Merge tag 'rproc-v5.12' of git://git.kernel.org/pub/scm/linux/kernel/git/andersson...
[linux-block.git] / mm / kasan / shadow.c
CommitLineData
bb359dbc
AK
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * This file contains KASAN runtime code that manages shadow memory for
4 * generic and software tag-based KASAN modes.
5 *
6 * Copyright (c) 2014 Samsung Electronics Co., Ltd.
7 * Author: Andrey Ryabinin <ryabinin.a.a@gmail.com>
8 *
9 * Some code borrowed from https://github.com/xairy/kasan-prototype by
10 * Andrey Konovalov <andreyknvl@gmail.com>
11 */
12
13#include <linux/init.h>
14#include <linux/kasan.h>
15#include <linux/kernel.h>
16#include <linux/kmemleak.h>
17#include <linux/memory.h>
18#include <linux/mm.h>
19#include <linux/string.h>
20#include <linux/types.h>
21#include <linux/vmalloc.h>
22
23#include <asm/cacheflush.h>
24#include <asm/tlbflush.h>
25
26#include "kasan.h"
27
28bool __kasan_check_read(const volatile void *p, unsigned int size)
29{
30 return check_memory_region((unsigned long)p, size, false, _RET_IP_);
31}
32EXPORT_SYMBOL(__kasan_check_read);
33
34bool __kasan_check_write(const volatile void *p, unsigned int size)
35{
36 return check_memory_region((unsigned long)p, size, true, _RET_IP_);
37}
38EXPORT_SYMBOL(__kasan_check_write);
39
40#undef memset
41void *memset(void *addr, int c, size_t len)
42{
43 if (!check_memory_region((unsigned long)addr, len, true, _RET_IP_))
44 return NULL;
45
46 return __memset(addr, c, len);
47}
48
49#ifdef __HAVE_ARCH_MEMMOVE
50#undef memmove
51void *memmove(void *dest, const void *src, size_t len)
52{
53 if (!check_memory_region((unsigned long)src, len, false, _RET_IP_) ||
54 !check_memory_region((unsigned long)dest, len, true, _RET_IP_))
55 return NULL;
56
57 return __memmove(dest, src, len);
58}
59#endif
60
61#undef memcpy
62void *memcpy(void *dest, const void *src, size_t len)
63{
64 if (!check_memory_region((unsigned long)src, len, false, _RET_IP_) ||
65 !check_memory_region((unsigned long)dest, len, true, _RET_IP_))
66 return NULL;
67
68 return __memcpy(dest, src, len);
69}
70
71/*
72 * Poisons the shadow memory for 'size' bytes starting from 'addr'.
73 * Memory addresses should be aligned to KASAN_GRANULE_SIZE.
74 */
75void poison_range(const void *address, size_t size, u8 value)
76{
77 void *shadow_start, *shadow_end;
78
79 /*
80 * Perform shadow offset calculation based on untagged address, as
81 * some of the callers (e.g. kasan_poison_object_data) pass tagged
82 * addresses to this function.
83 */
c0054c56 84 address = kasan_reset_tag(address);
d99f6a10 85 size = round_up(size, KASAN_GRANULE_SIZE);
bb359dbc
AK
86
87 shadow_start = kasan_mem_to_shadow(address);
88 shadow_end = kasan_mem_to_shadow(address + size);
89
90 __memset(shadow_start, value, shadow_end - shadow_start);
91}
92
93void unpoison_range(const void *address, size_t size)
94{
95 u8 tag = get_tag(address);
96
97 /*
98 * Perform shadow offset calculation based on untagged address, as
99 * some of the callers (e.g. kasan_unpoison_object_data) pass tagged
100 * addresses to this function.
101 */
c0054c56 102 address = kasan_reset_tag(address);
bb359dbc
AK
103
104 poison_range(address, size, tag);
105
106 if (size & KASAN_GRANULE_MASK) {
107 u8 *shadow = (u8 *)kasan_mem_to_shadow(address + size);
108
109 if (IS_ENABLED(CONFIG_KASAN_SW_TAGS))
110 *shadow = tag;
2e903b91 111 else /* CONFIG_KASAN_GENERIC */
bb359dbc
AK
112 *shadow = size & KASAN_GRANULE_MASK;
113 }
114}
115
116#ifdef CONFIG_MEMORY_HOTPLUG
117static bool shadow_mapped(unsigned long addr)
118{
119 pgd_t *pgd = pgd_offset_k(addr);
120 p4d_t *p4d;
121 pud_t *pud;
122 pmd_t *pmd;
123 pte_t *pte;
124
125 if (pgd_none(*pgd))
126 return false;
127 p4d = p4d_offset(pgd, addr);
128 if (p4d_none(*p4d))
129 return false;
130 pud = pud_offset(p4d, addr);
131 if (pud_none(*pud))
132 return false;
133
134 /*
135 * We can't use pud_large() or pud_huge(), the first one is
136 * arch-specific, the last one depends on HUGETLB_PAGE. So let's abuse
137 * pud_bad(), if pud is bad then it's bad because it's huge.
138 */
139 if (pud_bad(*pud))
140 return true;
141 pmd = pmd_offset(pud, addr);
142 if (pmd_none(*pmd))
143 return false;
144
145 if (pmd_bad(*pmd))
146 return true;
147 pte = pte_offset_kernel(pmd, addr);
148 return !pte_none(*pte);
149}
150
151static int __meminit kasan_mem_notifier(struct notifier_block *nb,
152 unsigned long action, void *data)
153{
154 struct memory_notify *mem_data = data;
155 unsigned long nr_shadow_pages, start_kaddr, shadow_start;
156 unsigned long shadow_end, shadow_size;
157
158 nr_shadow_pages = mem_data->nr_pages >> KASAN_SHADOW_SCALE_SHIFT;
159 start_kaddr = (unsigned long)pfn_to_kaddr(mem_data->start_pfn);
160 shadow_start = (unsigned long)kasan_mem_to_shadow((void *)start_kaddr);
161 shadow_size = nr_shadow_pages << PAGE_SHIFT;
162 shadow_end = shadow_start + shadow_size;
163
164 if (WARN_ON(mem_data->nr_pages % KASAN_GRANULE_SIZE) ||
affc3f07 165 WARN_ON(start_kaddr % KASAN_MEMORY_PER_SHADOW_PAGE))
bb359dbc
AK
166 return NOTIFY_BAD;
167
168 switch (action) {
169 case MEM_GOING_ONLINE: {
170 void *ret;
171
172 /*
173 * If shadow is mapped already than it must have been mapped
174 * during the boot. This could happen if we onlining previously
175 * offlined memory.
176 */
177 if (shadow_mapped(shadow_start))
178 return NOTIFY_OK;
179
180 ret = __vmalloc_node_range(shadow_size, PAGE_SIZE, shadow_start,
181 shadow_end, GFP_KERNEL,
182 PAGE_KERNEL, VM_NO_GUARD,
183 pfn_to_nid(mem_data->start_pfn),
184 __builtin_return_address(0));
185 if (!ret)
186 return NOTIFY_BAD;
187
188 kmemleak_ignore(ret);
189 return NOTIFY_OK;
190 }
191 case MEM_CANCEL_ONLINE:
192 case MEM_OFFLINE: {
193 struct vm_struct *vm;
194
195 /*
196 * shadow_start was either mapped during boot by kasan_init()
197 * or during memory online by __vmalloc_node_range().
198 * In the latter case we can use vfree() to free shadow.
199 * Non-NULL result of the find_vm_area() will tell us if
200 * that was the second case.
201 *
202 * Currently it's not possible to free shadow mapped
203 * during boot by kasan_init(). It's because the code
204 * to do that hasn't been written yet. So we'll just
205 * leak the memory.
206 */
207 vm = find_vm_area((void *)shadow_start);
208 if (vm)
209 vfree((void *)shadow_start);
210 }
211 }
212
213 return NOTIFY_OK;
214}
215
216static int __init kasan_memhotplug_init(void)
217{
218 hotplug_memory_notifier(kasan_mem_notifier, 0);
219
220 return 0;
221}
222
223core_initcall(kasan_memhotplug_init);
224#endif
225
226#ifdef CONFIG_KASAN_VMALLOC
227
228static int kasan_populate_vmalloc_pte(pte_t *ptep, unsigned long addr,
229 void *unused)
230{
231 unsigned long page;
232 pte_t pte;
233
234 if (likely(!pte_none(*ptep)))
235 return 0;
236
237 page = __get_free_page(GFP_KERNEL);
238 if (!page)
239 return -ENOMEM;
240
241 memset((void *)page, KASAN_VMALLOC_INVALID, PAGE_SIZE);
242 pte = pfn_pte(PFN_DOWN(__pa(page)), PAGE_KERNEL);
243
244 spin_lock(&init_mm.page_table_lock);
245 if (likely(pte_none(*ptep))) {
246 set_pte_at(&init_mm, addr, ptep, pte);
247 page = 0;
248 }
249 spin_unlock(&init_mm.page_table_lock);
250 if (page)
251 free_page(page);
252 return 0;
253}
254
255int kasan_populate_vmalloc(unsigned long addr, unsigned long size)
256{
257 unsigned long shadow_start, shadow_end;
258 int ret;
259
260 if (!is_vmalloc_or_module_addr((void *)addr))
261 return 0;
262
263 shadow_start = (unsigned long)kasan_mem_to_shadow((void *)addr);
264 shadow_start = ALIGN_DOWN(shadow_start, PAGE_SIZE);
265 shadow_end = (unsigned long)kasan_mem_to_shadow((void *)addr + size);
266 shadow_end = ALIGN(shadow_end, PAGE_SIZE);
267
268 ret = apply_to_page_range(&init_mm, shadow_start,
269 shadow_end - shadow_start,
270 kasan_populate_vmalloc_pte, NULL);
271 if (ret)
272 return ret;
273
274 flush_cache_vmap(shadow_start, shadow_end);
275
276 /*
277 * We need to be careful about inter-cpu effects here. Consider:
278 *
279 * CPU#0 CPU#1
280 * WRITE_ONCE(p, vmalloc(100)); while (x = READ_ONCE(p)) ;
281 * p[99] = 1;
282 *
283 * With compiler instrumentation, that ends up looking like this:
284 *
285 * CPU#0 CPU#1
286 * // vmalloc() allocates memory
287 * // let a = area->addr
288 * // we reach kasan_populate_vmalloc
289 * // and call unpoison_range:
290 * STORE shadow(a), unpoison_val
291 * ...
292 * STORE shadow(a+99), unpoison_val x = LOAD p
293 * // rest of vmalloc process <data dependency>
294 * STORE p, a LOAD shadow(x+99)
295 *
296 * If there is no barrier between the end of unpoisioning the shadow
297 * and the store of the result to p, the stores could be committed
298 * in a different order by CPU#0, and CPU#1 could erroneously observe
299 * poison in the shadow.
300 *
301 * We need some sort of barrier between the stores.
302 *
303 * In the vmalloc() case, this is provided by a smp_wmb() in
304 * clear_vm_uninitialized_flag(). In the per-cpu allocator and in
305 * get_vm_area() and friends, the caller gets shadow allocated but
306 * doesn't have any pages mapped into the virtual address space that
307 * has been reserved. Mapping those pages in will involve taking and
308 * releasing a page-table lock, which will provide the barrier.
309 */
310
311 return 0;
312}
313
314/*
315 * Poison the shadow for a vmalloc region. Called as part of the
316 * freeing process at the time the region is freed.
317 */
318void kasan_poison_vmalloc(const void *start, unsigned long size)
319{
320 if (!is_vmalloc_or_module_addr(start))
321 return;
322
323 size = round_up(size, KASAN_GRANULE_SIZE);
324 poison_range(start, size, KASAN_VMALLOC_INVALID);
325}
326
327void kasan_unpoison_vmalloc(const void *start, unsigned long size)
328{
329 if (!is_vmalloc_or_module_addr(start))
330 return;
331
332 unpoison_range(start, size);
333}
334
335static int kasan_depopulate_vmalloc_pte(pte_t *ptep, unsigned long addr,
336 void *unused)
337{
338 unsigned long page;
339
340 page = (unsigned long)__va(pte_pfn(*ptep) << PAGE_SHIFT);
341
342 spin_lock(&init_mm.page_table_lock);
343
344 if (likely(!pte_none(*ptep))) {
345 pte_clear(&init_mm, addr, ptep);
346 free_page(page);
347 }
348 spin_unlock(&init_mm.page_table_lock);
349
350 return 0;
351}
352
353/*
354 * Release the backing for the vmalloc region [start, end), which
355 * lies within the free region [free_region_start, free_region_end).
356 *
357 * This can be run lazily, long after the region was freed. It runs
358 * under vmap_area_lock, so it's not safe to interact with the vmalloc/vmap
359 * infrastructure.
360 *
361 * How does this work?
362 * -------------------
363 *
364 * We have a region that is page aligned, labelled as A.
365 * That might not map onto the shadow in a way that is page-aligned:
366 *
367 * start end
368 * v v
369 * |????????|????????|AAAAAAAA|AA....AA|AAAAAAAA|????????| < vmalloc
370 * -------- -------- -------- -------- --------
371 * | | | | |
372 * | | | /-------/ |
373 * \-------\|/------/ |/---------------/
374 * ||| ||
375 * |??AAAAAA|AAAAAAAA|AA??????| < shadow
376 * (1) (2) (3)
377 *
378 * First we align the start upwards and the end downwards, so that the
379 * shadow of the region aligns with shadow page boundaries. In the
380 * example, this gives us the shadow page (2). This is the shadow entirely
381 * covered by this allocation.
382 *
383 * Then we have the tricky bits. We want to know if we can free the
384 * partially covered shadow pages - (1) and (3) in the example. For this,
385 * we are given the start and end of the free region that contains this
386 * allocation. Extending our previous example, we could have:
387 *
388 * free_region_start free_region_end
389 * | start end |
390 * v v v v
391 * |FFFFFFFF|FFFFFFFF|AAAAAAAA|AA....AA|AAAAAAAA|FFFFFFFF| < vmalloc
392 * -------- -------- -------- -------- --------
393 * | | | | |
394 * | | | /-------/ |
395 * \-------\|/------/ |/---------------/
396 * ||| ||
397 * |FFAAAAAA|AAAAAAAA|AAF?????| < shadow
398 * (1) (2) (3)
399 *
400 * Once again, we align the start of the free region up, and the end of
401 * the free region down so that the shadow is page aligned. So we can free
402 * page (1) - we know no allocation currently uses anything in that page,
403 * because all of it is in the vmalloc free region. But we cannot free
404 * page (3), because we can't be sure that the rest of it is unused.
405 *
406 * We only consider pages that contain part of the original region for
407 * freeing: we don't try to free other pages from the free region or we'd
408 * end up trying to free huge chunks of virtual address space.
409 *
410 * Concurrency
411 * -----------
412 *
413 * How do we know that we're not freeing a page that is simultaneously
414 * being used for a fresh allocation in kasan_populate_vmalloc(_pte)?
415 *
416 * We _can_ have kasan_release_vmalloc and kasan_populate_vmalloc running
417 * at the same time. While we run under free_vmap_area_lock, the population
418 * code does not.
419 *
420 * free_vmap_area_lock instead operates to ensure that the larger range
421 * [free_region_start, free_region_end) is safe: because __alloc_vmap_area and
422 * the per-cpu region-finding algorithm both run under free_vmap_area_lock,
423 * no space identified as free will become used while we are running. This
424 * means that so long as we are careful with alignment and only free shadow
425 * pages entirely covered by the free region, we will not run in to any
426 * trouble - any simultaneous allocations will be for disjoint regions.
427 */
428void kasan_release_vmalloc(unsigned long start, unsigned long end,
429 unsigned long free_region_start,
430 unsigned long free_region_end)
431{
432 void *shadow_start, *shadow_end;
433 unsigned long region_start, region_end;
434 unsigned long size;
435
affc3f07
AK
436 region_start = ALIGN(start, KASAN_MEMORY_PER_SHADOW_PAGE);
437 region_end = ALIGN_DOWN(end, KASAN_MEMORY_PER_SHADOW_PAGE);
bb359dbc 438
affc3f07 439 free_region_start = ALIGN(free_region_start, KASAN_MEMORY_PER_SHADOW_PAGE);
bb359dbc
AK
440
441 if (start != region_start &&
442 free_region_start < region_start)
affc3f07 443 region_start -= KASAN_MEMORY_PER_SHADOW_PAGE;
bb359dbc 444
affc3f07 445 free_region_end = ALIGN_DOWN(free_region_end, KASAN_MEMORY_PER_SHADOW_PAGE);
bb359dbc
AK
446
447 if (end != region_end &&
448 free_region_end > region_end)
affc3f07 449 region_end += KASAN_MEMORY_PER_SHADOW_PAGE;
bb359dbc
AK
450
451 shadow_start = kasan_mem_to_shadow((void *)region_start);
452 shadow_end = kasan_mem_to_shadow((void *)region_end);
453
454 if (shadow_end > shadow_start) {
455 size = shadow_end - shadow_start;
456 apply_to_existing_page_range(&init_mm,
457 (unsigned long)shadow_start,
458 size, kasan_depopulate_vmalloc_pte,
459 NULL);
460 flush_tlb_kernel_range((unsigned long)shadow_start,
461 (unsigned long)shadow_end);
462 }
463}
464
465#else /* CONFIG_KASAN_VMALLOC */
466
467int kasan_module_alloc(void *addr, size_t size)
468{
469 void *ret;
470 size_t scaled_size;
471 size_t shadow_size;
472 unsigned long shadow_start;
473
474 shadow_start = (unsigned long)kasan_mem_to_shadow(addr);
475 scaled_size = (size + KASAN_GRANULE_SIZE - 1) >>
476 KASAN_SHADOW_SCALE_SHIFT;
477 shadow_size = round_up(scaled_size, PAGE_SIZE);
478
479 if (WARN_ON(!PAGE_ALIGNED(shadow_start)))
480 return -EINVAL;
481
482 ret = __vmalloc_node_range(shadow_size, 1, shadow_start,
483 shadow_start + shadow_size,
484 GFP_KERNEL,
485 PAGE_KERNEL, VM_NO_GUARD, NUMA_NO_NODE,
486 __builtin_return_address(0));
487
488 if (ret) {
489 __memset(ret, KASAN_SHADOW_INIT, shadow_size);
490 find_vm_area(addr)->flags |= VM_KASAN;
491 kmemleak_ignore(ret);
492 return 0;
493 }
494
495 return -ENOMEM;
496}
497
498void kasan_free_shadow(const struct vm_struct *vm)
499{
500 if (vm->flags & VM_KASAN)
501 vfree(kasan_mem_to_shadow(vm->addr));
502}
503
504#endif