kasan: fix krealloc handling for tag-based mode
[linux-2.6-block.git] / mm / kasan / common.c
CommitLineData
e886bf9d 1// SPDX-License-Identifier: GPL-2.0
bffa986c
AK
2/*
3 * This file contains common generic and tag-based KASAN code.
4 *
5 * Copyright (c) 2014 Samsung Electronics Co., Ltd.
6 * Author: Andrey Ryabinin <ryabinin.a.a@gmail.com>
7 *
8 * Some code borrowed from https://github.com/xairy/kasan-prototype by
9 * Andrey Konovalov <andreyknvl@gmail.com>
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License version 2 as
13 * published by the Free Software Foundation.
14 *
15 */
16
17#include <linux/export.h>
18#include <linux/interrupt.h>
19#include <linux/init.h>
20#include <linux/kasan.h>
21#include <linux/kernel.h>
22#include <linux/kmemleak.h>
23#include <linux/linkage.h>
24#include <linux/memblock.h>
25#include <linux/memory.h>
26#include <linux/mm.h>
27#include <linux/module.h>
28#include <linux/printk.h>
29#include <linux/sched.h>
30#include <linux/sched/task_stack.h>
31#include <linux/slab.h>
32#include <linux/stacktrace.h>
33#include <linux/string.h>
34#include <linux/types.h>
35#include <linux/vmalloc.h>
36#include <linux/bug.h>
37
38#include "kasan.h"
39#include "../slab.h"
40
41static inline int in_irqentry_text(unsigned long ptr)
42{
43 return (ptr >= (unsigned long)&__irqentry_text_start &&
44 ptr < (unsigned long)&__irqentry_text_end) ||
45 (ptr >= (unsigned long)&__softirqentry_text_start &&
46 ptr < (unsigned long)&__softirqentry_text_end);
47}
48
49static inline void filter_irq_stacks(struct stack_trace *trace)
50{
51 int i;
52
53 if (!trace->nr_entries)
54 return;
55 for (i = 0; i < trace->nr_entries; i++)
56 if (in_irqentry_text(trace->entries[i])) {
57 /* Include the irqentry function into the stack. */
58 trace->nr_entries = i + 1;
59 break;
60 }
61}
62
63static inline depot_stack_handle_t save_stack(gfp_t flags)
64{
65 unsigned long entries[KASAN_STACK_DEPTH];
66 struct stack_trace trace = {
67 .nr_entries = 0,
68 .entries = entries,
69 .max_entries = KASAN_STACK_DEPTH,
70 .skip = 0
71 };
72
73 save_stack_trace(&trace);
74 filter_irq_stacks(&trace);
75 if (trace.nr_entries != 0 &&
76 trace.entries[trace.nr_entries-1] == ULONG_MAX)
77 trace.nr_entries--;
78
79 return depot_save_stack(&trace, flags);
80}
81
82static inline void set_track(struct kasan_track *track, gfp_t flags)
83{
84 track->pid = current->pid;
85 track->stack = save_stack(flags);
86}
87
88void kasan_enable_current(void)
89{
90 current->kasan_depth++;
91}
92
93void kasan_disable_current(void)
94{
95 current->kasan_depth--;
96}
97
98void kasan_check_read(const volatile void *p, unsigned int size)
99{
100 check_memory_region((unsigned long)p, size, false, _RET_IP_);
101}
102EXPORT_SYMBOL(kasan_check_read);
103
104void kasan_check_write(const volatile void *p, unsigned int size)
105{
106 check_memory_region((unsigned long)p, size, true, _RET_IP_);
107}
108EXPORT_SYMBOL(kasan_check_write);
109
110#undef memset
111void *memset(void *addr, int c, size_t len)
112{
113 check_memory_region((unsigned long)addr, len, true, _RET_IP_);
114
115 return __memset(addr, c, len);
116}
117
118#undef memmove
119void *memmove(void *dest, const void *src, size_t len)
120{
121 check_memory_region((unsigned long)src, len, false, _RET_IP_);
122 check_memory_region((unsigned long)dest, len, true, _RET_IP_);
123
124 return __memmove(dest, src, len);
125}
126
127#undef memcpy
128void *memcpy(void *dest, const void *src, size_t len)
129{
130 check_memory_region((unsigned long)src, len, false, _RET_IP_);
131 check_memory_region((unsigned long)dest, len, true, _RET_IP_);
132
133 return __memcpy(dest, src, len);
134}
135
136/*
137 * Poisons the shadow memory for 'size' bytes starting from 'addr'.
138 * Memory addresses should be aligned to KASAN_SHADOW_SCALE_SIZE.
139 */
140void kasan_poison_shadow(const void *address, size_t size, u8 value)
141{
142 void *shadow_start, *shadow_end;
143
7f94ffbc
AK
144 /*
145 * Perform shadow offset calculation based on untagged address, as
146 * some of the callers (e.g. kasan_poison_object_data) pass tagged
147 * addresses to this function.
148 */
149 address = reset_tag(address);
150
bffa986c
AK
151 shadow_start = kasan_mem_to_shadow(address);
152 shadow_end = kasan_mem_to_shadow(address + size);
153
154 __memset(shadow_start, value, shadow_end - shadow_start);
155}
156
157void kasan_unpoison_shadow(const void *address, size_t size)
158{
7f94ffbc
AK
159 u8 tag = get_tag(address);
160
161 /*
162 * Perform shadow offset calculation based on untagged address, as
163 * some of the callers (e.g. kasan_unpoison_object_data) pass tagged
164 * addresses to this function.
165 */
166 address = reset_tag(address);
167
168 kasan_poison_shadow(address, size, tag);
bffa986c
AK
169
170 if (size & KASAN_SHADOW_MASK) {
171 u8 *shadow = (u8 *)kasan_mem_to_shadow(address + size);
7f94ffbc
AK
172
173 if (IS_ENABLED(CONFIG_KASAN_SW_TAGS))
174 *shadow = tag;
175 else
176 *shadow = size & KASAN_SHADOW_MASK;
bffa986c
AK
177 }
178}
179
180static void __kasan_unpoison_stack(struct task_struct *task, const void *sp)
181{
182 void *base = task_stack_page(task);
183 size_t size = sp - base;
184
185 kasan_unpoison_shadow(base, size);
186}
187
188/* Unpoison the entire stack for a task. */
189void kasan_unpoison_task_stack(struct task_struct *task)
190{
191 __kasan_unpoison_stack(task, task_stack_page(task) + THREAD_SIZE);
192}
193
194/* Unpoison the stack for the current task beyond a watermark sp value. */
195asmlinkage void kasan_unpoison_task_stack_below(const void *watermark)
196{
197 /*
198 * Calculate the task stack base address. Avoid using 'current'
199 * because this function is called by early resume code which hasn't
200 * yet set up the percpu register (%gs).
201 */
202 void *base = (void *)((unsigned long)watermark & ~(THREAD_SIZE - 1));
203
204 kasan_unpoison_shadow(base, watermark - base);
205}
206
207/*
208 * Clear all poison for the region between the current SP and a provided
209 * watermark value, as is sometimes required prior to hand-crafted asm function
210 * returns in the middle of functions.
211 */
212void kasan_unpoison_stack_above_sp_to(const void *watermark)
213{
214 const void *sp = __builtin_frame_address(0);
215 size_t size = watermark - sp;
216
217 if (WARN_ON(sp > watermark))
218 return;
219 kasan_unpoison_shadow(sp, size);
220}
221
222void kasan_alloc_pages(struct page *page, unsigned int order)
223{
2813b9c0
AK
224 u8 tag;
225 unsigned long i;
226
7f94ffbc
AK
227 if (unlikely(PageHighMem(page)))
228 return;
2813b9c0
AK
229
230 tag = random_tag();
231 for (i = 0; i < (1 << order); i++)
232 page_kasan_tag_set(page + i, tag);
7f94ffbc 233 kasan_unpoison_shadow(page_address(page), PAGE_SIZE << order);
bffa986c
AK
234}
235
236void kasan_free_pages(struct page *page, unsigned int order)
237{
238 if (likely(!PageHighMem(page)))
239 kasan_poison_shadow(page_address(page),
240 PAGE_SIZE << order,
241 KASAN_FREE_PAGE);
242}
243
244/*
245 * Adaptive redzone policy taken from the userspace AddressSanitizer runtime.
246 * For larger allocations larger redzones are used.
247 */
248static inline unsigned int optimal_redzone(unsigned int object_size)
249{
7f94ffbc
AK
250 if (IS_ENABLED(CONFIG_KASAN_SW_TAGS))
251 return 0;
252
bffa986c
AK
253 return
254 object_size <= 64 - 16 ? 16 :
255 object_size <= 128 - 32 ? 32 :
256 object_size <= 512 - 64 ? 64 :
257 object_size <= 4096 - 128 ? 128 :
258 object_size <= (1 << 14) - 256 ? 256 :
259 object_size <= (1 << 15) - 512 ? 512 :
260 object_size <= (1 << 16) - 1024 ? 1024 : 2048;
261}
262
263void kasan_cache_create(struct kmem_cache *cache, unsigned int *size,
264 slab_flags_t *flags)
265{
266 unsigned int orig_size = *size;
7f94ffbc 267 unsigned int redzone_size;
bffa986c
AK
268 int redzone_adjust;
269
270 /* Add alloc meta. */
271 cache->kasan_info.alloc_meta_offset = *size;
272 *size += sizeof(struct kasan_alloc_meta);
273
274 /* Add free meta. */
7f94ffbc
AK
275 if (IS_ENABLED(CONFIG_KASAN_GENERIC) &&
276 (cache->flags & SLAB_TYPESAFE_BY_RCU || cache->ctor ||
277 cache->object_size < sizeof(struct kasan_free_meta))) {
bffa986c
AK
278 cache->kasan_info.free_meta_offset = *size;
279 *size += sizeof(struct kasan_free_meta);
280 }
bffa986c 281
7f94ffbc
AK
282 redzone_size = optimal_redzone(cache->object_size);
283 redzone_adjust = redzone_size - (*size - cache->object_size);
bffa986c
AK
284 if (redzone_adjust > 0)
285 *size += redzone_adjust;
286
287 *size = min_t(unsigned int, KMALLOC_MAX_SIZE,
7f94ffbc 288 max(*size, cache->object_size + redzone_size));
bffa986c
AK
289
290 /*
291 * If the metadata doesn't fit, don't enable KASAN at all.
292 */
293 if (*size <= cache->kasan_info.alloc_meta_offset ||
294 *size <= cache->kasan_info.free_meta_offset) {
295 cache->kasan_info.alloc_meta_offset = 0;
296 cache->kasan_info.free_meta_offset = 0;
297 *size = orig_size;
298 return;
299 }
300
301 *flags |= SLAB_KASAN;
302}
303
304size_t kasan_metadata_size(struct kmem_cache *cache)
305{
306 return (cache->kasan_info.alloc_meta_offset ?
307 sizeof(struct kasan_alloc_meta) : 0) +
308 (cache->kasan_info.free_meta_offset ?
309 sizeof(struct kasan_free_meta) : 0);
310}
311
312struct kasan_alloc_meta *get_alloc_info(struct kmem_cache *cache,
313 const void *object)
314{
315 BUILD_BUG_ON(sizeof(struct kasan_alloc_meta) > 32);
316 return (void *)object + cache->kasan_info.alloc_meta_offset;
317}
318
319struct kasan_free_meta *get_free_info(struct kmem_cache *cache,
320 const void *object)
321{
322 BUILD_BUG_ON(sizeof(struct kasan_free_meta) > 32);
323 return (void *)object + cache->kasan_info.free_meta_offset;
324}
325
326void kasan_poison_slab(struct page *page)
327{
2813b9c0
AK
328 unsigned long i;
329
330 for (i = 0; i < (1 << compound_order(page)); i++)
331 page_kasan_tag_reset(page + i);
bffa986c
AK
332 kasan_poison_shadow(page_address(page),
333 PAGE_SIZE << compound_order(page),
334 KASAN_KMALLOC_REDZONE);
335}
336
337void kasan_unpoison_object_data(struct kmem_cache *cache, void *object)
338{
339 kasan_unpoison_shadow(object, cache->object_size);
340}
341
342void kasan_poison_object_data(struct kmem_cache *cache, void *object)
343{
344 kasan_poison_shadow(object,
345 round_up(cache->object_size, KASAN_SHADOW_SCALE_SIZE),
346 KASAN_KMALLOC_REDZONE);
347}
348
7f94ffbc 349/*
a3fe7cdf
AK
350 * This function assigns a tag to an object considering the following:
351 * 1. A cache might have a constructor, which might save a pointer to a slab
352 * object somewhere (e.g. in the object itself). We preassign a tag for
353 * each object in caches with constructors during slab creation and reuse
354 * the same tag each time a particular object is allocated.
355 * 2. A cache might be SLAB_TYPESAFE_BY_RCU, which means objects can be
356 * accessed after being freed. We preassign tags for objects in these
357 * caches as well.
358 * 3. For SLAB allocator we can't preassign tags randomly since the freelist
359 * is stored as an array of indexes instead of a linked list. Assign tags
360 * based on objects indexes, so that objects that are next to each other
361 * get different tags.
7f94ffbc 362 */
a3fe7cdf
AK
363static u8 assign_tag(struct kmem_cache *cache, const void *object,
364 bool init, bool krealloc)
7f94ffbc 365{
a3fe7cdf
AK
366 /* Reuse the same tag for krealloc'ed objects. */
367 if (krealloc)
368 return get_tag(object);
369
370 /*
371 * If the cache neither has a constructor nor has SLAB_TYPESAFE_BY_RCU
372 * set, assign a tag when the object is being allocated (init == false).
373 */
7f94ffbc 374 if (!cache->ctor && !(cache->flags & SLAB_TYPESAFE_BY_RCU))
a3fe7cdf 375 return init ? KASAN_TAG_KERNEL : random_tag();
7f94ffbc 376
a3fe7cdf 377 /* For caches that either have a constructor or SLAB_TYPESAFE_BY_RCU: */
7f94ffbc 378#ifdef CONFIG_SLAB
a3fe7cdf 379 /* For SLAB assign tags based on the object index in the freelist. */
7f94ffbc
AK
380 return (u8)obj_to_index(cache, virt_to_page(object), (void *)object);
381#else
a3fe7cdf
AK
382 /*
383 * For SLUB assign a random tag during slab creation, otherwise reuse
384 * the already assigned tag.
385 */
386 return init ? random_tag() : get_tag(object);
7f94ffbc
AK
387#endif
388}
389
66afc7f1
AK
390void * __must_check kasan_init_slab_obj(struct kmem_cache *cache,
391 const void *object)
bffa986c
AK
392{
393 struct kasan_alloc_meta *alloc_info;
394
395 if (!(cache->flags & SLAB_KASAN))
396 return (void *)object;
397
398 alloc_info = get_alloc_info(cache, object);
399 __memset(alloc_info, 0, sizeof(*alloc_info));
400
7f94ffbc 401 if (IS_ENABLED(CONFIG_KASAN_SW_TAGS))
a3fe7cdf
AK
402 object = set_tag(object,
403 assign_tag(cache, object, true, false));
7f94ffbc 404
bffa986c
AK
405 return (void *)object;
406}
407
66afc7f1
AK
408void * __must_check kasan_slab_alloc(struct kmem_cache *cache, void *object,
409 gfp_t flags)
bffa986c
AK
410{
411 return kasan_kmalloc(cache, object, cache->object_size, flags);
412}
413
7f94ffbc
AK
414static inline bool shadow_invalid(u8 tag, s8 shadow_byte)
415{
416 if (IS_ENABLED(CONFIG_KASAN_GENERIC))
417 return shadow_byte < 0 ||
418 shadow_byte >= KASAN_SHADOW_SCALE_SIZE;
419 else
420 return tag != (u8)shadow_byte;
421}
422
bffa986c
AK
423static bool __kasan_slab_free(struct kmem_cache *cache, void *object,
424 unsigned long ip, bool quarantine)
425{
426 s8 shadow_byte;
7f94ffbc
AK
427 u8 tag;
428 void *tagged_object;
bffa986c
AK
429 unsigned long rounded_up_size;
430
7f94ffbc
AK
431 tag = get_tag(object);
432 tagged_object = object;
433 object = reset_tag(object);
434
bffa986c
AK
435 if (unlikely(nearest_obj(cache, virt_to_head_page(object), object) !=
436 object)) {
7f94ffbc 437 kasan_report_invalid_free(tagged_object, ip);
bffa986c
AK
438 return true;
439 }
440
441 /* RCU slabs could be legally used after free within the RCU period */
442 if (unlikely(cache->flags & SLAB_TYPESAFE_BY_RCU))
443 return false;
444
445 shadow_byte = READ_ONCE(*(s8 *)kasan_mem_to_shadow(object));
7f94ffbc
AK
446 if (shadow_invalid(tag, shadow_byte)) {
447 kasan_report_invalid_free(tagged_object, ip);
bffa986c
AK
448 return true;
449 }
450
451 rounded_up_size = round_up(cache->object_size, KASAN_SHADOW_SCALE_SIZE);
452 kasan_poison_shadow(object, rounded_up_size, KASAN_KMALLOC_FREE);
453
7f94ffbc
AK
454 if ((IS_ENABLED(CONFIG_KASAN_GENERIC) && !quarantine) ||
455 unlikely(!(cache->flags & SLAB_KASAN)))
bffa986c
AK
456 return false;
457
458 set_track(&get_alloc_info(cache, object)->free_track, GFP_NOWAIT);
459 quarantine_put(get_free_info(cache, object), cache);
7f94ffbc
AK
460
461 return IS_ENABLED(CONFIG_KASAN_GENERIC);
bffa986c
AK
462}
463
464bool kasan_slab_free(struct kmem_cache *cache, void *object, unsigned long ip)
465{
466 return __kasan_slab_free(cache, object, ip, true);
467}
468
a3fe7cdf
AK
469static void *__kasan_kmalloc(struct kmem_cache *cache, const void *object,
470 size_t size, gfp_t flags, bool krealloc)
bffa986c
AK
471{
472 unsigned long redzone_start;
473 unsigned long redzone_end;
7f94ffbc 474 u8 tag;
bffa986c
AK
475
476 if (gfpflags_allow_blocking(flags))
477 quarantine_reduce();
478
479 if (unlikely(object == NULL))
480 return NULL;
481
482 redzone_start = round_up((unsigned long)(object + size),
483 KASAN_SHADOW_SCALE_SIZE);
484 redzone_end = round_up((unsigned long)object + cache->object_size,
485 KASAN_SHADOW_SCALE_SIZE);
486
7f94ffbc 487 if (IS_ENABLED(CONFIG_KASAN_SW_TAGS))
a3fe7cdf 488 tag = assign_tag(cache, object, false, krealloc);
7f94ffbc
AK
489
490 /* Tag is ignored in set_tag without CONFIG_KASAN_SW_TAGS */
491 kasan_unpoison_shadow(set_tag(object, tag), size);
bffa986c
AK
492 kasan_poison_shadow((void *)redzone_start, redzone_end - redzone_start,
493 KASAN_KMALLOC_REDZONE);
494
495 if (cache->flags & SLAB_KASAN)
496 set_track(&get_alloc_info(cache, object)->alloc_track, flags);
497
7f94ffbc 498 return set_tag(object, tag);
bffa986c 499}
a3fe7cdf
AK
500
501void * __must_check kasan_kmalloc(struct kmem_cache *cache, const void *object,
502 size_t size, gfp_t flags)
503{
504 return __kasan_kmalloc(cache, object, size, flags, false);
505}
bffa986c
AK
506EXPORT_SYMBOL(kasan_kmalloc);
507
66afc7f1
AK
508void * __must_check kasan_kmalloc_large(const void *ptr, size_t size,
509 gfp_t flags)
bffa986c
AK
510{
511 struct page *page;
512 unsigned long redzone_start;
513 unsigned long redzone_end;
514
515 if (gfpflags_allow_blocking(flags))
516 quarantine_reduce();
517
518 if (unlikely(ptr == NULL))
519 return NULL;
520
521 page = virt_to_page(ptr);
522 redzone_start = round_up((unsigned long)(ptr + size),
523 KASAN_SHADOW_SCALE_SIZE);
524 redzone_end = (unsigned long)ptr + (PAGE_SIZE << compound_order(page));
525
526 kasan_unpoison_shadow(ptr, size);
527 kasan_poison_shadow((void *)redzone_start, redzone_end - redzone_start,
528 KASAN_PAGE_REDZONE);
529
530 return (void *)ptr;
531}
532
66afc7f1 533void * __must_check kasan_krealloc(const void *object, size_t size, gfp_t flags)
bffa986c
AK
534{
535 struct page *page;
536
537 if (unlikely(object == ZERO_SIZE_PTR))
538 return (void *)object;
539
540 page = virt_to_head_page(object);
541
542 if (unlikely(!PageSlab(page)))
543 return kasan_kmalloc_large(object, size, flags);
544 else
a3fe7cdf
AK
545 return __kasan_kmalloc(page->slab_cache, object, size,
546 flags, true);
bffa986c
AK
547}
548
549void kasan_poison_kfree(void *ptr, unsigned long ip)
550{
551 struct page *page;
552
553 page = virt_to_head_page(ptr);
554
555 if (unlikely(!PageSlab(page))) {
2813b9c0 556 if (ptr != page_address(page)) {
bffa986c
AK
557 kasan_report_invalid_free(ptr, ip);
558 return;
559 }
560 kasan_poison_shadow(ptr, PAGE_SIZE << compound_order(page),
561 KASAN_FREE_PAGE);
562 } else {
563 __kasan_slab_free(page->slab_cache, ptr, ip, false);
564 }
565}
566
567void kasan_kfree_large(void *ptr, unsigned long ip)
568{
2813b9c0 569 if (ptr != page_address(virt_to_head_page(ptr)))
bffa986c
AK
570 kasan_report_invalid_free(ptr, ip);
571 /* The object will be poisoned by page_alloc. */
572}
573
574int kasan_module_alloc(void *addr, size_t size)
575{
576 void *ret;
577 size_t scaled_size;
578 size_t shadow_size;
579 unsigned long shadow_start;
580
581 shadow_start = (unsigned long)kasan_mem_to_shadow(addr);
582 scaled_size = (size + KASAN_SHADOW_MASK) >> KASAN_SHADOW_SCALE_SHIFT;
583 shadow_size = round_up(scaled_size, PAGE_SIZE);
584
585 if (WARN_ON(!PAGE_ALIGNED(shadow_start)))
586 return -EINVAL;
587
588 ret = __vmalloc_node_range(shadow_size, 1, shadow_start,
589 shadow_start + shadow_size,
080eb83f 590 GFP_KERNEL,
bffa986c
AK
591 PAGE_KERNEL, VM_NO_GUARD, NUMA_NO_NODE,
592 __builtin_return_address(0));
593
594 if (ret) {
080eb83f 595 __memset(ret, KASAN_SHADOW_INIT, shadow_size);
bffa986c
AK
596 find_vm_area(addr)->flags |= VM_KASAN;
597 kmemleak_ignore(ret);
598 return 0;
599 }
600
601 return -ENOMEM;
602}
603
604void kasan_free_shadow(const struct vm_struct *vm)
605{
606 if (vm->flags & VM_KASAN)
607 vfree(kasan_mem_to_shadow(vm->addr));
608}
609
610#ifdef CONFIG_MEMORY_HOTPLUG
611static bool shadow_mapped(unsigned long addr)
612{
613 pgd_t *pgd = pgd_offset_k(addr);
614 p4d_t *p4d;
615 pud_t *pud;
616 pmd_t *pmd;
617 pte_t *pte;
618
619 if (pgd_none(*pgd))
620 return false;
621 p4d = p4d_offset(pgd, addr);
622 if (p4d_none(*p4d))
623 return false;
624 pud = pud_offset(p4d, addr);
625 if (pud_none(*pud))
626 return false;
627
628 /*
629 * We can't use pud_large() or pud_huge(), the first one is
630 * arch-specific, the last one depends on HUGETLB_PAGE. So let's abuse
631 * pud_bad(), if pud is bad then it's bad because it's huge.
632 */
633 if (pud_bad(*pud))
634 return true;
635 pmd = pmd_offset(pud, addr);
636 if (pmd_none(*pmd))
637 return false;
638
639 if (pmd_bad(*pmd))
640 return true;
641 pte = pte_offset_kernel(pmd, addr);
642 return !pte_none(*pte);
643}
644
645static int __meminit kasan_mem_notifier(struct notifier_block *nb,
646 unsigned long action, void *data)
647{
648 struct memory_notify *mem_data = data;
649 unsigned long nr_shadow_pages, start_kaddr, shadow_start;
650 unsigned long shadow_end, shadow_size;
651
652 nr_shadow_pages = mem_data->nr_pages >> KASAN_SHADOW_SCALE_SHIFT;
653 start_kaddr = (unsigned long)pfn_to_kaddr(mem_data->start_pfn);
654 shadow_start = (unsigned long)kasan_mem_to_shadow((void *)start_kaddr);
655 shadow_size = nr_shadow_pages << PAGE_SHIFT;
656 shadow_end = shadow_start + shadow_size;
657
658 if (WARN_ON(mem_data->nr_pages % KASAN_SHADOW_SCALE_SIZE) ||
659 WARN_ON(start_kaddr % (KASAN_SHADOW_SCALE_SIZE << PAGE_SHIFT)))
660 return NOTIFY_BAD;
661
662 switch (action) {
663 case MEM_GOING_ONLINE: {
664 void *ret;
665
666 /*
667 * If shadow is mapped already than it must have been mapped
668 * during the boot. This could happen if we onlining previously
669 * offlined memory.
670 */
671 if (shadow_mapped(shadow_start))
672 return NOTIFY_OK;
673
674 ret = __vmalloc_node_range(shadow_size, PAGE_SIZE, shadow_start,
675 shadow_end, GFP_KERNEL,
676 PAGE_KERNEL, VM_NO_GUARD,
677 pfn_to_nid(mem_data->start_pfn),
678 __builtin_return_address(0));
679 if (!ret)
680 return NOTIFY_BAD;
681
682 kmemleak_ignore(ret);
683 return NOTIFY_OK;
684 }
685 case MEM_CANCEL_ONLINE:
686 case MEM_OFFLINE: {
687 struct vm_struct *vm;
688
689 /*
690 * shadow_start was either mapped during boot by kasan_init()
691 * or during memory online by __vmalloc_node_range().
692 * In the latter case we can use vfree() to free shadow.
693 * Non-NULL result of the find_vm_area() will tell us if
694 * that was the second case.
695 *
696 * Currently it's not possible to free shadow mapped
697 * during boot by kasan_init(). It's because the code
698 * to do that hasn't been written yet. So we'll just
699 * leak the memory.
700 */
701 vm = find_vm_area((void *)shadow_start);
702 if (vm)
703 vfree((void *)shadow_start);
704 }
705 }
706
707 return NOTIFY_OK;
708}
709
710static int __init kasan_memhotplug_init(void)
711{
712 hotplug_memory_notifier(kasan_mem_notifier, 0);
713
714 return 0;
715}
716
717core_initcall(kasan_memhotplug_init);
718#endif