kasan: rename KASAN_SHADOW_* to KASAN_GRANULE_*
[linux-2.6-block.git] / mm / kasan / common.c
CommitLineData
e886bf9d 1// SPDX-License-Identifier: GPL-2.0
bffa986c
AK
2/*
3 * This file contains common generic and tag-based KASAN code.
4 *
5 * Copyright (c) 2014 Samsung Electronics Co., Ltd.
6 * Author: Andrey Ryabinin <ryabinin.a.a@gmail.com>
7 *
8 * Some code borrowed from https://github.com/xairy/kasan-prototype by
9 * Andrey Konovalov <andreyknvl@gmail.com>
bffa986c
AK
10 */
11
12#include <linux/export.h>
bffa986c
AK
13#include <linux/init.h>
14#include <linux/kasan.h>
15#include <linux/kernel.h>
16#include <linux/kmemleak.h>
17#include <linux/linkage.h>
18#include <linux/memblock.h>
19#include <linux/memory.h>
20#include <linux/mm.h>
21#include <linux/module.h>
22#include <linux/printk.h>
23#include <linux/sched.h>
24#include <linux/sched/task_stack.h>
25#include <linux/slab.h>
26#include <linux/stacktrace.h>
27#include <linux/string.h>
28#include <linux/types.h>
29#include <linux/vmalloc.h>
30#include <linux/bug.h>
31
2e7d3170 32#include <asm/cacheflush.h>
3c5c3cfb
DA
33#include <asm/tlbflush.h>
34
bffa986c
AK
35#include "kasan.h"
36#include "../slab.h"
37
26e760c9 38depot_stack_handle_t kasan_save_stack(gfp_t flags)
bffa986c
AK
39{
40 unsigned long entries[KASAN_STACK_DEPTH];
880e049c 41 unsigned int nr_entries;
bffa986c 42
880e049c
TG
43 nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 0);
44 nr_entries = filter_irq_stacks(entries, nr_entries);
45 return stack_depot_save(entries, nr_entries, flags);
bffa986c
AK
46}
47
e4b7818b 48void kasan_set_track(struct kasan_track *track, gfp_t flags)
bffa986c
AK
49{
50 track->pid = current->pid;
26e760c9 51 track->stack = kasan_save_stack(flags);
bffa986c
AK
52}
53
54void kasan_enable_current(void)
55{
56 current->kasan_depth++;
57}
58
59void kasan_disable_current(void)
60{
61 current->kasan_depth--;
62}
63
b5f6e0fc 64bool __kasan_check_read(const volatile void *p, unsigned int size)
bffa986c 65{
b5f6e0fc 66 return check_memory_region((unsigned long)p, size, false, _RET_IP_);
bffa986c 67}
7d8ad890 68EXPORT_SYMBOL(__kasan_check_read);
bffa986c 69
b5f6e0fc 70bool __kasan_check_write(const volatile void *p, unsigned int size)
bffa986c 71{
b5f6e0fc 72 return check_memory_region((unsigned long)p, size, true, _RET_IP_);
bffa986c 73}
7d8ad890 74EXPORT_SYMBOL(__kasan_check_write);
bffa986c
AK
75
76#undef memset
77void *memset(void *addr, int c, size_t len)
78{
8cceeff4
WW
79 if (!check_memory_region((unsigned long)addr, len, true, _RET_IP_))
80 return NULL;
bffa986c
AK
81
82 return __memset(addr, c, len);
83}
84
57ee58e3 85#ifdef __HAVE_ARCH_MEMMOVE
bffa986c
AK
86#undef memmove
87void *memmove(void *dest, const void *src, size_t len)
88{
8cceeff4
WW
89 if (!check_memory_region((unsigned long)src, len, false, _RET_IP_) ||
90 !check_memory_region((unsigned long)dest, len, true, _RET_IP_))
91 return NULL;
bffa986c
AK
92
93 return __memmove(dest, src, len);
94}
57ee58e3 95#endif
bffa986c
AK
96
97#undef memcpy
98void *memcpy(void *dest, const void *src, size_t len)
99{
8cceeff4
WW
100 if (!check_memory_region((unsigned long)src, len, false, _RET_IP_) ||
101 !check_memory_region((unsigned long)dest, len, true, _RET_IP_))
102 return NULL;
bffa986c
AK
103
104 return __memcpy(dest, src, len);
105}
106
107/*
108 * Poisons the shadow memory for 'size' bytes starting from 'addr'.
1f600626 109 * Memory addresses should be aligned to KASAN_GRANULE_SIZE.
bffa986c 110 */
cebd0eb2 111void poison_range(const void *address, size_t size, u8 value)
bffa986c
AK
112{
113 void *shadow_start, *shadow_end;
114
7f94ffbc
AK
115 /*
116 * Perform shadow offset calculation based on untagged address, as
117 * some of the callers (e.g. kasan_poison_object_data) pass tagged
118 * addresses to this function.
119 */
120 address = reset_tag(address);
121
bffa986c
AK
122 shadow_start = kasan_mem_to_shadow(address);
123 shadow_end = kasan_mem_to_shadow(address + size);
124
125 __memset(shadow_start, value, shadow_end - shadow_start);
126}
127
cebd0eb2 128void unpoison_range(const void *address, size_t size)
bffa986c 129{
7f94ffbc
AK
130 u8 tag = get_tag(address);
131
132 /*
133 * Perform shadow offset calculation based on untagged address, as
134 * some of the callers (e.g. kasan_unpoison_object_data) pass tagged
135 * addresses to this function.
136 */
137 address = reset_tag(address);
138
cebd0eb2 139 poison_range(address, size, tag);
bffa986c 140
1f600626 141 if (size & KASAN_GRANULE_MASK) {
bffa986c 142 u8 *shadow = (u8 *)kasan_mem_to_shadow(address + size);
7f94ffbc
AK
143
144 if (IS_ENABLED(CONFIG_KASAN_SW_TAGS))
145 *shadow = tag;
146 else
1f600626 147 *shadow = size & KASAN_GRANULE_MASK;
bffa986c
AK
148 }
149}
150
cebd0eb2
AK
151void kasan_unpoison_range(const void *address, size_t size)
152{
153 unpoison_range(address, size);
154}
155
bffa986c
AK
156static void __kasan_unpoison_stack(struct task_struct *task, const void *sp)
157{
158 void *base = task_stack_page(task);
159 size_t size = sp - base;
160
cebd0eb2 161 unpoison_range(base, size);
bffa986c
AK
162}
163
164/* Unpoison the entire stack for a task. */
165void kasan_unpoison_task_stack(struct task_struct *task)
166{
167 __kasan_unpoison_stack(task, task_stack_page(task) + THREAD_SIZE);
168}
169
170/* Unpoison the stack for the current task beyond a watermark sp value. */
171asmlinkage void kasan_unpoison_task_stack_below(const void *watermark)
172{
173 /*
174 * Calculate the task stack base address. Avoid using 'current'
175 * because this function is called by early resume code which hasn't
176 * yet set up the percpu register (%gs).
177 */
178 void *base = (void *)((unsigned long)watermark & ~(THREAD_SIZE - 1));
179
cebd0eb2 180 unpoison_range(base, watermark - base);
bffa986c
AK
181}
182
bffa986c
AK
183void kasan_alloc_pages(struct page *page, unsigned int order)
184{
2813b9c0
AK
185 u8 tag;
186 unsigned long i;
187
7f94ffbc
AK
188 if (unlikely(PageHighMem(page)))
189 return;
2813b9c0
AK
190
191 tag = random_tag();
192 for (i = 0; i < (1 << order); i++)
193 page_kasan_tag_set(page + i, tag);
cebd0eb2 194 unpoison_range(page_address(page), PAGE_SIZE << order);
bffa986c
AK
195}
196
197void kasan_free_pages(struct page *page, unsigned int order)
198{
199 if (likely(!PageHighMem(page)))
cebd0eb2 200 poison_range(page_address(page),
bffa986c
AK
201 PAGE_SIZE << order,
202 KASAN_FREE_PAGE);
203}
204
205/*
206 * Adaptive redzone policy taken from the userspace AddressSanitizer runtime.
207 * For larger allocations larger redzones are used.
208 */
209static inline unsigned int optimal_redzone(unsigned int object_size)
210{
7f94ffbc
AK
211 if (IS_ENABLED(CONFIG_KASAN_SW_TAGS))
212 return 0;
213
bffa986c
AK
214 return
215 object_size <= 64 - 16 ? 16 :
216 object_size <= 128 - 32 ? 32 :
217 object_size <= 512 - 64 ? 64 :
218 object_size <= 4096 - 128 ? 128 :
219 object_size <= (1 << 14) - 256 ? 256 :
220 object_size <= (1 << 15) - 512 ? 512 :
221 object_size <= (1 << 16) - 1024 ? 1024 : 2048;
222}
223
224void kasan_cache_create(struct kmem_cache *cache, unsigned int *size,
225 slab_flags_t *flags)
226{
227 unsigned int orig_size = *size;
7f94ffbc 228 unsigned int redzone_size;
bffa986c
AK
229 int redzone_adjust;
230
231 /* Add alloc meta. */
232 cache->kasan_info.alloc_meta_offset = *size;
233 *size += sizeof(struct kasan_alloc_meta);
234
235 /* Add free meta. */
7f94ffbc
AK
236 if (IS_ENABLED(CONFIG_KASAN_GENERIC) &&
237 (cache->flags & SLAB_TYPESAFE_BY_RCU || cache->ctor ||
238 cache->object_size < sizeof(struct kasan_free_meta))) {
bffa986c
AK
239 cache->kasan_info.free_meta_offset = *size;
240 *size += sizeof(struct kasan_free_meta);
241 }
bffa986c 242
7f94ffbc
AK
243 redzone_size = optimal_redzone(cache->object_size);
244 redzone_adjust = redzone_size - (*size - cache->object_size);
bffa986c
AK
245 if (redzone_adjust > 0)
246 *size += redzone_adjust;
247
248 *size = min_t(unsigned int, KMALLOC_MAX_SIZE,
7f94ffbc 249 max(*size, cache->object_size + redzone_size));
bffa986c
AK
250
251 /*
252 * If the metadata doesn't fit, don't enable KASAN at all.
253 */
254 if (*size <= cache->kasan_info.alloc_meta_offset ||
255 *size <= cache->kasan_info.free_meta_offset) {
256 cache->kasan_info.alloc_meta_offset = 0;
257 cache->kasan_info.free_meta_offset = 0;
258 *size = orig_size;
259 return;
260 }
261
262 *flags |= SLAB_KASAN;
263}
264
265size_t kasan_metadata_size(struct kmem_cache *cache)
266{
267 return (cache->kasan_info.alloc_meta_offset ?
268 sizeof(struct kasan_alloc_meta) : 0) +
269 (cache->kasan_info.free_meta_offset ?
270 sizeof(struct kasan_free_meta) : 0);
271}
272
273struct kasan_alloc_meta *get_alloc_info(struct kmem_cache *cache,
274 const void *object)
275{
bffa986c
AK
276 return (void *)object + cache->kasan_info.alloc_meta_offset;
277}
278
279struct kasan_free_meta *get_free_info(struct kmem_cache *cache,
280 const void *object)
281{
282 BUILD_BUG_ON(sizeof(struct kasan_free_meta) > 32);
283 return (void *)object + cache->kasan_info.free_meta_offset;
284}
285
286void kasan_poison_slab(struct page *page)
287{
2813b9c0
AK
288 unsigned long i;
289
d8c6546b 290 for (i = 0; i < compound_nr(page); i++)
2813b9c0 291 page_kasan_tag_reset(page + i);
cebd0eb2
AK
292 poison_range(page_address(page), page_size(page),
293 KASAN_KMALLOC_REDZONE);
bffa986c
AK
294}
295
296void kasan_unpoison_object_data(struct kmem_cache *cache, void *object)
297{
cebd0eb2 298 unpoison_range(object, cache->object_size);
bffa986c
AK
299}
300
301void kasan_poison_object_data(struct kmem_cache *cache, void *object)
302{
cebd0eb2 303 poison_range(object,
1f600626 304 round_up(cache->object_size, KASAN_GRANULE_SIZE),
bffa986c
AK
305 KASAN_KMALLOC_REDZONE);
306}
307
7f94ffbc 308/*
a3fe7cdf
AK
309 * This function assigns a tag to an object considering the following:
310 * 1. A cache might have a constructor, which might save a pointer to a slab
311 * object somewhere (e.g. in the object itself). We preassign a tag for
312 * each object in caches with constructors during slab creation and reuse
313 * the same tag each time a particular object is allocated.
314 * 2. A cache might be SLAB_TYPESAFE_BY_RCU, which means objects can be
315 * accessed after being freed. We preassign tags for objects in these
316 * caches as well.
317 * 3. For SLAB allocator we can't preassign tags randomly since the freelist
318 * is stored as an array of indexes instead of a linked list. Assign tags
319 * based on objects indexes, so that objects that are next to each other
320 * get different tags.
7f94ffbc 321 */
a3fe7cdf 322static u8 assign_tag(struct kmem_cache *cache, const void *object,
e1db95be 323 bool init, bool keep_tag)
7f94ffbc 324{
e1db95be
AK
325 /*
326 * 1. When an object is kmalloc()'ed, two hooks are called:
327 * kasan_slab_alloc() and kasan_kmalloc(). We assign the
328 * tag only in the first one.
329 * 2. We reuse the same tag for krealloc'ed objects.
330 */
331 if (keep_tag)
a3fe7cdf
AK
332 return get_tag(object);
333
334 /*
335 * If the cache neither has a constructor nor has SLAB_TYPESAFE_BY_RCU
336 * set, assign a tag when the object is being allocated (init == false).
337 */
7f94ffbc 338 if (!cache->ctor && !(cache->flags & SLAB_TYPESAFE_BY_RCU))
a3fe7cdf 339 return init ? KASAN_TAG_KERNEL : random_tag();
7f94ffbc 340
a3fe7cdf 341 /* For caches that either have a constructor or SLAB_TYPESAFE_BY_RCU: */
7f94ffbc 342#ifdef CONFIG_SLAB
a3fe7cdf 343 /* For SLAB assign tags based on the object index in the freelist. */
7f94ffbc
AK
344 return (u8)obj_to_index(cache, virt_to_page(object), (void *)object);
345#else
a3fe7cdf
AK
346 /*
347 * For SLUB assign a random tag during slab creation, otherwise reuse
348 * the already assigned tag.
349 */
350 return init ? random_tag() : get_tag(object);
7f94ffbc
AK
351#endif
352}
353
66afc7f1
AK
354void * __must_check kasan_init_slab_obj(struct kmem_cache *cache,
355 const void *object)
bffa986c
AK
356{
357 struct kasan_alloc_meta *alloc_info;
358
359 if (!(cache->flags & SLAB_KASAN))
360 return (void *)object;
361
362 alloc_info = get_alloc_info(cache, object);
363 __memset(alloc_info, 0, sizeof(*alloc_info));
364
7f94ffbc 365 if (IS_ENABLED(CONFIG_KASAN_SW_TAGS))
a3fe7cdf
AK
366 object = set_tag(object,
367 assign_tag(cache, object, true, false));
7f94ffbc 368
bffa986c
AK
369 return (void *)object;
370}
371
7f94ffbc
AK
372static inline bool shadow_invalid(u8 tag, s8 shadow_byte)
373{
374 if (IS_ENABLED(CONFIG_KASAN_GENERIC))
375 return shadow_byte < 0 ||
1f600626 376 shadow_byte >= KASAN_GRANULE_SIZE;
00fb24a4
AR
377
378 /* else CONFIG_KASAN_SW_TAGS: */
379 if ((u8)shadow_byte == KASAN_TAG_INVALID)
380 return true;
381 if ((tag != KASAN_TAG_KERNEL) && (tag != (u8)shadow_byte))
382 return true;
383
384 return false;
7f94ffbc
AK
385}
386
bffa986c
AK
387static bool __kasan_slab_free(struct kmem_cache *cache, void *object,
388 unsigned long ip, bool quarantine)
389{
390 s8 shadow_byte;
7f94ffbc
AK
391 u8 tag;
392 void *tagged_object;
bffa986c
AK
393 unsigned long rounded_up_size;
394
7f94ffbc
AK
395 tag = get_tag(object);
396 tagged_object = object;
397 object = reset_tag(object);
398
bffa986c
AK
399 if (unlikely(nearest_obj(cache, virt_to_head_page(object), object) !=
400 object)) {
7f94ffbc 401 kasan_report_invalid_free(tagged_object, ip);
bffa986c
AK
402 return true;
403 }
404
405 /* RCU slabs could be legally used after free within the RCU period */
406 if (unlikely(cache->flags & SLAB_TYPESAFE_BY_RCU))
407 return false;
408
409 shadow_byte = READ_ONCE(*(s8 *)kasan_mem_to_shadow(object));
7f94ffbc
AK
410 if (shadow_invalid(tag, shadow_byte)) {
411 kasan_report_invalid_free(tagged_object, ip);
bffa986c
AK
412 return true;
413 }
414
1f600626 415 rounded_up_size = round_up(cache->object_size, KASAN_GRANULE_SIZE);
cebd0eb2 416 poison_range(object, rounded_up_size, KASAN_KMALLOC_FREE);
bffa986c 417
7f94ffbc
AK
418 if ((IS_ENABLED(CONFIG_KASAN_GENERIC) && !quarantine) ||
419 unlikely(!(cache->flags & SLAB_KASAN)))
bffa986c
AK
420 return false;
421
ae8f06b3
WW
422 kasan_set_free_info(cache, object, tag);
423
bffa986c 424 quarantine_put(get_free_info(cache, object), cache);
7f94ffbc
AK
425
426 return IS_ENABLED(CONFIG_KASAN_GENERIC);
bffa986c
AK
427}
428
429bool kasan_slab_free(struct kmem_cache *cache, void *object, unsigned long ip)
430{
431 return __kasan_slab_free(cache, object, ip, true);
432}
433
a3fe7cdf 434static void *__kasan_kmalloc(struct kmem_cache *cache, const void *object,
e1db95be 435 size_t size, gfp_t flags, bool keep_tag)
bffa986c
AK
436{
437 unsigned long redzone_start;
438 unsigned long redzone_end;
0600597c 439 u8 tag = 0xff;
bffa986c
AK
440
441 if (gfpflags_allow_blocking(flags))
442 quarantine_reduce();
443
444 if (unlikely(object == NULL))
445 return NULL;
446
447 redzone_start = round_up((unsigned long)(object + size),
1f600626 448 KASAN_GRANULE_SIZE);
bffa986c 449 redzone_end = round_up((unsigned long)object + cache->object_size,
1f600626 450 KASAN_GRANULE_SIZE);
bffa986c 451
7f94ffbc 452 if (IS_ENABLED(CONFIG_KASAN_SW_TAGS))
e1db95be 453 tag = assign_tag(cache, object, false, keep_tag);
7f94ffbc
AK
454
455 /* Tag is ignored in set_tag without CONFIG_KASAN_SW_TAGS */
cebd0eb2
AK
456 unpoison_range(set_tag(object, tag), size);
457 poison_range((void *)redzone_start, redzone_end - redzone_start,
458 KASAN_KMALLOC_REDZONE);
bffa986c
AK
459
460 if (cache->flags & SLAB_KASAN)
e4b7818b 461 kasan_set_track(&get_alloc_info(cache, object)->alloc_track, flags);
bffa986c 462
7f94ffbc 463 return set_tag(object, tag);
bffa986c 464}
a3fe7cdf 465
e1db95be
AK
466void * __must_check kasan_slab_alloc(struct kmem_cache *cache, void *object,
467 gfp_t flags)
468{
469 return __kasan_kmalloc(cache, object, cache->object_size, flags, false);
470}
471
a3fe7cdf
AK
472void * __must_check kasan_kmalloc(struct kmem_cache *cache, const void *object,
473 size_t size, gfp_t flags)
474{
e1db95be 475 return __kasan_kmalloc(cache, object, size, flags, true);
a3fe7cdf 476}
bffa986c
AK
477EXPORT_SYMBOL(kasan_kmalloc);
478
66afc7f1
AK
479void * __must_check kasan_kmalloc_large(const void *ptr, size_t size,
480 gfp_t flags)
bffa986c
AK
481{
482 struct page *page;
483 unsigned long redzone_start;
484 unsigned long redzone_end;
485
486 if (gfpflags_allow_blocking(flags))
487 quarantine_reduce();
488
489 if (unlikely(ptr == NULL))
490 return NULL;
491
492 page = virt_to_page(ptr);
493 redzone_start = round_up((unsigned long)(ptr + size),
1f600626 494 KASAN_GRANULE_SIZE);
a50b854e 495 redzone_end = (unsigned long)ptr + page_size(page);
bffa986c 496
cebd0eb2
AK
497 unpoison_range(ptr, size);
498 poison_range((void *)redzone_start, redzone_end - redzone_start,
499 KASAN_PAGE_REDZONE);
bffa986c
AK
500
501 return (void *)ptr;
502}
503
66afc7f1 504void * __must_check kasan_krealloc(const void *object, size_t size, gfp_t flags)
bffa986c
AK
505{
506 struct page *page;
507
508 if (unlikely(object == ZERO_SIZE_PTR))
509 return (void *)object;
510
511 page = virt_to_head_page(object);
512
513 if (unlikely(!PageSlab(page)))
514 return kasan_kmalloc_large(object, size, flags);
515 else
a3fe7cdf
AK
516 return __kasan_kmalloc(page->slab_cache, object, size,
517 flags, true);
bffa986c
AK
518}
519
520void kasan_poison_kfree(void *ptr, unsigned long ip)
521{
522 struct page *page;
523
524 page = virt_to_head_page(ptr);
525
526 if (unlikely(!PageSlab(page))) {
2813b9c0 527 if (ptr != page_address(page)) {
bffa986c
AK
528 kasan_report_invalid_free(ptr, ip);
529 return;
530 }
cebd0eb2 531 poison_range(ptr, page_size(page), KASAN_FREE_PAGE);
bffa986c
AK
532 } else {
533 __kasan_slab_free(page->slab_cache, ptr, ip, false);
534 }
535}
536
537void kasan_kfree_large(void *ptr, unsigned long ip)
538{
2813b9c0 539 if (ptr != page_address(virt_to_head_page(ptr)))
bffa986c
AK
540 kasan_report_invalid_free(ptr, ip);
541 /* The object will be poisoned by page_alloc. */
542}
543
bffa986c
AK
544#ifdef CONFIG_MEMORY_HOTPLUG
545static bool shadow_mapped(unsigned long addr)
546{
547 pgd_t *pgd = pgd_offset_k(addr);
548 p4d_t *p4d;
549 pud_t *pud;
550 pmd_t *pmd;
551 pte_t *pte;
552
553 if (pgd_none(*pgd))
554 return false;
555 p4d = p4d_offset(pgd, addr);
556 if (p4d_none(*p4d))
557 return false;
558 pud = pud_offset(p4d, addr);
559 if (pud_none(*pud))
560 return false;
561
562 /*
563 * We can't use pud_large() or pud_huge(), the first one is
564 * arch-specific, the last one depends on HUGETLB_PAGE. So let's abuse
565 * pud_bad(), if pud is bad then it's bad because it's huge.
566 */
567 if (pud_bad(*pud))
568 return true;
569 pmd = pmd_offset(pud, addr);
570 if (pmd_none(*pmd))
571 return false;
572
573 if (pmd_bad(*pmd))
574 return true;
575 pte = pte_offset_kernel(pmd, addr);
576 return !pte_none(*pte);
577}
578
579static int __meminit kasan_mem_notifier(struct notifier_block *nb,
580 unsigned long action, void *data)
581{
582 struct memory_notify *mem_data = data;
583 unsigned long nr_shadow_pages, start_kaddr, shadow_start;
584 unsigned long shadow_end, shadow_size;
585
586 nr_shadow_pages = mem_data->nr_pages >> KASAN_SHADOW_SCALE_SHIFT;
587 start_kaddr = (unsigned long)pfn_to_kaddr(mem_data->start_pfn);
588 shadow_start = (unsigned long)kasan_mem_to_shadow((void *)start_kaddr);
589 shadow_size = nr_shadow_pages << PAGE_SHIFT;
590 shadow_end = shadow_start + shadow_size;
591
1f600626
AK
592 if (WARN_ON(mem_data->nr_pages % KASAN_GRANULE_SIZE) ||
593 WARN_ON(start_kaddr % (KASAN_GRANULE_SIZE << PAGE_SHIFT)))
bffa986c
AK
594 return NOTIFY_BAD;
595
596 switch (action) {
597 case MEM_GOING_ONLINE: {
598 void *ret;
599
600 /*
601 * If shadow is mapped already than it must have been mapped
602 * during the boot. This could happen if we onlining previously
603 * offlined memory.
604 */
605 if (shadow_mapped(shadow_start))
606 return NOTIFY_OK;
607
608 ret = __vmalloc_node_range(shadow_size, PAGE_SIZE, shadow_start,
609 shadow_end, GFP_KERNEL,
610 PAGE_KERNEL, VM_NO_GUARD,
611 pfn_to_nid(mem_data->start_pfn),
612 __builtin_return_address(0));
613 if (!ret)
614 return NOTIFY_BAD;
615
616 kmemleak_ignore(ret);
617 return NOTIFY_OK;
618 }
619 case MEM_CANCEL_ONLINE:
620 case MEM_OFFLINE: {
621 struct vm_struct *vm;
622
623 /*
624 * shadow_start was either mapped during boot by kasan_init()
625 * or during memory online by __vmalloc_node_range().
626 * In the latter case we can use vfree() to free shadow.
627 * Non-NULL result of the find_vm_area() will tell us if
628 * that was the second case.
629 *
630 * Currently it's not possible to free shadow mapped
631 * during boot by kasan_init(). It's because the code
632 * to do that hasn't been written yet. So we'll just
633 * leak the memory.
634 */
635 vm = find_vm_area((void *)shadow_start);
636 if (vm)
637 vfree((void *)shadow_start);
638 }
639 }
640
641 return NOTIFY_OK;
642}
643
644static int __init kasan_memhotplug_init(void)
645{
646 hotplug_memory_notifier(kasan_mem_notifier, 0);
647
648 return 0;
649}
650
651core_initcall(kasan_memhotplug_init);
652#endif
3c5c3cfb
DA
653
654#ifdef CONFIG_KASAN_VMALLOC
3b1a4a86 655
3c5c3cfb
DA
656static int kasan_populate_vmalloc_pte(pte_t *ptep, unsigned long addr,
657 void *unused)
658{
659 unsigned long page;
660 pte_t pte;
661
662 if (likely(!pte_none(*ptep)))
663 return 0;
664
665 page = __get_free_page(GFP_KERNEL);
666 if (!page)
667 return -ENOMEM;
668
669 memset((void *)page, KASAN_VMALLOC_INVALID, PAGE_SIZE);
670 pte = pfn_pte(PFN_DOWN(__pa(page)), PAGE_KERNEL);
671
672 spin_lock(&init_mm.page_table_lock);
673 if (likely(pte_none(*ptep))) {
674 set_pte_at(&init_mm, addr, ptep, pte);
675 page = 0;
676 }
677 spin_unlock(&init_mm.page_table_lock);
678 if (page)
679 free_page(page);
680 return 0;
681}
682
d98c9e83 683int kasan_populate_vmalloc(unsigned long addr, unsigned long size)
3c5c3cfb
DA
684{
685 unsigned long shadow_start, shadow_end;
686 int ret;
687
d98c9e83
AR
688 if (!is_vmalloc_or_module_addr((void *)addr))
689 return 0;
690
691 shadow_start = (unsigned long)kasan_mem_to_shadow((void *)addr);
3c5c3cfb 692 shadow_start = ALIGN_DOWN(shadow_start, PAGE_SIZE);
d98c9e83 693 shadow_end = (unsigned long)kasan_mem_to_shadow((void *)addr + size);
3c5c3cfb
DA
694 shadow_end = ALIGN(shadow_end, PAGE_SIZE);
695
696 ret = apply_to_page_range(&init_mm, shadow_start,
697 shadow_end - shadow_start,
698 kasan_populate_vmalloc_pte, NULL);
699 if (ret)
700 return ret;
701
702 flush_cache_vmap(shadow_start, shadow_end);
703
3c5c3cfb
DA
704 /*
705 * We need to be careful about inter-cpu effects here. Consider:
706 *
707 * CPU#0 CPU#1
708 * WRITE_ONCE(p, vmalloc(100)); while (x = READ_ONCE(p)) ;
709 * p[99] = 1;
710 *
711 * With compiler instrumentation, that ends up looking like this:
712 *
713 * CPU#0 CPU#1
714 * // vmalloc() allocates memory
715 * // let a = area->addr
716 * // we reach kasan_populate_vmalloc
cebd0eb2 717 * // and call unpoison_range:
3c5c3cfb
DA
718 * STORE shadow(a), unpoison_val
719 * ...
720 * STORE shadow(a+99), unpoison_val x = LOAD p
721 * // rest of vmalloc process <data dependency>
722 * STORE p, a LOAD shadow(x+99)
723 *
724 * If there is no barrier between the end of unpoisioning the shadow
725 * and the store of the result to p, the stores could be committed
726 * in a different order by CPU#0, and CPU#1 could erroneously observe
727 * poison in the shadow.
728 *
729 * We need some sort of barrier between the stores.
730 *
731 * In the vmalloc() case, this is provided by a smp_wmb() in
732 * clear_vm_uninitialized_flag(). In the per-cpu allocator and in
733 * get_vm_area() and friends, the caller gets shadow allocated but
734 * doesn't have any pages mapped into the virtual address space that
735 * has been reserved. Mapping those pages in will involve taking and
736 * releasing a page-table lock, which will provide the barrier.
737 */
738
739 return 0;
740}
741
742/*
743 * Poison the shadow for a vmalloc region. Called as part of the
744 * freeing process at the time the region is freed.
745 */
d98c9e83 746void kasan_poison_vmalloc(const void *start, unsigned long size)
3c5c3cfb 747{
d98c9e83
AR
748 if (!is_vmalloc_or_module_addr(start))
749 return;
750
1f600626 751 size = round_up(size, KASAN_GRANULE_SIZE);
cebd0eb2 752 poison_range(start, size, KASAN_VMALLOC_INVALID);
3c5c3cfb
DA
753}
754
d98c9e83
AR
755void kasan_unpoison_vmalloc(const void *start, unsigned long size)
756{
757 if (!is_vmalloc_or_module_addr(start))
758 return;
759
cebd0eb2 760 unpoison_range(start, size);
d98c9e83
AR
761}
762
3c5c3cfb
DA
763static int kasan_depopulate_vmalloc_pte(pte_t *ptep, unsigned long addr,
764 void *unused)
765{
766 unsigned long page;
767
768 page = (unsigned long)__va(pte_pfn(*ptep) << PAGE_SHIFT);
769
770 spin_lock(&init_mm.page_table_lock);
771
772 if (likely(!pte_none(*ptep))) {
773 pte_clear(&init_mm, addr, ptep);
774 free_page(page);
775 }
776 spin_unlock(&init_mm.page_table_lock);
777
778 return 0;
779}
780
781/*
782 * Release the backing for the vmalloc region [start, end), which
783 * lies within the free region [free_region_start, free_region_end).
784 *
785 * This can be run lazily, long after the region was freed. It runs
786 * under vmap_area_lock, so it's not safe to interact with the vmalloc/vmap
787 * infrastructure.
788 *
789 * How does this work?
790 * -------------------
791 *
792 * We have a region that is page aligned, labelled as A.
793 * That might not map onto the shadow in a way that is page-aligned:
794 *
795 * start end
796 * v v
797 * |????????|????????|AAAAAAAA|AA....AA|AAAAAAAA|????????| < vmalloc
798 * -------- -------- -------- -------- --------
799 * | | | | |
800 * | | | /-------/ |
801 * \-------\|/------/ |/---------------/
802 * ||| ||
803 * |??AAAAAA|AAAAAAAA|AA??????| < shadow
804 * (1) (2) (3)
805 *
806 * First we align the start upwards and the end downwards, so that the
807 * shadow of the region aligns with shadow page boundaries. In the
808 * example, this gives us the shadow page (2). This is the shadow entirely
809 * covered by this allocation.
810 *
811 * Then we have the tricky bits. We want to know if we can free the
812 * partially covered shadow pages - (1) and (3) in the example. For this,
813 * we are given the start and end of the free region that contains this
814 * allocation. Extending our previous example, we could have:
815 *
816 * free_region_start free_region_end
817 * | start end |
818 * v v v v
819 * |FFFFFFFF|FFFFFFFF|AAAAAAAA|AA....AA|AAAAAAAA|FFFFFFFF| < vmalloc
820 * -------- -------- -------- -------- --------
821 * | | | | |
822 * | | | /-------/ |
823 * \-------\|/------/ |/---------------/
824 * ||| ||
825 * |FFAAAAAA|AAAAAAAA|AAF?????| < shadow
826 * (1) (2) (3)
827 *
828 * Once again, we align the start of the free region up, and the end of
829 * the free region down so that the shadow is page aligned. So we can free
830 * page (1) - we know no allocation currently uses anything in that page,
831 * because all of it is in the vmalloc free region. But we cannot free
832 * page (3), because we can't be sure that the rest of it is unused.
833 *
834 * We only consider pages that contain part of the original region for
835 * freeing: we don't try to free other pages from the free region or we'd
836 * end up trying to free huge chunks of virtual address space.
837 *
838 * Concurrency
839 * -----------
840 *
841 * How do we know that we're not freeing a page that is simultaneously
842 * being used for a fresh allocation in kasan_populate_vmalloc(_pte)?
843 *
844 * We _can_ have kasan_release_vmalloc and kasan_populate_vmalloc running
845 * at the same time. While we run under free_vmap_area_lock, the population
846 * code does not.
847 *
848 * free_vmap_area_lock instead operates to ensure that the larger range
849 * [free_region_start, free_region_end) is safe: because __alloc_vmap_area and
850 * the per-cpu region-finding algorithm both run under free_vmap_area_lock,
851 * no space identified as free will become used while we are running. This
852 * means that so long as we are careful with alignment and only free shadow
853 * pages entirely covered by the free region, we will not run in to any
854 * trouble - any simultaneous allocations will be for disjoint regions.
855 */
856void kasan_release_vmalloc(unsigned long start, unsigned long end,
857 unsigned long free_region_start,
858 unsigned long free_region_end)
859{
860 void *shadow_start, *shadow_end;
861 unsigned long region_start, region_end;
e218f1ca 862 unsigned long size;
3c5c3cfb 863
1f600626
AK
864 region_start = ALIGN(start, PAGE_SIZE * KASAN_GRANULE_SIZE);
865 region_end = ALIGN_DOWN(end, PAGE_SIZE * KASAN_GRANULE_SIZE);
3c5c3cfb
DA
866
867 free_region_start = ALIGN(free_region_start,
1f600626 868 PAGE_SIZE * KASAN_GRANULE_SIZE);
3c5c3cfb
DA
869
870 if (start != region_start &&
871 free_region_start < region_start)
1f600626 872 region_start -= PAGE_SIZE * KASAN_GRANULE_SIZE;
3c5c3cfb
DA
873
874 free_region_end = ALIGN_DOWN(free_region_end,
1f600626 875 PAGE_SIZE * KASAN_GRANULE_SIZE);
3c5c3cfb
DA
876
877 if (end != region_end &&
878 free_region_end > region_end)
1f600626 879 region_end += PAGE_SIZE * KASAN_GRANULE_SIZE;
3c5c3cfb
DA
880
881 shadow_start = kasan_mem_to_shadow((void *)region_start);
882 shadow_end = kasan_mem_to_shadow((void *)region_end);
883
884 if (shadow_end > shadow_start) {
e218f1ca
DA
885 size = shadow_end - shadow_start;
886 apply_to_existing_page_range(&init_mm,
887 (unsigned long)shadow_start,
888 size, kasan_depopulate_vmalloc_pte,
889 NULL);
3c5c3cfb
DA
890 flush_tlb_kernel_range((unsigned long)shadow_start,
891 (unsigned long)shadow_end);
892 }
893}
3b1a4a86
AK
894
895#else /* CONFIG_KASAN_VMALLOC */
896
897int kasan_module_alloc(void *addr, size_t size)
898{
899 void *ret;
900 size_t scaled_size;
901 size_t shadow_size;
902 unsigned long shadow_start;
903
904 shadow_start = (unsigned long)kasan_mem_to_shadow(addr);
1f600626
AK
905 scaled_size = (size + KASAN_GRANULE_SIZE - 1) >>
906 KASAN_SHADOW_SCALE_SHIFT;
3b1a4a86
AK
907 shadow_size = round_up(scaled_size, PAGE_SIZE);
908
909 if (WARN_ON(!PAGE_ALIGNED(shadow_start)))
910 return -EINVAL;
911
912 ret = __vmalloc_node_range(shadow_size, 1, shadow_start,
913 shadow_start + shadow_size,
914 GFP_KERNEL,
915 PAGE_KERNEL, VM_NO_GUARD, NUMA_NO_NODE,
916 __builtin_return_address(0));
917
918 if (ret) {
919 __memset(ret, KASAN_SHADOW_INIT, shadow_size);
920 find_vm_area(addr)->flags |= VM_KASAN;
921 kmemleak_ignore(ret);
922 return 0;
923 }
924
925 return -ENOMEM;
926}
927
928void kasan_free_shadow(const struct vm_struct *vm)
929{
930 if (vm->flags & VM_KASAN)
931 vfree(kasan_mem_to_shadow(vm->addr));
932}
933
3c5c3cfb 934#endif