Merge tag 'gpio-updates-for-v6.7-rc1' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-2.6-block.git] / mm / kmemleak.c
CommitLineData
45051539 1// SPDX-License-Identifier: GPL-2.0-only
3c7b4e6b
CM
2/*
3 * mm/kmemleak.c
4 *
5 * Copyright (C) 2008 ARM Limited
6 * Written by Catalin Marinas <catalin.marinas@arm.com>
7 *
3c7b4e6b 8 * For more information on the algorithm and kmemleak usage, please see
22901c6c 9 * Documentation/dev-tools/kmemleak.rst.
3c7b4e6b
CM
10 *
11 * Notes on locking
12 * ----------------
13 *
14 * The following locks and mutexes are used by kmemleak:
15 *
782e4179
WL
16 * - kmemleak_lock (raw_spinlock_t): protects the object_list as well as
17 * del_state modifications and accesses to the object_tree_root (or
18 * object_phys_tree_root). The object_list is the main list holding the
19 * metadata (struct kmemleak_object) for the allocated memory blocks.
20 * The object_tree_root and object_phys_tree_root are red
21 * black trees used to look-up metadata based on a pointer to the
0c24e061
PW
22 * corresponding memory block. The object_phys_tree_root is for objects
23 * allocated with physical address. The kmemleak_object structures are
24 * added to the object_list and object_tree_root (or object_phys_tree_root)
25 * in the create_object() function called from the kmemleak_alloc() (or
26 * kmemleak_alloc_phys()) callback and removed in delete_object() called from
27 * the kmemleak_free() callback
8c96f1bc
HZ
28 * - kmemleak_object.lock (raw_spinlock_t): protects a kmemleak_object.
29 * Accesses to the metadata (e.g. count) are protected by this lock. Note
30 * that some members of this structure may be protected by other means
31 * (atomic or kmemleak_lock). This lock is also held when scanning the
32 * corresponding memory block to avoid the kernel freeing it via the
33 * kmemleak_free() callback. This is less heavyweight than holding a global
34 * lock like kmemleak_lock during scanning.
3c7b4e6b
CM
35 * - scan_mutex (mutex): ensures that only one thread may scan the memory for
36 * unreferenced objects at a time. The gray_list contains the objects which
37 * are already referenced or marked as false positives and need to be
38 * scanned. This list is only modified during a scanning episode when the
39 * scan_mutex is held. At the end of a scan, the gray_list is always empty.
40 * Note that the kmemleak_object.use_count is incremented when an object is
4698c1f2
CM
41 * added to the gray_list and therefore cannot be freed. This mutex also
42 * prevents multiple users of the "kmemleak" debugfs file together with
43 * modifications to the memory scanning parameters including the scan_thread
44 * pointer
3c7b4e6b 45 *
93ada579 46 * Locks and mutexes are acquired/nested in the following order:
9d5a4c73 47 *
93ada579
CM
48 * scan_mutex [-> object->lock] -> kmemleak_lock -> other_object->lock (SINGLE_DEPTH_NESTING)
49 *
50 * No kmemleak_lock and object->lock nesting is allowed outside scan_mutex
51 * regions.
9d5a4c73 52 *
3c7b4e6b
CM
53 * The kmemleak_object structures have a use_count incremented or decremented
54 * using the get_object()/put_object() functions. When the use_count becomes
55 * 0, this count can no longer be incremented and put_object() schedules the
56 * kmemleak_object freeing via an RCU callback. All calls to the get_object()
57 * function must be protected by rcu_read_lock() to avoid accessing a freed
58 * structure.
59 */
60
ae281064
JP
61#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
62
3c7b4e6b
CM
63#include <linux/init.h>
64#include <linux/kernel.h>
65#include <linux/list.h>
3f07c014 66#include <linux/sched/signal.h>
29930025 67#include <linux/sched/task.h>
68db0cf1 68#include <linux/sched/task_stack.h>
3c7b4e6b
CM
69#include <linux/jiffies.h>
70#include <linux/delay.h>
b95f1b31 71#include <linux/export.h>
3c7b4e6b 72#include <linux/kthread.h>
85d3a316 73#include <linux/rbtree.h>
3c7b4e6b
CM
74#include <linux/fs.h>
75#include <linux/debugfs.h>
76#include <linux/seq_file.h>
77#include <linux/cpumask.h>
78#include <linux/spinlock.h>
154221c3 79#include <linux/module.h>
3c7b4e6b
CM
80#include <linux/mutex.h>
81#include <linux/rcupdate.h>
82#include <linux/stacktrace.h>
56a61617 83#include <linux/stackdepot.h>
3c7b4e6b
CM
84#include <linux/cache.h>
85#include <linux/percpu.h>
57c8a661 86#include <linux/memblock.h>
9099daed 87#include <linux/pfn.h>
3c7b4e6b
CM
88#include <linux/mmzone.h>
89#include <linux/slab.h>
90#include <linux/thread_info.h>
91#include <linux/err.h>
92#include <linux/uaccess.h>
93#include <linux/string.h>
94#include <linux/nodemask.h>
95#include <linux/mm.h>
179a8100 96#include <linux/workqueue.h>
04609ccc 97#include <linux/crc32.h>
3c7b4e6b
CM
98
99#include <asm/sections.h>
100#include <asm/processor.h>
60063497 101#include <linux/atomic.h>
3c7b4e6b 102
e79ed2f1 103#include <linux/kasan.h>
95511580 104#include <linux/kfence.h>
3c7b4e6b 105#include <linux/kmemleak.h>
029aeff5 106#include <linux/memory_hotplug.h>
3c7b4e6b
CM
107
108/*
109 * Kmemleak configuration and common defines.
110 */
111#define MAX_TRACE 16 /* stack trace length */
3c7b4e6b 112#define MSECS_MIN_AGE 5000 /* minimum object age for reporting */
3c7b4e6b
CM
113#define SECS_FIRST_SCAN 60 /* delay before the first scan */
114#define SECS_SCAN_WAIT 600 /* subsequent auto scanning delay */
af98603d 115#define MAX_SCAN_SIZE 4096 /* maximum size of a scanned block */
3c7b4e6b
CM
116
117#define BYTES_PER_POINTER sizeof(void *)
118
216c04b0 119/* GFP bitmask for kmemleak internal allocations */
79d37050
NA
120#define gfp_kmemleak_mask(gfp) (((gfp) & (GFP_KERNEL | GFP_ATOMIC | \
121 __GFP_NOLOCKDEP)) | \
6ae4bd1f 122 __GFP_NORETRY | __GFP_NOMEMALLOC | \
df9576de 123 __GFP_NOWARN)
216c04b0 124
3c7b4e6b
CM
125/* scanning area inside a memory block */
126struct kmemleak_scan_area {
127 struct hlist_node node;
c017b4be
CM
128 unsigned long start;
129 size_t size;
3c7b4e6b
CM
130};
131
a1084c87
LR
132#define KMEMLEAK_GREY 0
133#define KMEMLEAK_BLACK -1
134
3c7b4e6b
CM
135/*
136 * Structure holding the metadata for each allocated memory block.
137 * Modifications to such objects should be made while holding the
138 * object->lock. Insertions or deletions from object_list, gray_list or
85d3a316 139 * rb_node are already protected by the corresponding locks or mutex (see
3c7b4e6b
CM
140 * the notes on locking above). These objects are reference-counted
141 * (use_count) and freed using the RCU mechanism.
142 */
143struct kmemleak_object {
8c96f1bc 144 raw_spinlock_t lock;
f66abf09 145 unsigned int flags; /* object status flags */
3c7b4e6b
CM
146 struct list_head object_list;
147 struct list_head gray_list;
85d3a316 148 struct rb_node rb_node;
3c7b4e6b
CM
149 struct rcu_head rcu; /* object_list lockless traversal */
150 /* object usage count; object freed when use_count == 0 */
151 atomic_t use_count;
782e4179 152 unsigned int del_state; /* deletion state */
3c7b4e6b
CM
153 unsigned long pointer;
154 size_t size;
94f4a161
CM
155 /* pass surplus references to this pointer */
156 unsigned long excess_ref;
3c7b4e6b
CM
157 /* minimum number of a pointers found before it is considered leak */
158 int min_count;
159 /* the total number of pointers found pointing to this object */
160 int count;
04609ccc
CM
161 /* checksum for detecting modified objects */
162 u32 checksum;
3c7b4e6b
CM
163 /* memory ranges to be scanned inside an object (empty for all) */
164 struct hlist_head area_list;
56a61617 165 depot_stack_handle_t trace_handle;
3c7b4e6b
CM
166 unsigned long jiffies; /* creation timestamp */
167 pid_t pid; /* pid of the current task */
168 char comm[TASK_COMM_LEN]; /* executable name */
169};
170
171/* flag representing the memory block allocation status */
172#define OBJECT_ALLOCATED (1 << 0)
173/* flag set after the first reporting of an unreference object */
174#define OBJECT_REPORTED (1 << 1)
175/* flag set to not scan the object */
176#define OBJECT_NO_SCAN (1 << 2)
dba82d94
CM
177/* flag set to fully scan the object when scan_area allocation failed */
178#define OBJECT_FULL_SCAN (1 << 3)
8e0c4ab3
PW
179/* flag set for object allocated with physical address */
180#define OBJECT_PHYS (1 << 4)
3c7b4e6b 181
782e4179
WL
182/* set when __remove_object() called */
183#define DELSTATE_REMOVED (1 << 0)
184/* set to temporarily prevent deletion from object_list */
185#define DELSTATE_NO_DELETE (1 << 1)
186
154221c3 187#define HEX_PREFIX " "
0494e082
SS
188/* number of bytes to print per line; must be 16 or 32 */
189#define HEX_ROW_SIZE 16
190/* number of bytes to print at a time (1, 2, 4, 8) */
191#define HEX_GROUP_SIZE 1
192/* include ASCII after the hex output */
193#define HEX_ASCII 1
194/* max number of lines to be printed */
195#define HEX_MAX_LINES 2
196
3c7b4e6b
CM
197/* the list of all allocated objects */
198static LIST_HEAD(object_list);
199/* the list of gray-colored objects (see color_gray comment below) */
200static LIST_HEAD(gray_list);
0647398a 201/* memory pool allocation */
c5665868 202static struct kmemleak_object mem_pool[CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE];
0647398a
CM
203static int mem_pool_free_count = ARRAY_SIZE(mem_pool);
204static LIST_HEAD(mem_pool_free_list);
85d3a316
ML
205/* search tree for object boundaries */
206static struct rb_root object_tree_root = RB_ROOT;
0c24e061
PW
207/* search tree for object (with OBJECT_PHYS flag) boundaries */
208static struct rb_root object_phys_tree_root = RB_ROOT;
209/* protecting the access to object_list, object_tree_root (or object_phys_tree_root) */
8c96f1bc 210static DEFINE_RAW_SPINLOCK(kmemleak_lock);
3c7b4e6b
CM
211
212/* allocation caches for kmemleak internal data */
213static struct kmem_cache *object_cache;
214static struct kmem_cache *scan_area_cache;
215
216/* set if tracing memory operations is enabled */
c5665868 217static int kmemleak_enabled = 1;
c5f3b1a5 218/* same as above but only for the kmemleak_free() callback */
c5665868 219static int kmemleak_free_enabled = 1;
3c7b4e6b 220/* set in the late_initcall if there were no errors */
d160ef71 221static int kmemleak_late_initialized;
5f79020c 222/* set if a kmemleak warning was issued */
8910ae89 223static int kmemleak_warning;
5f79020c 224/* set if a fatal kmemleak error has occurred */
8910ae89 225static int kmemleak_error;
3c7b4e6b
CM
226
227/* minimum and maximum address that may be valid pointers */
228static unsigned long min_addr = ULONG_MAX;
229static unsigned long max_addr;
230
3c7b4e6b 231static struct task_struct *scan_thread;
acf4968e 232/* used to avoid reporting of recently allocated objects */
3c7b4e6b 233static unsigned long jiffies_min_age;
acf4968e 234static unsigned long jiffies_last_scan;
3c7b4e6b 235/* delay between automatic memory scannings */
54dd200c 236static unsigned long jiffies_scan_wait;
3c7b4e6b 237/* enables or disables the task stacks scanning */
e0a2a160 238static int kmemleak_stack_scan = 1;
4698c1f2 239/* protects the memory scanning, parameters and debug/kmemleak file access */
3c7b4e6b 240static DEFINE_MUTEX(scan_mutex);
ab0155a2
JB
241/* setting kmemleak=on, will set this var, skipping the disable */
242static int kmemleak_skip_disable;
dc9b3f42
LZ
243/* If there are leaks that can be reported */
244static bool kmemleak_found_leaks;
3c7b4e6b 245
154221c3
VW
246static bool kmemleak_verbose;
247module_param_named(verbose, kmemleak_verbose, bool, 0600);
248
3c7b4e6b
CM
249static void kmemleak_disable(void);
250
251/*
252 * Print a warning and dump the stack trace.
253 */
5f79020c 254#define kmemleak_warn(x...) do { \
598d8091 255 pr_warn(x); \
5f79020c 256 dump_stack(); \
8910ae89 257 kmemleak_warning = 1; \
3c7b4e6b
CM
258} while (0)
259
260/*
25985edc 261 * Macro invoked when a serious kmemleak condition occurred and cannot be
2030117d 262 * recovered from. Kmemleak will be disabled and further allocation/freeing
3c7b4e6b
CM
263 * tracing no longer available.
264 */
000814f4 265#define kmemleak_stop(x...) do { \
3c7b4e6b
CM
266 kmemleak_warn(x); \
267 kmemleak_disable(); \
268} while (0)
269
154221c3
VW
270#define warn_or_seq_printf(seq, fmt, ...) do { \
271 if (seq) \
272 seq_printf(seq, fmt, ##__VA_ARGS__); \
273 else \
274 pr_warn(fmt, ##__VA_ARGS__); \
275} while (0)
276
277static void warn_or_seq_hex_dump(struct seq_file *seq, int prefix_type,
278 int rowsize, int groupsize, const void *buf,
279 size_t len, bool ascii)
280{
281 if (seq)
282 seq_hex_dump(seq, HEX_PREFIX, prefix_type, rowsize, groupsize,
283 buf, len, ascii);
284 else
285 print_hex_dump(KERN_WARNING, pr_fmt(HEX_PREFIX), prefix_type,
286 rowsize, groupsize, buf, len, ascii);
287}
288
0494e082
SS
289/*
290 * Printing of the objects hex dump to the seq file. The number of lines to be
291 * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The
292 * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called
293 * with the object->lock held.
294 */
295static void hex_dump_object(struct seq_file *seq,
296 struct kmemleak_object *object)
297{
298 const u8 *ptr = (const u8 *)object->pointer;
6fc37c49 299 size_t len;
0494e082 300
0c24e061
PW
301 if (WARN_ON_ONCE(object->flags & OBJECT_PHYS))
302 return;
303
0494e082 304 /* limit the number of lines to HEX_MAX_LINES */
6fc37c49 305 len = min_t(size_t, object->size, HEX_MAX_LINES * HEX_ROW_SIZE);
0494e082 306
154221c3 307 warn_or_seq_printf(seq, " hex dump (first %zu bytes):\n", len);
5c335fe0 308 kasan_disable_current();
154221c3 309 warn_or_seq_hex_dump(seq, DUMP_PREFIX_NONE, HEX_ROW_SIZE,
6c7a00b8 310 HEX_GROUP_SIZE, kasan_reset_tag((void *)ptr), len, HEX_ASCII);
5c335fe0 311 kasan_enable_current();
0494e082
SS
312}
313
3c7b4e6b
CM
314/*
315 * Object colors, encoded with count and min_count:
316 * - white - orphan object, not enough references to it (count < min_count)
317 * - gray - not orphan, not marked as false positive (min_count == 0) or
318 * sufficient references to it (count >= min_count)
319 * - black - ignore, it doesn't contain references (e.g. text section)
320 * (min_count == -1). No function defined for this color.
321 * Newly created objects don't have any color assigned (object->count == -1)
322 * before the next memory scan when they become white.
323 */
4a558dd6 324static bool color_white(const struct kmemleak_object *object)
3c7b4e6b 325{
a1084c87
LR
326 return object->count != KMEMLEAK_BLACK &&
327 object->count < object->min_count;
3c7b4e6b
CM
328}
329
4a558dd6 330static bool color_gray(const struct kmemleak_object *object)
3c7b4e6b 331{
a1084c87
LR
332 return object->min_count != KMEMLEAK_BLACK &&
333 object->count >= object->min_count;
3c7b4e6b
CM
334}
335
3c7b4e6b
CM
336/*
337 * Objects are considered unreferenced only if their color is white, they have
338 * not be deleted and have a minimum age to avoid false positives caused by
339 * pointers temporarily stored in CPU registers.
340 */
4a558dd6 341static bool unreferenced_object(struct kmemleak_object *object)
3c7b4e6b 342{
04609ccc 343 return (color_white(object) && object->flags & OBJECT_ALLOCATED) &&
acf4968e
CM
344 time_before_eq(object->jiffies + jiffies_min_age,
345 jiffies_last_scan);
3c7b4e6b
CM
346}
347
348/*
bab4a34a
CM
349 * Printing of the unreferenced objects information to the seq file. The
350 * print_unreferenced function must be called with the object->lock held.
3c7b4e6b 351 */
3c7b4e6b
CM
352static void print_unreferenced(struct seq_file *seq,
353 struct kmemleak_object *object)
354{
355 int i;
56a61617
ZH
356 unsigned long *entries;
357 unsigned int nr_entries;
fefdd336 358 unsigned int msecs_age = jiffies_to_msecs(jiffies - object->jiffies);
3c7b4e6b 359
56a61617 360 nr_entries = stack_depot_fetch(object->trace_handle, &entries);
154221c3 361 warn_or_seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n",
56a61617 362 object->pointer, object->size);
154221c3 363 warn_or_seq_printf(seq, " comm \"%s\", pid %d, jiffies %lu (age %d.%03ds)\n",
56a61617
ZH
364 object->comm, object->pid, object->jiffies,
365 msecs_age / 1000, msecs_age % 1000);
0494e082 366 hex_dump_object(seq, object);
154221c3 367 warn_or_seq_printf(seq, " backtrace:\n");
3c7b4e6b 368
56a61617
ZH
369 for (i = 0; i < nr_entries; i++) {
370 void *ptr = (void *)entries[i];
3a6f33d8 371 warn_or_seq_printf(seq, " [<%pK>] %pS\n", ptr, ptr);
3c7b4e6b
CM
372 }
373}
374
375/*
376 * Print the kmemleak_object information. This function is used mainly for
377 * debugging special cases when kmemleak operations. It must be called with
378 * the object->lock held.
379 */
380static void dump_object_info(struct kmemleak_object *object)
381{
ae281064 382 pr_notice("Object 0x%08lx (size %zu):\n",
56a61617 383 object->pointer, object->size);
3c7b4e6b 384 pr_notice(" comm \"%s\", pid %d, jiffies %lu\n",
56a61617 385 object->comm, object->pid, object->jiffies);
3c7b4e6b
CM
386 pr_notice(" min_count = %d\n", object->min_count);
387 pr_notice(" count = %d\n", object->count);
f66abf09 388 pr_notice(" flags = 0x%x\n", object->flags);
aae0ad7a 389 pr_notice(" checksum = %u\n", object->checksum);
3c7b4e6b 390 pr_notice(" backtrace:\n");
56a61617
ZH
391 if (object->trace_handle)
392 stack_depot_print(object->trace_handle);
3c7b4e6b
CM
393}
394
395/*
85d3a316 396 * Look-up a memory block metadata (kmemleak_object) in the object search
3c7b4e6b
CM
397 * tree based on a pointer value. If alias is 0, only values pointing to the
398 * beginning of the memory block are allowed. The kmemleak_lock must be held
399 * when calling this function.
400 */
0c24e061
PW
401static struct kmemleak_object *__lookup_object(unsigned long ptr, int alias,
402 bool is_phys)
3c7b4e6b 403{
0c24e061
PW
404 struct rb_node *rb = is_phys ? object_phys_tree_root.rb_node :
405 object_tree_root.rb_node;
ad1a3e15 406 unsigned long untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr);
85d3a316
ML
407
408 while (rb) {
ad1a3e15
KYL
409 struct kmemleak_object *object;
410 unsigned long untagged_objp;
411
412 object = rb_entry(rb, struct kmemleak_object, rb_node);
413 untagged_objp = (unsigned long)kasan_reset_tag((void *)object->pointer);
414
415 if (untagged_ptr < untagged_objp)
85d3a316 416 rb = object->rb_node.rb_left;
ad1a3e15 417 else if (untagged_objp + object->size <= untagged_ptr)
85d3a316 418 rb = object->rb_node.rb_right;
ad1a3e15 419 else if (untagged_objp == untagged_ptr || alias)
85d3a316
ML
420 return object;
421 else {
5f79020c
CM
422 kmemleak_warn("Found object by alias at 0x%08lx\n",
423 ptr);
a7686a45 424 dump_object_info(object);
85d3a316 425 break;
3c7b4e6b 426 }
85d3a316
ML
427 }
428 return NULL;
3c7b4e6b
CM
429}
430
0c24e061
PW
431/* Look-up a kmemleak object which allocated with virtual address. */
432static struct kmemleak_object *lookup_object(unsigned long ptr, int alias)
433{
434 return __lookup_object(ptr, alias, false);
435}
436
3c7b4e6b
CM
437/*
438 * Increment the object use_count. Return 1 if successful or 0 otherwise. Note
439 * that once an object's use_count reached 0, the RCU freeing was already
440 * registered and the object should no longer be used. This function must be
441 * called under the protection of rcu_read_lock().
442 */
443static int get_object(struct kmemleak_object *object)
444{
445 return atomic_inc_not_zero(&object->use_count);
446}
447
0647398a
CM
448/*
449 * Memory pool allocation and freeing. kmemleak_lock must not be held.
450 */
451static struct kmemleak_object *mem_pool_alloc(gfp_t gfp)
452{
453 unsigned long flags;
454 struct kmemleak_object *object;
455
456 /* try the slab allocator first */
c5665868
CM
457 if (object_cache) {
458 object = kmem_cache_alloc(object_cache, gfp_kmemleak_mask(gfp));
459 if (object)
460 return object;
461 }
0647398a
CM
462
463 /* slab allocation failed, try the memory pool */
8c96f1bc 464 raw_spin_lock_irqsave(&kmemleak_lock, flags);
0647398a
CM
465 object = list_first_entry_or_null(&mem_pool_free_list,
466 typeof(*object), object_list);
467 if (object)
468 list_del(&object->object_list);
469 else if (mem_pool_free_count)
470 object = &mem_pool[--mem_pool_free_count];
c5665868
CM
471 else
472 pr_warn_once("Memory pool empty, consider increasing CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE\n");
8c96f1bc 473 raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
0647398a
CM
474
475 return object;
476}
477
478/*
479 * Return the object to either the slab allocator or the memory pool.
480 */
481static void mem_pool_free(struct kmemleak_object *object)
482{
483 unsigned long flags;
484
485 if (object < mem_pool || object >= mem_pool + ARRAY_SIZE(mem_pool)) {
486 kmem_cache_free(object_cache, object);
487 return;
488 }
489
490 /* add the object to the memory pool free list */
8c96f1bc 491 raw_spin_lock_irqsave(&kmemleak_lock, flags);
0647398a 492 list_add(&object->object_list, &mem_pool_free_list);
8c96f1bc 493 raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
0647398a
CM
494}
495
3c7b4e6b
CM
496/*
497 * RCU callback to free a kmemleak_object.
498 */
499static void free_object_rcu(struct rcu_head *rcu)
500{
b67bfe0d 501 struct hlist_node *tmp;
3c7b4e6b
CM
502 struct kmemleak_scan_area *area;
503 struct kmemleak_object *object =
504 container_of(rcu, struct kmemleak_object, rcu);
505
506 /*
507 * Once use_count is 0 (guaranteed by put_object), there is no other
508 * code accessing this object, hence no need for locking.
509 */
b67bfe0d
SL
510 hlist_for_each_entry_safe(area, tmp, &object->area_list, node) {
511 hlist_del(&area->node);
3c7b4e6b
CM
512 kmem_cache_free(scan_area_cache, area);
513 }
0647398a 514 mem_pool_free(object);
3c7b4e6b
CM
515}
516
517/*
518 * Decrement the object use_count. Once the count is 0, free the object using
519 * an RCU callback. Since put_object() may be called via the kmemleak_free() ->
520 * delete_object() path, the delayed RCU freeing ensures that there is no
521 * recursive call to the kernel allocator. Lock-less RCU object_list traversal
522 * is also possible.
523 */
524static void put_object(struct kmemleak_object *object)
525{
526 if (!atomic_dec_and_test(&object->use_count))
527 return;
528
529 /* should only get here after delete_object was called */
530 WARN_ON(object->flags & OBJECT_ALLOCATED);
531
c5665868
CM
532 /*
533 * It may be too early for the RCU callbacks, however, there is no
534 * concurrent object_list traversal when !object_cache and all objects
535 * came from the memory pool. Free the object directly.
536 */
537 if (object_cache)
538 call_rcu(&object->rcu, free_object_rcu);
539 else
540 free_object_rcu(&object->rcu);
3c7b4e6b
CM
541}
542
543/*
85d3a316 544 * Look up an object in the object search tree and increase its use_count.
3c7b4e6b 545 */
0c24e061
PW
546static struct kmemleak_object *__find_and_get_object(unsigned long ptr, int alias,
547 bool is_phys)
3c7b4e6b
CM
548{
549 unsigned long flags;
9fbed254 550 struct kmemleak_object *object;
3c7b4e6b
CM
551
552 rcu_read_lock();
8c96f1bc 553 raw_spin_lock_irqsave(&kmemleak_lock, flags);
0c24e061 554 object = __lookup_object(ptr, alias, is_phys);
8c96f1bc 555 raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
3c7b4e6b
CM
556
557 /* check whether the object is still available */
558 if (object && !get_object(object))
559 object = NULL;
560 rcu_read_unlock();
561
562 return object;
563}
564
0c24e061
PW
565/* Look up and get an object which allocated with virtual address. */
566static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias)
567{
568 return __find_and_get_object(ptr, alias, false);
569}
570
2abd839a 571/*
0c24e061
PW
572 * Remove an object from the object_tree_root (or object_phys_tree_root)
573 * and object_list. Must be called with the kmemleak_lock held _if_ kmemleak
574 * is still enabled.
2abd839a
CM
575 */
576static void __remove_object(struct kmemleak_object *object)
577{
0c24e061
PW
578 rb_erase(&object->rb_node, object->flags & OBJECT_PHYS ?
579 &object_phys_tree_root :
580 &object_tree_root);
782e4179
WL
581 if (!(object->del_state & DELSTATE_NO_DELETE))
582 list_del_rcu(&object->object_list);
583 object->del_state |= DELSTATE_REMOVED;
2abd839a
CM
584}
585
e781a9ab
CM
586/*
587 * Look up an object in the object search tree and remove it from both
0c24e061
PW
588 * object_tree_root (or object_phys_tree_root) and object_list. The
589 * returned object's use_count should be at least 1, as initially set
590 * by create_object().
e781a9ab 591 */
0c24e061
PW
592static struct kmemleak_object *find_and_remove_object(unsigned long ptr, int alias,
593 bool is_phys)
e781a9ab
CM
594{
595 unsigned long flags;
596 struct kmemleak_object *object;
597
8c96f1bc 598 raw_spin_lock_irqsave(&kmemleak_lock, flags);
0c24e061 599 object = __lookup_object(ptr, alias, is_phys);
2abd839a
CM
600 if (object)
601 __remove_object(object);
8c96f1bc 602 raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
e781a9ab
CM
603
604 return object;
605}
606
56a61617 607static noinline depot_stack_handle_t set_track_prepare(void)
fd678967 608{
56a61617
ZH
609 depot_stack_handle_t trace_handle;
610 unsigned long entries[MAX_TRACE];
611 unsigned int nr_entries;
612
835bc157
XW
613 /*
614 * Use object_cache to determine whether kmemleak_init() has
615 * been invoked. stack_depot_early_init() is called before
616 * kmemleak_init() in mm_core_init().
617 */
618 if (!object_cache)
56a61617
ZH
619 return 0;
620 nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3);
621 trace_handle = stack_depot_save(entries, nr_entries, GFP_NOWAIT);
622
623 return trace_handle;
fd678967
CM
624}
625
3c7b4e6b
CM
626/*
627 * Create the metadata (struct kmemleak_object) corresponding to an allocated
0c24e061
PW
628 * memory block and add it to the object_list and object_tree_root (or
629 * object_phys_tree_root).
3c7b4e6b 630 */
b955aa70
LS
631static void __create_object(unsigned long ptr, size_t size,
632 int min_count, gfp_t gfp, bool is_phys)
3c7b4e6b
CM
633{
634 unsigned long flags;
85d3a316
ML
635 struct kmemleak_object *object, *parent;
636 struct rb_node **link, *rb_parent;
a2f77575 637 unsigned long untagged_ptr;
ad1a3e15 638 unsigned long untagged_objp;
3c7b4e6b 639
0647398a 640 object = mem_pool_alloc(gfp);
3c7b4e6b 641 if (!object) {
598d8091 642 pr_warn("Cannot allocate a kmemleak_object structure\n");
6ae4bd1f 643 kmemleak_disable();
b955aa70 644 return;
3c7b4e6b
CM
645 }
646
647 INIT_LIST_HEAD(&object->object_list);
648 INIT_LIST_HEAD(&object->gray_list);
649 INIT_HLIST_HEAD(&object->area_list);
8c96f1bc 650 raw_spin_lock_init(&object->lock);
3c7b4e6b 651 atomic_set(&object->use_count, 1);
8e0c4ab3 652 object->flags = OBJECT_ALLOCATED | (is_phys ? OBJECT_PHYS : 0);
3c7b4e6b 653 object->pointer = ptr;
95511580 654 object->size = kfence_ksize((void *)ptr) ?: size;
94f4a161 655 object->excess_ref = 0;
3c7b4e6b 656 object->min_count = min_count;
04609ccc 657 object->count = 0; /* white color initially */
3c7b4e6b 658 object->jiffies = jiffies;
04609ccc 659 object->checksum = 0;
782e4179 660 object->del_state = 0;
3c7b4e6b
CM
661
662 /* task information */
ea0eafea 663 if (in_hardirq()) {
3c7b4e6b
CM
664 object->pid = 0;
665 strncpy(object->comm, "hardirq", sizeof(object->comm));
6ef90569 666 } else if (in_serving_softirq()) {
3c7b4e6b
CM
667 object->pid = 0;
668 strncpy(object->comm, "softirq", sizeof(object->comm));
669 } else {
670 object->pid = current->pid;
671 /*
672 * There is a small chance of a race with set_task_comm(),
673 * however using get_task_comm() here may cause locking
674 * dependency issues with current->alloc_lock. In the worst
675 * case, the command line is not correct.
676 */
677 strncpy(object->comm, current->comm, sizeof(object->comm));
678 }
679
680 /* kernel backtrace */
56a61617 681 object->trace_handle = set_track_prepare();
3c7b4e6b 682
8c96f1bc 683 raw_spin_lock_irqsave(&kmemleak_lock, flags);
0580a181 684
a2f77575 685 untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr);
0c24e061
PW
686 /*
687 * Only update min_addr and max_addr with object
688 * storing virtual address.
689 */
690 if (!is_phys) {
691 min_addr = min(min_addr, untagged_ptr);
692 max_addr = max(max_addr, untagged_ptr + size);
693 }
694 link = is_phys ? &object_phys_tree_root.rb_node :
695 &object_tree_root.rb_node;
85d3a316
ML
696 rb_parent = NULL;
697 while (*link) {
698 rb_parent = *link;
699 parent = rb_entry(rb_parent, struct kmemleak_object, rb_node);
ad1a3e15
KYL
700 untagged_objp = (unsigned long)kasan_reset_tag((void *)parent->pointer);
701 if (untagged_ptr + size <= untagged_objp)
85d3a316 702 link = &parent->rb_node.rb_left;
ad1a3e15 703 else if (untagged_objp + parent->size <= untagged_ptr)
85d3a316
ML
704 link = &parent->rb_node.rb_right;
705 else {
756a025f 706 kmemleak_stop("Cannot insert 0x%lx into the object search tree (overlaps existing)\n",
85d3a316 707 ptr);
9d5a4c73
CM
708 /*
709 * No need for parent->lock here since "parent" cannot
710 * be freed while the kmemleak_lock is held.
711 */
712 dump_object_info(parent);
85d3a316 713 kmem_cache_free(object_cache, object);
85d3a316
ML
714 goto out;
715 }
3c7b4e6b 716 }
85d3a316 717 rb_link_node(&object->rb_node, rb_parent, link);
0c24e061
PW
718 rb_insert_color(&object->rb_node, is_phys ? &object_phys_tree_root :
719 &object_tree_root);
3c7b4e6b
CM
720 list_add_tail_rcu(&object->object_list, &object_list);
721out:
8c96f1bc 722 raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
3c7b4e6b
CM
723}
724
8e0c4ab3 725/* Create kmemleak object which allocated with virtual address. */
b955aa70
LS
726static void create_object(unsigned long ptr, size_t size,
727 int min_count, gfp_t gfp)
8e0c4ab3 728{
b955aa70 729 __create_object(ptr, size, min_count, gfp, false);
8e0c4ab3
PW
730}
731
732/* Create kmemleak object which allocated with physical address. */
b955aa70
LS
733static void create_object_phys(unsigned long ptr, size_t size,
734 int min_count, gfp_t gfp)
8e0c4ab3 735{
b955aa70 736 __create_object(ptr, size, min_count, gfp, true);
8e0c4ab3
PW
737}
738
3c7b4e6b 739/*
e781a9ab 740 * Mark the object as not allocated and schedule RCU freeing via put_object().
3c7b4e6b 741 */
53238a60 742static void __delete_object(struct kmemleak_object *object)
3c7b4e6b
CM
743{
744 unsigned long flags;
3c7b4e6b 745
3c7b4e6b 746 WARN_ON(!(object->flags & OBJECT_ALLOCATED));
e781a9ab 747 WARN_ON(atomic_read(&object->use_count) < 1);
3c7b4e6b
CM
748
749 /*
750 * Locking here also ensures that the corresponding memory block
751 * cannot be freed when it is being scanned.
752 */
8c96f1bc 753 raw_spin_lock_irqsave(&object->lock, flags);
3c7b4e6b 754 object->flags &= ~OBJECT_ALLOCATED;
8c96f1bc 755 raw_spin_unlock_irqrestore(&object->lock, flags);
3c7b4e6b
CM
756 put_object(object);
757}
758
53238a60
CM
759/*
760 * Look up the metadata (struct kmemleak_object) corresponding to ptr and
761 * delete it.
762 */
763static void delete_object_full(unsigned long ptr)
764{
765 struct kmemleak_object *object;
766
0c24e061 767 object = find_and_remove_object(ptr, 0, false);
53238a60
CM
768 if (!object) {
769#ifdef DEBUG
770 kmemleak_warn("Freeing unknown object at 0x%08lx\n",
771 ptr);
772#endif
773 return;
774 }
775 __delete_object(object);
53238a60
CM
776}
777
778/*
779 * Look up the metadata (struct kmemleak_object) corresponding to ptr and
780 * delete it. If the memory block is partially freed, the function may create
781 * additional metadata for the remaining parts of the block.
782 */
0c24e061 783static void delete_object_part(unsigned long ptr, size_t size, bool is_phys)
53238a60
CM
784{
785 struct kmemleak_object *object;
786 unsigned long start, end;
787
0c24e061 788 object = find_and_remove_object(ptr, 1, is_phys);
53238a60
CM
789 if (!object) {
790#ifdef DEBUG
756a025f
JP
791 kmemleak_warn("Partially freeing unknown object at 0x%08lx (size %zu)\n",
792 ptr, size);
53238a60
CM
793#endif
794 return;
795 }
53238a60
CM
796
797 /*
798 * Create one or two objects that may result from the memory block
799 * split. Note that partial freeing is only done by free_bootmem() and
c5665868 800 * this happens before kmemleak_init() is called.
53238a60
CM
801 */
802 start = object->pointer;
803 end = object->pointer + object->size;
804 if (ptr > start)
8e0c4ab3 805 __create_object(start, ptr - start, object->min_count,
0c24e061 806 GFP_KERNEL, is_phys);
53238a60 807 if (ptr + size < end)
8e0c4ab3 808 __create_object(ptr + size, end - ptr - size, object->min_count,
0c24e061 809 GFP_KERNEL, is_phys);
53238a60 810
e781a9ab 811 __delete_object(object);
53238a60 812}
a1084c87
LR
813
814static void __paint_it(struct kmemleak_object *object, int color)
815{
816 object->min_count = color;
817 if (color == KMEMLEAK_BLACK)
818 object->flags |= OBJECT_NO_SCAN;
819}
820
821static void paint_it(struct kmemleak_object *object, int color)
3c7b4e6b
CM
822{
823 unsigned long flags;
a1084c87 824
8c96f1bc 825 raw_spin_lock_irqsave(&object->lock, flags);
a1084c87 826 __paint_it(object, color);
8c96f1bc 827 raw_spin_unlock_irqrestore(&object->lock, flags);
a1084c87
LR
828}
829
0c24e061 830static void paint_ptr(unsigned long ptr, int color, bool is_phys)
a1084c87 831{
3c7b4e6b
CM
832 struct kmemleak_object *object;
833
0c24e061 834 object = __find_and_get_object(ptr, 0, is_phys);
3c7b4e6b 835 if (!object) {
756a025f
JP
836 kmemleak_warn("Trying to color unknown object at 0x%08lx as %s\n",
837 ptr,
a1084c87
LR
838 (color == KMEMLEAK_GREY) ? "Grey" :
839 (color == KMEMLEAK_BLACK) ? "Black" : "Unknown");
3c7b4e6b
CM
840 return;
841 }
a1084c87 842 paint_it(object, color);
3c7b4e6b
CM
843 put_object(object);
844}
845
a1084c87 846/*
145b64b9 847 * Mark an object permanently as gray-colored so that it can no longer be
a1084c87
LR
848 * reported as a leak. This is used in general to mark a false positive.
849 */
850static void make_gray_object(unsigned long ptr)
851{
0c24e061 852 paint_ptr(ptr, KMEMLEAK_GREY, false);
a1084c87
LR
853}
854
3c7b4e6b
CM
855/*
856 * Mark the object as black-colored so that it is ignored from scans and
857 * reporting.
858 */
0c24e061 859static void make_black_object(unsigned long ptr, bool is_phys)
3c7b4e6b 860{
0c24e061 861 paint_ptr(ptr, KMEMLEAK_BLACK, is_phys);
3c7b4e6b
CM
862}
863
864/*
865 * Add a scanning area to the object. If at least one such area is added,
866 * kmemleak will only scan these ranges rather than the whole memory block.
867 */
c017b4be 868static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp)
3c7b4e6b
CM
869{
870 unsigned long flags;
871 struct kmemleak_object *object;
c5665868 872 struct kmemleak_scan_area *area = NULL;
bfc8089f
KYL
873 unsigned long untagged_ptr;
874 unsigned long untagged_objp;
3c7b4e6b 875
c017b4be 876 object = find_and_get_object(ptr, 1);
3c7b4e6b 877 if (!object) {
ae281064
JP
878 kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n",
879 ptr);
3c7b4e6b
CM
880 return;
881 }
882
bfc8089f
KYL
883 untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr);
884 untagged_objp = (unsigned long)kasan_reset_tag((void *)object->pointer);
885
c5665868
CM
886 if (scan_area_cache)
887 area = kmem_cache_alloc(scan_area_cache, gfp_kmemleak_mask(gfp));
3c7b4e6b 888
8c96f1bc 889 raw_spin_lock_irqsave(&object->lock, flags);
dba82d94
CM
890 if (!area) {
891 pr_warn_once("Cannot allocate a scan area, scanning the full object\n");
892 /* mark the object for full scan to avoid false positives */
893 object->flags |= OBJECT_FULL_SCAN;
894 goto out_unlock;
895 }
7f88f88f 896 if (size == SIZE_MAX) {
bfc8089f
KYL
897 size = untagged_objp + object->size - untagged_ptr;
898 } else if (untagged_ptr + size > untagged_objp + object->size) {
ae281064 899 kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr);
3c7b4e6b
CM
900 dump_object_info(object);
901 kmem_cache_free(scan_area_cache, area);
902 goto out_unlock;
903 }
904
905 INIT_HLIST_NODE(&area->node);
c017b4be
CM
906 area->start = ptr;
907 area->size = size;
3c7b4e6b
CM
908
909 hlist_add_head(&area->node, &object->area_list);
910out_unlock:
8c96f1bc 911 raw_spin_unlock_irqrestore(&object->lock, flags);
3c7b4e6b
CM
912 put_object(object);
913}
914
94f4a161
CM
915/*
916 * Any surplus references (object already gray) to 'ptr' are passed to
917 * 'excess_ref'. This is used in the vmalloc() case where a pointer to
918 * vm_struct may be used as an alternative reference to the vmalloc'ed object
919 * (see free_thread_stack()).
920 */
921static void object_set_excess_ref(unsigned long ptr, unsigned long excess_ref)
922{
923 unsigned long flags;
924 struct kmemleak_object *object;
925
926 object = find_and_get_object(ptr, 0);
927 if (!object) {
928 kmemleak_warn("Setting excess_ref on unknown object at 0x%08lx\n",
929 ptr);
930 return;
931 }
932
8c96f1bc 933 raw_spin_lock_irqsave(&object->lock, flags);
94f4a161 934 object->excess_ref = excess_ref;
8c96f1bc 935 raw_spin_unlock_irqrestore(&object->lock, flags);
94f4a161
CM
936 put_object(object);
937}
938
3c7b4e6b
CM
939/*
940 * Set the OBJECT_NO_SCAN flag for the object corresponding to the give
941 * pointer. Such object will not be scanned by kmemleak but references to it
942 * are searched.
943 */
944static void object_no_scan(unsigned long ptr)
945{
946 unsigned long flags;
947 struct kmemleak_object *object;
948
949 object = find_and_get_object(ptr, 0);
950 if (!object) {
ae281064 951 kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr);
3c7b4e6b
CM
952 return;
953 }
954
8c96f1bc 955 raw_spin_lock_irqsave(&object->lock, flags);
3c7b4e6b 956 object->flags |= OBJECT_NO_SCAN;
8c96f1bc 957 raw_spin_unlock_irqrestore(&object->lock, flags);
3c7b4e6b
CM
958 put_object(object);
959}
960
a2b6bf63
CM
961/**
962 * kmemleak_alloc - register a newly allocated object
963 * @ptr: pointer to beginning of the object
964 * @size: size of the object
965 * @min_count: minimum number of references to this object. If during memory
966 * scanning a number of references less than @min_count is found,
967 * the object is reported as a memory leak. If @min_count is 0,
968 * the object is never reported as a leak. If @min_count is -1,
969 * the object is ignored (not scanned and not reported as a leak)
970 * @gfp: kmalloc() flags used for kmemleak internal memory allocations
971 *
972 * This function is called from the kernel allocators when a new object
94f4a161 973 * (memory block) is allocated (kmem_cache_alloc, kmalloc etc.).
3c7b4e6b 974 */
a6186d89
CM
975void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count,
976 gfp_t gfp)
3c7b4e6b
CM
977{
978 pr_debug("%s(0x%p, %zu, %d)\n", __func__, ptr, size, min_count);
979
8910ae89 980 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
3c7b4e6b 981 create_object((unsigned long)ptr, size, min_count, gfp);
3c7b4e6b
CM
982}
983EXPORT_SYMBOL_GPL(kmemleak_alloc);
984
f528f0b8
CM
985/**
986 * kmemleak_alloc_percpu - register a newly allocated __percpu object
987 * @ptr: __percpu pointer to beginning of the object
988 * @size: size of the object
8a8c35fa 989 * @gfp: flags used for kmemleak internal memory allocations
f528f0b8
CM
990 *
991 * This function is called from the kernel percpu allocator when a new object
8a8c35fa 992 * (memory block) is allocated (alloc_percpu).
f528f0b8 993 */
8a8c35fa
LF
994void __ref kmemleak_alloc_percpu(const void __percpu *ptr, size_t size,
995 gfp_t gfp)
f528f0b8
CM
996{
997 unsigned int cpu;
998
999 pr_debug("%s(0x%p, %zu)\n", __func__, ptr, size);
1000
1001 /*
1002 * Percpu allocations are only scanned and not reported as leaks
1003 * (min_count is set to 0).
1004 */
8910ae89 1005 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
f528f0b8
CM
1006 for_each_possible_cpu(cpu)
1007 create_object((unsigned long)per_cpu_ptr(ptr, cpu),
8a8c35fa 1008 size, 0, gfp);
f528f0b8
CM
1009}
1010EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu);
1011
94f4a161
CM
1012/**
1013 * kmemleak_vmalloc - register a newly vmalloc'ed object
1014 * @area: pointer to vm_struct
1015 * @size: size of the object
1016 * @gfp: __vmalloc() flags used for kmemleak internal memory allocations
1017 *
1018 * This function is called from the vmalloc() kernel allocator when a new
1019 * object (memory block) is allocated.
1020 */
1021void __ref kmemleak_vmalloc(const struct vm_struct *area, size_t size, gfp_t gfp)
1022{
1023 pr_debug("%s(0x%p, %zu)\n", __func__, area, size);
1024
1025 /*
1026 * A min_count = 2 is needed because vm_struct contains a reference to
1027 * the virtual address of the vmalloc'ed block.
1028 */
1029 if (kmemleak_enabled) {
1030 create_object((unsigned long)area->addr, size, 2, gfp);
1031 object_set_excess_ref((unsigned long)area,
1032 (unsigned long)area->addr);
94f4a161
CM
1033 }
1034}
1035EXPORT_SYMBOL_GPL(kmemleak_vmalloc);
1036
a2b6bf63
CM
1037/**
1038 * kmemleak_free - unregister a previously registered object
1039 * @ptr: pointer to beginning of the object
1040 *
1041 * This function is called from the kernel allocators when an object (memory
1042 * block) is freed (kmem_cache_free, kfree, vfree etc.).
3c7b4e6b 1043 */
a6186d89 1044void __ref kmemleak_free(const void *ptr)
3c7b4e6b
CM
1045{
1046 pr_debug("%s(0x%p)\n", __func__, ptr);
1047
c5f3b1a5 1048 if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
53238a60 1049 delete_object_full((unsigned long)ptr);
3c7b4e6b
CM
1050}
1051EXPORT_SYMBOL_GPL(kmemleak_free);
1052
a2b6bf63
CM
1053/**
1054 * kmemleak_free_part - partially unregister a previously registered object
1055 * @ptr: pointer to the beginning or inside the object. This also
1056 * represents the start of the range to be freed
1057 * @size: size to be unregistered
1058 *
1059 * This function is called when only a part of a memory block is freed
1060 * (usually from the bootmem allocator).
53238a60 1061 */
a6186d89 1062void __ref kmemleak_free_part(const void *ptr, size_t size)
53238a60
CM
1063{
1064 pr_debug("%s(0x%p)\n", __func__, ptr);
1065
8910ae89 1066 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
0c24e061 1067 delete_object_part((unsigned long)ptr, size, false);
53238a60
CM
1068}
1069EXPORT_SYMBOL_GPL(kmemleak_free_part);
1070
f528f0b8
CM
1071/**
1072 * kmemleak_free_percpu - unregister a previously registered __percpu object
1073 * @ptr: __percpu pointer to beginning of the object
1074 *
1075 * This function is called from the kernel percpu allocator when an object
1076 * (memory block) is freed (free_percpu).
1077 */
1078void __ref kmemleak_free_percpu(const void __percpu *ptr)
1079{
1080 unsigned int cpu;
1081
1082 pr_debug("%s(0x%p)\n", __func__, ptr);
1083
c5f3b1a5 1084 if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
f528f0b8
CM
1085 for_each_possible_cpu(cpu)
1086 delete_object_full((unsigned long)per_cpu_ptr(ptr,
1087 cpu));
f528f0b8
CM
1088}
1089EXPORT_SYMBOL_GPL(kmemleak_free_percpu);
1090
ffe2c748
CM
1091/**
1092 * kmemleak_update_trace - update object allocation stack trace
1093 * @ptr: pointer to beginning of the object
1094 *
1095 * Override the object allocation stack trace for cases where the actual
1096 * allocation place is not always useful.
1097 */
1098void __ref kmemleak_update_trace(const void *ptr)
1099{
1100 struct kmemleak_object *object;
1101 unsigned long flags;
1102
1103 pr_debug("%s(0x%p)\n", __func__, ptr);
1104
1105 if (!kmemleak_enabled || IS_ERR_OR_NULL(ptr))
1106 return;
1107
1108 object = find_and_get_object((unsigned long)ptr, 1);
1109 if (!object) {
1110#ifdef DEBUG
1111 kmemleak_warn("Updating stack trace for unknown object at %p\n",
1112 ptr);
1113#endif
1114 return;
1115 }
1116
8c96f1bc 1117 raw_spin_lock_irqsave(&object->lock, flags);
56a61617 1118 object->trace_handle = set_track_prepare();
8c96f1bc 1119 raw_spin_unlock_irqrestore(&object->lock, flags);
ffe2c748
CM
1120
1121 put_object(object);
1122}
1123EXPORT_SYMBOL(kmemleak_update_trace);
1124
a2b6bf63
CM
1125/**
1126 * kmemleak_not_leak - mark an allocated object as false positive
1127 * @ptr: pointer to beginning of the object
1128 *
1129 * Calling this function on an object will cause the memory block to no longer
1130 * be reported as leak and always be scanned.
3c7b4e6b 1131 */
a6186d89 1132void __ref kmemleak_not_leak(const void *ptr)
3c7b4e6b
CM
1133{
1134 pr_debug("%s(0x%p)\n", __func__, ptr);
1135
8910ae89 1136 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
3c7b4e6b 1137 make_gray_object((unsigned long)ptr);
3c7b4e6b
CM
1138}
1139EXPORT_SYMBOL(kmemleak_not_leak);
1140
a2b6bf63
CM
1141/**
1142 * kmemleak_ignore - ignore an allocated object
1143 * @ptr: pointer to beginning of the object
1144 *
1145 * Calling this function on an object will cause the memory block to be
1146 * ignored (not scanned and not reported as a leak). This is usually done when
1147 * it is known that the corresponding block is not a leak and does not contain
1148 * any references to other allocated memory blocks.
3c7b4e6b 1149 */
a6186d89 1150void __ref kmemleak_ignore(const void *ptr)
3c7b4e6b
CM
1151{
1152 pr_debug("%s(0x%p)\n", __func__, ptr);
1153
8910ae89 1154 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
0c24e061 1155 make_black_object((unsigned long)ptr, false);
3c7b4e6b
CM
1156}
1157EXPORT_SYMBOL(kmemleak_ignore);
1158
a2b6bf63
CM
1159/**
1160 * kmemleak_scan_area - limit the range to be scanned in an allocated object
1161 * @ptr: pointer to beginning or inside the object. This also
1162 * represents the start of the scan area
1163 * @size: size of the scan area
1164 * @gfp: kmalloc() flags used for kmemleak internal memory allocations
1165 *
1166 * This function is used when it is known that only certain parts of an object
1167 * contain references to other objects. Kmemleak will only scan these areas
1168 * reducing the number false negatives.
3c7b4e6b 1169 */
c017b4be 1170void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp)
3c7b4e6b
CM
1171{
1172 pr_debug("%s(0x%p)\n", __func__, ptr);
1173
8910ae89 1174 if (kmemleak_enabled && ptr && size && !IS_ERR(ptr))
c017b4be 1175 add_scan_area((unsigned long)ptr, size, gfp);
3c7b4e6b
CM
1176}
1177EXPORT_SYMBOL(kmemleak_scan_area);
1178
a2b6bf63
CM
1179/**
1180 * kmemleak_no_scan - do not scan an allocated object
1181 * @ptr: pointer to beginning of the object
1182 *
1183 * This function notifies kmemleak not to scan the given memory block. Useful
1184 * in situations where it is known that the given object does not contain any
1185 * references to other objects. Kmemleak will not scan such objects reducing
1186 * the number of false negatives.
3c7b4e6b 1187 */
a6186d89 1188void __ref kmemleak_no_scan(const void *ptr)
3c7b4e6b
CM
1189{
1190 pr_debug("%s(0x%p)\n", __func__, ptr);
1191
8910ae89 1192 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
3c7b4e6b 1193 object_no_scan((unsigned long)ptr);
3c7b4e6b
CM
1194}
1195EXPORT_SYMBOL(kmemleak_no_scan);
1196
9099daed
CM
1197/**
1198 * kmemleak_alloc_phys - similar to kmemleak_alloc but taking a physical
1199 * address argument
e8b098fc
MR
1200 * @phys: physical address of the object
1201 * @size: size of the object
e8b098fc 1202 * @gfp: kmalloc() flags used for kmemleak internal memory allocations
9099daed 1203 */
c200d900 1204void __ref kmemleak_alloc_phys(phys_addr_t phys, size_t size, gfp_t gfp)
9099daed 1205{
8e0c4ab3
PW
1206 pr_debug("%s(0x%pa, %zu)\n", __func__, &phys, size);
1207
84c32629 1208 if (kmemleak_enabled)
8e0c4ab3
PW
1209 /*
1210 * Create object with OBJECT_PHYS flag and
1211 * assume min_count 0.
1212 */
0c24e061 1213 create_object_phys((unsigned long)phys, size, 0, gfp);
9099daed
CM
1214}
1215EXPORT_SYMBOL(kmemleak_alloc_phys);
1216
1217/**
1218 * kmemleak_free_part_phys - similar to kmemleak_free_part but taking a
1219 * physical address argument
e8b098fc
MR
1220 * @phys: physical address if the beginning or inside an object. This
1221 * also represents the start of the range to be freed
1222 * @size: size to be unregistered
9099daed
CM
1223 */
1224void __ref kmemleak_free_part_phys(phys_addr_t phys, size_t size)
1225{
0c24e061
PW
1226 pr_debug("%s(0x%pa)\n", __func__, &phys);
1227
84c32629 1228 if (kmemleak_enabled)
0c24e061 1229 delete_object_part((unsigned long)phys, size, true);
9099daed
CM
1230}
1231EXPORT_SYMBOL(kmemleak_free_part_phys);
1232
9099daed
CM
1233/**
1234 * kmemleak_ignore_phys - similar to kmemleak_ignore but taking a physical
1235 * address argument
e8b098fc 1236 * @phys: physical address of the object
9099daed
CM
1237 */
1238void __ref kmemleak_ignore_phys(phys_addr_t phys)
1239{
0c24e061
PW
1240 pr_debug("%s(0x%pa)\n", __func__, &phys);
1241
84c32629 1242 if (kmemleak_enabled)
0c24e061 1243 make_black_object((unsigned long)phys, true);
9099daed
CM
1244}
1245EXPORT_SYMBOL(kmemleak_ignore_phys);
1246
04609ccc
CM
1247/*
1248 * Update an object's checksum and return true if it was modified.
1249 */
1250static bool update_checksum(struct kmemleak_object *object)
1251{
1252 u32 old_csum = object->checksum;
1253
0c24e061
PW
1254 if (WARN_ON_ONCE(object->flags & OBJECT_PHYS))
1255 return false;
1256
e79ed2f1 1257 kasan_disable_current();
69d0b54d 1258 kcsan_disable_current();
6c7a00b8 1259 object->checksum = crc32(0, kasan_reset_tag((void *)object->pointer), object->size);
e79ed2f1 1260 kasan_enable_current();
69d0b54d 1261 kcsan_enable_current();
e79ed2f1 1262
04609ccc
CM
1263 return object->checksum != old_csum;
1264}
1265
04f70d13
CM
1266/*
1267 * Update an object's references. object->lock must be held by the caller.
1268 */
1269static void update_refs(struct kmemleak_object *object)
1270{
1271 if (!color_white(object)) {
1272 /* non-orphan, ignored or new */
1273 return;
1274 }
1275
1276 /*
1277 * Increase the object's reference count (number of pointers to the
1278 * memory block). If this count reaches the required minimum, the
1279 * object's color will become gray and it will be added to the
1280 * gray_list.
1281 */
1282 object->count++;
1283 if (color_gray(object)) {
1284 /* put_object() called when removing from gray_list */
1285 WARN_ON(!get_object(object));
1286 list_add_tail(&object->gray_list, &gray_list);
1287 }
1288}
1289
3c7b4e6b 1290/*
0b5121ef 1291 * Memory scanning is a long process and it needs to be interruptible. This
25985edc 1292 * function checks whether such interrupt condition occurred.
3c7b4e6b
CM
1293 */
1294static int scan_should_stop(void)
1295{
8910ae89 1296 if (!kmemleak_enabled)
3c7b4e6b
CM
1297 return 1;
1298
1299 /*
1300 * This function may be called from either process or kthread context,
1301 * hence the need to check for both stop conditions.
1302 */
1303 if (current->mm)
1304 return signal_pending(current);
1305 else
1306 return kthread_should_stop();
1307
1308 return 0;
1309}
1310
1311/*
1312 * Scan a memory block (exclusive range) for valid pointers and add those
1313 * found to the gray list.
1314 */
1315static void scan_block(void *_start, void *_end,
93ada579 1316 struct kmemleak_object *scanned)
3c7b4e6b
CM
1317{
1318 unsigned long *ptr;
1319 unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER);
1320 unsigned long *end = _end - (BYTES_PER_POINTER - 1);
93ada579 1321 unsigned long flags;
a2f77575 1322 unsigned long untagged_ptr;
3c7b4e6b 1323
8c96f1bc 1324 raw_spin_lock_irqsave(&kmemleak_lock, flags);
3c7b4e6b 1325 for (ptr = start; ptr < end; ptr++) {
3c7b4e6b 1326 struct kmemleak_object *object;
8e019366 1327 unsigned long pointer;
94f4a161 1328 unsigned long excess_ref;
3c7b4e6b
CM
1329
1330 if (scan_should_stop())
1331 break;
1332
e79ed2f1 1333 kasan_disable_current();
6c7a00b8 1334 pointer = *(unsigned long *)kasan_reset_tag((void *)ptr);
e79ed2f1 1335 kasan_enable_current();
8e019366 1336
a2f77575
AK
1337 untagged_ptr = (unsigned long)kasan_reset_tag((void *)pointer);
1338 if (untagged_ptr < min_addr || untagged_ptr >= max_addr)
93ada579
CM
1339 continue;
1340
1341 /*
1342 * No need for get_object() here since we hold kmemleak_lock.
1343 * object->use_count cannot be dropped to 0 while the object
1344 * is still present in object_tree_root and object_list
1345 * (with updates protected by kmemleak_lock).
1346 */
1347 object = lookup_object(pointer, 1);
3c7b4e6b
CM
1348 if (!object)
1349 continue;
93ada579 1350 if (object == scanned)
3c7b4e6b 1351 /* self referenced, ignore */
3c7b4e6b 1352 continue;
3c7b4e6b
CM
1353
1354 /*
1355 * Avoid the lockdep recursive warning on object->lock being
1356 * previously acquired in scan_object(). These locks are
1357 * enclosed by scan_mutex.
1358 */
8c96f1bc 1359 raw_spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
94f4a161
CM
1360 /* only pass surplus references (object already gray) */
1361 if (color_gray(object)) {
1362 excess_ref = object->excess_ref;
1363 /* no need for update_refs() if object already gray */
1364 } else {
1365 excess_ref = 0;
1366 update_refs(object);
1367 }
8c96f1bc 1368 raw_spin_unlock(&object->lock);
94f4a161
CM
1369
1370 if (excess_ref) {
1371 object = lookup_object(excess_ref, 0);
1372 if (!object)
1373 continue;
1374 if (object == scanned)
1375 /* circular reference, ignore */
1376 continue;
8c96f1bc 1377 raw_spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
94f4a161 1378 update_refs(object);
8c96f1bc 1379 raw_spin_unlock(&object->lock);
94f4a161 1380 }
93ada579 1381 }
8c96f1bc 1382 raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
93ada579 1383}
0587da40 1384
93ada579
CM
1385/*
1386 * Scan a large memory block in MAX_SCAN_SIZE chunks to reduce the latency.
1387 */
dce5b0bd 1388#ifdef CONFIG_SMP
93ada579
CM
1389static void scan_large_block(void *start, void *end)
1390{
1391 void *next;
1392
1393 while (start < end) {
1394 next = min(start + MAX_SCAN_SIZE, end);
1395 scan_block(start, next, NULL);
1396 start = next;
1397 cond_resched();
3c7b4e6b
CM
1398 }
1399}
dce5b0bd 1400#endif
3c7b4e6b
CM
1401
1402/*
1403 * Scan a memory block corresponding to a kmemleak_object. A condition is
1404 * that object->use_count >= 1.
1405 */
1406static void scan_object(struct kmemleak_object *object)
1407{
1408 struct kmemleak_scan_area *area;
3c7b4e6b 1409 unsigned long flags;
0c24e061 1410 void *obj_ptr;
3c7b4e6b
CM
1411
1412 /*
21ae2956
UKK
1413 * Once the object->lock is acquired, the corresponding memory block
1414 * cannot be freed (the same lock is acquired in delete_object).
3c7b4e6b 1415 */
8c96f1bc 1416 raw_spin_lock_irqsave(&object->lock, flags);
3c7b4e6b
CM
1417 if (object->flags & OBJECT_NO_SCAN)
1418 goto out;
1419 if (!(object->flags & OBJECT_ALLOCATED))
1420 /* already freed object */
1421 goto out;
0c24e061
PW
1422
1423 obj_ptr = object->flags & OBJECT_PHYS ?
1424 __va((phys_addr_t)object->pointer) :
1425 (void *)object->pointer;
1426
dba82d94
CM
1427 if (hlist_empty(&object->area_list) ||
1428 object->flags & OBJECT_FULL_SCAN) {
0c24e061
PW
1429 void *start = obj_ptr;
1430 void *end = obj_ptr + object->size;
93ada579
CM
1431 void *next;
1432
1433 do {
1434 next = min(start + MAX_SCAN_SIZE, end);
1435 scan_block(start, next, object);
af98603d 1436
93ada579
CM
1437 start = next;
1438 if (start >= end)
1439 break;
af98603d 1440
8c96f1bc 1441 raw_spin_unlock_irqrestore(&object->lock, flags);
af98603d 1442 cond_resched();
8c96f1bc 1443 raw_spin_lock_irqsave(&object->lock, flags);
93ada579 1444 } while (object->flags & OBJECT_ALLOCATED);
af98603d 1445 } else
b67bfe0d 1446 hlist_for_each_entry(area, &object->area_list, node)
c017b4be
CM
1447 scan_block((void *)area->start,
1448 (void *)(area->start + area->size),
93ada579 1449 object);
3c7b4e6b 1450out:
8c96f1bc 1451 raw_spin_unlock_irqrestore(&object->lock, flags);
3c7b4e6b
CM
1452}
1453
04609ccc
CM
1454/*
1455 * Scan the objects already referenced (gray objects). More objects will be
1456 * referenced and, if there are no memory leaks, all the objects are scanned.
1457 */
1458static void scan_gray_list(void)
1459{
1460 struct kmemleak_object *object, *tmp;
1461
1462 /*
1463 * The list traversal is safe for both tail additions and removals
1464 * from inside the loop. The kmemleak objects cannot be freed from
1465 * outside the loop because their use_count was incremented.
1466 */
1467 object = list_entry(gray_list.next, typeof(*object), gray_list);
1468 while (&object->gray_list != &gray_list) {
1469 cond_resched();
1470
1471 /* may add new objects to the list */
1472 if (!scan_should_stop())
1473 scan_object(object);
1474
1475 tmp = list_entry(object->gray_list.next, typeof(*object),
1476 gray_list);
1477
1478 /* remove the object from the list and release it */
1479 list_del(&object->gray_list);
1480 put_object(object);
1481
1482 object = tmp;
1483 }
1484 WARN_ON(!list_empty(&gray_list));
1485}
1486
984a6083 1487/*
25e9fa22 1488 * Conditionally call resched() in an object iteration loop while making sure
984a6083 1489 * that the given object won't go away without RCU read lock by performing a
6061e740 1490 * get_object() if necessaary.
984a6083 1491 */
6061e740 1492static void kmemleak_cond_resched(struct kmemleak_object *object)
984a6083 1493{
6061e740
WL
1494 if (!get_object(object))
1495 return; /* Try next object */
984a6083 1496
782e4179
WL
1497 raw_spin_lock_irq(&kmemleak_lock);
1498 if (object->del_state & DELSTATE_REMOVED)
1499 goto unlock_put; /* Object removed */
1500 object->del_state |= DELSTATE_NO_DELETE;
1501 raw_spin_unlock_irq(&kmemleak_lock);
1502
984a6083
WL
1503 rcu_read_unlock();
1504 cond_resched();
1505 rcu_read_lock();
782e4179
WL
1506
1507 raw_spin_lock_irq(&kmemleak_lock);
1508 if (object->del_state & DELSTATE_REMOVED)
1509 list_del_rcu(&object->object_list);
1510 object->del_state &= ~DELSTATE_NO_DELETE;
1511unlock_put:
1512 raw_spin_unlock_irq(&kmemleak_lock);
6061e740 1513 put_object(object);
984a6083
WL
1514}
1515
3c7b4e6b
CM
1516/*
1517 * Scan data sections and all the referenced memory blocks allocated via the
1518 * kernel's standard allocators. This function must be called with the
1519 * scan_mutex held.
1520 */
1521static void kmemleak_scan(void)
1522{
04609ccc 1523 struct kmemleak_object *object;
c10a0f87
LY
1524 struct zone *zone;
1525 int __maybe_unused i;
4698c1f2 1526 int new_leaks = 0;
3c7b4e6b 1527
acf4968e
CM
1528 jiffies_last_scan = jiffies;
1529
3c7b4e6b
CM
1530 /* prepare the kmemleak_object's */
1531 rcu_read_lock();
1532 list_for_each_entry_rcu(object, &object_list, object_list) {
00c15506 1533 raw_spin_lock_irq(&object->lock);
3c7b4e6b
CM
1534#ifdef DEBUG
1535 /*
1536 * With a few exceptions there should be a maximum of
1537 * 1 reference to any object at this point.
1538 */
1539 if (atomic_read(&object->use_count) > 1) {
ae281064 1540 pr_debug("object->use_count = %d\n",
3c7b4e6b
CM
1541 atomic_read(&object->use_count));
1542 dump_object_info(object);
1543 }
1544#endif
84c32629
PW
1545
1546 /* ignore objects outside lowmem (paint them black) */
1547 if ((object->flags & OBJECT_PHYS) &&
1548 !(object->flags & OBJECT_NO_SCAN)) {
1549 unsigned long phys = object->pointer;
1550
1551 if (PHYS_PFN(phys) < min_low_pfn ||
1552 PHYS_PFN(phys + object->size) >= max_low_pfn)
1553 __paint_it(object, KMEMLEAK_BLACK);
1554 }
1555
3c7b4e6b
CM
1556 /* reset the reference count (whiten the object) */
1557 object->count = 0;
6061e740 1558 if (color_gray(object) && get_object(object))
3c7b4e6b
CM
1559 list_add_tail(&object->gray_list, &gray_list);
1560
00c15506 1561 raw_spin_unlock_irq(&object->lock);
6edda04c 1562
6061e740
WL
1563 if (need_resched())
1564 kmemleak_cond_resched(object);
3c7b4e6b
CM
1565 }
1566 rcu_read_unlock();
1567
3c7b4e6b
CM
1568#ifdef CONFIG_SMP
1569 /* per-cpu sections scanning */
1570 for_each_possible_cpu(i)
93ada579
CM
1571 scan_large_block(__per_cpu_start + per_cpu_offset(i),
1572 __per_cpu_end + per_cpu_offset(i));
3c7b4e6b
CM
1573#endif
1574
1575 /*
029aeff5 1576 * Struct page scanning for each node.
3c7b4e6b 1577 */
bfc8c901 1578 get_online_mems();
c10a0f87
LY
1579 for_each_populated_zone(zone) {
1580 unsigned long start_pfn = zone->zone_start_pfn;
1581 unsigned long end_pfn = zone_end_pfn(zone);
3c7b4e6b
CM
1582 unsigned long pfn;
1583
1584 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
9f1eb38e 1585 struct page *page = pfn_to_online_page(pfn);
3c7b4e6b 1586
e68d343d
WL
1587 if (!(pfn & 63))
1588 cond_resched();
1589
9f1eb38e
OS
1590 if (!page)
1591 continue;
1592
c10a0f87
LY
1593 /* only scan pages belonging to this zone */
1594 if (page_zone(page) != zone)
3c7b4e6b 1595 continue;
3c7b4e6b
CM
1596 /* only scan if page is in use */
1597 if (page_count(page) == 0)
1598 continue;
93ada579 1599 scan_block(page, page + 1, NULL);
3c7b4e6b
CM
1600 }
1601 }
bfc8c901 1602 put_online_mems();
3c7b4e6b
CM
1603
1604 /*
43ed5d6e 1605 * Scanning the task stacks (may introduce false negatives).
3c7b4e6b
CM
1606 */
1607 if (kmemleak_stack_scan) {
43ed5d6e
CM
1608 struct task_struct *p, *g;
1609
c4b28963
DB
1610 rcu_read_lock();
1611 for_each_process_thread(g, p) {
37df49f4
CM
1612 void *stack = try_get_task_stack(p);
1613 if (stack) {
1614 scan_block(stack, stack + THREAD_SIZE, NULL);
1615 put_task_stack(p);
1616 }
c4b28963
DB
1617 }
1618 rcu_read_unlock();
3c7b4e6b
CM
1619 }
1620
1621 /*
1622 * Scan the objects already referenced from the sections scanned
04609ccc 1623 * above.
3c7b4e6b 1624 */
04609ccc 1625 scan_gray_list();
2587362e
CM
1626
1627 /*
04609ccc
CM
1628 * Check for new or unreferenced objects modified since the previous
1629 * scan and color them gray until the next scan.
2587362e
CM
1630 */
1631 rcu_read_lock();
1632 list_for_each_entry_rcu(object, &object_list, object_list) {
6061e740
WL
1633 if (need_resched())
1634 kmemleak_cond_resched(object);
984a6083 1635
64977918
WL
1636 /*
1637 * This is racy but we can save the overhead of lock/unlock
1638 * calls. The missed objects, if any, should be caught in
1639 * the next scan.
1640 */
1641 if (!color_white(object))
1642 continue;
00c15506 1643 raw_spin_lock_irq(&object->lock);
04609ccc
CM
1644 if (color_white(object) && (object->flags & OBJECT_ALLOCATED)
1645 && update_checksum(object) && get_object(object)) {
1646 /* color it gray temporarily */
1647 object->count = object->min_count;
2587362e
CM
1648 list_add_tail(&object->gray_list, &gray_list);
1649 }
00c15506 1650 raw_spin_unlock_irq(&object->lock);
2587362e
CM
1651 }
1652 rcu_read_unlock();
1653
04609ccc
CM
1654 /*
1655 * Re-scan the gray list for modified unreferenced objects.
1656 */
1657 scan_gray_list();
4698c1f2 1658
17bb9e0d 1659 /*
04609ccc 1660 * If scanning was stopped do not report any new unreferenced objects.
17bb9e0d 1661 */
04609ccc 1662 if (scan_should_stop())
17bb9e0d
CM
1663 return;
1664
4698c1f2
CM
1665 /*
1666 * Scanning result reporting.
1667 */
1668 rcu_read_lock();
1669 list_for_each_entry_rcu(object, &object_list, object_list) {
6061e740
WL
1670 if (need_resched())
1671 kmemleak_cond_resched(object);
984a6083 1672
64977918
WL
1673 /*
1674 * This is racy but we can save the overhead of lock/unlock
1675 * calls. The missed objects, if any, should be caught in
1676 * the next scan.
1677 */
1678 if (!color_white(object))
1679 continue;
00c15506 1680 raw_spin_lock_irq(&object->lock);
4698c1f2
CM
1681 if (unreferenced_object(object) &&
1682 !(object->flags & OBJECT_REPORTED)) {
1683 object->flags |= OBJECT_REPORTED;
154221c3
VW
1684
1685 if (kmemleak_verbose)
1686 print_unreferenced(NULL, object);
1687
4698c1f2
CM
1688 new_leaks++;
1689 }
00c15506 1690 raw_spin_unlock_irq(&object->lock);
4698c1f2
CM
1691 }
1692 rcu_read_unlock();
1693
dc9b3f42
LZ
1694 if (new_leaks) {
1695 kmemleak_found_leaks = true;
1696
756a025f
JP
1697 pr_info("%d new suspected memory leaks (see /sys/kernel/debug/kmemleak)\n",
1698 new_leaks);
dc9b3f42 1699 }
4698c1f2 1700
3c7b4e6b
CM
1701}
1702
1703/*
1704 * Thread function performing automatic memory scanning. Unreferenced objects
1705 * at the end of a memory scan are reported but only the first time.
1706 */
1707static int kmemleak_scan_thread(void *arg)
1708{
d53ce042 1709 static int first_run = IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN);
3c7b4e6b 1710
ae281064 1711 pr_info("Automatic memory scanning thread started\n");
bf2a76b3 1712 set_user_nice(current, 10);
3c7b4e6b
CM
1713
1714 /*
1715 * Wait before the first scan to allow the system to fully initialize.
1716 */
1717 if (first_run) {
98c42d94 1718 signed long timeout = msecs_to_jiffies(SECS_FIRST_SCAN * 1000);
3c7b4e6b 1719 first_run = 0;
98c42d94
VN
1720 while (timeout && !kthread_should_stop())
1721 timeout = schedule_timeout_interruptible(timeout);
3c7b4e6b
CM
1722 }
1723
1724 while (!kthread_should_stop()) {
54dd200c 1725 signed long timeout = READ_ONCE(jiffies_scan_wait);
3c7b4e6b
CM
1726
1727 mutex_lock(&scan_mutex);
3c7b4e6b 1728 kmemleak_scan();
3c7b4e6b 1729 mutex_unlock(&scan_mutex);
4698c1f2 1730
3c7b4e6b
CM
1731 /* wait before the next scan */
1732 while (timeout && !kthread_should_stop())
1733 timeout = schedule_timeout_interruptible(timeout);
1734 }
1735
ae281064 1736 pr_info("Automatic memory scanning thread ended\n");
3c7b4e6b
CM
1737
1738 return 0;
1739}
1740
1741/*
1742 * Start the automatic memory scanning thread. This function must be called
4698c1f2 1743 * with the scan_mutex held.
3c7b4e6b 1744 */
7eb0d5e5 1745static void start_scan_thread(void)
3c7b4e6b
CM
1746{
1747 if (scan_thread)
1748 return;
1749 scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak");
1750 if (IS_ERR(scan_thread)) {
598d8091 1751 pr_warn("Failed to create the scan thread\n");
3c7b4e6b
CM
1752 scan_thread = NULL;
1753 }
1754}
1755
1756/*
914b6dff 1757 * Stop the automatic memory scanning thread.
3c7b4e6b 1758 */
7eb0d5e5 1759static void stop_scan_thread(void)
3c7b4e6b
CM
1760{
1761 if (scan_thread) {
1762 kthread_stop(scan_thread);
1763 scan_thread = NULL;
1764 }
1765}
1766
1767/*
1768 * Iterate over the object_list and return the first valid object at or after
1769 * the required position with its use_count incremented. The function triggers
1770 * a memory scanning when the pos argument points to the first position.
1771 */
1772static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos)
1773{
1774 struct kmemleak_object *object;
1775 loff_t n = *pos;
b87324d0
CM
1776 int err;
1777
1778 err = mutex_lock_interruptible(&scan_mutex);
1779 if (err < 0)
1780 return ERR_PTR(err);
3c7b4e6b 1781
3c7b4e6b
CM
1782 rcu_read_lock();
1783 list_for_each_entry_rcu(object, &object_list, object_list) {
1784 if (n-- > 0)
1785 continue;
1786 if (get_object(object))
1787 goto out;
1788 }
1789 object = NULL;
1790out:
3c7b4e6b
CM
1791 return object;
1792}
1793
1794/*
1795 * Return the next object in the object_list. The function decrements the
1796 * use_count of the previous object and increases that of the next one.
1797 */
1798static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1799{
1800 struct kmemleak_object *prev_obj = v;
1801 struct kmemleak_object *next_obj = NULL;
58fac095 1802 struct kmemleak_object *obj = prev_obj;
3c7b4e6b
CM
1803
1804 ++(*pos);
3c7b4e6b 1805
58fac095 1806 list_for_each_entry_continue_rcu(obj, &object_list, object_list) {
52c3ce4e
CM
1807 if (get_object(obj)) {
1808 next_obj = obj;
3c7b4e6b 1809 break;
52c3ce4e 1810 }
3c7b4e6b 1811 }
288c857d 1812
3c7b4e6b
CM
1813 put_object(prev_obj);
1814 return next_obj;
1815}
1816
1817/*
1818 * Decrement the use_count of the last object required, if any.
1819 */
1820static void kmemleak_seq_stop(struct seq_file *seq, void *v)
1821{
b87324d0
CM
1822 if (!IS_ERR(v)) {
1823 /*
1824 * kmemleak_seq_start may return ERR_PTR if the scan_mutex
1825 * waiting was interrupted, so only release it if !IS_ERR.
1826 */
f5886c7f 1827 rcu_read_unlock();
b87324d0
CM
1828 mutex_unlock(&scan_mutex);
1829 if (v)
1830 put_object(v);
1831 }
3c7b4e6b
CM
1832}
1833
1834/*
1835 * Print the information for an unreferenced object to the seq file.
1836 */
1837static int kmemleak_seq_show(struct seq_file *seq, void *v)
1838{
1839 struct kmemleak_object *object = v;
1840 unsigned long flags;
1841
8c96f1bc 1842 raw_spin_lock_irqsave(&object->lock, flags);
288c857d 1843 if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object))
17bb9e0d 1844 print_unreferenced(seq, object);
8c96f1bc 1845 raw_spin_unlock_irqrestore(&object->lock, flags);
3c7b4e6b
CM
1846 return 0;
1847}
1848
1849static const struct seq_operations kmemleak_seq_ops = {
1850 .start = kmemleak_seq_start,
1851 .next = kmemleak_seq_next,
1852 .stop = kmemleak_seq_stop,
1853 .show = kmemleak_seq_show,
1854};
1855
1856static int kmemleak_open(struct inode *inode, struct file *file)
1857{
b87324d0 1858 return seq_open(file, &kmemleak_seq_ops);
3c7b4e6b
CM
1859}
1860
189d84ed
CM
1861static int dump_str_object_info(const char *str)
1862{
1863 unsigned long flags;
1864 struct kmemleak_object *object;
1865 unsigned long addr;
1866
dc053733
AP
1867 if (kstrtoul(str, 0, &addr))
1868 return -EINVAL;
189d84ed
CM
1869 object = find_and_get_object(addr, 0);
1870 if (!object) {
1871 pr_info("Unknown object at 0x%08lx\n", addr);
1872 return -EINVAL;
1873 }
1874
8c96f1bc 1875 raw_spin_lock_irqsave(&object->lock, flags);
189d84ed 1876 dump_object_info(object);
8c96f1bc 1877 raw_spin_unlock_irqrestore(&object->lock, flags);
189d84ed
CM
1878
1879 put_object(object);
1880 return 0;
1881}
1882
30b37101
LR
1883/*
1884 * We use grey instead of black to ensure we can do future scans on the same
1885 * objects. If we did not do future scans these black objects could
1886 * potentially contain references to newly allocated objects in the future and
1887 * we'd end up with false positives.
1888 */
1889static void kmemleak_clear(void)
1890{
1891 struct kmemleak_object *object;
30b37101
LR
1892
1893 rcu_read_lock();
1894 list_for_each_entry_rcu(object, &object_list, object_list) {
00c15506 1895 raw_spin_lock_irq(&object->lock);
30b37101
LR
1896 if ((object->flags & OBJECT_REPORTED) &&
1897 unreferenced_object(object))
a1084c87 1898 __paint_it(object, KMEMLEAK_GREY);
00c15506 1899 raw_spin_unlock_irq(&object->lock);
30b37101
LR
1900 }
1901 rcu_read_unlock();
dc9b3f42
LZ
1902
1903 kmemleak_found_leaks = false;
30b37101
LR
1904}
1905
c89da70c
LZ
1906static void __kmemleak_do_cleanup(void);
1907
3c7b4e6b
CM
1908/*
1909 * File write operation to configure kmemleak at run-time. The following
1910 * commands can be written to the /sys/kernel/debug/kmemleak file:
1911 * off - disable kmemleak (irreversible)
1912 * stack=on - enable the task stacks scanning
1913 * stack=off - disable the tasks stacks scanning
1914 * scan=on - start the automatic memory scanning thread
1915 * scan=off - stop the automatic memory scanning thread
1916 * scan=... - set the automatic memory scanning period in seconds (0 to
1917 * disable it)
4698c1f2 1918 * scan - trigger a memory scan
30b37101 1919 * clear - mark all current reported unreferenced kmemleak objects as
c89da70c
LZ
1920 * grey to ignore printing them, or free all kmemleak objects
1921 * if kmemleak has been disabled.
189d84ed 1922 * dump=... - dump information about the object found at the given address
3c7b4e6b
CM
1923 */
1924static ssize_t kmemleak_write(struct file *file, const char __user *user_buf,
1925 size_t size, loff_t *ppos)
1926{
1927 char buf[64];
1928 int buf_size;
b87324d0 1929 int ret;
3c7b4e6b
CM
1930
1931 buf_size = min(size, (sizeof(buf) - 1));
1932 if (strncpy_from_user(buf, user_buf, buf_size) < 0)
1933 return -EFAULT;
1934 buf[buf_size] = 0;
1935
b87324d0
CM
1936 ret = mutex_lock_interruptible(&scan_mutex);
1937 if (ret < 0)
1938 return ret;
1939
c89da70c 1940 if (strncmp(buf, "clear", 5) == 0) {
8910ae89 1941 if (kmemleak_enabled)
c89da70c
LZ
1942 kmemleak_clear();
1943 else
1944 __kmemleak_do_cleanup();
1945 goto out;
1946 }
1947
8910ae89 1948 if (!kmemleak_enabled) {
4e4dfce2 1949 ret = -EPERM;
c89da70c
LZ
1950 goto out;
1951 }
1952
3c7b4e6b
CM
1953 if (strncmp(buf, "off", 3) == 0)
1954 kmemleak_disable();
1955 else if (strncmp(buf, "stack=on", 8) == 0)
1956 kmemleak_stack_scan = 1;
1957 else if (strncmp(buf, "stack=off", 9) == 0)
1958 kmemleak_stack_scan = 0;
1959 else if (strncmp(buf, "scan=on", 7) == 0)
1960 start_scan_thread();
1961 else if (strncmp(buf, "scan=off", 8) == 0)
1962 stop_scan_thread();
1963 else if (strncmp(buf, "scan=", 5) == 0) {
54dd200c
YX
1964 unsigned secs;
1965 unsigned long msecs;
3c7b4e6b 1966
54dd200c 1967 ret = kstrtouint(buf + 5, 0, &secs);
b87324d0
CM
1968 if (ret < 0)
1969 goto out;
54dd200c
YX
1970
1971 msecs = secs * MSEC_PER_SEC;
1972 if (msecs > UINT_MAX)
1973 msecs = UINT_MAX;
1974
3c7b4e6b 1975 stop_scan_thread();
54dd200c
YX
1976 if (msecs) {
1977 WRITE_ONCE(jiffies_scan_wait, msecs_to_jiffies(msecs));
3c7b4e6b
CM
1978 start_scan_thread();
1979 }
4698c1f2
CM
1980 } else if (strncmp(buf, "scan", 4) == 0)
1981 kmemleak_scan();
189d84ed
CM
1982 else if (strncmp(buf, "dump=", 5) == 0)
1983 ret = dump_str_object_info(buf + 5);
4698c1f2 1984 else
b87324d0
CM
1985 ret = -EINVAL;
1986
1987out:
1988 mutex_unlock(&scan_mutex);
1989 if (ret < 0)
1990 return ret;
3c7b4e6b
CM
1991
1992 /* ignore the rest of the buffer, only one command at a time */
1993 *ppos += size;
1994 return size;
1995}
1996
1997static const struct file_operations kmemleak_fops = {
1998 .owner = THIS_MODULE,
1999 .open = kmemleak_open,
2000 .read = seq_read,
2001 .write = kmemleak_write,
2002 .llseek = seq_lseek,
5f3bf19a 2003 .release = seq_release,
3c7b4e6b
CM
2004};
2005
c89da70c
LZ
2006static void __kmemleak_do_cleanup(void)
2007{
2abd839a 2008 struct kmemleak_object *object, *tmp;
c89da70c 2009
2abd839a
CM
2010 /*
2011 * Kmemleak has already been disabled, no need for RCU list traversal
2012 * or kmemleak_lock held.
2013 */
2014 list_for_each_entry_safe(object, tmp, &object_list, object_list) {
2015 __remove_object(object);
2016 __delete_object(object);
2017 }
c89da70c
LZ
2018}
2019
3c7b4e6b 2020/*
74341703
CM
2021 * Stop the memory scanning thread and free the kmemleak internal objects if
2022 * no previous scan thread (otherwise, kmemleak may still have some useful
2023 * information on memory leaks).
3c7b4e6b 2024 */
179a8100 2025static void kmemleak_do_cleanup(struct work_struct *work)
3c7b4e6b 2026{
3c7b4e6b 2027 stop_scan_thread();
3c7b4e6b 2028
914b6dff 2029 mutex_lock(&scan_mutex);
c5f3b1a5 2030 /*
914b6dff
VM
2031 * Once it is made sure that kmemleak_scan has stopped, it is safe to no
2032 * longer track object freeing. Ordering of the scan thread stopping and
2033 * the memory accesses below is guaranteed by the kthread_stop()
2034 * function.
c5f3b1a5
CM
2035 */
2036 kmemleak_free_enabled = 0;
914b6dff 2037 mutex_unlock(&scan_mutex);
c5f3b1a5 2038
c89da70c
LZ
2039 if (!kmemleak_found_leaks)
2040 __kmemleak_do_cleanup();
2041 else
756a025f 2042 pr_info("Kmemleak disabled without freeing internal data. Reclaim the memory with \"echo clear > /sys/kernel/debug/kmemleak\".\n");
3c7b4e6b
CM
2043}
2044
179a8100 2045static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup);
3c7b4e6b
CM
2046
2047/*
2048 * Disable kmemleak. No memory allocation/freeing will be traced once this
2049 * function is called. Disabling kmemleak is an irreversible operation.
2050 */
2051static void kmemleak_disable(void)
2052{
2053 /* atomically check whether it was already invoked */
8910ae89 2054 if (cmpxchg(&kmemleak_error, 0, 1))
3c7b4e6b
CM
2055 return;
2056
2057 /* stop any memory operation tracing */
8910ae89 2058 kmemleak_enabled = 0;
3c7b4e6b
CM
2059
2060 /* check whether it is too early for a kernel thread */
d160ef71 2061 if (kmemleak_late_initialized)
179a8100 2062 schedule_work(&cleanup_work);
c5f3b1a5
CM
2063 else
2064 kmemleak_free_enabled = 0;
3c7b4e6b
CM
2065
2066 pr_info("Kernel memory leak detector disabled\n");
2067}
2068
2069/*
2070 * Allow boot-time kmemleak disabling (enabled by default).
2071 */
8bd30c10 2072static int __init kmemleak_boot_config(char *str)
3c7b4e6b
CM
2073{
2074 if (!str)
2075 return -EINVAL;
2076 if (strcmp(str, "off") == 0)
2077 kmemleak_disable();
993f57e0 2078 else if (strcmp(str, "on") == 0) {
ab0155a2 2079 kmemleak_skip_disable = 1;
1c0310ad 2080 stack_depot_request_early_init();
993f57e0 2081 }
ab0155a2 2082 else
3c7b4e6b
CM
2083 return -EINVAL;
2084 return 0;
2085}
2086early_param("kmemleak", kmemleak_boot_config);
2087
2088/*
2030117d 2089 * Kmemleak initialization.
3c7b4e6b
CM
2090 */
2091void __init kmemleak_init(void)
2092{
ab0155a2
JB
2093#ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF
2094 if (!kmemleak_skip_disable) {
2095 kmemleak_disable();
2096 return;
2097 }
2098#endif
2099
c5665868
CM
2100 if (kmemleak_error)
2101 return;
2102
3c7b4e6b
CM
2103 jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE);
2104 jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000);
2105
2106 object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE);
2107 scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE);
3c7b4e6b 2108
298a32b1
CM
2109 /* register the data/bss sections */
2110 create_object((unsigned long)_sdata, _edata - _sdata,
2111 KMEMLEAK_GREY, GFP_ATOMIC);
2112 create_object((unsigned long)__bss_start, __bss_stop - __bss_start,
2113 KMEMLEAK_GREY, GFP_ATOMIC);
2114 /* only register .data..ro_after_init if not within .data */
b0d14fc4 2115 if (&__start_ro_after_init < &_sdata || &__end_ro_after_init > &_edata)
298a32b1
CM
2116 create_object((unsigned long)__start_ro_after_init,
2117 __end_ro_after_init - __start_ro_after_init,
2118 KMEMLEAK_GREY, GFP_ATOMIC);
3c7b4e6b
CM
2119}
2120
2121/*
2122 * Late initialization function.
2123 */
2124static int __init kmemleak_late_init(void)
2125{
d160ef71 2126 kmemleak_late_initialized = 1;
3c7b4e6b 2127
282401df 2128 debugfs_create_file("kmemleak", 0644, NULL, NULL, &kmemleak_fops);
b353756b 2129
8910ae89 2130 if (kmemleak_error) {
3c7b4e6b 2131 /*
25985edc 2132 * Some error occurred and kmemleak was disabled. There is a
3c7b4e6b 2133 * small chance that kmemleak_disable() was called immediately
d160ef71 2134 * after setting kmemleak_late_initialized and we may end up with
3c7b4e6b
CM
2135 * two clean-up threads but serialized by scan_mutex.
2136 */
179a8100 2137 schedule_work(&cleanup_work);
3c7b4e6b
CM
2138 return -ENOMEM;
2139 }
2140
d53ce042
SK
2141 if (IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN)) {
2142 mutex_lock(&scan_mutex);
2143 start_scan_thread();
2144 mutex_unlock(&scan_mutex);
2145 }
3c7b4e6b 2146
0e965a6b
QC
2147 pr_info("Kernel memory leak detector initialized (mem pool available: %d)\n",
2148 mem_pool_free_count);
3c7b4e6b
CM
2149
2150 return 0;
2151}
2152late_initcall(kmemleak_late_init);