Merge tag 'nfsd-6.2-1' of git://git.kernel.org/pub/scm/linux/kernel/git/cel/linux
[linux-block.git] / mm / kasan / generic.c
CommitLineData
e886bf9d 1// SPDX-License-Identifier: GPL-2.0
0b24becc 2/*
2bd926b4 3 * This file contains core generic KASAN code.
0b24becc
AR
4 *
5 * Copyright (c) 2014 Samsung Electronics Co., Ltd.
2baf9e89 6 * Author: Andrey Ryabinin <ryabinin.a.a@gmail.com>
0b24becc 7 *
5d0926ef 8 * Some code borrowed from https://github.com/xairy/kasan-prototype by
5f21f3a8 9 * Andrey Konovalov <andreyknvl@gmail.com>
0b24becc
AR
10 */
11
0b24becc 12#include <linux/export.h>
cd11016e 13#include <linux/interrupt.h>
0b24becc 14#include <linux/init.h>
cd11016e 15#include <linux/kasan.h>
0b24becc 16#include <linux/kernel.h>
2b830526 17#include <linux/kfence.h>
45937254 18#include <linux/kmemleak.h>
e3ae1163 19#include <linux/linkage.h>
0b24becc 20#include <linux/memblock.h>
786a8959 21#include <linux/memory.h>
0b24becc 22#include <linux/mm.h>
bebf56a1 23#include <linux/module.h>
0b24becc
AR
24#include <linux/printk.h>
25#include <linux/sched.h>
68db0cf1 26#include <linux/sched/task_stack.h>
0b24becc
AR
27#include <linux/slab.h>
28#include <linux/stacktrace.h>
29#include <linux/string.h>
30#include <linux/types.h>
a5af5aa8 31#include <linux/vmalloc.h>
9f7d416c 32#include <linux/bug.h>
0b24becc
AR
33
34#include "kasan.h"
0316bec2 35#include "../slab.h"
0b24becc 36
0b24becc
AR
37/*
38 * All functions below always inlined so compiler could
39 * perform better optimizations in each of __asan_loadX/__assn_storeX
40 * depending on memory access size X.
41 */
42
43static __always_inline bool memory_is_poisoned_1(unsigned long addr)
44{
45 s8 shadow_value = *(s8 *)kasan_mem_to_shadow((void *)addr);
46
47 if (unlikely(shadow_value)) {
1f600626 48 s8 last_accessible_byte = addr & KASAN_GRANULE_MASK;
0b24becc
AR
49 return unlikely(last_accessible_byte >= shadow_value);
50 }
51
52 return false;
53}
54
c634d807
AR
55static __always_inline bool memory_is_poisoned_2_4_8(unsigned long addr,
56 unsigned long size)
0b24becc 57{
c634d807 58 u8 *shadow_addr = (u8 *)kasan_mem_to_shadow((void *)addr);
0b24becc 59
c634d807
AR
60 /*
61 * Access crosses 8(shadow size)-byte boundary. Such access maps
62 * into 2 shadow bytes, so we need to check them both.
63 */
1f600626 64 if (unlikely(((addr + size - 1) & KASAN_GRANULE_MASK) < size - 1))
c634d807 65 return *shadow_addr || memory_is_poisoned_1(addr + size - 1);
0b24becc 66
c634d807 67 return memory_is_poisoned_1(addr + size - 1);
0b24becc
AR
68}
69
70static __always_inline bool memory_is_poisoned_16(unsigned long addr)
71{
c634d807 72 u16 *shadow_addr = (u16 *)kasan_mem_to_shadow((void *)addr);
0b24becc 73
c634d807 74 /* Unaligned 16-bytes access maps into 3 shadow bytes. */
1f600626 75 if (unlikely(!IS_ALIGNED(addr, KASAN_GRANULE_SIZE)))
c634d807 76 return *shadow_addr || memory_is_poisoned_1(addr + 15);
0b24becc 77
c634d807 78 return *shadow_addr;
0b24becc
AR
79}
80
f5bd62cd 81static __always_inline unsigned long bytes_is_nonzero(const u8 *start,
0b24becc
AR
82 size_t size)
83{
84 while (size) {
85 if (unlikely(*start))
86 return (unsigned long)start;
87 start++;
88 size--;
89 }
90
91 return 0;
92}
93
f5bd62cd 94static __always_inline unsigned long memory_is_nonzero(const void *start,
0b24becc
AR
95 const void *end)
96{
97 unsigned int words;
98 unsigned long ret;
99 unsigned int prefix = (unsigned long)start % 8;
100
101 if (end - start <= 16)
f5bd62cd 102 return bytes_is_nonzero(start, end - start);
0b24becc
AR
103
104 if (prefix) {
105 prefix = 8 - prefix;
f5bd62cd 106 ret = bytes_is_nonzero(start, prefix);
0b24becc
AR
107 if (unlikely(ret))
108 return ret;
109 start += prefix;
110 }
111
112 words = (end - start) / 8;
113 while (words) {
114 if (unlikely(*(u64 *)start))
f5bd62cd 115 return bytes_is_nonzero(start, 8);
0b24becc
AR
116 start += 8;
117 words--;
118 }
119
f5bd62cd 120 return bytes_is_nonzero(start, (end - start) % 8);
0b24becc
AR
121}
122
123static __always_inline bool memory_is_poisoned_n(unsigned long addr,
124 size_t size)
125{
126 unsigned long ret;
127
f5bd62cd 128 ret = memory_is_nonzero(kasan_mem_to_shadow((void *)addr),
0b24becc
AR
129 kasan_mem_to_shadow((void *)addr + size - 1) + 1);
130
131 if (unlikely(ret)) {
132 unsigned long last_byte = addr + size - 1;
133 s8 *last_shadow = (s8 *)kasan_mem_to_shadow((void *)last_byte);
134
135 if (unlikely(ret != (unsigned long)last_shadow ||
1f600626 136 ((long)(last_byte & KASAN_GRANULE_MASK) >= *last_shadow)))
0b24becc
AR
137 return true;
138 }
139 return false;
140}
141
142static __always_inline bool memory_is_poisoned(unsigned long addr, size_t size)
143{
144 if (__builtin_constant_p(size)) {
145 switch (size) {
146 case 1:
147 return memory_is_poisoned_1(addr);
148 case 2:
0b24becc 149 case 4:
0b24becc 150 case 8:
c634d807 151 return memory_is_poisoned_2_4_8(addr, size);
0b24becc
AR
152 case 16:
153 return memory_is_poisoned_16(addr);
154 default:
155 BUILD_BUG();
156 }
157 }
158
159 return memory_is_poisoned_n(addr, size);
160}
161
f00748bf 162static __always_inline bool check_region_inline(unsigned long addr,
936bb4bb
AR
163 size_t size, bool write,
164 unsigned long ret_ip)
0b24becc 165{
af3751f3
DA
166 if (!kasan_arch_is_ready())
167 return true;
168
0b24becc 169 if (unlikely(size == 0))
b5f6e0fc 170 return true;
0b24becc 171
8cceeff4
WW
172 if (unlikely(addr + size < addr))
173 return !kasan_report(addr, size, write, ret_ip);
174
0b24becc
AR
175 if (unlikely((void *)addr <
176 kasan_shadow_to_mem((void *)KASAN_SHADOW_START))) {
8cceeff4 177 return !kasan_report(addr, size, write, ret_ip);
0b24becc
AR
178 }
179
180 if (likely(!memory_is_poisoned(addr, size)))
b5f6e0fc 181 return true;
0b24becc 182
8cceeff4 183 return !kasan_report(addr, size, write, ret_ip);
0b24becc
AR
184}
185
f00748bf
AK
186bool kasan_check_range(unsigned long addr, size_t size, bool write,
187 unsigned long ret_ip)
936bb4bb 188{
f00748bf 189 return check_region_inline(addr, size, write, ret_ip);
936bb4bb 190}
393f203f 191
611806b4 192bool kasan_byte_accessible(const void *addr)
2cdbed63
AK
193{
194 s8 shadow_byte = READ_ONCE(*(s8 *)kasan_mem_to_shadow(addr));
195
611806b4 196 return shadow_byte >= 0 && shadow_byte < KASAN_GRANULE_SIZE;
2cdbed63
AK
197}
198
55834c59
AP
199void kasan_cache_shrink(struct kmem_cache *cache)
200{
f00748bf 201 kasan_quarantine_remove_cache(cache);
55834c59
AP
202}
203
f9fa1d91 204void kasan_cache_shutdown(struct kmem_cache *cache)
55834c59 205{
f9e13c0a 206 if (!__kmem_cache_empty(cache))
f00748bf 207 kasan_quarantine_remove_cache(cache);
55834c59
AP
208}
209
bebf56a1
AR
210static void register_global(struct kasan_global *global)
211{
1f600626 212 size_t aligned_size = round_up(global->size, KASAN_GRANULE_SIZE);
bebf56a1 213
aa5c219c 214 kasan_unpoison(global->beg, global->size, false);
bebf56a1 215
f00748bf 216 kasan_poison(global->beg + aligned_size,
cebd0eb2 217 global->size_with_redzone - aligned_size,
aa5c219c 218 KASAN_GLOBAL_REDZONE, false);
bebf56a1
AR
219}
220
221void __asan_register_globals(struct kasan_global *globals, size_t size)
222{
223 int i;
224
225 for (i = 0; i < size; i++)
226 register_global(&globals[i]);
227}
228EXPORT_SYMBOL(__asan_register_globals);
229
230void __asan_unregister_globals(struct kasan_global *globals, size_t size)
231{
232}
233EXPORT_SYMBOL(__asan_unregister_globals);
234
936bb4bb
AR
235#define DEFINE_ASAN_LOAD_STORE(size) \
236 void __asan_load##size(unsigned long addr) \
237 { \
f00748bf 238 check_region_inline(addr, size, false, _RET_IP_); \
936bb4bb
AR
239 } \
240 EXPORT_SYMBOL(__asan_load##size); \
241 __alias(__asan_load##size) \
242 void __asan_load##size##_noabort(unsigned long); \
243 EXPORT_SYMBOL(__asan_load##size##_noabort); \
244 void __asan_store##size(unsigned long addr) \
245 { \
f00748bf 246 check_region_inline(addr, size, true, _RET_IP_); \
936bb4bb
AR
247 } \
248 EXPORT_SYMBOL(__asan_store##size); \
249 __alias(__asan_store##size) \
250 void __asan_store##size##_noabort(unsigned long); \
0b24becc
AR
251 EXPORT_SYMBOL(__asan_store##size##_noabort)
252
253DEFINE_ASAN_LOAD_STORE(1);
254DEFINE_ASAN_LOAD_STORE(2);
255DEFINE_ASAN_LOAD_STORE(4);
256DEFINE_ASAN_LOAD_STORE(8);
257DEFINE_ASAN_LOAD_STORE(16);
258
259void __asan_loadN(unsigned long addr, size_t size)
260{
f00748bf 261 kasan_check_range(addr, size, false, _RET_IP_);
0b24becc
AR
262}
263EXPORT_SYMBOL(__asan_loadN);
264
265__alias(__asan_loadN)
266void __asan_loadN_noabort(unsigned long, size_t);
267EXPORT_SYMBOL(__asan_loadN_noabort);
268
269void __asan_storeN(unsigned long addr, size_t size)
270{
f00748bf 271 kasan_check_range(addr, size, true, _RET_IP_);
0b24becc
AR
272}
273EXPORT_SYMBOL(__asan_storeN);
274
275__alias(__asan_storeN)
276void __asan_storeN_noabort(unsigned long, size_t);
277EXPORT_SYMBOL(__asan_storeN_noabort);
278
279/* to shut up compiler complaints */
280void __asan_handle_no_return(void) {}
281EXPORT_SYMBOL(__asan_handle_no_return);
786a8959 282
342061ee
PL
283/* Emitted by compiler to poison alloca()ed objects. */
284void __asan_alloca_poison(unsigned long addr, size_t size)
285{
1f600626 286 size_t rounded_up_size = round_up(size, KASAN_GRANULE_SIZE);
342061ee
PL
287 size_t padding_size = round_up(size, KASAN_ALLOCA_REDZONE_SIZE) -
288 rounded_up_size;
1f600626 289 size_t rounded_down_size = round_down(size, KASAN_GRANULE_SIZE);
342061ee
PL
290
291 const void *left_redzone = (const void *)(addr -
292 KASAN_ALLOCA_REDZONE_SIZE);
293 const void *right_redzone = (const void *)(addr + rounded_up_size);
294
295 WARN_ON(!IS_ALIGNED(addr, KASAN_ALLOCA_REDZONE_SIZE));
296
f00748bf 297 kasan_unpoison((const void *)(addr + rounded_down_size),
aa5c219c 298 size - rounded_down_size, false);
f00748bf 299 kasan_poison(left_redzone, KASAN_ALLOCA_REDZONE_SIZE,
aa5c219c 300 KASAN_ALLOCA_LEFT, false);
f00748bf 301 kasan_poison(right_redzone, padding_size + KASAN_ALLOCA_REDZONE_SIZE,
aa5c219c 302 KASAN_ALLOCA_RIGHT, false);
342061ee
PL
303}
304EXPORT_SYMBOL(__asan_alloca_poison);
305
306/* Emitted by compiler to unpoison alloca()ed areas when the stack unwinds. */
307void __asan_allocas_unpoison(const void *stack_top, const void *stack_bottom)
308{
309 if (unlikely(!stack_top || stack_top > stack_bottom))
310 return;
311
aa5c219c 312 kasan_unpoison(stack_top, stack_bottom - stack_top, false);
342061ee
PL
313}
314EXPORT_SYMBOL(__asan_allocas_unpoison);
315
d321599c
AP
316/* Emitted by the compiler to [un]poison local variables. */
317#define DEFINE_ASAN_SET_SHADOW(byte) \
318 void __asan_set_shadow_##byte(const void *addr, size_t size) \
319 { \
320 __memset((void *)addr, 0x##byte, size); \
321 } \
322 EXPORT_SYMBOL(__asan_set_shadow_##byte)
323
324DEFINE_ASAN_SET_SHADOW(00);
325DEFINE_ASAN_SET_SHADOW(f1);
326DEFINE_ASAN_SET_SHADOW(f2);
327DEFINE_ASAN_SET_SHADOW(f3);
328DEFINE_ASAN_SET_SHADOW(f5);
329DEFINE_ASAN_SET_SHADOW(f8);
26e760c9 330
3b7f8813
AK
331/* Only allow cache merging when no per-object metadata is present. */
332slab_flags_t kasan_never_merge(void)
333{
334 if (!kasan_requires_meta())
335 return 0;
336 return SLAB_KASAN;
337}
338
5935143d
AK
339/*
340 * Adaptive redzone policy taken from the userspace AddressSanitizer runtime.
341 * For larger allocations larger redzones are used.
342 */
343static inline unsigned int optimal_redzone(unsigned int object_size)
344{
345 return
346 object_size <= 64 - 16 ? 16 :
347 object_size <= 128 - 32 ? 32 :
348 object_size <= 512 - 64 ? 64 :
349 object_size <= 4096 - 128 ? 128 :
350 object_size <= (1 << 14) - 256 ? 256 :
351 object_size <= (1 << 15) - 512 ? 512 :
352 object_size <= (1 << 16) - 1024 ? 1024 : 2048;
353}
354
682ed089
AK
355void kasan_cache_create(struct kmem_cache *cache, unsigned int *size,
356 slab_flags_t *flags)
5935143d
AK
357{
358 unsigned int ok_size;
359 unsigned int optimal_size;
360
682ed089
AK
361 if (!kasan_requires_meta())
362 return;
363
364 /*
365 * SLAB_KASAN is used to mark caches that are sanitized by KASAN
366 * and that thus have per-object metadata.
367 * Currently this flag is used in two places:
368 * 1. In slab_ksize() to account for per-object metadata when
369 * calculating the size of the accessible memory within the object.
370 * 2. In slab_common.c via kasan_never_merge() to prevent merging of
371 * caches with per-object metadata.
372 */
373 *flags |= SLAB_KASAN;
374
5935143d
AK
375 ok_size = *size;
376
377 /* Add alloc meta into redzone. */
378 cache->kasan_info.alloc_meta_offset = *size;
379 *size += sizeof(struct kasan_alloc_meta);
380
381 /*
382 * If alloc meta doesn't fit, don't add it.
383 * This can only happen with SLAB, as it has KMALLOC_MAX_SIZE equal
384 * to KMALLOC_MAX_CACHE_SIZE and doesn't fall back to page_alloc for
385 * larger sizes.
386 */
387 if (*size > KMALLOC_MAX_SIZE) {
388 cache->kasan_info.alloc_meta_offset = 0;
389 *size = ok_size;
390 /* Continue, since free meta might still fit. */
391 }
392
5935143d
AK
393 /*
394 * Add free meta into redzone when it's not possible to store
395 * it in the object. This is the case when:
396 * 1. Object is SLAB_TYPESAFE_BY_RCU, which means that it can
397 * be touched after it was freed, or
398 * 2. Object has a constructor, which means it's expected to
399 * retain its content until the next allocation, or
400 * 3. Object is too small.
401 * Otherwise cache->kasan_info.free_meta_offset = 0 is implied.
402 */
403 if ((cache->flags & SLAB_TYPESAFE_BY_RCU) || cache->ctor ||
404 cache->object_size < sizeof(struct kasan_free_meta)) {
405 ok_size = *size;
406
407 cache->kasan_info.free_meta_offset = *size;
408 *size += sizeof(struct kasan_free_meta);
409
410 /* If free meta doesn't fit, don't add it. */
411 if (*size > KMALLOC_MAX_SIZE) {
412 cache->kasan_info.free_meta_offset = KASAN_NO_FREE_META;
413 *size = ok_size;
414 }
415 }
416
417 /* Calculate size with optimal redzone. */
418 optimal_size = cache->object_size + optimal_redzone(cache->object_size);
419 /* Limit it with KMALLOC_MAX_SIZE (relevant for SLAB only). */
420 if (optimal_size > KMALLOC_MAX_SIZE)
421 optimal_size = KMALLOC_MAX_SIZE;
422 /* Use optimal size if the size with added metas is not large enough. */
423 if (*size < optimal_size)
424 *size = optimal_size;
425}
426
2f356801
AK
427struct kasan_alloc_meta *kasan_get_alloc_meta(struct kmem_cache *cache,
428 const void *object)
429{
430 if (!cache->kasan_info.alloc_meta_offset)
431 return NULL;
432 return (void *)object + cache->kasan_info.alloc_meta_offset;
433}
434
435struct kasan_free_meta *kasan_get_free_meta(struct kmem_cache *cache,
436 const void *object)
437{
438 BUILD_BUG_ON(sizeof(struct kasan_free_meta) > 32);
439 if (cache->kasan_info.free_meta_offset == KASAN_NO_FREE_META)
440 return NULL;
441 return (void *)object + cache->kasan_info.free_meta_offset;
442}
443
836daba0
AK
444void kasan_init_object_meta(struct kmem_cache *cache, const void *object)
445{
446 struct kasan_alloc_meta *alloc_meta;
447
448 alloc_meta = kasan_get_alloc_meta(cache, object);
449 if (alloc_meta)
450 __memset(alloc_meta, 0, sizeof(*alloc_meta));
451}
452
5d1ba310 453size_t kasan_metadata_size(struct kmem_cache *cache, bool in_object)
f372bde9 454{
5d1ba310
FT
455 struct kasan_cache *info = &cache->kasan_info;
456
f372bde9
AK
457 if (!kasan_requires_meta())
458 return 0;
5d1ba310
FT
459
460 if (in_object)
461 return (info->free_meta_offset ?
462 0 : sizeof(struct kasan_free_meta));
463 else
464 return (info->alloc_meta_offset ?
465 sizeof(struct kasan_alloc_meta) : 0) +
466 ((info->free_meta_offset &&
467 info->free_meta_offset != KASAN_NO_FREE_META) ?
468 sizeof(struct kasan_free_meta) : 0);
f372bde9
AK
469}
470
7cb3007c 471static void __kasan_record_aux_stack(void *addr, bool can_alloc)
26e760c9 472{
6e48a966 473 struct slab *slab = kasan_addr_to_slab(addr);
26e760c9 474 struct kmem_cache *cache;
6476792f 475 struct kasan_alloc_meta *alloc_meta;
26e760c9
WW
476 void *object;
477
6e48a966 478 if (is_kfence_address(addr) || !slab)
26e760c9
WW
479 return;
480
6e48a966
MWO
481 cache = slab->slab_cache;
482 object = nearest_obj(cache, slab, addr);
6476792f 483 alloc_meta = kasan_get_alloc_meta(cache, object);
13384f61
WW
484 if (!alloc_meta)
485 return;
26e760c9 486
6476792f 487 alloc_meta->aux_stack[1] = alloc_meta->aux_stack[0];
7cb3007c
ME
488 alloc_meta->aux_stack[0] = kasan_save_stack(GFP_NOWAIT, can_alloc);
489}
490
491void kasan_record_aux_stack(void *addr)
492{
493 return __kasan_record_aux_stack(addr, true);
494}
495
496void kasan_record_aux_stack_noalloc(void *addr)
497{
498 return __kasan_record_aux_stack(addr, false);
26e760c9 499}
e4b7818b 500
ccf643e6
AK
501void kasan_save_alloc_info(struct kmem_cache *cache, void *object, gfp_t flags)
502{
503 struct kasan_alloc_meta *alloc_meta;
504
505 alloc_meta = kasan_get_alloc_meta(cache, object);
506 if (alloc_meta)
507 kasan_set_track(&alloc_meta->alloc_track, flags);
508}
509
6b074349 510void kasan_save_free_info(struct kmem_cache *cache, void *object)
e4b7818b
WW
511{
512 struct kasan_free_meta *free_meta;
513
6476792f 514 free_meta = kasan_get_free_meta(cache, object);
97593cad
AK
515 if (!free_meta)
516 return;
e4b7818b 517
97593cad
AK
518 kasan_set_track(&free_meta->free_track, GFP_NOWAIT);
519 /* The object was freed and has free track set. */
06bc4cf6 520 *(u8 *)kasan_mem_to_shadow(object) = KASAN_SLAB_FREETRACK;
e4b7818b 521}