Merge tag 'wireless-next-2022-09-30' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-block.git] / mm / hugetlb_vmemmap.c
CommitLineData
f41f2ed4
MS
1// SPDX-License-Identifier: GPL-2.0
2/*
dff03381 3 * HugeTLB Vmemmap Optimization (HVO)
f41f2ed4 4 *
dff03381 5 * Copyright (c) 2020, ByteDance. All rights reserved.
f41f2ed4
MS
6 *
7 * Author: Muchun Song <songmuchun@bytedance.com>
8 *
ee65728e 9 * See Documentation/mm/vmemmap_dedup.rst
f41f2ed4 10 */
e9fdff87
MS
11#define pr_fmt(fmt) "HugeTLB: " fmt
12
998a2997
MS
13#include <linux/pgtable.h>
14#include <linux/bootmem_info.h>
15#include <asm/pgalloc.h>
16#include <asm/tlbflush.h>
f41f2ed4
MS
17#include "hugetlb_vmemmap.h"
18
998a2997
MS
19/**
20 * struct vmemmap_remap_walk - walk vmemmap page table
21 *
22 * @remap_pte: called for each lowest-level entry (PTE).
23 * @nr_walked: the number of walked pte.
24 * @reuse_page: the page which is reused for the tail vmemmap pages.
25 * @reuse_addr: the virtual address of the @reuse_page page.
26 * @vmemmap_pages: the list head of the vmemmap pages that can be freed
27 * or is mapped from.
28 */
29struct vmemmap_remap_walk {
30 void (*remap_pte)(pte_t *pte, unsigned long addr,
31 struct vmemmap_remap_walk *walk);
32 unsigned long nr_walked;
33 struct page *reuse_page;
34 unsigned long reuse_addr;
35 struct list_head *vmemmap_pages;
36};
37
998a2997
MS
38static int __split_vmemmap_huge_pmd(pmd_t *pmd, unsigned long start)
39{
40 pmd_t __pmd;
41 int i;
42 unsigned long addr = start;
43 struct page *page = pmd_page(*pmd);
44 pte_t *pgtable = pte_alloc_one_kernel(&init_mm);
45
46 if (!pgtable)
47 return -ENOMEM;
48
49 pmd_populate_kernel(&init_mm, &__pmd, pgtable);
50
e38f055d 51 for (i = 0; i < PTRS_PER_PTE; i++, addr += PAGE_SIZE) {
998a2997
MS
52 pte_t entry, *pte;
53 pgprot_t pgprot = PAGE_KERNEL;
54
55 entry = mk_pte(page + i, pgprot);
56 pte = pte_offset_kernel(&__pmd, addr);
57 set_pte_at(&init_mm, addr, pte, entry);
58 }
59
60 spin_lock(&init_mm.page_table_lock);
61 if (likely(pmd_leaf(*pmd))) {
62 /*
63 * Higher order allocations from buddy allocator must be able to
64 * be treated as indepdenent small pages (as they can be freed
65 * individually).
66 */
67 if (!PageReserved(page))
68 split_page(page, get_order(PMD_SIZE));
69
70 /* Make pte visible before pmd. See comment in pmd_install(). */
71 smp_wmb();
72 pmd_populate_kernel(&init_mm, pmd, pgtable);
73 flush_tlb_kernel_range(start, start + PMD_SIZE);
74 } else {
75 pte_free_kernel(&init_mm, pgtable);
76 }
77 spin_unlock(&init_mm.page_table_lock);
78
79 return 0;
80}
81
82static int split_vmemmap_huge_pmd(pmd_t *pmd, unsigned long start)
83{
84 int leaf;
85
86 spin_lock(&init_mm.page_table_lock);
87 leaf = pmd_leaf(*pmd);
88 spin_unlock(&init_mm.page_table_lock);
89
90 if (!leaf)
91 return 0;
92
93 return __split_vmemmap_huge_pmd(pmd, start);
94}
95
96static void vmemmap_pte_range(pmd_t *pmd, unsigned long addr,
97 unsigned long end,
98 struct vmemmap_remap_walk *walk)
99{
100 pte_t *pte = pte_offset_kernel(pmd, addr);
101
102 /*
103 * The reuse_page is found 'first' in table walk before we start
104 * remapping (which is calling @walk->remap_pte).
105 */
106 if (!walk->reuse_page) {
107 walk->reuse_page = pte_page(*pte);
108 /*
109 * Because the reuse address is part of the range that we are
110 * walking, skip the reuse address range.
111 */
112 addr += PAGE_SIZE;
113 pte++;
114 walk->nr_walked++;
115 }
116
117 for (; addr != end; addr += PAGE_SIZE, pte++) {
118 walk->remap_pte(pte, addr, walk);
119 walk->nr_walked++;
120 }
121}
122
123static int vmemmap_pmd_range(pud_t *pud, unsigned long addr,
124 unsigned long end,
125 struct vmemmap_remap_walk *walk)
126{
127 pmd_t *pmd;
128 unsigned long next;
129
130 pmd = pmd_offset(pud, addr);
131 do {
132 int ret;
133
134 ret = split_vmemmap_huge_pmd(pmd, addr & PMD_MASK);
135 if (ret)
136 return ret;
137
138 next = pmd_addr_end(addr, end);
139 vmemmap_pte_range(pmd, addr, next, walk);
140 } while (pmd++, addr = next, addr != end);
141
142 return 0;
143}
144
145static int vmemmap_pud_range(p4d_t *p4d, unsigned long addr,
146 unsigned long end,
147 struct vmemmap_remap_walk *walk)
148{
149 pud_t *pud;
150 unsigned long next;
151
152 pud = pud_offset(p4d, addr);
153 do {
154 int ret;
155
156 next = pud_addr_end(addr, end);
157 ret = vmemmap_pmd_range(pud, addr, next, walk);
158 if (ret)
159 return ret;
160 } while (pud++, addr = next, addr != end);
161
162 return 0;
163}
164
165static int vmemmap_p4d_range(pgd_t *pgd, unsigned long addr,
166 unsigned long end,
167 struct vmemmap_remap_walk *walk)
168{
169 p4d_t *p4d;
170 unsigned long next;
171
172 p4d = p4d_offset(pgd, addr);
173 do {
174 int ret;
175
176 next = p4d_addr_end(addr, end);
177 ret = vmemmap_pud_range(p4d, addr, next, walk);
178 if (ret)
179 return ret;
180 } while (p4d++, addr = next, addr != end);
181
182 return 0;
183}
184
185static int vmemmap_remap_range(unsigned long start, unsigned long end,
186 struct vmemmap_remap_walk *walk)
187{
188 unsigned long addr = start;
189 unsigned long next;
190 pgd_t *pgd;
191
192 VM_BUG_ON(!PAGE_ALIGNED(start));
193 VM_BUG_ON(!PAGE_ALIGNED(end));
194
195 pgd = pgd_offset_k(addr);
196 do {
197 int ret;
198
199 next = pgd_addr_end(addr, end);
200 ret = vmemmap_p4d_range(pgd, addr, next, walk);
201 if (ret)
202 return ret;
203 } while (pgd++, addr = next, addr != end);
204
205 /*
206 * We only change the mapping of the vmemmap virtual address range
207 * [@start + PAGE_SIZE, end), so we only need to flush the TLB which
208 * belongs to the range.
209 */
210 flush_tlb_kernel_range(start + PAGE_SIZE, end);
211
212 return 0;
213}
214
215/*
216 * Free a vmemmap page. A vmemmap page can be allocated from the memblock
217 * allocator or buddy allocator. If the PG_reserved flag is set, it means
218 * that it allocated from the memblock allocator, just free it via the
219 * free_bootmem_page(). Otherwise, use __free_page().
220 */
221static inline void free_vmemmap_page(struct page *page)
222{
223 if (PageReserved(page))
224 free_bootmem_page(page);
225 else
226 __free_page(page);
227}
228
229/* Free a list of the vmemmap pages */
230static void free_vmemmap_page_list(struct list_head *list)
231{
232 struct page *page, *next;
233
234 list_for_each_entry_safe(page, next, list, lru) {
235 list_del(&page->lru);
236 free_vmemmap_page(page);
237 }
238}
239
240static void vmemmap_remap_pte(pte_t *pte, unsigned long addr,
241 struct vmemmap_remap_walk *walk)
242{
243 /*
244 * Remap the tail pages as read-only to catch illegal write operation
245 * to the tail pages.
246 */
247 pgprot_t pgprot = PAGE_KERNEL_RO;
248 pte_t entry = mk_pte(walk->reuse_page, pgprot);
249 struct page *page = pte_page(*pte);
250
251 list_add_tail(&page->lru, walk->vmemmap_pages);
252 set_pte_at(&init_mm, addr, pte, entry);
253}
254
255/*
256 * How many struct page structs need to be reset. When we reuse the head
257 * struct page, the special metadata (e.g. page->flags or page->mapping)
258 * cannot copy to the tail struct page structs. The invalid value will be
259 * checked in the free_tail_pages_check(). In order to avoid the message
260 * of "corrupted mapping in tail page". We need to reset at least 3 (one
261 * head struct page struct and two tail struct page structs) struct page
262 * structs.
263 */
264#define NR_RESET_STRUCT_PAGE 3
265
266static inline void reset_struct_pages(struct page *start)
267{
268 int i;
269 struct page *from = start + NR_RESET_STRUCT_PAGE;
270
271 for (i = 0; i < NR_RESET_STRUCT_PAGE; i++)
272 memcpy(start + i, from, sizeof(*from));
273}
274
275static void vmemmap_restore_pte(pte_t *pte, unsigned long addr,
276 struct vmemmap_remap_walk *walk)
277{
278 pgprot_t pgprot = PAGE_KERNEL;
279 struct page *page;
280 void *to;
281
282 BUG_ON(pte_page(*pte) != walk->reuse_page);
283
284 page = list_first_entry(walk->vmemmap_pages, struct page, lru);
285 list_del(&page->lru);
286 to = page_to_virt(page);
287 copy_page(to, (void *)walk->reuse_addr);
288 reset_struct_pages(to);
289
290 set_pte_at(&init_mm, addr, pte, mk_pte(page, pgprot));
291}
292
293/**
294 * vmemmap_remap_free - remap the vmemmap virtual address range [@start, @end)
295 * to the page which @reuse is mapped to, then free vmemmap
296 * which the range are mapped to.
297 * @start: start address of the vmemmap virtual address range that we want
298 * to remap.
299 * @end: end address of the vmemmap virtual address range that we want to
300 * remap.
301 * @reuse: reuse address.
302 *
303 * Return: %0 on success, negative error code otherwise.
304 */
305static int vmemmap_remap_free(unsigned long start, unsigned long end,
306 unsigned long reuse)
307{
308 int ret;
309 LIST_HEAD(vmemmap_pages);
310 struct vmemmap_remap_walk walk = {
311 .remap_pte = vmemmap_remap_pte,
312 .reuse_addr = reuse,
313 .vmemmap_pages = &vmemmap_pages,
314 };
315
316 /*
317 * In order to make remapping routine most efficient for the huge pages,
318 * the routine of vmemmap page table walking has the following rules
319 * (see more details from the vmemmap_pte_range()):
320 *
321 * - The range [@start, @end) and the range [@reuse, @reuse + PAGE_SIZE)
322 * should be continuous.
323 * - The @reuse address is part of the range [@reuse, @end) that we are
324 * walking which is passed to vmemmap_remap_range().
325 * - The @reuse address is the first in the complete range.
326 *
327 * So we need to make sure that @start and @reuse meet the above rules.
328 */
329 BUG_ON(start - reuse != PAGE_SIZE);
330
331 mmap_read_lock(&init_mm);
332 ret = vmemmap_remap_range(reuse, end, &walk);
333 if (ret && walk.nr_walked) {
334 end = reuse + walk.nr_walked * PAGE_SIZE;
335 /*
336 * vmemmap_pages contains pages from the previous
337 * vmemmap_remap_range call which failed. These
338 * are pages which were removed from the vmemmap.
339 * They will be restored in the following call.
340 */
341 walk = (struct vmemmap_remap_walk) {
342 .remap_pte = vmemmap_restore_pte,
343 .reuse_addr = reuse,
344 .vmemmap_pages = &vmemmap_pages,
345 };
346
347 vmemmap_remap_range(reuse, end, &walk);
348 }
349 mmap_read_unlock(&init_mm);
350
351 free_vmemmap_page_list(&vmemmap_pages);
352
353 return ret;
354}
355
356static int alloc_vmemmap_page_list(unsigned long start, unsigned long end,
357 gfp_t gfp_mask, struct list_head *list)
358{
359 unsigned long nr_pages = (end - start) >> PAGE_SHIFT;
360 int nid = page_to_nid((struct page *)start);
361 struct page *page, *next;
362
363 while (nr_pages--) {
364 page = alloc_pages_node(nid, gfp_mask, 0);
365 if (!page)
366 goto out;
367 list_add_tail(&page->lru, list);
368 }
369
370 return 0;
371out:
372 list_for_each_entry_safe(page, next, list, lru)
373 __free_pages(page, 0);
374 return -ENOMEM;
375}
376
377/**
378 * vmemmap_remap_alloc - remap the vmemmap virtual address range [@start, end)
379 * to the page which is from the @vmemmap_pages
380 * respectively.
381 * @start: start address of the vmemmap virtual address range that we want
382 * to remap.
383 * @end: end address of the vmemmap virtual address range that we want to
384 * remap.
385 * @reuse: reuse address.
386 * @gfp_mask: GFP flag for allocating vmemmap pages.
387 *
388 * Return: %0 on success, negative error code otherwise.
389 */
390static int vmemmap_remap_alloc(unsigned long start, unsigned long end,
391 unsigned long reuse, gfp_t gfp_mask)
392{
393 LIST_HEAD(vmemmap_pages);
394 struct vmemmap_remap_walk walk = {
395 .remap_pte = vmemmap_restore_pte,
396 .reuse_addr = reuse,
397 .vmemmap_pages = &vmemmap_pages,
398 };
399
400 /* See the comment in the vmemmap_remap_free(). */
401 BUG_ON(start - reuse != PAGE_SIZE);
402
403 if (alloc_vmemmap_page_list(start, end, gfp_mask, &vmemmap_pages))
404 return -ENOMEM;
405
406 mmap_read_lock(&init_mm);
407 vmemmap_remap_range(reuse, end, &walk);
408 mmap_read_unlock(&init_mm);
409
410 return 0;
411}
412
cf5472e5 413DEFINE_STATIC_KEY_FALSE(hugetlb_optimize_vmemmap_key);
f10f1442 414EXPORT_SYMBOL(hugetlb_optimize_vmemmap_key);
e9fdff87 415
30152245
MS
416static bool vmemmap_optimize_enabled = IS_ENABLED(CONFIG_HUGETLB_PAGE_OPTIMIZE_VMEMMAP_DEFAULT_ON);
417core_param(hugetlb_free_vmemmap, vmemmap_optimize_enabled, bool, 0);
f41f2ed4 418
6213834c
MS
419/**
420 * hugetlb_vmemmap_restore - restore previously optimized (by
421 * hugetlb_vmemmap_optimize()) vmemmap pages which
422 * will be reallocated and remapped.
423 * @h: struct hstate.
424 * @head: the head page whose vmemmap pages will be restored.
425 *
426 * Return: %0 if @head's vmemmap pages have been reallocated and remapped,
427 * negative error code otherwise.
ad2fa371 428 */
6213834c 429int hugetlb_vmemmap_restore(const struct hstate *h, struct page *head)
ad2fa371
MS
430{
431 int ret;
6213834c
MS
432 unsigned long vmemmap_start = (unsigned long)head, vmemmap_end;
433 unsigned long vmemmap_reuse;
ad2fa371
MS
434
435 if (!HPageVmemmapOptimized(head))
436 return 0;
437
6213834c
MS
438 vmemmap_end = vmemmap_start + hugetlb_vmemmap_size(h);
439 vmemmap_reuse = vmemmap_start;
440 vmemmap_start += HUGETLB_VMEMMAP_RESERVE_SIZE;
5981611d 441
ad2fa371 442 /*
6213834c 443 * The pages which the vmemmap virtual address range [@vmemmap_start,
ad2fa371
MS
444 * @vmemmap_end) are mapped to are freed to the buddy allocator, and
445 * the range is mapped to the page which @vmemmap_reuse is mapped to.
446 * When a HugeTLB page is freed to the buddy allocator, previously
447 * discarded vmemmap pages must be allocated and remapping.
448 */
6213834c 449 ret = vmemmap_remap_alloc(vmemmap_start, vmemmap_end, vmemmap_reuse,
ad2fa371 450 GFP_KERNEL | __GFP_NORETRY | __GFP_THISNODE);
78f39084 451 if (!ret) {
ad2fa371 452 ClearHPageVmemmapOptimized(head);
78f39084
MS
453 static_branch_dec(&hugetlb_optimize_vmemmap_key);
454 }
ad2fa371
MS
455
456 return ret;
457}
458
6213834c
MS
459/* Return true iff a HugeTLB whose vmemmap should and can be optimized. */
460static bool vmemmap_should_optimize(const struct hstate *h, const struct page *head)
66361095 461{
cf5472e5 462 if (!READ_ONCE(vmemmap_optimize_enabled))
6213834c
MS
463 return false;
464
465 if (!hugetlb_vmemmap_optimizable(h))
466 return false;
66361095
MS
467
468 if (IS_ENABLED(CONFIG_MEMORY_HOTPLUG)) {
469 pmd_t *pmdp, pmd;
470 struct page *vmemmap_page;
471 unsigned long vaddr = (unsigned long)head;
472
473 /*
474 * Only the vmemmap page's vmemmap page can be self-hosted.
475 * Walking the page tables to find the backing page of the
476 * vmemmap page.
477 */
478 pmdp = pmd_off_k(vaddr);
479 /*
480 * The READ_ONCE() is used to stabilize *pmdp in a register or
481 * on the stack so that it will stop changing under the code.
482 * The only concurrent operation where it can be changed is
483 * split_vmemmap_huge_pmd() (*pmdp will be stable after this
484 * operation).
485 */
486 pmd = READ_ONCE(*pmdp);
487 if (pmd_leaf(pmd))
488 vmemmap_page = pmd_page(pmd) + pte_index(vaddr);
489 else
490 vmemmap_page = pte_page(*pte_offset_kernel(pmdp, vaddr));
491 /*
492 * Due to HugeTLB alignment requirements and the vmemmap pages
493 * being at the start of the hotplugged memory region in
494 * memory_hotplug.memmap_on_memory case. Checking any vmemmap
495 * page's vmemmap page if it is marked as VmemmapSelfHosted is
496 * sufficient.
497 *
498 * [ hotplugged memory ]
499 * [ section ][...][ section ]
500 * [ vmemmap ][ usable memory ]
501 * ^ | | |
502 * +---+ | |
503 * ^ | |
504 * +-------+ |
505 * ^ |
506 * +-------------------------------------------+
507 */
508 if (PageVmemmapSelfHosted(vmemmap_page))
6213834c 509 return false;
66361095
MS
510 }
511
6213834c 512 return true;
66361095
MS
513}
514
6213834c
MS
515/**
516 * hugetlb_vmemmap_optimize - optimize @head page's vmemmap pages.
517 * @h: struct hstate.
518 * @head: the head page whose vmemmap pages will be optimized.
519 *
520 * This function only tries to optimize @head's vmemmap pages and does not
521 * guarantee that the optimization will succeed after it returns. The caller
522 * can use HPageVmemmapOptimized(@head) to detect if @head's vmemmap pages
523 * have been optimized.
524 */
525void hugetlb_vmemmap_optimize(const struct hstate *h, struct page *head)
f41f2ed4 526{
6213834c
MS
527 unsigned long vmemmap_start = (unsigned long)head, vmemmap_end;
528 unsigned long vmemmap_reuse;
f41f2ed4 529
6213834c 530 if (!vmemmap_should_optimize(h, head))
f41f2ed4
MS
531 return;
532
78f39084
MS
533 static_branch_inc(&hugetlb_optimize_vmemmap_key);
534
6213834c
MS
535 vmemmap_end = vmemmap_start + hugetlb_vmemmap_size(h);
536 vmemmap_reuse = vmemmap_start;
537 vmemmap_start += HUGETLB_VMEMMAP_RESERVE_SIZE;
f41f2ed4
MS
538
539 /*
6213834c 540 * Remap the vmemmap virtual address range [@vmemmap_start, @vmemmap_end)
f41f2ed4 541 * to the page which @vmemmap_reuse is mapped to, then free the pages
6213834c 542 * which the range [@vmemmap_start, @vmemmap_end] is mapped to.
f41f2ed4 543 */
6213834c 544 if (vmemmap_remap_free(vmemmap_start, vmemmap_end, vmemmap_reuse))
78f39084
MS
545 static_branch_dec(&hugetlb_optimize_vmemmap_key);
546 else
3bc2b6a7 547 SetHPageVmemmapOptimized(head);
f41f2ed4 548}
77490587 549
78f39084
MS
550static struct ctl_table hugetlb_vmemmap_sysctls[] = {
551 {
552 .procname = "hugetlb_optimize_vmemmap",
cf5472e5
MS
553 .data = &vmemmap_optimize_enabled,
554 .maxlen = sizeof(int),
78f39084 555 .mode = 0644,
cf5472e5 556 .proc_handler = proc_dobool,
78f39084
MS
557 },
558 { }
559};
560
6213834c 561static int __init hugetlb_vmemmap_init(void)
78f39084 562{
6213834c
MS
563 /* HUGETLB_VMEMMAP_RESERVE_SIZE should cover all used struct pages */
564 BUILD_BUG_ON(__NR_USED_SUBPAGE * sizeof(struct page) > HUGETLB_VMEMMAP_RESERVE_SIZE);
565
566 if (IS_ENABLED(CONFIG_PROC_SYSCTL)) {
567 const struct hstate *h;
568
569 for_each_hstate(h) {
570 if (hugetlb_vmemmap_optimizable(h)) {
571 register_sysctl_init("vm", hugetlb_vmemmap_sysctls);
572 break;
573 }
574 }
575 }
78f39084
MS
576 return 0;
577}
6213834c 578late_initcall(hugetlb_vmemmap_init);