MAINTAINERS: add maillist information for LoongArch
[linux-block.git] / mm / kfence / core.c
CommitLineData
0ce20dd8
AP
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * KFENCE guarded object allocator and fault handling.
4 *
5 * Copyright (C) 2020, Google LLC.
6 */
7
8#define pr_fmt(fmt) "kfence: " fmt
9
10#include <linux/atomic.h>
11#include <linux/bug.h>
12#include <linux/debugfs.h>
08f6b106 13#include <linux/hash.h>
407f1d8c 14#include <linux/irq_work.h>
08f6b106 15#include <linux/jhash.h>
0ce20dd8
AP
16#include <linux/kcsan-checks.h>
17#include <linux/kfence.h>
95511580 18#include <linux/kmemleak.h>
0ce20dd8
AP
19#include <linux/list.h>
20#include <linux/lockdep.h>
08f6b106 21#include <linux/log2.h>
0ce20dd8
AP
22#include <linux/memblock.h>
23#include <linux/moduleparam.h>
3c81b3bb 24#include <linux/notifier.h>
25#include <linux/panic_notifier.h>
0ce20dd8
AP
26#include <linux/random.h>
27#include <linux/rcupdate.h>
4bbf04aa 28#include <linux/sched/clock.h>
37c9284f 29#include <linux/sched/sysctl.h>
0ce20dd8
AP
30#include <linux/seq_file.h>
31#include <linux/slab.h>
32#include <linux/spinlock.h>
33#include <linux/string.h>
34
35#include <asm/kfence.h>
36
37#include "kfence.h"
38
39/* Disables KFENCE on the first warning assuming an irrecoverable error. */
40#define KFENCE_WARN_ON(cond) \
41 ({ \
42 const bool __cond = WARN_ON(cond); \
698361bc 43 if (unlikely(__cond)) { \
0ce20dd8 44 WRITE_ONCE(kfence_enabled, false); \
698361bc
TD
45 disabled_by_warn = true; \
46 } \
0ce20dd8
AP
47 __cond; \
48 })
49
50/* === Data ================================================================= */
51
52static bool kfence_enabled __read_mostly;
698361bc 53static bool disabled_by_warn __read_mostly;
0ce20dd8 54
8913c610
PL
55unsigned long kfence_sample_interval __read_mostly = CONFIG_KFENCE_SAMPLE_INTERVAL;
56EXPORT_SYMBOL_GPL(kfence_sample_interval); /* Export for test modules. */
0ce20dd8
AP
57
58#ifdef MODULE_PARAM_PREFIX
59#undef MODULE_PARAM_PREFIX
60#endif
61#define MODULE_PARAM_PREFIX "kfence."
62
698361bc 63static int kfence_enable_late(void);
0ce20dd8
AP
64static int param_set_sample_interval(const char *val, const struct kernel_param *kp)
65{
66 unsigned long num;
67 int ret = kstrtoul(val, 0, &num);
68
69 if (ret < 0)
70 return ret;
71
83d7d04f
JL
72 /* Using 0 to indicate KFENCE is disabled. */
73 if (!num && READ_ONCE(kfence_enabled)) {
74 pr_info("disabled\n");
0ce20dd8 75 WRITE_ONCE(kfence_enabled, false);
83d7d04f 76 }
0ce20dd8
AP
77
78 *((unsigned long *)kp->arg) = num;
698361bc
TD
79
80 if (num && !READ_ONCE(kfence_enabled) && system_state != SYSTEM_BOOTING)
81 return disabled_by_warn ? -EINVAL : kfence_enable_late();
0ce20dd8
AP
82 return 0;
83}
84
85static int param_get_sample_interval(char *buffer, const struct kernel_param *kp)
86{
87 if (!READ_ONCE(kfence_enabled))
88 return sprintf(buffer, "0\n");
89
90 return param_get_ulong(buffer, kp);
91}
92
93static const struct kernel_param_ops sample_interval_param_ops = {
94 .set = param_set_sample_interval,
95 .get = param_get_sample_interval,
96};
97module_param_cb(sample_interval, &sample_interval_param_ops, &kfence_sample_interval, 0600);
98
08f6b106
ME
99/* Pool usage% threshold when currently covered allocations are skipped. */
100static unsigned long kfence_skip_covered_thresh __read_mostly = 75;
101module_param_named(skip_covered_thresh, kfence_skip_covered_thresh, ulong, 0644);
102
737b6a10
ME
103/* If true, use a deferrable timer. */
104static bool kfence_deferrable __read_mostly = IS_ENABLED(CONFIG_KFENCE_DEFERRABLE);
105module_param_named(deferrable, kfence_deferrable, bool, 0444);
106
3c81b3bb 107/* If true, check all canary bytes on panic. */
108static bool kfence_check_on_panic __read_mostly;
109module_param_named(check_on_panic, kfence_check_on_panic, bool, 0444);
110
0ce20dd8 111/* The pool of pages used for guard pages and objects. */
b33f778b 112char *__kfence_pool __read_mostly;
0ce20dd8
AP
113EXPORT_SYMBOL(__kfence_pool); /* Export for test modules. */
114
115/*
116 * Per-object metadata, with one-to-one mapping of object metadata to
117 * backing pages (in __kfence_pool).
118 */
119static_assert(CONFIG_KFENCE_NUM_OBJECTS > 0);
120struct kfence_metadata kfence_metadata[CONFIG_KFENCE_NUM_OBJECTS];
121
122/* Freelist with available objects. */
123static struct list_head kfence_freelist = LIST_HEAD_INIT(kfence_freelist);
124static DEFINE_RAW_SPINLOCK(kfence_freelist_lock); /* Lock protecting freelist. */
125
07e8481d
ME
126/*
127 * The static key to set up a KFENCE allocation; or if static keys are not used
128 * to gate allocations, to avoid a load and compare if KFENCE is disabled.
129 */
0ce20dd8 130DEFINE_STATIC_KEY_FALSE(kfence_allocation_key);
0ce20dd8
AP
131
132/* Gates the allocation, ensuring only one succeeds in a given period. */
133atomic_t kfence_allocation_gate = ATOMIC_INIT(1);
134
08f6b106
ME
135/*
136 * A Counting Bloom filter of allocation coverage: limits currently covered
137 * allocations of the same source filling up the pool.
138 *
139 * Assuming a range of 15%-85% unique allocations in the pool at any point in
140 * time, the below parameters provide a probablity of 0.02-0.33 for false
141 * positive hits respectively:
142 *
143 * P(alloc_traces) = (1 - e^(-HNUM * (alloc_traces / SIZE)) ^ HNUM
144 */
145#define ALLOC_COVERED_HNUM 2
146#define ALLOC_COVERED_ORDER (const_ilog2(CONFIG_KFENCE_NUM_OBJECTS) + 2)
147#define ALLOC_COVERED_SIZE (1 << ALLOC_COVERED_ORDER)
148#define ALLOC_COVERED_HNEXT(h) hash_32(h, ALLOC_COVERED_ORDER)
149#define ALLOC_COVERED_MASK (ALLOC_COVERED_SIZE - 1)
150static atomic_t alloc_covered[ALLOC_COVERED_SIZE];
151
152/* Stack depth used to determine uniqueness of an allocation. */
153#define UNIQUE_ALLOC_STACK_DEPTH ((size_t)8)
154
155/*
156 * Randomness for stack hashes, making the same collisions across reboots and
157 * different machines less likely.
158 */
159static u32 stack_hash_seed __ro_after_init;
160
0ce20dd8
AP
161/* Statistics counters for debugfs. */
162enum kfence_counter_id {
163 KFENCE_COUNTER_ALLOCATED,
164 KFENCE_COUNTER_ALLOCS,
165 KFENCE_COUNTER_FREES,
166 KFENCE_COUNTER_ZOMBIES,
167 KFENCE_COUNTER_BUGS,
9a19aeb5
ME
168 KFENCE_COUNTER_SKIP_INCOMPAT,
169 KFENCE_COUNTER_SKIP_CAPACITY,
08f6b106 170 KFENCE_COUNTER_SKIP_COVERED,
0ce20dd8
AP
171 KFENCE_COUNTER_COUNT,
172};
173static atomic_long_t counters[KFENCE_COUNTER_COUNT];
174static const char *const counter_names[] = {
175 [KFENCE_COUNTER_ALLOCATED] = "currently allocated",
176 [KFENCE_COUNTER_ALLOCS] = "total allocations",
177 [KFENCE_COUNTER_FREES] = "total frees",
178 [KFENCE_COUNTER_ZOMBIES] = "zombie allocations",
179 [KFENCE_COUNTER_BUGS] = "total bugs",
9a19aeb5
ME
180 [KFENCE_COUNTER_SKIP_INCOMPAT] = "skipped allocations (incompatible)",
181 [KFENCE_COUNTER_SKIP_CAPACITY] = "skipped allocations (capacity)",
08f6b106 182 [KFENCE_COUNTER_SKIP_COVERED] = "skipped allocations (covered)",
0ce20dd8
AP
183};
184static_assert(ARRAY_SIZE(counter_names) == KFENCE_COUNTER_COUNT);
185
186/* === Internals ============================================================ */
187
08f6b106
ME
188static inline bool should_skip_covered(void)
189{
190 unsigned long thresh = (CONFIG_KFENCE_NUM_OBJECTS * kfence_skip_covered_thresh) / 100;
191
192 return atomic_long_read(&counters[KFENCE_COUNTER_ALLOCATED]) > thresh;
193}
194
195static u32 get_alloc_stack_hash(unsigned long *stack_entries, size_t num_entries)
196{
197 num_entries = min(num_entries, UNIQUE_ALLOC_STACK_DEPTH);
198 num_entries = filter_irq_stacks(stack_entries, num_entries);
199 return jhash(stack_entries, num_entries * sizeof(stack_entries[0]), stack_hash_seed);
200}
201
202/*
203 * Adds (or subtracts) count @val for allocation stack trace hash
204 * @alloc_stack_hash from Counting Bloom filter.
205 */
206static void alloc_covered_add(u32 alloc_stack_hash, int val)
207{
208 int i;
209
210 for (i = 0; i < ALLOC_COVERED_HNUM; i++) {
211 atomic_add(val, &alloc_covered[alloc_stack_hash & ALLOC_COVERED_MASK]);
212 alloc_stack_hash = ALLOC_COVERED_HNEXT(alloc_stack_hash);
213 }
214}
215
216/*
217 * Returns true if the allocation stack trace hash @alloc_stack_hash is
218 * currently contained (non-zero count) in Counting Bloom filter.
219 */
220static bool alloc_covered_contains(u32 alloc_stack_hash)
221{
222 int i;
223
224 for (i = 0; i < ALLOC_COVERED_HNUM; i++) {
225 if (!atomic_read(&alloc_covered[alloc_stack_hash & ALLOC_COVERED_MASK]))
226 return false;
227 alloc_stack_hash = ALLOC_COVERED_HNEXT(alloc_stack_hash);
228 }
229
230 return true;
231}
232
0ce20dd8
AP
233static bool kfence_protect(unsigned long addr)
234{
235 return !KFENCE_WARN_ON(!kfence_protect_page(ALIGN_DOWN(addr, PAGE_SIZE), true));
236}
237
238static bool kfence_unprotect(unsigned long addr)
239{
240 return !KFENCE_WARN_ON(!kfence_protect_page(ALIGN_DOWN(addr, PAGE_SIZE), false));
241}
242
0ce20dd8
AP
243static inline unsigned long metadata_to_pageaddr(const struct kfence_metadata *meta)
244{
245 unsigned long offset = (meta - kfence_metadata + 1) * PAGE_SIZE * 2;
246 unsigned long pageaddr = (unsigned long)&__kfence_pool[offset];
247
248 /* The checks do not affect performance; only called from slow-paths. */
249
250 /* Only call with a pointer into kfence_metadata. */
251 if (KFENCE_WARN_ON(meta < kfence_metadata ||
252 meta >= kfence_metadata + CONFIG_KFENCE_NUM_OBJECTS))
253 return 0;
254
255 /*
256 * This metadata object only ever maps to 1 page; verify that the stored
257 * address is in the expected range.
258 */
259 if (KFENCE_WARN_ON(ALIGN_DOWN(meta->addr, PAGE_SIZE) != pageaddr))
260 return 0;
261
262 return pageaddr;
263}
264
265/*
266 * Update the object's metadata state, including updating the alloc/free stacks
267 * depending on the state transition.
268 */
a9ab52bb
ME
269static noinline void
270metadata_update_state(struct kfence_metadata *meta, enum kfence_object_state next,
271 unsigned long *stack_entries, size_t num_stack_entries)
0ce20dd8
AP
272{
273 struct kfence_track *track =
274 next == KFENCE_OBJECT_FREED ? &meta->free_track : &meta->alloc_track;
275
276 lockdep_assert_held(&meta->lock);
277
a9ab52bb
ME
278 if (stack_entries) {
279 memcpy(track->stack_entries, stack_entries,
280 num_stack_entries * sizeof(stack_entries[0]));
281 } else {
282 /*
283 * Skip over 1 (this) functions; noinline ensures we do not
284 * accidentally skip over the caller by never inlining.
285 */
286 num_stack_entries = stack_trace_save(track->stack_entries, KFENCE_STACK_DEPTH, 1);
287 }
288 track->num_stack_entries = num_stack_entries;
0ce20dd8 289 track->pid = task_pid_nr(current);
4bbf04aa
ME
290 track->cpu = raw_smp_processor_id();
291 track->ts_nsec = local_clock(); /* Same source as printk timestamps. */
0ce20dd8
AP
292
293 /*
294 * Pairs with READ_ONCE() in
295 * kfence_shutdown_cache(),
296 * kfence_handle_page_fault().
297 */
298 WRITE_ONCE(meta->state, next);
299}
300
301/* Write canary byte to @addr. */
302static inline bool set_canary_byte(u8 *addr)
303{
304 *addr = KFENCE_CANARY_PATTERN(addr);
305 return true;
306}
307
308/* Check canary byte at @addr. */
309static inline bool check_canary_byte(u8 *addr)
310{
49332956
ME
311 struct kfence_metadata *meta;
312 unsigned long flags;
313
0ce20dd8
AP
314 if (likely(*addr == KFENCE_CANARY_PATTERN(addr)))
315 return true;
316
317 atomic_long_inc(&counters[KFENCE_COUNTER_BUGS]);
49332956
ME
318
319 meta = addr_to_metadata((unsigned long)addr);
320 raw_spin_lock_irqsave(&meta->lock, flags);
321 kfence_report_error((unsigned long)addr, false, NULL, meta, KFENCE_ERROR_CORRUPTION);
322 raw_spin_unlock_irqrestore(&meta->lock, flags);
323
0ce20dd8
AP
324 return false;
325}
326
327/* __always_inline this to ensure we won't do an indirect call to fn. */
328static __always_inline void for_each_canary(const struct kfence_metadata *meta, bool (*fn)(u8 *))
329{
330 const unsigned long pageaddr = ALIGN_DOWN(meta->addr, PAGE_SIZE);
331 unsigned long addr;
332
0ce20dd8
AP
333 /*
334 * We'll iterate over each canary byte per-side until fn() returns
335 * false. However, we'll still iterate over the canary bytes to the
336 * right of the object even if there was an error in the canary bytes to
337 * the left of the object. Specifically, if check_canary_byte()
338 * generates an error, showing both sides might give more clues as to
339 * what the error is about when displaying which bytes were corrupted.
340 */
341
342 /* Apply to left of object. */
343 for (addr = pageaddr; addr < meta->addr; addr++) {
344 if (!fn((u8 *)addr))
345 break;
346 }
347
348 /* Apply to right of object. */
349 for (addr = meta->addr + meta->size; addr < pageaddr + PAGE_SIZE; addr++) {
350 if (!fn((u8 *)addr))
351 break;
352 }
353}
354
a9ab52bb 355static void *kfence_guarded_alloc(struct kmem_cache *cache, size_t size, gfp_t gfp,
08f6b106
ME
356 unsigned long *stack_entries, size_t num_stack_entries,
357 u32 alloc_stack_hash)
0ce20dd8
AP
358{
359 struct kfence_metadata *meta = NULL;
360 unsigned long flags;
8dae0cfe 361 struct slab *slab;
0ce20dd8
AP
362 void *addr;
363
364 /* Try to obtain a free object. */
365 raw_spin_lock_irqsave(&kfence_freelist_lock, flags);
366 if (!list_empty(&kfence_freelist)) {
367 meta = list_entry(kfence_freelist.next, struct kfence_metadata, list);
368 list_del_init(&meta->list);
369 }
370 raw_spin_unlock_irqrestore(&kfence_freelist_lock, flags);
9a19aeb5
ME
371 if (!meta) {
372 atomic_long_inc(&counters[KFENCE_COUNTER_SKIP_CAPACITY]);
0ce20dd8 373 return NULL;
9a19aeb5 374 }
0ce20dd8
AP
375
376 if (unlikely(!raw_spin_trylock_irqsave(&meta->lock, flags))) {
377 /*
378 * This is extremely unlikely -- we are reporting on a
379 * use-after-free, which locked meta->lock, and the reporting
380 * code via printk calls kmalloc() which ends up in
381 * kfence_alloc() and tries to grab the same object that we're
382 * reporting on. While it has never been observed, lockdep does
383 * report that there is a possibility of deadlock. Fix it by
384 * using trylock and bailing out gracefully.
385 */
386 raw_spin_lock_irqsave(&kfence_freelist_lock, flags);
387 /* Put the object back on the freelist. */
388 list_add_tail(&meta->list, &kfence_freelist);
389 raw_spin_unlock_irqrestore(&kfence_freelist_lock, flags);
390
391 return NULL;
392 }
393
394 meta->addr = metadata_to_pageaddr(meta);
395 /* Unprotect if we're reusing this page. */
396 if (meta->state == KFENCE_OBJECT_FREED)
397 kfence_unprotect(meta->addr);
398
399 /*
400 * Note: for allocations made before RNG initialization, will always
401 * return zero. We still benefit from enabling KFENCE as early as
402 * possible, even when the RNG is not yet available, as this will allow
403 * KFENCE to detect bugs due to earlier allocations. The only downside
404 * is that the out-of-bounds accesses detected are deterministic for
405 * such allocations.
406 */
407 if (prandom_u32_max(2)) {
408 /* Allocate on the "right" side, re-calculate address. */
409 meta->addr += PAGE_SIZE - size;
410 meta->addr = ALIGN_DOWN(meta->addr, cache->align);
411 }
412
413 addr = (void *)meta->addr;
414
415 /* Update remaining metadata. */
a9ab52bb 416 metadata_update_state(meta, KFENCE_OBJECT_ALLOCATED, stack_entries, num_stack_entries);
0ce20dd8
AP
417 /* Pairs with READ_ONCE() in kfence_shutdown_cache(). */
418 WRITE_ONCE(meta->cache, cache);
419 meta->size = size;
08f6b106 420 meta->alloc_stack_hash = alloc_stack_hash;
49332956 421 raw_spin_unlock_irqrestore(&meta->lock, flags);
08f6b106 422
49332956 423 alloc_covered_add(alloc_stack_hash, 1);
0ce20dd8 424
8dae0cfe
VB
425 /* Set required slab fields. */
426 slab = virt_to_slab((void *)meta->addr);
427 slab->slab_cache = cache;
401fb12c
VB
428#if defined(CONFIG_SLUB)
429 slab->objects = 1;
430#elif defined(CONFIG_SLAB)
431 slab->s_mem = addr;
432#endif
0ce20dd8 433
0ce20dd8 434 /* Memory initialization. */
49332956 435 for_each_canary(meta, set_canary_byte);
0ce20dd8
AP
436
437 /*
438 * We check slab_want_init_on_alloc() ourselves, rather than letting
439 * SL*B do the initialization, as otherwise we might overwrite KFENCE's
440 * redzone.
441 */
442 if (unlikely(slab_want_init_on_alloc(gfp, cache)))
443 memzero_explicit(addr, size);
444 if (cache->ctor)
445 cache->ctor(addr);
446
447 if (CONFIG_KFENCE_STRESS_TEST_FAULTS && !prandom_u32_max(CONFIG_KFENCE_STRESS_TEST_FAULTS))
448 kfence_protect(meta->addr); /* Random "faults" by protecting the object. */
449
450 atomic_long_inc(&counters[KFENCE_COUNTER_ALLOCATED]);
451 atomic_long_inc(&counters[KFENCE_COUNTER_ALLOCS]);
452
453 return addr;
454}
455
456static void kfence_guarded_free(void *addr, struct kfence_metadata *meta, bool zombie)
457{
458 struct kcsan_scoped_access assert_page_exclusive;
459 unsigned long flags;
49332956 460 bool init;
0ce20dd8
AP
461
462 raw_spin_lock_irqsave(&meta->lock, flags);
463
464 if (meta->state != KFENCE_OBJECT_ALLOCATED || meta->addr != (unsigned long)addr) {
465 /* Invalid or double-free, bail out. */
466 atomic_long_inc(&counters[KFENCE_COUNTER_BUGS]);
bc8fbc5f
ME
467 kfence_report_error((unsigned long)addr, false, NULL, meta,
468 KFENCE_ERROR_INVALID_FREE);
0ce20dd8
AP
469 raw_spin_unlock_irqrestore(&meta->lock, flags);
470 return;
471 }
472
473 /* Detect racy use-after-free, or incorrect reallocation of this page by KFENCE. */
474 kcsan_begin_scoped_access((void *)ALIGN_DOWN((unsigned long)addr, PAGE_SIZE), PAGE_SIZE,
475 KCSAN_ACCESS_SCOPED | KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT,
476 &assert_page_exclusive);
477
478 if (CONFIG_KFENCE_STRESS_TEST_FAULTS)
479 kfence_unprotect((unsigned long)addr); /* To check canary bytes. */
480
481 /* Restore page protection if there was an OOB access. */
482 if (meta->unprotected_page) {
94868a1e 483 memzero_explicit((void *)ALIGN_DOWN(meta->unprotected_page, PAGE_SIZE), PAGE_SIZE);
0ce20dd8
AP
484 kfence_protect(meta->unprotected_page);
485 meta->unprotected_page = 0;
486 }
487
49332956
ME
488 /* Mark the object as freed. */
489 metadata_update_state(meta, KFENCE_OBJECT_FREED, NULL, 0);
490 init = slab_want_init_on_free(meta->cache);
491 raw_spin_unlock_irqrestore(&meta->lock, flags);
492
493 alloc_covered_add(meta->alloc_stack_hash, -1);
494
0ce20dd8
AP
495 /* Check canary bytes for memory corruption. */
496 for_each_canary(meta, check_canary_byte);
497
498 /*
499 * Clear memory if init-on-free is set. While we protect the page, the
500 * data is still there, and after a use-after-free is detected, we
501 * unprotect the page, so the data is still accessible.
502 */
49332956 503 if (!zombie && unlikely(init))
0ce20dd8
AP
504 memzero_explicit(addr, meta->size);
505
0ce20dd8
AP
506 /* Protect to detect use-after-frees. */
507 kfence_protect((unsigned long)addr);
508
509 kcsan_end_scoped_access(&assert_page_exclusive);
510 if (!zombie) {
511 /* Add it to the tail of the freelist for reuse. */
512 raw_spin_lock_irqsave(&kfence_freelist_lock, flags);
513 KFENCE_WARN_ON(!list_empty(&meta->list));
514 list_add_tail(&meta->list, &kfence_freelist);
515 raw_spin_unlock_irqrestore(&kfence_freelist_lock, flags);
516
517 atomic_long_dec(&counters[KFENCE_COUNTER_ALLOCATED]);
518 atomic_long_inc(&counters[KFENCE_COUNTER_FREES]);
519 } else {
520 /* See kfence_shutdown_cache(). */
521 atomic_long_inc(&counters[KFENCE_COUNTER_ZOMBIES]);
522 }
523}
524
525static void rcu_guarded_free(struct rcu_head *h)
526{
527 struct kfence_metadata *meta = container_of(h, struct kfence_metadata, rcu_head);
528
529 kfence_guarded_free((void *)meta->addr, meta, false);
530}
531
b33f778b
TD
532/*
533 * Initialization of the KFENCE pool after its allocation.
534 * Returns 0 on success; otherwise returns the address up to
535 * which partial initialization succeeded.
536 */
537static unsigned long kfence_init_pool(void)
0ce20dd8
AP
538{
539 unsigned long addr = (unsigned long)__kfence_pool;
540 struct page *pages;
541 int i;
542
0ce20dd8 543 if (!arch_kfence_init_pool())
b33f778b 544 return addr;
0ce20dd8
AP
545
546 pages = virt_to_page(addr);
547
548 /*
549 * Set up object pages: they must have PG_slab set, to avoid freeing
550 * these as real pages.
551 *
552 * We also want to avoid inserting kfence_free() in the kfree()
553 * fast-path in SLUB, and therefore need to ensure kfree() correctly
554 * enters __slab_free() slow-path.
555 */
556 for (i = 0; i < KFENCE_POOL_SIZE / PAGE_SIZE; i++) {
8f0b3649
MS
557 struct slab *slab = page_slab(&pages[i]);
558
0ce20dd8
AP
559 if (!i || (i % 2))
560 continue;
561
562 /* Verify we do not have a compound head page. */
563 if (WARN_ON(compound_head(&pages[i]) != &pages[i]))
b33f778b 564 return addr;
0ce20dd8 565
8f0b3649
MS
566 __folio_set_slab(slab_folio(slab));
567#ifdef CONFIG_MEMCG
568 slab->memcg_data = (unsigned long)&kfence_metadata[i / 2 - 1].objcg |
569 MEMCG_DATA_OBJCGS;
570#endif
0ce20dd8
AP
571 }
572
573 /*
574 * Protect the first 2 pages. The first page is mostly unnecessary, and
575 * merely serves as an extended guard page. However, adding one
576 * additional page in the beginning gives us an even number of pages,
577 * which simplifies the mapping of address to metadata index.
578 */
579 for (i = 0; i < 2; i++) {
580 if (unlikely(!kfence_protect(addr)))
b33f778b 581 return addr;
0ce20dd8
AP
582
583 addr += PAGE_SIZE;
584 }
585
586 for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) {
587 struct kfence_metadata *meta = &kfence_metadata[i];
588
589 /* Initialize metadata. */
590 INIT_LIST_HEAD(&meta->list);
591 raw_spin_lock_init(&meta->lock);
592 meta->state = KFENCE_OBJECT_UNUSED;
593 meta->addr = addr; /* Initialize for validation in metadata_to_pageaddr(). */
594 list_add_tail(&meta->list, &kfence_freelist);
595
596 /* Protect the right redzone. */
597 if (unlikely(!kfence_protect(addr + PAGE_SIZE)))
b33f778b 598 return addr;
0ce20dd8
AP
599
600 addr += 2 * PAGE_SIZE;
601 }
602
95511580
ME
603 /*
604 * The pool is live and will never be deallocated from this point on.
605 * Remove the pool object from the kmemleak object tree, as it would
606 * otherwise overlap with allocations returned by kfence_alloc(), which
607 * are registered with kmemleak through the slab post-alloc hook.
608 */
609 kmemleak_free(__kfence_pool);
610
b33f778b
TD
611 return 0;
612}
613
614static bool __init kfence_init_pool_early(void)
615{
616 unsigned long addr;
617
618 if (!__kfence_pool)
619 return false;
620
621 addr = kfence_init_pool();
622
623 if (!addr)
624 return true;
0ce20dd8 625
0ce20dd8
AP
626 /*
627 * Only release unprotected pages, and do not try to go back and change
628 * page attributes due to risk of failing to do so as well. If changing
629 * page attributes for some pages fails, it is very likely that it also
630 * fails for the first page, and therefore expect addr==__kfence_pool in
631 * most failure cases.
632 */
2839b099
HY
633 for (char *p = (char *)addr; p < __kfence_pool + KFENCE_POOL_SIZE; p += PAGE_SIZE) {
634 struct slab *slab = virt_to_slab(p);
635
636 if (!slab)
637 continue;
638#ifdef CONFIG_MEMCG
639 slab->memcg_data = 0;
640#endif
641 __folio_clear_slab(slab_folio(slab));
642 }
0ce20dd8
AP
643 memblock_free_late(__pa(addr), KFENCE_POOL_SIZE - (addr - (unsigned long)__kfence_pool));
644 __kfence_pool = NULL;
645 return false;
646}
647
b33f778b
TD
648static bool kfence_init_pool_late(void)
649{
650 unsigned long addr, free_size;
651
652 addr = kfence_init_pool();
653
654 if (!addr)
655 return true;
656
657 /* Same as above. */
658 free_size = KFENCE_POOL_SIZE - (addr - (unsigned long)__kfence_pool);
659#ifdef CONFIG_CONTIG_ALLOC
660 free_contig_range(page_to_pfn(virt_to_page(addr)), free_size / PAGE_SIZE);
661#else
662 free_pages_exact((void *)addr, free_size);
663#endif
664 __kfence_pool = NULL;
665 return false;
666}
667
0ce20dd8
AP
668/* === DebugFS Interface ==================================================== */
669
670static int stats_show(struct seq_file *seq, void *v)
671{
672 int i;
673
674 seq_printf(seq, "enabled: %i\n", READ_ONCE(kfence_enabled));
675 for (i = 0; i < KFENCE_COUNTER_COUNT; i++)
676 seq_printf(seq, "%s: %ld\n", counter_names[i], atomic_long_read(&counters[i]));
677
678 return 0;
679}
680DEFINE_SHOW_ATTRIBUTE(stats);
681
682/*
683 * debugfs seq_file operations for /sys/kernel/debug/kfence/objects.
684 * start_object() and next_object() return the object index + 1, because NULL is used
685 * to stop iteration.
686 */
687static void *start_object(struct seq_file *seq, loff_t *pos)
688{
689 if (*pos < CONFIG_KFENCE_NUM_OBJECTS)
690 return (void *)((long)*pos + 1);
691 return NULL;
692}
693
694static void stop_object(struct seq_file *seq, void *v)
695{
696}
697
698static void *next_object(struct seq_file *seq, void *v, loff_t *pos)
699{
700 ++*pos;
701 if (*pos < CONFIG_KFENCE_NUM_OBJECTS)
702 return (void *)((long)*pos + 1);
703 return NULL;
704}
705
706static int show_object(struct seq_file *seq, void *v)
707{
708 struct kfence_metadata *meta = &kfence_metadata[(long)v - 1];
709 unsigned long flags;
710
711 raw_spin_lock_irqsave(&meta->lock, flags);
712 kfence_print_object(seq, meta);
713 raw_spin_unlock_irqrestore(&meta->lock, flags);
714 seq_puts(seq, "---------------------------------\n");
715
716 return 0;
717}
718
719static const struct seq_operations object_seqops = {
720 .start = start_object,
721 .next = next_object,
722 .stop = stop_object,
723 .show = show_object,
724};
725
726static int open_objects(struct inode *inode, struct file *file)
727{
728 return seq_open(file, &object_seqops);
729}
730
731static const struct file_operations objects_fops = {
732 .open = open_objects,
733 .read = seq_read,
734 .llseek = seq_lseek,
0129ab1f 735 .release = seq_release,
0ce20dd8
AP
736};
737
738static int __init kfence_debugfs_init(void)
739{
740 struct dentry *kfence_dir = debugfs_create_dir("kfence", NULL);
741
742 debugfs_create_file("stats", 0444, kfence_dir, NULL, &stats_fops);
743 debugfs_create_file("objects", 0400, kfence_dir, NULL, &objects_fops);
744 return 0;
745}
746
747late_initcall(kfence_debugfs_init);
748
3c81b3bb 749/* === Panic Notifier ====================================================== */
750
751static void kfence_check_all_canary(void)
752{
753 int i;
754
755 for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) {
756 struct kfence_metadata *meta = &kfence_metadata[i];
757
758 if (meta->state == KFENCE_OBJECT_ALLOCATED)
759 for_each_canary(meta, check_canary_byte);
760 }
761}
762
763static int kfence_check_canary_callback(struct notifier_block *nb,
764 unsigned long reason, void *arg)
765{
766 kfence_check_all_canary();
767 return NOTIFY_OK;
768}
769
770static struct notifier_block kfence_check_canary_notifier = {
771 .notifier_call = kfence_check_canary_callback,
772};
773
0ce20dd8
AP
774/* === Allocation Gate Timer ================================================ */
775
737b6a10
ME
776static struct delayed_work kfence_timer;
777
407f1d8c
ME
778#ifdef CONFIG_KFENCE_STATIC_KEYS
779/* Wait queue to wake up allocation-gate timer task. */
780static DECLARE_WAIT_QUEUE_HEAD(allocation_wait);
781
782static void wake_up_kfence_timer(struct irq_work *work)
783{
784 wake_up(&allocation_wait);
785}
786static DEFINE_IRQ_WORK(wake_up_kfence_timer_work, wake_up_kfence_timer);
787#endif
788
0ce20dd8
AP
789/*
790 * Set up delayed work, which will enable and disable the static key. We need to
791 * use a work queue (rather than a simple timer), since enabling and disabling a
792 * static key cannot be done from an interrupt.
793 *
794 * Note: Toggling a static branch currently causes IPIs, and here we'll end up
795 * with a total of 2 IPIs to all CPUs. If this ends up a problem in future (with
796 * more aggressive sampling intervals), we could get away with a variant that
797 * avoids IPIs, at the cost of not immediately capturing allocations if the
798 * instructions remain cached.
799 */
0ce20dd8
AP
800static void toggle_allocation_gate(struct work_struct *work)
801{
802 if (!READ_ONCE(kfence_enabled))
803 return;
804
0ce20dd8
AP
805 atomic_set(&kfence_allocation_gate, 0);
806#ifdef CONFIG_KFENCE_STATIC_KEYS
407f1d8c 807 /* Enable static key, and await allocation to happen. */
0ce20dd8 808 static_branch_enable(&kfence_allocation_key);
407f1d8c 809
37c9284f
ME
810 if (sysctl_hung_task_timeout_secs) {
811 /*
812 * During low activity with no allocations we might wait a
813 * while; let's avoid the hung task warning.
814 */
8fd0e995
ME
815 wait_event_idle_timeout(allocation_wait, atomic_read(&kfence_allocation_gate),
816 sysctl_hung_task_timeout_secs * HZ / 2);
37c9284f 817 } else {
8fd0e995 818 wait_event_idle(allocation_wait, atomic_read(&kfence_allocation_gate));
37c9284f 819 }
407f1d8c 820
0ce20dd8
AP
821 /* Disable static key and reset timer. */
822 static_branch_disable(&kfence_allocation_key);
823#endif
ff06e45d 824 queue_delayed_work(system_unbound_wq, &kfence_timer,
36f0b35d 825 msecs_to_jiffies(kfence_sample_interval));
0ce20dd8 826}
0ce20dd8
AP
827
828/* === Public interface ===================================================== */
829
830void __init kfence_alloc_pool(void)
831{
832 if (!kfence_sample_interval)
833 return;
834
835 __kfence_pool = memblock_alloc(KFENCE_POOL_SIZE, PAGE_SIZE);
836
837 if (!__kfence_pool)
838 pr_err("failed to allocate pool\n");
839}
840
b33f778b
TD
841static void kfence_init_enable(void)
842{
843 if (!IS_ENABLED(CONFIG_KFENCE_STATIC_KEYS))
844 static_branch_enable(&kfence_allocation_key);
737b6a10
ME
845
846 if (kfence_deferrable)
847 INIT_DEFERRABLE_WORK(&kfence_timer, toggle_allocation_gate);
848 else
849 INIT_DELAYED_WORK(&kfence_timer, toggle_allocation_gate);
850
3c81b3bb 851 if (kfence_check_on_panic)
852 atomic_notifier_chain_register(&panic_notifier_list, &kfence_check_canary_notifier);
853
b33f778b
TD
854 WRITE_ONCE(kfence_enabled, true);
855 queue_delayed_work(system_unbound_wq, &kfence_timer, 0);
737b6a10 856
b33f778b
TD
857 pr_info("initialized - using %lu bytes for %d objects at 0x%p-0x%p\n", KFENCE_POOL_SIZE,
858 CONFIG_KFENCE_NUM_OBJECTS, (void *)__kfence_pool,
859 (void *)(__kfence_pool + KFENCE_POOL_SIZE));
860}
861
0ce20dd8
AP
862void __init kfence_init(void)
863{
b33f778b
TD
864 stack_hash_seed = (u32)random_get_entropy();
865
0ce20dd8
AP
866 /* Setting kfence_sample_interval to 0 on boot disables KFENCE. */
867 if (!kfence_sample_interval)
868 return;
869
b33f778b 870 if (!kfence_init_pool_early()) {
0ce20dd8
AP
871 pr_err("%s failed\n", __func__);
872 return;
873 }
874
b33f778b
TD
875 kfence_init_enable();
876}
877
878static int kfence_init_late(void)
879{
880 const unsigned long nr_pages = KFENCE_POOL_SIZE / PAGE_SIZE;
881#ifdef CONFIG_CONTIG_ALLOC
882 struct page *pages;
883
884 pages = alloc_contig_pages(nr_pages, GFP_KERNEL, first_online_node, NULL);
885 if (!pages)
886 return -ENOMEM;
887 __kfence_pool = page_to_virt(pages);
888#else
889 if (nr_pages > MAX_ORDER_NR_PAGES) {
890 pr_warn("KFENCE_NUM_OBJECTS too large for buddy allocator\n");
891 return -EINVAL;
892 }
893 __kfence_pool = alloc_pages_exact(KFENCE_POOL_SIZE, GFP_KERNEL);
894 if (!__kfence_pool)
895 return -ENOMEM;
896#endif
897
898 if (!kfence_init_pool_late()) {
899 pr_err("%s failed\n", __func__);
900 return -EBUSY;
901 }
902
903 kfence_init_enable();
904 return 0;
0ce20dd8
AP
905}
906
698361bc
TD
907static int kfence_enable_late(void)
908{
909 if (!__kfence_pool)
b33f778b 910 return kfence_init_late();
698361bc
TD
911
912 WRITE_ONCE(kfence_enabled, true);
913 queue_delayed_work(system_unbound_wq, &kfence_timer, 0);
83d7d04f 914 pr_info("re-enabled\n");
698361bc
TD
915 return 0;
916}
917
0ce20dd8
AP
918void kfence_shutdown_cache(struct kmem_cache *s)
919{
920 unsigned long flags;
921 struct kfence_metadata *meta;
922 int i;
923
924 for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) {
925 bool in_use;
926
927 meta = &kfence_metadata[i];
928
929 /*
930 * If we observe some inconsistent cache and state pair where we
931 * should have returned false here, cache destruction is racing
932 * with either kmem_cache_alloc() or kmem_cache_free(). Taking
933 * the lock will not help, as different critical section
934 * serialization will have the same outcome.
935 */
936 if (READ_ONCE(meta->cache) != s ||
937 READ_ONCE(meta->state) != KFENCE_OBJECT_ALLOCATED)
938 continue;
939
940 raw_spin_lock_irqsave(&meta->lock, flags);
941 in_use = meta->cache == s && meta->state == KFENCE_OBJECT_ALLOCATED;
942 raw_spin_unlock_irqrestore(&meta->lock, flags);
943
944 if (in_use) {
945 /*
946 * This cache still has allocations, and we should not
947 * release them back into the freelist so they can still
948 * safely be used and retain the kernel's default
949 * behaviour of keeping the allocations alive (leak the
950 * cache); however, they effectively become "zombie
951 * allocations" as the KFENCE objects are the only ones
952 * still in use and the owning cache is being destroyed.
953 *
954 * We mark them freed, so that any subsequent use shows
955 * more useful error messages that will include stack
956 * traces of the user of the object, the original
957 * allocation, and caller to shutdown_cache().
958 */
959 kfence_guarded_free((void *)meta->addr, meta, /*zombie=*/true);
960 }
961 }
962
963 for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) {
964 meta = &kfence_metadata[i];
965
966 /* See above. */
967 if (READ_ONCE(meta->cache) != s || READ_ONCE(meta->state) != KFENCE_OBJECT_FREED)
968 continue;
969
970 raw_spin_lock_irqsave(&meta->lock, flags);
971 if (meta->cache == s && meta->state == KFENCE_OBJECT_FREED)
972 meta->cache = NULL;
973 raw_spin_unlock_irqrestore(&meta->lock, flags);
974 }
975}
976
977void *__kfence_alloc(struct kmem_cache *s, size_t size, gfp_t flags)
978{
a9ab52bb
ME
979 unsigned long stack_entries[KFENCE_STACK_DEPTH];
980 size_t num_stack_entries;
08f6b106 981 u32 alloc_stack_hash;
a9ab52bb 982
235a85cb
AP
983 /*
984 * Perform size check before switching kfence_allocation_gate, so that
985 * we don't disable KFENCE without making an allocation.
986 */
9a19aeb5
ME
987 if (size > PAGE_SIZE) {
988 atomic_long_inc(&counters[KFENCE_COUNTER_SKIP_INCOMPAT]);
235a85cb 989 return NULL;
9a19aeb5 990 }
235a85cb 991
236e9f15
AP
992 /*
993 * Skip allocations from non-default zones, including DMA. We cannot
994 * guarantee that pages in the KFENCE pool will have the requested
995 * properties (e.g. reside in DMAable memory).
996 */
997 if ((flags & GFP_ZONEMASK) ||
9a19aeb5
ME
998 (s->flags & (SLAB_CACHE_DMA | SLAB_CACHE_DMA32))) {
999 atomic_long_inc(&counters[KFENCE_COUNTER_SKIP_INCOMPAT]);
236e9f15 1000 return NULL;
9a19aeb5 1001 }
236e9f15 1002
07e8481d 1003 if (atomic_inc_return(&kfence_allocation_gate) > 1)
0ce20dd8 1004 return NULL;
407f1d8c
ME
1005#ifdef CONFIG_KFENCE_STATIC_KEYS
1006 /*
1007 * waitqueue_active() is fully ordered after the update of
1008 * kfence_allocation_gate per atomic_inc_return().
1009 */
1010 if (waitqueue_active(&allocation_wait)) {
1011 /*
1012 * Calling wake_up() here may deadlock when allocations happen
1013 * from within timer code. Use an irq_work to defer it.
1014 */
1015 irq_work_queue(&wake_up_kfence_timer_work);
1016 }
1017#endif
0ce20dd8
AP
1018
1019 if (!READ_ONCE(kfence_enabled))
1020 return NULL;
1021
a9ab52bb
ME
1022 num_stack_entries = stack_trace_save(stack_entries, KFENCE_STACK_DEPTH, 0);
1023
08f6b106
ME
1024 /*
1025 * Do expensive check for coverage of allocation in slow-path after
1026 * allocation_gate has already become non-zero, even though it might
1027 * mean not making any allocation within a given sample interval.
1028 *
1029 * This ensures reasonable allocation coverage when the pool is almost
1030 * full, including avoiding long-lived allocations of the same source
1031 * filling up the pool (e.g. pagecache allocations).
1032 */
1033 alloc_stack_hash = get_alloc_stack_hash(stack_entries, num_stack_entries);
1034 if (should_skip_covered() && alloc_covered_contains(alloc_stack_hash)) {
1035 atomic_long_inc(&counters[KFENCE_COUNTER_SKIP_COVERED]);
1036 return NULL;
1037 }
1038
1039 return kfence_guarded_alloc(s, size, flags, stack_entries, num_stack_entries,
1040 alloc_stack_hash);
0ce20dd8
AP
1041}
1042
1043size_t kfence_ksize(const void *addr)
1044{
1045 const struct kfence_metadata *meta = addr_to_metadata((unsigned long)addr);
1046
1047 /*
1048 * Read locklessly -- if there is a race with __kfence_alloc(), this is
1049 * either a use-after-free or invalid access.
1050 */
1051 return meta ? meta->size : 0;
1052}
1053
1054void *kfence_object_start(const void *addr)
1055{
1056 const struct kfence_metadata *meta = addr_to_metadata((unsigned long)addr);
1057
1058 /*
1059 * Read locklessly -- if there is a race with __kfence_alloc(), this is
1060 * either a use-after-free or invalid access.
1061 */
1062 return meta ? (void *)meta->addr : NULL;
1063}
1064
1065void __kfence_free(void *addr)
1066{
1067 struct kfence_metadata *meta = addr_to_metadata((unsigned long)addr);
1068
8f0b3649
MS
1069#ifdef CONFIG_MEMCG
1070 KFENCE_WARN_ON(meta->objcg);
1071#endif
0ce20dd8
AP
1072 /*
1073 * If the objects of the cache are SLAB_TYPESAFE_BY_RCU, defer freeing
1074 * the object, as the object page may be recycled for other-typed
1075 * objects once it has been freed. meta->cache may be NULL if the cache
1076 * was destroyed.
1077 */
1078 if (unlikely(meta->cache && (meta->cache->flags & SLAB_TYPESAFE_BY_RCU)))
1079 call_rcu(&meta->rcu_head, rcu_guarded_free);
1080 else
1081 kfence_guarded_free(addr, meta, false);
1082}
1083
bc8fbc5f 1084bool kfence_handle_page_fault(unsigned long addr, bool is_write, struct pt_regs *regs)
0ce20dd8
AP
1085{
1086 const int page_index = (addr - (unsigned long)__kfence_pool) / PAGE_SIZE;
1087 struct kfence_metadata *to_report = NULL;
1088 enum kfence_error_type error_type;
1089 unsigned long flags;
1090
1091 if (!is_kfence_address((void *)addr))
1092 return false;
1093
1094 if (!READ_ONCE(kfence_enabled)) /* If disabled at runtime ... */
1095 return kfence_unprotect(addr); /* ... unprotect and proceed. */
1096
1097 atomic_long_inc(&counters[KFENCE_COUNTER_BUGS]);
1098
1099 if (page_index % 2) {
1100 /* This is a redzone, report a buffer overflow. */
1101 struct kfence_metadata *meta;
1102 int distance = 0;
1103
1104 meta = addr_to_metadata(addr - PAGE_SIZE);
1105 if (meta && READ_ONCE(meta->state) == KFENCE_OBJECT_ALLOCATED) {
1106 to_report = meta;
1107 /* Data race ok; distance calculation approximate. */
1108 distance = addr - data_race(meta->addr + meta->size);
1109 }
1110
1111 meta = addr_to_metadata(addr + PAGE_SIZE);
1112 if (meta && READ_ONCE(meta->state) == KFENCE_OBJECT_ALLOCATED) {
1113 /* Data race ok; distance calculation approximate. */
1114 if (!to_report || distance > data_race(meta->addr) - addr)
1115 to_report = meta;
1116 }
1117
1118 if (!to_report)
1119 goto out;
1120
1121 raw_spin_lock_irqsave(&to_report->lock, flags);
1122 to_report->unprotected_page = addr;
1123 error_type = KFENCE_ERROR_OOB;
1124
1125 /*
1126 * If the object was freed before we took the look we can still
1127 * report this as an OOB -- the report will simply show the
1128 * stacktrace of the free as well.
1129 */
1130 } else {
1131 to_report = addr_to_metadata(addr);
1132 if (!to_report)
1133 goto out;
1134
1135 raw_spin_lock_irqsave(&to_report->lock, flags);
1136 error_type = KFENCE_ERROR_UAF;
1137 /*
1138 * We may race with __kfence_alloc(), and it is possible that a
1139 * freed object may be reallocated. We simply report this as a
1140 * use-after-free, with the stack trace showing the place where
1141 * the object was re-allocated.
1142 */
1143 }
1144
1145out:
1146 if (to_report) {
bc8fbc5f 1147 kfence_report_error(addr, is_write, regs, to_report, error_type);
0ce20dd8
AP
1148 raw_spin_unlock_irqrestore(&to_report->lock, flags);
1149 } else {
1150 /* This may be a UAF or OOB access, but we can't be sure. */
bc8fbc5f 1151 kfence_report_error(addr, is_write, regs, NULL, KFENCE_ERROR_INVALID);
0ce20dd8
AP
1152 }
1153
1154 return kfence_unprotect(addr); /* Unprotect and let access proceed. */
1155}