893 } else if (untagged_ptr + size > untagged_objp + object->size) {
ae281064 894 kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr);
3c7b4e6b
CM
895 dump_object_info(object);
896 kmem_cache_free(scan_area_cache, area);
897 goto out_unlock;
898 }
899
900 INIT_HLIST_NODE(&area->node);
c017b4be
CM
901 area->start = ptr;
902 area->size = size;
3c7b4e6b
CM
903
904 hlist_add_head(&area->node, &object->area_list);
905out_unlock:
8c96f1bc 906 raw_spin_unlock_irqrestore(&object->lock, flags);
3c7b4e6b
CM
907 put_object(object);
908}
909
94f4a161
CM
910/*
911 * Any surplus references (object already gray) to 'ptr' are passed to
912 * 'excess_ref'. This is used in the vmalloc() case where a pointer to
913 * vm_struct may be used as an alternative reference to the vmalloc'ed object
914 * (see free_thread_stack()).
915 */
916static void object_set_excess_ref(unsigned long ptr, unsigned long excess_ref)
917{
918 unsigned long flags;
919 struct kmemleak_object *object;
920
921 object = find_and_get_object(ptr, 0);
922 if (!object) {
923 kmemleak_warn("Setting excess_ref on unknown object at 0x%08lx\n",
924 ptr);
925 return;
926 }
927
8c96f1bc 928 raw_spin_lock_irqsave(&object->lock, flags);
94f4a161 929 object->excess_ref = excess_ref;
8c96f1bc 930 raw_spin_unlock_irqrestore(&object->lock, flags);
94f4a161
CM
931 put_object(object);
932}
933
3c7b4e6b
CM
934/*
935 * Set the OBJECT_NO_SCAN flag for the object corresponding to the give
936 * pointer. Such object will not be scanned by kmemleak but references to it
937 * are searched.
938 */
939static void object_no_scan(unsigned long ptr)
940{
941 unsigned long flags;
942 struct kmemleak_object *object;
943
944 object = find_and_get_object(ptr, 0);
945 if (!object) {
ae281064 946 kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr);
3c7b4e6b
CM
947 return;
948 }
949
8c96f1bc 950 raw_spin_lock_irqsave(&object->lock, flags);
3c7b4e6b 951 object->flags |= OBJECT_NO_SCAN;
8c96f1bc 952 raw_spin_unlock_irqrestore(&object->lock, flags);
3c7b4e6b
CM
953 put_object(object);
954}
955
a2b6bf63
CM
956/**
957 * kmemleak_alloc - register a newly allocated object
958 * @ptr: pointer to beginning of the object
959 * @size: size of the object
960 * @min_count: minimum number of references to this object. If during memory
961 * scanning a number of references less than @min_count is found,
962 * the object is reported as a memory leak. If @min_count is 0,
963 * the object is never reported as a leak. If @min_count is -1,
964 * the object is ignored (not scanned and not reported as a leak)
965 * @gfp: kmalloc() flags used for kmemleak internal memory allocations
966 *
967 * This function is called from the kernel allocators when a new object
94f4a161 968 * (memory block) is allocated (kmem_cache_alloc, kmalloc etc.).
3c7b4e6b 969 */
a6186d89
CM
970void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count,
971 gfp_t gfp)
3c7b4e6b
CM
972{
973 pr_debug("%s(0x%p, %zu, %d)\n", __func__, ptr, size, min_count);
974
8910ae89 975 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
3c7b4e6b 976 create_object((unsigned long)ptr, size, min_count, gfp);
3c7b4e6b
CM
977}
978EXPORT_SYMBOL_GPL(kmemleak_alloc);
979
f528f0b8
CM
980/**
981 * kmemleak_alloc_percpu - register a newly allocated __percpu object
982 * @ptr: __percpu pointer to beginning of the object
983 * @size: size of the object
8a8c35fa 984 * @gfp: flags used for kmemleak internal memory allocations
f528f0b8
CM
985 *
986 * This function is called from the kernel percpu allocator when a new object
8a8c35fa 987 * (memory block) is allocated (alloc_percpu).
f528f0b8 988 */
8a8c35fa
LF
989void __ref kmemleak_alloc_percpu(const void __percpu *ptr, size_t size,
990 gfp_t gfp)
f528f0b8
CM
991{
992 unsigned int cpu;
993
994 pr_debug("%s(0x%p, %zu)\n", __func__, ptr, size);
995
996 /*
997 * Percpu allocations are only scanned and not reported as leaks
998 * (min_count is set to 0).
999 */
8910ae89 1000 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
f528f0b8
CM
1001 for_each_possible_cpu(cpu)
1002 create_object((unsigned long)per_cpu_ptr(ptr, cpu),
8a8c35fa 1003 size, 0, gfp);
f528f0b8
CM
1004}
1005EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu);
1006
94f4a161
CM
1007/**
1008 * kmemleak_vmalloc - register a newly vmalloc'ed object
1009 * @area: pointer to vm_struct
1010 * @size: size of the object
1011 * @gfp: __vmalloc() flags used for kmemleak internal memory allocations
1012 *
1013 * This function is called from the vmalloc() kernel allocator when a new
1014 * object (memory block) is allocated.
1015 */
1016void __ref kmemleak_vmalloc(const struct vm_struct *area, size_t size, gfp_t gfp)
1017{
1018 pr_debug("%s(0x%p, %zu)\n", __func__, area, size);
1019
1020 /*
1021 * A min_count = 2 is needed because vm_struct contains a reference to
1022 * the virtual address of the vmalloc'ed block.
1023 */
1024 if (kmemleak_enabled) {
1025 create_object((unsigned long)area->addr, size, 2, gfp);
1026 object_set_excess_ref((unsigned long)area,
1027 (unsigned long)area->addr);
94f4a161
CM
1028 }
1029}
1030EXPORT_SYMBOL_GPL(kmemleak_vmalloc);
1031
a2b6bf63
CM
1032/**
1033 * kmemleak_free - unregister a previously registered object
1034 * @ptr: pointer to beginning of the object
1035 *
1036 * This function is called from the kernel allocators when an object (memory
1037 * block) is freed (kmem_cache_free, kfree, vfree etc.).
3c7b4e6b 1038 */
a6186d89 1039void __ref kmemleak_free(const void *ptr)
3c7b4e6b
CM
1040{
1041 pr_debug("%s(0x%p)\n", __func__, ptr);
1042
c5f3b1a5 1043 if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
53238a60 1044 delete_object_full((unsigned long)ptr);
3c7b4e6b
CM
1045}
1046EXPORT_SYMBOL_GPL(kmemleak_free);
1047
a2b6bf63
CM
1048/**
1049 * kmemleak_free_part - partially unregister a previously registered object
1050 * @ptr: pointer to the beginning or inside the object. This also
1051 * represents the start of the range to be freed
1052 * @size: size to be unregistered
1053 *
1054 * This function is called when only a part of a memory block is freed
1055 * (usually from the bootmem allocator).
53238a60 1056 */
a6186d89 1057void __ref kmemleak_free_part(const void *ptr, size_t size)
53238a60
CM
1058{
1059 pr_debug("%s(0x%p)\n", __func__, ptr);
1060
8910ae89 1061 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
0c24e061 1062 delete_object_part((unsigned long)ptr, size, false);
53238a60
CM
1063}
1064EXPORT_SYMBOL_GPL(kmemleak_free_part);
1065
f528f0b8
CM
1066/**
1067 * kmemleak_free_percpu - unregister a previously registered __percpu object
1068 * @ptr: __percpu pointer to beginning of the object
1069 *
1070 * This function is called from the kernel percpu allocator when an object
1071 * (memory block) is freed (free_percpu).
1072 */
1073void __ref kmemleak_free_percpu(const void __percpu *ptr)
1074{
1075 unsigned int cpu;
1076
1077 pr_debug("%s(0x%p)\n", __func__, ptr);
1078
c5f3b1a5 1079 if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
f528f0b8
CM
1080 for_each_possible_cpu(cpu)
1081 delete_object_full((unsigned long)per_cpu_ptr(ptr,
1082 cpu));
f528f0b8
CM
1083}
1084EXPORT_SYMBOL_GPL(kmemleak_free_percpu);
1085
ffe2c748
CM
1086/**
1087 * kmemleak_update_trace - update object allocation stack trace
1088 * @ptr: pointer to beginning of the object
1089 *
1090 * Override the object allocation stack trace for cases where the actual
1091 * allocation place is not always useful.
1092 */
1093void __ref kmemleak_update_trace(const void *ptr)
1094{
1095 struct kmemleak_object *object;
1096 unsigned long flags;
1097
1098 pr_debug("%s(0x%p)\n", __func__, ptr);
1099
1100 if (!kmemleak_enabled || IS_ERR_OR_NULL(ptr))
1101 return;
1102
1103 object = find_and_get_object((unsigned long)ptr, 1);
1104 if (!object) {
1105#ifdef DEBUG
1106 kmemleak_warn("Updating stack trace for unknown object at %p\n",
1107 ptr);
1108#endif
1109 return;
1110 }
1111
8c96f1bc 1112 raw_spin_lock_irqsave(&object->lock, flags);
56a61617 1113 object->trace_handle = set_track_prepare();
8c96f1bc 1114 raw_spin_unlock_irqrestore(&object->lock, flags);
ffe2c748
CM
1115
1116 put_object(object);
1117}
1118EXPORT_SYMBOL(kmemleak_update_trace);
1119
a2b6bf63
CM
1120/**
1121 * kmemleak_not_leak - mark an allocated object as false positive
1122 * @ptr: pointer to beginning of the object
1123 *
1124 * Calling this function on an object will cause the memory block to no longer
1125 * be reported as leak and always be scanned.
3c7b4e6b 1126 */
a6186d89 1127void __ref kmemleak_not_leak(const void *ptr)
3c7b4e6b
CM
1128{
1129 pr_debug("%s(0x%p)\n", __func__, ptr);
1130
8910ae89 1131 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
3c7b4e6b 1132 make_gray_object((unsigned long)ptr);
3c7b4e6b
CM
1133}
1134EXPORT_SYMBOL(kmemleak_not_leak);
1135
a2b6bf63
CM
1136/**
1137 * kmemleak_ignore - ignore an allocated object
1138 * @ptr: pointer to beginning of the object
1139 *
1140 * Calling this function on an object will cause the memory block to be
1141 * ignored (not scanned and not reported as a leak). This is usually done when
1142 * it is known that the corresponding block is not a leak and does not contain
1143 * any references to other allocated memory blocks.
3c7b4e6b 1144 */
a6186d89 1145void __ref kmemleak_ignore(const void *ptr)
3c7b4e6b
CM
1146{
1147 pr_debug("%s(0x%p)\n", __func__, ptr);
1148
8910ae89 1149 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
0c24e061 1150 make_black_object((unsigned long)ptr, false);
3c7b4e6b
CM
1151}
1152EXPORT_SYMBOL(kmemleak_ignore);
1153
a2b6bf63
CM
1154/**
1155 * kmemleak_scan_area - limit the range to be scanned in an allocated object
1156 * @ptr: pointer to beginning or inside the object. This also
1157 * represents the start of the scan area
1158 * @size: size of the scan area
1159 * @gfp: kmalloc() flags used for kmemleak internal memory allocations
1160 *
1161 * This function is used when it is known that only certain parts of an object
1162 * contain references to other objects. Kmemleak will only scan these areas
1163 * reducing the number false negatives.
3c7b4e6b 1164 */
c017b4be 1165void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp)
3c7b4e6b
CM
1166{
1167 pr_debug("%s(0x%p)\n", __func__, ptr);
1168
8910ae89 1169 if (kmemleak_enabled && ptr && size && !IS_ERR(ptr))
c017b4be 1170 add_scan_area((unsigned long)ptr, size, gfp);
3c7b4e6b
CM
1171}
1172EXPORT_SYMBOL(kmemleak_scan_area);
1173
a2b6bf63
CM
1174/**
1175 * kmemleak_no_scan - do not scan an allocated object
1176 * @ptr: pointer to beginning of the object
1177 *
1178 * This function notifies kmemleak not to scan the given memory block. Useful
1179 * in situations where it is known that the given object does not contain any
1180 * references to other objects. Kmemleak will not scan such objects reducing
1181 * the number of false negatives.
3c7b4e6b 1182 */
a6186d89 1183void __ref kmemleak_no_scan(const void *ptr)
3c7b4e6b
CM
1184{
1185 pr_debug("%s(0x%p)\n", __func__, ptr);
1186
8910ae89 1187 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
3c7b4e6b 1188 object_no_scan((unsigned long)ptr);
3c7b4e6b
CM
1189}
1190EXPORT_SYMBOL(kmemleak_no_scan);
1191
9099daed
CM
1192/**
1193 * kmemleak_alloc_phys - similar to kmemleak_alloc but taking a physical
1194 * address argument
e8b098fc
MR
1195 * @phys: physical address of the object
1196 * @size: size of the object
e8b098fc 1197 * @gfp: kmalloc() flags used for kmemleak internal memory allocations
9099daed 1198 */
c200d900 1199void __ref kmemleak_alloc_phys(phys_addr_t phys, size_t size, gfp_t gfp)
9099daed 1200{
8e0c4ab3
PW
1201 pr_debug("%s(0x%pa, %zu)\n", __func__, &phys, size);
1202
84c32629 1203 if (kmemleak_enabled)
8e0c4ab3
PW
1204 /*
1205 * Create object with OBJECT_PHYS flag and
1206 * assume min_count 0.
1207 */
0c24e061 1208 create_object_phys((unsigned long)phys, size, 0, gfp);
9099daed
CM
1209}
1210EXPORT_SYMBOL(kmemleak_alloc_phys);
1211
1212/**
1213 * kmemleak_free_part_phys - similar to kmemleak_free_part but taking a
1214 * physical address argument
e8b098fc
MR
1215 * @phys: physical address if the beginning or inside an object. This
1216 * also represents the start of the range to be freed
1217 * @size: size to be unregistered
9099daed
CM
1218 */
1219void __ref kmemleak_free_part_phys(phys_addr_t phys, size_t size)
1220{
0c24e061
PW
1221 pr_debug("%s(0x%pa)\n", __func__, &phys);
1222
84c32629 1223 if (kmemleak_enabled)
0c24e061 1224 delete_object_part((unsigned long)phys, size, true);
9099daed
CM
1225}
1226EXPORT_SYMBOL(kmemleak_free_part_phys);
1227
9099daed
CM
1228/**
1229 * kmemleak_ignore_phys - similar to kmemleak_ignore but taking a physical
1230 * address argument
e8b098fc 1231 * @phys: physical address of the object
9099daed
CM
1232 */
1233void __ref kmemleak_ignore_phys(phys_addr_t phys)
1234{
0c24e061
PW
1235 pr_debug("%s(0x%pa)\n", __func__, &phys);
1236
84c32629 1237 if (kmemleak_enabled)
0c24e061 1238 make_black_object((unsigned long)phys, true);
9099daed
CM
1239}
1240EXPORT_SYMBOL(kmemleak_ignore_phys);
1241
04609ccc
CM
1242/*
1243 * Update an object's checksum and return true if it was modified.
1244 */
1245static bool update_checksum(struct kmemleak_object *object)
1246{
1247 u32 old_csum = object->checksum;
1248
0c24e061
PW
1249 if (WARN_ON_ONCE(object->flags & OBJECT_PHYS))
1250 return false;
1251
e79ed2f1 1252 kasan_disable_current();
69d0b54d 1253 kcsan_disable_current();
6c7a00b8 1254 object->checksum = crc32(0, kasan_reset_tag((void *)object->pointer), object->size);
e79ed2f1 1255 kasan_enable_current();
69d0b54d 1256 kcsan_enable_current();
e79ed2f1 1257
04609ccc
CM
1258 return object->checksum != old_csum;
1259}
1260
04f70d13
CM
1261/*
1262 * Update an object's references. object->lock must be held by the caller.
1263 */
1264static void update_refs(struct kmemleak_object *object)
1265{
1266 if (!color_white(object)) {
1267 /* non-orphan, ignored or new */
1268 return;
1269 }
1270
1271 /*
1272 * Increase the object's reference count (number of pointers to the
1273 * memory block). If this count reaches the required minimum, the
1274 * object's color will become gray and it will be added to the
1275 * gray_list.
1276 */
1277 object->count++;
1278 if (color_gray(object)) {
1279 /* put_object() called when removing from gray_list */
1280 WARN_ON(!get_object(object));
1281 list_add_tail(&object->gray_list, &gray_list);
1282 }
1283}
1284
3c7b4e6b 1285/*
0b5121ef 1286 * Memory scanning is a long process and it needs to be interruptible. This
25985edc 1287 * function checks whether such interrupt condition occurred.
3c7b4e6b
CM
1288 */
1289static int scan_should_stop(void)
1290{
8910ae89 1291 if (!kmemleak_enabled)
3c7b4e6b
CM
1292 return 1;
1293
1294 /*
1295 * This function may be called from either process or kthread context,
1296 * hence the need to check for both stop conditions.
1297 */
1298 if (current->mm)
1299 return signal_pending(current);
1300 else
1301 return kthread_should_stop();
1302
1303 return 0;
1304}
1305
1306/*
1307 * Scan a memory block (exclusive range) for valid pointers and add those
1308 * found to the gray list.
1309 */
1310static void scan_block(void *_start, void *_end,
93ada579 1311 struct kmemleak_object *scanned)
3c7b4e6b
CM
1312{
1313 unsigned long *ptr;
1314 unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER);
1315 unsigned long *end = _end - (BYTES_PER_POINTER - 1);
93ada579 1316 unsigned long flags;
a2f77575 1317 unsigned long untagged_ptr;
3c7b4e6b 1318
8c96f1bc 1319 raw_spin_lock_irqsave(&kmemleak_lock, flags);
3c7b4e6b 1320 for (ptr = start; ptr < end; ptr++) {
3c7b4e6b 1321 struct kmemleak_object *object;
8e019366 1322 unsigned long pointer;
94f4a161 1323 unsigned long excess_ref;
3c7b4e6b
CM
1324
1325 if (scan_should_stop())
1326 break;
1327
e79ed2f1 1328 kasan_disable_current();
6c7a00b8 1329 pointer = *(unsigned long *)kasan_reset_tag((void *)ptr);
e79ed2f1 1330 kasan_enable_current();
8e019366 1331
a2f77575
AK
1332 untagged_ptr = (unsigned long)kasan_reset_tag((void *)pointer);
1333 if (untagged_ptr < min_addr || untagged_ptr >= max_addr)
93ada579
CM
1334 continue;
1335
1336 /*
1337 * No need for get_object() here since we hold kmemleak_lock.
1338 * object->use_count cannot be dropped to 0 while the object
1339 * is still present in object_tree_root and object_list
1340 * (with updates protected by kmemleak_lock).
1341 */
1342 object = lookup_object(pointer, 1);
3c7b4e6b
CM
1343 if (!object)
1344 continue;
93ada579 1345 if (object == scanned)
3c7b4e6b 1346 /* self referenced, ignore */
3c7b4e6b 1347 continue;
3c7b4e6b
CM
1348
1349 /*
1350 * Avoid the lockdep recursive warning on object->lock being
1351 * previously acquired in scan_object(). These locks are
1352 * enclosed by scan_mutex.
1353 */
8c96f1bc 1354 raw_spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
94f4a161
CM
1355 /* only pass surplus references (object already gray) */
1356 if (color_gray(object)) {
1357 excess_ref = object->excess_ref;
1358 /* no need for update_refs() if object already gray */
1359 } else {
1360 excess_ref = 0;
1361 update_refs(object);
1362 }
8c96f1bc 1363 raw_spin_unlock(&object->lock);
94f4a161
CM
1364
1365 if (excess_ref) {
1366 object = lookup_object(excess_ref, 0);
1367 if (!object)
1368 continue;
1369 if (object == scanned)
1370 /* circular reference, ignore */
1371 continue;
8c96f1bc 1372 raw_spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
94f4a161 1373 update_refs(object);
8c96f1bc 1374 raw_spin_unlock(&object->lock);
94f4a161 1375 }
93ada579 1376 }
8c96f1bc 1377 raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
93ada579 1378}
0587da40 1379
93ada579
CM
1380/*
1381 * Scan a large memory block in MAX_SCAN_SIZE chunks to reduce the latency.
1382 */
dce5b0bd 1383#ifdef CONFIG_SMP
93ada579
CM
1384static void scan_large_block(void *start, void *end)
1385{
1386 void *next;
1387
1388 while (start < end) {
1389 next = min(start + MAX_SCAN_SIZE, end);
1390 scan_block(start, next, NULL);
1391 start = next;
1392 cond_resched();
3c7b4e6b
CM
1393 }
1394}
dce5b0bd 1395#endif
3c7b4e6b
CM
1396
1397/*
1398 * Scan a memory block corresponding to a kmemleak_object. A condition is
1399 * that object->use_count >= 1.
1400 */
1401static void scan_object(struct kmemleak_object *object)
1402{
1403 struct kmemleak_scan_area *area;
3c7b4e6b 1404 unsigned long flags;
0c24e061 1405 void *obj_ptr;
3c7b4e6b
CM
1406
1407 /*
21ae2956
UKK
1408 * Once the object->lock is acquired, the corresponding memory block
1409 * cannot be freed (the same lock is acquired in delete_object).
3c7b4e6b 1410 */
8c96f1bc 1411 raw_spin_lock_irqsave(&object->lock, flags);
3c7b4e6b
CM
1412 if (object->flags & OBJECT_NO_SCAN)
1413 goto out;
1414 if (!(object->flags & OBJECT_ALLOCATED))
1415 /* already freed object */
1416 goto out;
0c24e061
PW
1417
1418 obj_ptr = object->flags & OBJECT_PHYS ?
1419 __va((phys_addr_t)object->pointer) :
1420 (void *)object->pointer;
1421
dba82d94
CM
1422 if (hlist_empty(&object->area_list) ||
1423 object->flags & OBJECT_FULL_SCAN) {
0c24e061
PW
1424 void *start = obj_ptr;
1425 void *end = obj_ptr + object->size;
93ada579
CM
1426 void *next;
1427
1428 do {
1429 next = min(start + MAX_SCAN_SIZE, end);
1430 scan_block(start, next, object);
af98603d 1431
93ada579
CM
1432 start = next;
1433 if (start >= end)
1434 break;
af98603d 1435
8c96f1bc 1436 raw_spin_unlock_irqrestore(&object->lock, flags);
af98603d 1437 cond_resched();
8c96f1bc 1438 raw_spin_lock_irqsave(&object->lock, flags);
93ada579 1439 } while (object->flags & OBJECT_ALLOCATED);
af98603d 1440 } else
b67bfe0d 1441 hlist_for_each_entry(area, &object->area_list, node)
c017b4be
CM
1442 scan_block((void *)area->start,
1443 (void *)(area->start + area->size),
93ada579 1444 object);
3c7b4e6b 1445out:
8c96f1bc 1446 raw_spin_unlock_irqrestore(&object->lock, flags);
3c7b4e6b
CM
1447}
1448
04609ccc
CM
1449/*
1450 * Scan the objects already referenced (gray objects). More objects will be
1451 * referenced and, if there are no memory leaks, all the objects are scanned.
1452 */
1453static void scan_gray_list(void)
1454{
1455 struct kmemleak_object *object, *tmp;
1456
1457 /*
1458 * The list traversal is safe for both tail additions and removals
1459 * from inside the loop. The kmemleak objects cannot be freed from
1460 * outside the loop because their use_count was incremented.
1461 */
1462 object = list_entry(gray_list.next, typeof(*object), gray_list);
1463 while (&object->gray_list != &gray_list) {
1464 cond_resched();
1465
1466 /* may add new objects to the list */
1467 if (!scan_should_stop())
1468 scan_object(object);
1469
1470 tmp = list_entry(object->gray_list.next, typeof(*object),
1471 gray_list);
1472
1473 /* remove the object from the list and release it */
1474 list_del(&object->gray_list);
1475 put_object(object);
1476
1477 object = tmp;
1478 }
1479 WARN_ON(!list_empty(&gray_list));
1480}
1481
984a6083 1482/*
25e9fa22 1483 * Conditionally call resched() in an object iteration loop while making sure
984a6083 1484 * that the given object won't go away without RCU read lock by performing a
6061e740 1485 * get_object() if necessaary.
984a6083 1486 */
6061e740 1487static void kmemleak_cond_resched(struct kmemleak_object *object)
984a6083 1488{
6061e740
WL
1489 if (!get_object(object))
1490 return; /* Try next object */
984a6083 1491
782e4179
WL
1492 raw_spin_lock_irq(&kmemleak_lock);
1493 if (object->del_state & DELSTATE_REMOVED)
1494 goto unlock_put; /* Object removed */
1495 object->del_state |= DELSTATE_NO_DELETE;
1496 raw_spin_unlock_irq(&kmemleak_lock);
1497
984a6083
WL
1498 rcu_read_unlock();
1499 cond_resched();
1500 rcu_read_lock();
782e4179
WL
1501
1502 raw_spin_lock_irq(&kmemleak_lock);
1503 if (object->del_state & DELSTATE_REMOVED)
1504 list_del_rcu(&object->object_list);
1505 object->del_state &= ~DELSTATE_NO_DELETE;
1506unlock_put:
1507 raw_spin_unlock_irq(&kmemleak_lock);
6061e740 1508 put_object(object);
984a6083
WL
1509}
1510
3c7b4e6b
CM
1511/*
1512 * Scan data sections and all the referenced memory blocks allocated via the
1513 * kernel's standard allocators. This function must be called with the
1514 * scan_mutex held.
1515 */
1516static void kmemleak_scan(void)
1517{
04609ccc 1518 struct kmemleak_object *object;
c10a0f87
LY
1519 struct zone *zone;
1520 int __maybe_unused i;
4698c1f2 1521 int new_leaks = 0;
3c7b4e6b 1522
acf4968e
CM
1523 jiffies_last_scan = jiffies;
1524
3c7b4e6b
CM
1525 /* prepare the kmemleak_object's */
1526 rcu_read_lock();
1527 list_for_each_entry_rcu(object, &object_list, object_list) {
00c15506 1528 raw_spin_lock_irq(&object->lock);
3c7b4e6b
CM
1529#ifdef DEBUG
1530 /*
1531 * With a few exceptions there should be a maximum of
1532 * 1 reference to any object at this point.
1533 */
1534 if (atomic_read(&object->use_count) > 1) {
ae281064 1535 pr_debug("object->use_count = %d\n",
3c7b4e6b
CM
1536 atomic_read(&object->use_count));
1537 dump_object_info(object);
1538 }
1539#endif
84c32629
PW
1540
1541 /* ignore objects outside lowmem (paint them black) */
1542 if ((object->flags & OBJECT_PHYS) &&
1543 !(object->flags & OBJECT_NO_SCAN)) {
1544 unsigned long phys = object->pointer;
1545
1546 if (PHYS_PFN(phys) < min_low_pfn ||
1547 PHYS_PFN(phys + object->size) >= max_low_pfn)
1548 __paint_it(object, KMEMLEAK_BLACK);
1549 }
1550
3c7b4e6b
CM
1551 /* reset the reference count (whiten the object) */
1552 object->count = 0;
6061e740 1553 if (color_gray(object) && get_object(object))
3c7b4e6b
CM
1554 list_add_tail(&object->gray_list, &gray_list);
1555
00c15506 1556 raw_spin_unlock_irq(&object->lock);
6edda04c 1557
6061e740
WL
1558 if (need_resched())
1559 kmemleak_cond_resched(object);
3c7b4e6b
CM
1560 }
1561 rcu_read_unlock();
1562
3c7b4e6b
CM
1563#ifdef CONFIG_SMP
1564 /* per-cpu sections scanning */
1565 for_each_possible_cpu(i)
93ada579
CM
1566 scan_large_block(__per_cpu_start + per_cpu_offset(i),
1567 __per_cpu_end + per_cpu_offset(i));
3c7b4e6b
CM
1568#endif
1569
1570 /*
029aeff5 1571 * Struct page scanning for each node.
3c7b4e6b 1572 */
bfc8c901 1573 get_online_mems();
c10a0f87
LY
1574 for_each_populated_zone(zone) {
1575 unsigned long start_pfn = zone->zone_start_pfn;
1576 unsigned long end_pfn = zone_end_pfn(zone);
3c7b4e6b
CM
1577 unsigned long pfn;
1578
1579 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
9f1eb38e 1580 struct page *page = pfn_to_online_page(pfn);
3c7b4e6b 1581
9f1eb38e
OS
1582 if (!page)
1583 continue;
1584
c10a0f87
LY
1585 /* only scan pages belonging to this zone */
1586 if (page_zone(page) != zone)
3c7b4e6b 1587 continue;
3c7b4e6b
CM
1588 /* only scan if page is in use */
1589 if (page_count(page) == 0)
1590 continue;
93ada579 1591 scan_block(page, page + 1, NULL);
13ab183d 1592 if (!(pfn & 63))
bde5f6bc 1593 cond_resched();
3c7b4e6b
CM
1594 }
1595 }
bfc8c901 1596 put_online_mems();
3c7b4e6b
CM
1597
1598 /*
43ed5d6e 1599 * Scanning the task stacks (may introduce false negatives).
3c7b4e6b
CM
1600 */
1601 if (kmemleak_stack_scan) {
43ed5d6e
CM
1602 struct task_struct *p, *g;
1603
c4b28963
DB
1604 rcu_read_lock();
1605 for_each_process_thread(g, p) {
37df49f4
CM
1606 void *stack = try_get_task_stack(p);
1607 if (stack) {
1608 scan_block(stack, stack + THREAD_SIZE, NULL);
1609 put_task_stack(p);
1610 }
c4b28963
DB
1611 }
1612 rcu_read_unlock();
3c7b4e6b
CM
1613 }
1614
1615 /*
1616 * Scan the objects already referenced from the sections scanned
04609ccc 1617 * above.
3c7b4e6b 1618 */
04609ccc 1619 scan_gray_list();
2587362e
CM
1620
1621 /*
04609ccc
CM
1622 * Check for new or unreferenced objects modified since the previous
1623 * scan and color them gray until the next scan.
2587362e
CM
1624 */
1625 rcu_read_lock();
1626 list_for_each_entry_rcu(object, &object_list, object_list) {
6061e740
WL
1627 if (need_resched())
1628 kmemleak_cond_resched(object);
984a6083 1629
64977918
WL
1630 /*
1631 * This is racy but we can save the overhead of lock/unlock
1632 * calls. The missed objects, if any, should be caught in
1633 * the next scan.
1634 */
1635 if (!color_white(object))
1636 continue;
00c15506 1637 raw_spin_lock_irq(&object->lock);
04609ccc
CM
1638 if (color_white(object) && (object->flags & OBJECT_ALLOCATED)
1639 && update_checksum(object) && get_object(object)) {
1640 /* color it gray temporarily */
1641 object->count = object->min_count;
2587362e
CM
1642 list_add_tail(&object->gray_list, &gray_list);
1643 }
00c15506 1644 raw_spin_unlock_irq(&object->lock);
2587362e
CM
1645 }
1646 rcu_read_unlock();
1647
04609ccc
CM
1648 /*
1649 * Re-scan the gray list for modified unreferenced objects.
1650 */
1651 scan_gray_list();
4698c1f2 1652
17bb9e0d 1653 /*
04609ccc 1654 * If scanning was stopped do not report any new unreferenced objects.
17bb9e0d 1655 */
04609ccc 1656 if (scan_should_stop())
17bb9e0d
CM
1657 return;
1658
4698c1f2
CM
1659 /*
1660 * Scanning result reporting.
1661 */
1662 rcu_read_lock();
1663 list_for_each_entry_rcu(object, &object_list, object_list) {
6061e740
WL
1664 if (need_resched())
1665 kmemleak_cond_resched(object);
984a6083 1666
64977918
WL
1667 /*
1668 * This is racy but we can save the overhead of lock/unlock
1669 * calls. The missed objects, if any, should be caught in
1670 * the next scan.
1671 */
1672 if (!color_white(object))
1673 continue;
00c15506 1674 raw_spin_lock_irq(&object->lock);
4698c1f2
CM
1675 if (unreferenced_object(object) &&
1676 !(object->flags & OBJECT_REPORTED)) {
1677 object->flags |= OBJECT_REPORTED;
154221c3
VW
1678
1679 if (kmemleak_verbose)
1680 print_unreferenced(NULL, object);
1681
4698c1f2
CM
1682 new_leaks++;
1683 }
00c15506 1684 raw_spin_unlock_irq(&object->lock);
4698c1f2
CM
1685 }
1686 rcu_read_unlock();
1687
dc9b3f42
LZ
1688 if (new_leaks) {
1689 kmemleak_found_leaks = true;
1690
756a025f
JP
1691 pr_info("%d new suspected memory leaks (see /sys/kernel/debug/kmemleak)\n",
1692 new_leaks);
dc9b3f42 1693 }
4698c1f2 1694
3c7b4e6b
CM
1695}
1696
1697/*
1698 * Thread function performing automatic memory scanning. Unreferenced objects
1699 * at the end of a memory scan are reported but only the first time.
1700 */
1701static int kmemleak_scan_thread(void *arg)
1702{
d53ce042 1703 static int first_run = IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN);
3c7b4e6b 1704
ae281064 1705 pr_info("Automatic memory scanning thread started\n");
bf2a76b3 1706 set_user_nice(current, 10);
3c7b4e6b
CM
1707
1708 /*
1709 * Wait before the first scan to allow the system to fully initialize.
1710 */
1711 if (first_run) {
98c42d94 1712 signed long timeout = msecs_to_jiffies(SECS_FIRST_SCAN * 1000);
3c7b4e6b 1713 first_run = 0;
98c42d94
VN
1714 while (timeout && !kthread_should_stop())
1715 timeout = schedule_timeout_interruptible(timeout);
3c7b4e6b
CM
1716 }
1717
1718 while (!kthread_should_stop()) {
54dd200c 1719 signed long timeout = READ_ONCE(jiffies_scan_wait);
3c7b4e6b
CM
1720
1721 mutex_lock(&scan_mutex);
3c7b4e6b 1722 kmemleak_scan();
3c7b4e6b 1723 mutex_unlock(&scan_mutex);
4698c1f2 1724
3c7b4e6b
CM
1725 /* wait before the next scan */
1726 while (timeout && !kthread_should_stop())
1727 timeout = schedule_timeout_interruptible(timeout);
1728 }
1729
ae281064 1730 pr_info("Automatic memory scanning thread ended\n");
3c7b4e6b
CM
1731
1732 return 0;
1733}
1734
1735/*
1736 * Start the automatic memory scanning thread. This function must be called
4698c1f2 1737 * with the scan_mutex held.
3c7b4e6b 1738 */
7eb0d5e5 1739static void start_scan_thread(void)
3c7b4e6b
CM
1740{
1741 if (scan_thread)
1742 return;
1743 scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak");
1744 if (IS_ERR(scan_thread)) {
598d8091 1745 pr_warn("Failed to create the scan thread\n");
3c7b4e6b
CM
1746 scan_thread = NULL;
1747 }
1748}
1749
1750/*
914b6dff 1751 * Stop the automatic memory scanning thread.
3c7b4e6b 1752 */
7eb0d5e5 1753static void stop_scan_thread(void)
3c7b4e6b
CM
1754{
1755 if (scan_thread) {
1756 kthread_stop(scan_thread);
1757 scan_thread = NULL;
1758 }
1759}
1760
1761/*
1762 * Iterate over the object_list and return the first valid object at or after
1763 * the required position with its use_count incremented. The function triggers
1764 * a memory scanning when the pos argument points to the first position.
1765 */
1766static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos)
1767{
1768 struct kmemleak_object *object;
1769 loff_t n = *pos;
b87324d0
CM
1770 int err;
1771
1772 err = mutex_lock_interruptible(&scan_mutex);
1773 if (err < 0)
1774 return ERR_PTR(err);
3c7b4e6b 1775
3c7b4e6b
CM
1776 rcu_read_lock();
1777 list_for_each_entry_rcu(object, &object_list, object_list) {
1778 if (n-- > 0)
1779 continue;
1780 if (get_object(object))
1781 goto out;
1782 }
1783 object = NULL;
1784out:
3c7b4e6b
CM
1785 return object;
1786}
1787
1788/*
1789 * Return the next object in the object_list. The function decrements the
1790 * use_count of the previous object and increases that of the next one.
1791 */
1792static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1793{
1794 struct kmemleak_object *prev_obj = v;
1795 struct kmemleak_object *next_obj = NULL;
58fac095 1796 struct kmemleak_object *obj = prev_obj;
3c7b4e6b
CM
1797
1798 ++(*pos);
3c7b4e6b 1799
58fac095 1800 list_for_each_entry_continue_rcu(obj, &object_list, object_list) {
52c3ce4e
CM
1801 if (get_object(obj)) {
1802 next_obj = obj;
3c7b4e6b 1803 break;
52c3ce4e 1804 }
3c7b4e6b 1805 }
288c857d 1806
3c7b4e6b
CM
1807 put_object(prev_obj);
1808 return next_obj;
1809}
1810
1811/*
1812 * Decrement the use_count of the last object required, if any.
1813 */
1814static void kmemleak_seq_stop(struct seq_file *seq, void *v)
1815{
b87324d0
CM
1816 if (!IS_ERR(v)) {
1817 /*
1818 * kmemleak_seq_start may return ERR_PTR if the scan_mutex
1819 * waiting was interrupted, so only release it if !IS_ERR.
1820 */
f5886c7f 1821 rcu_read_unlock();
b87324d0
CM
1822 mutex_unlock(&scan_mutex);
1823 if (v)
1824 put_object(v);
1825 }
3c7b4e6b
CM
1826}
1827
1828/*
1829 * Print the information for an unreferenced object to the seq file.
1830 */
1831static int kmemleak_seq_show(struct seq_file *seq, void *v)
1832{
1833 struct kmemleak_object *object = v;
1834 unsigned long flags;
1835
8c96f1bc 1836 raw_spin_lock_irqsave(&object->lock, flags);
288c857d 1837 if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object))
17bb9e0d 1838 print_unreferenced(seq, object);
8c96f1bc 1839 raw_spin_unlock_irqrestore(&object->lock, flags);
3c7b4e6b
CM
1840 return 0;
1841}
1842
1843static const struct seq_operations kmemleak_seq_ops = {
1844 .start = kmemleak_seq_start,
1845 .next = kmemleak_seq_next,
1846 .stop = kmemleak_seq_stop,
1847 .show = kmemleak_seq_show,
1848};
1849
1850static int kmemleak_open(struct inode *inode, struct file *file)
1851{
b87324d0 1852 return seq_open(file, &kmemleak_seq_ops);
3c7b4e6b
CM
1853}
1854
189d84ed
CM
1855static int dump_str_object_info(const char *str)
1856{
1857 unsigned long flags;
1858 struct kmemleak_object *object;
1859 unsigned long addr;
1860
dc053733
AP
1861 if (kstrtoul(str, 0, &addr))
1862 return -EINVAL;
189d84ed
CM
1863 object = find_and_get_object(addr, 0);
1864 if (!object) {
1865 pr_info("Unknown object at 0x%08lx\n", addr);
1866 return -EINVAL;
1867 }
1868
8c96f1bc 1869 raw_spin_lock_irqsave(&object->lock, flags);
189d84ed 1870 dump_object_info(object);
8c96f1bc 1871 raw_spin_unlock_irqrestore(&object->lock, flags);
189d84ed
CM
1872
1873 put_object(object);
1874 return 0;
1875}
1876
30b37101
LR
1877/*
1878 * We use grey instead of black to ensure we can do future scans on the same
1879 * objects. If we did not do future scans these black objects could
1880 * potentially contain references to newly allocated objects in the future and
1881 * we'd end up with false positives.
1882 */
1883static void kmemleak_clear(void)
1884{
1885 struct kmemleak_object *object;
30b37101
LR
1886
1887 rcu_read_lock();
1888 list_for_each_entry_rcu(object, &object_list, object_list) {
00c15506 1889 raw_spin_lock_irq(&object->lock);
30b37101
LR
1890 if ((object->flags & OBJECT_REPORTED) &&
1891 unreferenced_object(object))
a1084c87 1892 __paint_it(object, KMEMLEAK_GREY);
00c15506 1893 raw_spin_unlock_irq(&object->lock);
30b37101
LR
1894 }
1895 rcu_read_unlock();
dc9b3f42
LZ
1896
1897 kmemleak_found_leaks = false;
30b37101
LR
1898}
1899
c89da70c
LZ
1900static void __kmemleak_do_cleanup(void);
1901
3c7b4e6b
CM
1902/*
1903 * File write operation to configure kmemleak at run-time. The following
1904 * commands can be written to the /sys/kernel/debug/kmemleak file:
1905 * off - disable kmemleak (irreversible)
1906 * stack=on - enable the task stacks scanning
1907 * stack=off - disable the tasks stacks scanning
1908 * scan=on - start the automatic memory scanning thread
1909 * scan=off - stop the automatic memory scanning thread
1910 * scan=... - set the automatic memory scanning period in seconds (0 to
1911 * disable it)
4698c1f2 1912 * scan - trigger a memory scan
30b37101 1913 * clear - mark all current reported unreferenced kmemleak objects as
c89da70c
LZ
1914 * grey to ignore printing them, or free all kmemleak objects
1915 * if kmemleak has been disabled.
189d84ed 1916 * dump=... - dump information about the object found at the given address
3c7b4e6b
CM
1917 */
1918static ssize_t kmemleak_write(struct file *file, const char __user *user_buf,
1919 size_t size, loff_t *ppos)
1920{
1921 char buf[64];
1922 int buf_size;
b87324d0 1923 int ret;
3c7b4e6b
CM
1924
1925 buf_size = min(size, (sizeof(buf) - 1));
1926 if (strncpy_from_user(buf, user_buf, buf_size) < 0)
1927 return -EFAULT;
1928 buf[buf_size] = 0;
1929
b87324d0
CM
1930 ret = mutex_lock_interruptible(&scan_mutex);
1931 if (ret < 0)
1932 return ret;
1933
c89da70c 1934 if (strncmp(buf, "clear", 5) == 0) {
8910ae89 1935 if (kmemleak_enabled)
c89da70c
LZ
1936 kmemleak_clear();
1937 else
1938 __kmemleak_do_cleanup();
1939 goto out;
1940 }
1941
8910ae89 1942 if (!kmemleak_enabled) {
4e4dfce2 1943 ret = -EPERM;
c89da70c
LZ
1944 goto out;
1945 }
1946
3c7b4e6b
CM
1947 if (strncmp(buf, "off", 3) == 0)
1948 kmemleak_disable();
1949 else if (strncmp(buf, "stack=on", 8) == 0)
1950 kmemleak_stack_scan = 1;
1951 else if (strncmp(buf, "stack=off", 9) == 0)
1952 kmemleak_stack_scan = 0;
1953 else if (strncmp(buf, "scan=on", 7) == 0)
1954 start_scan_thread();
1955 else if (strncmp(buf, "scan=off", 8) == 0)
1956 stop_scan_thread();
1957 else if (strncmp(buf, "scan=", 5) == 0) {
54dd200c
YX
1958 unsigned secs;
1959 unsigned long msecs;
3c7b4e6b 1960
54dd200c 1961 ret = kstrtouint(buf + 5, 0, &secs);
b87324d0
CM
1962 if (ret < 0)
1963 goto out;
54dd200c
YX
1964
1965 msecs = secs * MSEC_PER_SEC;
1966 if (msecs > UINT_MAX)
1967 msecs = UINT_MAX;
1968
3c7b4e6b 1969 stop_scan_thread();
54dd200c
YX
1970 if (msecs) {
1971 WRITE_ONCE(jiffies_scan_wait, msecs_to_jiffies(msecs));
3c7b4e6b
CM
1972 start_scan_thread();
1973 }
4698c1f2
CM
1974 } else if (strncmp(buf, "scan", 4) == 0)
1975 kmemleak_scan();
189d84ed
CM
1976 else if (strncmp(buf, "dump=", 5) == 0)
1977 ret = dump_str_object_info(buf + 5);
4698c1f2 1978 else
b87324d0
CM
1979 ret = -EINVAL;
1980
1981out:
1982 mutex_unlock(&scan_mutex);
1983 if (ret < 0)
1984 return ret;
3c7b4e6b
CM
1985
1986 /* ignore the rest of the buffer, only one command at a time */
1987 *ppos += size;
1988 return size;
1989}
1990
1991static const struct file_operations kmemleak_fops = {
1992 .owner = THIS_MODULE,
1993 .open = kmemleak_open,
1994 .read = seq_read,
1995 .write = kmemleak_write,
1996 .llseek = seq_lseek,
5f3bf19a 1997 .release = seq_release,
3c7b4e6b
CM
1998};
1999
c89da70c
LZ
2000static void __kmemleak_do_cleanup(void)
2001{
2abd839a 2002 struct kmemleak_object *object, *tmp;
c89da70c 2003
2abd839a
CM
2004 /*
2005 * Kmemleak has already been disabled, no need for RCU list traversal
2006 * or kmemleak_lock held.
2007 */
2008 list_for_each_entry_safe(object, tmp, &object_list, object_list) {
2009 __remove_object(object);
2010 __delete_object(object);
2011 }
c89da70c
LZ
2012}
2013
3c7b4e6b 2014/*
74341703
CM
2015 * Stop the memory scanning thread and free the kmemleak internal objects if
2016 * no previous scan thread (otherwise, kmemleak may still have some useful
2017 * information on memory leaks).
3c7b4e6b 2018 */
179a8100 2019static void kmemleak_do_cleanup(struct work_struct *work)
3c7b4e6b 2020{
3c7b4e6b 2021 stop_scan_thread();
3c7b4e6b 2022
914b6dff 2023 mutex_lock(&scan_mutex);
c5f3b1a5 2024 /*
914b6dff
VM
2025 * Once it is made sure that kmemleak_scan has stopped, it is safe to no
2026 * longer track object freeing. Ordering of the scan thread stopping and
2027 * the memory accesses below is guaranteed by the kthread_stop()
2028 * function.
c5f3b1a5
CM
2029 */
2030 kmemleak_free_enabled = 0;
914b6dff 2031 mutex_unlock(&scan_mutex);
c5f3b1a5 2032
c89da70c
LZ
2033 if (!kmemleak_found_leaks)
2034 __kmemleak_do_cleanup();
2035 else
756a025f 2036 pr_info("Kmemleak disabled without freeing internal data. Reclaim the memory with \"echo clear > /sys/kernel/debug/kmemleak\".\n");
3c7b4e6b
CM
2037}
2038
179a8100 2039static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup);
3c7b4e6b
CM
2040
2041/*
2042 * Disable kmemleak. No memory allocation/freeing will be traced once this
2043 * function is called. Disabling kmemleak is an irreversible operation.
2044 */
2045static void kmemleak_disable(void)
2046{
2047 /* atomically check whether it was already invoked */
8910ae89 2048 if (cmpxchg(&kmemleak_error, 0, 1))
3c7b4e6b
CM
2049 return;
2050
2051 /* stop any memory operation tracing */
8910ae89 2052 kmemleak_enabled = 0;
3c7b4e6b
CM
2053
2054 /* check whether it is too early for a kernel thread */
8910ae89 2055 if (kmemleak_initialized)
179a8100 2056 schedule_work(&cleanup_work);
c5f3b1a5
CM
2057 else
2058 kmemleak_free_enabled = 0;
3c7b4e6b
CM
2059
2060 pr_info("Kernel memory leak detector disabled\n");
2061}
2062
2063/*
2064 * Allow boot-time kmemleak disabling (enabled by default).
2065 */
8bd30c10 2066static int __init kmemleak_boot_config(char *str)
3c7b4e6b
CM
2067{
2068 if (!str)
2069 return -EINVAL;
2070 if (strcmp(str, "off") == 0)
2071 kmemleak_disable();
993f57e0 2072 else if (strcmp(str, "on") == 0) {
ab0155a2 2073 kmemleak_skip_disable = 1;
1c0310ad 2074 stack_depot_request_early_init();
993f57e0 2075 }
ab0155a2 2076 else
3c7b4e6b
CM
2077 return -EINVAL;
2078 return 0;
2079}
2080early_param("kmemleak", kmemleak_boot_config);
2081
2082/*
2030117d 2083 * Kmemleak initialization.
3c7b4e6b
CM
2084 */
2085void __init kmemleak_init(void)
2086{
ab0155a2
JB
2087#ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF
2088 if (!kmemleak_skip_disable) {
2089 kmemleak_disable();
2090 return;
2091 }
2092#endif
2093
c5665868
CM
2094 if (kmemleak_error)
2095 return;
2096
3c7b4e6b
CM
2097 jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE);
2098 jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000);
2099
2100 object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE);
2101 scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE);
3c7b4e6b 2102
298a32b1
CM
2103 /* register the data/bss sections */
2104 create_object((unsigned long)_sdata, _edata - _sdata,
2105 KMEMLEAK_GREY, GFP_ATOMIC);
2106 create_object((unsigned long)__bss_start, __bss_stop - __bss_start,
2107 KMEMLEAK_GREY, GFP_ATOMIC);
2108 /* only register .data..ro_after_init if not within .data */
b0d14fc4 2109 if (&__start_ro_after_init < &_sdata || &__end_ro_after_init > &_edata)
298a32b1
CM
2110 create_object((unsigned long)__start_ro_after_init,
2111 __end_ro_after_init - __start_ro_after_init,
2112 KMEMLEAK_GREY, GFP_ATOMIC);
3c7b4e6b
CM
2113}
2114
2115/*
2116 * Late initialization function.
2117 */
2118static int __init kmemleak_late_init(void)
2119{
8910ae89 2120 kmemleak_initialized = 1;
3c7b4e6b 2121
282401df 2122 debugfs_create_file("kmemleak", 0644, NULL, NULL, &kmemleak_fops);
b353756b 2123
8910ae89 2124 if (kmemleak_error) {
3c7b4e6b 2125 /*
25985edc 2126 * Some error occurred and kmemleak was disabled. There is a
3c7b4e6b
CM
2127 * small chance that kmemleak_disable() was called immediately
2128 * after setting kmemleak_initialized and we may end up with
2129 * two clean-up threads but serialized by scan_mutex.
2130 */
179a8100 2131 schedule_work(&cleanup_work);
3c7b4e6b
CM
2132 return -ENOMEM;
2133 }
2134
d53ce042
SK
2135 if (IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN)) {
2136 mutex_lock(&scan_mutex);
2137 start_scan_thread();
2138 mutex_unlock(&scan_mutex);
2139 }
3c7b4e6b 2140
0e965a6b
QC
2141 pr_info("Kernel memory leak detector initialized (mem pool available: %d)\n",
2142 mem_pool_free_count);
3c7b4e6b
CM
2143
2144 return 0;
2145}
2146late_initcall(kmemleak_late_init);