ext4: switch to using ext4_do_writepages() for ordered data writeout
[linux-block.git] / mm / kmemleak.c
CommitLineData
45051539 1// SPDX-License-Identifier: GPL-2.0-only
3c7b4e6b
CM
2/*
3 * mm/kmemleak.c
4 *
5 * Copyright (C) 2008 ARM Limited
6 * Written by Catalin Marinas <catalin.marinas@arm.com>
7 *
3c7b4e6b 8 * For more information on the algorithm and kmemleak usage, please see
22901c6c 9 * Documentation/dev-tools/kmemleak.rst.
3c7b4e6b
CM
10 *
11 * Notes on locking
12 * ----------------
13 *
14 * The following locks and mutexes are used by kmemleak:
15 *
8c96f1bc 16 * - kmemleak_lock (raw_spinlock_t): protects the object_list modifications and
0c24e061
PW
17 * accesses to the object_tree_root (or object_phys_tree_root). The
18 * object_list is the main list holding the metadata (struct kmemleak_object)
19 * for the allocated memory blocks. The object_tree_root and object_phys_tree_root
20 * are red black trees used to look-up metadata based on a pointer to the
21 * corresponding memory block. The object_phys_tree_root is for objects
22 * allocated with physical address. The kmemleak_object structures are
23 * added to the object_list and object_tree_root (or object_phys_tree_root)
24 * in the create_object() function called from the kmemleak_alloc() (or
25 * kmemleak_alloc_phys()) callback and removed in delete_object() called from
26 * the kmemleak_free() callback
8c96f1bc
HZ
27 * - kmemleak_object.lock (raw_spinlock_t): protects a kmemleak_object.
28 * Accesses to the metadata (e.g. count) are protected by this lock. Note
29 * that some members of this structure may be protected by other means
30 * (atomic or kmemleak_lock). This lock is also held when scanning the
31 * corresponding memory block to avoid the kernel freeing it via the
32 * kmemleak_free() callback. This is less heavyweight than holding a global
33 * lock like kmemleak_lock during scanning.
3c7b4e6b
CM
34 * - scan_mutex (mutex): ensures that only one thread may scan the memory for
35 * unreferenced objects at a time. The gray_list contains the objects which
36 * are already referenced or marked as false positives and need to be
37 * scanned. This list is only modified during a scanning episode when the
38 * scan_mutex is held. At the end of a scan, the gray_list is always empty.
39 * Note that the kmemleak_object.use_count is incremented when an object is
4698c1f2
CM
40 * added to the gray_list and therefore cannot be freed. This mutex also
41 * prevents multiple users of the "kmemleak" debugfs file together with
42 * modifications to the memory scanning parameters including the scan_thread
43 * pointer
3c7b4e6b 44 *
93ada579 45 * Locks and mutexes are acquired/nested in the following order:
9d5a4c73 46 *
93ada579
CM
47 * scan_mutex [-> object->lock] -> kmemleak_lock -> other_object->lock (SINGLE_DEPTH_NESTING)
48 *
49 * No kmemleak_lock and object->lock nesting is allowed outside scan_mutex
50 * regions.
9d5a4c73 51 *
3c7b4e6b
CM
52 * The kmemleak_object structures have a use_count incremented or decremented
53 * using the get_object()/put_object() functions. When the use_count becomes
54 * 0, this count can no longer be incremented and put_object() schedules the
55 * kmemleak_object freeing via an RCU callback. All calls to the get_object()
56 * function must be protected by rcu_read_lock() to avoid accessing a freed
57 * structure.
58 */
59
ae281064
JP
60#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
61
3c7b4e6b
CM
62#include <linux/init.h>
63#include <linux/kernel.h>
64#include <linux/list.h>
3f07c014 65#include <linux/sched/signal.h>
29930025 66#include <linux/sched/task.h>
68db0cf1 67#include <linux/sched/task_stack.h>
3c7b4e6b
CM
68#include <linux/jiffies.h>
69#include <linux/delay.h>
b95f1b31 70#include <linux/export.h>
3c7b4e6b 71#include <linux/kthread.h>
85d3a316 72#include <linux/rbtree.h>
3c7b4e6b
CM
73#include <linux/fs.h>
74#include <linux/debugfs.h>
75#include <linux/seq_file.h>
76#include <linux/cpumask.h>
77#include <linux/spinlock.h>
154221c3 78#include <linux/module.h>
3c7b4e6b
CM
79#include <linux/mutex.h>
80#include <linux/rcupdate.h>
81#include <linux/stacktrace.h>
82#include <linux/cache.h>
83#include <linux/percpu.h>
57c8a661 84#include <linux/memblock.h>
9099daed 85#include <linux/pfn.h>
3c7b4e6b
CM
86#include <linux/mmzone.h>
87#include <linux/slab.h>
88#include <linux/thread_info.h>
89#include <linux/err.h>
90#include <linux/uaccess.h>
91#include <linux/string.h>
92#include <linux/nodemask.h>
93#include <linux/mm.h>
179a8100 94#include <linux/workqueue.h>
04609ccc 95#include <linux/crc32.h>
3c7b4e6b
CM
96
97#include <asm/sections.h>
98#include <asm/processor.h>
60063497 99#include <linux/atomic.h>
3c7b4e6b 100
e79ed2f1 101#include <linux/kasan.h>
95511580 102#include <linux/kfence.h>
3c7b4e6b 103#include <linux/kmemleak.h>
029aeff5 104#include <linux/memory_hotplug.h>
3c7b4e6b
CM
105
106/*
107 * Kmemleak configuration and common defines.
108 */
109#define MAX_TRACE 16 /* stack trace length */
3c7b4e6b 110#define MSECS_MIN_AGE 5000 /* minimum object age for reporting */
3c7b4e6b
CM
111#define SECS_FIRST_SCAN 60 /* delay before the first scan */
112#define SECS_SCAN_WAIT 600 /* subsequent auto scanning delay */
af98603d 113#define MAX_SCAN_SIZE 4096 /* maximum size of a scanned block */
3c7b4e6b
CM
114
115#define BYTES_PER_POINTER sizeof(void *)
116
216c04b0 117/* GFP bitmask for kmemleak internal allocations */
79d37050
NA
118#define gfp_kmemleak_mask(gfp) (((gfp) & (GFP_KERNEL | GFP_ATOMIC | \
119 __GFP_NOLOCKDEP)) | \
6ae4bd1f 120 __GFP_NORETRY | __GFP_NOMEMALLOC | \
df9576de 121 __GFP_NOWARN)
216c04b0 122
3c7b4e6b
CM
123/* scanning area inside a memory block */
124struct kmemleak_scan_area {
125 struct hlist_node node;
c017b4be
CM
126 unsigned long start;
127 size_t size;
3c7b4e6b
CM
128};
129
a1084c87
LR
130#define KMEMLEAK_GREY 0
131#define KMEMLEAK_BLACK -1
132
3c7b4e6b
CM
133/*
134 * Structure holding the metadata for each allocated memory block.
135 * Modifications to such objects should be made while holding the
136 * object->lock. Insertions or deletions from object_list, gray_list or
85d3a316 137 * rb_node are already protected by the corresponding locks or mutex (see
3c7b4e6b
CM
138 * the notes on locking above). These objects are reference-counted
139 * (use_count) and freed using the RCU mechanism.
140 */
141struct kmemleak_object {
8c96f1bc 142 raw_spinlock_t lock;
f66abf09 143 unsigned int flags; /* object status flags */
3c7b4e6b
CM
144 struct list_head object_list;
145 struct list_head gray_list;
85d3a316 146 struct rb_node rb_node;
3c7b4e6b
CM
147 struct rcu_head rcu; /* object_list lockless traversal */
148 /* object usage count; object freed when use_count == 0 */
149 atomic_t use_count;
150 unsigned long pointer;
151 size_t size;
94f4a161
CM
152 /* pass surplus references to this pointer */
153 unsigned long excess_ref;
3c7b4e6b
CM
154 /* minimum number of a pointers found before it is considered leak */
155 int min_count;
156 /* the total number of pointers found pointing to this object */
157 int count;
04609ccc
CM
158 /* checksum for detecting modified objects */
159 u32 checksum;
3c7b4e6b
CM
160 /* memory ranges to be scanned inside an object (empty for all) */
161 struct hlist_head area_list;
162 unsigned long trace[MAX_TRACE];
163 unsigned int trace_len;
164 unsigned long jiffies; /* creation timestamp */
165 pid_t pid; /* pid of the current task */
166 char comm[TASK_COMM_LEN]; /* executable name */
167};
168
169/* flag representing the memory block allocation status */
170#define OBJECT_ALLOCATED (1 << 0)
171/* flag set after the first reporting of an unreference object */
172#define OBJECT_REPORTED (1 << 1)
173/* flag set to not scan the object */
174#define OBJECT_NO_SCAN (1 << 2)
dba82d94
CM
175/* flag set to fully scan the object when scan_area allocation failed */
176#define OBJECT_FULL_SCAN (1 << 3)
8e0c4ab3
PW
177/* flag set for object allocated with physical address */
178#define OBJECT_PHYS (1 << 4)
3c7b4e6b 179
154221c3 180#define HEX_PREFIX " "
0494e082
SS
181/* number of bytes to print per line; must be 16 or 32 */
182#define HEX_ROW_SIZE 16
183/* number of bytes to print at a time (1, 2, 4, 8) */
184#define HEX_GROUP_SIZE 1
185/* include ASCII after the hex output */
186#define HEX_ASCII 1
187/* max number of lines to be printed */
188#define HEX_MAX_LINES 2
189
3c7b4e6b
CM
190/* the list of all allocated objects */
191static LIST_HEAD(object_list);
192/* the list of gray-colored objects (see color_gray comment below) */
193static LIST_HEAD(gray_list);
0647398a 194/* memory pool allocation */
c5665868 195static struct kmemleak_object mem_pool[CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE];
0647398a
CM
196static int mem_pool_free_count = ARRAY_SIZE(mem_pool);
197static LIST_HEAD(mem_pool_free_list);
85d3a316
ML
198/* search tree for object boundaries */
199static struct rb_root object_tree_root = RB_ROOT;
0c24e061
PW
200/* search tree for object (with OBJECT_PHYS flag) boundaries */
201static struct rb_root object_phys_tree_root = RB_ROOT;
202/* protecting the access to object_list, object_tree_root (or object_phys_tree_root) */
8c96f1bc 203static DEFINE_RAW_SPINLOCK(kmemleak_lock);
3c7b4e6b
CM
204
205/* allocation caches for kmemleak internal data */
206static struct kmem_cache *object_cache;
207static struct kmem_cache *scan_area_cache;
208
209/* set if tracing memory operations is enabled */
c5665868 210static int kmemleak_enabled = 1;
c5f3b1a5 211/* same as above but only for the kmemleak_free() callback */
c5665868 212static int kmemleak_free_enabled = 1;
3c7b4e6b 213/* set in the late_initcall if there were no errors */
8910ae89 214static int kmemleak_initialized;
5f79020c 215/* set if a kmemleak warning was issued */
8910ae89 216static int kmemleak_warning;
5f79020c 217/* set if a fatal kmemleak error has occurred */
8910ae89 218static int kmemleak_error;
3c7b4e6b
CM
219
220/* minimum and maximum address that may be valid pointers */
221static unsigned long min_addr = ULONG_MAX;
222static unsigned long max_addr;
223
3c7b4e6b 224static struct task_struct *scan_thread;
acf4968e 225/* used to avoid reporting of recently allocated objects */
3c7b4e6b 226static unsigned long jiffies_min_age;
acf4968e 227static unsigned long jiffies_last_scan;
3c7b4e6b 228/* delay between automatic memory scannings */
54dd200c 229static unsigned long jiffies_scan_wait;
3c7b4e6b 230/* enables or disables the task stacks scanning */
e0a2a160 231static int kmemleak_stack_scan = 1;
4698c1f2 232/* protects the memory scanning, parameters and debug/kmemleak file access */
3c7b4e6b 233static DEFINE_MUTEX(scan_mutex);
ab0155a2
JB
234/* setting kmemleak=on, will set this var, skipping the disable */
235static int kmemleak_skip_disable;
dc9b3f42
LZ
236/* If there are leaks that can be reported */
237static bool kmemleak_found_leaks;
3c7b4e6b 238
154221c3
VW
239static bool kmemleak_verbose;
240module_param_named(verbose, kmemleak_verbose, bool, 0600);
241
3c7b4e6b
CM
242static void kmemleak_disable(void);
243
244/*
245 * Print a warning and dump the stack trace.
246 */
5f79020c 247#define kmemleak_warn(x...) do { \
598d8091 248 pr_warn(x); \
5f79020c 249 dump_stack(); \
8910ae89 250 kmemleak_warning = 1; \
3c7b4e6b
CM
251} while (0)
252
253/*
25985edc 254 * Macro invoked when a serious kmemleak condition occurred and cannot be
2030117d 255 * recovered from. Kmemleak will be disabled and further allocation/freeing
3c7b4e6b
CM
256 * tracing no longer available.
257 */
000814f4 258#define kmemleak_stop(x...) do { \
3c7b4e6b
CM
259 kmemleak_warn(x); \
260 kmemleak_disable(); \
261} while (0)
262
154221c3
VW
263#define warn_or_seq_printf(seq, fmt, ...) do { \
264 if (seq) \
265 seq_printf(seq, fmt, ##__VA_ARGS__); \
266 else \
267 pr_warn(fmt, ##__VA_ARGS__); \
268} while (0)
269
270static void warn_or_seq_hex_dump(struct seq_file *seq, int prefix_type,
271 int rowsize, int groupsize, const void *buf,
272 size_t len, bool ascii)
273{
274 if (seq)
275 seq_hex_dump(seq, HEX_PREFIX, prefix_type, rowsize, groupsize,
276 buf, len, ascii);
277 else
278 print_hex_dump(KERN_WARNING, pr_fmt(HEX_PREFIX), prefix_type,
279 rowsize, groupsize, buf, len, ascii);
280}
281
0494e082
SS
282/*
283 * Printing of the objects hex dump to the seq file. The number of lines to be
284 * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The
285 * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called
286 * with the object->lock held.
287 */
288static void hex_dump_object(struct seq_file *seq,
289 struct kmemleak_object *object)
290{
291 const u8 *ptr = (const u8 *)object->pointer;
6fc37c49 292 size_t len;
0494e082 293
0c24e061
PW
294 if (WARN_ON_ONCE(object->flags & OBJECT_PHYS))
295 return;
296
0494e082 297 /* limit the number of lines to HEX_MAX_LINES */
6fc37c49 298 len = min_t(size_t, object->size, HEX_MAX_LINES * HEX_ROW_SIZE);
0494e082 299
154221c3 300 warn_or_seq_printf(seq, " hex dump (first %zu bytes):\n", len);
5c335fe0 301 kasan_disable_current();
154221c3 302 warn_or_seq_hex_dump(seq, DUMP_PREFIX_NONE, HEX_ROW_SIZE,
6c7a00b8 303 HEX_GROUP_SIZE, kasan_reset_tag((void *)ptr), len, HEX_ASCII);
5c335fe0 304 kasan_enable_current();
0494e082
SS
305}
306
3c7b4e6b
CM
307/*
308 * Object colors, encoded with count and min_count:
309 * - white - orphan object, not enough references to it (count < min_count)
310 * - gray - not orphan, not marked as false positive (min_count == 0) or
311 * sufficient references to it (count >= min_count)
312 * - black - ignore, it doesn't contain references (e.g. text section)
313 * (min_count == -1). No function defined for this color.
314 * Newly created objects don't have any color assigned (object->count == -1)
315 * before the next memory scan when they become white.
316 */
4a558dd6 317static bool color_white(const struct kmemleak_object *object)
3c7b4e6b 318{
a1084c87
LR
319 return object->count != KMEMLEAK_BLACK &&
320 object->count < object->min_count;
3c7b4e6b
CM
321}
322
4a558dd6 323static bool color_gray(const struct kmemleak_object *object)
3c7b4e6b 324{
a1084c87
LR
325 return object->min_count != KMEMLEAK_BLACK &&
326 object->count >= object->min_count;
3c7b4e6b
CM
327}
328
3c7b4e6b
CM
329/*
330 * Objects are considered unreferenced only if their color is white, they have
331 * not be deleted and have a minimum age to avoid false positives caused by
332 * pointers temporarily stored in CPU registers.
333 */
4a558dd6 334static bool unreferenced_object(struct kmemleak_object *object)
3c7b4e6b 335{
04609ccc 336 return (color_white(object) && object->flags & OBJECT_ALLOCATED) &&
acf4968e
CM
337 time_before_eq(object->jiffies + jiffies_min_age,
338 jiffies_last_scan);
3c7b4e6b
CM
339}
340
341/*
bab4a34a
CM
342 * Printing of the unreferenced objects information to the seq file. The
343 * print_unreferenced function must be called with the object->lock held.
3c7b4e6b 344 */
3c7b4e6b
CM
345static void print_unreferenced(struct seq_file *seq,
346 struct kmemleak_object *object)
347{
348 int i;
fefdd336 349 unsigned int msecs_age = jiffies_to_msecs(jiffies - object->jiffies);
3c7b4e6b 350
154221c3 351 warn_or_seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n",
bab4a34a 352 object->pointer, object->size);
154221c3 353 warn_or_seq_printf(seq, " comm \"%s\", pid %d, jiffies %lu (age %d.%03ds)\n",
fefdd336
CM
354 object->comm, object->pid, object->jiffies,
355 msecs_age / 1000, msecs_age % 1000);
0494e082 356 hex_dump_object(seq, object);
154221c3 357 warn_or_seq_printf(seq, " backtrace:\n");
3c7b4e6b
CM
358
359 for (i = 0; i < object->trace_len; i++) {
360 void *ptr = (void *)object->trace[i];
154221c3 361 warn_or_seq_printf(seq, " [<%p>] %pS\n", ptr, ptr);
3c7b4e6b
CM
362 }
363}
364
365/*
366 * Print the kmemleak_object information. This function is used mainly for
367 * debugging special cases when kmemleak operations. It must be called with
368 * the object->lock held.
369 */
370static void dump_object_info(struct kmemleak_object *object)
371{
ae281064 372 pr_notice("Object 0x%08lx (size %zu):\n",
85d3a316 373 object->pointer, object->size);
3c7b4e6b
CM
374 pr_notice(" comm \"%s\", pid %d, jiffies %lu\n",
375 object->comm, object->pid, object->jiffies);
376 pr_notice(" min_count = %d\n", object->min_count);
377 pr_notice(" count = %d\n", object->count);
f66abf09 378 pr_notice(" flags = 0x%x\n", object->flags);
aae0ad7a 379 pr_notice(" checksum = %u\n", object->checksum);
3c7b4e6b 380 pr_notice(" backtrace:\n");
07984aad 381 stack_trace_print(object->trace, object->trace_len, 4);
3c7b4e6b
CM
382}
383
384/*
85d3a316 385 * Look-up a memory block metadata (kmemleak_object) in the object search
3c7b4e6b
CM
386 * tree based on a pointer value. If alias is 0, only values pointing to the
387 * beginning of the memory block are allowed. The kmemleak_lock must be held
388 * when calling this function.
389 */
0c24e061
PW
390static struct kmemleak_object *__lookup_object(unsigned long ptr, int alias,
391 bool is_phys)
3c7b4e6b 392{
0c24e061
PW
393 struct rb_node *rb = is_phys ? object_phys_tree_root.rb_node :
394 object_tree_root.rb_node;
ad1a3e15 395 unsigned long untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr);
85d3a316
ML
396
397 while (rb) {
ad1a3e15
KYL
398 struct kmemleak_object *object;
399 unsigned long untagged_objp;
400
401 object = rb_entry(rb, struct kmemleak_object, rb_node);
402 untagged_objp = (unsigned long)kasan_reset_tag((void *)object->pointer);
403
404 if (untagged_ptr < untagged_objp)
85d3a316 405 rb = object->rb_node.rb_left;
ad1a3e15 406 else if (untagged_objp + object->size <= untagged_ptr)
85d3a316 407 rb = object->rb_node.rb_right;
ad1a3e15 408 else if (untagged_objp == untagged_ptr || alias)
85d3a316
ML
409 return object;
410 else {
5f79020c
CM
411 kmemleak_warn("Found object by alias at 0x%08lx\n",
412 ptr);
a7686a45 413 dump_object_info(object);
85d3a316 414 break;
3c7b4e6b 415 }
85d3a316
ML
416 }
417 return NULL;
3c7b4e6b
CM
418}
419
0c24e061
PW
420/* Look-up a kmemleak object which allocated with virtual address. */
421static struct kmemleak_object *lookup_object(unsigned long ptr, int alias)
422{
423 return __lookup_object(ptr, alias, false);
424}
425
3c7b4e6b
CM
426/*
427 * Increment the object use_count. Return 1 if successful or 0 otherwise. Note
428 * that once an object's use_count reached 0, the RCU freeing was already
429 * registered and the object should no longer be used. This function must be
430 * called under the protection of rcu_read_lock().
431 */
432static int get_object(struct kmemleak_object *object)
433{
434 return atomic_inc_not_zero(&object->use_count);
435}
436
0647398a
CM
437/*
438 * Memory pool allocation and freeing. kmemleak_lock must not be held.
439 */
440static struct kmemleak_object *mem_pool_alloc(gfp_t gfp)
441{
442 unsigned long flags;
443 struct kmemleak_object *object;
444
445 /* try the slab allocator first */
c5665868
CM
446 if (object_cache) {
447 object = kmem_cache_alloc(object_cache, gfp_kmemleak_mask(gfp));
448 if (object)
449 return object;
450 }
0647398a
CM
451
452 /* slab allocation failed, try the memory pool */
8c96f1bc 453 raw_spin_lock_irqsave(&kmemleak_lock, flags);
0647398a
CM
454 object = list_first_entry_or_null(&mem_pool_free_list,
455 typeof(*object), object_list);
456 if (object)
457 list_del(&object->object_list);
458 else if (mem_pool_free_count)
459 object = &mem_pool[--mem_pool_free_count];
c5665868
CM
460 else
461 pr_warn_once("Memory pool empty, consider increasing CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE\n");
8c96f1bc 462 raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
0647398a
CM
463
464 return object;
465}
466
467/*
468 * Return the object to either the slab allocator or the memory pool.
469 */
470static void mem_pool_free(struct kmemleak_object *object)
471{
472 unsigned long flags;
473
474 if (object < mem_pool || object >= mem_pool + ARRAY_SIZE(mem_pool)) {
475 kmem_cache_free(object_cache, object);
476 return;
477 }
478
479 /* add the object to the memory pool free list */
8c96f1bc 480 raw_spin_lock_irqsave(&kmemleak_lock, flags);
0647398a 481 list_add(&object->object_list, &mem_pool_free_list);
8c96f1bc 482 raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
0647398a
CM
483}
484
3c7b4e6b
CM
485/*
486 * RCU callback to free a kmemleak_object.
487 */
488static void free_object_rcu(struct rcu_head *rcu)
489{
b67bfe0d 490 struct hlist_node *tmp;
3c7b4e6b
CM
491 struct kmemleak_scan_area *area;
492 struct kmemleak_object *object =
493 container_of(rcu, struct kmemleak_object, rcu);
494
495 /*
496 * Once use_count is 0 (guaranteed by put_object), there is no other
497 * code accessing this object, hence no need for locking.
498 */
b67bfe0d
SL
499 hlist_for_each_entry_safe(area, tmp, &object->area_list, node) {
500 hlist_del(&area->node);
3c7b4e6b
CM
501 kmem_cache_free(scan_area_cache, area);
502 }
0647398a 503 mem_pool_free(object);
3c7b4e6b
CM
504}
505
506/*
507 * Decrement the object use_count. Once the count is 0, free the object using
508 * an RCU callback. Since put_object() may be called via the kmemleak_free() ->
509 * delete_object() path, the delayed RCU freeing ensures that there is no
510 * recursive call to the kernel allocator. Lock-less RCU object_list traversal
511 * is also possible.
512 */
513static void put_object(struct kmemleak_object *object)
514{
515 if (!atomic_dec_and_test(&object->use_count))
516 return;
517
518 /* should only get here after delete_object was called */
519 WARN_ON(object->flags & OBJECT_ALLOCATED);
520
c5665868
CM
521 /*
522 * It may be too early for the RCU callbacks, however, there is no
523 * concurrent object_list traversal when !object_cache and all objects
524 * came from the memory pool. Free the object directly.
525 */
526 if (object_cache)
527 call_rcu(&object->rcu, free_object_rcu);
528 else
529 free_object_rcu(&object->rcu);
3c7b4e6b
CM
530}
531
532/*
85d3a316 533 * Look up an object in the object search tree and increase its use_count.
3c7b4e6b 534 */
0c24e061
PW
535static struct kmemleak_object *__find_and_get_object(unsigned long ptr, int alias,
536 bool is_phys)
3c7b4e6b
CM
537{
538 unsigned long flags;
9fbed254 539 struct kmemleak_object *object;
3c7b4e6b
CM
540
541 rcu_read_lock();
8c96f1bc 542 raw_spin_lock_irqsave(&kmemleak_lock, flags);
0c24e061 543 object = __lookup_object(ptr, alias, is_phys);
8c96f1bc 544 raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
3c7b4e6b
CM
545
546 /* check whether the object is still available */
547 if (object && !get_object(object))
548 object = NULL;
549 rcu_read_unlock();
550
551 return object;
552}
553
0c24e061
PW
554/* Look up and get an object which allocated with virtual address. */
555static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias)
556{
557 return __find_and_get_object(ptr, alias, false);
558}
559
2abd839a 560/*
0c24e061
PW
561 * Remove an object from the object_tree_root (or object_phys_tree_root)
562 * and object_list. Must be called with the kmemleak_lock held _if_ kmemleak
563 * is still enabled.
2abd839a
CM
564 */
565static void __remove_object(struct kmemleak_object *object)
566{
0c24e061
PW
567 rb_erase(&object->rb_node, object->flags & OBJECT_PHYS ?
568 &object_phys_tree_root :
569 &object_tree_root);
2abd839a
CM
570 list_del_rcu(&object->object_list);
571}
572
e781a9ab
CM
573/*
574 * Look up an object in the object search tree and remove it from both
0c24e061
PW
575 * object_tree_root (or object_phys_tree_root) and object_list. The
576 * returned object's use_count should be at least 1, as initially set
577 * by create_object().
e781a9ab 578 */
0c24e061
PW
579static struct kmemleak_object *find_and_remove_object(unsigned long ptr, int alias,
580 bool is_phys)
e781a9ab
CM
581{
582 unsigned long flags;
583 struct kmemleak_object *object;
584
8c96f1bc 585 raw_spin_lock_irqsave(&kmemleak_lock, flags);
0c24e061 586 object = __lookup_object(ptr, alias, is_phys);
2abd839a
CM
587 if (object)
588 __remove_object(object);
8c96f1bc 589 raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
e781a9ab
CM
590
591 return object;
592}
593
fd678967
CM
594/*
595 * Save stack trace to the given array of MAX_TRACE size.
596 */
597static int __save_stack_trace(unsigned long *trace)
598{
07984aad 599 return stack_trace_save(trace, MAX_TRACE, 2);
fd678967
CM
600}
601
3c7b4e6b
CM
602/*
603 * Create the metadata (struct kmemleak_object) corresponding to an allocated
0c24e061
PW
604 * memory block and add it to the object_list and object_tree_root (or
605 * object_phys_tree_root).
3c7b4e6b 606 */
b955aa70
LS
607static void __create_object(unsigned long ptr, size_t size,
608 int min_count, gfp_t gfp, bool is_phys)
3c7b4e6b
CM
609{
610 unsigned long flags;
85d3a316
ML
611 struct kmemleak_object *object, *parent;
612 struct rb_node **link, *rb_parent;
a2f77575 613 unsigned long untagged_ptr;
ad1a3e15 614 unsigned long untagged_objp;
3c7b4e6b 615
0647398a 616 object = mem_pool_alloc(gfp);
3c7b4e6b 617 if (!object) {
598d8091 618 pr_warn("Cannot allocate a kmemleak_object structure\n");
6ae4bd1f 619 kmemleak_disable();
b955aa70 620 return;
3c7b4e6b
CM
621 }
622
623 INIT_LIST_HEAD(&object->object_list);
624 INIT_LIST_HEAD(&object->gray_list);
625 INIT_HLIST_HEAD(&object->area_list);
8c96f1bc 626 raw_spin_lock_init(&object->lock);
3c7b4e6b 627 atomic_set(&object->use_count, 1);
8e0c4ab3 628 object->flags = OBJECT_ALLOCATED | (is_phys ? OBJECT_PHYS : 0);
3c7b4e6b 629 object->pointer = ptr;
95511580 630 object->size = kfence_ksize((void *)ptr) ?: size;
94f4a161 631 object->excess_ref = 0;
3c7b4e6b 632 object->min_count = min_count;
04609ccc 633 object->count = 0; /* white color initially */
3c7b4e6b 634 object->jiffies = jiffies;
04609ccc 635 object->checksum = 0;
3c7b4e6b
CM
636
637 /* task information */
ea0eafea 638 if (in_hardirq()) {
3c7b4e6b
CM
639 object->pid = 0;
640 strncpy(object->comm, "hardirq", sizeof(object->comm));
6ef90569 641 } else if (in_serving_softirq()) {
3c7b4e6b
CM
642 object->pid = 0;
643 strncpy(object->comm, "softirq", sizeof(object->comm));
644 } else {
645 object->pid = current->pid;
646 /*
647 * There is a small chance of a race with set_task_comm(),
648 * however using get_task_comm() here may cause locking
649 * dependency issues with current->alloc_lock. In the worst
650 * case, the command line is not correct.
651 */
652 strncpy(object->comm, current->comm, sizeof(object->comm));
653 }
654
655 /* kernel backtrace */
fd678967 656 object->trace_len = __save_stack_trace(object->trace);
3c7b4e6b 657
8c96f1bc 658 raw_spin_lock_irqsave(&kmemleak_lock, flags);
0580a181 659
a2f77575 660 untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr);
0c24e061
PW
661 /*
662 * Only update min_addr and max_addr with object
663 * storing virtual address.
664 */
665 if (!is_phys) {
666 min_addr = min(min_addr, untagged_ptr);
667 max_addr = max(max_addr, untagged_ptr + size);
668 }
669 link = is_phys ? &object_phys_tree_root.rb_node :
670 &object_tree_root.rb_node;
85d3a316
ML
671 rb_parent = NULL;
672 while (*link) {
673 rb_parent = *link;
674 parent = rb_entry(rb_parent, struct kmemleak_object, rb_node);
ad1a3e15
KYL
675 untagged_objp = (unsigned long)kasan_reset_tag((void *)parent->pointer);
676 if (untagged_ptr + size <= untagged_objp)
85d3a316 677 link = &parent->rb_node.rb_left;
ad1a3e15 678 else if (untagged_objp + parent->size <= untagged_ptr)
85d3a316
ML
679 link = &parent->rb_node.rb_right;
680 else {
756a025f 681 kmemleak_stop("Cannot insert 0x%lx into the object search tree (overlaps existing)\n",
85d3a316 682 ptr);
9d5a4c73
CM
683 /*
684 * No need for parent->lock here since "parent" cannot
685 * be freed while the kmemleak_lock is held.
686 */
687 dump_object_info(parent);
85d3a316 688 kmem_cache_free(object_cache, object);
85d3a316
ML
689 goto out;
690 }
3c7b4e6b 691 }
85d3a316 692 rb_link_node(&object->rb_node, rb_parent, link);
0c24e061
PW
693 rb_insert_color(&object->rb_node, is_phys ? &object_phys_tree_root :
694 &object_tree_root);
85d3a316 695
3c7b4e6b
CM
696 list_add_tail_rcu(&object->object_list, &object_list);
697out:
8c96f1bc 698 raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
3c7b4e6b
CM
699}
700
8e0c4ab3 701/* Create kmemleak object which allocated with virtual address. */
b955aa70
LS
702static void create_object(unsigned long ptr, size_t size,
703 int min_count, gfp_t gfp)
8e0c4ab3 704{
b955aa70 705 __create_object(ptr, size, min_count, gfp, false);
8e0c4ab3
PW
706}
707
708/* Create kmemleak object which allocated with physical address. */
b955aa70
LS
709static void create_object_phys(unsigned long ptr, size_t size,
710 int min_count, gfp_t gfp)
8e0c4ab3 711{
b955aa70 712 __create_object(ptr, size, min_count, gfp, true);
8e0c4ab3
PW
713}
714
3c7b4e6b 715/*
e781a9ab 716 * Mark the object as not allocated and schedule RCU freeing via put_object().
3c7b4e6b 717 */
53238a60 718static void __delete_object(struct kmemleak_object *object)
3c7b4e6b
CM
719{
720 unsigned long flags;
3c7b4e6b 721
3c7b4e6b 722 WARN_ON(!(object->flags & OBJECT_ALLOCATED));
e781a9ab 723 WARN_ON(atomic_read(&object->use_count) < 1);
3c7b4e6b
CM
724
725 /*
726 * Locking here also ensures that the corresponding memory block
727 * cannot be freed when it is being scanned.
728 */
8c96f1bc 729 raw_spin_lock_irqsave(&object->lock, flags);
3c7b4e6b 730 object->flags &= ~OBJECT_ALLOCATED;
8c96f1bc 731 raw_spin_unlock_irqrestore(&object->lock, flags);
3c7b4e6b
CM
732 put_object(object);
733}
734
53238a60
CM
735/*
736 * Look up the metadata (struct kmemleak_object) corresponding to ptr and
737 * delete it.
738 */
739static void delete_object_full(unsigned long ptr)
740{
741 struct kmemleak_object *object;
742
0c24e061 743 object = find_and_remove_object(ptr, 0, false);
53238a60
CM
744 if (!object) {
745#ifdef DEBUG
746 kmemleak_warn("Freeing unknown object at 0x%08lx\n",
747 ptr);
748#endif
749 return;
750 }
751 __delete_object(object);
53238a60
CM
752}
753
754/*
755 * Look up the metadata (struct kmemleak_object) corresponding to ptr and
756 * delete it. If the memory block is partially freed, the function may create
757 * additional metadata for the remaining parts of the block.
758 */
0c24e061 759static void delete_object_part(unsigned long ptr, size_t size, bool is_phys)
53238a60
CM
760{
761 struct kmemleak_object *object;
762 unsigned long start, end;
763
0c24e061 764 object = find_and_remove_object(ptr, 1, is_phys);
53238a60
CM
765 if (!object) {
766#ifdef DEBUG
756a025f
JP
767 kmemleak_warn("Partially freeing unknown object at 0x%08lx (size %zu)\n",
768 ptr, size);
53238a60
CM
769#endif
770 return;
771 }
53238a60
CM
772
773 /*
774 * Create one or two objects that may result from the memory block
775 * split. Note that partial freeing is only done by free_bootmem() and
c5665868 776 * this happens before kmemleak_init() is called.
53238a60
CM
777 */
778 start = object->pointer;
779 end = object->pointer + object->size;
780 if (ptr > start)
8e0c4ab3 781 __create_object(start, ptr - start, object->min_count,
0c24e061 782 GFP_KERNEL, is_phys);
53238a60 783 if (ptr + size < end)
8e0c4ab3 784 __create_object(ptr + size, end - ptr - size, object->min_count,
0c24e061 785 GFP_KERNEL, is_phys);
53238a60 786
e781a9ab 787 __delete_object(object);
53238a60 788}
a1084c87
LR
789
790static void __paint_it(struct kmemleak_object *object, int color)
791{
792 object->min_count = color;
793 if (color == KMEMLEAK_BLACK)
794 object->flags |= OBJECT_NO_SCAN;
795}
796
797static void paint_it(struct kmemleak_object *object, int color)
3c7b4e6b
CM
798{
799 unsigned long flags;
a1084c87 800
8c96f1bc 801 raw_spin_lock_irqsave(&object->lock, flags);
a1084c87 802 __paint_it(object, color);
8c96f1bc 803 raw_spin_unlock_irqrestore(&object->lock, flags);
a1084c87
LR
804}
805
0c24e061 806static void paint_ptr(unsigned long ptr, int color, bool is_phys)
a1084c87 807{
3c7b4e6b
CM
808 struct kmemleak_object *object;
809
0c24e061 810 object = __find_and_get_object(ptr, 0, is_phys);
3c7b4e6b 811 if (!object) {
756a025f
JP
812 kmemleak_warn("Trying to color unknown object at 0x%08lx as %s\n",
813 ptr,
a1084c87
LR
814 (color == KMEMLEAK_GREY) ? "Grey" :
815 (color == KMEMLEAK_BLACK) ? "Black" : "Unknown");
3c7b4e6b
CM
816 return;
817 }
a1084c87 818 paint_it(object, color);
3c7b4e6b
CM
819 put_object(object);
820}
821
a1084c87 822/*
145b64b9 823 * Mark an object permanently as gray-colored so that it can no longer be
a1084c87
LR
824 * reported as a leak. This is used in general to mark a false positive.
825 */
826static void make_gray_object(unsigned long ptr)
827{
0c24e061 828 paint_ptr(ptr, KMEMLEAK_GREY, false);
a1084c87
LR
829}
830
3c7b4e6b
CM
831/*
832 * Mark the object as black-colored so that it is ignored from scans and
833 * reporting.
834 */
0c24e061 835static void make_black_object(unsigned long ptr, bool is_phys)
3c7b4e6b 836{
0c24e061 837 paint_ptr(ptr, KMEMLEAK_BLACK, is_phys);
3c7b4e6b
CM
838}
839
840/*
841 * Add a scanning area to the object. If at least one such area is added,
842 * kmemleak will only scan these ranges rather than the whole memory block.
843 */
c017b4be 844static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp)
3c7b4e6b
CM
845{
846 unsigned long flags;
847 struct kmemleak_object *object;
c5665868 848 struct kmemleak_scan_area *area = NULL;
bfc8089f
KYL
849 unsigned long untagged_ptr;
850 unsigned long untagged_objp;
3c7b4e6b 851
c017b4be 852 object = find_and_get_object(ptr, 1);
3c7b4e6b 853 if (!object) {
ae281064
JP
854 kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n",
855 ptr);
3c7b4e6b
CM
856 return;
857 }
858
bfc8089f
KYL
859 untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr);
860 untagged_objp = (unsigned long)kasan_reset_tag((void *)object->pointer);
861
c5665868
CM
862 if (scan_area_cache)
863 area = kmem_cache_alloc(scan_area_cache, gfp_kmemleak_mask(gfp));
3c7b4e6b 864
8c96f1bc 865 raw_spin_lock_irqsave(&object->lock, flags);
dba82d94
CM
866 if (!area) {
867 pr_warn_once("Cannot allocate a scan area, scanning the full object\n");
868 /* mark the object for full scan to avoid false positives */
869 object->flags |= OBJECT_FULL_SCAN;
870 goto out_unlock;
871 }
7f88f88f 872 if (size == SIZE_MAX) {
bfc8089f
KYL
873 size = untagged_objp + object->size - untagged_ptr;
874 } else if (untagged_ptr + size > untagged_objp + object->size) {
ae281064 875 kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr);
3c7b4e6b
CM
876 dump_object_info(object);
877 kmem_cache_free(scan_area_cache, area);
878 goto out_unlock;
879 }
880
881 INIT_HLIST_NODE(&area->node);
c017b4be
CM
882 area->start = ptr;
883 area->size = size;
3c7b4e6b
CM
884
885 hlist_add_head(&area->node, &object->area_list);
886out_unlock:
8c96f1bc 887 raw_spin_unlock_irqrestore(&object->lock, flags);
3c7b4e6b
CM
888 put_object(object);
889}
890
94f4a161
CM
891/*
892 * Any surplus references (object already gray) to 'ptr' are passed to
893 * 'excess_ref'. This is used in the vmalloc() case where a pointer to
894 * vm_struct may be used as an alternative reference to the vmalloc'ed object
895 * (see free_thread_stack()).
896 */
897static void object_set_excess_ref(unsigned long ptr, unsigned long excess_ref)
898{
899 unsigned long flags;
900 struct kmemleak_object *object;
901
902 object = find_and_get_object(ptr, 0);
903 if (!object) {
904 kmemleak_warn("Setting excess_ref on unknown object at 0x%08lx\n",
905 ptr);
906 return;
907 }
908
8c96f1bc 909 raw_spin_lock_irqsave(&object->lock, flags);
94f4a161 910 object->excess_ref = excess_ref;
8c96f1bc 911 raw_spin_unlock_irqrestore(&object->lock, flags);
94f4a161
CM
912 put_object(object);
913}
914
3c7b4e6b
CM
915/*
916 * Set the OBJECT_NO_SCAN flag for the object corresponding to the give
917 * pointer. Such object will not be scanned by kmemleak but references to it
918 * are searched.
919 */
920static void object_no_scan(unsigned long ptr)
921{
922 unsigned long flags;
923 struct kmemleak_object *object;
924
925 object = find_and_get_object(ptr, 0);
926 if (!object) {
ae281064 927 kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr);
3c7b4e6b
CM
928 return;
929 }
930
8c96f1bc 931 raw_spin_lock_irqsave(&object->lock, flags);
3c7b4e6b 932 object->flags |= OBJECT_NO_SCAN;
8c96f1bc 933 raw_spin_unlock_irqrestore(&object->lock, flags);
3c7b4e6b
CM
934 put_object(object);
935}
936
a2b6bf63
CM
937/**
938 * kmemleak_alloc - register a newly allocated object
939 * @ptr: pointer to beginning of the object
940 * @size: size of the object
941 * @min_count: minimum number of references to this object. If during memory
942 * scanning a number of references less than @min_count is found,
943 * the object is reported as a memory leak. If @min_count is 0,
944 * the object is never reported as a leak. If @min_count is -1,
945 * the object is ignored (not scanned and not reported as a leak)
946 * @gfp: kmalloc() flags used for kmemleak internal memory allocations
947 *
948 * This function is called from the kernel allocators when a new object
94f4a161 949 * (memory block) is allocated (kmem_cache_alloc, kmalloc etc.).
3c7b4e6b 950 */
a6186d89
CM
951void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count,
952 gfp_t gfp)
3c7b4e6b
CM
953{
954 pr_debug("%s(0x%p, %zu, %d)\n", __func__, ptr, size, min_count);
955
8910ae89 956 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
3c7b4e6b 957 create_object((unsigned long)ptr, size, min_count, gfp);
3c7b4e6b
CM
958}
959EXPORT_SYMBOL_GPL(kmemleak_alloc);
960
f528f0b8
CM
961/**
962 * kmemleak_alloc_percpu - register a newly allocated __percpu object
963 * @ptr: __percpu pointer to beginning of the object
964 * @size: size of the object
8a8c35fa 965 * @gfp: flags used for kmemleak internal memory allocations
f528f0b8
CM
966 *
967 * This function is called from the kernel percpu allocator when a new object
8a8c35fa 968 * (memory block) is allocated (alloc_percpu).
f528f0b8 969 */
8a8c35fa
LF
970void __ref kmemleak_alloc_percpu(const void __percpu *ptr, size_t size,
971 gfp_t gfp)
f528f0b8
CM
972{
973 unsigned int cpu;
974
975 pr_debug("%s(0x%p, %zu)\n", __func__, ptr, size);
976
977 /*
978 * Percpu allocations are only scanned and not reported as leaks
979 * (min_count is set to 0).
980 */
8910ae89 981 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
f528f0b8
CM
982 for_each_possible_cpu(cpu)
983 create_object((unsigned long)per_cpu_ptr(ptr, cpu),
8a8c35fa 984 size, 0, gfp);
f528f0b8
CM
985}
986EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu);
987
94f4a161
CM
988/**
989 * kmemleak_vmalloc - register a newly vmalloc'ed object
990 * @area: pointer to vm_struct
991 * @size: size of the object
992 * @gfp: __vmalloc() flags used for kmemleak internal memory allocations
993 *
994 * This function is called from the vmalloc() kernel allocator when a new
995 * object (memory block) is allocated.
996 */
997void __ref kmemleak_vmalloc(const struct vm_struct *area, size_t size, gfp_t gfp)
998{
999 pr_debug("%s(0x%p, %zu)\n", __func__, area, size);
1000
1001 /*
1002 * A min_count = 2 is needed because vm_struct contains a reference to
1003 * the virtual address of the vmalloc'ed block.
1004 */
1005 if (kmemleak_enabled) {
1006 create_object((unsigned long)area->addr, size, 2, gfp);
1007 object_set_excess_ref((unsigned long)area,
1008 (unsigned long)area->addr);
94f4a161
CM
1009 }
1010}
1011EXPORT_SYMBOL_GPL(kmemleak_vmalloc);
1012
a2b6bf63
CM
1013/**
1014 * kmemleak_free - unregister a previously registered object
1015 * @ptr: pointer to beginning of the object
1016 *
1017 * This function is called from the kernel allocators when an object (memory
1018 * block) is freed (kmem_cache_free, kfree, vfree etc.).
3c7b4e6b 1019 */
a6186d89 1020void __ref kmemleak_free(const void *ptr)
3c7b4e6b
CM
1021{
1022 pr_debug("%s(0x%p)\n", __func__, ptr);
1023
c5f3b1a5 1024 if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
53238a60 1025 delete_object_full((unsigned long)ptr);
3c7b4e6b
CM
1026}
1027EXPORT_SYMBOL_GPL(kmemleak_free);
1028
a2b6bf63
CM
1029/**
1030 * kmemleak_free_part - partially unregister a previously registered object
1031 * @ptr: pointer to the beginning or inside the object. This also
1032 * represents the start of the range to be freed
1033 * @size: size to be unregistered
1034 *
1035 * This function is called when only a part of a memory block is freed
1036 * (usually from the bootmem allocator).
53238a60 1037 */
a6186d89 1038void __ref kmemleak_free_part(const void *ptr, size_t size)
53238a60
CM
1039{
1040 pr_debug("%s(0x%p)\n", __func__, ptr);
1041
8910ae89 1042 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
0c24e061 1043 delete_object_part((unsigned long)ptr, size, false);
53238a60
CM
1044}
1045EXPORT_SYMBOL_GPL(kmemleak_free_part);
1046
f528f0b8
CM
1047/**
1048 * kmemleak_free_percpu - unregister a previously registered __percpu object
1049 * @ptr: __percpu pointer to beginning of the object
1050 *
1051 * This function is called from the kernel percpu allocator when an object
1052 * (memory block) is freed (free_percpu).
1053 */
1054void __ref kmemleak_free_percpu(const void __percpu *ptr)
1055{
1056 unsigned int cpu;
1057
1058 pr_debug("%s(0x%p)\n", __func__, ptr);
1059
c5f3b1a5 1060 if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
f528f0b8
CM
1061 for_each_possible_cpu(cpu)
1062 delete_object_full((unsigned long)per_cpu_ptr(ptr,
1063 cpu));
f528f0b8
CM
1064}
1065EXPORT_SYMBOL_GPL(kmemleak_free_percpu);
1066
ffe2c748
CM
1067/**
1068 * kmemleak_update_trace - update object allocation stack trace
1069 * @ptr: pointer to beginning of the object
1070 *
1071 * Override the object allocation stack trace for cases where the actual
1072 * allocation place is not always useful.
1073 */
1074void __ref kmemleak_update_trace(const void *ptr)
1075{
1076 struct kmemleak_object *object;
1077 unsigned long flags;
1078
1079 pr_debug("%s(0x%p)\n", __func__, ptr);
1080
1081 if (!kmemleak_enabled || IS_ERR_OR_NULL(ptr))
1082 return;
1083
1084 object = find_and_get_object((unsigned long)ptr, 1);
1085 if (!object) {
1086#ifdef DEBUG
1087 kmemleak_warn("Updating stack trace for unknown object at %p\n",
1088 ptr);
1089#endif
1090 return;
1091 }
1092
8c96f1bc 1093 raw_spin_lock_irqsave(&object->lock, flags);
ffe2c748 1094 object->trace_len = __save_stack_trace(object->trace);
8c96f1bc 1095 raw_spin_unlock_irqrestore(&object->lock, flags);
ffe2c748
CM
1096
1097 put_object(object);
1098}
1099EXPORT_SYMBOL(kmemleak_update_trace);
1100
a2b6bf63
CM
1101/**
1102 * kmemleak_not_leak - mark an allocated object as false positive
1103 * @ptr: pointer to beginning of the object
1104 *
1105 * Calling this function on an object will cause the memory block to no longer
1106 * be reported as leak and always be scanned.
3c7b4e6b 1107 */
a6186d89 1108void __ref kmemleak_not_leak(const void *ptr)
3c7b4e6b
CM
1109{
1110 pr_debug("%s(0x%p)\n", __func__, ptr);
1111
8910ae89 1112 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
3c7b4e6b 1113 make_gray_object((unsigned long)ptr);
3c7b4e6b
CM
1114}
1115EXPORT_SYMBOL(kmemleak_not_leak);
1116
a2b6bf63
CM
1117/**
1118 * kmemleak_ignore - ignore an allocated object
1119 * @ptr: pointer to beginning of the object
1120 *
1121 * Calling this function on an object will cause the memory block to be
1122 * ignored (not scanned and not reported as a leak). This is usually done when
1123 * it is known that the corresponding block is not a leak and does not contain
1124 * any references to other allocated memory blocks.
3c7b4e6b 1125 */
a6186d89 1126void __ref kmemleak_ignore(const void *ptr)
3c7b4e6b
CM
1127{
1128 pr_debug("%s(0x%p)\n", __func__, ptr);
1129
8910ae89 1130 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
0c24e061 1131 make_black_object((unsigned long)ptr, false);
3c7b4e6b
CM
1132}
1133EXPORT_SYMBOL(kmemleak_ignore);
1134
a2b6bf63
CM
1135/**
1136 * kmemleak_scan_area - limit the range to be scanned in an allocated object
1137 * @ptr: pointer to beginning or inside the object. This also
1138 * represents the start of the scan area
1139 * @size: size of the scan area
1140 * @gfp: kmalloc() flags used for kmemleak internal memory allocations
1141 *
1142 * This function is used when it is known that only certain parts of an object
1143 * contain references to other objects. Kmemleak will only scan these areas
1144 * reducing the number false negatives.
3c7b4e6b 1145 */
c017b4be 1146void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp)
3c7b4e6b
CM
1147{
1148 pr_debug("%s(0x%p)\n", __func__, ptr);
1149
8910ae89 1150 if (kmemleak_enabled && ptr && size && !IS_ERR(ptr))
c017b4be 1151 add_scan_area((unsigned long)ptr, size, gfp);
3c7b4e6b
CM
1152}
1153EXPORT_SYMBOL(kmemleak_scan_area);
1154
a2b6bf63
CM
1155/**
1156 * kmemleak_no_scan - do not scan an allocated object
1157 * @ptr: pointer to beginning of the object
1158 *
1159 * This function notifies kmemleak not to scan the given memory block. Useful
1160 * in situations where it is known that the given object does not contain any
1161 * references to other objects. Kmemleak will not scan such objects reducing
1162 * the number of false negatives.
3c7b4e6b 1163 */
a6186d89 1164void __ref kmemleak_no_scan(const void *ptr)
3c7b4e6b
CM
1165{
1166 pr_debug("%s(0x%p)\n", __func__, ptr);
1167
8910ae89 1168 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
3c7b4e6b 1169 object_no_scan((unsigned long)ptr);
3c7b4e6b
CM
1170}
1171EXPORT_SYMBOL(kmemleak_no_scan);
1172
9099daed
CM
1173/**
1174 * kmemleak_alloc_phys - similar to kmemleak_alloc but taking a physical
1175 * address argument
e8b098fc
MR
1176 * @phys: physical address of the object
1177 * @size: size of the object
e8b098fc 1178 * @gfp: kmalloc() flags used for kmemleak internal memory allocations
9099daed 1179 */
c200d900 1180void __ref kmemleak_alloc_phys(phys_addr_t phys, size_t size, gfp_t gfp)
9099daed 1181{
8e0c4ab3
PW
1182 pr_debug("%s(0x%pa, %zu)\n", __func__, &phys, size);
1183
84c32629 1184 if (kmemleak_enabled)
8e0c4ab3
PW
1185 /*
1186 * Create object with OBJECT_PHYS flag and
1187 * assume min_count 0.
1188 */
0c24e061 1189 create_object_phys((unsigned long)phys, size, 0, gfp);
9099daed
CM
1190}
1191EXPORT_SYMBOL(kmemleak_alloc_phys);
1192
1193/**
1194 * kmemleak_free_part_phys - similar to kmemleak_free_part but taking a
1195 * physical address argument
e8b098fc
MR
1196 * @phys: physical address if the beginning or inside an object. This
1197 * also represents the start of the range to be freed
1198 * @size: size to be unregistered
9099daed
CM
1199 */
1200void __ref kmemleak_free_part_phys(phys_addr_t phys, size_t size)
1201{
0c24e061
PW
1202 pr_debug("%s(0x%pa)\n", __func__, &phys);
1203
84c32629 1204 if (kmemleak_enabled)
0c24e061 1205 delete_object_part((unsigned long)phys, size, true);
9099daed
CM
1206}
1207EXPORT_SYMBOL(kmemleak_free_part_phys);
1208
9099daed
CM
1209/**
1210 * kmemleak_ignore_phys - similar to kmemleak_ignore but taking a physical
1211 * address argument
e8b098fc 1212 * @phys: physical address of the object
9099daed
CM
1213 */
1214void __ref kmemleak_ignore_phys(phys_addr_t phys)
1215{
0c24e061
PW
1216 pr_debug("%s(0x%pa)\n", __func__, &phys);
1217
84c32629 1218 if (kmemleak_enabled)
0c24e061 1219 make_black_object((unsigned long)phys, true);
9099daed
CM
1220}
1221EXPORT_SYMBOL(kmemleak_ignore_phys);
1222
04609ccc
CM
1223/*
1224 * Update an object's checksum and return true if it was modified.
1225 */
1226static bool update_checksum(struct kmemleak_object *object)
1227{
1228 u32 old_csum = object->checksum;
1229
0c24e061
PW
1230 if (WARN_ON_ONCE(object->flags & OBJECT_PHYS))
1231 return false;
1232
e79ed2f1 1233 kasan_disable_current();
69d0b54d 1234 kcsan_disable_current();
6c7a00b8 1235 object->checksum = crc32(0, kasan_reset_tag((void *)object->pointer), object->size);
e79ed2f1 1236 kasan_enable_current();
69d0b54d 1237 kcsan_enable_current();
e79ed2f1 1238
04609ccc
CM
1239 return object->checksum != old_csum;
1240}
1241
04f70d13
CM
1242/*
1243 * Update an object's references. object->lock must be held by the caller.
1244 */
1245static void update_refs(struct kmemleak_object *object)
1246{
1247 if (!color_white(object)) {
1248 /* non-orphan, ignored or new */
1249 return;
1250 }
1251
1252 /*
1253 * Increase the object's reference count (number of pointers to the
1254 * memory block). If this count reaches the required minimum, the
1255 * object's color will become gray and it will be added to the
1256 * gray_list.
1257 */
1258 object->count++;
1259 if (color_gray(object)) {
1260 /* put_object() called when removing from gray_list */
1261 WARN_ON(!get_object(object));
1262 list_add_tail(&object->gray_list, &gray_list);
1263 }
1264}
1265
3c7b4e6b 1266/*
0b5121ef 1267 * Memory scanning is a long process and it needs to be interruptible. This
25985edc 1268 * function checks whether such interrupt condition occurred.
3c7b4e6b
CM
1269 */
1270static int scan_should_stop(void)
1271{
8910ae89 1272 if (!kmemleak_enabled)
3c7b4e6b
CM
1273 return 1;
1274
1275 /*
1276 * This function may be called from either process or kthread context,
1277 * hence the need to check for both stop conditions.
1278 */
1279 if (current->mm)
1280 return signal_pending(current);
1281 else
1282 return kthread_should_stop();
1283
1284 return 0;
1285}
1286
1287/*
1288 * Scan a memory block (exclusive range) for valid pointers and add those
1289 * found to the gray list.
1290 */
1291static void scan_block(void *_start, void *_end,
93ada579 1292 struct kmemleak_object *scanned)
3c7b4e6b
CM
1293{
1294 unsigned long *ptr;
1295 unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER);
1296 unsigned long *end = _end - (BYTES_PER_POINTER - 1);
93ada579 1297 unsigned long flags;
a2f77575 1298 unsigned long untagged_ptr;
3c7b4e6b 1299
8c96f1bc 1300 raw_spin_lock_irqsave(&kmemleak_lock, flags);
3c7b4e6b 1301 for (ptr = start; ptr < end; ptr++) {
3c7b4e6b 1302 struct kmemleak_object *object;
8e019366 1303 unsigned long pointer;
94f4a161 1304 unsigned long excess_ref;
3c7b4e6b
CM
1305
1306 if (scan_should_stop())
1307 break;
1308
e79ed2f1 1309 kasan_disable_current();
6c7a00b8 1310 pointer = *(unsigned long *)kasan_reset_tag((void *)ptr);
e79ed2f1 1311 kasan_enable_current();
8e019366 1312
a2f77575
AK
1313 untagged_ptr = (unsigned long)kasan_reset_tag((void *)pointer);
1314 if (untagged_ptr < min_addr || untagged_ptr >= max_addr)
93ada579
CM
1315 continue;
1316
1317 /*
1318 * No need for get_object() here since we hold kmemleak_lock.
1319 * object->use_count cannot be dropped to 0 while the object
1320 * is still present in object_tree_root and object_list
1321 * (with updates protected by kmemleak_lock).
1322 */
1323 object = lookup_object(pointer, 1);
3c7b4e6b
CM
1324 if (!object)
1325 continue;
93ada579 1326 if (object == scanned)
3c7b4e6b 1327 /* self referenced, ignore */
3c7b4e6b 1328 continue;
3c7b4e6b
CM
1329
1330 /*
1331 * Avoid the lockdep recursive warning on object->lock being
1332 * previously acquired in scan_object(). These locks are
1333 * enclosed by scan_mutex.
1334 */
8c96f1bc 1335 raw_spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
94f4a161
CM
1336 /* only pass surplus references (object already gray) */
1337 if (color_gray(object)) {
1338 excess_ref = object->excess_ref;
1339 /* no need for update_refs() if object already gray */
1340 } else {
1341 excess_ref = 0;
1342 update_refs(object);
1343 }
8c96f1bc 1344 raw_spin_unlock(&object->lock);
94f4a161
CM
1345
1346 if (excess_ref) {
1347 object = lookup_object(excess_ref, 0);
1348 if (!object)
1349 continue;
1350 if (object == scanned)
1351 /* circular reference, ignore */
1352 continue;
8c96f1bc 1353 raw_spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
94f4a161 1354 update_refs(object);
8c96f1bc 1355 raw_spin_unlock(&object->lock);
94f4a161 1356 }
93ada579 1357 }
8c96f1bc 1358 raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
93ada579 1359}
0587da40 1360
93ada579
CM
1361/*
1362 * Scan a large memory block in MAX_SCAN_SIZE chunks to reduce the latency.
1363 */
dce5b0bd 1364#ifdef CONFIG_SMP
93ada579
CM
1365static void scan_large_block(void *start, void *end)
1366{
1367 void *next;
1368
1369 while (start < end) {
1370 next = min(start + MAX_SCAN_SIZE, end);
1371 scan_block(start, next, NULL);
1372 start = next;
1373 cond_resched();
3c7b4e6b
CM
1374 }
1375}
dce5b0bd 1376#endif
3c7b4e6b
CM
1377
1378/*
1379 * Scan a memory block corresponding to a kmemleak_object. A condition is
1380 * that object->use_count >= 1.
1381 */
1382static void scan_object(struct kmemleak_object *object)
1383{
1384 struct kmemleak_scan_area *area;
3c7b4e6b 1385 unsigned long flags;
0c24e061 1386 void *obj_ptr;
3c7b4e6b
CM
1387
1388 /*
21ae2956
UKK
1389 * Once the object->lock is acquired, the corresponding memory block
1390 * cannot be freed (the same lock is acquired in delete_object).
3c7b4e6b 1391 */
8c96f1bc 1392 raw_spin_lock_irqsave(&object->lock, flags);
3c7b4e6b
CM
1393 if (object->flags & OBJECT_NO_SCAN)
1394 goto out;
1395 if (!(object->flags & OBJECT_ALLOCATED))
1396 /* already freed object */
1397 goto out;
0c24e061
PW
1398
1399 obj_ptr = object->flags & OBJECT_PHYS ?
1400 __va((phys_addr_t)object->pointer) :
1401 (void *)object->pointer;
1402
dba82d94
CM
1403 if (hlist_empty(&object->area_list) ||
1404 object->flags & OBJECT_FULL_SCAN) {
0c24e061
PW
1405 void *start = obj_ptr;
1406 void *end = obj_ptr + object->size;
93ada579
CM
1407 void *next;
1408
1409 do {
1410 next = min(start + MAX_SCAN_SIZE, end);
1411 scan_block(start, next, object);
af98603d 1412
93ada579
CM
1413 start = next;
1414 if (start >= end)
1415 break;
af98603d 1416
8c96f1bc 1417 raw_spin_unlock_irqrestore(&object->lock, flags);
af98603d 1418 cond_resched();
8c96f1bc 1419 raw_spin_lock_irqsave(&object->lock, flags);
93ada579 1420 } while (object->flags & OBJECT_ALLOCATED);
af98603d 1421 } else
b67bfe0d 1422 hlist_for_each_entry(area, &object->area_list, node)
c017b4be
CM
1423 scan_block((void *)area->start,
1424 (void *)(area->start + area->size),
93ada579 1425 object);
3c7b4e6b 1426out:
8c96f1bc 1427 raw_spin_unlock_irqrestore(&object->lock, flags);
3c7b4e6b
CM
1428}
1429
04609ccc
CM
1430/*
1431 * Scan the objects already referenced (gray objects). More objects will be
1432 * referenced and, if there are no memory leaks, all the objects are scanned.
1433 */
1434static void scan_gray_list(void)
1435{
1436 struct kmemleak_object *object, *tmp;
1437
1438 /*
1439 * The list traversal is safe for both tail additions and removals
1440 * from inside the loop. The kmemleak objects cannot be freed from
1441 * outside the loop because their use_count was incremented.
1442 */
1443 object = list_entry(gray_list.next, typeof(*object), gray_list);
1444 while (&object->gray_list != &gray_list) {
1445 cond_resched();
1446
1447 /* may add new objects to the list */
1448 if (!scan_should_stop())
1449 scan_object(object);
1450
1451 tmp = list_entry(object->gray_list.next, typeof(*object),
1452 gray_list);
1453
1454 /* remove the object from the list and release it */
1455 list_del(&object->gray_list);
1456 put_object(object);
1457
1458 object = tmp;
1459 }
1460 WARN_ON(!list_empty(&gray_list));
1461}
1462
984a6083
WL
1463/*
1464 * Conditionally call resched() in a object iteration loop while making sure
1465 * that the given object won't go away without RCU read lock by performing a
1466 * get_object() if !pinned.
1467 *
1468 * Return: false if can't do a cond_resched() due to get_object() failure
1469 * true otherwise
1470 */
1471static bool kmemleak_cond_resched(struct kmemleak_object *object, bool pinned)
1472{
1473 if (!pinned && !get_object(object))
1474 return false;
1475
1476 rcu_read_unlock();
1477 cond_resched();
1478 rcu_read_lock();
1479 if (!pinned)
1480 put_object(object);
1481 return true;
1482}
1483
3c7b4e6b
CM
1484/*
1485 * Scan data sections and all the referenced memory blocks allocated via the
1486 * kernel's standard allocators. This function must be called with the
1487 * scan_mutex held.
1488 */
1489static void kmemleak_scan(void)
1490{
04609ccc 1491 struct kmemleak_object *object;
c10a0f87
LY
1492 struct zone *zone;
1493 int __maybe_unused i;
4698c1f2 1494 int new_leaks = 0;
984a6083 1495 int loop_cnt = 0;
3c7b4e6b 1496
acf4968e
CM
1497 jiffies_last_scan = jiffies;
1498
3c7b4e6b
CM
1499 /* prepare the kmemleak_object's */
1500 rcu_read_lock();
1501 list_for_each_entry_rcu(object, &object_list, object_list) {
6edda04c
WL
1502 bool obj_pinned = false;
1503
00c15506 1504 raw_spin_lock_irq(&object->lock);
3c7b4e6b
CM
1505#ifdef DEBUG
1506 /*
1507 * With a few exceptions there should be a maximum of
1508 * 1 reference to any object at this point.
1509 */
1510 if (atomic_read(&object->use_count) > 1) {
ae281064 1511 pr_debug("object->use_count = %d\n",
3c7b4e6b
CM
1512 atomic_read(&object->use_count));
1513 dump_object_info(object);
1514 }
1515#endif
84c32629
PW
1516
1517 /* ignore objects outside lowmem (paint them black) */
1518 if ((object->flags & OBJECT_PHYS) &&
1519 !(object->flags & OBJECT_NO_SCAN)) {
1520 unsigned long phys = object->pointer;
1521
1522 if (PHYS_PFN(phys) < min_low_pfn ||
1523 PHYS_PFN(phys + object->size) >= max_low_pfn)
1524 __paint_it(object, KMEMLEAK_BLACK);
1525 }
1526
3c7b4e6b
CM
1527 /* reset the reference count (whiten the object) */
1528 object->count = 0;
6edda04c 1529 if (color_gray(object) && get_object(object)) {
3c7b4e6b 1530 list_add_tail(&object->gray_list, &gray_list);
6edda04c
WL
1531 obj_pinned = true;
1532 }
3c7b4e6b 1533
00c15506 1534 raw_spin_unlock_irq(&object->lock);
6edda04c
WL
1535
1536 /*
984a6083 1537 * Do a cond_resched() every 64k objects to avoid soft lockup.
6edda04c 1538 */
984a6083
WL
1539 if (!(++loop_cnt & 0xffff) &&
1540 !kmemleak_cond_resched(object, obj_pinned))
1541 loop_cnt--; /* Try again on next object */
3c7b4e6b
CM
1542 }
1543 rcu_read_unlock();
1544
3c7b4e6b
CM
1545#ifdef CONFIG_SMP
1546 /* per-cpu sections scanning */
1547 for_each_possible_cpu(i)
93ada579
CM
1548 scan_large_block(__per_cpu_start + per_cpu_offset(i),
1549 __per_cpu_end + per_cpu_offset(i));
3c7b4e6b
CM
1550#endif
1551
1552 /*
029aeff5 1553 * Struct page scanning for each node.
3c7b4e6b 1554 */
bfc8c901 1555 get_online_mems();
c10a0f87
LY
1556 for_each_populated_zone(zone) {
1557 unsigned long start_pfn = zone->zone_start_pfn;
1558 unsigned long end_pfn = zone_end_pfn(zone);
3c7b4e6b
CM
1559 unsigned long pfn;
1560
1561 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
9f1eb38e 1562 struct page *page = pfn_to_online_page(pfn);
3c7b4e6b 1563
9f1eb38e
OS
1564 if (!page)
1565 continue;
1566
c10a0f87
LY
1567 /* only scan pages belonging to this zone */
1568 if (page_zone(page) != zone)
3c7b4e6b 1569 continue;
3c7b4e6b
CM
1570 /* only scan if page is in use */
1571 if (page_count(page) == 0)
1572 continue;
93ada579 1573 scan_block(page, page + 1, NULL);
13ab183d 1574 if (!(pfn & 63))
bde5f6bc 1575 cond_resched();
3c7b4e6b
CM
1576 }
1577 }
bfc8c901 1578 put_online_mems();
3c7b4e6b
CM
1579
1580 /*
43ed5d6e 1581 * Scanning the task stacks (may introduce false negatives).
3c7b4e6b
CM
1582 */
1583 if (kmemleak_stack_scan) {
43ed5d6e
CM
1584 struct task_struct *p, *g;
1585
c4b28963
DB
1586 rcu_read_lock();
1587 for_each_process_thread(g, p) {
37df49f4
CM
1588 void *stack = try_get_task_stack(p);
1589 if (stack) {
1590 scan_block(stack, stack + THREAD_SIZE, NULL);
1591 put_task_stack(p);
1592 }
c4b28963
DB
1593 }
1594 rcu_read_unlock();
3c7b4e6b
CM
1595 }
1596
1597 /*
1598 * Scan the objects already referenced from the sections scanned
04609ccc 1599 * above.
3c7b4e6b 1600 */
04609ccc 1601 scan_gray_list();
2587362e
CM
1602
1603 /*
04609ccc
CM
1604 * Check for new or unreferenced objects modified since the previous
1605 * scan and color them gray until the next scan.
2587362e
CM
1606 */
1607 rcu_read_lock();
984a6083 1608 loop_cnt = 0;
2587362e 1609 list_for_each_entry_rcu(object, &object_list, object_list) {
984a6083
WL
1610 /*
1611 * Do a cond_resched() every 64k objects to avoid soft lockup.
1612 */
1613 if (!(++loop_cnt & 0xffff) &&
1614 !kmemleak_cond_resched(object, false))
1615 loop_cnt--; /* Try again on next object */
1616
64977918
WL
1617 /*
1618 * This is racy but we can save the overhead of lock/unlock
1619 * calls. The missed objects, if any, should be caught in
1620 * the next scan.
1621 */
1622 if (!color_white(object))
1623 continue;
00c15506 1624 raw_spin_lock_irq(&object->lock);
04609ccc
CM
1625 if (color_white(object) && (object->flags & OBJECT_ALLOCATED)
1626 && update_checksum(object) && get_object(object)) {
1627 /* color it gray temporarily */
1628 object->count = object->min_count;
2587362e
CM
1629 list_add_tail(&object->gray_list, &gray_list);
1630 }
00c15506 1631 raw_spin_unlock_irq(&object->lock);
2587362e
CM
1632 }
1633 rcu_read_unlock();
1634
04609ccc
CM
1635 /*
1636 * Re-scan the gray list for modified unreferenced objects.
1637 */
1638 scan_gray_list();
4698c1f2 1639
17bb9e0d 1640 /*
04609ccc 1641 * If scanning was stopped do not report any new unreferenced objects.
17bb9e0d 1642 */
04609ccc 1643 if (scan_should_stop())
17bb9e0d
CM
1644 return;
1645
4698c1f2
CM
1646 /*
1647 * Scanning result reporting.
1648 */
1649 rcu_read_lock();
984a6083 1650 loop_cnt = 0;
4698c1f2 1651 list_for_each_entry_rcu(object, &object_list, object_list) {
984a6083
WL
1652 /*
1653 * Do a cond_resched() every 64k objects to avoid soft lockup.
1654 */
1655 if (!(++loop_cnt & 0xffff) &&
1656 !kmemleak_cond_resched(object, false))
1657 loop_cnt--; /* Try again on next object */
1658
64977918
WL
1659 /*
1660 * This is racy but we can save the overhead of lock/unlock
1661 * calls. The missed objects, if any, should be caught in
1662 * the next scan.
1663 */
1664 if (!color_white(object))
1665 continue;
00c15506 1666 raw_spin_lock_irq(&object->lock);
4698c1f2
CM
1667 if (unreferenced_object(object) &&
1668 !(object->flags & OBJECT_REPORTED)) {
1669 object->flags |= OBJECT_REPORTED;
154221c3
VW
1670
1671 if (kmemleak_verbose)
1672 print_unreferenced(NULL, object);
1673
4698c1f2
CM
1674 new_leaks++;
1675 }
00c15506 1676 raw_spin_unlock_irq(&object->lock);
4698c1f2
CM
1677 }
1678 rcu_read_unlock();
1679
dc9b3f42
LZ
1680 if (new_leaks) {
1681 kmemleak_found_leaks = true;
1682
756a025f
JP
1683 pr_info("%d new suspected memory leaks (see /sys/kernel/debug/kmemleak)\n",
1684 new_leaks);
dc9b3f42 1685 }
4698c1f2 1686
3c7b4e6b
CM
1687}
1688
1689/*
1690 * Thread function performing automatic memory scanning. Unreferenced objects
1691 * at the end of a memory scan are reported but only the first time.
1692 */
1693static int kmemleak_scan_thread(void *arg)
1694{
d53ce042 1695 static int first_run = IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN);
3c7b4e6b 1696
ae281064 1697 pr_info("Automatic memory scanning thread started\n");
bf2a76b3 1698 set_user_nice(current, 10);
3c7b4e6b
CM
1699
1700 /*
1701 * Wait before the first scan to allow the system to fully initialize.
1702 */
1703 if (first_run) {
98c42d94 1704 signed long timeout = msecs_to_jiffies(SECS_FIRST_SCAN * 1000);
3c7b4e6b 1705 first_run = 0;
98c42d94
VN
1706 while (timeout && !kthread_should_stop())
1707 timeout = schedule_timeout_interruptible(timeout);
3c7b4e6b
CM
1708 }
1709
1710 while (!kthread_should_stop()) {
54dd200c 1711 signed long timeout = READ_ONCE(jiffies_scan_wait);
3c7b4e6b
CM
1712
1713 mutex_lock(&scan_mutex);
3c7b4e6b 1714 kmemleak_scan();
3c7b4e6b 1715 mutex_unlock(&scan_mutex);
4698c1f2 1716
3c7b4e6b
CM
1717 /* wait before the next scan */
1718 while (timeout && !kthread_should_stop())
1719 timeout = schedule_timeout_interruptible(timeout);
1720 }
1721
ae281064 1722 pr_info("Automatic memory scanning thread ended\n");
3c7b4e6b
CM
1723
1724 return 0;
1725}
1726
1727/*
1728 * Start the automatic memory scanning thread. This function must be called
4698c1f2 1729 * with the scan_mutex held.
3c7b4e6b 1730 */
7eb0d5e5 1731static void start_scan_thread(void)
3c7b4e6b
CM
1732{
1733 if (scan_thread)
1734 return;
1735 scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak");
1736 if (IS_ERR(scan_thread)) {
598d8091 1737 pr_warn("Failed to create the scan thread\n");
3c7b4e6b
CM
1738 scan_thread = NULL;
1739 }
1740}
1741
1742/*
914b6dff 1743 * Stop the automatic memory scanning thread.
3c7b4e6b 1744 */
7eb0d5e5 1745static void stop_scan_thread(void)
3c7b4e6b
CM
1746{
1747 if (scan_thread) {
1748 kthread_stop(scan_thread);
1749 scan_thread = NULL;
1750 }
1751}
1752
1753/*
1754 * Iterate over the object_list and return the first valid object at or after
1755 * the required position with its use_count incremented. The function triggers
1756 * a memory scanning when the pos argument points to the first position.
1757 */
1758static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos)
1759{
1760 struct kmemleak_object *object;
1761 loff_t n = *pos;
b87324d0
CM
1762 int err;
1763
1764 err = mutex_lock_interruptible(&scan_mutex);
1765 if (err < 0)
1766 return ERR_PTR(err);
3c7b4e6b 1767
3c7b4e6b
CM
1768 rcu_read_lock();
1769 list_for_each_entry_rcu(object, &object_list, object_list) {
1770 if (n-- > 0)
1771 continue;
1772 if (get_object(object))
1773 goto out;
1774 }
1775 object = NULL;
1776out:
3c7b4e6b
CM
1777 return object;
1778}
1779
1780/*
1781 * Return the next object in the object_list. The function decrements the
1782 * use_count of the previous object and increases that of the next one.
1783 */
1784static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1785{
1786 struct kmemleak_object *prev_obj = v;
1787 struct kmemleak_object *next_obj = NULL;
58fac095 1788 struct kmemleak_object *obj = prev_obj;
3c7b4e6b
CM
1789
1790 ++(*pos);
3c7b4e6b 1791
58fac095 1792 list_for_each_entry_continue_rcu(obj, &object_list, object_list) {
52c3ce4e
CM
1793 if (get_object(obj)) {
1794 next_obj = obj;
3c7b4e6b 1795 break;
52c3ce4e 1796 }
3c7b4e6b 1797 }
288c857d 1798
3c7b4e6b
CM
1799 put_object(prev_obj);
1800 return next_obj;
1801}
1802
1803/*
1804 * Decrement the use_count of the last object required, if any.
1805 */
1806static void kmemleak_seq_stop(struct seq_file *seq, void *v)
1807{
b87324d0
CM
1808 if (!IS_ERR(v)) {
1809 /*
1810 * kmemleak_seq_start may return ERR_PTR if the scan_mutex
1811 * waiting was interrupted, so only release it if !IS_ERR.
1812 */
f5886c7f 1813 rcu_read_unlock();
b87324d0
CM
1814 mutex_unlock(&scan_mutex);
1815 if (v)
1816 put_object(v);
1817 }
3c7b4e6b
CM
1818}
1819
1820/*
1821 * Print the information for an unreferenced object to the seq file.
1822 */
1823static int kmemleak_seq_show(struct seq_file *seq, void *v)
1824{
1825 struct kmemleak_object *object = v;
1826 unsigned long flags;
1827
8c96f1bc 1828 raw_spin_lock_irqsave(&object->lock, flags);
288c857d 1829 if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object))
17bb9e0d 1830 print_unreferenced(seq, object);
8c96f1bc 1831 raw_spin_unlock_irqrestore(&object->lock, flags);
3c7b4e6b
CM
1832 return 0;
1833}
1834
1835static const struct seq_operations kmemleak_seq_ops = {
1836 .start = kmemleak_seq_start,
1837 .next = kmemleak_seq_next,
1838 .stop = kmemleak_seq_stop,
1839 .show = kmemleak_seq_show,
1840};
1841
1842static int kmemleak_open(struct inode *inode, struct file *file)
1843{
b87324d0 1844 return seq_open(file, &kmemleak_seq_ops);
3c7b4e6b
CM
1845}
1846
189d84ed
CM
1847static int dump_str_object_info(const char *str)
1848{
1849 unsigned long flags;
1850 struct kmemleak_object *object;
1851 unsigned long addr;
1852
dc053733
AP
1853 if (kstrtoul(str, 0, &addr))
1854 return -EINVAL;
189d84ed
CM
1855 object = find_and_get_object(addr, 0);
1856 if (!object) {
1857 pr_info("Unknown object at 0x%08lx\n", addr);
1858 return -EINVAL;
1859 }
1860
8c96f1bc 1861 raw_spin_lock_irqsave(&object->lock, flags);
189d84ed 1862 dump_object_info(object);
8c96f1bc 1863 raw_spin_unlock_irqrestore(&object->lock, flags);
189d84ed
CM
1864
1865 put_object(object);
1866 return 0;
1867}
1868
30b37101
LR
1869/*
1870 * We use grey instead of black to ensure we can do future scans on the same
1871 * objects. If we did not do future scans these black objects could
1872 * potentially contain references to newly allocated objects in the future and
1873 * we'd end up with false positives.
1874 */
1875static void kmemleak_clear(void)
1876{
1877 struct kmemleak_object *object;
30b37101
LR
1878
1879 rcu_read_lock();
1880 list_for_each_entry_rcu(object, &object_list, object_list) {
00c15506 1881 raw_spin_lock_irq(&object->lock);
30b37101
LR
1882 if ((object->flags & OBJECT_REPORTED) &&
1883 unreferenced_object(object))
a1084c87 1884 __paint_it(object, KMEMLEAK_GREY);
00c15506 1885 raw_spin_unlock_irq(&object->lock);
30b37101
LR
1886 }
1887 rcu_read_unlock();
dc9b3f42
LZ
1888
1889 kmemleak_found_leaks = false;
30b37101
LR
1890}
1891
c89da70c
LZ
1892static void __kmemleak_do_cleanup(void);
1893
3c7b4e6b
CM
1894/*
1895 * File write operation to configure kmemleak at run-time. The following
1896 * commands can be written to the /sys/kernel/debug/kmemleak file:
1897 * off - disable kmemleak (irreversible)
1898 * stack=on - enable the task stacks scanning
1899 * stack=off - disable the tasks stacks scanning
1900 * scan=on - start the automatic memory scanning thread
1901 * scan=off - stop the automatic memory scanning thread
1902 * scan=... - set the automatic memory scanning period in seconds (0 to
1903 * disable it)
4698c1f2 1904 * scan - trigger a memory scan
30b37101 1905 * clear - mark all current reported unreferenced kmemleak objects as
c89da70c
LZ
1906 * grey to ignore printing them, or free all kmemleak objects
1907 * if kmemleak has been disabled.
189d84ed 1908 * dump=... - dump information about the object found at the given address
3c7b4e6b
CM
1909 */
1910static ssize_t kmemleak_write(struct file *file, const char __user *user_buf,
1911 size_t size, loff_t *ppos)
1912{
1913 char buf[64];
1914 int buf_size;
b87324d0 1915 int ret;
3c7b4e6b
CM
1916
1917 buf_size = min(size, (sizeof(buf) - 1));
1918 if (strncpy_from_user(buf, user_buf, buf_size) < 0)
1919 return -EFAULT;
1920 buf[buf_size] = 0;
1921
b87324d0
CM
1922 ret = mutex_lock_interruptible(&scan_mutex);
1923 if (ret < 0)
1924 return ret;
1925
c89da70c 1926 if (strncmp(buf, "clear", 5) == 0) {
8910ae89 1927 if (kmemleak_enabled)
c89da70c
LZ
1928 kmemleak_clear();
1929 else
1930 __kmemleak_do_cleanup();
1931 goto out;
1932 }
1933
8910ae89 1934 if (!kmemleak_enabled) {
4e4dfce2 1935 ret = -EPERM;
c89da70c
LZ
1936 goto out;
1937 }
1938
3c7b4e6b
CM
1939 if (strncmp(buf, "off", 3) == 0)
1940 kmemleak_disable();
1941 else if (strncmp(buf, "stack=on", 8) == 0)
1942 kmemleak_stack_scan = 1;
1943 else if (strncmp(buf, "stack=off", 9) == 0)
1944 kmemleak_stack_scan = 0;
1945 else if (strncmp(buf, "scan=on", 7) == 0)
1946 start_scan_thread();
1947 else if (strncmp(buf, "scan=off", 8) == 0)
1948 stop_scan_thread();
1949 else if (strncmp(buf, "scan=", 5) == 0) {
54dd200c
YX
1950 unsigned secs;
1951 unsigned long msecs;
3c7b4e6b 1952
54dd200c 1953 ret = kstrtouint(buf + 5, 0, &secs);
b87324d0
CM
1954 if (ret < 0)
1955 goto out;
54dd200c
YX
1956
1957 msecs = secs * MSEC_PER_SEC;
1958 if (msecs > UINT_MAX)
1959 msecs = UINT_MAX;
1960
3c7b4e6b 1961 stop_scan_thread();
54dd200c
YX
1962 if (msecs) {
1963 WRITE_ONCE(jiffies_scan_wait, msecs_to_jiffies(msecs));
3c7b4e6b
CM
1964 start_scan_thread();
1965 }
4698c1f2
CM
1966 } else if (strncmp(buf, "scan", 4) == 0)
1967 kmemleak_scan();
189d84ed
CM
1968 else if (strncmp(buf, "dump=", 5) == 0)
1969 ret = dump_str_object_info(buf + 5);
4698c1f2 1970 else
b87324d0
CM
1971 ret = -EINVAL;
1972
1973out:
1974 mutex_unlock(&scan_mutex);
1975 if (ret < 0)
1976 return ret;
3c7b4e6b
CM
1977
1978 /* ignore the rest of the buffer, only one command at a time */
1979 *ppos += size;
1980 return size;
1981}
1982
1983static const struct file_operations kmemleak_fops = {
1984 .owner = THIS_MODULE,
1985 .open = kmemleak_open,
1986 .read = seq_read,
1987 .write = kmemleak_write,
1988 .llseek = seq_lseek,
5f3bf19a 1989 .release = seq_release,
3c7b4e6b
CM
1990};
1991
c89da70c
LZ
1992static void __kmemleak_do_cleanup(void)
1993{
2abd839a 1994 struct kmemleak_object *object, *tmp;
c89da70c 1995
2abd839a
CM
1996 /*
1997 * Kmemleak has already been disabled, no need for RCU list traversal
1998 * or kmemleak_lock held.
1999 */
2000 list_for_each_entry_safe(object, tmp, &object_list, object_list) {
2001 __remove_object(object);
2002 __delete_object(object);
2003 }
c89da70c
LZ
2004}
2005
3c7b4e6b 2006/*
74341703
CM
2007 * Stop the memory scanning thread and free the kmemleak internal objects if
2008 * no previous scan thread (otherwise, kmemleak may still have some useful
2009 * information on memory leaks).
3c7b4e6b 2010 */
179a8100 2011static void kmemleak_do_cleanup(struct work_struct *work)
3c7b4e6b 2012{
3c7b4e6b 2013 stop_scan_thread();
3c7b4e6b 2014
914b6dff 2015 mutex_lock(&scan_mutex);
c5f3b1a5 2016 /*
914b6dff
VM
2017 * Once it is made sure that kmemleak_scan has stopped, it is safe to no
2018 * longer track object freeing. Ordering of the scan thread stopping and
2019 * the memory accesses below is guaranteed by the kthread_stop()
2020 * function.
c5f3b1a5
CM
2021 */
2022 kmemleak_free_enabled = 0;
914b6dff 2023 mutex_unlock(&scan_mutex);
c5f3b1a5 2024
c89da70c
LZ
2025 if (!kmemleak_found_leaks)
2026 __kmemleak_do_cleanup();
2027 else
756a025f 2028 pr_info("Kmemleak disabled without freeing internal data. Reclaim the memory with \"echo clear > /sys/kernel/debug/kmemleak\".\n");
3c7b4e6b
CM
2029}
2030
179a8100 2031static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup);
3c7b4e6b
CM
2032
2033/*
2034 * Disable kmemleak. No memory allocation/freeing will be traced once this
2035 * function is called. Disabling kmemleak is an irreversible operation.
2036 */
2037static void kmemleak_disable(void)
2038{
2039 /* atomically check whether it was already invoked */
8910ae89 2040 if (cmpxchg(&kmemleak_error, 0, 1))
3c7b4e6b
CM
2041 return;
2042
2043 /* stop any memory operation tracing */
8910ae89 2044 kmemleak_enabled = 0;
3c7b4e6b
CM
2045
2046 /* check whether it is too early for a kernel thread */
8910ae89 2047 if (kmemleak_initialized)
179a8100 2048 schedule_work(&cleanup_work);
c5f3b1a5
CM
2049 else
2050 kmemleak_free_enabled = 0;
3c7b4e6b
CM
2051
2052 pr_info("Kernel memory leak detector disabled\n");
2053}
2054
2055/*
2056 * Allow boot-time kmemleak disabling (enabled by default).
2057 */
8bd30c10 2058static int __init kmemleak_boot_config(char *str)
3c7b4e6b
CM
2059{
2060 if (!str)
2061 return -EINVAL;
2062 if (strcmp(str, "off") == 0)
2063 kmemleak_disable();
ab0155a2
JB
2064 else if (strcmp(str, "on") == 0)
2065 kmemleak_skip_disable = 1;
2066 else
3c7b4e6b
CM
2067 return -EINVAL;
2068 return 0;
2069}
2070early_param("kmemleak", kmemleak_boot_config);
2071
2072/*
2030117d 2073 * Kmemleak initialization.
3c7b4e6b
CM
2074 */
2075void __init kmemleak_init(void)
2076{
ab0155a2
JB
2077#ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF
2078 if (!kmemleak_skip_disable) {
2079 kmemleak_disable();
2080 return;
2081 }
2082#endif
2083
c5665868
CM
2084 if (kmemleak_error)
2085 return;
2086
3c7b4e6b
CM
2087 jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE);
2088 jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000);
2089
2090 object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE);
2091 scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE);
3c7b4e6b 2092
298a32b1
CM
2093 /* register the data/bss sections */
2094 create_object((unsigned long)_sdata, _edata - _sdata,
2095 KMEMLEAK_GREY, GFP_ATOMIC);
2096 create_object((unsigned long)__bss_start, __bss_stop - __bss_start,
2097 KMEMLEAK_GREY, GFP_ATOMIC);
2098 /* only register .data..ro_after_init if not within .data */
b0d14fc4 2099 if (&__start_ro_after_init < &_sdata || &__end_ro_after_init > &_edata)
298a32b1
CM
2100 create_object((unsigned long)__start_ro_after_init,
2101 __end_ro_after_init - __start_ro_after_init,
2102 KMEMLEAK_GREY, GFP_ATOMIC);
3c7b4e6b
CM
2103}
2104
2105/*
2106 * Late initialization function.
2107 */
2108static int __init kmemleak_late_init(void)
2109{
8910ae89 2110 kmemleak_initialized = 1;
3c7b4e6b 2111
282401df 2112 debugfs_create_file("kmemleak", 0644, NULL, NULL, &kmemleak_fops);
b353756b 2113
8910ae89 2114 if (kmemleak_error) {
3c7b4e6b 2115 /*
25985edc 2116 * Some error occurred and kmemleak was disabled. There is a
3c7b4e6b
CM
2117 * small chance that kmemleak_disable() was called immediately
2118 * after setting kmemleak_initialized and we may end up with
2119 * two clean-up threads but serialized by scan_mutex.
2120 */
179a8100 2121 schedule_work(&cleanup_work);
3c7b4e6b
CM
2122 return -ENOMEM;
2123 }
2124
d53ce042
SK
2125 if (IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN)) {
2126 mutex_lock(&scan_mutex);
2127 start_scan_thread();
2128 mutex_unlock(&scan_mutex);
2129 }
3c7b4e6b 2130
0e965a6b
QC
2131 pr_info("Kernel memory leak detector initialized (mem pool available: %d)\n",
2132 mem_pool_free_count);
3c7b4e6b
CM
2133
2134 return 0;
2135}
2136late_initcall(kmemleak_late_init);