Merge tag 'strlcpy-removal-v6.8-rc1' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-block.git] / mm / hugetlb_vmemmap.c
CommitLineData
f41f2ed4
MS
1// SPDX-License-Identifier: GPL-2.0
2/*
dff03381 3 * HugeTLB Vmemmap Optimization (HVO)
f41f2ed4 4 *
dff03381 5 * Copyright (c) 2020, ByteDance. All rights reserved.
f41f2ed4
MS
6 *
7 * Author: Muchun Song <songmuchun@bytedance.com>
8 *
ee65728e 9 * See Documentation/mm/vmemmap_dedup.rst
f41f2ed4 10 */
e9fdff87
MS
11#define pr_fmt(fmt) "HugeTLB: " fmt
12
998a2997 13#include <linux/pgtable.h>
db5e8d84 14#include <linux/moduleparam.h>
998a2997 15#include <linux/bootmem_info.h>
d8f5f7e4 16#include <linux/mmdebug.h>
fb93ed63 17#include <linux/pagewalk.h>
998a2997
MS
18#include <asm/pgalloc.h>
19#include <asm/tlbflush.h>
f41f2ed4
MS
20#include "hugetlb_vmemmap.h"
21
998a2997
MS
22/**
23 * struct vmemmap_remap_walk - walk vmemmap page table
24 *
25 * @remap_pte: called for each lowest-level entry (PTE).
26 * @nr_walked: the number of walked pte.
27 * @reuse_page: the page which is reused for the tail vmemmap pages.
28 * @reuse_addr: the virtual address of the @reuse_page page.
29 * @vmemmap_pages: the list head of the vmemmap pages that can be freed
30 * or is mapped from.
f4b7e3ef
JM
31 * @flags: used to modify behavior in vmemmap page table walking
32 * operations.
998a2997
MS
33 */
34struct vmemmap_remap_walk {
35 void (*remap_pte)(pte_t *pte, unsigned long addr,
36 struct vmemmap_remap_walk *walk);
37 unsigned long nr_walked;
38 struct page *reuse_page;
39 unsigned long reuse_addr;
40 struct list_head *vmemmap_pages;
f4b7e3ef
JM
41
42/* Skip the TLB flush when we split the PMD */
43#define VMEMMAP_SPLIT_NO_TLB_FLUSH BIT(0)
f13b83fd
JM
44/* Skip the TLB flush when we remap the PTE */
45#define VMEMMAP_REMAP_NO_TLB_FLUSH BIT(1)
f4b7e3ef 46 unsigned long flags;
998a2997
MS
47};
48
fb93ed63
MS
49static int vmemmap_split_pmd(pmd_t *pmd, struct page *head, unsigned long start,
50 struct vmemmap_remap_walk *walk)
998a2997
MS
51{
52 pmd_t __pmd;
53 int i;
54 unsigned long addr = start;
3ce2c24c
MS
55 pte_t *pgtable;
56
3ce2c24c 57 pgtable = pte_alloc_one_kernel(&init_mm);
998a2997
MS
58 if (!pgtable)
59 return -ENOMEM;
60
61 pmd_populate_kernel(&init_mm, &__pmd, pgtable);
62
e38f055d 63 for (i = 0; i < PTRS_PER_PTE; i++, addr += PAGE_SIZE) {
998a2997
MS
64 pte_t entry, *pte;
65 pgprot_t pgprot = PAGE_KERNEL;
66
3ce2c24c 67 entry = mk_pte(head + i, pgprot);
998a2997
MS
68 pte = pte_offset_kernel(&__pmd, addr);
69 set_pte_at(&init_mm, addr, pte, entry);
70 }
71
72 spin_lock(&init_mm.page_table_lock);
73 if (likely(pmd_leaf(*pmd))) {
74 /*
75 * Higher order allocations from buddy allocator must be able to
76 * be treated as indepdenent small pages (as they can be freed
77 * individually).
78 */
3ce2c24c
MS
79 if (!PageReserved(head))
80 split_page(head, get_order(PMD_SIZE));
998a2997
MS
81
82 /* Make pte visible before pmd. See comment in pmd_install(). */
83 smp_wmb();
84 pmd_populate_kernel(&init_mm, pmd, pgtable);
fb93ed63 85 if (!(walk->flags & VMEMMAP_SPLIT_NO_TLB_FLUSH))
f4b7e3ef 86 flush_tlb_kernel_range(start, start + PMD_SIZE);
998a2997
MS
87 } else {
88 pte_free_kernel(&init_mm, pgtable);
89 }
90 spin_unlock(&init_mm.page_table_lock);
91
92 return 0;
93}
94
fb93ed63
MS
95static int vmemmap_pmd_entry(pmd_t *pmd, unsigned long addr,
96 unsigned long next, struct mm_walk *walk)
998a2997 97{
be035a2a 98 int ret = 0;
fb93ed63
MS
99 struct page *head;
100 struct vmemmap_remap_walk *vmemmap_walk = walk->private;
f4b7e3ef 101
fb93ed63
MS
102 /* Only splitting, not remapping the vmemmap pages. */
103 if (!vmemmap_walk->remap_pte)
104 walk->action = ACTION_CONTINUE;
f4b7e3ef 105
fb93ed63
MS
106 spin_lock(&init_mm.page_table_lock);
107 head = pmd_leaf(*pmd) ? pmd_page(*pmd) : NULL;
be035a2a
MS
108 /*
109 * Due to HugeTLB alignment requirements and the vmemmap
110 * pages being at the start of the hotplugged memory
111 * region in memory_hotplug.memmap_on_memory case. Checking
112 * the vmemmap page associated with the first vmemmap page
113 * if it is self-hosted is sufficient.
114 *
115 * [ hotplugged memory ]
116 * [ section ][...][ section ]
117 * [ vmemmap ][ usable memory ]
118 * ^ | ^ |
119 * +--+ | |
120 * +------------------------+
121 */
47e61d88 122 if (IS_ENABLED(CONFIG_MEMORY_HOTPLUG) && unlikely(!vmemmap_walk->nr_walked)) {
be035a2a
MS
123 struct page *page = head ? head + pte_index(addr) :
124 pte_page(ptep_get(pte_offset_kernel(pmd, addr)));
125
126 if (PageVmemmapSelfHosted(page))
127 ret = -ENOTSUPP;
128 }
fb93ed63 129 spin_unlock(&init_mm.page_table_lock);
be035a2a
MS
130 if (!head || ret)
131 return ret;
998a2997 132
fb93ed63 133 return vmemmap_split_pmd(pmd, head, addr & PMD_MASK, vmemmap_walk);
998a2997
MS
134}
135
fb93ed63
MS
136static int vmemmap_pte_entry(pte_t *pte, unsigned long addr,
137 unsigned long next, struct mm_walk *walk)
998a2997 138{
fb93ed63 139 struct vmemmap_remap_walk *vmemmap_walk = walk->private;
998a2997 140
fb93ed63
MS
141 /*
142 * The reuse_page is found 'first' in page table walking before
143 * starting remapping.
144 */
145 if (!vmemmap_walk->reuse_page)
146 vmemmap_walk->reuse_page = pte_page(ptep_get(pte));
147 else
148 vmemmap_walk->remap_pte(pte, addr, vmemmap_walk);
149 vmemmap_walk->nr_walked++;
998a2997
MS
150
151 return 0;
152}
153
fb93ed63
MS
154static const struct mm_walk_ops vmemmap_remap_ops = {
155 .pmd_entry = vmemmap_pmd_entry,
156 .pte_entry = vmemmap_pte_entry,
157};
998a2997
MS
158
159static int vmemmap_remap_range(unsigned long start, unsigned long end,
160 struct vmemmap_remap_walk *walk)
161{
fb93ed63 162 int ret;
998a2997 163
fb93ed63 164 VM_BUG_ON(!PAGE_ALIGNED(start | end));
998a2997 165
49b960de 166 mmap_read_lock(&init_mm);
fb93ed63
MS
167 ret = walk_page_range_novma(&init_mm, start, end, &vmemmap_remap_ops,
168 NULL, walk);
49b960de 169 mmap_read_unlock(&init_mm);
fb93ed63
MS
170 if (ret)
171 return ret;
998a2997 172
f13b83fd 173 if (walk->remap_pte && !(walk->flags & VMEMMAP_REMAP_NO_TLB_FLUSH))
f4b7e3ef 174 flush_tlb_kernel_range(start, end);
998a2997
MS
175
176 return 0;
177}
178
179/*
180 * Free a vmemmap page. A vmemmap page can be allocated from the memblock
181 * allocator or buddy allocator. If the PG_reserved flag is set, it means
182 * that it allocated from the memblock allocator, just free it via the
183 * free_bootmem_page(). Otherwise, use __free_page().
184 */
185static inline void free_vmemmap_page(struct page *page)
186{
187 if (PageReserved(page))
188 free_bootmem_page(page);
189 else
190 __free_page(page);
191}
192
193/* Free a list of the vmemmap pages */
194static void free_vmemmap_page_list(struct list_head *list)
195{
196 struct page *page, *next;
197
1cc53a04 198 list_for_each_entry_safe(page, next, list, lru)
998a2997 199 free_vmemmap_page(page);
998a2997
MS
200}
201
202static void vmemmap_remap_pte(pte_t *pte, unsigned long addr,
203 struct vmemmap_remap_walk *walk)
204{
205 /*
206 * Remap the tail pages as read-only to catch illegal write operation
207 * to the tail pages.
208 */
209 pgprot_t pgprot = PAGE_KERNEL_RO;
c33c7948 210 struct page *page = pte_page(ptep_get(pte));
11aad263
JM
211 pte_t entry;
212
213 /* Remapping the head page requires r/w */
214 if (unlikely(addr == walk->reuse_addr)) {
215 pgprot = PAGE_KERNEL;
216 list_del(&walk->reuse_page->lru);
217
218 /*
219 * Makes sure that preceding stores to the page contents from
220 * vmemmap_remap_free() become visible before the set_pte_at()
221 * write.
222 */
223 smp_wmb();
224 }
998a2997 225
11aad263 226 entry = mk_pte(walk->reuse_page, pgprot);
91f386bf 227 list_add(&page->lru, walk->vmemmap_pages);
998a2997
MS
228 set_pte_at(&init_mm, addr, pte, entry);
229}
230
231/*
232 * How many struct page structs need to be reset. When we reuse the head
233 * struct page, the special metadata (e.g. page->flags or page->mapping)
234 * cannot copy to the tail struct page structs. The invalid value will be
8666925c 235 * checked in the free_tail_page_prepare(). In order to avoid the message
998a2997
MS
236 * of "corrupted mapping in tail page". We need to reset at least 3 (one
237 * head struct page struct and two tail struct page structs) struct page
238 * structs.
239 */
240#define NR_RESET_STRUCT_PAGE 3
241
242static inline void reset_struct_pages(struct page *start)
243{
998a2997
MS
244 struct page *from = start + NR_RESET_STRUCT_PAGE;
245
33febb51
MS
246 BUILD_BUG_ON(NR_RESET_STRUCT_PAGE * 2 > PAGE_SIZE / sizeof(struct page));
247 memcpy(start, from, sizeof(*from) * NR_RESET_STRUCT_PAGE);
998a2997
MS
248}
249
250static void vmemmap_restore_pte(pte_t *pte, unsigned long addr,
251 struct vmemmap_remap_walk *walk)
252{
253 pgprot_t pgprot = PAGE_KERNEL;
254 struct page *page;
255 void *to;
256
c33c7948 257 BUG_ON(pte_page(ptep_get(pte)) != walk->reuse_page);
998a2997
MS
258
259 page = list_first_entry(walk->vmemmap_pages, struct page, lru);
260 list_del(&page->lru);
261 to = page_to_virt(page);
262 copy_page(to, (void *)walk->reuse_addr);
263 reset_struct_pages(to);
264
939de63d
ML
265 /*
266 * Makes sure that preceding stores to the page contents become visible
267 * before the set_pte_at() write.
268 */
269 smp_wmb();
998a2997
MS
270 set_pte_at(&init_mm, addr, pte, mk_pte(page, pgprot));
271}
272
f4b7e3ef
JM
273/**
274 * vmemmap_remap_split - split the vmemmap virtual address range [@start, @end)
275 * backing PMDs of the directmap into PTEs
276 * @start: start address of the vmemmap virtual address range that we want
277 * to remap.
278 * @end: end address of the vmemmap virtual address range that we want to
279 * remap.
280 * @reuse: reuse address.
281 *
282 * Return: %0 on success, negative error code otherwise.
283 */
284static int vmemmap_remap_split(unsigned long start, unsigned long end,
ebc20dca 285 unsigned long reuse)
f4b7e3ef 286{
f4b7e3ef
JM
287 struct vmemmap_remap_walk walk = {
288 .remap_pte = NULL,
289 .flags = VMEMMAP_SPLIT_NO_TLB_FLUSH,
290 };
291
292 /* See the comment in the vmemmap_remap_free(). */
293 BUG_ON(start - reuse != PAGE_SIZE);
294
49b960de 295 return vmemmap_remap_range(reuse, end, &walk);
f4b7e3ef
JM
296}
297
998a2997
MS
298/**
299 * vmemmap_remap_free - remap the vmemmap virtual address range [@start, @end)
300 * to the page which @reuse is mapped to, then free vmemmap
301 * which the range are mapped to.
302 * @start: start address of the vmemmap virtual address range that we want
303 * to remap.
304 * @end: end address of the vmemmap virtual address range that we want to
305 * remap.
306 * @reuse: reuse address.
91f386bf
MK
307 * @vmemmap_pages: list to deposit vmemmap pages to be freed. It is callers
308 * responsibility to free pages.
f13b83fd 309 * @flags: modifications to vmemmap_remap_walk flags
998a2997
MS
310 *
311 * Return: %0 on success, negative error code otherwise.
312 */
313static int vmemmap_remap_free(unsigned long start, unsigned long end,
91f386bf 314 unsigned long reuse,
f13b83fd
JM
315 struct list_head *vmemmap_pages,
316 unsigned long flags)
998a2997
MS
317{
318 int ret;
998a2997
MS
319 struct vmemmap_remap_walk walk = {
320 .remap_pte = vmemmap_remap_pte,
321 .reuse_addr = reuse,
91f386bf 322 .vmemmap_pages = vmemmap_pages,
f13b83fd 323 .flags = flags,
998a2997 324 };
a9e34ea1 325 int nid = page_to_nid((struct page *)reuse);
6a898c27 326 gfp_t gfp_mask = GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN;
11aad263
JM
327
328 /*
329 * Allocate a new head vmemmap page to avoid breaking a contiguous
330 * block of struct page memory when freeing it back to page allocator
331 * in free_vmemmap_page_list(). This will allow the likely contiguous
332 * struct page backing memory to be kept contiguous and allowing for
333 * more allocations of hugepages. Fallback to the currently
334 * mapped head page in case should it fail to allocate.
335 */
336 walk.reuse_page = alloc_pages_node(nid, gfp_mask, 0);
337 if (walk.reuse_page) {
338 copy_page(page_to_virt(walk.reuse_page),
339 (void *)walk.reuse_addr);
91f386bf 340 list_add(&walk.reuse_page->lru, vmemmap_pages);
11aad263 341 }
998a2997
MS
342
343 /*
344 * In order to make remapping routine most efficient for the huge pages,
345 * the routine of vmemmap page table walking has the following rules
346 * (see more details from the vmemmap_pte_range()):
347 *
348 * - The range [@start, @end) and the range [@reuse, @reuse + PAGE_SIZE)
349 * should be continuous.
350 * - The @reuse address is part of the range [@reuse, @end) that we are
351 * walking which is passed to vmemmap_remap_range().
352 * - The @reuse address is the first in the complete range.
353 *
354 * So we need to make sure that @start and @reuse meet the above rules.
355 */
356 BUG_ON(start - reuse != PAGE_SIZE);
357
998a2997
MS
358 ret = vmemmap_remap_range(reuse, end, &walk);
359 if (ret && walk.nr_walked) {
360 end = reuse + walk.nr_walked * PAGE_SIZE;
361 /*
362 * vmemmap_pages contains pages from the previous
363 * vmemmap_remap_range call which failed. These
364 * are pages which were removed from the vmemmap.
365 * They will be restored in the following call.
366 */
367 walk = (struct vmemmap_remap_walk) {
368 .remap_pte = vmemmap_restore_pte,
369 .reuse_addr = reuse,
91f386bf 370 .vmemmap_pages = vmemmap_pages,
f4b7e3ef 371 .flags = 0,
998a2997
MS
372 };
373
374 vmemmap_remap_range(reuse, end, &walk);
375 }
998a2997 376
998a2997
MS
377 return ret;
378}
379
380static int alloc_vmemmap_page_list(unsigned long start, unsigned long end,
eb83f652 381 struct list_head *list)
998a2997 382{
2eaa6c2a 383 gfp_t gfp_mask = GFP_KERNEL | __GFP_RETRY_MAYFAIL;
998a2997
MS
384 unsigned long nr_pages = (end - start) >> PAGE_SHIFT;
385 int nid = page_to_nid((struct page *)start);
386 struct page *page, *next;
387
388 while (nr_pages--) {
389 page = alloc_pages_node(nid, gfp_mask, 0);
390 if (!page)
391 goto out;
91f386bf 392 list_add(&page->lru, list);
998a2997
MS
393 }
394
395 return 0;
396out:
397 list_for_each_entry_safe(page, next, list, lru)
dcc1be11 398 __free_page(page);
998a2997
MS
399 return -ENOMEM;
400}
401
402/**
403 * vmemmap_remap_alloc - remap the vmemmap virtual address range [@start, end)
404 * to the page which is from the @vmemmap_pages
405 * respectively.
406 * @start: start address of the vmemmap virtual address range that we want
407 * to remap.
408 * @end: end address of the vmemmap virtual address range that we want to
409 * remap.
410 * @reuse: reuse address.
c24f188b 411 * @flags: modifications to vmemmap_remap_walk flags
998a2997
MS
412 *
413 * Return: %0 on success, negative error code otherwise.
414 */
415static int vmemmap_remap_alloc(unsigned long start, unsigned long end,
c24f188b 416 unsigned long reuse, unsigned long flags)
998a2997
MS
417{
418 LIST_HEAD(vmemmap_pages);
419 struct vmemmap_remap_walk walk = {
420 .remap_pte = vmemmap_restore_pte,
421 .reuse_addr = reuse,
422 .vmemmap_pages = &vmemmap_pages,
c24f188b 423 .flags = flags,
998a2997
MS
424 };
425
426 /* See the comment in the vmemmap_remap_free(). */
427 BUG_ON(start - reuse != PAGE_SIZE);
428
eb83f652 429 if (alloc_vmemmap_page_list(start, end, &vmemmap_pages))
998a2997
MS
430 return -ENOMEM;
431
49b960de 432 return vmemmap_remap_range(reuse, end, &walk);
998a2997
MS
433}
434
cf5472e5 435DEFINE_STATIC_KEY_FALSE(hugetlb_optimize_vmemmap_key);
f10f1442 436EXPORT_SYMBOL(hugetlb_optimize_vmemmap_key);
e9fdff87 437
30152245
MS
438static bool vmemmap_optimize_enabled = IS_ENABLED(CONFIG_HUGETLB_PAGE_OPTIMIZE_VMEMMAP_DEFAULT_ON);
439core_param(hugetlb_free_vmemmap, vmemmap_optimize_enabled, bool, 0);
f41f2ed4 440
ebc20dca
MS
441static int __hugetlb_vmemmap_restore_folio(const struct hstate *h,
442 struct folio *folio, unsigned long flags)
ad2fa371
MS
443{
444 int ret;
ebc20dca 445 unsigned long vmemmap_start = (unsigned long)&folio->page, vmemmap_end;
6213834c 446 unsigned long vmemmap_reuse;
ad2fa371 447
ebc20dca 448 VM_WARN_ON_ONCE_FOLIO(!folio_test_hugetlb(folio), folio);
c5ad3233 449 if (!folio_test_hugetlb_vmemmap_optimized(folio))
ad2fa371
MS
450 return 0;
451
6213834c
MS
452 vmemmap_end = vmemmap_start + hugetlb_vmemmap_size(h);
453 vmemmap_reuse = vmemmap_start;
454 vmemmap_start += HUGETLB_VMEMMAP_RESERVE_SIZE;
5981611d 455
ad2fa371 456 /*
6213834c 457 * The pages which the vmemmap virtual address range [@vmemmap_start,
ad2fa371
MS
458 * @vmemmap_end) are mapped to are freed to the buddy allocator, and
459 * the range is mapped to the page which @vmemmap_reuse is mapped to.
460 * When a HugeTLB page is freed to the buddy allocator, previously
461 * discarded vmemmap pages must be allocated and remapping.
462 */
c24f188b 463 ret = vmemmap_remap_alloc(vmemmap_start, vmemmap_end, vmemmap_reuse, flags);
78f39084 464 if (!ret) {
c5ad3233 465 folio_clear_hugetlb_vmemmap_optimized(folio);
78f39084
MS
466 static_branch_dec(&hugetlb_optimize_vmemmap_key);
467 }
ad2fa371
MS
468
469 return ret;
470}
471
c24f188b 472/**
c5ad3233
UA
473 * hugetlb_vmemmap_restore_folio - restore previously optimized (by
474 * hugetlb_vmemmap_optimize_folio()) vmemmap pages which
c24f188b
MK
475 * will be reallocated and remapped.
476 * @h: struct hstate.
c5ad3233 477 * @folio: the folio whose vmemmap pages will be restored.
c24f188b 478 *
c5ad3233 479 * Return: %0 if @folio's vmemmap pages have been reallocated and remapped,
c24f188b
MK
480 * negative error code otherwise.
481 */
c5ad3233 482int hugetlb_vmemmap_restore_folio(const struct hstate *h, struct folio *folio)
c24f188b 483{
c5ad3233 484 return __hugetlb_vmemmap_restore_folio(h, folio, 0);
c24f188b
MK
485}
486
cfb8c750
MK
487/**
488 * hugetlb_vmemmap_restore_folios - restore vmemmap for every folio on the list.
489 * @h: hstate.
490 * @folio_list: list of folios.
491 * @non_hvo_folios: Output list of folios for which vmemmap exists.
492 *
493 * Return: number of folios for which vmemmap was restored, or an error code
494 * if an error was encountered restoring vmemmap for a folio.
495 * Folios that have vmemmap are moved to the non_hvo_folios
496 * list. Processing of entries stops when the first error is
497 * encountered. The folio that experienced the error and all
498 * non-processed folios will remain on folio_list.
499 */
500long hugetlb_vmemmap_restore_folios(const struct hstate *h,
501 struct list_head *folio_list,
502 struct list_head *non_hvo_folios)
503{
504 struct folio *folio, *t_folio;
505 long restored = 0;
506 long ret = 0;
507
508 list_for_each_entry_safe(folio, t_folio, folio_list, lru) {
509 if (folio_test_hugetlb_vmemmap_optimized(folio)) {
c5ad3233 510 ret = __hugetlb_vmemmap_restore_folio(h, folio,
ebc20dca 511 VMEMMAP_REMAP_NO_TLB_FLUSH);
cfb8c750
MK
512 if (ret)
513 break;
514 restored++;
515 }
516
517 /* Add non-optimized folios to output list */
518 list_move(&folio->lru, non_hvo_folios);
519 }
520
c24f188b
MK
521 if (restored)
522 flush_tlb_all();
cfb8c750
MK
523 if (!ret)
524 ret = restored;
525 return ret;
526}
527
6213834c 528/* Return true iff a HugeTLB whose vmemmap should and can be optimized. */
ebc20dca 529static bool vmemmap_should_optimize_folio(const struct hstate *h, struct folio *folio)
66361095 530{
ebc20dca 531 if (folio_test_hugetlb_vmemmap_optimized(folio))
79359d6d
MK
532 return false;
533
cf5472e5 534 if (!READ_ONCE(vmemmap_optimize_enabled))
6213834c
MS
535 return false;
536
537 if (!hugetlb_vmemmap_optimizable(h))
538 return false;
66361095 539
6213834c 540 return true;
66361095
MS
541}
542
c5ad3233 543static int __hugetlb_vmemmap_optimize_folio(const struct hstate *h,
ebc20dca
MS
544 struct folio *folio,
545 struct list_head *vmemmap_pages,
546 unsigned long flags)
f41f2ed4 547{
91f386bf 548 int ret = 0;
ebc20dca 549 unsigned long vmemmap_start = (unsigned long)&folio->page, vmemmap_end;
6213834c 550 unsigned long vmemmap_reuse;
f41f2ed4 551
ebc20dca
MS
552 VM_WARN_ON_ONCE_FOLIO(!folio_test_hugetlb(folio), folio);
553 if (!vmemmap_should_optimize_folio(h, folio))
91f386bf 554 return ret;
f41f2ed4 555
78f39084 556 static_branch_inc(&hugetlb_optimize_vmemmap_key);
f13b83fd
JM
557 /*
558 * Very Subtle
559 * If VMEMMAP_REMAP_NO_TLB_FLUSH is set, TLB flushing is not performed
560 * immediately after remapping. As a result, subsequent accesses
561 * and modifications to struct pages associated with the hugetlb
562 * page could be to the OLD struct pages. Set the vmemmap optimized
563 * flag here so that it is copied to the new head page. This keeps
564 * the old and new struct pages in sync.
565 * If there is an error during optimization, we will immediately FLUSH
566 * the TLB and clear the flag below.
567 */
c5ad3233 568 folio_set_hugetlb_vmemmap_optimized(folio);
78f39084 569
6213834c
MS
570 vmemmap_end = vmemmap_start + hugetlb_vmemmap_size(h);
571 vmemmap_reuse = vmemmap_start;
572 vmemmap_start += HUGETLB_VMEMMAP_RESERVE_SIZE;
f41f2ed4
MS
573
574 /*
6213834c 575 * Remap the vmemmap virtual address range [@vmemmap_start, @vmemmap_end)
91f386bf
MK
576 * to the page which @vmemmap_reuse is mapped to. Add pages previously
577 * mapping the range to vmemmap_pages list so that they can be freed by
578 * the caller.
f41f2ed4 579 */
f13b83fd 580 ret = vmemmap_remap_free(vmemmap_start, vmemmap_end, vmemmap_reuse,
ebc20dca 581 vmemmap_pages, flags);
f13b83fd 582 if (ret) {
78f39084 583 static_branch_dec(&hugetlb_optimize_vmemmap_key);
c5ad3233 584 folio_clear_hugetlb_vmemmap_optimized(folio);
f13b83fd 585 }
91f386bf
MK
586
587 return ret;
588}
589
590/**
c5ad3233 591 * hugetlb_vmemmap_optimize_folio - optimize @folio's vmemmap pages.
91f386bf 592 * @h: struct hstate.
c5ad3233 593 * @folio: the folio whose vmemmap pages will be optimized.
91f386bf 594 *
c5ad3233 595 * This function only tries to optimize @folio's vmemmap pages and does not
91f386bf 596 * guarantee that the optimization will succeed after it returns. The caller
c5ad3233
UA
597 * can use folio_test_hugetlb_vmemmap_optimized(@folio) to detect if @folio's
598 * vmemmap pages have been optimized.
91f386bf 599 */
c5ad3233 600void hugetlb_vmemmap_optimize_folio(const struct hstate *h, struct folio *folio)
91f386bf
MK
601{
602 LIST_HEAD(vmemmap_pages);
603
c5ad3233 604 __hugetlb_vmemmap_optimize_folio(h, folio, &vmemmap_pages, 0);
91f386bf 605 free_vmemmap_page_list(&vmemmap_pages);
f41f2ed4 606}
77490587 607
ebc20dca 608static int hugetlb_vmemmap_split_folio(const struct hstate *h, struct folio *folio)
f4b7e3ef 609{
ebc20dca 610 unsigned long vmemmap_start = (unsigned long)&folio->page, vmemmap_end;
f4b7e3ef
JM
611 unsigned long vmemmap_reuse;
612
ebc20dca 613 if (!vmemmap_should_optimize_folio(h, folio))
f4b7e3ef
JM
614 return 0;
615
616 vmemmap_end = vmemmap_start + hugetlb_vmemmap_size(h);
617 vmemmap_reuse = vmemmap_start;
618 vmemmap_start += HUGETLB_VMEMMAP_RESERVE_SIZE;
619
620 /*
621 * Split PMDs on the vmemmap virtual address range [@vmemmap_start,
622 * @vmemmap_end]
623 */
624 return vmemmap_remap_split(vmemmap_start, vmemmap_end, vmemmap_reuse);
625}
626
79359d6d
MK
627void hugetlb_vmemmap_optimize_folios(struct hstate *h, struct list_head *folio_list)
628{
629 struct folio *folio;
91f386bf
MK
630 LIST_HEAD(vmemmap_pages);
631
f4b7e3ef 632 list_for_each_entry(folio, folio_list, lru) {
ebc20dca 633 int ret = hugetlb_vmemmap_split_folio(h, folio);
f4b7e3ef
JM
634
635 /*
636 * Spliting the PMD requires allocating a page, thus lets fail
637 * early once we encounter the first OOM. No point in retrying
638 * as it can be dynamically done on remap with the memory
639 * we get back from the vmemmap deduplication.
640 */
641 if (ret == -ENOMEM)
642 break;
643 }
644
645 flush_tlb_all();
646
91f386bf 647 list_for_each_entry(folio, folio_list, lru) {
ebc20dca
MS
648 int ret;
649
650 ret = __hugetlb_vmemmap_optimize_folio(h, folio, &vmemmap_pages,
651 VMEMMAP_REMAP_NO_TLB_FLUSH);
91f386bf
MK
652
653 /*
654 * Pages to be freed may have been accumulated. If we
655 * encounter an ENOMEM, free what we have and try again.
f13b83fd
JM
656 * This can occur in the case that both spliting fails
657 * halfway and head page allocation also failed. In this
c5ad3233 658 * case __hugetlb_vmemmap_optimize_folio() would free memory
f13b83fd 659 * allowing more vmemmap remaps to occur.
91f386bf
MK
660 */
661 if (ret == -ENOMEM && !list_empty(&vmemmap_pages)) {
f13b83fd 662 flush_tlb_all();
91f386bf
MK
663 free_vmemmap_page_list(&vmemmap_pages);
664 INIT_LIST_HEAD(&vmemmap_pages);
ebc20dca
MS
665 __hugetlb_vmemmap_optimize_folio(h, folio, &vmemmap_pages,
666 VMEMMAP_REMAP_NO_TLB_FLUSH);
91f386bf
MK
667 }
668 }
79359d6d 669
f13b83fd 670 flush_tlb_all();
91f386bf 671 free_vmemmap_page_list(&vmemmap_pages);
79359d6d
MK
672}
673
78f39084
MS
674static struct ctl_table hugetlb_vmemmap_sysctls[] = {
675 {
676 .procname = "hugetlb_optimize_vmemmap",
cf5472e5 677 .data = &vmemmap_optimize_enabled,
f1aa2eb5 678 .maxlen = sizeof(vmemmap_optimize_enabled),
78f39084 679 .mode = 0644,
cf5472e5 680 .proc_handler = proc_dobool,
78f39084
MS
681 },
682 { }
683};
684
6213834c 685static int __init hugetlb_vmemmap_init(void)
78f39084 686{
12318566
MS
687 const struct hstate *h;
688
6213834c 689 /* HUGETLB_VMEMMAP_RESERVE_SIZE should cover all used struct pages */
fde1c4ec 690 BUILD_BUG_ON(__NR_USED_SUBPAGE > HUGETLB_VMEMMAP_RESERVE_PAGES);
6213834c 691
12318566
MS
692 for_each_hstate(h) {
693 if (hugetlb_vmemmap_optimizable(h)) {
694 register_sysctl_init("vm", hugetlb_vmemmap_sysctls);
695 break;
6213834c
MS
696 }
697 }
78f39084
MS
698 return 0;
699}
6213834c 700late_initcall(hugetlb_vmemmap_init);