kasan, arm64: use ARCH_SLAB_MINALIGN instead of manual aligning
[linux-2.6-block.git] / mm / kasan / common.c
CommitLineData
e886bf9d 1// SPDX-License-Identifier: GPL-2.0
bffa986c
AK
2/*
3 * This file contains common generic and tag-based KASAN code.
4 *
5 * Copyright (c) 2014 Samsung Electronics Co., Ltd.
6 * Author: Andrey Ryabinin <ryabinin.a.a@gmail.com>
7 *
8 * Some code borrowed from https://github.com/xairy/kasan-prototype by
9 * Andrey Konovalov <andreyknvl@gmail.com>
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License version 2 as
13 * published by the Free Software Foundation.
14 *
15 */
16
17#include <linux/export.h>
18#include <linux/interrupt.h>
19#include <linux/init.h>
20#include <linux/kasan.h>
21#include <linux/kernel.h>
22#include <linux/kmemleak.h>
23#include <linux/linkage.h>
24#include <linux/memblock.h>
25#include <linux/memory.h>
26#include <linux/mm.h>
27#include <linux/module.h>
28#include <linux/printk.h>
29#include <linux/sched.h>
30#include <linux/sched/task_stack.h>
31#include <linux/slab.h>
32#include <linux/stacktrace.h>
33#include <linux/string.h>
34#include <linux/types.h>
35#include <linux/vmalloc.h>
36#include <linux/bug.h>
37
38#include "kasan.h"
39#include "../slab.h"
40
41static inline int in_irqentry_text(unsigned long ptr)
42{
43 return (ptr >= (unsigned long)&__irqentry_text_start &&
44 ptr < (unsigned long)&__irqentry_text_end) ||
45 (ptr >= (unsigned long)&__softirqentry_text_start &&
46 ptr < (unsigned long)&__softirqentry_text_end);
47}
48
49static inline void filter_irq_stacks(struct stack_trace *trace)
50{
51 int i;
52
53 if (!trace->nr_entries)
54 return;
55 for (i = 0; i < trace->nr_entries; i++)
56 if (in_irqentry_text(trace->entries[i])) {
57 /* Include the irqentry function into the stack. */
58 trace->nr_entries = i + 1;
59 break;
60 }
61}
62
63static inline depot_stack_handle_t save_stack(gfp_t flags)
64{
65 unsigned long entries[KASAN_STACK_DEPTH];
66 struct stack_trace trace = {
67 .nr_entries = 0,
68 .entries = entries,
69 .max_entries = KASAN_STACK_DEPTH,
70 .skip = 0
71 };
72
73 save_stack_trace(&trace);
74 filter_irq_stacks(&trace);
75 if (trace.nr_entries != 0 &&
76 trace.entries[trace.nr_entries-1] == ULONG_MAX)
77 trace.nr_entries--;
78
79 return depot_save_stack(&trace, flags);
80}
81
82static inline void set_track(struct kasan_track *track, gfp_t flags)
83{
84 track->pid = current->pid;
85 track->stack = save_stack(flags);
86}
87
88void kasan_enable_current(void)
89{
90 current->kasan_depth++;
91}
92
93void kasan_disable_current(void)
94{
95 current->kasan_depth--;
96}
97
98void kasan_check_read(const volatile void *p, unsigned int size)
99{
100 check_memory_region((unsigned long)p, size, false, _RET_IP_);
101}
102EXPORT_SYMBOL(kasan_check_read);
103
104void kasan_check_write(const volatile void *p, unsigned int size)
105{
106 check_memory_region((unsigned long)p, size, true, _RET_IP_);
107}
108EXPORT_SYMBOL(kasan_check_write);
109
110#undef memset
111void *memset(void *addr, int c, size_t len)
112{
113 check_memory_region((unsigned long)addr, len, true, _RET_IP_);
114
115 return __memset(addr, c, len);
116}
117
118#undef memmove
119void *memmove(void *dest, const void *src, size_t len)
120{
121 check_memory_region((unsigned long)src, len, false, _RET_IP_);
122 check_memory_region((unsigned long)dest, len, true, _RET_IP_);
123
124 return __memmove(dest, src, len);
125}
126
127#undef memcpy
128void *memcpy(void *dest, const void *src, size_t len)
129{
130 check_memory_region((unsigned long)src, len, false, _RET_IP_);
131 check_memory_region((unsigned long)dest, len, true, _RET_IP_);
132
133 return __memcpy(dest, src, len);
134}
135
136/*
137 * Poisons the shadow memory for 'size' bytes starting from 'addr'.
138 * Memory addresses should be aligned to KASAN_SHADOW_SCALE_SIZE.
139 */
140void kasan_poison_shadow(const void *address, size_t size, u8 value)
141{
142 void *shadow_start, *shadow_end;
143
7f94ffbc
AK
144 /*
145 * Perform shadow offset calculation based on untagged address, as
146 * some of the callers (e.g. kasan_poison_object_data) pass tagged
147 * addresses to this function.
148 */
149 address = reset_tag(address);
150
bffa986c
AK
151 shadow_start = kasan_mem_to_shadow(address);
152 shadow_end = kasan_mem_to_shadow(address + size);
153
154 __memset(shadow_start, value, shadow_end - shadow_start);
155}
156
157void kasan_unpoison_shadow(const void *address, size_t size)
158{
7f94ffbc
AK
159 u8 tag = get_tag(address);
160
161 /*
162 * Perform shadow offset calculation based on untagged address, as
163 * some of the callers (e.g. kasan_unpoison_object_data) pass tagged
164 * addresses to this function.
165 */
166 address = reset_tag(address);
167
168 kasan_poison_shadow(address, size, tag);
bffa986c
AK
169
170 if (size & KASAN_SHADOW_MASK) {
171 u8 *shadow = (u8 *)kasan_mem_to_shadow(address + size);
7f94ffbc
AK
172
173 if (IS_ENABLED(CONFIG_KASAN_SW_TAGS))
174 *shadow = tag;
175 else
176 *shadow = size & KASAN_SHADOW_MASK;
bffa986c
AK
177 }
178}
179
180static void __kasan_unpoison_stack(struct task_struct *task, const void *sp)
181{
182 void *base = task_stack_page(task);
183 size_t size = sp - base;
184
185 kasan_unpoison_shadow(base, size);
186}
187
188/* Unpoison the entire stack for a task. */
189void kasan_unpoison_task_stack(struct task_struct *task)
190{
191 __kasan_unpoison_stack(task, task_stack_page(task) + THREAD_SIZE);
192}
193
194/* Unpoison the stack for the current task beyond a watermark sp value. */
195asmlinkage void kasan_unpoison_task_stack_below(const void *watermark)
196{
197 /*
198 * Calculate the task stack base address. Avoid using 'current'
199 * because this function is called by early resume code which hasn't
200 * yet set up the percpu register (%gs).
201 */
202 void *base = (void *)((unsigned long)watermark & ~(THREAD_SIZE - 1));
203
204 kasan_unpoison_shadow(base, watermark - base);
205}
206
207/*
208 * Clear all poison for the region between the current SP and a provided
209 * watermark value, as is sometimes required prior to hand-crafted asm function
210 * returns in the middle of functions.
211 */
212void kasan_unpoison_stack_above_sp_to(const void *watermark)
213{
214 const void *sp = __builtin_frame_address(0);
215 size_t size = watermark - sp;
216
217 if (WARN_ON(sp > watermark))
218 return;
219 kasan_unpoison_shadow(sp, size);
220}
221
222void kasan_alloc_pages(struct page *page, unsigned int order)
223{
2813b9c0
AK
224 u8 tag;
225 unsigned long i;
226
7f94ffbc
AK
227 if (unlikely(PageHighMem(page)))
228 return;
2813b9c0
AK
229
230 tag = random_tag();
231 for (i = 0; i < (1 << order); i++)
232 page_kasan_tag_set(page + i, tag);
7f94ffbc 233 kasan_unpoison_shadow(page_address(page), PAGE_SIZE << order);
bffa986c
AK
234}
235
236void kasan_free_pages(struct page *page, unsigned int order)
237{
238 if (likely(!PageHighMem(page)))
239 kasan_poison_shadow(page_address(page),
240 PAGE_SIZE << order,
241 KASAN_FREE_PAGE);
242}
243
244/*
245 * Adaptive redzone policy taken from the userspace AddressSanitizer runtime.
246 * For larger allocations larger redzones are used.
247 */
248static inline unsigned int optimal_redzone(unsigned int object_size)
249{
7f94ffbc
AK
250 if (IS_ENABLED(CONFIG_KASAN_SW_TAGS))
251 return 0;
252
bffa986c
AK
253 return
254 object_size <= 64 - 16 ? 16 :
255 object_size <= 128 - 32 ? 32 :
256 object_size <= 512 - 64 ? 64 :
257 object_size <= 4096 - 128 ? 128 :
258 object_size <= (1 << 14) - 256 ? 256 :
259 object_size <= (1 << 15) - 512 ? 512 :
260 object_size <= (1 << 16) - 1024 ? 1024 : 2048;
261}
262
263void kasan_cache_create(struct kmem_cache *cache, unsigned int *size,
264 slab_flags_t *flags)
265{
266 unsigned int orig_size = *size;
7f94ffbc 267 unsigned int redzone_size;
bffa986c
AK
268 int redzone_adjust;
269
270 /* Add alloc meta. */
271 cache->kasan_info.alloc_meta_offset = *size;
272 *size += sizeof(struct kasan_alloc_meta);
273
274 /* Add free meta. */
7f94ffbc
AK
275 if (IS_ENABLED(CONFIG_KASAN_GENERIC) &&
276 (cache->flags & SLAB_TYPESAFE_BY_RCU || cache->ctor ||
277 cache->object_size < sizeof(struct kasan_free_meta))) {
bffa986c
AK
278 cache->kasan_info.free_meta_offset = *size;
279 *size += sizeof(struct kasan_free_meta);
280 }
bffa986c 281
7f94ffbc
AK
282 redzone_size = optimal_redzone(cache->object_size);
283 redzone_adjust = redzone_size - (*size - cache->object_size);
bffa986c
AK
284 if (redzone_adjust > 0)
285 *size += redzone_adjust;
286
287 *size = min_t(unsigned int, KMALLOC_MAX_SIZE,
7f94ffbc 288 max(*size, cache->object_size + redzone_size));
bffa986c
AK
289
290 /*
291 * If the metadata doesn't fit, don't enable KASAN at all.
292 */
293 if (*size <= cache->kasan_info.alloc_meta_offset ||
294 *size <= cache->kasan_info.free_meta_offset) {
295 cache->kasan_info.alloc_meta_offset = 0;
296 cache->kasan_info.free_meta_offset = 0;
297 *size = orig_size;
298 return;
299 }
300
301 *flags |= SLAB_KASAN;
302}
303
304size_t kasan_metadata_size(struct kmem_cache *cache)
305{
306 return (cache->kasan_info.alloc_meta_offset ?
307 sizeof(struct kasan_alloc_meta) : 0) +
308 (cache->kasan_info.free_meta_offset ?
309 sizeof(struct kasan_free_meta) : 0);
310}
311
312struct kasan_alloc_meta *get_alloc_info(struct kmem_cache *cache,
313 const void *object)
314{
315 BUILD_BUG_ON(sizeof(struct kasan_alloc_meta) > 32);
316 return (void *)object + cache->kasan_info.alloc_meta_offset;
317}
318
319struct kasan_free_meta *get_free_info(struct kmem_cache *cache,
320 const void *object)
321{
322 BUILD_BUG_ON(sizeof(struct kasan_free_meta) > 32);
323 return (void *)object + cache->kasan_info.free_meta_offset;
324}
325
326void kasan_poison_slab(struct page *page)
327{
2813b9c0
AK
328 unsigned long i;
329
330 for (i = 0; i < (1 << compound_order(page)); i++)
331 page_kasan_tag_reset(page + i);
bffa986c
AK
332 kasan_poison_shadow(page_address(page),
333 PAGE_SIZE << compound_order(page),
334 KASAN_KMALLOC_REDZONE);
335}
336
337void kasan_unpoison_object_data(struct kmem_cache *cache, void *object)
338{
339 kasan_unpoison_shadow(object, cache->object_size);
340}
341
342void kasan_poison_object_data(struct kmem_cache *cache, void *object)
343{
344 kasan_poison_shadow(object,
345 round_up(cache->object_size, KASAN_SHADOW_SCALE_SIZE),
346 KASAN_KMALLOC_REDZONE);
347}
348
7f94ffbc
AK
349/*
350 * Since it's desirable to only call object contructors once during slab
351 * allocation, we preassign tags to all such objects. Also preassign tags for
352 * SLAB_TYPESAFE_BY_RCU slabs to avoid use-after-free reports.
353 * For SLAB allocator we can't preassign tags randomly since the freelist is
354 * stored as an array of indexes instead of a linked list. Assign tags based
355 * on objects indexes, so that objects that are next to each other get
356 * different tags.
357 * After a tag is assigned, the object always gets allocated with the same tag.
358 * The reason is that we can't change tags for objects with constructors on
359 * reallocation (even for non-SLAB_TYPESAFE_BY_RCU), because the constructor
360 * code can save the pointer to the object somewhere (e.g. in the object
361 * itself). Then if we retag it, the old saved pointer will become invalid.
362 */
363static u8 assign_tag(struct kmem_cache *cache, const void *object, bool new)
364{
365 if (!cache->ctor && !(cache->flags & SLAB_TYPESAFE_BY_RCU))
366 return new ? KASAN_TAG_KERNEL : random_tag();
367
368#ifdef CONFIG_SLAB
369 return (u8)obj_to_index(cache, virt_to_page(object), (void *)object);
370#else
371 return new ? random_tag() : get_tag(object);
372#endif
373}
374
66afc7f1
AK
375void * __must_check kasan_init_slab_obj(struct kmem_cache *cache,
376 const void *object)
bffa986c
AK
377{
378 struct kasan_alloc_meta *alloc_info;
379
380 if (!(cache->flags & SLAB_KASAN))
381 return (void *)object;
382
383 alloc_info = get_alloc_info(cache, object);
384 __memset(alloc_info, 0, sizeof(*alloc_info));
385
7f94ffbc
AK
386 if (IS_ENABLED(CONFIG_KASAN_SW_TAGS))
387 object = set_tag(object, assign_tag(cache, object, true));
388
bffa986c
AK
389 return (void *)object;
390}
391
66afc7f1
AK
392void * __must_check kasan_slab_alloc(struct kmem_cache *cache, void *object,
393 gfp_t flags)
bffa986c
AK
394{
395 return kasan_kmalloc(cache, object, cache->object_size, flags);
396}
397
7f94ffbc
AK
398static inline bool shadow_invalid(u8 tag, s8 shadow_byte)
399{
400 if (IS_ENABLED(CONFIG_KASAN_GENERIC))
401 return shadow_byte < 0 ||
402 shadow_byte >= KASAN_SHADOW_SCALE_SIZE;
403 else
404 return tag != (u8)shadow_byte;
405}
406
bffa986c
AK
407static bool __kasan_slab_free(struct kmem_cache *cache, void *object,
408 unsigned long ip, bool quarantine)
409{
410 s8 shadow_byte;
7f94ffbc
AK
411 u8 tag;
412 void *tagged_object;
bffa986c
AK
413 unsigned long rounded_up_size;
414
7f94ffbc
AK
415 tag = get_tag(object);
416 tagged_object = object;
417 object = reset_tag(object);
418
bffa986c
AK
419 if (unlikely(nearest_obj(cache, virt_to_head_page(object), object) !=
420 object)) {
7f94ffbc 421 kasan_report_invalid_free(tagged_object, ip);
bffa986c
AK
422 return true;
423 }
424
425 /* RCU slabs could be legally used after free within the RCU period */
426 if (unlikely(cache->flags & SLAB_TYPESAFE_BY_RCU))
427 return false;
428
429 shadow_byte = READ_ONCE(*(s8 *)kasan_mem_to_shadow(object));
7f94ffbc
AK
430 if (shadow_invalid(tag, shadow_byte)) {
431 kasan_report_invalid_free(tagged_object, ip);
bffa986c
AK
432 return true;
433 }
434
435 rounded_up_size = round_up(cache->object_size, KASAN_SHADOW_SCALE_SIZE);
436 kasan_poison_shadow(object, rounded_up_size, KASAN_KMALLOC_FREE);
437
7f94ffbc
AK
438 if ((IS_ENABLED(CONFIG_KASAN_GENERIC) && !quarantine) ||
439 unlikely(!(cache->flags & SLAB_KASAN)))
bffa986c
AK
440 return false;
441
442 set_track(&get_alloc_info(cache, object)->free_track, GFP_NOWAIT);
443 quarantine_put(get_free_info(cache, object), cache);
7f94ffbc
AK
444
445 return IS_ENABLED(CONFIG_KASAN_GENERIC);
bffa986c
AK
446}
447
448bool kasan_slab_free(struct kmem_cache *cache, void *object, unsigned long ip)
449{
450 return __kasan_slab_free(cache, object, ip, true);
451}
452
66afc7f1
AK
453void * __must_check kasan_kmalloc(struct kmem_cache *cache, const void *object,
454 size_t size, gfp_t flags)
bffa986c
AK
455{
456 unsigned long redzone_start;
457 unsigned long redzone_end;
7f94ffbc 458 u8 tag;
bffa986c
AK
459
460 if (gfpflags_allow_blocking(flags))
461 quarantine_reduce();
462
463 if (unlikely(object == NULL))
464 return NULL;
465
466 redzone_start = round_up((unsigned long)(object + size),
467 KASAN_SHADOW_SCALE_SIZE);
468 redzone_end = round_up((unsigned long)object + cache->object_size,
469 KASAN_SHADOW_SCALE_SIZE);
470
7f94ffbc
AK
471 if (IS_ENABLED(CONFIG_KASAN_SW_TAGS))
472 tag = assign_tag(cache, object, false);
473
474 /* Tag is ignored in set_tag without CONFIG_KASAN_SW_TAGS */
475 kasan_unpoison_shadow(set_tag(object, tag), size);
bffa986c
AK
476 kasan_poison_shadow((void *)redzone_start, redzone_end - redzone_start,
477 KASAN_KMALLOC_REDZONE);
478
479 if (cache->flags & SLAB_KASAN)
480 set_track(&get_alloc_info(cache, object)->alloc_track, flags);
481
7f94ffbc 482 return set_tag(object, tag);
bffa986c
AK
483}
484EXPORT_SYMBOL(kasan_kmalloc);
485
66afc7f1
AK
486void * __must_check kasan_kmalloc_large(const void *ptr, size_t size,
487 gfp_t flags)
bffa986c
AK
488{
489 struct page *page;
490 unsigned long redzone_start;
491 unsigned long redzone_end;
492
493 if (gfpflags_allow_blocking(flags))
494 quarantine_reduce();
495
496 if (unlikely(ptr == NULL))
497 return NULL;
498
499 page = virt_to_page(ptr);
500 redzone_start = round_up((unsigned long)(ptr + size),
501 KASAN_SHADOW_SCALE_SIZE);
502 redzone_end = (unsigned long)ptr + (PAGE_SIZE << compound_order(page));
503
504 kasan_unpoison_shadow(ptr, size);
505 kasan_poison_shadow((void *)redzone_start, redzone_end - redzone_start,
506 KASAN_PAGE_REDZONE);
507
508 return (void *)ptr;
509}
510
66afc7f1 511void * __must_check kasan_krealloc(const void *object, size_t size, gfp_t flags)
bffa986c
AK
512{
513 struct page *page;
514
515 if (unlikely(object == ZERO_SIZE_PTR))
516 return (void *)object;
517
518 page = virt_to_head_page(object);
519
520 if (unlikely(!PageSlab(page)))
521 return kasan_kmalloc_large(object, size, flags);
522 else
523 return kasan_kmalloc(page->slab_cache, object, size, flags);
524}
525
526void kasan_poison_kfree(void *ptr, unsigned long ip)
527{
528 struct page *page;
529
530 page = virt_to_head_page(ptr);
531
532 if (unlikely(!PageSlab(page))) {
2813b9c0 533 if (ptr != page_address(page)) {
bffa986c
AK
534 kasan_report_invalid_free(ptr, ip);
535 return;
536 }
537 kasan_poison_shadow(ptr, PAGE_SIZE << compound_order(page),
538 KASAN_FREE_PAGE);
539 } else {
540 __kasan_slab_free(page->slab_cache, ptr, ip, false);
541 }
542}
543
544void kasan_kfree_large(void *ptr, unsigned long ip)
545{
2813b9c0 546 if (ptr != page_address(virt_to_head_page(ptr)))
bffa986c
AK
547 kasan_report_invalid_free(ptr, ip);
548 /* The object will be poisoned by page_alloc. */
549}
550
551int kasan_module_alloc(void *addr, size_t size)
552{
553 void *ret;
554 size_t scaled_size;
555 size_t shadow_size;
556 unsigned long shadow_start;
557
558 shadow_start = (unsigned long)kasan_mem_to_shadow(addr);
559 scaled_size = (size + KASAN_SHADOW_MASK) >> KASAN_SHADOW_SCALE_SHIFT;
560 shadow_size = round_up(scaled_size, PAGE_SIZE);
561
562 if (WARN_ON(!PAGE_ALIGNED(shadow_start)))
563 return -EINVAL;
564
565 ret = __vmalloc_node_range(shadow_size, 1, shadow_start,
566 shadow_start + shadow_size,
080eb83f 567 GFP_KERNEL,
bffa986c
AK
568 PAGE_KERNEL, VM_NO_GUARD, NUMA_NO_NODE,
569 __builtin_return_address(0));
570
571 if (ret) {
080eb83f 572 __memset(ret, KASAN_SHADOW_INIT, shadow_size);
bffa986c
AK
573 find_vm_area(addr)->flags |= VM_KASAN;
574 kmemleak_ignore(ret);
575 return 0;
576 }
577
578 return -ENOMEM;
579}
580
581void kasan_free_shadow(const struct vm_struct *vm)
582{
583 if (vm->flags & VM_KASAN)
584 vfree(kasan_mem_to_shadow(vm->addr));
585}
586
587#ifdef CONFIG_MEMORY_HOTPLUG
588static bool shadow_mapped(unsigned long addr)
589{
590 pgd_t *pgd = pgd_offset_k(addr);
591 p4d_t *p4d;
592 pud_t *pud;
593 pmd_t *pmd;
594 pte_t *pte;
595
596 if (pgd_none(*pgd))
597 return false;
598 p4d = p4d_offset(pgd, addr);
599 if (p4d_none(*p4d))
600 return false;
601 pud = pud_offset(p4d, addr);
602 if (pud_none(*pud))
603 return false;
604
605 /*
606 * We can't use pud_large() or pud_huge(), the first one is
607 * arch-specific, the last one depends on HUGETLB_PAGE. So let's abuse
608 * pud_bad(), if pud is bad then it's bad because it's huge.
609 */
610 if (pud_bad(*pud))
611 return true;
612 pmd = pmd_offset(pud, addr);
613 if (pmd_none(*pmd))
614 return false;
615
616 if (pmd_bad(*pmd))
617 return true;
618 pte = pte_offset_kernel(pmd, addr);
619 return !pte_none(*pte);
620}
621
622static int __meminit kasan_mem_notifier(struct notifier_block *nb,
623 unsigned long action, void *data)
624{
625 struct memory_notify *mem_data = data;
626 unsigned long nr_shadow_pages, start_kaddr, shadow_start;
627 unsigned long shadow_end, shadow_size;
628
629 nr_shadow_pages = mem_data->nr_pages >> KASAN_SHADOW_SCALE_SHIFT;
630 start_kaddr = (unsigned long)pfn_to_kaddr(mem_data->start_pfn);
631 shadow_start = (unsigned long)kasan_mem_to_shadow((void *)start_kaddr);
632 shadow_size = nr_shadow_pages << PAGE_SHIFT;
633 shadow_end = shadow_start + shadow_size;
634
635 if (WARN_ON(mem_data->nr_pages % KASAN_SHADOW_SCALE_SIZE) ||
636 WARN_ON(start_kaddr % (KASAN_SHADOW_SCALE_SIZE << PAGE_SHIFT)))
637 return NOTIFY_BAD;
638
639 switch (action) {
640 case MEM_GOING_ONLINE: {
641 void *ret;
642
643 /*
644 * If shadow is mapped already than it must have been mapped
645 * during the boot. This could happen if we onlining previously
646 * offlined memory.
647 */
648 if (shadow_mapped(shadow_start))
649 return NOTIFY_OK;
650
651 ret = __vmalloc_node_range(shadow_size, PAGE_SIZE, shadow_start,
652 shadow_end, GFP_KERNEL,
653 PAGE_KERNEL, VM_NO_GUARD,
654 pfn_to_nid(mem_data->start_pfn),
655 __builtin_return_address(0));
656 if (!ret)
657 return NOTIFY_BAD;
658
659 kmemleak_ignore(ret);
660 return NOTIFY_OK;
661 }
662 case MEM_CANCEL_ONLINE:
663 case MEM_OFFLINE: {
664 struct vm_struct *vm;
665
666 /*
667 * shadow_start was either mapped during boot by kasan_init()
668 * or during memory online by __vmalloc_node_range().
669 * In the latter case we can use vfree() to free shadow.
670 * Non-NULL result of the find_vm_area() will tell us if
671 * that was the second case.
672 *
673 * Currently it's not possible to free shadow mapped
674 * during boot by kasan_init(). It's because the code
675 * to do that hasn't been written yet. So we'll just
676 * leak the memory.
677 */
678 vm = find_vm_area((void *)shadow_start);
679 if (vm)
680 vfree((void *)shadow_start);
681 }
682 }
683
684 return NOTIFY_OK;
685}
686
687static int __init kasan_memhotplug_init(void)
688{
689 hotplug_memory_notifier(kasan_mem_notifier, 0);
690
691 return 0;
692}
693
694core_initcall(kasan_memhotplug_init);
695#endif