Merge tag 'pm-6.6-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
[linux-2.6-block.git] / mm / internal.h
CommitLineData
2874c5fd 1/* SPDX-License-Identifier: GPL-2.0-or-later */
1da177e4
LT
2/* internal.h: mm/ internal definitions
3 *
4 * Copyright (C) 2004 Red Hat, Inc. All Rights Reserved.
5 * Written by David Howells (dhowells@redhat.com)
1da177e4 6 */
0f8053a5
NP
7#ifndef __MM_INTERNAL_H
8#define __MM_INTERNAL_H
9
29f175d1 10#include <linux/fs.h>
0f8053a5 11#include <linux/mm.h>
e9b61f19 12#include <linux/pagemap.h>
2aff7a47 13#include <linux/rmap.h>
edf14cdb 14#include <linux/tracepoint-defs.h>
1da177e4 15
0e499ed3
MWO
16struct folio_batch;
17
dd56b046
MG
18/*
19 * The set of flags that only affect watermark checking and reclaim
20 * behaviour. This is used by the MM to obey the caller constraints
21 * about IO, FS and watermark checking while ignoring placement
22 * hints such as HIGHMEM usage.
23 */
24#define GFP_RECLAIM_MASK (__GFP_RECLAIM|__GFP_HIGH|__GFP_IO|__GFP_FS|\
dcda9b04 25 __GFP_NOWARN|__GFP_RETRY_MAYFAIL|__GFP_NOFAIL|\
e838a45f 26 __GFP_NORETRY|__GFP_MEMALLOC|__GFP_NOMEMALLOC|\
2973d822 27 __GFP_NOLOCKDEP)
dd56b046
MG
28
29/* The GFP flags allowed during early boot */
30#define GFP_BOOT_MASK (__GFP_BITS_MASK & ~(__GFP_RECLAIM|__GFP_IO|__GFP_FS))
31
32/* Control allocation cpuset and node placement constraints */
33#define GFP_CONSTRAINT_MASK (__GFP_HARDWALL|__GFP_THISNODE)
34
35/* Do not use these with a slab allocator */
36#define GFP_SLAB_BUG_MASK (__GFP_DMA32|__GFP_HIGHMEM|~__GFP_BITS_MASK)
37
3f913fc5
QZ
38/*
39 * Different from WARN_ON_ONCE(), no warning will be issued
40 * when we specify __GFP_NOWARN.
41 */
42#define WARN_ON_ONCE_GFP(cond, gfp) ({ \
43 static bool __section(".data.once") __warned; \
44 int __ret_warn_once = !!(cond); \
45 \
46 if (unlikely(!(gfp & __GFP_NOWARN) && __ret_warn_once && !__warned)) { \
47 __warned = true; \
48 WARN_ON(1); \
49 } \
50 unlikely(__ret_warn_once); \
51})
52
62906027
NP
53void page_writeback_init(void);
54
eec20426
MWO
55/*
56 * If a 16GB hugetlb folio were mapped by PTEs of all of its 4kB pages,
57 * its nr_pages_mapped would be 0x400000: choose the COMPOUND_MAPPED bit
58 * above that range, instead of 2*(PMD_SIZE/PAGE_SIZE). Hugetlb currently
59 * leaves nr_pages_mapped at 0, but avoid surprise if it participates later.
60 */
61#define COMPOUND_MAPPED 0x800000
62#define FOLIO_PAGES_MAPPED (COMPOUND_MAPPED - 1)
63
64/*
65 * How many individual pages have an elevated _mapcount. Excludes
66 * the folio's entire_mapcount.
67 */
68static inline int folio_nr_pages_mapped(struct folio *folio)
69{
70 return atomic_read(&folio->_nr_pages_mapped) & FOLIO_PAGES_MAPPED;
71}
72
64601000
MWO
73static inline void *folio_raw_mapping(struct folio *folio)
74{
75 unsigned long mapping = (unsigned long)folio->mapping;
76
77 return (void *)(mapping & ~PAGE_MAPPING_FLAGS);
78}
79
512b7931 80void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio,
8cd7c588 81 int nr_throttled);
512b7931 82static inline void acct_reclaim_writeback(struct folio *folio)
8cd7c588 83{
512b7931 84 pg_data_t *pgdat = folio_pgdat(folio);
8cd7c588
MG
85 int nr_throttled = atomic_read(&pgdat->nr_writeback_throttled);
86
87 if (nr_throttled)
512b7931 88 __acct_reclaim_writeback(pgdat, folio, nr_throttled);
8cd7c588
MG
89}
90
d818fca1
MG
91static inline void wake_throttle_isolated(pg_data_t *pgdat)
92{
93 wait_queue_head_t *wqh;
94
95 wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_ISOLATED];
96 if (waitqueue_active(wqh))
97 wake_up(wqh);
98}
99
2b740303 100vm_fault_t do_swap_page(struct vm_fault *vmf);
575ced1c 101void folio_rotate_reclaimable(struct folio *folio);
269ccca3 102bool __folio_end_writeback(struct folio *folio);
261b6840 103void deactivate_file_folio(struct folio *folio);
018ee47f 104void folio_activate(struct folio *folio);
8a966ed7 105
763ecb03
LH
106void free_pgtables(struct mmu_gather *tlb, struct maple_tree *mt,
107 struct vm_area_struct *start_vma, unsigned long floor,
98e51a22 108 unsigned long ceiling, bool mm_wr_locked);
03c4f204 109void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte);
42b77728 110
3506659e 111struct zap_details;
aac45363
MH
112void unmap_page_range(struct mmu_gather *tlb,
113 struct vm_area_struct *vma,
114 unsigned long addr, unsigned long end,
115 struct zap_details *details);
116
56a4d67c
MWO
117void page_cache_ra_order(struct readahead_control *, struct file_ra_state *,
118 unsigned int order);
fcd9ae4f 119void force_page_cache_ra(struct readahead_control *, unsigned long nr);
7b3df3b9
DH
120static inline void force_page_cache_readahead(struct address_space *mapping,
121 struct file *file, pgoff_t index, unsigned long nr_to_read)
122{
fcd9ae4f
MWO
123 DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, index);
124 force_page_cache_ra(&ractl, nr_to_read);
7b3df3b9 125}
29f175d1 126
3392ca12 127unsigned find_lock_entries(struct address_space *mapping, pgoff_t *start,
51dcbdac 128 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices);
9fb6beea 129unsigned find_get_entries(struct address_space *mapping, pgoff_t *start,
0e499ed3 130 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices);
78f42660 131void filemap_free_folio(struct address_space *mapping, struct folio *folio);
1e84a3d9 132int truncate_inode_folio(struct address_space *mapping, struct folio *folio);
b9a8a419
MWO
133bool truncate_inode_partial_folio(struct folio *folio, loff_t start,
134 loff_t end);
d6c75dc2 135long invalidate_inode_page(struct page *page);
1a0fc811
MWO
136unsigned long mapping_try_invalidate(struct address_space *mapping,
137 pgoff_t start, pgoff_t end, unsigned long *nr_failed);
5c211ba2 138
1eb6234e 139/**
3eed3ef5
MWO
140 * folio_evictable - Test whether a folio is evictable.
141 * @folio: The folio to test.
1eb6234e 142 *
3eed3ef5
MWO
143 * Test whether @folio is evictable -- i.e., should be placed on
144 * active/inactive lists vs unevictable list.
1eb6234e 145 *
3eed3ef5
MWO
146 * Reasons folio might not be evictable:
147 * 1. folio's mapping marked unevictable
148 * 2. One of the pages in the folio is part of an mlocked VMA
1eb6234e 149 */
3eed3ef5
MWO
150static inline bool folio_evictable(struct folio *folio)
151{
152 bool ret;
153
154 /* Prevent address_space of inode and swap cache from being freed */
155 rcu_read_lock();
156 ret = !mapping_unevictable(folio_mapping(folio)) &&
157 !folio_test_mlocked(folio);
158 rcu_read_unlock();
159 return ret;
160}
161
7835e98b 162/*
0139aa7b 163 * Turn a non-refcounted page (->_refcount == 0) into refcounted with
7835e98b
NP
164 * a count of one.
165 */
166static inline void set_page_refcounted(struct page *page)
167{
309381fe 168 VM_BUG_ON_PAGE(PageTail(page), page);
fe896d18 169 VM_BUG_ON_PAGE(page_ref_count(page), page);
77a8a788 170 set_page_count(page, 1);
77a8a788
NP
171}
172
03f6462a
HD
173extern unsigned long highest_memmap_pfn;
174
c73322d0
JW
175/*
176 * Maximum number of reclaim retries without progress before the OOM
177 * killer is consider the only way forward.
178 */
179#define MAX_RECLAIM_RETRIES 16
180
894bc310
LS
181/*
182 * in mm/vmscan.c:
183 */
f7f9c00d 184bool isolate_lru_page(struct page *page);
be2d5756 185bool folio_isolate_lru(struct folio *folio);
ca6d60f3
MWO
186void putback_lru_page(struct page *page);
187void folio_putback_lru(struct folio *folio);
c3f4a9a2 188extern void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason);
62695a84 189
6219049a
BL
190/*
191 * in mm/rmap.c:
192 */
50722804 193pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address);
6219049a 194
894bc310
LS
195/*
196 * in mm/page_alloc.c
197 */
eb8589b4 198#define K(x) ((x) << (PAGE_SHIFT-10))
3c605096 199
9420f89d
MRI
200extern char * const zone_names[MAX_NR_ZONES];
201
f2fc4b44
MRI
202/* perform sanity checks on struct pages being allocated or freed */
203DECLARE_STATIC_KEY_MAYBE(CONFIG_DEBUG_VM, check_pages_enabled);
204
e95d372c
KW
205extern int min_free_kbytes;
206
207void setup_per_zone_wmarks(void);
208void calculate_min_free_kbytes(void);
209int __meminit init_per_zone_wmark_min(void);
210void page_alloc_sysctl_init(void);
f2fc4b44 211
1a6d53a1
VB
212/*
213 * Structure for holding the mostly immutable allocation parameters passed
214 * between functions involved in allocations, including the alloc_pages*
215 * family of functions.
216 *
97a225e6 217 * nodemask, migratetype and highest_zoneidx are initialized only once in
84172f4b 218 * __alloc_pages() and then never change.
1a6d53a1 219 *
97a225e6 220 * zonelist, preferred_zone and highest_zoneidx are set first in
84172f4b 221 * __alloc_pages() for the fast path, and might be later changed
68956ccb 222 * in __alloc_pages_slowpath(). All other functions pass the whole structure
1a6d53a1
VB
223 * by a const pointer.
224 */
225struct alloc_context {
226 struct zonelist *zonelist;
227 nodemask_t *nodemask;
c33d6c06 228 struct zoneref *preferred_zoneref;
1a6d53a1 229 int migratetype;
97a225e6
JK
230
231 /*
232 * highest_zoneidx represents highest usable zone index of
233 * the allocation request. Due to the nature of the zone,
234 * memory on lower zone than the highest_zoneidx will be
235 * protected by lowmem_reserve[highest_zoneidx].
236 *
237 * highest_zoneidx is also used by reclaim/compaction to limit
238 * the target zone since higher zone than this index cannot be
239 * usable for this allocation request.
240 */
241 enum zone_type highest_zoneidx;
c9ab0c4f 242 bool spread_dirty_pages;
1a6d53a1
VB
243};
244
8170ac47
ZY
245/*
246 * This function returns the order of a free page in the buddy system. In
247 * general, page_zone(page)->lock must be held by the caller to prevent the
248 * page from being allocated in parallel and returning garbage as the order.
249 * If a caller does not hold page_zone(page)->lock, it must guarantee that the
250 * page cannot be allocated or merged in parallel. Alternatively, it must
251 * handle invalid values gracefully, and use buddy_order_unsafe() below.
252 */
253static inline unsigned int buddy_order(struct page *page)
254{
255 /* PageBuddy() must be checked by the caller */
256 return page_private(page);
257}
258
259/*
260 * Like buddy_order(), but for callers who cannot afford to hold the zone lock.
261 * PageBuddy() should be checked first by the caller to minimize race window,
262 * and invalid values must be handled gracefully.
263 *
264 * READ_ONCE is used so that if the caller assigns the result into a local
265 * variable and e.g. tests it for valid range before using, the compiler cannot
266 * decide to remove the variable and inline the page_private(page) multiple
267 * times, potentially observing different values in the tests and the actual
268 * use of the result.
269 */
270#define buddy_order_unsafe(page) READ_ONCE(page_private(page))
271
272/*
273 * This function checks whether a page is free && is the buddy
274 * we can coalesce a page and its buddy if
275 * (a) the buddy is not in a hole (check before calling!) &&
276 * (b) the buddy is in the buddy system &&
277 * (c) a page and its buddy have the same order &&
278 * (d) a page and its buddy are in the same zone.
279 *
280 * For recording whether a page is in the buddy system, we set PageBuddy.
281 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
282 *
283 * For recording page's order, we use page_private(page).
284 */
285static inline bool page_is_buddy(struct page *page, struct page *buddy,
286 unsigned int order)
287{
288 if (!page_is_guard(buddy) && !PageBuddy(buddy))
289 return false;
290
291 if (buddy_order(buddy) != order)
292 return false;
293
294 /*
295 * zone check is done late to avoid uselessly calculating
296 * zone/node ids for pages that could never merge.
297 */
298 if (page_zone_id(page) != page_zone_id(buddy))
299 return false;
300
301 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
302
303 return true;
304}
305
3c605096
JK
306/*
307 * Locate the struct page for both the matching buddy in our
308 * pair (buddy1) and the combined O(n+1) page they form (page).
309 *
310 * 1) Any buddy B1 will have an order O twin B2 which satisfies
311 * the following equation:
312 * B2 = B1 ^ (1 << O)
313 * For example, if the starting buddy (buddy2) is #8 its order
314 * 1 buddy is #10:
315 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
316 *
317 * 2) Any buddy B will have an order O+1 parent P which
318 * satisfies the following equation:
319 * P = B & ~(1 << O)
320 *
321 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
322 */
323static inline unsigned long
76741e77 324__find_buddy_pfn(unsigned long page_pfn, unsigned int order)
3c605096 325{
76741e77 326 return page_pfn ^ (1 << order);
3c605096
JK
327}
328
8170ac47
ZY
329/*
330 * Find the buddy of @page and validate it.
331 * @page: The input page
332 * @pfn: The pfn of the page, it saves a call to page_to_pfn() when the
333 * function is used in the performance-critical __free_one_page().
334 * @order: The order of the page
335 * @buddy_pfn: The output pointer to the buddy pfn, it also saves a call to
336 * page_to_pfn().
337 *
338 * The found buddy can be a non PageBuddy, out of @page's zone, or its order is
339 * not the same as @page. The validation is necessary before use it.
340 *
341 * Return: the found buddy page or NULL if not found.
342 */
343static inline struct page *find_buddy_page_pfn(struct page *page,
344 unsigned long pfn, unsigned int order, unsigned long *buddy_pfn)
345{
346 unsigned long __buddy_pfn = __find_buddy_pfn(pfn, order);
347 struct page *buddy;
348
349 buddy = page + (__buddy_pfn - pfn);
350 if (buddy_pfn)
351 *buddy_pfn = __buddy_pfn;
352
353 if (page_is_buddy(page, buddy, order))
354 return buddy;
355 return NULL;
356}
357
7cf91a98
JK
358extern struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
359 unsigned long end_pfn, struct zone *zone);
360
361static inline struct page *pageblock_pfn_to_page(unsigned long start_pfn,
362 unsigned long end_pfn, struct zone *zone)
363{
364 if (zone->contiguous)
365 return pfn_to_page(start_pfn);
366
367 return __pageblock_pfn_to_page(start_pfn, end_pfn, zone);
368}
369
904d5857
KW
370void set_zone_contiguous(struct zone *zone);
371
372static inline void clear_zone_contiguous(struct zone *zone)
373{
374 zone->contiguous = false;
375}
376
3c605096 377extern int __isolate_free_page(struct page *page, unsigned int order);
624f58d8
AD
378extern void __putback_isolated_page(struct page *page, unsigned int order,
379 int mt);
7c2ee349 380extern void memblock_free_pages(struct page *page, unsigned long pfn,
d70ddd7a 381 unsigned int order);
a9cd410a 382extern void __free_pages_core(struct page *page, unsigned int order);
9420f89d 383
1e3be485
TS
384/*
385 * This will have no effect, other than possibly generating a warning, if the
386 * caller passes in a non-large folio.
387 */
388static inline void folio_set_order(struct folio *folio, unsigned int order)
389{
390 if (WARN_ON_ONCE(!order || !folio_test_large(folio)))
391 return;
392
393 folio->_folio_order = order;
394#ifdef CONFIG_64BIT
395 folio->_folio_nr_pages = 1U << order;
396#endif
397}
398
9420f89d
MRI
399static inline void prep_compound_head(struct page *page, unsigned int order)
400{
401 struct folio *folio = (struct folio *)page;
402
b95826c9 403 folio_set_compound_dtor(folio, COMPOUND_PAGE_DTOR);
1e3be485 404 folio_set_order(folio, order);
9420f89d
MRI
405 atomic_set(&folio->_entire_mapcount, -1);
406 atomic_set(&folio->_nr_pages_mapped, 0);
407 atomic_set(&folio->_pincount, 0);
408}
409
410static inline void prep_compound_tail(struct page *head, int tail_idx)
411{
412 struct page *p = head + tail_idx;
413
414 p->mapping = TAIL_MAPPING;
415 set_compound_head(p, head);
416 set_page_private(p, 0);
417}
418
d00181b9 419extern void prep_compound_page(struct page *page, unsigned int order);
9420f89d 420
46f24fd8
JK
421extern void post_alloc_hook(struct page *page, unsigned int order,
422 gfp_t gfp_flags);
42aa83cb 423extern int user_min_free_kbytes;
20a0307c 424
44042b44 425extern void free_unref_page(struct page *page, unsigned int order);
0966aeb4
MWO
426extern void free_unref_page_list(struct list_head *list);
427
68265390 428extern void zone_pcp_reset(struct zone *zone);
ec6e8c7e
VB
429extern void zone_pcp_disable(struct zone *zone);
430extern void zone_pcp_enable(struct zone *zone);
9420f89d 431extern void zone_pcp_init(struct zone *zone);
68265390 432
c803b3c8
MR
433extern void *memmap_alloc(phys_addr_t size, phys_addr_t align,
434 phys_addr_t min_addr,
435 int nid, bool exact_nid);
436
e95d372c
KW
437void memmap_init_range(unsigned long, int, unsigned long, unsigned long,
438 unsigned long, enum meminit_context, struct vmem_altmap *, int);
b2c9e2fb 439
04a42e72 440
86d28b07
ZY
441int split_free_page(struct page *free_page,
442 unsigned int order, unsigned long split_pfn_offset);
04a42e72 443
ff9543fd
MN
444#if defined CONFIG_COMPACTION || defined CONFIG_CMA
445
446/*
447 * in mm/compaction.c
448 */
449/*
450 * compact_control is used to track pages being migrated and the free pages
451 * they are being migrated to during memory compaction. The free_pfn starts
452 * at the end of a zone and migrate_pfn begins at the start. Movable pages
453 * are moved to the end of a zone during a compaction run and the run
454 * completes when free_pfn <= migrate_pfn
455 */
456struct compact_control {
457 struct list_head freepages; /* List of free pages to migrate to */
458 struct list_head migratepages; /* List of pages being migrated */
c5fbd937
MG
459 unsigned int nr_freepages; /* Number of isolated free pages */
460 unsigned int nr_migratepages; /* Number of pages to migrate */
ff9543fd 461 unsigned long free_pfn; /* isolate_freepages search base */
c2ad7a1f
OS
462 /*
463 * Acts as an in/out parameter to page isolation for migration.
464 * isolate_migratepages uses it as a search base.
465 * isolate_migratepages_block will update the value to the next pfn
466 * after the last isolated one.
467 */
468 unsigned long migrate_pfn;
70b44595 469 unsigned long fast_start_pfn; /* a pfn to start linear scan from */
c5943b9c
MG
470 struct zone *zone;
471 unsigned long total_migrate_scanned;
472 unsigned long total_free_scanned;
dbe2d4e4
MG
473 unsigned short fast_search_fail;/* failures to use free list searches */
474 short search_order; /* order to start a fast search at */
f25ba6dc
VB
475 const gfp_t gfp_mask; /* gfp mask of a direct compactor */
476 int order; /* order a direct compactor needs */
d39773a0 477 int migratetype; /* migratetype of direct compactor */
f25ba6dc 478 const unsigned int alloc_flags; /* alloc flags of a direct compactor */
97a225e6 479 const int highest_zoneidx; /* zone index of a direct compactor */
e0b9daeb 480 enum migrate_mode mode; /* Async or sync migration mode */
bb13ffeb 481 bool ignore_skip_hint; /* Scan blocks even if marked skip */
2583d671 482 bool no_set_skip_hint; /* Don't mark blocks for skipping */
9f7e3387 483 bool ignore_block_suitable; /* Scan blocks considered unsuitable */
accf6242 484 bool direct_compaction; /* False from kcompactd or /proc/... */
facdaa91 485 bool proactive_compaction; /* kcompactd proactive compaction */
06ed2998 486 bool whole_zone; /* Whole zone should/has been scanned */
d56c1584 487 bool contended; /* Signal lock contention */
48731c84
MG
488 bool finish_pageblock; /* Scan the remainder of a pageblock. Used
489 * when there are potentially transient
490 * isolation or migration failures to
491 * ensure forward progress.
492 */
b06eda09 493 bool alloc_contig; /* alloc_contig_range allocation */
ff9543fd
MN
494};
495
5e1f0f09
MG
496/*
497 * Used in direct compaction when a page should be taken from the freelists
498 * immediately when one is created during the free path.
499 */
500struct capture_control {
501 struct compact_control *cc;
502 struct page *page;
503};
504
ff9543fd 505unsigned long
bb13ffeb
MG
506isolate_freepages_range(struct compact_control *cc,
507 unsigned long start_pfn, unsigned long end_pfn);
c2ad7a1f 508int
edc2ca61
VB
509isolate_migratepages_range(struct compact_control *cc,
510 unsigned long low_pfn, unsigned long end_pfn);
b2c9e2fb
ZY
511
512int __alloc_contig_migrate_range(struct compact_control *cc,
513 unsigned long start, unsigned long end);
9420f89d
MRI
514
515/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
516void init_cma_reserved_pageblock(struct page *page);
517
518#endif /* CONFIG_COMPACTION || CONFIG_CMA */
519
2149cdae
JK
520int find_suitable_fallback(struct free_area *area, unsigned int order,
521 int migratetype, bool only_stealable, bool *can_steal);
ff9543fd 522
62f31bd4
MRI
523static inline bool free_area_empty(struct free_area *area, int migratetype)
524{
525 return list_empty(&area->free_list[migratetype]);
526}
527
30bdbb78
KK
528/*
529 * These three helpers classifies VMAs for virtual memory accounting.
530 */
531
532/*
533 * Executable code area - executable, not writable, not stack
534 */
d977d56c
KK
535static inline bool is_exec_mapping(vm_flags_t flags)
536{
30bdbb78 537 return (flags & (VM_EXEC | VM_WRITE | VM_STACK)) == VM_EXEC;
d977d56c
KK
538}
539
30bdbb78 540/*
f0953a1b 541 * Stack area - automatically grows in one direction
30bdbb78
KK
542 *
543 * VM_GROWSUP / VM_GROWSDOWN VMAs are always private anonymous:
544 * do_mmap() forbids all other combinations.
545 */
d977d56c
KK
546static inline bool is_stack_mapping(vm_flags_t flags)
547{
30bdbb78 548 return (flags & VM_STACK) == VM_STACK;
d977d56c
KK
549}
550
30bdbb78
KK
551/*
552 * Data area - private, writable, not stack
553 */
d977d56c
KK
554static inline bool is_data_mapping(vm_flags_t flags)
555{
30bdbb78 556 return (flags & (VM_WRITE | VM_SHARED | VM_STACK)) == VM_WRITE;
d977d56c
KK
557}
558
6038def0 559/* mm/util.c */
e05b3453 560struct anon_vma *folio_anon_vma(struct folio *folio);
6038def0 561
af8e3354 562#ifdef CONFIG_MMU
3506659e 563void unmap_mapping_folio(struct folio *folio);
fc05f566 564extern long populate_vma_page_range(struct vm_area_struct *vma,
a78f1ccd 565 unsigned long start, unsigned long end, int *locked);
4ca9b385
DH
566extern long faultin_vma_page_range(struct vm_area_struct *vma,
567 unsigned long start, unsigned long end,
568 bool write, int *locked);
b0cc5e89 569extern bool mlock_future_ok(struct mm_struct *mm, unsigned long flags,
3c54a298 570 unsigned long bytes);
b291f000 571/*
7efecffb 572 * mlock_vma_folio() and munlock_vma_folio():
cea86fe2
HD
573 * should be called with vma's mmap_lock held for read or write,
574 * under page table lock for the pte/pmd being added or removed.
b291f000 575 *
96f97c43
LS
576 * mlock is usually called at the end of page_add_*_rmap(), munlock at
577 * the end of page_remove_rmap(); but new anon folios are managed by
578 * folio_add_lru_vma() calling mlock_new_folio().
cea86fe2
HD
579 *
580 * @compound is used to include pmd mappings of THPs, but filter out
581 * pte mappings of THPs, which cannot be consistently counted: a pte
582 * mapping of the THP head cannot be distinguished by the page alone.
b291f000 583 */
dcc5d337
MWO
584void mlock_folio(struct folio *folio);
585static inline void mlock_vma_folio(struct folio *folio,
cea86fe2
HD
586 struct vm_area_struct *vma, bool compound)
587{
c8263bd6
HD
588 /*
589 * The VM_SPECIAL check here serves two purposes.
590 * 1) VM_IO check prevents migration from double-counting during mlock.
591 * 2) Although mmap_region() and mlock_fixup() take care that VM_LOCKED
592 * is never left set on a VM_SPECIAL vma, there is an interval while
593 * file->f_op->mmap() is using vm_insert_page(s), when VM_LOCKED may
594 * still be set while VM_SPECIAL bits are added: so ignore it then.
595 */
596 if (unlikely((vma->vm_flags & (VM_LOCKED|VM_SPECIAL)) == VM_LOCKED) &&
dcc5d337
MWO
597 (compound || !folio_test_large(folio)))
598 mlock_folio(folio);
599}
600
96f97c43 601void munlock_folio(struct folio *folio);
96f97c43 602static inline void munlock_vma_folio(struct folio *folio,
cea86fe2
HD
603 struct vm_area_struct *vma, bool compound)
604{
605 if (unlikely(vma->vm_flags & VM_LOCKED) &&
96f97c43
LS
606 (compound || !folio_test_large(folio)))
607 munlock_folio(folio);
cea86fe2 608}
96f97c43 609
96f97c43
LS
610void mlock_new_folio(struct folio *folio);
611bool need_mlock_drain(int cpu);
612void mlock_drain_local(void);
613void mlock_drain_remote(int cpu);
b291f000 614
f55e1014 615extern pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma);
b32967ff 616
e9b61f19 617/*
6a8e0596
MS
618 * Return the start of user virtual address at the specific offset within
619 * a vma.
e9b61f19
KS
620 */
621static inline unsigned long
6a8e0596
MS
622vma_pgoff_address(pgoff_t pgoff, unsigned long nr_pages,
623 struct vm_area_struct *vma)
e9b61f19 624{
494334e4
HD
625 unsigned long address;
626
494334e4
HD
627 if (pgoff >= vma->vm_pgoff) {
628 address = vma->vm_start +
629 ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
630 /* Check for address beyond vma (or wrapped through 0?) */
631 if (address < vma->vm_start || address >= vma->vm_end)
632 address = -EFAULT;
6a8e0596 633 } else if (pgoff + nr_pages - 1 >= vma->vm_pgoff) {
494334e4
HD
634 /* Test above avoids possibility of wrap to 0 on 32-bit */
635 address = vma->vm_start;
636 } else {
637 address = -EFAULT;
638 }
639 return address;
e9b61f19
KS
640}
641
6a8e0596
MS
642/*
643 * Return the start of user virtual address of a page within a vma.
644 * Returns -EFAULT if all of the page is outside the range of vma.
645 * If page is a compound head, the entire compound page is considered.
646 */
647static inline unsigned long
648vma_address(struct page *page, struct vm_area_struct *vma)
649{
650 VM_BUG_ON_PAGE(PageKsm(page), page); /* KSM page->index unusable */
651 return vma_pgoff_address(page_to_pgoff(page), compound_nr(page), vma);
652}
653
494334e4 654/*
2aff7a47 655 * Then at what user virtual address will none of the range be found in vma?
494334e4 656 * Assumes that vma_address() already returned a good starting address.
494334e4 657 */
2aff7a47 658static inline unsigned long vma_address_end(struct page_vma_mapped_walk *pvmw)
e9b61f19 659{
2aff7a47 660 struct vm_area_struct *vma = pvmw->vma;
494334e4
HD
661 pgoff_t pgoff;
662 unsigned long address;
663
2aff7a47
MWO
664 /* Common case, plus ->pgoff is invalid for KSM */
665 if (pvmw->nr_pages == 1)
666 return pvmw->address + PAGE_SIZE;
667
668 pgoff = pvmw->pgoff + pvmw->nr_pages;
494334e4
HD
669 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
670 /* Check for address beyond vma (or wrapped through 0?) */
671 if (address < vma->vm_start || address > vma->vm_end)
672 address = vma->vm_end;
673 return address;
e9b61f19
KS
674}
675
89b15332
JW
676static inline struct file *maybe_unlock_mmap_for_io(struct vm_fault *vmf,
677 struct file *fpin)
678{
679 int flags = vmf->flags;
680
681 if (fpin)
682 return fpin;
683
684 /*
685 * FAULT_FLAG_RETRY_NOWAIT means we don't want to wait on page locks or
c1e8d7c6 686 * anything, so we only pin the file and drop the mmap_lock if only
4064b982 687 * FAULT_FLAG_ALLOW_RETRY is set, while this is the first attempt.
89b15332 688 */
4064b982
PX
689 if (fault_flag_allow_retry_first(flags) &&
690 !(flags & FAULT_FLAG_RETRY_NOWAIT)) {
89b15332 691 fpin = get_file(vmf->vma->vm_file);
d8ed45c5 692 mmap_read_unlock(vmf->vma->vm_mm);
89b15332
JW
693 }
694 return fpin;
695}
af8e3354 696#else /* !CONFIG_MMU */
3506659e 697static inline void unmap_mapping_folio(struct folio *folio) { }
96f97c43
LS
698static inline void mlock_new_folio(struct folio *folio) { }
699static inline bool need_mlock_drain(int cpu) { return false; }
700static inline void mlock_drain_local(void) { }
701static inline void mlock_drain_remote(int cpu) { }
4ad0ae8c
NP
702static inline void vunmap_range_noflush(unsigned long start, unsigned long end)
703{
704}
af8e3354 705#endif /* !CONFIG_MMU */
894bc310 706
6b74ab97 707/* Memory initialisation debug and verification */
9420f89d
MRI
708#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
709DECLARE_STATIC_KEY_TRUE(deferred_pages);
710
711bool __init deferred_grow_zone(struct zone *zone, unsigned int order);
712#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
713
6b74ab97
MG
714enum mminit_level {
715 MMINIT_WARNING,
716 MMINIT_VERIFY,
717 MMINIT_TRACE
718};
719
720#ifdef CONFIG_DEBUG_MEMORY_INIT
721
722extern int mminit_loglevel;
723
724#define mminit_dprintk(level, prefix, fmt, arg...) \
725do { \
726 if (level < mminit_loglevel) { \
fc5199d1 727 if (level <= MMINIT_WARNING) \
1170532b 728 pr_warn("mminit::" prefix " " fmt, ##arg); \
fc5199d1
RV
729 else \
730 printk(KERN_DEBUG "mminit::" prefix " " fmt, ##arg); \
6b74ab97
MG
731 } \
732} while (0)
733
708614e6 734extern void mminit_verify_pageflags_layout(void);
68ad8df4 735extern void mminit_verify_zonelist(void);
6b74ab97
MG
736#else
737
738static inline void mminit_dprintk(enum mminit_level level,
739 const char *prefix, const char *fmt, ...)
740{
741}
742
708614e6
MG
743static inline void mminit_verify_pageflags_layout(void)
744{
745}
746
68ad8df4
MG
747static inline void mminit_verify_zonelist(void)
748{
749}
6b74ab97 750#endif /* CONFIG_DEBUG_MEMORY_INIT */
2dbb51c4 751
a5f5f91d
MG
752#define NODE_RECLAIM_NOSCAN -2
753#define NODE_RECLAIM_FULL -1
754#define NODE_RECLAIM_SOME 0
755#define NODE_RECLAIM_SUCCESS 1
7c116f2b 756
8b09549c
WY
757#ifdef CONFIG_NUMA
758extern int node_reclaim(struct pglist_data *, gfp_t, unsigned int);
79c28a41 759extern int find_next_best_node(int node, nodemask_t *used_node_mask);
8b09549c
WY
760#else
761static inline int node_reclaim(struct pglist_data *pgdat, gfp_t mask,
762 unsigned int order)
763{
764 return NODE_RECLAIM_NOSCAN;
765}
79c28a41
DH
766static inline int find_next_best_node(int node, nodemask_t *used_node_mask)
767{
768 return NUMA_NO_NODE;
769}
8b09549c
WY
770#endif
771
60f272f6 772/*
773 * mm/memory-failure.c
774 */
31d3d348
WF
775extern int hwpoison_filter(struct page *p);
776
7c116f2b
WF
777extern u32 hwpoison_filter_dev_major;
778extern u32 hwpoison_filter_dev_minor;
478c5ffc
WF
779extern u64 hwpoison_filter_flags_mask;
780extern u64 hwpoison_filter_flags_value;
4fd466eb 781extern u64 hwpoison_filter_memcg;
1bfe5feb 782extern u32 hwpoison_filter_enable;
eb36c587 783
dc0ef0df 784extern unsigned long __must_check vm_mmap_pgoff(struct file *, unsigned long,
eb36c587 785 unsigned long, unsigned long,
9fbeb5ab 786 unsigned long, unsigned long);
ca57df79
XQ
787
788extern void set_pageblock_order(void);
4bf4f155 789unsigned long reclaim_pages(struct list_head *folio_list);
730ec8c0 790unsigned int reclaim_clean_pages_from_list(struct zone *zone,
4bf4f155 791 struct list_head *folio_list);
d95ea5d1
BZ
792/* The ALLOC_WMARK bits are used as an index to zone->watermark */
793#define ALLOC_WMARK_MIN WMARK_MIN
794#define ALLOC_WMARK_LOW WMARK_LOW
795#define ALLOC_WMARK_HIGH WMARK_HIGH
796#define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
797
798/* Mask to get the watermark bits */
799#define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
800
cd04ae1e
MH
801/*
802 * Only MMU archs have async oom victim reclaim - aka oom_reaper so we
803 * cannot assume a reduced access to memory reserves is sufficient for
804 * !MMU
805 */
806#ifdef CONFIG_MMU
807#define ALLOC_OOM 0x08
808#else
809#define ALLOC_OOM ALLOC_NO_WATERMARKS
810#endif
811
1ebbb218
MG
812#define ALLOC_NON_BLOCK 0x10 /* Caller cannot block. Allow access
813 * to 25% of the min watermark or
814 * 62.5% if __GFP_HIGH is set.
815 */
524c4807
MG
816#define ALLOC_MIN_RESERVE 0x20 /* __GFP_HIGH set. Allow access to 50%
817 * of the min watermark.
818 */
6bb15450
MG
819#define ALLOC_CPUSET 0x40 /* check for correct cpuset */
820#define ALLOC_CMA 0x80 /* allow allocations from CMA areas */
821#ifdef CONFIG_ZONE_DMA32
822#define ALLOC_NOFRAGMENT 0x100 /* avoid mixing pageblock types */
823#else
824#define ALLOC_NOFRAGMENT 0x0
825#endif
eb2e2b42 826#define ALLOC_HIGHATOMIC 0x200 /* Allows access to MIGRATE_HIGHATOMIC */
736838e9 827#define ALLOC_KSWAPD 0x800 /* allow waking of kswapd, __GFP_KSWAPD_RECLAIM set */
d95ea5d1 828
ab350885 829/* Flags that allow allocations below the min watermark. */
1ebbb218 830#define ALLOC_RESERVES (ALLOC_NON_BLOCK|ALLOC_MIN_RESERVE|ALLOC_HIGHATOMIC|ALLOC_OOM)
ab350885 831
72b252ae
MG
832enum ttu_flags;
833struct tlbflush_unmap_batch;
834
ce612879
MH
835
836/*
837 * only for MM internal work items which do not depend on
838 * any allocations or locks which might depend on allocations
839 */
840extern struct workqueue_struct *mm_percpu_wq;
841
72b252ae
MG
842#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
843void try_to_unmap_flush(void);
d950c947 844void try_to_unmap_flush_dirty(void);
3ea27719 845void flush_tlb_batched_pending(struct mm_struct *mm);
72b252ae
MG
846#else
847static inline void try_to_unmap_flush(void)
848{
849}
d950c947
MG
850static inline void try_to_unmap_flush_dirty(void)
851{
852}
3ea27719
MG
853static inline void flush_tlb_batched_pending(struct mm_struct *mm)
854{
855}
72b252ae 856#endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
edf14cdb
VB
857
858extern const struct trace_print_flags pageflag_names[];
4c85c0be 859extern const struct trace_print_flags pagetype_names[];
edf14cdb
VB
860extern const struct trace_print_flags vmaflag_names[];
861extern const struct trace_print_flags gfpflag_names[];
862
a6ffdc07
XQ
863static inline bool is_migrate_highatomic(enum migratetype migratetype)
864{
865 return migratetype == MIGRATE_HIGHATOMIC;
866}
867
868static inline bool is_migrate_highatomic_page(struct page *page)
869{
870 return get_pageblock_migratetype(page) == MIGRATE_HIGHATOMIC;
871}
872
72675e13 873void setup_zone_pageset(struct zone *zone);
19fc7bed
JK
874
875struct migration_target_control {
876 int nid; /* preferred node id */
877 nodemask_t *nmask;
878 gfp_t gfp_mask;
879};
880
07073eb0
DH
881/*
882 * mm/filemap.c
883 */
884size_t splice_folio_into_pipe(struct pipe_inode_info *pipe,
885 struct folio *folio, loff_t fpos, size_t size);
886
b67177ec
NP
887/*
888 * mm/vmalloc.c
889 */
4ad0ae8c 890#ifdef CONFIG_MMU
b6714911 891void __init vmalloc_init(void);
d905ae2b 892int __must_check vmap_pages_range_noflush(unsigned long addr, unsigned long end,
b67177ec 893 pgprot_t prot, struct page **pages, unsigned int page_shift);
4ad0ae8c 894#else
b6714911
MRI
895static inline void vmalloc_init(void)
896{
897}
898
4ad0ae8c 899static inline
d905ae2b 900int __must_check vmap_pages_range_noflush(unsigned long addr, unsigned long end,
4ad0ae8c
NP
901 pgprot_t prot, struct page **pages, unsigned int page_shift)
902{
903 return -EINVAL;
904}
905#endif
906
d905ae2b
AP
907int __must_check __vmap_pages_range_noflush(unsigned long addr,
908 unsigned long end, pgprot_t prot,
909 struct page **pages, unsigned int page_shift);
b073d7f8 910
4ad0ae8c 911void vunmap_range_noflush(unsigned long start, unsigned long end);
b67177ec 912
b073d7f8
AP
913void __vunmap_range_noflush(unsigned long start, unsigned long end);
914
f4c0d836
YS
915int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
916 unsigned long addr, int page_nid, int *flags);
917
27674ef6 918void free_zone_device_page(struct page *page);
b05a79d4 919int migrate_device_coherent_page(struct page *page);
27674ef6 920
ece1ed7b
MWO
921/*
922 * mm/gup.c
923 */
924struct folio *try_grab_folio(struct page *page, int refs, unsigned int flags);
7ce154fe 925int __must_check try_grab_page(struct page *page, unsigned int flags);
ece1ed7b 926
8b9c1cc0
DH
927/*
928 * mm/huge_memory.c
929 */
930struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
931 unsigned long addr, pmd_t *pmd,
932 unsigned int flags);
933
2c224108
JG
934enum {
935 /* mark page accessed */
936 FOLL_TOUCH = 1 << 16,
937 /* a retry, previous pass started an IO */
938 FOLL_TRIED = 1 << 17,
939 /* we are working on non-current tsk/mm */
940 FOLL_REMOTE = 1 << 18,
941 /* pages must be released via unpin_user_page */
942 FOLL_PIN = 1 << 19,
943 /* gup_fast: prevent fall-back to slow gup */
944 FOLL_FAST_ONLY = 1 << 20,
945 /* allow unlocking the mmap lock */
946 FOLL_UNLOCKABLE = 1 << 21,
947};
948
63b60512
JG
949/*
950 * Indicates for which pages that are write-protected in the page table,
951 * whether GUP has to trigger unsharing via FAULT_FLAG_UNSHARE such that the
952 * GUP pin will remain consistent with the pages mapped into the page tables
953 * of the MM.
954 *
955 * Temporary unmapping of PageAnonExclusive() pages or clearing of
956 * PageAnonExclusive() has to protect against concurrent GUP:
957 * * Ordinary GUP: Using the PT lock
958 * * GUP-fast and fork(): mm->write_protect_seq
959 * * GUP-fast and KSM or temporary unmapping (swap, migration): see
960 * page_try_share_anon_rmap()
961 *
962 * Must be called with the (sub)page that's actually referenced via the
963 * page table entry, which might not necessarily be the head page for a
964 * PTE-mapped THP.
965 *
966 * If the vma is NULL, we're coming from the GUP-fast path and might have
967 * to fallback to the slow path just to lookup the vma.
968 */
969static inline bool gup_must_unshare(struct vm_area_struct *vma,
970 unsigned int flags, struct page *page)
971{
972 /*
973 * FOLL_WRITE is implicitly handled correctly as the page table entry
974 * has to be writable -- and if it references (part of) an anonymous
975 * folio, that part is required to be marked exclusive.
976 */
977 if ((flags & (FOLL_WRITE | FOLL_PIN)) != FOLL_PIN)
978 return false;
979 /*
980 * Note: PageAnon(page) is stable until the page is actually getting
981 * freed.
982 */
983 if (!PageAnon(page)) {
984 /*
985 * We only care about R/O long-term pining: R/O short-term
986 * pinning does not have the semantics to observe successive
987 * changes through the process page tables.
988 */
989 if (!(flags & FOLL_LONGTERM))
990 return false;
991
992 /* We really need the vma ... */
993 if (!vma)
994 return true;
995
996 /*
997 * ... because we only care about writable private ("COW")
998 * mappings where we have to break COW early.
999 */
1000 return is_cow_mapping(vma->vm_flags);
1001 }
1002
1003 /* Paired with a memory barrier in page_try_share_anon_rmap(). */
1004 if (IS_ENABLED(CONFIG_HAVE_FAST_GUP))
1005 smp_rmb();
1006
5805192c
DH
1007 /*
1008 * During GUP-fast we might not get called on the head page for a
1009 * hugetlb page that is mapped using cont-PTE, because GUP-fast does
1010 * not work with the abstracted hugetlb PTEs that always point at the
1011 * head page. For hugetlb, PageAnonExclusive only applies on the head
1012 * page (as it cannot be partially COW-shared), so lookup the head page.
1013 */
1014 if (unlikely(!PageHead(page) && PageHuge(page)))
1015 page = compound_head(page);
1016
63b60512
JG
1017 /*
1018 * Note that PageKsm() pages cannot be exclusive, and consequently,
1019 * cannot get pinned.
1020 */
1021 return !PageAnonExclusive(page);
1022}
ece1ed7b 1023
902c2d91
MW
1024extern bool mirrored_kernelcore;
1025
76aefad6
PX
1026static inline bool vma_soft_dirty_enabled(struct vm_area_struct *vma)
1027{
1028 /*
1029 * NOTE: we must check this before VM_SOFTDIRTY on soft-dirty
1030 * enablements, because when without soft-dirty being compiled in,
1031 * VM_SOFTDIRTY is defined as 0x0, then !(vm_flags & VM_SOFTDIRTY)
1032 * will be constantly true.
1033 */
1034 if (!IS_ENABLED(CONFIG_MEM_SOFT_DIRTY))
1035 return false;
1036
1037 /*
1038 * Soft-dirty is kind of special: its tracking is enabled when the
1039 * vma flags not set.
1040 */
1041 return !(vma->vm_flags & VM_SOFTDIRTY);
1042}
1043
b62b633e
LH
1044/*
1045 * VMA Iterator functions shared between nommu and mmap
1046 */
1047static inline int vma_iter_prealloc(struct vma_iterator *vmi)
1048{
1049 return mas_preallocate(&vmi->mas, GFP_KERNEL);
1050}
1051
1052static inline void vma_iter_clear(struct vma_iterator *vmi,
1053 unsigned long start, unsigned long end)
1054{
1055 mas_set_range(&vmi->mas, start, end - 1);
1056 mas_store_prealloc(&vmi->mas, NULL);
1057}
1058
1059static inline struct vm_area_struct *vma_iter_load(struct vma_iterator *vmi)
1060{
1061 return mas_walk(&vmi->mas);
1062}
1063
1064/* Store a VMA with preallocated memory */
1065static inline void vma_iter_store(struct vma_iterator *vmi,
1066 struct vm_area_struct *vma)
1067{
1068
1069#if defined(CONFIG_DEBUG_VM_MAPLE_TREE)
36bd9310
LH
1070 if (MAS_WARN_ON(&vmi->mas, vmi->mas.node != MAS_START &&
1071 vmi->mas.index > vma->vm_start)) {
1072 pr_warn("%lx > %lx\n store vma %lx-%lx\n into slot %lx-%lx\n",
1073 vmi->mas.index, vma->vm_start, vma->vm_start,
1074 vma->vm_end, vmi->mas.index, vmi->mas.last);
b62b633e 1075 }
36bd9310
LH
1076 if (MAS_WARN_ON(&vmi->mas, vmi->mas.node != MAS_START &&
1077 vmi->mas.last < vma->vm_start)) {
1078 pr_warn("%lx < %lx\nstore vma %lx-%lx\ninto slot %lx-%lx\n",
1079 vmi->mas.last, vma->vm_start, vma->vm_start, vma->vm_end,
1080 vmi->mas.index, vmi->mas.last);
b62b633e
LH
1081 }
1082#endif
1083
1084 if (vmi->mas.node != MAS_START &&
1085 ((vmi->mas.index > vma->vm_start) || (vmi->mas.last < vma->vm_start)))
1086 vma_iter_invalidate(vmi);
1087
1088 vmi->mas.index = vma->vm_start;
1089 vmi->mas.last = vma->vm_end - 1;
1090 mas_store_prealloc(&vmi->mas, vma);
1091}
1092
1093static inline int vma_iter_store_gfp(struct vma_iterator *vmi,
1094 struct vm_area_struct *vma, gfp_t gfp)
1095{
1096 if (vmi->mas.node != MAS_START &&
1097 ((vmi->mas.index > vma->vm_start) || (vmi->mas.last < vma->vm_start)))
1098 vma_iter_invalidate(vmi);
1099
1100 vmi->mas.index = vma->vm_start;
1101 vmi->mas.last = vma->vm_end - 1;
1102 mas_store_gfp(&vmi->mas, vma, gfp);
1103 if (unlikely(mas_is_err(&vmi->mas)))
1104 return -ENOMEM;
1105
1106 return 0;
1107}
440703e0
LH
1108
1109/*
1110 * VMA lock generalization
1111 */
1112struct vma_prepare {
1113 struct vm_area_struct *vma;
1114 struct vm_area_struct *adj_next;
1115 struct file *file;
1116 struct address_space *mapping;
1117 struct anon_vma *anon_vma;
1118 struct vm_area_struct *insert;
1119 struct vm_area_struct *remove;
1120 struct vm_area_struct *remove2;
1121};
db971418 1122#endif /* __MM_INTERNAL_H */