mm: fix typos in comments
[linux-block.git] / mm / hugetlb.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * Generic hugetlb support.
6d49e352 4 * (C) Nadia Yvette Chambers, April 2004
1da177e4 5 */
1da177e4
LT
6#include <linux/list.h>
7#include <linux/init.h>
1da177e4 8#include <linux/mm.h>
e1759c21 9#include <linux/seq_file.h>
1da177e4
LT
10#include <linux/sysctl.h>
11#include <linux/highmem.h>
cddb8a5c 12#include <linux/mmu_notifier.h>
1da177e4 13#include <linux/nodemask.h>
63551ae0 14#include <linux/pagemap.h>
5da7ca86 15#include <linux/mempolicy.h>
3b32123d 16#include <linux/compiler.h>
aea47ff3 17#include <linux/cpuset.h>
3935baa9 18#include <linux/mutex.h>
97ad1087 19#include <linux/memblock.h>
a3437870 20#include <linux/sysfs.h>
5a0e3ad6 21#include <linux/slab.h>
bbe88753 22#include <linux/sched/mm.h>
63489f8e 23#include <linux/mmdebug.h>
174cd4b1 24#include <linux/sched/signal.h>
0fe6e20b 25#include <linux/rmap.h>
c6247f72 26#include <linux/string_helpers.h>
fd6a03ed
NH
27#include <linux/swap.h>
28#include <linux/swapops.h>
8382d914 29#include <linux/jhash.h>
98fa15f3 30#include <linux/numa.h>
c77c0a8a 31#include <linux/llist.h>
cf11e85f 32#include <linux/cma.h>
d6606683 33
63551ae0 34#include <asm/page.h>
ca15ca40 35#include <asm/pgalloc.h>
24669e58 36#include <asm/tlb.h>
63551ae0 37
24669e58 38#include <linux/io.h>
63551ae0 39#include <linux/hugetlb.h>
9dd540e2 40#include <linux/hugetlb_cgroup.h>
9a305230 41#include <linux/node.h>
ab5ac90a 42#include <linux/page_owner.h>
7835e98b 43#include "internal.h"
1da177e4 44
c3f38a38 45int hugetlb_max_hstate __read_mostly;
e5ff2159
AK
46unsigned int default_hstate_idx;
47struct hstate hstates[HUGE_MAX_HSTATE];
cf11e85f 48
dbda8fea 49#ifdef CONFIG_CMA
cf11e85f 50static struct cma *hugetlb_cma[MAX_NUMNODES];
dbda8fea
BS
51#endif
52static unsigned long hugetlb_cma_size __initdata;
cf11e85f 53
641844f5
NH
54/*
55 * Minimum page order among possible hugepage sizes, set to a proper value
56 * at boot time.
57 */
58static unsigned int minimum_order __read_mostly = UINT_MAX;
e5ff2159 59
53ba51d2
JT
60__initdata LIST_HEAD(huge_boot_pages);
61
e5ff2159
AK
62/* for command line parsing */
63static struct hstate * __initdata parsed_hstate;
64static unsigned long __initdata default_hstate_max_huge_pages;
9fee021d 65static bool __initdata parsed_valid_hugepagesz = true;
282f4214 66static bool __initdata parsed_default_hugepagesz;
e5ff2159 67
3935baa9 68/*
31caf665
NH
69 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
70 * free_huge_pages, and surplus_huge_pages.
3935baa9 71 */
c3f38a38 72DEFINE_SPINLOCK(hugetlb_lock);
0bd0f9fb 73
8382d914
DB
74/*
75 * Serializes faults on the same logical page. This is used to
76 * prevent spurious OOMs when the hugepage pool is fully utilized.
77 */
78static int num_fault_mutexes;
c672c7f2 79struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
8382d914 80
7ca02d0a
MK
81/* Forward declaration */
82static int hugetlb_acct_memory(struct hstate *h, long delta);
83
1d88433b 84static inline bool subpool_is_free(struct hugepage_subpool *spool)
90481622 85{
1d88433b
ML
86 if (spool->count)
87 return false;
88 if (spool->max_hpages != -1)
89 return spool->used_hpages == 0;
90 if (spool->min_hpages != -1)
91 return spool->rsv_hpages == spool->min_hpages;
92
93 return true;
94}
90481622 95
db71ef79
MK
96static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
97 unsigned long irq_flags)
1d88433b 98{
db71ef79 99 spin_unlock_irqrestore(&spool->lock, irq_flags);
90481622
DG
100
101 /* If no pages are used, and no other handles to the subpool
7c8de358 102 * remain, give up any reservations based on minimum size and
7ca02d0a 103 * free the subpool */
1d88433b 104 if (subpool_is_free(spool)) {
7ca02d0a
MK
105 if (spool->min_hpages != -1)
106 hugetlb_acct_memory(spool->hstate,
107 -spool->min_hpages);
90481622 108 kfree(spool);
7ca02d0a 109 }
90481622
DG
110}
111
7ca02d0a
MK
112struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
113 long min_hpages)
90481622
DG
114{
115 struct hugepage_subpool *spool;
116
c6a91820 117 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
90481622
DG
118 if (!spool)
119 return NULL;
120
121 spin_lock_init(&spool->lock);
122 spool->count = 1;
7ca02d0a
MK
123 spool->max_hpages = max_hpages;
124 spool->hstate = h;
125 spool->min_hpages = min_hpages;
126
127 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
128 kfree(spool);
129 return NULL;
130 }
131 spool->rsv_hpages = min_hpages;
90481622
DG
132
133 return spool;
134}
135
136void hugepage_put_subpool(struct hugepage_subpool *spool)
137{
db71ef79
MK
138 unsigned long flags;
139
140 spin_lock_irqsave(&spool->lock, flags);
90481622
DG
141 BUG_ON(!spool->count);
142 spool->count--;
db71ef79 143 unlock_or_release_subpool(spool, flags);
90481622
DG
144}
145
1c5ecae3
MK
146/*
147 * Subpool accounting for allocating and reserving pages.
148 * Return -ENOMEM if there are not enough resources to satisfy the
9e7ee400 149 * request. Otherwise, return the number of pages by which the
1c5ecae3
MK
150 * global pools must be adjusted (upward). The returned value may
151 * only be different than the passed value (delta) in the case where
7c8de358 152 * a subpool minimum size must be maintained.
1c5ecae3
MK
153 */
154static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
90481622
DG
155 long delta)
156{
1c5ecae3 157 long ret = delta;
90481622
DG
158
159 if (!spool)
1c5ecae3 160 return ret;
90481622 161
db71ef79 162 spin_lock_irq(&spool->lock);
1c5ecae3
MK
163
164 if (spool->max_hpages != -1) { /* maximum size accounting */
165 if ((spool->used_hpages + delta) <= spool->max_hpages)
166 spool->used_hpages += delta;
167 else {
168 ret = -ENOMEM;
169 goto unlock_ret;
170 }
90481622 171 }
90481622 172
09a95e29
MK
173 /* minimum size accounting */
174 if (spool->min_hpages != -1 && spool->rsv_hpages) {
1c5ecae3
MK
175 if (delta > spool->rsv_hpages) {
176 /*
177 * Asking for more reserves than those already taken on
178 * behalf of subpool. Return difference.
179 */
180 ret = delta - spool->rsv_hpages;
181 spool->rsv_hpages = 0;
182 } else {
183 ret = 0; /* reserves already accounted for */
184 spool->rsv_hpages -= delta;
185 }
186 }
187
188unlock_ret:
db71ef79 189 spin_unlock_irq(&spool->lock);
90481622
DG
190 return ret;
191}
192
1c5ecae3
MK
193/*
194 * Subpool accounting for freeing and unreserving pages.
195 * Return the number of global page reservations that must be dropped.
196 * The return value may only be different than the passed value (delta)
197 * in the case where a subpool minimum size must be maintained.
198 */
199static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
90481622
DG
200 long delta)
201{
1c5ecae3 202 long ret = delta;
db71ef79 203 unsigned long flags;
1c5ecae3 204
90481622 205 if (!spool)
1c5ecae3 206 return delta;
90481622 207
db71ef79 208 spin_lock_irqsave(&spool->lock, flags);
1c5ecae3
MK
209
210 if (spool->max_hpages != -1) /* maximum size accounting */
211 spool->used_hpages -= delta;
212
09a95e29
MK
213 /* minimum size accounting */
214 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
1c5ecae3
MK
215 if (spool->rsv_hpages + delta <= spool->min_hpages)
216 ret = 0;
217 else
218 ret = spool->rsv_hpages + delta - spool->min_hpages;
219
220 spool->rsv_hpages += delta;
221 if (spool->rsv_hpages > spool->min_hpages)
222 spool->rsv_hpages = spool->min_hpages;
223 }
224
225 /*
226 * If hugetlbfs_put_super couldn't free spool due to an outstanding
227 * quota reference, free it now.
228 */
db71ef79 229 unlock_or_release_subpool(spool, flags);
1c5ecae3
MK
230
231 return ret;
90481622
DG
232}
233
234static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
235{
236 return HUGETLBFS_SB(inode->i_sb)->spool;
237}
238
239static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
240{
496ad9aa 241 return subpool_inode(file_inode(vma->vm_file));
90481622
DG
242}
243
0db9d74e
MA
244/* Helper that removes a struct file_region from the resv_map cache and returns
245 * it for use.
246 */
247static struct file_region *
248get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
249{
250 struct file_region *nrg = NULL;
251
252 VM_BUG_ON(resv->region_cache_count <= 0);
253
254 resv->region_cache_count--;
255 nrg = list_first_entry(&resv->region_cache, struct file_region, link);
0db9d74e
MA
256 list_del(&nrg->link);
257
258 nrg->from = from;
259 nrg->to = to;
260
261 return nrg;
262}
263
075a61d0
MA
264static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
265 struct file_region *rg)
266{
267#ifdef CONFIG_CGROUP_HUGETLB
268 nrg->reservation_counter = rg->reservation_counter;
269 nrg->css = rg->css;
270 if (rg->css)
271 css_get(rg->css);
272#endif
273}
274
275/* Helper that records hugetlb_cgroup uncharge info. */
276static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
277 struct hstate *h,
278 struct resv_map *resv,
279 struct file_region *nrg)
280{
281#ifdef CONFIG_CGROUP_HUGETLB
282 if (h_cg) {
283 nrg->reservation_counter =
284 &h_cg->rsvd_hugepage[hstate_index(h)];
285 nrg->css = &h_cg->css;
d85aecf2
ML
286 /*
287 * The caller will hold exactly one h_cg->css reference for the
288 * whole contiguous reservation region. But this area might be
289 * scattered when there are already some file_regions reside in
290 * it. As a result, many file_regions may share only one css
291 * reference. In order to ensure that one file_region must hold
292 * exactly one h_cg->css reference, we should do css_get for
293 * each file_region and leave the reference held by caller
294 * untouched.
295 */
296 css_get(&h_cg->css);
075a61d0
MA
297 if (!resv->pages_per_hpage)
298 resv->pages_per_hpage = pages_per_huge_page(h);
299 /* pages_per_hpage should be the same for all entries in
300 * a resv_map.
301 */
302 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
303 } else {
304 nrg->reservation_counter = NULL;
305 nrg->css = NULL;
306 }
307#endif
308}
309
d85aecf2
ML
310static void put_uncharge_info(struct file_region *rg)
311{
312#ifdef CONFIG_CGROUP_HUGETLB
313 if (rg->css)
314 css_put(rg->css);
315#endif
316}
317
a9b3f867
MA
318static bool has_same_uncharge_info(struct file_region *rg,
319 struct file_region *org)
320{
321#ifdef CONFIG_CGROUP_HUGETLB
322 return rg && org &&
323 rg->reservation_counter == org->reservation_counter &&
324 rg->css == org->css;
325
326#else
327 return true;
328#endif
329}
330
331static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
332{
333 struct file_region *nrg = NULL, *prg = NULL;
334
335 prg = list_prev_entry(rg, link);
336 if (&prg->link != &resv->regions && prg->to == rg->from &&
337 has_same_uncharge_info(prg, rg)) {
338 prg->to = rg->to;
339
340 list_del(&rg->link);
d85aecf2 341 put_uncharge_info(rg);
a9b3f867
MA
342 kfree(rg);
343
7db5e7b6 344 rg = prg;
a9b3f867
MA
345 }
346
347 nrg = list_next_entry(rg, link);
348 if (&nrg->link != &resv->regions && nrg->from == rg->to &&
349 has_same_uncharge_info(nrg, rg)) {
350 nrg->from = rg->from;
351
352 list_del(&rg->link);
d85aecf2 353 put_uncharge_info(rg);
a9b3f867 354 kfree(rg);
a9b3f867
MA
355 }
356}
357
2103cf9c
PX
358static inline long
359hugetlb_resv_map_add(struct resv_map *map, struct file_region *rg, long from,
360 long to, struct hstate *h, struct hugetlb_cgroup *cg,
361 long *regions_needed)
362{
363 struct file_region *nrg;
364
365 if (!regions_needed) {
366 nrg = get_file_region_entry_from_cache(map, from, to);
367 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
368 list_add(&nrg->link, rg->link.prev);
369 coalesce_file_region(map, nrg);
370 } else
371 *regions_needed += 1;
372
373 return to - from;
374}
375
972a3da3
WY
376/*
377 * Must be called with resv->lock held.
378 *
379 * Calling this with regions_needed != NULL will count the number of pages
380 * to be added but will not modify the linked list. And regions_needed will
381 * indicate the number of file_regions needed in the cache to carry out to add
382 * the regions for this range.
d75c6af9
MA
383 */
384static long add_reservation_in_range(struct resv_map *resv, long f, long t,
075a61d0 385 struct hugetlb_cgroup *h_cg,
972a3da3 386 struct hstate *h, long *regions_needed)
d75c6af9 387{
0db9d74e 388 long add = 0;
d75c6af9 389 struct list_head *head = &resv->regions;
0db9d74e 390 long last_accounted_offset = f;
2103cf9c 391 struct file_region *rg = NULL, *trg = NULL;
d75c6af9 392
0db9d74e
MA
393 if (regions_needed)
394 *regions_needed = 0;
d75c6af9 395
0db9d74e
MA
396 /* In this loop, we essentially handle an entry for the range
397 * [last_accounted_offset, rg->from), at every iteration, with some
398 * bounds checking.
399 */
400 list_for_each_entry_safe(rg, trg, head, link) {
401 /* Skip irrelevant regions that start before our range. */
402 if (rg->from < f) {
403 /* If this region ends after the last accounted offset,
404 * then we need to update last_accounted_offset.
405 */
406 if (rg->to > last_accounted_offset)
407 last_accounted_offset = rg->to;
408 continue;
409 }
d75c6af9 410
0db9d74e
MA
411 /* When we find a region that starts beyond our range, we've
412 * finished.
413 */
ca7e0457 414 if (rg->from >= t)
d75c6af9
MA
415 break;
416
0db9d74e
MA
417 /* Add an entry for last_accounted_offset -> rg->from, and
418 * update last_accounted_offset.
419 */
2103cf9c
PX
420 if (rg->from > last_accounted_offset)
421 add += hugetlb_resv_map_add(resv, rg,
422 last_accounted_offset,
423 rg->from, h, h_cg,
424 regions_needed);
0db9d74e
MA
425
426 last_accounted_offset = rg->to;
427 }
428
429 /* Handle the case where our range extends beyond
430 * last_accounted_offset.
431 */
2103cf9c
PX
432 if (last_accounted_offset < t)
433 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
434 t, h, h_cg, regions_needed);
0db9d74e
MA
435
436 VM_BUG_ON(add < 0);
437 return add;
438}
439
440/* Must be called with resv->lock acquired. Will drop lock to allocate entries.
441 */
442static int allocate_file_region_entries(struct resv_map *resv,
443 int regions_needed)
444 __must_hold(&resv->lock)
445{
446 struct list_head allocated_regions;
447 int to_allocate = 0, i = 0;
448 struct file_region *trg = NULL, *rg = NULL;
449
450 VM_BUG_ON(regions_needed < 0);
451
452 INIT_LIST_HEAD(&allocated_regions);
453
454 /*
455 * Check for sufficient descriptors in the cache to accommodate
456 * the number of in progress add operations plus regions_needed.
457 *
458 * This is a while loop because when we drop the lock, some other call
459 * to region_add or region_del may have consumed some region_entries,
460 * so we keep looping here until we finally have enough entries for
461 * (adds_in_progress + regions_needed).
462 */
463 while (resv->region_cache_count <
464 (resv->adds_in_progress + regions_needed)) {
465 to_allocate = resv->adds_in_progress + regions_needed -
466 resv->region_cache_count;
467
468 /* At this point, we should have enough entries in the cache
f0953a1b 469 * for all the existing adds_in_progress. We should only be
0db9d74e 470 * needing to allocate for regions_needed.
d75c6af9 471 */
0db9d74e
MA
472 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
473
474 spin_unlock(&resv->lock);
475 for (i = 0; i < to_allocate; i++) {
476 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
477 if (!trg)
478 goto out_of_memory;
479 list_add(&trg->link, &allocated_regions);
d75c6af9 480 }
d75c6af9 481
0db9d74e
MA
482 spin_lock(&resv->lock);
483
d3ec7b6e
WY
484 list_splice(&allocated_regions, &resv->region_cache);
485 resv->region_cache_count += to_allocate;
d75c6af9
MA
486 }
487
0db9d74e 488 return 0;
d75c6af9 489
0db9d74e
MA
490out_of_memory:
491 list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
492 list_del(&rg->link);
493 kfree(rg);
494 }
495 return -ENOMEM;
d75c6af9
MA
496}
497
1dd308a7
MK
498/*
499 * Add the huge page range represented by [f, t) to the reserve
0db9d74e
MA
500 * map. Regions will be taken from the cache to fill in this range.
501 * Sufficient regions should exist in the cache due to the previous
502 * call to region_chg with the same range, but in some cases the cache will not
503 * have sufficient entries due to races with other code doing region_add or
504 * region_del. The extra needed entries will be allocated.
cf3ad20b 505 *
0db9d74e
MA
506 * regions_needed is the out value provided by a previous call to region_chg.
507 *
508 * Return the number of new huge pages added to the map. This number is greater
509 * than or equal to zero. If file_region entries needed to be allocated for
7c8de358 510 * this operation and we were not able to allocate, it returns -ENOMEM.
0db9d74e
MA
511 * region_add of regions of length 1 never allocate file_regions and cannot
512 * fail; region_chg will always allocate at least 1 entry and a region_add for
513 * 1 page will only require at most 1 entry.
1dd308a7 514 */
0db9d74e 515static long region_add(struct resv_map *resv, long f, long t,
075a61d0
MA
516 long in_regions_needed, struct hstate *h,
517 struct hugetlb_cgroup *h_cg)
96822904 518{
0db9d74e 519 long add = 0, actual_regions_needed = 0;
96822904 520
7b24d861 521 spin_lock(&resv->lock);
0db9d74e
MA
522retry:
523
524 /* Count how many regions are actually needed to execute this add. */
972a3da3
WY
525 add_reservation_in_range(resv, f, t, NULL, NULL,
526 &actual_regions_needed);
96822904 527
5e911373 528 /*
0db9d74e
MA
529 * Check for sufficient descriptors in the cache to accommodate
530 * this add operation. Note that actual_regions_needed may be greater
531 * than in_regions_needed, as the resv_map may have been modified since
532 * the region_chg call. In this case, we need to make sure that we
533 * allocate extra entries, such that we have enough for all the
534 * existing adds_in_progress, plus the excess needed for this
535 * operation.
5e911373 536 */
0db9d74e
MA
537 if (actual_regions_needed > in_regions_needed &&
538 resv->region_cache_count <
539 resv->adds_in_progress +
540 (actual_regions_needed - in_regions_needed)) {
541 /* region_add operation of range 1 should never need to
542 * allocate file_region entries.
543 */
544 VM_BUG_ON(t - f <= 1);
5e911373 545
0db9d74e
MA
546 if (allocate_file_region_entries(
547 resv, actual_regions_needed - in_regions_needed)) {
548 return -ENOMEM;
549 }
5e911373 550
0db9d74e 551 goto retry;
5e911373
MK
552 }
553
972a3da3 554 add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
0db9d74e
MA
555
556 resv->adds_in_progress -= in_regions_needed;
cf3ad20b 557
7b24d861 558 spin_unlock(&resv->lock);
cf3ad20b 559 return add;
96822904
AW
560}
561
1dd308a7
MK
562/*
563 * Examine the existing reserve map and determine how many
564 * huge pages in the specified range [f, t) are NOT currently
565 * represented. This routine is called before a subsequent
566 * call to region_add that will actually modify the reserve
567 * map to add the specified range [f, t). region_chg does
568 * not change the number of huge pages represented by the
0db9d74e
MA
569 * map. A number of new file_region structures is added to the cache as a
570 * placeholder, for the subsequent region_add call to use. At least 1
571 * file_region structure is added.
572 *
573 * out_regions_needed is the number of regions added to the
574 * resv->adds_in_progress. This value needs to be provided to a follow up call
575 * to region_add or region_abort for proper accounting.
5e911373
MK
576 *
577 * Returns the number of huge pages that need to be added to the existing
578 * reservation map for the range [f, t). This number is greater or equal to
579 * zero. -ENOMEM is returned if a new file_region structure or cache entry
580 * is needed and can not be allocated.
1dd308a7 581 */
0db9d74e
MA
582static long region_chg(struct resv_map *resv, long f, long t,
583 long *out_regions_needed)
96822904 584{
96822904
AW
585 long chg = 0;
586
7b24d861 587 spin_lock(&resv->lock);
5e911373 588
972a3da3 589 /* Count how many hugepages in this range are NOT represented. */
075a61d0 590 chg = add_reservation_in_range(resv, f, t, NULL, NULL,
972a3da3 591 out_regions_needed);
5e911373 592
0db9d74e
MA
593 if (*out_regions_needed == 0)
594 *out_regions_needed = 1;
5e911373 595
0db9d74e
MA
596 if (allocate_file_region_entries(resv, *out_regions_needed))
597 return -ENOMEM;
5e911373 598
0db9d74e 599 resv->adds_in_progress += *out_regions_needed;
7b24d861 600
7b24d861 601 spin_unlock(&resv->lock);
96822904
AW
602 return chg;
603}
604
5e911373
MK
605/*
606 * Abort the in progress add operation. The adds_in_progress field
607 * of the resv_map keeps track of the operations in progress between
608 * calls to region_chg and region_add. Operations are sometimes
609 * aborted after the call to region_chg. In such cases, region_abort
0db9d74e
MA
610 * is called to decrement the adds_in_progress counter. regions_needed
611 * is the value returned by the region_chg call, it is used to decrement
612 * the adds_in_progress counter.
5e911373
MK
613 *
614 * NOTE: The range arguments [f, t) are not needed or used in this
615 * routine. They are kept to make reading the calling code easier as
616 * arguments will match the associated region_chg call.
617 */
0db9d74e
MA
618static void region_abort(struct resv_map *resv, long f, long t,
619 long regions_needed)
5e911373
MK
620{
621 spin_lock(&resv->lock);
622 VM_BUG_ON(!resv->region_cache_count);
0db9d74e 623 resv->adds_in_progress -= regions_needed;
5e911373
MK
624 spin_unlock(&resv->lock);
625}
626
1dd308a7 627/*
feba16e2
MK
628 * Delete the specified range [f, t) from the reserve map. If the
629 * t parameter is LONG_MAX, this indicates that ALL regions after f
630 * should be deleted. Locate the regions which intersect [f, t)
631 * and either trim, delete or split the existing regions.
632 *
633 * Returns the number of huge pages deleted from the reserve map.
634 * In the normal case, the return value is zero or more. In the
635 * case where a region must be split, a new region descriptor must
636 * be allocated. If the allocation fails, -ENOMEM will be returned.
637 * NOTE: If the parameter t == LONG_MAX, then we will never split
638 * a region and possibly return -ENOMEM. Callers specifying
639 * t == LONG_MAX do not need to check for -ENOMEM error.
1dd308a7 640 */
feba16e2 641static long region_del(struct resv_map *resv, long f, long t)
96822904 642{
1406ec9b 643 struct list_head *head = &resv->regions;
96822904 644 struct file_region *rg, *trg;
feba16e2
MK
645 struct file_region *nrg = NULL;
646 long del = 0;
96822904 647
feba16e2 648retry:
7b24d861 649 spin_lock(&resv->lock);
feba16e2 650 list_for_each_entry_safe(rg, trg, head, link) {
dbe409e4
MK
651 /*
652 * Skip regions before the range to be deleted. file_region
653 * ranges are normally of the form [from, to). However, there
654 * may be a "placeholder" entry in the map which is of the form
655 * (from, to) with from == to. Check for placeholder entries
656 * at the beginning of the range to be deleted.
657 */
658 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
feba16e2 659 continue;
dbe409e4 660
feba16e2 661 if (rg->from >= t)
96822904 662 break;
96822904 663
feba16e2
MK
664 if (f > rg->from && t < rg->to) { /* Must split region */
665 /*
666 * Check for an entry in the cache before dropping
667 * lock and attempting allocation.
668 */
669 if (!nrg &&
670 resv->region_cache_count > resv->adds_in_progress) {
671 nrg = list_first_entry(&resv->region_cache,
672 struct file_region,
673 link);
674 list_del(&nrg->link);
675 resv->region_cache_count--;
676 }
96822904 677
feba16e2
MK
678 if (!nrg) {
679 spin_unlock(&resv->lock);
680 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
681 if (!nrg)
682 return -ENOMEM;
683 goto retry;
684 }
685
686 del += t - f;
79aa925b 687 hugetlb_cgroup_uncharge_file_region(
d85aecf2 688 resv, rg, t - f, false);
feba16e2
MK
689
690 /* New entry for end of split region */
691 nrg->from = t;
692 nrg->to = rg->to;
075a61d0
MA
693
694 copy_hugetlb_cgroup_uncharge_info(nrg, rg);
695
feba16e2
MK
696 INIT_LIST_HEAD(&nrg->link);
697
698 /* Original entry is trimmed */
699 rg->to = f;
700
701 list_add(&nrg->link, &rg->link);
702 nrg = NULL;
96822904 703 break;
feba16e2
MK
704 }
705
706 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
707 del += rg->to - rg->from;
075a61d0 708 hugetlb_cgroup_uncharge_file_region(resv, rg,
d85aecf2 709 rg->to - rg->from, true);
feba16e2
MK
710 list_del(&rg->link);
711 kfree(rg);
712 continue;
713 }
714
715 if (f <= rg->from) { /* Trim beginning of region */
075a61d0 716 hugetlb_cgroup_uncharge_file_region(resv, rg,
d85aecf2 717 t - rg->from, false);
075a61d0 718
79aa925b
MK
719 del += t - rg->from;
720 rg->from = t;
721 } else { /* Trim end of region */
075a61d0 722 hugetlb_cgroup_uncharge_file_region(resv, rg,
d85aecf2 723 rg->to - f, false);
79aa925b
MK
724
725 del += rg->to - f;
726 rg->to = f;
feba16e2 727 }
96822904 728 }
7b24d861 729
7b24d861 730 spin_unlock(&resv->lock);
feba16e2
MK
731 kfree(nrg);
732 return del;
96822904
AW
733}
734
b5cec28d
MK
735/*
736 * A rare out of memory error was encountered which prevented removal of
737 * the reserve map region for a page. The huge page itself was free'ed
738 * and removed from the page cache. This routine will adjust the subpool
739 * usage count, and the global reserve count if needed. By incrementing
740 * these counts, the reserve map entry which could not be deleted will
741 * appear as a "reserved" entry instead of simply dangling with incorrect
742 * counts.
743 */
72e2936c 744void hugetlb_fix_reserve_counts(struct inode *inode)
b5cec28d
MK
745{
746 struct hugepage_subpool *spool = subpool_inode(inode);
747 long rsv_adjust;
da56388c 748 bool reserved = false;
b5cec28d
MK
749
750 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
da56388c 751 if (rsv_adjust > 0) {
b5cec28d
MK
752 struct hstate *h = hstate_inode(inode);
753
da56388c
ML
754 if (!hugetlb_acct_memory(h, 1))
755 reserved = true;
756 } else if (!rsv_adjust) {
757 reserved = true;
b5cec28d 758 }
da56388c
ML
759
760 if (!reserved)
761 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
b5cec28d
MK
762}
763
1dd308a7
MK
764/*
765 * Count and return the number of huge pages in the reserve map
766 * that intersect with the range [f, t).
767 */
1406ec9b 768static long region_count(struct resv_map *resv, long f, long t)
84afd99b 769{
1406ec9b 770 struct list_head *head = &resv->regions;
84afd99b
AW
771 struct file_region *rg;
772 long chg = 0;
773
7b24d861 774 spin_lock(&resv->lock);
84afd99b
AW
775 /* Locate each segment we overlap with, and count that overlap. */
776 list_for_each_entry(rg, head, link) {
f2135a4a
WSH
777 long seg_from;
778 long seg_to;
84afd99b
AW
779
780 if (rg->to <= f)
781 continue;
782 if (rg->from >= t)
783 break;
784
785 seg_from = max(rg->from, f);
786 seg_to = min(rg->to, t);
787
788 chg += seg_to - seg_from;
789 }
7b24d861 790 spin_unlock(&resv->lock);
84afd99b
AW
791
792 return chg;
793}
794
e7c4b0bf
AW
795/*
796 * Convert the address within this vma to the page offset within
797 * the mapping, in pagecache page units; huge pages here.
798 */
a5516438
AK
799static pgoff_t vma_hugecache_offset(struct hstate *h,
800 struct vm_area_struct *vma, unsigned long address)
e7c4b0bf 801{
a5516438
AK
802 return ((address - vma->vm_start) >> huge_page_shift(h)) +
803 (vma->vm_pgoff >> huge_page_order(h));
e7c4b0bf
AW
804}
805
0fe6e20b
NH
806pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
807 unsigned long address)
808{
809 return vma_hugecache_offset(hstate_vma(vma), vma, address);
810}
dee41079 811EXPORT_SYMBOL_GPL(linear_hugepage_index);
0fe6e20b 812
08fba699
MG
813/*
814 * Return the size of the pages allocated when backing a VMA. In the majority
815 * cases this will be same size as used by the page table entries.
816 */
817unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
818{
05ea8860
DW
819 if (vma->vm_ops && vma->vm_ops->pagesize)
820 return vma->vm_ops->pagesize(vma);
821 return PAGE_SIZE;
08fba699 822}
f340ca0f 823EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
08fba699 824
3340289d
MG
825/*
826 * Return the page size being used by the MMU to back a VMA. In the majority
827 * of cases, the page size used by the kernel matches the MMU size. On
09135cc5
DW
828 * architectures where it differs, an architecture-specific 'strong'
829 * version of this symbol is required.
3340289d 830 */
09135cc5 831__weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
3340289d
MG
832{
833 return vma_kernel_pagesize(vma);
834}
3340289d 835
84afd99b
AW
836/*
837 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
838 * bits of the reservation map pointer, which are always clear due to
839 * alignment.
840 */
841#define HPAGE_RESV_OWNER (1UL << 0)
842#define HPAGE_RESV_UNMAPPED (1UL << 1)
04f2cbe3 843#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
84afd99b 844
a1e78772
MG
845/*
846 * These helpers are used to track how many pages are reserved for
847 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
848 * is guaranteed to have their future faults succeed.
849 *
850 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
851 * the reserve counters are updated with the hugetlb_lock held. It is safe
852 * to reset the VMA at fork() time as it is not in use yet and there is no
853 * chance of the global counters getting corrupted as a result of the values.
84afd99b
AW
854 *
855 * The private mapping reservation is represented in a subtly different
856 * manner to a shared mapping. A shared mapping has a region map associated
857 * with the underlying file, this region map represents the backing file
858 * pages which have ever had a reservation assigned which this persists even
859 * after the page is instantiated. A private mapping has a region map
860 * associated with the original mmap which is attached to all VMAs which
861 * reference it, this region map represents those offsets which have consumed
862 * reservation ie. where pages have been instantiated.
a1e78772 863 */
e7c4b0bf
AW
864static unsigned long get_vma_private_data(struct vm_area_struct *vma)
865{
866 return (unsigned long)vma->vm_private_data;
867}
868
869static void set_vma_private_data(struct vm_area_struct *vma,
870 unsigned long value)
871{
872 vma->vm_private_data = (void *)value;
873}
874
e9fe92ae
MA
875static void
876resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
877 struct hugetlb_cgroup *h_cg,
878 struct hstate *h)
879{
880#ifdef CONFIG_CGROUP_HUGETLB
881 if (!h_cg || !h) {
882 resv_map->reservation_counter = NULL;
883 resv_map->pages_per_hpage = 0;
884 resv_map->css = NULL;
885 } else {
886 resv_map->reservation_counter =
887 &h_cg->rsvd_hugepage[hstate_index(h)];
888 resv_map->pages_per_hpage = pages_per_huge_page(h);
889 resv_map->css = &h_cg->css;
890 }
891#endif
892}
893
9119a41e 894struct resv_map *resv_map_alloc(void)
84afd99b
AW
895{
896 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
5e911373
MK
897 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
898
899 if (!resv_map || !rg) {
900 kfree(resv_map);
901 kfree(rg);
84afd99b 902 return NULL;
5e911373 903 }
84afd99b
AW
904
905 kref_init(&resv_map->refs);
7b24d861 906 spin_lock_init(&resv_map->lock);
84afd99b
AW
907 INIT_LIST_HEAD(&resv_map->regions);
908
5e911373 909 resv_map->adds_in_progress = 0;
e9fe92ae
MA
910 /*
911 * Initialize these to 0. On shared mappings, 0's here indicate these
912 * fields don't do cgroup accounting. On private mappings, these will be
913 * re-initialized to the proper values, to indicate that hugetlb cgroup
914 * reservations are to be un-charged from here.
915 */
916 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
5e911373
MK
917
918 INIT_LIST_HEAD(&resv_map->region_cache);
919 list_add(&rg->link, &resv_map->region_cache);
920 resv_map->region_cache_count = 1;
921
84afd99b
AW
922 return resv_map;
923}
924
9119a41e 925void resv_map_release(struct kref *ref)
84afd99b
AW
926{
927 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
5e911373
MK
928 struct list_head *head = &resv_map->region_cache;
929 struct file_region *rg, *trg;
84afd99b
AW
930
931 /* Clear out any active regions before we release the map. */
feba16e2 932 region_del(resv_map, 0, LONG_MAX);
5e911373
MK
933
934 /* ... and any entries left in the cache */
935 list_for_each_entry_safe(rg, trg, head, link) {
936 list_del(&rg->link);
937 kfree(rg);
938 }
939
940 VM_BUG_ON(resv_map->adds_in_progress);
941
84afd99b
AW
942 kfree(resv_map);
943}
944
4e35f483
JK
945static inline struct resv_map *inode_resv_map(struct inode *inode)
946{
f27a5136
MK
947 /*
948 * At inode evict time, i_mapping may not point to the original
949 * address space within the inode. This original address space
950 * contains the pointer to the resv_map. So, always use the
951 * address space embedded within the inode.
952 * The VERY common case is inode->mapping == &inode->i_data but,
953 * this may not be true for device special inodes.
954 */
955 return (struct resv_map *)(&inode->i_data)->private_data;
4e35f483
JK
956}
957
84afd99b 958static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
a1e78772 959{
81d1b09c 960 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
4e35f483
JK
961 if (vma->vm_flags & VM_MAYSHARE) {
962 struct address_space *mapping = vma->vm_file->f_mapping;
963 struct inode *inode = mapping->host;
964
965 return inode_resv_map(inode);
966
967 } else {
84afd99b
AW
968 return (struct resv_map *)(get_vma_private_data(vma) &
969 ~HPAGE_RESV_MASK);
4e35f483 970 }
a1e78772
MG
971}
972
84afd99b 973static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
a1e78772 974{
81d1b09c
SL
975 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
976 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
a1e78772 977
84afd99b
AW
978 set_vma_private_data(vma, (get_vma_private_data(vma) &
979 HPAGE_RESV_MASK) | (unsigned long)map);
04f2cbe3
MG
980}
981
982static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
983{
81d1b09c
SL
984 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
985 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
e7c4b0bf
AW
986
987 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
04f2cbe3
MG
988}
989
990static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
991{
81d1b09c 992 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
e7c4b0bf
AW
993
994 return (get_vma_private_data(vma) & flag) != 0;
a1e78772
MG
995}
996
04f2cbe3 997/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
a1e78772
MG
998void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
999{
81d1b09c 1000 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
f83a275d 1001 if (!(vma->vm_flags & VM_MAYSHARE))
a1e78772
MG
1002 vma->vm_private_data = (void *)0;
1003}
1004
1005/* Returns true if the VMA has associated reserve pages */
559ec2f8 1006static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
a1e78772 1007{
af0ed73e
JK
1008 if (vma->vm_flags & VM_NORESERVE) {
1009 /*
1010 * This address is already reserved by other process(chg == 0),
1011 * so, we should decrement reserved count. Without decrementing,
1012 * reserve count remains after releasing inode, because this
1013 * allocated page will go into page cache and is regarded as
1014 * coming from reserved pool in releasing step. Currently, we
1015 * don't have any other solution to deal with this situation
1016 * properly, so add work-around here.
1017 */
1018 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
559ec2f8 1019 return true;
af0ed73e 1020 else
559ec2f8 1021 return false;
af0ed73e 1022 }
a63884e9
JK
1023
1024 /* Shared mappings always use reserves */
1fb1b0e9
MK
1025 if (vma->vm_flags & VM_MAYSHARE) {
1026 /*
1027 * We know VM_NORESERVE is not set. Therefore, there SHOULD
1028 * be a region map for all pages. The only situation where
1029 * there is no region map is if a hole was punched via
7c8de358 1030 * fallocate. In this case, there really are no reserves to
1fb1b0e9
MK
1031 * use. This situation is indicated if chg != 0.
1032 */
1033 if (chg)
1034 return false;
1035 else
1036 return true;
1037 }
a63884e9
JK
1038
1039 /*
1040 * Only the process that called mmap() has reserves for
1041 * private mappings.
1042 */
67961f9d
MK
1043 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1044 /*
1045 * Like the shared case above, a hole punch or truncate
1046 * could have been performed on the private mapping.
1047 * Examine the value of chg to determine if reserves
1048 * actually exist or were previously consumed.
1049 * Very Subtle - The value of chg comes from a previous
1050 * call to vma_needs_reserves(). The reserve map for
1051 * private mappings has different (opposite) semantics
1052 * than that of shared mappings. vma_needs_reserves()
1053 * has already taken this difference in semantics into
1054 * account. Therefore, the meaning of chg is the same
1055 * as in the shared case above. Code could easily be
1056 * combined, but keeping it separate draws attention to
1057 * subtle differences.
1058 */
1059 if (chg)
1060 return false;
1061 else
1062 return true;
1063 }
a63884e9 1064
559ec2f8 1065 return false;
a1e78772
MG
1066}
1067
a5516438 1068static void enqueue_huge_page(struct hstate *h, struct page *page)
1da177e4
LT
1069{
1070 int nid = page_to_nid(page);
9487ca60
MK
1071
1072 lockdep_assert_held(&hugetlb_lock);
0edaecfa 1073 list_move(&page->lru, &h->hugepage_freelists[nid]);
a5516438
AK
1074 h->free_huge_pages++;
1075 h->free_huge_pages_node[nid]++;
6c037149 1076 SetHPageFreed(page);
1da177e4
LT
1077}
1078
94310cbc 1079static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
bf50bab2
NH
1080{
1081 struct page *page;
1a08ae36 1082 bool pin = !!(current->flags & PF_MEMALLOC_PIN);
bbe88753 1083
9487ca60 1084 lockdep_assert_held(&hugetlb_lock);
bbe88753 1085 list_for_each_entry(page, &h->hugepage_freelists[nid], lru) {
8e3560d9 1086 if (pin && !is_pinnable_page(page))
bbe88753 1087 continue;
bf50bab2 1088
6664bfc8
WY
1089 if (PageHWPoison(page))
1090 continue;
1091
1092 list_move(&page->lru, &h->hugepage_activelist);
1093 set_page_refcounted(page);
6c037149 1094 ClearHPageFreed(page);
6664bfc8
WY
1095 h->free_huge_pages--;
1096 h->free_huge_pages_node[nid]--;
1097 return page;
bbe88753
JK
1098 }
1099
6664bfc8 1100 return NULL;
bf50bab2
NH
1101}
1102
3e59fcb0
MH
1103static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
1104 nodemask_t *nmask)
94310cbc 1105{
3e59fcb0
MH
1106 unsigned int cpuset_mems_cookie;
1107 struct zonelist *zonelist;
1108 struct zone *zone;
1109 struct zoneref *z;
98fa15f3 1110 int node = NUMA_NO_NODE;
94310cbc 1111
3e59fcb0
MH
1112 zonelist = node_zonelist(nid, gfp_mask);
1113
1114retry_cpuset:
1115 cpuset_mems_cookie = read_mems_allowed_begin();
1116 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1117 struct page *page;
1118
1119 if (!cpuset_zone_allowed(zone, gfp_mask))
1120 continue;
1121 /*
1122 * no need to ask again on the same node. Pool is node rather than
1123 * zone aware
1124 */
1125 if (zone_to_nid(zone) == node)
1126 continue;
1127 node = zone_to_nid(zone);
94310cbc 1128
94310cbc
AK
1129 page = dequeue_huge_page_node_exact(h, node);
1130 if (page)
1131 return page;
1132 }
3e59fcb0
MH
1133 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1134 goto retry_cpuset;
1135
94310cbc
AK
1136 return NULL;
1137}
1138
a5516438
AK
1139static struct page *dequeue_huge_page_vma(struct hstate *h,
1140 struct vm_area_struct *vma,
af0ed73e
JK
1141 unsigned long address, int avoid_reserve,
1142 long chg)
1da177e4 1143{
3e59fcb0 1144 struct page *page;
480eccf9 1145 struct mempolicy *mpol;
04ec6264 1146 gfp_t gfp_mask;
3e59fcb0 1147 nodemask_t *nodemask;
04ec6264 1148 int nid;
1da177e4 1149
a1e78772
MG
1150 /*
1151 * A child process with MAP_PRIVATE mappings created by their parent
1152 * have no page reserves. This check ensures that reservations are
1153 * not "stolen". The child may still get SIGKILLed
1154 */
af0ed73e 1155 if (!vma_has_reserves(vma, chg) &&
a5516438 1156 h->free_huge_pages - h->resv_huge_pages == 0)
c0ff7453 1157 goto err;
a1e78772 1158
04f2cbe3 1159 /* If reserves cannot be used, ensure enough pages are in the pool */
a5516438 1160 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
6eab04a8 1161 goto err;
04f2cbe3 1162
04ec6264
VB
1163 gfp_mask = htlb_alloc_mask(h);
1164 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
3e59fcb0
MH
1165 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1166 if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
d6995da3 1167 SetHPageRestoreReserve(page);
3e59fcb0 1168 h->resv_huge_pages--;
1da177e4 1169 }
cc9a6c87 1170
52cd3b07 1171 mpol_cond_put(mpol);
1da177e4 1172 return page;
cc9a6c87
MG
1173
1174err:
cc9a6c87 1175 return NULL;
1da177e4
LT
1176}
1177
1cac6f2c
LC
1178/*
1179 * common helper functions for hstate_next_node_to_{alloc|free}.
1180 * We may have allocated or freed a huge page based on a different
1181 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1182 * be outside of *nodes_allowed. Ensure that we use an allowed
1183 * node for alloc or free.
1184 */
1185static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1186{
0edaf86c 1187 nid = next_node_in(nid, *nodes_allowed);
1cac6f2c
LC
1188 VM_BUG_ON(nid >= MAX_NUMNODES);
1189
1190 return nid;
1191}
1192
1193static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1194{
1195 if (!node_isset(nid, *nodes_allowed))
1196 nid = next_node_allowed(nid, nodes_allowed);
1197 return nid;
1198}
1199
1200/*
1201 * returns the previously saved node ["this node"] from which to
1202 * allocate a persistent huge page for the pool and advance the
1203 * next node from which to allocate, handling wrap at end of node
1204 * mask.
1205 */
1206static int hstate_next_node_to_alloc(struct hstate *h,
1207 nodemask_t *nodes_allowed)
1208{
1209 int nid;
1210
1211 VM_BUG_ON(!nodes_allowed);
1212
1213 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1214 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1215
1216 return nid;
1217}
1218
1219/*
10c6ec49 1220 * helper for remove_pool_huge_page() - return the previously saved
1cac6f2c
LC
1221 * node ["this node"] from which to free a huge page. Advance the
1222 * next node id whether or not we find a free huge page to free so
1223 * that the next attempt to free addresses the next node.
1224 */
1225static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1226{
1227 int nid;
1228
1229 VM_BUG_ON(!nodes_allowed);
1230
1231 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1232 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1233
1234 return nid;
1235}
1236
1237#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
1238 for (nr_nodes = nodes_weight(*mask); \
1239 nr_nodes > 0 && \
1240 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
1241 nr_nodes--)
1242
1243#define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1244 for (nr_nodes = nodes_weight(*mask); \
1245 nr_nodes > 0 && \
1246 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1247 nr_nodes--)
1248
e1073d1e 1249#ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
944d9fec 1250static void destroy_compound_gigantic_page(struct page *page,
d00181b9 1251 unsigned int order)
944d9fec
LC
1252{
1253 int i;
1254 int nr_pages = 1 << order;
1255 struct page *p = page + 1;
1256
c8cc708a 1257 atomic_set(compound_mapcount_ptr(page), 0);
5291c09b 1258 atomic_set(compound_pincount_ptr(page), 0);
47e29d32 1259
944d9fec 1260 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1d798ca3 1261 clear_compound_head(p);
944d9fec 1262 set_page_refcounted(p);
944d9fec
LC
1263 }
1264
1265 set_compound_order(page, 0);
ba9c1201 1266 page[1].compound_nr = 0;
944d9fec
LC
1267 __ClearPageHead(page);
1268}
1269
d00181b9 1270static void free_gigantic_page(struct page *page, unsigned int order)
944d9fec 1271{
cf11e85f
RG
1272 /*
1273 * If the page isn't allocated using the cma allocator,
1274 * cma_release() returns false.
1275 */
dbda8fea
BS
1276#ifdef CONFIG_CMA
1277 if (cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order))
cf11e85f 1278 return;
dbda8fea 1279#endif
cf11e85f 1280
944d9fec
LC
1281 free_contig_range(page_to_pfn(page), 1 << order);
1282}
1283
4eb0716e 1284#ifdef CONFIG_CONTIG_ALLOC
d9cc948f
MH
1285static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1286 int nid, nodemask_t *nodemask)
944d9fec 1287{
04adbc3f 1288 unsigned long nr_pages = pages_per_huge_page(h);
953f064a
LX
1289 if (nid == NUMA_NO_NODE)
1290 nid = numa_mem_id();
944d9fec 1291
dbda8fea
BS
1292#ifdef CONFIG_CMA
1293 {
cf11e85f
RG
1294 struct page *page;
1295 int node;
1296
953f064a
LX
1297 if (hugetlb_cma[nid]) {
1298 page = cma_alloc(hugetlb_cma[nid], nr_pages,
1299 huge_page_order(h), true);
cf11e85f
RG
1300 if (page)
1301 return page;
1302 }
953f064a
LX
1303
1304 if (!(gfp_mask & __GFP_THISNODE)) {
1305 for_each_node_mask(node, *nodemask) {
1306 if (node == nid || !hugetlb_cma[node])
1307 continue;
1308
1309 page = cma_alloc(hugetlb_cma[node], nr_pages,
1310 huge_page_order(h), true);
1311 if (page)
1312 return page;
1313 }
1314 }
cf11e85f 1315 }
dbda8fea 1316#endif
cf11e85f 1317
5e27a2df 1318 return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
944d9fec
LC
1319}
1320
1321static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
d00181b9 1322static void prep_compound_gigantic_page(struct page *page, unsigned int order);
4eb0716e
AG
1323#else /* !CONFIG_CONTIG_ALLOC */
1324static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1325 int nid, nodemask_t *nodemask)
1326{
1327 return NULL;
1328}
1329#endif /* CONFIG_CONTIG_ALLOC */
944d9fec 1330
e1073d1e 1331#else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
d9cc948f 1332static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
4eb0716e
AG
1333 int nid, nodemask_t *nodemask)
1334{
1335 return NULL;
1336}
d00181b9 1337static inline void free_gigantic_page(struct page *page, unsigned int order) { }
944d9fec 1338static inline void destroy_compound_gigantic_page(struct page *page,
d00181b9 1339 unsigned int order) { }
944d9fec
LC
1340#endif
1341
6eb4e88a
MK
1342/*
1343 * Remove hugetlb page from lists, and update dtor so that page appears
1344 * as just a compound page. A reference is held on the page.
1345 *
1346 * Must be called with hugetlb lock held.
1347 */
1348static void remove_hugetlb_page(struct hstate *h, struct page *page,
1349 bool adjust_surplus)
1350{
1351 int nid = page_to_nid(page);
1352
1353 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1354 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page);
1355
9487ca60 1356 lockdep_assert_held(&hugetlb_lock);
6eb4e88a
MK
1357 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1358 return;
1359
1360 list_del(&page->lru);
1361
1362 if (HPageFreed(page)) {
1363 h->free_huge_pages--;
1364 h->free_huge_pages_node[nid]--;
1365 }
1366 if (adjust_surplus) {
1367 h->surplus_huge_pages--;
1368 h->surplus_huge_pages_node[nid]--;
1369 }
1370
1371 set_page_refcounted(page);
1372 set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1373
1374 h->nr_huge_pages--;
1375 h->nr_huge_pages_node[nid]--;
1376}
1377
a5516438 1378static void update_and_free_page(struct hstate *h, struct page *page)
6af2acb6
AL
1379{
1380 int i;
dbfee5ae 1381 struct page *subpage = page;
a5516438 1382
4eb0716e 1383 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
944d9fec 1384 return;
18229df5 1385
dbfee5ae
MK
1386 for (i = 0; i < pages_per_huge_page(h);
1387 i++, subpage = mem_map_next(subpage, page, i)) {
1388 subpage->flags &= ~(1 << PG_locked | 1 << PG_error |
32f84528 1389 1 << PG_referenced | 1 << PG_dirty |
a7407a27
LC
1390 1 << PG_active | 1 << PG_private |
1391 1 << PG_writeback);
6af2acb6 1392 }
944d9fec
LC
1393 if (hstate_is_gigantic(h)) {
1394 destroy_compound_gigantic_page(page, huge_page_order(h));
1395 free_gigantic_page(page, huge_page_order(h));
1396 } else {
944d9fec
LC
1397 __free_pages(page, huge_page_order(h));
1398 }
6af2acb6
AL
1399}
1400
10c6ec49
MK
1401static void update_and_free_pages_bulk(struct hstate *h, struct list_head *list)
1402{
1403 struct page *page, *t_page;
1404
1405 list_for_each_entry_safe(page, t_page, list, lru) {
1406 update_and_free_page(h, page);
1407 cond_resched();
1408 }
1409}
1410
e5ff2159
AK
1411struct hstate *size_to_hstate(unsigned long size)
1412{
1413 struct hstate *h;
1414
1415 for_each_hstate(h) {
1416 if (huge_page_size(h) == size)
1417 return h;
1418 }
1419 return NULL;
1420}
1421
db71ef79 1422void free_huge_page(struct page *page)
27a85ef1 1423{
a5516438
AK
1424 /*
1425 * Can't pass hstate in here because it is called from the
1426 * compound page destructor.
1427 */
e5ff2159 1428 struct hstate *h = page_hstate(page);
7893d1d5 1429 int nid = page_to_nid(page);
d6995da3 1430 struct hugepage_subpool *spool = hugetlb_page_subpool(page);
07443a85 1431 bool restore_reserve;
db71ef79 1432 unsigned long flags;
27a85ef1 1433
b4330afb
MK
1434 VM_BUG_ON_PAGE(page_count(page), page);
1435 VM_BUG_ON_PAGE(page_mapcount(page), page);
8ace22bc 1436
d6995da3 1437 hugetlb_set_page_subpool(page, NULL);
8ace22bc 1438 page->mapping = NULL;
d6995da3
MK
1439 restore_reserve = HPageRestoreReserve(page);
1440 ClearHPageRestoreReserve(page);
27a85ef1 1441
1c5ecae3 1442 /*
d6995da3 1443 * If HPageRestoreReserve was set on page, page allocation consumed a
0919e1b6
MK
1444 * reservation. If the page was associated with a subpool, there
1445 * would have been a page reserved in the subpool before allocation
1446 * via hugepage_subpool_get_pages(). Since we are 'restoring' the
6c26d310 1447 * reservation, do not call hugepage_subpool_put_pages() as this will
0919e1b6 1448 * remove the reserved page from the subpool.
1c5ecae3 1449 */
0919e1b6
MK
1450 if (!restore_reserve) {
1451 /*
1452 * A return code of zero implies that the subpool will be
1453 * under its minimum size if the reservation is not restored
1454 * after page is free. Therefore, force restore_reserve
1455 * operation.
1456 */
1457 if (hugepage_subpool_put_pages(spool, 1) == 0)
1458 restore_reserve = true;
1459 }
1c5ecae3 1460
db71ef79 1461 spin_lock_irqsave(&hugetlb_lock, flags);
8f251a3d 1462 ClearHPageMigratable(page);
6d76dcf4
AK
1463 hugetlb_cgroup_uncharge_page(hstate_index(h),
1464 pages_per_huge_page(h), page);
08cf9faf
MA
1465 hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
1466 pages_per_huge_page(h), page);
07443a85
JK
1467 if (restore_reserve)
1468 h->resv_huge_pages++;
1469
9157c311 1470 if (HPageTemporary(page)) {
6eb4e88a 1471 remove_hugetlb_page(h, page, false);
db71ef79 1472 spin_unlock_irqrestore(&hugetlb_lock, flags);
ab5ac90a
MH
1473 update_and_free_page(h, page);
1474 } else if (h->surplus_huge_pages_node[nid]) {
0edaecfa 1475 /* remove the page from active list */
6eb4e88a 1476 remove_hugetlb_page(h, page, true);
db71ef79 1477 spin_unlock_irqrestore(&hugetlb_lock, flags);
a5516438 1478 update_and_free_page(h, page);
7893d1d5 1479 } else {
5d3a551c 1480 arch_clear_hugepage_flags(page);
a5516438 1481 enqueue_huge_page(h, page);
db71ef79 1482 spin_unlock_irqrestore(&hugetlb_lock, flags);
c77c0a8a 1483 }
c77c0a8a
WL
1484}
1485
d3d99fcc
OS
1486/*
1487 * Must be called with the hugetlb lock held
1488 */
1489static void __prep_account_new_huge_page(struct hstate *h, int nid)
1490{
1491 lockdep_assert_held(&hugetlb_lock);
1492 h->nr_huge_pages++;
1493 h->nr_huge_pages_node[nid]++;
1494}
1495
1496static void __prep_new_huge_page(struct page *page)
b7ba30c6 1497{
0edaecfa 1498 INIT_LIST_HEAD(&page->lru);
f1e61557 1499 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
ff546117 1500 hugetlb_set_page_subpool(page, NULL);
9dd540e2 1501 set_hugetlb_cgroup(page, NULL);
1adc4d41 1502 set_hugetlb_cgroup_rsvd(page, NULL);
d3d99fcc
OS
1503}
1504
1505static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1506{
1507 __prep_new_huge_page(page);
db71ef79 1508 spin_lock_irq(&hugetlb_lock);
d3d99fcc 1509 __prep_account_new_huge_page(h, nid);
db71ef79 1510 spin_unlock_irq(&hugetlb_lock);
b7ba30c6
AK
1511}
1512
d00181b9 1513static void prep_compound_gigantic_page(struct page *page, unsigned int order)
20a0307c
WF
1514{
1515 int i;
1516 int nr_pages = 1 << order;
1517 struct page *p = page + 1;
1518
1519 /* we rely on prep_new_huge_page to set the destructor */
1520 set_compound_order(page, order);
ef5a22be 1521 __ClearPageReserved(page);
de09d31d 1522 __SetPageHead(page);
20a0307c 1523 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
ef5a22be
AA
1524 /*
1525 * For gigantic hugepages allocated through bootmem at
1526 * boot, it's safer to be consistent with the not-gigantic
1527 * hugepages and clear the PG_reserved bit from all tail pages
7c8de358 1528 * too. Otherwise drivers using get_user_pages() to access tail
ef5a22be
AA
1529 * pages may get the reference counting wrong if they see
1530 * PG_reserved set on a tail page (despite the head page not
1531 * having PG_reserved set). Enforcing this consistency between
1532 * head and tail pages allows drivers to optimize away a check
1533 * on the head page when they need know if put_page() is needed
1534 * after get_user_pages().
1535 */
1536 __ClearPageReserved(p);
58a84aa9 1537 set_page_count(p, 0);
1d798ca3 1538 set_compound_head(p, page);
20a0307c 1539 }
b4330afb 1540 atomic_set(compound_mapcount_ptr(page), -1);
5291c09b 1541 atomic_set(compound_pincount_ptr(page), 0);
20a0307c
WF
1542}
1543
7795912c
AM
1544/*
1545 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1546 * transparent huge pages. See the PageTransHuge() documentation for more
1547 * details.
1548 */
20a0307c
WF
1549int PageHuge(struct page *page)
1550{
20a0307c
WF
1551 if (!PageCompound(page))
1552 return 0;
1553
1554 page = compound_head(page);
f1e61557 1555 return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
20a0307c 1556}
43131e14
NH
1557EXPORT_SYMBOL_GPL(PageHuge);
1558
27c73ae7
AA
1559/*
1560 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1561 * normal or transparent huge pages.
1562 */
1563int PageHeadHuge(struct page *page_head)
1564{
27c73ae7
AA
1565 if (!PageHead(page_head))
1566 return 0;
1567
d4af73e3 1568 return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR;
27c73ae7 1569}
27c73ae7 1570
c0d0381a
MK
1571/*
1572 * Find and lock address space (mapping) in write mode.
1573 *
336bf30e
MK
1574 * Upon entry, the page is locked which means that page_mapping() is
1575 * stable. Due to locking order, we can only trylock_write. If we can
1576 * not get the lock, simply return NULL to caller.
c0d0381a
MK
1577 */
1578struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
1579{
336bf30e 1580 struct address_space *mapping = page_mapping(hpage);
c0d0381a 1581
c0d0381a
MK
1582 if (!mapping)
1583 return mapping;
1584
c0d0381a
MK
1585 if (i_mmap_trylock_write(mapping))
1586 return mapping;
1587
336bf30e 1588 return NULL;
c0d0381a
MK
1589}
1590
13d60f4b
ZY
1591pgoff_t __basepage_index(struct page *page)
1592{
1593 struct page *page_head = compound_head(page);
1594 pgoff_t index = page_index(page_head);
1595 unsigned long compound_idx;
1596
1597 if (!PageHuge(page_head))
1598 return page_index(page);
1599
1600 if (compound_order(page_head) >= MAX_ORDER)
1601 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1602 else
1603 compound_idx = page - page_head;
1604
1605 return (index << compound_order(page_head)) + compound_idx;
1606}
1607
0c397dae 1608static struct page *alloc_buddy_huge_page(struct hstate *h,
f60858f9
MK
1609 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1610 nodemask_t *node_alloc_noretry)
1da177e4 1611{
af0fb9df 1612 int order = huge_page_order(h);
1da177e4 1613 struct page *page;
f60858f9 1614 bool alloc_try_hard = true;
f96efd58 1615
f60858f9
MK
1616 /*
1617 * By default we always try hard to allocate the page with
1618 * __GFP_RETRY_MAYFAIL flag. However, if we are allocating pages in
1619 * a loop (to adjust global huge page counts) and previous allocation
1620 * failed, do not continue to try hard on the same node. Use the
1621 * node_alloc_noretry bitmap to manage this state information.
1622 */
1623 if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1624 alloc_try_hard = false;
1625 gfp_mask |= __GFP_COMP|__GFP_NOWARN;
1626 if (alloc_try_hard)
1627 gfp_mask |= __GFP_RETRY_MAYFAIL;
af0fb9df
MH
1628 if (nid == NUMA_NO_NODE)
1629 nid = numa_mem_id();
84172f4b 1630 page = __alloc_pages(gfp_mask, order, nid, nmask);
af0fb9df
MH
1631 if (page)
1632 __count_vm_event(HTLB_BUDDY_PGALLOC);
1633 else
1634 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
63b4613c 1635
f60858f9
MK
1636 /*
1637 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
1638 * indicates an overall state change. Clear bit so that we resume
1639 * normal 'try hard' allocations.
1640 */
1641 if (node_alloc_noretry && page && !alloc_try_hard)
1642 node_clear(nid, *node_alloc_noretry);
1643
1644 /*
1645 * If we tried hard to get a page but failed, set bit so that
1646 * subsequent attempts will not try as hard until there is an
1647 * overall state change.
1648 */
1649 if (node_alloc_noretry && !page && alloc_try_hard)
1650 node_set(nid, *node_alloc_noretry);
1651
63b4613c
NA
1652 return page;
1653}
1654
0c397dae
MH
1655/*
1656 * Common helper to allocate a fresh hugetlb page. All specific allocators
1657 * should use this function to get new hugetlb pages
1658 */
1659static struct page *alloc_fresh_huge_page(struct hstate *h,
f60858f9
MK
1660 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1661 nodemask_t *node_alloc_noretry)
0c397dae
MH
1662{
1663 struct page *page;
1664
1665 if (hstate_is_gigantic(h))
1666 page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1667 else
1668 page = alloc_buddy_huge_page(h, gfp_mask,
f60858f9 1669 nid, nmask, node_alloc_noretry);
0c397dae
MH
1670 if (!page)
1671 return NULL;
1672
1673 if (hstate_is_gigantic(h))
1674 prep_compound_gigantic_page(page, huge_page_order(h));
1675 prep_new_huge_page(h, page, page_to_nid(page));
1676
1677 return page;
1678}
1679
af0fb9df
MH
1680/*
1681 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1682 * manner.
1683 */
f60858f9
MK
1684static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1685 nodemask_t *node_alloc_noretry)
b2261026
JK
1686{
1687 struct page *page;
1688 int nr_nodes, node;
af0fb9df 1689 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
b2261026
JK
1690
1691 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
f60858f9
MK
1692 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
1693 node_alloc_noretry);
af0fb9df 1694 if (page)
b2261026 1695 break;
b2261026
JK
1696 }
1697
af0fb9df
MH
1698 if (!page)
1699 return 0;
b2261026 1700
af0fb9df
MH
1701 put_page(page); /* free it into the hugepage allocator */
1702
1703 return 1;
b2261026
JK
1704}
1705
e8c5c824 1706/*
10c6ec49
MK
1707 * Remove huge page from pool from next node to free. Attempt to keep
1708 * persistent huge pages more or less balanced over allowed nodes.
1709 * This routine only 'removes' the hugetlb page. The caller must make
1710 * an additional call to free the page to low level allocators.
e8c5c824
LS
1711 * Called with hugetlb_lock locked.
1712 */
10c6ec49
MK
1713static struct page *remove_pool_huge_page(struct hstate *h,
1714 nodemask_t *nodes_allowed,
1715 bool acct_surplus)
e8c5c824 1716{
b2261026 1717 int nr_nodes, node;
10c6ec49 1718 struct page *page = NULL;
e8c5c824 1719
9487ca60 1720 lockdep_assert_held(&hugetlb_lock);
b2261026 1721 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
685f3457
LS
1722 /*
1723 * If we're returning unused surplus pages, only examine
1724 * nodes with surplus pages.
1725 */
b2261026
JK
1726 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1727 !list_empty(&h->hugepage_freelists[node])) {
10c6ec49 1728 page = list_entry(h->hugepage_freelists[node].next,
e8c5c824 1729 struct page, lru);
6eb4e88a 1730 remove_hugetlb_page(h, page, acct_surplus);
9a76db09 1731 break;
e8c5c824 1732 }
b2261026 1733 }
e8c5c824 1734
10c6ec49 1735 return page;
e8c5c824
LS
1736}
1737
c8721bbb
NH
1738/*
1739 * Dissolve a given free hugepage into free buddy pages. This function does
faf53def
NH
1740 * nothing for in-use hugepages and non-hugepages.
1741 * This function returns values like below:
1742 *
1743 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
1744 * (allocated or reserved.)
1745 * 0: successfully dissolved free hugepages or the page is not a
1746 * hugepage (considered as already dissolved)
c8721bbb 1747 */
c3114a84 1748int dissolve_free_huge_page(struct page *page)
c8721bbb 1749{
6bc9b564 1750 int rc = -EBUSY;
082d5b6b 1751
7ffddd49 1752retry:
faf53def
NH
1753 /* Not to disrupt normal path by vainly holding hugetlb_lock */
1754 if (!PageHuge(page))
1755 return 0;
1756
db71ef79 1757 spin_lock_irq(&hugetlb_lock);
faf53def
NH
1758 if (!PageHuge(page)) {
1759 rc = 0;
1760 goto out;
1761 }
1762
1763 if (!page_count(page)) {
2247bb33
GS
1764 struct page *head = compound_head(page);
1765 struct hstate *h = page_hstate(head);
6bc9b564 1766 if (h->free_huge_pages - h->resv_huge_pages == 0)
082d5b6b 1767 goto out;
7ffddd49
MS
1768
1769 /*
1770 * We should make sure that the page is already on the free list
1771 * when it is dissolved.
1772 */
6c037149 1773 if (unlikely(!HPageFreed(head))) {
db71ef79 1774 spin_unlock_irq(&hugetlb_lock);
7ffddd49
MS
1775 cond_resched();
1776
1777 /*
1778 * Theoretically, we should return -EBUSY when we
1779 * encounter this race. In fact, we have a chance
1780 * to successfully dissolve the page if we do a
1781 * retry. Because the race window is quite small.
1782 * If we seize this opportunity, it is an optimization
1783 * for increasing the success rate of dissolving page.
1784 */
1785 goto retry;
1786 }
1787
c3114a84
AK
1788 /*
1789 * Move PageHWPoison flag from head page to the raw error page,
1790 * which makes any subpages rather than the error page reusable.
1791 */
1792 if (PageHWPoison(head) && page != head) {
1793 SetPageHWPoison(page);
1794 ClearPageHWPoison(head);
1795 }
6eb4e88a 1796 remove_hugetlb_page(h, page, false);
c1470b33 1797 h->max_huge_pages--;
db71ef79 1798 spin_unlock_irq(&hugetlb_lock);
2247bb33 1799 update_and_free_page(h, head);
1121828a 1800 return 0;
c8721bbb 1801 }
082d5b6b 1802out:
db71ef79 1803 spin_unlock_irq(&hugetlb_lock);
082d5b6b 1804 return rc;
c8721bbb
NH
1805}
1806
1807/*
1808 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1809 * make specified memory blocks removable from the system.
2247bb33
GS
1810 * Note that this will dissolve a free gigantic hugepage completely, if any
1811 * part of it lies within the given range.
082d5b6b
GS
1812 * Also note that if dissolve_free_huge_page() returns with an error, all
1813 * free hugepages that were dissolved before that error are lost.
c8721bbb 1814 */
082d5b6b 1815int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
c8721bbb 1816{
c8721bbb 1817 unsigned long pfn;
eb03aa00 1818 struct page *page;
082d5b6b 1819 int rc = 0;
c8721bbb 1820
d0177639 1821 if (!hugepages_supported())
082d5b6b 1822 return rc;
d0177639 1823
eb03aa00
GS
1824 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1825 page = pfn_to_page(pfn);
faf53def
NH
1826 rc = dissolve_free_huge_page(page);
1827 if (rc)
1828 break;
eb03aa00 1829 }
082d5b6b
GS
1830
1831 return rc;
c8721bbb
NH
1832}
1833
ab5ac90a
MH
1834/*
1835 * Allocates a fresh surplus page from the page allocator.
1836 */
0c397dae 1837static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
aaf14e40 1838 int nid, nodemask_t *nmask)
7893d1d5 1839{
9980d744 1840 struct page *page = NULL;
7893d1d5 1841
bae7f4ae 1842 if (hstate_is_gigantic(h))
aa888a74
AK
1843 return NULL;
1844
db71ef79 1845 spin_lock_irq(&hugetlb_lock);
9980d744
MH
1846 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
1847 goto out_unlock;
db71ef79 1848 spin_unlock_irq(&hugetlb_lock);
d1c3fb1f 1849
f60858f9 1850 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
9980d744 1851 if (!page)
0c397dae 1852 return NULL;
d1c3fb1f 1853
db71ef79 1854 spin_lock_irq(&hugetlb_lock);
9980d744
MH
1855 /*
1856 * We could have raced with the pool size change.
1857 * Double check that and simply deallocate the new page
1858 * if we would end up overcommiting the surpluses. Abuse
1859 * temporary page to workaround the nasty free_huge_page
1860 * codeflow
1861 */
1862 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
9157c311 1863 SetHPageTemporary(page);
db71ef79 1864 spin_unlock_irq(&hugetlb_lock);
9980d744 1865 put_page(page);
2bf753e6 1866 return NULL;
9980d744 1867 } else {
9980d744 1868 h->surplus_huge_pages++;
4704dea3 1869 h->surplus_huge_pages_node[page_to_nid(page)]++;
7893d1d5 1870 }
9980d744
MH
1871
1872out_unlock:
db71ef79 1873 spin_unlock_irq(&hugetlb_lock);
7893d1d5
AL
1874
1875 return page;
1876}
1877
bbe88753 1878static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
9a4e9f3b 1879 int nid, nodemask_t *nmask)
ab5ac90a
MH
1880{
1881 struct page *page;
1882
1883 if (hstate_is_gigantic(h))
1884 return NULL;
1885
f60858f9 1886 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
ab5ac90a
MH
1887 if (!page)
1888 return NULL;
1889
1890 /*
1891 * We do not account these pages as surplus because they are only
1892 * temporary and will be released properly on the last reference
1893 */
9157c311 1894 SetHPageTemporary(page);
ab5ac90a
MH
1895
1896 return page;
1897}
1898
099730d6
DH
1899/*
1900 * Use the VMA's mpolicy to allocate a huge page from the buddy.
1901 */
e0ec90ee 1902static
0c397dae 1903struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
099730d6
DH
1904 struct vm_area_struct *vma, unsigned long addr)
1905{
aaf14e40
MH
1906 struct page *page;
1907 struct mempolicy *mpol;
1908 gfp_t gfp_mask = htlb_alloc_mask(h);
1909 int nid;
1910 nodemask_t *nodemask;
1911
1912 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
0c397dae 1913 page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
aaf14e40
MH
1914 mpol_cond_put(mpol);
1915
1916 return page;
099730d6
DH
1917}
1918
ab5ac90a 1919/* page migration callback function */
3e59fcb0 1920struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
d92bbc27 1921 nodemask_t *nmask, gfp_t gfp_mask)
4db9b2ef 1922{
db71ef79 1923 spin_lock_irq(&hugetlb_lock);
4db9b2ef 1924 if (h->free_huge_pages - h->resv_huge_pages > 0) {
3e59fcb0
MH
1925 struct page *page;
1926
1927 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
1928 if (page) {
db71ef79 1929 spin_unlock_irq(&hugetlb_lock);
3e59fcb0 1930 return page;
4db9b2ef
MH
1931 }
1932 }
db71ef79 1933 spin_unlock_irq(&hugetlb_lock);
4db9b2ef 1934
0c397dae 1935 return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
4db9b2ef
MH
1936}
1937
ebd63723 1938/* mempolicy aware migration callback */
389c8178
MH
1939struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
1940 unsigned long address)
ebd63723
MH
1941{
1942 struct mempolicy *mpol;
1943 nodemask_t *nodemask;
1944 struct page *page;
ebd63723
MH
1945 gfp_t gfp_mask;
1946 int node;
1947
ebd63723
MH
1948 gfp_mask = htlb_alloc_mask(h);
1949 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
d92bbc27 1950 page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask);
ebd63723
MH
1951 mpol_cond_put(mpol);
1952
1953 return page;
1954}
1955
e4e574b7 1956/*
25985edc 1957 * Increase the hugetlb pool such that it can accommodate a reservation
e4e574b7
AL
1958 * of size 'delta'.
1959 */
0a4f3d1b 1960static int gather_surplus_pages(struct hstate *h, long delta)
1b2a1e7b 1961 __must_hold(&hugetlb_lock)
e4e574b7
AL
1962{
1963 struct list_head surplus_list;
1964 struct page *page, *tmp;
0a4f3d1b
LX
1965 int ret;
1966 long i;
1967 long needed, allocated;
28073b02 1968 bool alloc_ok = true;
e4e574b7 1969
9487ca60 1970 lockdep_assert_held(&hugetlb_lock);
a5516438 1971 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
ac09b3a1 1972 if (needed <= 0) {
a5516438 1973 h->resv_huge_pages += delta;
e4e574b7 1974 return 0;
ac09b3a1 1975 }
e4e574b7
AL
1976
1977 allocated = 0;
1978 INIT_LIST_HEAD(&surplus_list);
1979
1980 ret = -ENOMEM;
1981retry:
db71ef79 1982 spin_unlock_irq(&hugetlb_lock);
e4e574b7 1983 for (i = 0; i < needed; i++) {
0c397dae 1984 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
aaf14e40 1985 NUMA_NO_NODE, NULL);
28073b02
HD
1986 if (!page) {
1987 alloc_ok = false;
1988 break;
1989 }
e4e574b7 1990 list_add(&page->lru, &surplus_list);
69ed779a 1991 cond_resched();
e4e574b7 1992 }
28073b02 1993 allocated += i;
e4e574b7
AL
1994
1995 /*
1996 * After retaking hugetlb_lock, we need to recalculate 'needed'
1997 * because either resv_huge_pages or free_huge_pages may have changed.
1998 */
db71ef79 1999 spin_lock_irq(&hugetlb_lock);
a5516438
AK
2000 needed = (h->resv_huge_pages + delta) -
2001 (h->free_huge_pages + allocated);
28073b02
HD
2002 if (needed > 0) {
2003 if (alloc_ok)
2004 goto retry;
2005 /*
2006 * We were not able to allocate enough pages to
2007 * satisfy the entire reservation so we free what
2008 * we've allocated so far.
2009 */
2010 goto free;
2011 }
e4e574b7
AL
2012 /*
2013 * The surplus_list now contains _at_least_ the number of extra pages
25985edc 2014 * needed to accommodate the reservation. Add the appropriate number
e4e574b7 2015 * of pages to the hugetlb pool and free the extras back to the buddy
ac09b3a1
AL
2016 * allocator. Commit the entire reservation here to prevent another
2017 * process from stealing the pages as they are added to the pool but
2018 * before they are reserved.
e4e574b7
AL
2019 */
2020 needed += allocated;
a5516438 2021 h->resv_huge_pages += delta;
e4e574b7 2022 ret = 0;
a9869b83 2023
19fc3f0a 2024 /* Free the needed pages to the hugetlb pool */
e4e574b7 2025 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
e558464b
MS
2026 int zeroed;
2027
19fc3f0a
AL
2028 if ((--needed) < 0)
2029 break;
a9869b83
NH
2030 /*
2031 * This page is now managed by the hugetlb allocator and has
2032 * no users -- drop the buddy allocator's reference.
2033 */
e558464b
MS
2034 zeroed = put_page_testzero(page);
2035 VM_BUG_ON_PAGE(!zeroed, page);
a5516438 2036 enqueue_huge_page(h, page);
19fc3f0a 2037 }
28073b02 2038free:
db71ef79 2039 spin_unlock_irq(&hugetlb_lock);
19fc3f0a
AL
2040
2041 /* Free unnecessary surplus pages to the buddy allocator */
c0d934ba
JK
2042 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
2043 put_page(page);
db71ef79 2044 spin_lock_irq(&hugetlb_lock);
e4e574b7
AL
2045
2046 return ret;
2047}
2048
2049/*
e5bbc8a6
MK
2050 * This routine has two main purposes:
2051 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2052 * in unused_resv_pages. This corresponds to the prior adjustments made
2053 * to the associated reservation map.
2054 * 2) Free any unused surplus pages that may have been allocated to satisfy
2055 * the reservation. As many as unused_resv_pages may be freed.
e4e574b7 2056 */
a5516438
AK
2057static void return_unused_surplus_pages(struct hstate *h,
2058 unsigned long unused_resv_pages)
e4e574b7 2059{
e4e574b7 2060 unsigned long nr_pages;
10c6ec49
MK
2061 struct page *page;
2062 LIST_HEAD(page_list);
2063
9487ca60 2064 lockdep_assert_held(&hugetlb_lock);
10c6ec49
MK
2065 /* Uncommit the reservation */
2066 h->resv_huge_pages -= unused_resv_pages;
e4e574b7 2067
aa888a74 2068 /* Cannot return gigantic pages currently */
bae7f4ae 2069 if (hstate_is_gigantic(h))
e5bbc8a6 2070 goto out;
aa888a74 2071
e5bbc8a6
MK
2072 /*
2073 * Part (or even all) of the reservation could have been backed
2074 * by pre-allocated pages. Only free surplus pages.
2075 */
a5516438 2076 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
e4e574b7 2077
685f3457
LS
2078 /*
2079 * We want to release as many surplus pages as possible, spread
9b5e5d0f
LS
2080 * evenly across all nodes with memory. Iterate across these nodes
2081 * until we can no longer free unreserved surplus pages. This occurs
2082 * when the nodes with surplus pages have no free pages.
10c6ec49 2083 * remove_pool_huge_page() will balance the freed pages across the
9b5e5d0f 2084 * on-line nodes with memory and will handle the hstate accounting.
685f3457
LS
2085 */
2086 while (nr_pages--) {
10c6ec49
MK
2087 page = remove_pool_huge_page(h, &node_states[N_MEMORY], 1);
2088 if (!page)
e5bbc8a6 2089 goto out;
10c6ec49
MK
2090
2091 list_add(&page->lru, &page_list);
e4e574b7 2092 }
e5bbc8a6
MK
2093
2094out:
db71ef79 2095 spin_unlock_irq(&hugetlb_lock);
10c6ec49 2096 update_and_free_pages_bulk(h, &page_list);
db71ef79 2097 spin_lock_irq(&hugetlb_lock);
e4e574b7
AL
2098}
2099
5e911373 2100
c37f9fb1 2101/*
feba16e2 2102 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
5e911373 2103 * are used by the huge page allocation routines to manage reservations.
cf3ad20b
MK
2104 *
2105 * vma_needs_reservation is called to determine if the huge page at addr
2106 * within the vma has an associated reservation. If a reservation is
2107 * needed, the value 1 is returned. The caller is then responsible for
2108 * managing the global reservation and subpool usage counts. After
2109 * the huge page has been allocated, vma_commit_reservation is called
feba16e2
MK
2110 * to add the page to the reservation map. If the page allocation fails,
2111 * the reservation must be ended instead of committed. vma_end_reservation
2112 * is called in such cases.
cf3ad20b
MK
2113 *
2114 * In the normal case, vma_commit_reservation returns the same value
2115 * as the preceding vma_needs_reservation call. The only time this
2116 * is not the case is if a reserve map was changed between calls. It
2117 * is the responsibility of the caller to notice the difference and
2118 * take appropriate action.
96b96a96
MK
2119 *
2120 * vma_add_reservation is used in error paths where a reservation must
2121 * be restored when a newly allocated huge page must be freed. It is
2122 * to be called after calling vma_needs_reservation to determine if a
2123 * reservation exists.
c37f9fb1 2124 */
5e911373
MK
2125enum vma_resv_mode {
2126 VMA_NEEDS_RESV,
2127 VMA_COMMIT_RESV,
feba16e2 2128 VMA_END_RESV,
96b96a96 2129 VMA_ADD_RESV,
5e911373 2130};
cf3ad20b
MK
2131static long __vma_reservation_common(struct hstate *h,
2132 struct vm_area_struct *vma, unsigned long addr,
5e911373 2133 enum vma_resv_mode mode)
c37f9fb1 2134{
4e35f483
JK
2135 struct resv_map *resv;
2136 pgoff_t idx;
cf3ad20b 2137 long ret;
0db9d74e 2138 long dummy_out_regions_needed;
c37f9fb1 2139
4e35f483
JK
2140 resv = vma_resv_map(vma);
2141 if (!resv)
84afd99b 2142 return 1;
c37f9fb1 2143
4e35f483 2144 idx = vma_hugecache_offset(h, vma, addr);
5e911373
MK
2145 switch (mode) {
2146 case VMA_NEEDS_RESV:
0db9d74e
MA
2147 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2148 /* We assume that vma_reservation_* routines always operate on
2149 * 1 page, and that adding to resv map a 1 page entry can only
2150 * ever require 1 region.
2151 */
2152 VM_BUG_ON(dummy_out_regions_needed != 1);
5e911373
MK
2153 break;
2154 case VMA_COMMIT_RESV:
075a61d0 2155 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
0db9d74e
MA
2156 /* region_add calls of range 1 should never fail. */
2157 VM_BUG_ON(ret < 0);
5e911373 2158 break;
feba16e2 2159 case VMA_END_RESV:
0db9d74e 2160 region_abort(resv, idx, idx + 1, 1);
5e911373
MK
2161 ret = 0;
2162 break;
96b96a96 2163 case VMA_ADD_RESV:
0db9d74e 2164 if (vma->vm_flags & VM_MAYSHARE) {
075a61d0 2165 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
0db9d74e
MA
2166 /* region_add calls of range 1 should never fail. */
2167 VM_BUG_ON(ret < 0);
2168 } else {
2169 region_abort(resv, idx, idx + 1, 1);
96b96a96
MK
2170 ret = region_del(resv, idx, idx + 1);
2171 }
2172 break;
5e911373
MK
2173 default:
2174 BUG();
2175 }
84afd99b 2176
4e35f483 2177 if (vma->vm_flags & VM_MAYSHARE)
cf3ad20b 2178 return ret;
bf3d12b9
ML
2179 /*
2180 * We know private mapping must have HPAGE_RESV_OWNER set.
2181 *
2182 * In most cases, reserves always exist for private mappings.
2183 * However, a file associated with mapping could have been
2184 * hole punched or truncated after reserves were consumed.
2185 * As subsequent fault on such a range will not use reserves.
2186 * Subtle - The reserve map for private mappings has the
2187 * opposite meaning than that of shared mappings. If NO
2188 * entry is in the reserve map, it means a reservation exists.
2189 * If an entry exists in the reserve map, it means the
2190 * reservation has already been consumed. As a result, the
2191 * return value of this routine is the opposite of the
2192 * value returned from reserve map manipulation routines above.
2193 */
2194 if (ret > 0)
2195 return 0;
2196 if (ret == 0)
2197 return 1;
2198 return ret;
c37f9fb1 2199}
cf3ad20b
MK
2200
2201static long vma_needs_reservation(struct hstate *h,
a5516438 2202 struct vm_area_struct *vma, unsigned long addr)
c37f9fb1 2203{
5e911373 2204 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
cf3ad20b 2205}
84afd99b 2206
cf3ad20b
MK
2207static long vma_commit_reservation(struct hstate *h,
2208 struct vm_area_struct *vma, unsigned long addr)
2209{
5e911373
MK
2210 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2211}
2212
feba16e2 2213static void vma_end_reservation(struct hstate *h,
5e911373
MK
2214 struct vm_area_struct *vma, unsigned long addr)
2215{
feba16e2 2216 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
c37f9fb1
AW
2217}
2218
96b96a96
MK
2219static long vma_add_reservation(struct hstate *h,
2220 struct vm_area_struct *vma, unsigned long addr)
2221{
2222 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2223}
2224
2225/*
2226 * This routine is called to restore a reservation on error paths. In the
2227 * specific error paths, a huge page was allocated (via alloc_huge_page)
2228 * and is about to be freed. If a reservation for the page existed,
d6995da3
MK
2229 * alloc_huge_page would have consumed the reservation and set
2230 * HPageRestoreReserve in the newly allocated page. When the page is freed
2231 * via free_huge_page, the global reservation count will be incremented if
2232 * HPageRestoreReserve is set. However, free_huge_page can not adjust the
2233 * reserve map. Adjust the reserve map here to be consistent with global
2234 * reserve count adjustments to be made by free_huge_page.
96b96a96
MK
2235 */
2236static void restore_reserve_on_error(struct hstate *h,
2237 struct vm_area_struct *vma, unsigned long address,
2238 struct page *page)
2239{
d6995da3 2240 if (unlikely(HPageRestoreReserve(page))) {
96b96a96
MK
2241 long rc = vma_needs_reservation(h, vma, address);
2242
2243 if (unlikely(rc < 0)) {
2244 /*
2245 * Rare out of memory condition in reserve map
d6995da3 2246 * manipulation. Clear HPageRestoreReserve so that
96b96a96
MK
2247 * global reserve count will not be incremented
2248 * by free_huge_page. This will make it appear
2249 * as though the reservation for this page was
2250 * consumed. This may prevent the task from
2251 * faulting in the page at a later time. This
2252 * is better than inconsistent global huge page
2253 * accounting of reserve counts.
2254 */
d6995da3 2255 ClearHPageRestoreReserve(page);
96b96a96
MK
2256 } else if (rc) {
2257 rc = vma_add_reservation(h, vma, address);
2258 if (unlikely(rc < 0))
2259 /*
2260 * See above comment about rare out of
2261 * memory condition.
2262 */
d6995da3 2263 ClearHPageRestoreReserve(page);
96b96a96
MK
2264 } else
2265 vma_end_reservation(h, vma, address);
2266 }
2267}
2268
369fa227
OS
2269/*
2270 * alloc_and_dissolve_huge_page - Allocate a new page and dissolve the old one
2271 * @h: struct hstate old page belongs to
2272 * @old_page: Old page to dissolve
ae37c7ff 2273 * @list: List to isolate the page in case we need to
369fa227
OS
2274 * Returns 0 on success, otherwise negated error.
2275 */
ae37c7ff
OS
2276static int alloc_and_dissolve_huge_page(struct hstate *h, struct page *old_page,
2277 struct list_head *list)
369fa227
OS
2278{
2279 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2280 int nid = page_to_nid(old_page);
2281 struct page *new_page;
2282 int ret = 0;
2283
2284 /*
2285 * Before dissolving the page, we need to allocate a new one for the
2286 * pool to remain stable. Using alloc_buddy_huge_page() allows us to
2287 * not having to deal with prep_new_huge_page() and avoids dealing of any
2288 * counters. This simplifies and let us do the whole thing under the
2289 * lock.
2290 */
2291 new_page = alloc_buddy_huge_page(h, gfp_mask, nid, NULL, NULL);
2292 if (!new_page)
2293 return -ENOMEM;
2294
2295retry:
2296 spin_lock_irq(&hugetlb_lock);
2297 if (!PageHuge(old_page)) {
2298 /*
2299 * Freed from under us. Drop new_page too.
2300 */
2301 goto free_new;
2302 } else if (page_count(old_page)) {
2303 /*
ae37c7ff
OS
2304 * Someone has grabbed the page, try to isolate it here.
2305 * Fail with -EBUSY if not possible.
369fa227 2306 */
ae37c7ff
OS
2307 spin_unlock_irq(&hugetlb_lock);
2308 if (!isolate_huge_page(old_page, list))
2309 ret = -EBUSY;
2310 spin_lock_irq(&hugetlb_lock);
369fa227
OS
2311 goto free_new;
2312 } else if (!HPageFreed(old_page)) {
2313 /*
2314 * Page's refcount is 0 but it has not been enqueued in the
2315 * freelist yet. Race window is small, so we can succeed here if
2316 * we retry.
2317 */
2318 spin_unlock_irq(&hugetlb_lock);
2319 cond_resched();
2320 goto retry;
2321 } else {
2322 /*
2323 * Ok, old_page is still a genuine free hugepage. Remove it from
2324 * the freelist and decrease the counters. These will be
2325 * incremented again when calling __prep_account_new_huge_page()
2326 * and enqueue_huge_page() for new_page. The counters will remain
2327 * stable since this happens under the lock.
2328 */
2329 remove_hugetlb_page(h, old_page, false);
2330
2331 /*
2332 * new_page needs to be initialized with the standard hugetlb
2333 * state. This is normally done by prep_new_huge_page() but
2334 * that takes hugetlb_lock which is already held so we need to
2335 * open code it here.
2336 * Reference count trick is needed because allocator gives us
2337 * referenced page but the pool requires pages with 0 refcount.
2338 */
2339 __prep_new_huge_page(new_page);
2340 __prep_account_new_huge_page(h, nid);
2341 page_ref_dec(new_page);
2342 enqueue_huge_page(h, new_page);
2343
2344 /*
2345 * Pages have been replaced, we can safely free the old one.
2346 */
2347 spin_unlock_irq(&hugetlb_lock);
2348 update_and_free_page(h, old_page);
2349 }
2350
2351 return ret;
2352
2353free_new:
2354 spin_unlock_irq(&hugetlb_lock);
2355 __free_pages(new_page, huge_page_order(h));
2356
2357 return ret;
2358}
2359
ae37c7ff 2360int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list)
369fa227
OS
2361{
2362 struct hstate *h;
2363 struct page *head;
ae37c7ff 2364 int ret = -EBUSY;
369fa227
OS
2365
2366 /*
2367 * The page might have been dissolved from under our feet, so make sure
2368 * to carefully check the state under the lock.
2369 * Return success when racing as if we dissolved the page ourselves.
2370 */
2371 spin_lock_irq(&hugetlb_lock);
2372 if (PageHuge(page)) {
2373 head = compound_head(page);
2374 h = page_hstate(head);
2375 } else {
2376 spin_unlock_irq(&hugetlb_lock);
2377 return 0;
2378 }
2379 spin_unlock_irq(&hugetlb_lock);
2380
2381 /*
2382 * Fence off gigantic pages as there is a cyclic dependency between
2383 * alloc_contig_range and them. Return -ENOMEM as this has the effect
2384 * of bailing out right away without further retrying.
2385 */
2386 if (hstate_is_gigantic(h))
2387 return -ENOMEM;
2388
ae37c7ff
OS
2389 if (page_count(head) && isolate_huge_page(head, list))
2390 ret = 0;
2391 else if (!page_count(head))
2392 ret = alloc_and_dissolve_huge_page(h, head, list);
2393
2394 return ret;
369fa227
OS
2395}
2396
70c3547e 2397struct page *alloc_huge_page(struct vm_area_struct *vma,
04f2cbe3 2398 unsigned long addr, int avoid_reserve)
1da177e4 2399{
90481622 2400 struct hugepage_subpool *spool = subpool_vma(vma);
a5516438 2401 struct hstate *h = hstate_vma(vma);
348ea204 2402 struct page *page;
d85f69b0
MK
2403 long map_chg, map_commit;
2404 long gbl_chg;
6d76dcf4
AK
2405 int ret, idx;
2406 struct hugetlb_cgroup *h_cg;
08cf9faf 2407 bool deferred_reserve;
a1e78772 2408
6d76dcf4 2409 idx = hstate_index(h);
a1e78772 2410 /*
d85f69b0
MK
2411 * Examine the region/reserve map to determine if the process
2412 * has a reservation for the page to be allocated. A return
2413 * code of zero indicates a reservation exists (no change).
a1e78772 2414 */
d85f69b0
MK
2415 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2416 if (map_chg < 0)
76dcee75 2417 return ERR_PTR(-ENOMEM);
d85f69b0
MK
2418
2419 /*
2420 * Processes that did not create the mapping will have no
2421 * reserves as indicated by the region/reserve map. Check
2422 * that the allocation will not exceed the subpool limit.
2423 * Allocations for MAP_NORESERVE mappings also need to be
2424 * checked against any subpool limit.
2425 */
2426 if (map_chg || avoid_reserve) {
2427 gbl_chg = hugepage_subpool_get_pages(spool, 1);
2428 if (gbl_chg < 0) {
feba16e2 2429 vma_end_reservation(h, vma, addr);
76dcee75 2430 return ERR_PTR(-ENOSPC);
5e911373 2431 }
1da177e4 2432
d85f69b0
MK
2433 /*
2434 * Even though there was no reservation in the region/reserve
2435 * map, there could be reservations associated with the
2436 * subpool that can be used. This would be indicated if the
2437 * return value of hugepage_subpool_get_pages() is zero.
2438 * However, if avoid_reserve is specified we still avoid even
2439 * the subpool reservations.
2440 */
2441 if (avoid_reserve)
2442 gbl_chg = 1;
2443 }
2444
08cf9faf
MA
2445 /* If this allocation is not consuming a reservation, charge it now.
2446 */
6501fe5f 2447 deferred_reserve = map_chg || avoid_reserve;
08cf9faf
MA
2448 if (deferred_reserve) {
2449 ret = hugetlb_cgroup_charge_cgroup_rsvd(
2450 idx, pages_per_huge_page(h), &h_cg);
2451 if (ret)
2452 goto out_subpool_put;
2453 }
2454
6d76dcf4 2455 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
8f34af6f 2456 if (ret)
08cf9faf 2457 goto out_uncharge_cgroup_reservation;
8f34af6f 2458
db71ef79 2459 spin_lock_irq(&hugetlb_lock);
d85f69b0
MK
2460 /*
2461 * glb_chg is passed to indicate whether or not a page must be taken
2462 * from the global free pool (global change). gbl_chg == 0 indicates
2463 * a reservation exists for the allocation.
2464 */
2465 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
81a6fcae 2466 if (!page) {
db71ef79 2467 spin_unlock_irq(&hugetlb_lock);
0c397dae 2468 page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
8f34af6f
JZ
2469 if (!page)
2470 goto out_uncharge_cgroup;
a88c7695 2471 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
d6995da3 2472 SetHPageRestoreReserve(page);
a88c7695
NH
2473 h->resv_huge_pages--;
2474 }
db71ef79 2475 spin_lock_irq(&hugetlb_lock);
15a8d68e 2476 list_add(&page->lru, &h->hugepage_activelist);
81a6fcae 2477 /* Fall through */
68842c9b 2478 }
81a6fcae 2479 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
08cf9faf
MA
2480 /* If allocation is not consuming a reservation, also store the
2481 * hugetlb_cgroup pointer on the page.
2482 */
2483 if (deferred_reserve) {
2484 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
2485 h_cg, page);
2486 }
2487
db71ef79 2488 spin_unlock_irq(&hugetlb_lock);
348ea204 2489
d6995da3 2490 hugetlb_set_page_subpool(page, spool);
90d8b7e6 2491
d85f69b0
MK
2492 map_commit = vma_commit_reservation(h, vma, addr);
2493 if (unlikely(map_chg > map_commit)) {
33039678
MK
2494 /*
2495 * The page was added to the reservation map between
2496 * vma_needs_reservation and vma_commit_reservation.
2497 * This indicates a race with hugetlb_reserve_pages.
2498 * Adjust for the subpool count incremented above AND
2499 * in hugetlb_reserve_pages for the same page. Also,
2500 * the reservation count added in hugetlb_reserve_pages
2501 * no longer applies.
2502 */
2503 long rsv_adjust;
2504
2505 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2506 hugetlb_acct_memory(h, -rsv_adjust);
79aa925b
MK
2507 if (deferred_reserve)
2508 hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
2509 pages_per_huge_page(h), page);
33039678 2510 }
90d8b7e6 2511 return page;
8f34af6f
JZ
2512
2513out_uncharge_cgroup:
2514 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
08cf9faf
MA
2515out_uncharge_cgroup_reservation:
2516 if (deferred_reserve)
2517 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
2518 h_cg);
8f34af6f 2519out_subpool_put:
d85f69b0 2520 if (map_chg || avoid_reserve)
8f34af6f 2521 hugepage_subpool_put_pages(spool, 1);
feba16e2 2522 vma_end_reservation(h, vma, addr);
8f34af6f 2523 return ERR_PTR(-ENOSPC);
b45b5bd6
DG
2524}
2525
e24a1307
AK
2526int alloc_bootmem_huge_page(struct hstate *h)
2527 __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2528int __alloc_bootmem_huge_page(struct hstate *h)
aa888a74
AK
2529{
2530 struct huge_bootmem_page *m;
b2261026 2531 int nr_nodes, node;
aa888a74 2532
b2261026 2533 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
aa888a74
AK
2534 void *addr;
2535
eb31d559 2536 addr = memblock_alloc_try_nid_raw(
8b89a116 2537 huge_page_size(h), huge_page_size(h),
97ad1087 2538 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
aa888a74
AK
2539 if (addr) {
2540 /*
2541 * Use the beginning of the huge page to store the
2542 * huge_bootmem_page struct (until gather_bootmem
2543 * puts them into the mem_map).
2544 */
2545 m = addr;
91f47662 2546 goto found;
aa888a74 2547 }
aa888a74
AK
2548 }
2549 return 0;
2550
2551found:
df994ead 2552 BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
aa888a74 2553 /* Put them into a private list first because mem_map is not up yet */
330d6e48 2554 INIT_LIST_HEAD(&m->list);
aa888a74
AK
2555 list_add(&m->list, &huge_boot_pages);
2556 m->hstate = h;
2557 return 1;
2558}
2559
d00181b9
KS
2560static void __init prep_compound_huge_page(struct page *page,
2561 unsigned int order)
18229df5
AW
2562{
2563 if (unlikely(order > (MAX_ORDER - 1)))
2564 prep_compound_gigantic_page(page, order);
2565 else
2566 prep_compound_page(page, order);
2567}
2568
aa888a74
AK
2569/* Put bootmem huge pages into the standard lists after mem_map is up */
2570static void __init gather_bootmem_prealloc(void)
2571{
2572 struct huge_bootmem_page *m;
2573
2574 list_for_each_entry(m, &huge_boot_pages, list) {
40d18ebf 2575 struct page *page = virt_to_page(m);
aa888a74 2576 struct hstate *h = m->hstate;
ee8f248d 2577
aa888a74 2578 WARN_ON(page_count(page) != 1);
c78a7f36 2579 prep_compound_huge_page(page, huge_page_order(h));
ef5a22be 2580 WARN_ON(PageReserved(page));
aa888a74 2581 prep_new_huge_page(h, page, page_to_nid(page));
af0fb9df
MH
2582 put_page(page); /* free it into the hugepage allocator */
2583
b0320c7b
RA
2584 /*
2585 * If we had gigantic hugepages allocated at boot time, we need
2586 * to restore the 'stolen' pages to totalram_pages in order to
2587 * fix confusing memory reports from free(1) and another
2588 * side-effects, like CommitLimit going negative.
2589 */
bae7f4ae 2590 if (hstate_is_gigantic(h))
c78a7f36 2591 adjust_managed_page_count(page, pages_per_huge_page(h));
520495fe 2592 cond_resched();
aa888a74
AK
2593 }
2594}
2595
8faa8b07 2596static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1da177e4
LT
2597{
2598 unsigned long i;
f60858f9
MK
2599 nodemask_t *node_alloc_noretry;
2600
2601 if (!hstate_is_gigantic(h)) {
2602 /*
2603 * Bit mask controlling how hard we retry per-node allocations.
2604 * Ignore errors as lower level routines can deal with
2605 * node_alloc_noretry == NULL. If this kmalloc fails at boot
2606 * time, we are likely in bigger trouble.
2607 */
2608 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
2609 GFP_KERNEL);
2610 } else {
2611 /* allocations done at boot time */
2612 node_alloc_noretry = NULL;
2613 }
2614
2615 /* bit mask controlling how hard we retry per-node allocations */
2616 if (node_alloc_noretry)
2617 nodes_clear(*node_alloc_noretry);
a5516438 2618
e5ff2159 2619 for (i = 0; i < h->max_huge_pages; ++i) {
bae7f4ae 2620 if (hstate_is_gigantic(h)) {
dbda8fea 2621 if (hugetlb_cma_size) {
cf11e85f 2622 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
7ecc9565 2623 goto free;
cf11e85f 2624 }
aa888a74
AK
2625 if (!alloc_bootmem_huge_page(h))
2626 break;
0c397dae 2627 } else if (!alloc_pool_huge_page(h,
f60858f9
MK
2628 &node_states[N_MEMORY],
2629 node_alloc_noretry))
1da177e4 2630 break;
69ed779a 2631 cond_resched();
1da177e4 2632 }
d715cf80
LH
2633 if (i < h->max_huge_pages) {
2634 char buf[32];
2635
c6247f72 2636 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
d715cf80
LH
2637 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n",
2638 h->max_huge_pages, buf, i);
2639 h->max_huge_pages = i;
2640 }
7ecc9565 2641free:
f60858f9 2642 kfree(node_alloc_noretry);
e5ff2159
AK
2643}
2644
2645static void __init hugetlb_init_hstates(void)
2646{
2647 struct hstate *h;
2648
2649 for_each_hstate(h) {
641844f5
NH
2650 if (minimum_order > huge_page_order(h))
2651 minimum_order = huge_page_order(h);
2652
8faa8b07 2653 /* oversize hugepages were init'ed in early boot */
bae7f4ae 2654 if (!hstate_is_gigantic(h))
8faa8b07 2655 hugetlb_hstate_alloc_pages(h);
e5ff2159 2656 }
641844f5 2657 VM_BUG_ON(minimum_order == UINT_MAX);
e5ff2159
AK
2658}
2659
2660static void __init report_hugepages(void)
2661{
2662 struct hstate *h;
2663
2664 for_each_hstate(h) {
4abd32db 2665 char buf[32];
c6247f72
MW
2666
2667 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
ffb22af5 2668 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
c6247f72 2669 buf, h->free_huge_pages);
e5ff2159
AK
2670 }
2671}
2672
1da177e4 2673#ifdef CONFIG_HIGHMEM
6ae11b27
LS
2674static void try_to_free_low(struct hstate *h, unsigned long count,
2675 nodemask_t *nodes_allowed)
1da177e4 2676{
4415cc8d 2677 int i;
1121828a 2678 LIST_HEAD(page_list);
4415cc8d 2679
9487ca60 2680 lockdep_assert_held(&hugetlb_lock);
bae7f4ae 2681 if (hstate_is_gigantic(h))
aa888a74
AK
2682 return;
2683
1121828a
MK
2684 /*
2685 * Collect pages to be freed on a list, and free after dropping lock
2686 */
6ae11b27 2687 for_each_node_mask(i, *nodes_allowed) {
10c6ec49 2688 struct page *page, *next;
a5516438
AK
2689 struct list_head *freel = &h->hugepage_freelists[i];
2690 list_for_each_entry_safe(page, next, freel, lru) {
2691 if (count >= h->nr_huge_pages)
1121828a 2692 goto out;
1da177e4
LT
2693 if (PageHighMem(page))
2694 continue;
6eb4e88a 2695 remove_hugetlb_page(h, page, false);
1121828a 2696 list_add(&page->lru, &page_list);
1da177e4
LT
2697 }
2698 }
1121828a
MK
2699
2700out:
db71ef79 2701 spin_unlock_irq(&hugetlb_lock);
10c6ec49 2702 update_and_free_pages_bulk(h, &page_list);
db71ef79 2703 spin_lock_irq(&hugetlb_lock);
1da177e4
LT
2704}
2705#else
6ae11b27
LS
2706static inline void try_to_free_low(struct hstate *h, unsigned long count,
2707 nodemask_t *nodes_allowed)
1da177e4
LT
2708{
2709}
2710#endif
2711
20a0307c
WF
2712/*
2713 * Increment or decrement surplus_huge_pages. Keep node-specific counters
2714 * balanced by operating on them in a round-robin fashion.
2715 * Returns 1 if an adjustment was made.
2716 */
6ae11b27
LS
2717static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2718 int delta)
20a0307c 2719{
b2261026 2720 int nr_nodes, node;
20a0307c 2721
9487ca60 2722 lockdep_assert_held(&hugetlb_lock);
20a0307c 2723 VM_BUG_ON(delta != -1 && delta != 1);
20a0307c 2724
b2261026
JK
2725 if (delta < 0) {
2726 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2727 if (h->surplus_huge_pages_node[node])
2728 goto found;
e8c5c824 2729 }
b2261026
JK
2730 } else {
2731 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2732 if (h->surplus_huge_pages_node[node] <
2733 h->nr_huge_pages_node[node])
2734 goto found;
e8c5c824 2735 }
b2261026
JK
2736 }
2737 return 0;
20a0307c 2738
b2261026
JK
2739found:
2740 h->surplus_huge_pages += delta;
2741 h->surplus_huge_pages_node[node] += delta;
2742 return 1;
20a0307c
WF
2743}
2744
a5516438 2745#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
fd875dca 2746static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
4eb0716e 2747 nodemask_t *nodes_allowed)
1da177e4 2748{
7893d1d5 2749 unsigned long min_count, ret;
10c6ec49
MK
2750 struct page *page;
2751 LIST_HEAD(page_list);
f60858f9
MK
2752 NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
2753
2754 /*
2755 * Bit mask controlling how hard we retry per-node allocations.
2756 * If we can not allocate the bit mask, do not attempt to allocate
2757 * the requested huge pages.
2758 */
2759 if (node_alloc_noretry)
2760 nodes_clear(*node_alloc_noretry);
2761 else
2762 return -ENOMEM;
1da177e4 2763
29383967
MK
2764 /*
2765 * resize_lock mutex prevents concurrent adjustments to number of
2766 * pages in hstate via the proc/sysfs interfaces.
2767 */
2768 mutex_lock(&h->resize_lock);
db71ef79 2769 spin_lock_irq(&hugetlb_lock);
4eb0716e 2770
fd875dca
MK
2771 /*
2772 * Check for a node specific request.
2773 * Changing node specific huge page count may require a corresponding
2774 * change to the global count. In any case, the passed node mask
2775 * (nodes_allowed) will restrict alloc/free to the specified node.
2776 */
2777 if (nid != NUMA_NO_NODE) {
2778 unsigned long old_count = count;
2779
2780 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2781 /*
2782 * User may have specified a large count value which caused the
2783 * above calculation to overflow. In this case, they wanted
2784 * to allocate as many huge pages as possible. Set count to
2785 * largest possible value to align with their intention.
2786 */
2787 if (count < old_count)
2788 count = ULONG_MAX;
2789 }
2790
4eb0716e
AG
2791 /*
2792 * Gigantic pages runtime allocation depend on the capability for large
2793 * page range allocation.
2794 * If the system does not provide this feature, return an error when
2795 * the user tries to allocate gigantic pages but let the user free the
2796 * boottime allocated gigantic pages.
2797 */
2798 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
2799 if (count > persistent_huge_pages(h)) {
db71ef79 2800 spin_unlock_irq(&hugetlb_lock);
29383967 2801 mutex_unlock(&h->resize_lock);
f60858f9 2802 NODEMASK_FREE(node_alloc_noretry);
4eb0716e
AG
2803 return -EINVAL;
2804 }
2805 /* Fall through to decrease pool */
2806 }
aa888a74 2807
7893d1d5
AL
2808 /*
2809 * Increase the pool size
2810 * First take pages out of surplus state. Then make up the
2811 * remaining difference by allocating fresh huge pages.
d1c3fb1f 2812 *
0c397dae 2813 * We might race with alloc_surplus_huge_page() here and be unable
d1c3fb1f
NA
2814 * to convert a surplus huge page to a normal huge page. That is
2815 * not critical, though, it just means the overall size of the
2816 * pool might be one hugepage larger than it needs to be, but
2817 * within all the constraints specified by the sysctls.
7893d1d5 2818 */
a5516438 2819 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
6ae11b27 2820 if (!adjust_pool_surplus(h, nodes_allowed, -1))
7893d1d5
AL
2821 break;
2822 }
2823
a5516438 2824 while (count > persistent_huge_pages(h)) {
7893d1d5
AL
2825 /*
2826 * If this allocation races such that we no longer need the
2827 * page, free_huge_page will handle it by freeing the page
2828 * and reducing the surplus.
2829 */
db71ef79 2830 spin_unlock_irq(&hugetlb_lock);
649920c6
JH
2831
2832 /* yield cpu to avoid soft lockup */
2833 cond_resched();
2834
f60858f9
MK
2835 ret = alloc_pool_huge_page(h, nodes_allowed,
2836 node_alloc_noretry);
db71ef79 2837 spin_lock_irq(&hugetlb_lock);
7893d1d5
AL
2838 if (!ret)
2839 goto out;
2840
536240f2
MG
2841 /* Bail for signals. Probably ctrl-c from user */
2842 if (signal_pending(current))
2843 goto out;
7893d1d5 2844 }
7893d1d5
AL
2845
2846 /*
2847 * Decrease the pool size
2848 * First return free pages to the buddy allocator (being careful
2849 * to keep enough around to satisfy reservations). Then place
2850 * pages into surplus state as needed so the pool will shrink
2851 * to the desired size as pages become free.
d1c3fb1f
NA
2852 *
2853 * By placing pages into the surplus state independent of the
2854 * overcommit value, we are allowing the surplus pool size to
2855 * exceed overcommit. There are few sane options here. Since
0c397dae 2856 * alloc_surplus_huge_page() is checking the global counter,
d1c3fb1f
NA
2857 * though, we'll note that we're not allowed to exceed surplus
2858 * and won't grow the pool anywhere else. Not until one of the
2859 * sysctls are changed, or the surplus pages go out of use.
7893d1d5 2860 */
a5516438 2861 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
6b0c880d 2862 min_count = max(count, min_count);
6ae11b27 2863 try_to_free_low(h, min_count, nodes_allowed);
10c6ec49
MK
2864
2865 /*
2866 * Collect pages to be removed on list without dropping lock
2867 */
a5516438 2868 while (min_count < persistent_huge_pages(h)) {
10c6ec49
MK
2869 page = remove_pool_huge_page(h, nodes_allowed, 0);
2870 if (!page)
1da177e4 2871 break;
10c6ec49
MK
2872
2873 list_add(&page->lru, &page_list);
1da177e4 2874 }
10c6ec49 2875 /* free the pages after dropping lock */
db71ef79 2876 spin_unlock_irq(&hugetlb_lock);
10c6ec49 2877 update_and_free_pages_bulk(h, &page_list);
db71ef79 2878 spin_lock_irq(&hugetlb_lock);
10c6ec49 2879
a5516438 2880 while (count < persistent_huge_pages(h)) {
6ae11b27 2881 if (!adjust_pool_surplus(h, nodes_allowed, 1))
7893d1d5
AL
2882 break;
2883 }
2884out:
4eb0716e 2885 h->max_huge_pages = persistent_huge_pages(h);
db71ef79 2886 spin_unlock_irq(&hugetlb_lock);
29383967 2887 mutex_unlock(&h->resize_lock);
4eb0716e 2888
f60858f9
MK
2889 NODEMASK_FREE(node_alloc_noretry);
2890
4eb0716e 2891 return 0;
1da177e4
LT
2892}
2893
a3437870
NA
2894#define HSTATE_ATTR_RO(_name) \
2895 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2896
2897#define HSTATE_ATTR(_name) \
2898 static struct kobj_attribute _name##_attr = \
2899 __ATTR(_name, 0644, _name##_show, _name##_store)
2900
2901static struct kobject *hugepages_kobj;
2902static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2903
9a305230
LS
2904static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2905
2906static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
a3437870
NA
2907{
2908 int i;
9a305230 2909
a3437870 2910 for (i = 0; i < HUGE_MAX_HSTATE; i++)
9a305230
LS
2911 if (hstate_kobjs[i] == kobj) {
2912 if (nidp)
2913 *nidp = NUMA_NO_NODE;
a3437870 2914 return &hstates[i];
9a305230
LS
2915 }
2916
2917 return kobj_to_node_hstate(kobj, nidp);
a3437870
NA
2918}
2919
06808b08 2920static ssize_t nr_hugepages_show_common(struct kobject *kobj,
a3437870
NA
2921 struct kobj_attribute *attr, char *buf)
2922{
9a305230
LS
2923 struct hstate *h;
2924 unsigned long nr_huge_pages;
2925 int nid;
2926
2927 h = kobj_to_hstate(kobj, &nid);
2928 if (nid == NUMA_NO_NODE)
2929 nr_huge_pages = h->nr_huge_pages;
2930 else
2931 nr_huge_pages = h->nr_huge_pages_node[nid];
2932
ae7a927d 2933 return sysfs_emit(buf, "%lu\n", nr_huge_pages);
a3437870 2934}
adbe8726 2935
238d3c13
DR
2936static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2937 struct hstate *h, int nid,
2938 unsigned long count, size_t len)
a3437870
NA
2939{
2940 int err;
2d0adf7e 2941 nodemask_t nodes_allowed, *n_mask;
a3437870 2942
2d0adf7e
OS
2943 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2944 return -EINVAL;
adbe8726 2945
9a305230
LS
2946 if (nid == NUMA_NO_NODE) {
2947 /*
2948 * global hstate attribute
2949 */
2950 if (!(obey_mempolicy &&
2d0adf7e
OS
2951 init_nodemask_of_mempolicy(&nodes_allowed)))
2952 n_mask = &node_states[N_MEMORY];
2953 else
2954 n_mask = &nodes_allowed;
2955 } else {
9a305230 2956 /*
fd875dca
MK
2957 * Node specific request. count adjustment happens in
2958 * set_max_huge_pages() after acquiring hugetlb_lock.
9a305230 2959 */
2d0adf7e
OS
2960 init_nodemask_of_node(&nodes_allowed, nid);
2961 n_mask = &nodes_allowed;
fd875dca 2962 }
9a305230 2963
2d0adf7e 2964 err = set_max_huge_pages(h, count, nid, n_mask);
06808b08 2965
4eb0716e 2966 return err ? err : len;
06808b08
LS
2967}
2968
238d3c13
DR
2969static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2970 struct kobject *kobj, const char *buf,
2971 size_t len)
2972{
2973 struct hstate *h;
2974 unsigned long count;
2975 int nid;
2976 int err;
2977
2978 err = kstrtoul(buf, 10, &count);
2979 if (err)
2980 return err;
2981
2982 h = kobj_to_hstate(kobj, &nid);
2983 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2984}
2985
06808b08
LS
2986static ssize_t nr_hugepages_show(struct kobject *kobj,
2987 struct kobj_attribute *attr, char *buf)
2988{
2989 return nr_hugepages_show_common(kobj, attr, buf);
2990}
2991
2992static ssize_t nr_hugepages_store(struct kobject *kobj,
2993 struct kobj_attribute *attr, const char *buf, size_t len)
2994{
238d3c13 2995 return nr_hugepages_store_common(false, kobj, buf, len);
a3437870
NA
2996}
2997HSTATE_ATTR(nr_hugepages);
2998
06808b08
LS
2999#ifdef CONFIG_NUMA
3000
3001/*
3002 * hstate attribute for optionally mempolicy-based constraint on persistent
3003 * huge page alloc/free.
3004 */
3005static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
ae7a927d
JP
3006 struct kobj_attribute *attr,
3007 char *buf)
06808b08
LS
3008{
3009 return nr_hugepages_show_common(kobj, attr, buf);
3010}
3011
3012static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
3013 struct kobj_attribute *attr, const char *buf, size_t len)
3014{
238d3c13 3015 return nr_hugepages_store_common(true, kobj, buf, len);
06808b08
LS
3016}
3017HSTATE_ATTR(nr_hugepages_mempolicy);
3018#endif
3019
3020
a3437870
NA
3021static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
3022 struct kobj_attribute *attr, char *buf)
3023{
9a305230 3024 struct hstate *h = kobj_to_hstate(kobj, NULL);
ae7a927d 3025 return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
a3437870 3026}
adbe8726 3027
a3437870
NA
3028static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
3029 struct kobj_attribute *attr, const char *buf, size_t count)
3030{
3031 int err;
3032 unsigned long input;
9a305230 3033 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870 3034
bae7f4ae 3035 if (hstate_is_gigantic(h))
adbe8726
EM
3036 return -EINVAL;
3037
3dbb95f7 3038 err = kstrtoul(buf, 10, &input);
a3437870 3039 if (err)
73ae31e5 3040 return err;
a3437870 3041
db71ef79 3042 spin_lock_irq(&hugetlb_lock);
a3437870 3043 h->nr_overcommit_huge_pages = input;
db71ef79 3044 spin_unlock_irq(&hugetlb_lock);
a3437870
NA
3045
3046 return count;
3047}
3048HSTATE_ATTR(nr_overcommit_hugepages);
3049
3050static ssize_t free_hugepages_show(struct kobject *kobj,
3051 struct kobj_attribute *attr, char *buf)
3052{
9a305230
LS
3053 struct hstate *h;
3054 unsigned long free_huge_pages;
3055 int nid;
3056
3057 h = kobj_to_hstate(kobj, &nid);
3058 if (nid == NUMA_NO_NODE)
3059 free_huge_pages = h->free_huge_pages;
3060 else
3061 free_huge_pages = h->free_huge_pages_node[nid];
3062
ae7a927d 3063 return sysfs_emit(buf, "%lu\n", free_huge_pages);
a3437870
NA
3064}
3065HSTATE_ATTR_RO(free_hugepages);
3066
3067static ssize_t resv_hugepages_show(struct kobject *kobj,
3068 struct kobj_attribute *attr, char *buf)
3069{
9a305230 3070 struct hstate *h = kobj_to_hstate(kobj, NULL);
ae7a927d 3071 return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
a3437870
NA
3072}
3073HSTATE_ATTR_RO(resv_hugepages);
3074
3075static ssize_t surplus_hugepages_show(struct kobject *kobj,
3076 struct kobj_attribute *attr, char *buf)
3077{
9a305230
LS
3078 struct hstate *h;
3079 unsigned long surplus_huge_pages;
3080 int nid;
3081
3082 h = kobj_to_hstate(kobj, &nid);
3083 if (nid == NUMA_NO_NODE)
3084 surplus_huge_pages = h->surplus_huge_pages;
3085 else
3086 surplus_huge_pages = h->surplus_huge_pages_node[nid];
3087
ae7a927d 3088 return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
a3437870
NA
3089}
3090HSTATE_ATTR_RO(surplus_hugepages);
3091
3092static struct attribute *hstate_attrs[] = {
3093 &nr_hugepages_attr.attr,
3094 &nr_overcommit_hugepages_attr.attr,
3095 &free_hugepages_attr.attr,
3096 &resv_hugepages_attr.attr,
3097 &surplus_hugepages_attr.attr,
06808b08
LS
3098#ifdef CONFIG_NUMA
3099 &nr_hugepages_mempolicy_attr.attr,
3100#endif
a3437870
NA
3101 NULL,
3102};
3103
67e5ed96 3104static const struct attribute_group hstate_attr_group = {
a3437870
NA
3105 .attrs = hstate_attrs,
3106};
3107
094e9539
JM
3108static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
3109 struct kobject **hstate_kobjs,
67e5ed96 3110 const struct attribute_group *hstate_attr_group)
a3437870
NA
3111{
3112 int retval;
972dc4de 3113 int hi = hstate_index(h);
a3437870 3114
9a305230
LS
3115 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
3116 if (!hstate_kobjs[hi])
a3437870
NA
3117 return -ENOMEM;
3118
9a305230 3119 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
cc2205a6 3120 if (retval) {
9a305230 3121 kobject_put(hstate_kobjs[hi]);
cc2205a6
ML
3122 hstate_kobjs[hi] = NULL;
3123 }
a3437870
NA
3124
3125 return retval;
3126}
3127
3128static void __init hugetlb_sysfs_init(void)
3129{
3130 struct hstate *h;
3131 int err;
3132
3133 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
3134 if (!hugepages_kobj)
3135 return;
3136
3137 for_each_hstate(h) {
9a305230
LS
3138 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
3139 hstate_kobjs, &hstate_attr_group);
a3437870 3140 if (err)
282f4214 3141 pr_err("HugeTLB: Unable to add hstate %s", h->name);
a3437870
NA
3142 }
3143}
3144
9a305230
LS
3145#ifdef CONFIG_NUMA
3146
3147/*
3148 * node_hstate/s - associate per node hstate attributes, via their kobjects,
10fbcf4c
KS
3149 * with node devices in node_devices[] using a parallel array. The array
3150 * index of a node device or _hstate == node id.
3151 * This is here to avoid any static dependency of the node device driver, in
9a305230
LS
3152 * the base kernel, on the hugetlb module.
3153 */
3154struct node_hstate {
3155 struct kobject *hugepages_kobj;
3156 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3157};
b4e289a6 3158static struct node_hstate node_hstates[MAX_NUMNODES];
9a305230
LS
3159
3160/*
10fbcf4c 3161 * A subset of global hstate attributes for node devices
9a305230
LS
3162 */
3163static struct attribute *per_node_hstate_attrs[] = {
3164 &nr_hugepages_attr.attr,
3165 &free_hugepages_attr.attr,
3166 &surplus_hugepages_attr.attr,
3167 NULL,
3168};
3169
67e5ed96 3170static const struct attribute_group per_node_hstate_attr_group = {
9a305230
LS
3171 .attrs = per_node_hstate_attrs,
3172};
3173
3174/*
10fbcf4c 3175 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
9a305230
LS
3176 * Returns node id via non-NULL nidp.
3177 */
3178static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3179{
3180 int nid;
3181
3182 for (nid = 0; nid < nr_node_ids; nid++) {
3183 struct node_hstate *nhs = &node_hstates[nid];
3184 int i;
3185 for (i = 0; i < HUGE_MAX_HSTATE; i++)
3186 if (nhs->hstate_kobjs[i] == kobj) {
3187 if (nidp)
3188 *nidp = nid;
3189 return &hstates[i];
3190 }
3191 }
3192
3193 BUG();
3194 return NULL;
3195}
3196
3197/*
10fbcf4c 3198 * Unregister hstate attributes from a single node device.
9a305230
LS
3199 * No-op if no hstate attributes attached.
3200 */
3cd8b44f 3201static void hugetlb_unregister_node(struct node *node)
9a305230
LS
3202{
3203 struct hstate *h;
10fbcf4c 3204 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
3205
3206 if (!nhs->hugepages_kobj)
9b5e5d0f 3207 return; /* no hstate attributes */
9a305230 3208
972dc4de
AK
3209 for_each_hstate(h) {
3210 int idx = hstate_index(h);
3211 if (nhs->hstate_kobjs[idx]) {
3212 kobject_put(nhs->hstate_kobjs[idx]);
3213 nhs->hstate_kobjs[idx] = NULL;
9a305230 3214 }
972dc4de 3215 }
9a305230
LS
3216
3217 kobject_put(nhs->hugepages_kobj);
3218 nhs->hugepages_kobj = NULL;
3219}
3220
9a305230
LS
3221
3222/*
10fbcf4c 3223 * Register hstate attributes for a single node device.
9a305230
LS
3224 * No-op if attributes already registered.
3225 */
3cd8b44f 3226static void hugetlb_register_node(struct node *node)
9a305230
LS
3227{
3228 struct hstate *h;
10fbcf4c 3229 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
3230 int err;
3231
3232 if (nhs->hugepages_kobj)
3233 return; /* already allocated */
3234
3235 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
10fbcf4c 3236 &node->dev.kobj);
9a305230
LS
3237 if (!nhs->hugepages_kobj)
3238 return;
3239
3240 for_each_hstate(h) {
3241 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
3242 nhs->hstate_kobjs,
3243 &per_node_hstate_attr_group);
3244 if (err) {
282f4214 3245 pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
ffb22af5 3246 h->name, node->dev.id);
9a305230
LS
3247 hugetlb_unregister_node(node);
3248 break;
3249 }
3250 }
3251}
3252
3253/*
9b5e5d0f 3254 * hugetlb init time: register hstate attributes for all registered node
10fbcf4c
KS
3255 * devices of nodes that have memory. All on-line nodes should have
3256 * registered their associated device by this time.
9a305230 3257 */
7d9ca000 3258static void __init hugetlb_register_all_nodes(void)
9a305230
LS
3259{
3260 int nid;
3261
8cebfcd0 3262 for_each_node_state(nid, N_MEMORY) {
8732794b 3263 struct node *node = node_devices[nid];
10fbcf4c 3264 if (node->dev.id == nid)
9a305230
LS
3265 hugetlb_register_node(node);
3266 }
3267
3268 /*
10fbcf4c 3269 * Let the node device driver know we're here so it can
9a305230
LS
3270 * [un]register hstate attributes on node hotplug.
3271 */
3272 register_hugetlbfs_with_node(hugetlb_register_node,
3273 hugetlb_unregister_node);
3274}
3275#else /* !CONFIG_NUMA */
3276
3277static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3278{
3279 BUG();
3280 if (nidp)
3281 *nidp = -1;
3282 return NULL;
3283}
3284
9a305230
LS
3285static void hugetlb_register_all_nodes(void) { }
3286
3287#endif
3288
a3437870
NA
3289static int __init hugetlb_init(void)
3290{
8382d914
DB
3291 int i;
3292
d6995da3
MK
3293 BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
3294 __NR_HPAGEFLAGS);
3295
c2833a5b
MK
3296 if (!hugepages_supported()) {
3297 if (hugetlb_max_hstate || default_hstate_max_huge_pages)
3298 pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
0ef89d25 3299 return 0;
c2833a5b 3300 }
a3437870 3301
282f4214
MK
3302 /*
3303 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists. Some
3304 * architectures depend on setup being done here.
3305 */
3306 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
3307 if (!parsed_default_hugepagesz) {
3308 /*
3309 * If we did not parse a default huge page size, set
3310 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
3311 * number of huge pages for this default size was implicitly
3312 * specified, set that here as well.
3313 * Note that the implicit setting will overwrite an explicit
3314 * setting. A warning will be printed in this case.
3315 */
3316 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
3317 if (default_hstate_max_huge_pages) {
3318 if (default_hstate.max_huge_pages) {
3319 char buf[32];
3320
3321 string_get_size(huge_page_size(&default_hstate),
3322 1, STRING_UNITS_2, buf, 32);
3323 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
3324 default_hstate.max_huge_pages, buf);
3325 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
3326 default_hstate_max_huge_pages);
3327 }
3328 default_hstate.max_huge_pages =
3329 default_hstate_max_huge_pages;
d715cf80 3330 }
f8b74815 3331 }
a3437870 3332
cf11e85f 3333 hugetlb_cma_check();
a3437870 3334 hugetlb_init_hstates();
aa888a74 3335 gather_bootmem_prealloc();
a3437870
NA
3336 report_hugepages();
3337
3338 hugetlb_sysfs_init();
9a305230 3339 hugetlb_register_all_nodes();
7179e7bf 3340 hugetlb_cgroup_file_init();
9a305230 3341
8382d914
DB
3342#ifdef CONFIG_SMP
3343 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
3344#else
3345 num_fault_mutexes = 1;
3346#endif
c672c7f2 3347 hugetlb_fault_mutex_table =
6da2ec56
KC
3348 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
3349 GFP_KERNEL);
c672c7f2 3350 BUG_ON(!hugetlb_fault_mutex_table);
8382d914
DB
3351
3352 for (i = 0; i < num_fault_mutexes; i++)
c672c7f2 3353 mutex_init(&hugetlb_fault_mutex_table[i]);
a3437870
NA
3354 return 0;
3355}
3e89e1c5 3356subsys_initcall(hugetlb_init);
a3437870 3357
ae94da89
MK
3358/* Overwritten by architectures with more huge page sizes */
3359bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
9fee021d 3360{
ae94da89 3361 return size == HPAGE_SIZE;
9fee021d
VT
3362}
3363
d00181b9 3364void __init hugetlb_add_hstate(unsigned int order)
a3437870
NA
3365{
3366 struct hstate *h;
8faa8b07
AK
3367 unsigned long i;
3368
a3437870 3369 if (size_to_hstate(PAGE_SIZE << order)) {
a3437870
NA
3370 return;
3371 }
47d38344 3372 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
a3437870 3373 BUG_ON(order == 0);
47d38344 3374 h = &hstates[hugetlb_max_hstate++];
29383967 3375 mutex_init(&h->resize_lock);
a3437870 3376 h->order = order;
aca78307 3377 h->mask = ~(huge_page_size(h) - 1);
8faa8b07
AK
3378 for (i = 0; i < MAX_NUMNODES; ++i)
3379 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
0edaecfa 3380 INIT_LIST_HEAD(&h->hugepage_activelist);
54f18d35
AM
3381 h->next_nid_to_alloc = first_memory_node;
3382 h->next_nid_to_free = first_memory_node;
a3437870
NA
3383 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
3384 huge_page_size(h)/1024);
8faa8b07 3385
a3437870
NA
3386 parsed_hstate = h;
3387}
3388
282f4214
MK
3389/*
3390 * hugepages command line processing
3391 * hugepages normally follows a valid hugepagsz or default_hugepagsz
3392 * specification. If not, ignore the hugepages value. hugepages can also
3393 * be the first huge page command line option in which case it implicitly
3394 * specifies the number of huge pages for the default size.
3395 */
3396static int __init hugepages_setup(char *s)
a3437870
NA
3397{
3398 unsigned long *mhp;
8faa8b07 3399 static unsigned long *last_mhp;
a3437870 3400
9fee021d 3401 if (!parsed_valid_hugepagesz) {
282f4214 3402 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
9fee021d 3403 parsed_valid_hugepagesz = true;
282f4214 3404 return 0;
9fee021d 3405 }
282f4214 3406
a3437870 3407 /*
282f4214
MK
3408 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
3409 * yet, so this hugepages= parameter goes to the "default hstate".
3410 * Otherwise, it goes with the previously parsed hugepagesz or
3411 * default_hugepagesz.
a3437870 3412 */
9fee021d 3413 else if (!hugetlb_max_hstate)
a3437870
NA
3414 mhp = &default_hstate_max_huge_pages;
3415 else
3416 mhp = &parsed_hstate->max_huge_pages;
3417
8faa8b07 3418 if (mhp == last_mhp) {
282f4214
MK
3419 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
3420 return 0;
8faa8b07
AK
3421 }
3422
a3437870
NA
3423 if (sscanf(s, "%lu", mhp) <= 0)
3424 *mhp = 0;
3425
8faa8b07
AK
3426 /*
3427 * Global state is always initialized later in hugetlb_init.
04adbc3f 3428 * But we need to allocate gigantic hstates here early to still
8faa8b07
AK
3429 * use the bootmem allocator.
3430 */
04adbc3f 3431 if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
8faa8b07
AK
3432 hugetlb_hstate_alloc_pages(parsed_hstate);
3433
3434 last_mhp = mhp;
3435
a3437870
NA
3436 return 1;
3437}
282f4214 3438__setup("hugepages=", hugepages_setup);
e11bfbfc 3439
282f4214
MK
3440/*
3441 * hugepagesz command line processing
3442 * A specific huge page size can only be specified once with hugepagesz.
3443 * hugepagesz is followed by hugepages on the command line. The global
3444 * variable 'parsed_valid_hugepagesz' is used to determine if prior
3445 * hugepagesz argument was valid.
3446 */
359f2544 3447static int __init hugepagesz_setup(char *s)
e11bfbfc 3448{
359f2544 3449 unsigned long size;
282f4214
MK
3450 struct hstate *h;
3451
3452 parsed_valid_hugepagesz = false;
359f2544
MK
3453 size = (unsigned long)memparse(s, NULL);
3454
3455 if (!arch_hugetlb_valid_size(size)) {
282f4214 3456 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
359f2544
MK
3457 return 0;
3458 }
3459
282f4214
MK
3460 h = size_to_hstate(size);
3461 if (h) {
3462 /*
3463 * hstate for this size already exists. This is normally
3464 * an error, but is allowed if the existing hstate is the
3465 * default hstate. More specifically, it is only allowed if
3466 * the number of huge pages for the default hstate was not
3467 * previously specified.
3468 */
3469 if (!parsed_default_hugepagesz || h != &default_hstate ||
3470 default_hstate.max_huge_pages) {
3471 pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
3472 return 0;
3473 }
3474
3475 /*
3476 * No need to call hugetlb_add_hstate() as hstate already
3477 * exists. But, do set parsed_hstate so that a following
3478 * hugepages= parameter will be applied to this hstate.
3479 */
3480 parsed_hstate = h;
3481 parsed_valid_hugepagesz = true;
3482 return 1;
38237830
MK
3483 }
3484
359f2544 3485 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
282f4214 3486 parsed_valid_hugepagesz = true;
e11bfbfc
NP
3487 return 1;
3488}
359f2544
MK
3489__setup("hugepagesz=", hugepagesz_setup);
3490
282f4214
MK
3491/*
3492 * default_hugepagesz command line input
3493 * Only one instance of default_hugepagesz allowed on command line.
3494 */
ae94da89 3495static int __init default_hugepagesz_setup(char *s)
e11bfbfc 3496{
ae94da89
MK
3497 unsigned long size;
3498
282f4214 3499 parsed_valid_hugepagesz = false;
282f4214
MK
3500 if (parsed_default_hugepagesz) {
3501 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
3502 return 0;
3503 }
3504
ae94da89
MK
3505 size = (unsigned long)memparse(s, NULL);
3506
3507 if (!arch_hugetlb_valid_size(size)) {
282f4214 3508 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
ae94da89
MK
3509 return 0;
3510 }
3511
282f4214
MK
3512 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3513 parsed_valid_hugepagesz = true;
3514 parsed_default_hugepagesz = true;
3515 default_hstate_idx = hstate_index(size_to_hstate(size));
3516
3517 /*
3518 * The number of default huge pages (for this size) could have been
3519 * specified as the first hugetlb parameter: hugepages=X. If so,
3520 * then default_hstate_max_huge_pages is set. If the default huge
3521 * page size is gigantic (>= MAX_ORDER), then the pages must be
3522 * allocated here from bootmem allocator.
3523 */
3524 if (default_hstate_max_huge_pages) {
3525 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
3526 if (hstate_is_gigantic(&default_hstate))
3527 hugetlb_hstate_alloc_pages(&default_hstate);
3528 default_hstate_max_huge_pages = 0;
3529 }
3530
e11bfbfc
NP
3531 return 1;
3532}
ae94da89 3533__setup("default_hugepagesz=", default_hugepagesz_setup);
a3437870 3534
8ca39e68 3535static unsigned int allowed_mems_nr(struct hstate *h)
8a213460
NA
3536{
3537 int node;
3538 unsigned int nr = 0;
8ca39e68
MS
3539 nodemask_t *mpol_allowed;
3540 unsigned int *array = h->free_huge_pages_node;
3541 gfp_t gfp_mask = htlb_alloc_mask(h);
3542
3543 mpol_allowed = policy_nodemask_current(gfp_mask);
8a213460 3544
8ca39e68 3545 for_each_node_mask(node, cpuset_current_mems_allowed) {
c93b0a99 3546 if (!mpol_allowed || node_isset(node, *mpol_allowed))
8ca39e68
MS
3547 nr += array[node];
3548 }
8a213460
NA
3549
3550 return nr;
3551}
3552
3553#ifdef CONFIG_SYSCTL
17743798
MS
3554static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
3555 void *buffer, size_t *length,
3556 loff_t *ppos, unsigned long *out)
3557{
3558 struct ctl_table dup_table;
3559
3560 /*
3561 * In order to avoid races with __do_proc_doulongvec_minmax(), we
3562 * can duplicate the @table and alter the duplicate of it.
3563 */
3564 dup_table = *table;
3565 dup_table.data = out;
3566
3567 return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
3568}
3569
06808b08
LS
3570static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
3571 struct ctl_table *table, int write,
32927393 3572 void *buffer, size_t *length, loff_t *ppos)
1da177e4 3573{
e5ff2159 3574 struct hstate *h = &default_hstate;
238d3c13 3575 unsigned long tmp = h->max_huge_pages;
08d4a246 3576 int ret;
e5ff2159 3577
457c1b27 3578 if (!hugepages_supported())
86613628 3579 return -EOPNOTSUPP;
457c1b27 3580
17743798
MS
3581 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3582 &tmp);
08d4a246
MH
3583 if (ret)
3584 goto out;
e5ff2159 3585
238d3c13
DR
3586 if (write)
3587 ret = __nr_hugepages_store_common(obey_mempolicy, h,
3588 NUMA_NO_NODE, tmp, *length);
08d4a246
MH
3589out:
3590 return ret;
1da177e4 3591}
396faf03 3592
06808b08 3593int hugetlb_sysctl_handler(struct ctl_table *table, int write,
32927393 3594 void *buffer, size_t *length, loff_t *ppos)
06808b08
LS
3595{
3596
3597 return hugetlb_sysctl_handler_common(false, table, write,
3598 buffer, length, ppos);
3599}
3600
3601#ifdef CONFIG_NUMA
3602int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
32927393 3603 void *buffer, size_t *length, loff_t *ppos)
06808b08
LS
3604{
3605 return hugetlb_sysctl_handler_common(true, table, write,
3606 buffer, length, ppos);
3607}
3608#endif /* CONFIG_NUMA */
3609
a3d0c6aa 3610int hugetlb_overcommit_handler(struct ctl_table *table, int write,
32927393 3611 void *buffer, size_t *length, loff_t *ppos)
a3d0c6aa 3612{
a5516438 3613 struct hstate *h = &default_hstate;
e5ff2159 3614 unsigned long tmp;
08d4a246 3615 int ret;
e5ff2159 3616
457c1b27 3617 if (!hugepages_supported())
86613628 3618 return -EOPNOTSUPP;
457c1b27 3619
c033a93c 3620 tmp = h->nr_overcommit_huge_pages;
e5ff2159 3621
bae7f4ae 3622 if (write && hstate_is_gigantic(h))
adbe8726
EM
3623 return -EINVAL;
3624
17743798
MS
3625 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3626 &tmp);
08d4a246
MH
3627 if (ret)
3628 goto out;
e5ff2159
AK
3629
3630 if (write) {
db71ef79 3631 spin_lock_irq(&hugetlb_lock);
e5ff2159 3632 h->nr_overcommit_huge_pages = tmp;
db71ef79 3633 spin_unlock_irq(&hugetlb_lock);
e5ff2159 3634 }
08d4a246
MH
3635out:
3636 return ret;
a3d0c6aa
NA
3637}
3638
1da177e4
LT
3639#endif /* CONFIG_SYSCTL */
3640
e1759c21 3641void hugetlb_report_meminfo(struct seq_file *m)
1da177e4 3642{
fcb2b0c5
RG
3643 struct hstate *h;
3644 unsigned long total = 0;
3645
457c1b27
NA
3646 if (!hugepages_supported())
3647 return;
fcb2b0c5
RG
3648
3649 for_each_hstate(h) {
3650 unsigned long count = h->nr_huge_pages;
3651
aca78307 3652 total += huge_page_size(h) * count;
fcb2b0c5
RG
3653
3654 if (h == &default_hstate)
3655 seq_printf(m,
3656 "HugePages_Total: %5lu\n"
3657 "HugePages_Free: %5lu\n"
3658 "HugePages_Rsvd: %5lu\n"
3659 "HugePages_Surp: %5lu\n"
3660 "Hugepagesize: %8lu kB\n",
3661 count,
3662 h->free_huge_pages,
3663 h->resv_huge_pages,
3664 h->surplus_huge_pages,
aca78307 3665 huge_page_size(h) / SZ_1K);
fcb2b0c5
RG
3666 }
3667
aca78307 3668 seq_printf(m, "Hugetlb: %8lu kB\n", total / SZ_1K);
1da177e4
LT
3669}
3670
7981593b 3671int hugetlb_report_node_meminfo(char *buf, int len, int nid)
1da177e4 3672{
a5516438 3673 struct hstate *h = &default_hstate;
7981593b 3674
457c1b27
NA
3675 if (!hugepages_supported())
3676 return 0;
7981593b
JP
3677
3678 return sysfs_emit_at(buf, len,
3679 "Node %d HugePages_Total: %5u\n"
3680 "Node %d HugePages_Free: %5u\n"
3681 "Node %d HugePages_Surp: %5u\n",
3682 nid, h->nr_huge_pages_node[nid],
3683 nid, h->free_huge_pages_node[nid],
3684 nid, h->surplus_huge_pages_node[nid]);
1da177e4
LT
3685}
3686
949f7ec5
DR
3687void hugetlb_show_meminfo(void)
3688{
3689 struct hstate *h;
3690 int nid;
3691
457c1b27
NA
3692 if (!hugepages_supported())
3693 return;
3694
949f7ec5
DR
3695 for_each_node_state(nid, N_MEMORY)
3696 for_each_hstate(h)
3697 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3698 nid,
3699 h->nr_huge_pages_node[nid],
3700 h->free_huge_pages_node[nid],
3701 h->surplus_huge_pages_node[nid],
aca78307 3702 huge_page_size(h) / SZ_1K);
949f7ec5
DR
3703}
3704
5d317b2b
NH
3705void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3706{
3707 seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3708 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3709}
3710
1da177e4
LT
3711/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3712unsigned long hugetlb_total_pages(void)
3713{
d0028588
WL
3714 struct hstate *h;
3715 unsigned long nr_total_pages = 0;
3716
3717 for_each_hstate(h)
3718 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3719 return nr_total_pages;
1da177e4 3720}
1da177e4 3721
a5516438 3722static int hugetlb_acct_memory(struct hstate *h, long delta)
fc1b8a73
MG
3723{
3724 int ret = -ENOMEM;
3725
0aa7f354
ML
3726 if (!delta)
3727 return 0;
3728
db71ef79 3729 spin_lock_irq(&hugetlb_lock);
fc1b8a73
MG
3730 /*
3731 * When cpuset is configured, it breaks the strict hugetlb page
3732 * reservation as the accounting is done on a global variable. Such
3733 * reservation is completely rubbish in the presence of cpuset because
3734 * the reservation is not checked against page availability for the
3735 * current cpuset. Application can still potentially OOM'ed by kernel
3736 * with lack of free htlb page in cpuset that the task is in.
3737 * Attempt to enforce strict accounting with cpuset is almost
3738 * impossible (or too ugly) because cpuset is too fluid that
3739 * task or memory node can be dynamically moved between cpusets.
3740 *
3741 * The change of semantics for shared hugetlb mapping with cpuset is
3742 * undesirable. However, in order to preserve some of the semantics,
3743 * we fall back to check against current free page availability as
3744 * a best attempt and hopefully to minimize the impact of changing
3745 * semantics that cpuset has.
8ca39e68
MS
3746 *
3747 * Apart from cpuset, we also have memory policy mechanism that
3748 * also determines from which node the kernel will allocate memory
3749 * in a NUMA system. So similar to cpuset, we also should consider
3750 * the memory policy of the current task. Similar to the description
3751 * above.
fc1b8a73
MG
3752 */
3753 if (delta > 0) {
a5516438 3754 if (gather_surplus_pages(h, delta) < 0)
fc1b8a73
MG
3755 goto out;
3756
8ca39e68 3757 if (delta > allowed_mems_nr(h)) {
a5516438 3758 return_unused_surplus_pages(h, delta);
fc1b8a73
MG
3759 goto out;
3760 }
3761 }
3762
3763 ret = 0;
3764 if (delta < 0)
a5516438 3765 return_unused_surplus_pages(h, (unsigned long) -delta);
fc1b8a73
MG
3766
3767out:
db71ef79 3768 spin_unlock_irq(&hugetlb_lock);
fc1b8a73
MG
3769 return ret;
3770}
3771
84afd99b
AW
3772static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3773{
f522c3ac 3774 struct resv_map *resv = vma_resv_map(vma);
84afd99b
AW
3775
3776 /*
3777 * This new VMA should share its siblings reservation map if present.
3778 * The VMA will only ever have a valid reservation map pointer where
3779 * it is being copied for another still existing VMA. As that VMA
25985edc 3780 * has a reference to the reservation map it cannot disappear until
84afd99b
AW
3781 * after this open call completes. It is therefore safe to take a
3782 * new reference here without additional locking.
3783 */
4e35f483 3784 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
f522c3ac 3785 kref_get(&resv->refs);
84afd99b
AW
3786}
3787
a1e78772
MG
3788static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3789{
a5516438 3790 struct hstate *h = hstate_vma(vma);
f522c3ac 3791 struct resv_map *resv = vma_resv_map(vma);
90481622 3792 struct hugepage_subpool *spool = subpool_vma(vma);
4e35f483 3793 unsigned long reserve, start, end;
1c5ecae3 3794 long gbl_reserve;
84afd99b 3795
4e35f483
JK
3796 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3797 return;
84afd99b 3798
4e35f483
JK
3799 start = vma_hugecache_offset(h, vma, vma->vm_start);
3800 end = vma_hugecache_offset(h, vma, vma->vm_end);
84afd99b 3801
4e35f483 3802 reserve = (end - start) - region_count(resv, start, end);
e9fe92ae 3803 hugetlb_cgroup_uncharge_counter(resv, start, end);
4e35f483 3804 if (reserve) {
1c5ecae3
MK
3805 /*
3806 * Decrement reserve counts. The global reserve count may be
3807 * adjusted if the subpool has a minimum size.
3808 */
3809 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3810 hugetlb_acct_memory(h, -gbl_reserve);
84afd99b 3811 }
e9fe92ae
MA
3812
3813 kref_put(&resv->refs, resv_map_release);
a1e78772
MG
3814}
3815
31383c68
DW
3816static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
3817{
3818 if (addr & ~(huge_page_mask(hstate_vma(vma))))
3819 return -EINVAL;
3820 return 0;
3821}
3822
05ea8860
DW
3823static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
3824{
aca78307 3825 return huge_page_size(hstate_vma(vma));
05ea8860
DW
3826}
3827
1da177e4
LT
3828/*
3829 * We cannot handle pagefaults against hugetlb pages at all. They cause
3830 * handle_mm_fault() to try to instantiate regular-sized pages in the
6c26d310 3831 * hugepage VMA. do_page_fault() is supposed to trap this, so BUG is we get
1da177e4
LT
3832 * this far.
3833 */
b3ec9f33 3834static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
1da177e4
LT
3835{
3836 BUG();
d0217ac0 3837 return 0;
1da177e4
LT
3838}
3839
eec3636a
JC
3840/*
3841 * When a new function is introduced to vm_operations_struct and added
3842 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
3843 * This is because under System V memory model, mappings created via
3844 * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
3845 * their original vm_ops are overwritten with shm_vm_ops.
3846 */
f0f37e2f 3847const struct vm_operations_struct hugetlb_vm_ops = {
d0217ac0 3848 .fault = hugetlb_vm_op_fault,
84afd99b 3849 .open = hugetlb_vm_op_open,
a1e78772 3850 .close = hugetlb_vm_op_close,
dd3b614f 3851 .may_split = hugetlb_vm_op_split,
05ea8860 3852 .pagesize = hugetlb_vm_op_pagesize,
1da177e4
LT
3853};
3854
1e8f889b
DG
3855static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3856 int writable)
63551ae0
DG
3857{
3858 pte_t entry;
3859
1e8f889b 3860 if (writable) {
106c992a
GS
3861 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3862 vma->vm_page_prot)));
63551ae0 3863 } else {
106c992a
GS
3864 entry = huge_pte_wrprotect(mk_huge_pte(page,
3865 vma->vm_page_prot));
63551ae0
DG
3866 }
3867 entry = pte_mkyoung(entry);
3868 entry = pte_mkhuge(entry);
d9ed9faa 3869 entry = arch_make_huge_pte(entry, vma, page, writable);
63551ae0
DG
3870
3871 return entry;
3872}
3873
1e8f889b
DG
3874static void set_huge_ptep_writable(struct vm_area_struct *vma,
3875 unsigned long address, pte_t *ptep)
3876{
3877 pte_t entry;
3878
106c992a 3879 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
32f84528 3880 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4b3073e1 3881 update_mmu_cache(vma, address, ptep);
1e8f889b
DG
3882}
3883
d5ed7444 3884bool is_hugetlb_entry_migration(pte_t pte)
4a705fef
NH
3885{
3886 swp_entry_t swp;
3887
3888 if (huge_pte_none(pte) || pte_present(pte))
d5ed7444 3889 return false;
4a705fef 3890 swp = pte_to_swp_entry(pte);
d79d176a 3891 if (is_migration_entry(swp))
d5ed7444 3892 return true;
4a705fef 3893 else
d5ed7444 3894 return false;
4a705fef
NH
3895}
3896
3e5c3600 3897static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
4a705fef
NH
3898{
3899 swp_entry_t swp;
3900
3901 if (huge_pte_none(pte) || pte_present(pte))
3e5c3600 3902 return false;
4a705fef 3903 swp = pte_to_swp_entry(pte);
d79d176a 3904 if (is_hwpoison_entry(swp))
3e5c3600 3905 return true;
4a705fef 3906 else
3e5c3600 3907 return false;
4a705fef 3908}
1e8f889b 3909
4eae4efa
PX
3910static void
3911hugetlb_install_page(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
3912 struct page *new_page)
3913{
3914 __SetPageUptodate(new_page);
3915 set_huge_pte_at(vma->vm_mm, addr, ptep, make_huge_pte(vma, new_page, 1));
3916 hugepage_add_new_anon_rmap(new_page, vma, addr);
3917 hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
3918 ClearHPageRestoreReserve(new_page);
3919 SetHPageMigratable(new_page);
3920}
3921
63551ae0
DG
3922int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3923 struct vm_area_struct *vma)
3924{
5e41540c 3925 pte_t *src_pte, *dst_pte, entry, dst_entry;
63551ae0 3926 struct page *ptepage;
1c59827d 3927 unsigned long addr;
ca6eb14d 3928 bool cow = is_cow_mapping(vma->vm_flags);
a5516438
AK
3929 struct hstate *h = hstate_vma(vma);
3930 unsigned long sz = huge_page_size(h);
4eae4efa 3931 unsigned long npages = pages_per_huge_page(h);
c0d0381a 3932 struct address_space *mapping = vma->vm_file->f_mapping;
ac46d4f3 3933 struct mmu_notifier_range range;
e8569dd2 3934 int ret = 0;
1e8f889b 3935
ac46d4f3 3936 if (cow) {
7269f999 3937 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src,
6f4f13e8 3938 vma->vm_start,
ac46d4f3
JG
3939 vma->vm_end);
3940 mmu_notifier_invalidate_range_start(&range);
c0d0381a
MK
3941 } else {
3942 /*
3943 * For shared mappings i_mmap_rwsem must be held to call
3944 * huge_pte_alloc, otherwise the returned ptep could go
3945 * away if part of a shared pmd and another thread calls
3946 * huge_pmd_unshare.
3947 */
3948 i_mmap_lock_read(mapping);
ac46d4f3 3949 }
e8569dd2 3950
a5516438 3951 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
cb900f41 3952 spinlock_t *src_ptl, *dst_ptl;
7868a208 3953 src_pte = huge_pte_offset(src, addr, sz);
c74df32c
HD
3954 if (!src_pte)
3955 continue;
aec44e0f 3956 dst_pte = huge_pte_alloc(dst, vma, addr, sz);
e8569dd2
AS
3957 if (!dst_pte) {
3958 ret = -ENOMEM;
3959 break;
3960 }
c5c99429 3961
5e41540c
MK
3962 /*
3963 * If the pagetables are shared don't copy or take references.
3964 * dst_pte == src_pte is the common case of src/dest sharing.
3965 *
3966 * However, src could have 'unshared' and dst shares with
3967 * another vma. If dst_pte !none, this implies sharing.
3968 * Check here before taking page table lock, and once again
3969 * after taking the lock below.
3970 */
3971 dst_entry = huge_ptep_get(dst_pte);
3972 if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
c5c99429
LW
3973 continue;
3974
cb900f41
KS
3975 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3976 src_ptl = huge_pte_lockptr(h, src, src_pte);
3977 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4a705fef 3978 entry = huge_ptep_get(src_pte);
5e41540c 3979 dst_entry = huge_ptep_get(dst_pte);
4eae4efa 3980again:
5e41540c
MK
3981 if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
3982 /*
3983 * Skip if src entry none. Also, skip in the
3984 * unlikely case dst entry !none as this implies
3985 * sharing with another vma.
3986 */
4a705fef
NH
3987 ;
3988 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3989 is_hugetlb_entry_hwpoisoned(entry))) {
3990 swp_entry_t swp_entry = pte_to_swp_entry(entry);
3991
3992 if (is_write_migration_entry(swp_entry) && cow) {
3993 /*
3994 * COW mappings require pages in both
3995 * parent and child to be set to read.
3996 */
3997 make_migration_entry_read(&swp_entry);
3998 entry = swp_entry_to_pte(swp_entry);
e5251fd4
PA
3999 set_huge_swap_pte_at(src, addr, src_pte,
4000 entry, sz);
4a705fef 4001 }
e5251fd4 4002 set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
4a705fef 4003 } else {
4eae4efa
PX
4004 entry = huge_ptep_get(src_pte);
4005 ptepage = pte_page(entry);
4006 get_page(ptepage);
4007
4008 /*
4009 * This is a rare case where we see pinned hugetlb
4010 * pages while they're prone to COW. We need to do the
4011 * COW earlier during fork.
4012 *
4013 * When pre-allocating the page or copying data, we
4014 * need to be without the pgtable locks since we could
4015 * sleep during the process.
4016 */
4017 if (unlikely(page_needs_cow_for_dma(vma, ptepage))) {
4018 pte_t src_pte_old = entry;
4019 struct page *new;
4020
4021 spin_unlock(src_ptl);
4022 spin_unlock(dst_ptl);
4023 /* Do not use reserve as it's private owned */
4024 new = alloc_huge_page(vma, addr, 1);
4025 if (IS_ERR(new)) {
4026 put_page(ptepage);
4027 ret = PTR_ERR(new);
4028 break;
4029 }
4030 copy_user_huge_page(new, ptepage, addr, vma,
4031 npages);
4032 put_page(ptepage);
4033
4034 /* Install the new huge page if src pte stable */
4035 dst_ptl = huge_pte_lock(h, dst, dst_pte);
4036 src_ptl = huge_pte_lockptr(h, src, src_pte);
4037 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4038 entry = huge_ptep_get(src_pte);
4039 if (!pte_same(src_pte_old, entry)) {
4040 put_page(new);
4041 /* dst_entry won't change as in child */
4042 goto again;
4043 }
4044 hugetlb_install_page(vma, dst_pte, addr, new);
4045 spin_unlock(src_ptl);
4046 spin_unlock(dst_ptl);
4047 continue;
4048 }
4049
34ee645e 4050 if (cow) {
0f10851e
JG
4051 /*
4052 * No need to notify as we are downgrading page
4053 * table protection not changing it to point
4054 * to a new page.
4055 *
ad56b738 4056 * See Documentation/vm/mmu_notifier.rst
0f10851e 4057 */
7f2e9525 4058 huge_ptep_set_wrprotect(src, addr, src_pte);
34ee645e 4059 }
4eae4efa 4060
53f9263b 4061 page_dup_rmap(ptepage, true);
1c59827d 4062 set_huge_pte_at(dst, addr, dst_pte, entry);
4eae4efa 4063 hugetlb_count_add(npages, dst);
1c59827d 4064 }
cb900f41
KS
4065 spin_unlock(src_ptl);
4066 spin_unlock(dst_ptl);
63551ae0 4067 }
63551ae0 4068
e8569dd2 4069 if (cow)
ac46d4f3 4070 mmu_notifier_invalidate_range_end(&range);
c0d0381a
MK
4071 else
4072 i_mmap_unlock_read(mapping);
e8569dd2
AS
4073
4074 return ret;
63551ae0
DG
4075}
4076
24669e58
AK
4077void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
4078 unsigned long start, unsigned long end,
4079 struct page *ref_page)
63551ae0
DG
4080{
4081 struct mm_struct *mm = vma->vm_mm;
4082 unsigned long address;
c7546f8f 4083 pte_t *ptep;
63551ae0 4084 pte_t pte;
cb900f41 4085 spinlock_t *ptl;
63551ae0 4086 struct page *page;
a5516438
AK
4087 struct hstate *h = hstate_vma(vma);
4088 unsigned long sz = huge_page_size(h);
ac46d4f3 4089 struct mmu_notifier_range range;
a5516438 4090
63551ae0 4091 WARN_ON(!is_vm_hugetlb_page(vma));
a5516438
AK
4092 BUG_ON(start & ~huge_page_mask(h));
4093 BUG_ON(end & ~huge_page_mask(h));
63551ae0 4094
07e32661
AK
4095 /*
4096 * This is a hugetlb vma, all the pte entries should point
4097 * to huge page.
4098 */
ed6a7935 4099 tlb_change_page_size(tlb, sz);
24669e58 4100 tlb_start_vma(tlb, vma);
dff11abe
MK
4101
4102 /*
4103 * If sharing possible, alert mmu notifiers of worst case.
4104 */
6f4f13e8
JG
4105 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
4106 end);
ac46d4f3
JG
4107 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
4108 mmu_notifier_invalidate_range_start(&range);
569f48b8 4109 address = start;
569f48b8 4110 for (; address < end; address += sz) {
7868a208 4111 ptep = huge_pte_offset(mm, address, sz);
4c887265 4112 if (!ptep)
c7546f8f
DG
4113 continue;
4114
cb900f41 4115 ptl = huge_pte_lock(h, mm, ptep);
34ae204f 4116 if (huge_pmd_unshare(mm, vma, &address, ptep)) {
31d49da5 4117 spin_unlock(ptl);
dff11abe
MK
4118 /*
4119 * We just unmapped a page of PMDs by clearing a PUD.
4120 * The caller's TLB flush range should cover this area.
4121 */
31d49da5
AK
4122 continue;
4123 }
39dde65c 4124
6629326b 4125 pte = huge_ptep_get(ptep);
31d49da5
AK
4126 if (huge_pte_none(pte)) {
4127 spin_unlock(ptl);
4128 continue;
4129 }
6629326b
HD
4130
4131 /*
9fbc1f63
NH
4132 * Migrating hugepage or HWPoisoned hugepage is already
4133 * unmapped and its refcount is dropped, so just clear pte here.
6629326b 4134 */
9fbc1f63 4135 if (unlikely(!pte_present(pte))) {
9386fac3 4136 huge_pte_clear(mm, address, ptep, sz);
31d49da5
AK
4137 spin_unlock(ptl);
4138 continue;
8c4894c6 4139 }
6629326b
HD
4140
4141 page = pte_page(pte);
04f2cbe3
MG
4142 /*
4143 * If a reference page is supplied, it is because a specific
4144 * page is being unmapped, not a range. Ensure the page we
4145 * are about to unmap is the actual page of interest.
4146 */
4147 if (ref_page) {
31d49da5
AK
4148 if (page != ref_page) {
4149 spin_unlock(ptl);
4150 continue;
4151 }
04f2cbe3
MG
4152 /*
4153 * Mark the VMA as having unmapped its page so that
4154 * future faults in this VMA will fail rather than
4155 * looking like data was lost
4156 */
4157 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
4158 }
4159
c7546f8f 4160 pte = huge_ptep_get_and_clear(mm, address, ptep);
b528e4b6 4161 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
106c992a 4162 if (huge_pte_dirty(pte))
6649a386 4163 set_page_dirty(page);
9e81130b 4164
5d317b2b 4165 hugetlb_count_sub(pages_per_huge_page(h), mm);
d281ee61 4166 page_remove_rmap(page, true);
31d49da5 4167
cb900f41 4168 spin_unlock(ptl);
e77b0852 4169 tlb_remove_page_size(tlb, page, huge_page_size(h));
31d49da5
AK
4170 /*
4171 * Bail out after unmapping reference page if supplied
4172 */
4173 if (ref_page)
4174 break;
fe1668ae 4175 }
ac46d4f3 4176 mmu_notifier_invalidate_range_end(&range);
24669e58 4177 tlb_end_vma(tlb, vma);
1da177e4 4178}
63551ae0 4179
d833352a
MG
4180void __unmap_hugepage_range_final(struct mmu_gather *tlb,
4181 struct vm_area_struct *vma, unsigned long start,
4182 unsigned long end, struct page *ref_page)
4183{
4184 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
4185
4186 /*
4187 * Clear this flag so that x86's huge_pmd_share page_table_shareable
4188 * test will fail on a vma being torn down, and not grab a page table
4189 * on its way out. We're lucky that the flag has such an appropriate
4190 * name, and can in fact be safely cleared here. We could clear it
4191 * before the __unmap_hugepage_range above, but all that's necessary
c8c06efa 4192 * is to clear it before releasing the i_mmap_rwsem. This works
d833352a 4193 * because in the context this is called, the VMA is about to be
c8c06efa 4194 * destroyed and the i_mmap_rwsem is held.
d833352a
MG
4195 */
4196 vma->vm_flags &= ~VM_MAYSHARE;
4197}
4198
502717f4 4199void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
04f2cbe3 4200 unsigned long end, struct page *ref_page)
502717f4 4201{
24669e58 4202 struct mmu_gather tlb;
dff11abe 4203
a72afd87 4204 tlb_gather_mmu(&tlb, vma->vm_mm);
24669e58 4205 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
ae8eba8b 4206 tlb_finish_mmu(&tlb);
502717f4
CK
4207}
4208
04f2cbe3
MG
4209/*
4210 * This is called when the original mapper is failing to COW a MAP_PRIVATE
578b7725 4211 * mapping it owns the reserve page for. The intention is to unmap the page
04f2cbe3
MG
4212 * from other VMAs and let the children be SIGKILLed if they are faulting the
4213 * same region.
4214 */
2f4612af
DB
4215static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
4216 struct page *page, unsigned long address)
04f2cbe3 4217{
7526674d 4218 struct hstate *h = hstate_vma(vma);
04f2cbe3
MG
4219 struct vm_area_struct *iter_vma;
4220 struct address_space *mapping;
04f2cbe3
MG
4221 pgoff_t pgoff;
4222
4223 /*
4224 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
4225 * from page cache lookup which is in HPAGE_SIZE units.
4226 */
7526674d 4227 address = address & huge_page_mask(h);
36e4f20a
MH
4228 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
4229 vma->vm_pgoff;
93c76a3d 4230 mapping = vma->vm_file->f_mapping;
04f2cbe3 4231
4eb2b1dc
MG
4232 /*
4233 * Take the mapping lock for the duration of the table walk. As
4234 * this mapping should be shared between all the VMAs,
4235 * __unmap_hugepage_range() is called as the lock is already held
4236 */
83cde9e8 4237 i_mmap_lock_write(mapping);
6b2dbba8 4238 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
04f2cbe3
MG
4239 /* Do not unmap the current VMA */
4240 if (iter_vma == vma)
4241 continue;
4242
2f84a899
MG
4243 /*
4244 * Shared VMAs have their own reserves and do not affect
4245 * MAP_PRIVATE accounting but it is possible that a shared
4246 * VMA is using the same page so check and skip such VMAs.
4247 */
4248 if (iter_vma->vm_flags & VM_MAYSHARE)
4249 continue;
4250
04f2cbe3
MG
4251 /*
4252 * Unmap the page from other VMAs without their own reserves.
4253 * They get marked to be SIGKILLed if they fault in these
4254 * areas. This is because a future no-page fault on this VMA
4255 * could insert a zeroed page instead of the data existing
4256 * from the time of fork. This would look like data corruption
4257 */
4258 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
24669e58
AK
4259 unmap_hugepage_range(iter_vma, address,
4260 address + huge_page_size(h), page);
04f2cbe3 4261 }
83cde9e8 4262 i_mmap_unlock_write(mapping);
04f2cbe3
MG
4263}
4264
0fe6e20b
NH
4265/*
4266 * Hugetlb_cow() should be called with page lock of the original hugepage held.
ef009b25
MH
4267 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
4268 * cannot race with other handlers or page migration.
4269 * Keep the pte_same checks anyway to make transition from the mutex easier.
0fe6e20b 4270 */
2b740303 4271static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
974e6d66 4272 unsigned long address, pte_t *ptep,
3999f52e 4273 struct page *pagecache_page, spinlock_t *ptl)
1e8f889b 4274{
3999f52e 4275 pte_t pte;
a5516438 4276 struct hstate *h = hstate_vma(vma);
1e8f889b 4277 struct page *old_page, *new_page;
2b740303
SJ
4278 int outside_reserve = 0;
4279 vm_fault_t ret = 0;
974e6d66 4280 unsigned long haddr = address & huge_page_mask(h);
ac46d4f3 4281 struct mmu_notifier_range range;
1e8f889b 4282
3999f52e 4283 pte = huge_ptep_get(ptep);
1e8f889b
DG
4284 old_page = pte_page(pte);
4285
04f2cbe3 4286retry_avoidcopy:
1e8f889b
DG
4287 /* If no-one else is actually using this page, avoid the copy
4288 * and just make the page writable */
37a2140d 4289 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
5a49973d 4290 page_move_anon_rmap(old_page, vma);
5b7a1d40 4291 set_huge_ptep_writable(vma, haddr, ptep);
83c54070 4292 return 0;
1e8f889b
DG
4293 }
4294
04f2cbe3
MG
4295 /*
4296 * If the process that created a MAP_PRIVATE mapping is about to
4297 * perform a COW due to a shared page count, attempt to satisfy
4298 * the allocation without using the existing reserves. The pagecache
4299 * page is used to determine if the reserve at this address was
4300 * consumed or not. If reserves were used, a partial faulted mapping
4301 * at the time of fork() could consume its reserves on COW instead
4302 * of the full address range.
4303 */
5944d011 4304 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
04f2cbe3
MG
4305 old_page != pagecache_page)
4306 outside_reserve = 1;
4307
09cbfeaf 4308 get_page(old_page);
b76c8cfb 4309
ad4404a2
DB
4310 /*
4311 * Drop page table lock as buddy allocator may be called. It will
4312 * be acquired again before returning to the caller, as expected.
4313 */
cb900f41 4314 spin_unlock(ptl);
5b7a1d40 4315 new_page = alloc_huge_page(vma, haddr, outside_reserve);
1e8f889b 4316
2fc39cec 4317 if (IS_ERR(new_page)) {
04f2cbe3
MG
4318 /*
4319 * If a process owning a MAP_PRIVATE mapping fails to COW,
4320 * it is due to references held by a child and an insufficient
4321 * huge page pool. To guarantee the original mappers
4322 * reliability, unmap the page from child processes. The child
4323 * may get SIGKILLed if it later faults.
4324 */
4325 if (outside_reserve) {
e7dd91c4
MK
4326 struct address_space *mapping = vma->vm_file->f_mapping;
4327 pgoff_t idx;
4328 u32 hash;
4329
09cbfeaf 4330 put_page(old_page);
04f2cbe3 4331 BUG_ON(huge_pte_none(pte));
e7dd91c4
MK
4332 /*
4333 * Drop hugetlb_fault_mutex and i_mmap_rwsem before
4334 * unmapping. unmapping needs to hold i_mmap_rwsem
4335 * in write mode. Dropping i_mmap_rwsem in read mode
4336 * here is OK as COW mappings do not interact with
4337 * PMD sharing.
4338 *
4339 * Reacquire both after unmap operation.
4340 */
4341 idx = vma_hugecache_offset(h, vma, haddr);
4342 hash = hugetlb_fault_mutex_hash(mapping, idx);
4343 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4344 i_mmap_unlock_read(mapping);
4345
5b7a1d40 4346 unmap_ref_private(mm, vma, old_page, haddr);
e7dd91c4
MK
4347
4348 i_mmap_lock_read(mapping);
4349 mutex_lock(&hugetlb_fault_mutex_table[hash]);
2f4612af 4350 spin_lock(ptl);
5b7a1d40 4351 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
2f4612af
DB
4352 if (likely(ptep &&
4353 pte_same(huge_ptep_get(ptep), pte)))
4354 goto retry_avoidcopy;
4355 /*
4356 * race occurs while re-acquiring page table
4357 * lock, and our job is done.
4358 */
4359 return 0;
04f2cbe3
MG
4360 }
4361
2b740303 4362 ret = vmf_error(PTR_ERR(new_page));
ad4404a2 4363 goto out_release_old;
1e8f889b
DG
4364 }
4365
0fe6e20b
NH
4366 /*
4367 * When the original hugepage is shared one, it does not have
4368 * anon_vma prepared.
4369 */
44e2aa93 4370 if (unlikely(anon_vma_prepare(vma))) {
ad4404a2
DB
4371 ret = VM_FAULT_OOM;
4372 goto out_release_all;
44e2aa93 4373 }
0fe6e20b 4374
974e6d66 4375 copy_user_huge_page(new_page, old_page, address, vma,
47ad8475 4376 pages_per_huge_page(h));
0ed361de 4377 __SetPageUptodate(new_page);
1e8f889b 4378
7269f999 4379 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
6f4f13e8 4380 haddr + huge_page_size(h));
ac46d4f3 4381 mmu_notifier_invalidate_range_start(&range);
ad4404a2 4382
b76c8cfb 4383 /*
cb900f41 4384 * Retake the page table lock to check for racing updates
b76c8cfb
LW
4385 * before the page tables are altered
4386 */
cb900f41 4387 spin_lock(ptl);
5b7a1d40 4388 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
a9af0c5d 4389 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
d6995da3 4390 ClearHPageRestoreReserve(new_page);
07443a85 4391
1e8f889b 4392 /* Break COW */
5b7a1d40 4393 huge_ptep_clear_flush(vma, haddr, ptep);
ac46d4f3 4394 mmu_notifier_invalidate_range(mm, range.start, range.end);
5b7a1d40 4395 set_huge_pte_at(mm, haddr, ptep,
1e8f889b 4396 make_huge_pte(vma, new_page, 1));
d281ee61 4397 page_remove_rmap(old_page, true);
5b7a1d40 4398 hugepage_add_new_anon_rmap(new_page, vma, haddr);
8f251a3d 4399 SetHPageMigratable(new_page);
1e8f889b
DG
4400 /* Make the old page be freed below */
4401 new_page = old_page;
4402 }
cb900f41 4403 spin_unlock(ptl);
ac46d4f3 4404 mmu_notifier_invalidate_range_end(&range);
ad4404a2 4405out_release_all:
5b7a1d40 4406 restore_reserve_on_error(h, vma, haddr, new_page);
09cbfeaf 4407 put_page(new_page);
ad4404a2 4408out_release_old:
09cbfeaf 4409 put_page(old_page);
8312034f 4410
ad4404a2
DB
4411 spin_lock(ptl); /* Caller expects lock to be held */
4412 return ret;
1e8f889b
DG
4413}
4414
04f2cbe3 4415/* Return the pagecache page at a given address within a VMA */
a5516438
AK
4416static struct page *hugetlbfs_pagecache_page(struct hstate *h,
4417 struct vm_area_struct *vma, unsigned long address)
04f2cbe3
MG
4418{
4419 struct address_space *mapping;
e7c4b0bf 4420 pgoff_t idx;
04f2cbe3
MG
4421
4422 mapping = vma->vm_file->f_mapping;
a5516438 4423 idx = vma_hugecache_offset(h, vma, address);
04f2cbe3
MG
4424
4425 return find_lock_page(mapping, idx);
4426}
4427
3ae77f43
HD
4428/*
4429 * Return whether there is a pagecache page to back given address within VMA.
4430 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
4431 */
4432static bool hugetlbfs_pagecache_present(struct hstate *h,
2a15efc9
HD
4433 struct vm_area_struct *vma, unsigned long address)
4434{
4435 struct address_space *mapping;
4436 pgoff_t idx;
4437 struct page *page;
4438
4439 mapping = vma->vm_file->f_mapping;
4440 idx = vma_hugecache_offset(h, vma, address);
4441
4442 page = find_get_page(mapping, idx);
4443 if (page)
4444 put_page(page);
4445 return page != NULL;
4446}
4447
ab76ad54
MK
4448int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
4449 pgoff_t idx)
4450{
4451 struct inode *inode = mapping->host;
4452 struct hstate *h = hstate_inode(inode);
4453 int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
4454
4455 if (err)
4456 return err;
d6995da3 4457 ClearHPageRestoreReserve(page);
ab76ad54 4458
22146c3c
MK
4459 /*
4460 * set page dirty so that it will not be removed from cache/file
4461 * by non-hugetlbfs specific code paths.
4462 */
4463 set_page_dirty(page);
4464
ab76ad54
MK
4465 spin_lock(&inode->i_lock);
4466 inode->i_blocks += blocks_per_huge_page(h);
4467 spin_unlock(&inode->i_lock);
4468 return 0;
4469}
4470
7677f7fd
AR
4471static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma,
4472 struct address_space *mapping,
4473 pgoff_t idx,
4474 unsigned int flags,
4475 unsigned long haddr,
4476 unsigned long reason)
4477{
4478 vm_fault_t ret;
4479 u32 hash;
4480 struct vm_fault vmf = {
4481 .vma = vma,
4482 .address = haddr,
4483 .flags = flags,
4484
4485 /*
4486 * Hard to debug if it ends up being
4487 * used by a callee that assumes
4488 * something about the other
4489 * uninitialized fields... same as in
4490 * memory.c
4491 */
4492 };
4493
4494 /*
4495 * hugetlb_fault_mutex and i_mmap_rwsem must be
4496 * dropped before handling userfault. Reacquire
4497 * after handling fault to make calling code simpler.
4498 */
4499 hash = hugetlb_fault_mutex_hash(mapping, idx);
4500 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4501 i_mmap_unlock_read(mapping);
4502 ret = handle_userfault(&vmf, reason);
4503 i_mmap_lock_read(mapping);
4504 mutex_lock(&hugetlb_fault_mutex_table[hash]);
4505
4506 return ret;
4507}
4508
2b740303
SJ
4509static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
4510 struct vm_area_struct *vma,
4511 struct address_space *mapping, pgoff_t idx,
4512 unsigned long address, pte_t *ptep, unsigned int flags)
ac9b9c66 4513{
a5516438 4514 struct hstate *h = hstate_vma(vma);
2b740303 4515 vm_fault_t ret = VM_FAULT_SIGBUS;
409eb8c2 4516 int anon_rmap = 0;
4c887265 4517 unsigned long size;
4c887265 4518 struct page *page;
1e8f889b 4519 pte_t new_pte;
cb900f41 4520 spinlock_t *ptl;
285b8dca 4521 unsigned long haddr = address & huge_page_mask(h);
cb6acd01 4522 bool new_page = false;
4c887265 4523
04f2cbe3
MG
4524 /*
4525 * Currently, we are forced to kill the process in the event the
4526 * original mapper has unmapped pages from the child due to a failed
25985edc 4527 * COW. Warn that such a situation has occurred as it may not be obvious
04f2cbe3
MG
4528 */
4529 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
910154d5 4530 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
ffb22af5 4531 current->pid);
04f2cbe3
MG
4532 return ret;
4533 }
4534
4c887265 4535 /*
87bf91d3
MK
4536 * We can not race with truncation due to holding i_mmap_rwsem.
4537 * i_size is modified when holding i_mmap_rwsem, so check here
4538 * once for faults beyond end of file.
4c887265 4539 */
87bf91d3
MK
4540 size = i_size_read(mapping->host) >> huge_page_shift(h);
4541 if (idx >= size)
4542 goto out;
4543
6bda666a
CL
4544retry:
4545 page = find_lock_page(mapping, idx);
4546 if (!page) {
7677f7fd 4547 /* Check for page in userfault range */
1a1aad8a 4548 if (userfaultfd_missing(vma)) {
7677f7fd
AR
4549 ret = hugetlb_handle_userfault(vma, mapping, idx,
4550 flags, haddr,
4551 VM_UFFD_MISSING);
1a1aad8a
MK
4552 goto out;
4553 }
4554
285b8dca 4555 page = alloc_huge_page(vma, haddr, 0);
2fc39cec 4556 if (IS_ERR(page)) {
4643d67e
MK
4557 /*
4558 * Returning error will result in faulting task being
4559 * sent SIGBUS. The hugetlb fault mutex prevents two
4560 * tasks from racing to fault in the same page which
4561 * could result in false unable to allocate errors.
4562 * Page migration does not take the fault mutex, but
4563 * does a clear then write of pte's under page table
4564 * lock. Page fault code could race with migration,
4565 * notice the clear pte and try to allocate a page
4566 * here. Before returning error, get ptl and make
4567 * sure there really is no pte entry.
4568 */
4569 ptl = huge_pte_lock(h, mm, ptep);
d83e6c8a
ML
4570 ret = 0;
4571 if (huge_pte_none(huge_ptep_get(ptep)))
4572 ret = vmf_error(PTR_ERR(page));
4643d67e 4573 spin_unlock(ptl);
6bda666a
CL
4574 goto out;
4575 }
47ad8475 4576 clear_huge_page(page, address, pages_per_huge_page(h));
0ed361de 4577 __SetPageUptodate(page);
cb6acd01 4578 new_page = true;
ac9b9c66 4579
f83a275d 4580 if (vma->vm_flags & VM_MAYSHARE) {
ab76ad54 4581 int err = huge_add_to_page_cache(page, mapping, idx);
6bda666a
CL
4582 if (err) {
4583 put_page(page);
6bda666a
CL
4584 if (err == -EEXIST)
4585 goto retry;
4586 goto out;
4587 }
23be7468 4588 } else {
6bda666a 4589 lock_page(page);
0fe6e20b
NH
4590 if (unlikely(anon_vma_prepare(vma))) {
4591 ret = VM_FAULT_OOM;
4592 goto backout_unlocked;
4593 }
409eb8c2 4594 anon_rmap = 1;
23be7468 4595 }
0fe6e20b 4596 } else {
998b4382
NH
4597 /*
4598 * If memory error occurs between mmap() and fault, some process
4599 * don't have hwpoisoned swap entry for errored virtual address.
4600 * So we need to block hugepage fault by PG_hwpoison bit check.
4601 */
4602 if (unlikely(PageHWPoison(page))) {
0eb98f15 4603 ret = VM_FAULT_HWPOISON_LARGE |
972dc4de 4604 VM_FAULT_SET_HINDEX(hstate_index(h));
998b4382
NH
4605 goto backout_unlocked;
4606 }
7677f7fd
AR
4607
4608 /* Check for page in userfault range. */
4609 if (userfaultfd_minor(vma)) {
4610 unlock_page(page);
4611 put_page(page);
4612 ret = hugetlb_handle_userfault(vma, mapping, idx,
4613 flags, haddr,
4614 VM_UFFD_MINOR);
4615 goto out;
4616 }
6bda666a 4617 }
1e8f889b 4618
57303d80
AW
4619 /*
4620 * If we are going to COW a private mapping later, we examine the
4621 * pending reservations for this page now. This will ensure that
4622 * any allocations necessary to record that reservation occur outside
4623 * the spinlock.
4624 */
5e911373 4625 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
285b8dca 4626 if (vma_needs_reservation(h, vma, haddr) < 0) {
2b26736c
AW
4627 ret = VM_FAULT_OOM;
4628 goto backout_unlocked;
4629 }
5e911373 4630 /* Just decrements count, does not deallocate */
285b8dca 4631 vma_end_reservation(h, vma, haddr);
5e911373 4632 }
57303d80 4633
8bea8052 4634 ptl = huge_pte_lock(h, mm, ptep);
83c54070 4635 ret = 0;
7f2e9525 4636 if (!huge_pte_none(huge_ptep_get(ptep)))
4c887265
AL
4637 goto backout;
4638
07443a85 4639 if (anon_rmap) {
d6995da3 4640 ClearHPageRestoreReserve(page);
285b8dca 4641 hugepage_add_new_anon_rmap(page, vma, haddr);
ac714904 4642 } else
53f9263b 4643 page_dup_rmap(page, true);
1e8f889b
DG
4644 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
4645 && (vma->vm_flags & VM_SHARED)));
285b8dca 4646 set_huge_pte_at(mm, haddr, ptep, new_pte);
1e8f889b 4647
5d317b2b 4648 hugetlb_count_add(pages_per_huge_page(h), mm);
788c7df4 4649 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
1e8f889b 4650 /* Optimization, do the COW without a second fault */
974e6d66 4651 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
1e8f889b
DG
4652 }
4653
cb900f41 4654 spin_unlock(ptl);
cb6acd01
MK
4655
4656 /*
8f251a3d
MK
4657 * Only set HPageMigratable in newly allocated pages. Existing pages
4658 * found in the pagecache may not have HPageMigratableset if they have
4659 * been isolated for migration.
cb6acd01
MK
4660 */
4661 if (new_page)
8f251a3d 4662 SetHPageMigratable(page);
cb6acd01 4663
4c887265
AL
4664 unlock_page(page);
4665out:
ac9b9c66 4666 return ret;
4c887265
AL
4667
4668backout:
cb900f41 4669 spin_unlock(ptl);
2b26736c 4670backout_unlocked:
4c887265 4671 unlock_page(page);
285b8dca 4672 restore_reserve_on_error(h, vma, haddr, page);
4c887265
AL
4673 put_page(page);
4674 goto out;
ac9b9c66
HD
4675}
4676
8382d914 4677#ifdef CONFIG_SMP
188b04a7 4678u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
8382d914
DB
4679{
4680 unsigned long key[2];
4681 u32 hash;
4682
1b426bac
MK
4683 key[0] = (unsigned long) mapping;
4684 key[1] = idx;
8382d914 4685
55254636 4686 hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
8382d914
DB
4687
4688 return hash & (num_fault_mutexes - 1);
4689}
4690#else
4691/*
6c26d310 4692 * For uniprocessor systems we always use a single mutex, so just
8382d914
DB
4693 * return 0 and avoid the hashing overhead.
4694 */
188b04a7 4695u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
8382d914
DB
4696{
4697 return 0;
4698}
4699#endif
4700
2b740303 4701vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
788c7df4 4702 unsigned long address, unsigned int flags)
86e5216f 4703{
8382d914 4704 pte_t *ptep, entry;
cb900f41 4705 spinlock_t *ptl;
2b740303 4706 vm_fault_t ret;
8382d914
DB
4707 u32 hash;
4708 pgoff_t idx;
0fe6e20b 4709 struct page *page = NULL;
57303d80 4710 struct page *pagecache_page = NULL;
a5516438 4711 struct hstate *h = hstate_vma(vma);
8382d914 4712 struct address_space *mapping;
0f792cf9 4713 int need_wait_lock = 0;
285b8dca 4714 unsigned long haddr = address & huge_page_mask(h);
86e5216f 4715
285b8dca 4716 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
fd6a03ed 4717 if (ptep) {
c0d0381a
MK
4718 /*
4719 * Since we hold no locks, ptep could be stale. That is
4720 * OK as we are only making decisions based on content and
4721 * not actually modifying content here.
4722 */
fd6a03ed 4723 entry = huge_ptep_get(ptep);
290408d4 4724 if (unlikely(is_hugetlb_entry_migration(entry))) {
cb900f41 4725 migration_entry_wait_huge(vma, mm, ptep);
290408d4
NH
4726 return 0;
4727 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
32f84528 4728 return VM_FAULT_HWPOISON_LARGE |
972dc4de 4729 VM_FAULT_SET_HINDEX(hstate_index(h));
fd6a03ed
NH
4730 }
4731
c0d0381a
MK
4732 /*
4733 * Acquire i_mmap_rwsem before calling huge_pte_alloc and hold
87bf91d3
MK
4734 * until finished with ptep. This serves two purposes:
4735 * 1) It prevents huge_pmd_unshare from being called elsewhere
4736 * and making the ptep no longer valid.
4737 * 2) It synchronizes us with i_size modifications during truncation.
c0d0381a
MK
4738 *
4739 * ptep could have already be assigned via huge_pte_offset. That
4740 * is OK, as huge_pte_alloc will return the same value unless
4741 * something has changed.
4742 */
8382d914 4743 mapping = vma->vm_file->f_mapping;
c0d0381a 4744 i_mmap_lock_read(mapping);
aec44e0f 4745 ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h));
c0d0381a
MK
4746 if (!ptep) {
4747 i_mmap_unlock_read(mapping);
4748 return VM_FAULT_OOM;
4749 }
8382d914 4750
3935baa9
DG
4751 /*
4752 * Serialize hugepage allocation and instantiation, so that we don't
4753 * get spurious allocation failures if two CPUs race to instantiate
4754 * the same page in the page cache.
4755 */
c0d0381a 4756 idx = vma_hugecache_offset(h, vma, haddr);
188b04a7 4757 hash = hugetlb_fault_mutex_hash(mapping, idx);
c672c7f2 4758 mutex_lock(&hugetlb_fault_mutex_table[hash]);
8382d914 4759
7f2e9525
GS
4760 entry = huge_ptep_get(ptep);
4761 if (huge_pte_none(entry)) {
8382d914 4762 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
b4d1d99f 4763 goto out_mutex;
3935baa9 4764 }
86e5216f 4765
83c54070 4766 ret = 0;
1e8f889b 4767
0f792cf9
NH
4768 /*
4769 * entry could be a migration/hwpoison entry at this point, so this
4770 * check prevents the kernel from going below assuming that we have
7c8de358
EP
4771 * an active hugepage in pagecache. This goto expects the 2nd page
4772 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
4773 * properly handle it.
0f792cf9
NH
4774 */
4775 if (!pte_present(entry))
4776 goto out_mutex;
4777
57303d80
AW
4778 /*
4779 * If we are going to COW the mapping later, we examine the pending
4780 * reservations for this page now. This will ensure that any
4781 * allocations necessary to record that reservation occur outside the
4782 * spinlock. For private mappings, we also lookup the pagecache
4783 * page now as it is used to determine if a reservation has been
4784 * consumed.
4785 */
106c992a 4786 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
285b8dca 4787 if (vma_needs_reservation(h, vma, haddr) < 0) {
2b26736c 4788 ret = VM_FAULT_OOM;
b4d1d99f 4789 goto out_mutex;
2b26736c 4790 }
5e911373 4791 /* Just decrements count, does not deallocate */
285b8dca 4792 vma_end_reservation(h, vma, haddr);
57303d80 4793
f83a275d 4794 if (!(vma->vm_flags & VM_MAYSHARE))
57303d80 4795 pagecache_page = hugetlbfs_pagecache_page(h,
285b8dca 4796 vma, haddr);
57303d80
AW
4797 }
4798
0f792cf9
NH
4799 ptl = huge_pte_lock(h, mm, ptep);
4800
4801 /* Check for a racing update before calling hugetlb_cow */
4802 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
4803 goto out_ptl;
4804
56c9cfb1
NH
4805 /*
4806 * hugetlb_cow() requires page locks of pte_page(entry) and
4807 * pagecache_page, so here we need take the former one
4808 * when page != pagecache_page or !pagecache_page.
56c9cfb1
NH
4809 */
4810 page = pte_page(entry);
4811 if (page != pagecache_page)
0f792cf9
NH
4812 if (!trylock_page(page)) {
4813 need_wait_lock = 1;
4814 goto out_ptl;
4815 }
b4d1d99f 4816
0f792cf9 4817 get_page(page);
b4d1d99f 4818
788c7df4 4819 if (flags & FAULT_FLAG_WRITE) {
106c992a 4820 if (!huge_pte_write(entry)) {
974e6d66 4821 ret = hugetlb_cow(mm, vma, address, ptep,
3999f52e 4822 pagecache_page, ptl);
0f792cf9 4823 goto out_put_page;
b4d1d99f 4824 }
106c992a 4825 entry = huge_pte_mkdirty(entry);
b4d1d99f
DG
4826 }
4827 entry = pte_mkyoung(entry);
285b8dca 4828 if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
788c7df4 4829 flags & FAULT_FLAG_WRITE))
285b8dca 4830 update_mmu_cache(vma, haddr, ptep);
0f792cf9
NH
4831out_put_page:
4832 if (page != pagecache_page)
4833 unlock_page(page);
4834 put_page(page);
cb900f41
KS
4835out_ptl:
4836 spin_unlock(ptl);
57303d80
AW
4837
4838 if (pagecache_page) {
4839 unlock_page(pagecache_page);
4840 put_page(pagecache_page);
4841 }
b4d1d99f 4842out_mutex:
c672c7f2 4843 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
c0d0381a 4844 i_mmap_unlock_read(mapping);
0f792cf9
NH
4845 /*
4846 * Generally it's safe to hold refcount during waiting page lock. But
4847 * here we just wait to defer the next page fault to avoid busy loop and
4848 * the page is not used after unlocked before returning from the current
4849 * page fault. So we are safe from accessing freed page, even if we wait
4850 * here without taking refcount.
4851 */
4852 if (need_wait_lock)
4853 wait_on_page_locked(page);
1e8f889b 4854 return ret;
86e5216f
AL
4855}
4856
714c1891 4857#ifdef CONFIG_USERFAULTFD
8fb5debc
MK
4858/*
4859 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with
4860 * modifications for huge pages.
4861 */
4862int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
4863 pte_t *dst_pte,
4864 struct vm_area_struct *dst_vma,
4865 unsigned long dst_addr,
4866 unsigned long src_addr,
f6191471 4867 enum mcopy_atomic_mode mode,
8fb5debc
MK
4868 struct page **pagep)
4869{
f6191471 4870 bool is_continue = (mode == MCOPY_ATOMIC_CONTINUE);
1e392147
AA
4871 struct address_space *mapping;
4872 pgoff_t idx;
4873 unsigned long size;
1c9e8def 4874 int vm_shared = dst_vma->vm_flags & VM_SHARED;
8fb5debc
MK
4875 struct hstate *h = hstate_vma(dst_vma);
4876 pte_t _dst_pte;
4877 spinlock_t *ptl;
4878 int ret;
4879 struct page *page;
f6191471 4880 int writable;
8fb5debc 4881
f6191471
AR
4882 mapping = dst_vma->vm_file->f_mapping;
4883 idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4884
4885 if (is_continue) {
4886 ret = -EFAULT;
4887 page = find_lock_page(mapping, idx);
4888 if (!page)
4889 goto out;
4890 } else if (!*pagep) {
8fb5debc
MK
4891 ret = -ENOMEM;
4892 page = alloc_huge_page(dst_vma, dst_addr, 0);
4893 if (IS_ERR(page))
4894 goto out;
4895
4896 ret = copy_huge_page_from_user(page,
4897 (const void __user *) src_addr,
810a56b9 4898 pages_per_huge_page(h), false);
8fb5debc 4899
c1e8d7c6 4900 /* fallback to copy_from_user outside mmap_lock */
8fb5debc 4901 if (unlikely(ret)) {
9e368259 4902 ret = -ENOENT;
8fb5debc
MK
4903 *pagep = page;
4904 /* don't free the page */
4905 goto out;
4906 }
4907 } else {
4908 page = *pagep;
4909 *pagep = NULL;
4910 }
4911
4912 /*
4913 * The memory barrier inside __SetPageUptodate makes sure that
4914 * preceding stores to the page contents become visible before
4915 * the set_pte_at() write.
4916 */
4917 __SetPageUptodate(page);
8fb5debc 4918
f6191471
AR
4919 /* Add shared, newly allocated pages to the page cache. */
4920 if (vm_shared && !is_continue) {
1e392147
AA
4921 size = i_size_read(mapping->host) >> huge_page_shift(h);
4922 ret = -EFAULT;
4923 if (idx >= size)
4924 goto out_release_nounlock;
1c9e8def 4925
1e392147
AA
4926 /*
4927 * Serialization between remove_inode_hugepages() and
4928 * huge_add_to_page_cache() below happens through the
4929 * hugetlb_fault_mutex_table that here must be hold by
4930 * the caller.
4931 */
1c9e8def
MK
4932 ret = huge_add_to_page_cache(page, mapping, idx);
4933 if (ret)
4934 goto out_release_nounlock;
4935 }
4936
8fb5debc
MK
4937 ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4938 spin_lock(ptl);
4939
1e392147
AA
4940 /*
4941 * Recheck the i_size after holding PT lock to make sure not
4942 * to leave any page mapped (as page_mapped()) beyond the end
4943 * of the i_size (remove_inode_hugepages() is strict about
4944 * enforcing that). If we bail out here, we'll also leave a
4945 * page in the radix tree in the vm_shared case beyond the end
4946 * of the i_size, but remove_inode_hugepages() will take care
4947 * of it as soon as we drop the hugetlb_fault_mutex_table.
4948 */
4949 size = i_size_read(mapping->host) >> huge_page_shift(h);
4950 ret = -EFAULT;
4951 if (idx >= size)
4952 goto out_release_unlock;
4953
8fb5debc
MK
4954 ret = -EEXIST;
4955 if (!huge_pte_none(huge_ptep_get(dst_pte)))
4956 goto out_release_unlock;
4957
1c9e8def
MK
4958 if (vm_shared) {
4959 page_dup_rmap(page, true);
4960 } else {
d6995da3 4961 ClearHPageRestoreReserve(page);
1c9e8def
MK
4962 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4963 }
8fb5debc 4964
f6191471
AR
4965 /* For CONTINUE on a non-shared VMA, don't set VM_WRITE for CoW. */
4966 if (is_continue && !vm_shared)
4967 writable = 0;
4968 else
4969 writable = dst_vma->vm_flags & VM_WRITE;
4970
4971 _dst_pte = make_huge_pte(dst_vma, page, writable);
4972 if (writable)
8fb5debc
MK
4973 _dst_pte = huge_pte_mkdirty(_dst_pte);
4974 _dst_pte = pte_mkyoung(_dst_pte);
4975
4976 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4977
4978 (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4979 dst_vma->vm_flags & VM_WRITE);
4980 hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4981
4982 /* No need to invalidate - it was non-present before */
4983 update_mmu_cache(dst_vma, dst_addr, dst_pte);
4984
4985 spin_unlock(ptl);
f6191471
AR
4986 if (!is_continue)
4987 SetHPageMigratable(page);
4988 if (vm_shared || is_continue)
1c9e8def 4989 unlock_page(page);
8fb5debc
MK
4990 ret = 0;
4991out:
4992 return ret;
4993out_release_unlock:
4994 spin_unlock(ptl);
f6191471 4995 if (vm_shared || is_continue)
1c9e8def 4996 unlock_page(page);
5af10dfd 4997out_release_nounlock:
8fb5debc
MK
4998 put_page(page);
4999 goto out;
5000}
714c1891 5001#endif /* CONFIG_USERFAULTFD */
8fb5debc 5002
82e5d378
JM
5003static void record_subpages_vmas(struct page *page, struct vm_area_struct *vma,
5004 int refs, struct page **pages,
5005 struct vm_area_struct **vmas)
5006{
5007 int nr;
5008
5009 for (nr = 0; nr < refs; nr++) {
5010 if (likely(pages))
5011 pages[nr] = mem_map_offset(page, nr);
5012 if (vmas)
5013 vmas[nr] = vma;
5014 }
5015}
5016
28a35716
ML
5017long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
5018 struct page **pages, struct vm_area_struct **vmas,
5019 unsigned long *position, unsigned long *nr_pages,
4f6da934 5020 long i, unsigned int flags, int *locked)
63551ae0 5021{
d5d4b0aa
CK
5022 unsigned long pfn_offset;
5023 unsigned long vaddr = *position;
28a35716 5024 unsigned long remainder = *nr_pages;
a5516438 5025 struct hstate *h = hstate_vma(vma);
0fa5bc40 5026 int err = -EFAULT, refs;
63551ae0 5027
63551ae0 5028 while (vaddr < vma->vm_end && remainder) {
4c887265 5029 pte_t *pte;
cb900f41 5030 spinlock_t *ptl = NULL;
2a15efc9 5031 int absent;
4c887265 5032 struct page *page;
63551ae0 5033
02057967
DR
5034 /*
5035 * If we have a pending SIGKILL, don't keep faulting pages and
5036 * potentially allocating memory.
5037 */
fa45f116 5038 if (fatal_signal_pending(current)) {
02057967
DR
5039 remainder = 0;
5040 break;
5041 }
5042
4c887265
AL
5043 /*
5044 * Some archs (sparc64, sh*) have multiple pte_ts to
2a15efc9 5045 * each hugepage. We have to make sure we get the
4c887265 5046 * first, for the page indexing below to work.
cb900f41
KS
5047 *
5048 * Note that page table lock is not held when pte is null.
4c887265 5049 */
7868a208
PA
5050 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
5051 huge_page_size(h));
cb900f41
KS
5052 if (pte)
5053 ptl = huge_pte_lock(h, mm, pte);
2a15efc9
HD
5054 absent = !pte || huge_pte_none(huge_ptep_get(pte));
5055
5056 /*
5057 * When coredumping, it suits get_dump_page if we just return
3ae77f43
HD
5058 * an error where there's an empty slot with no huge pagecache
5059 * to back it. This way, we avoid allocating a hugepage, and
5060 * the sparse dumpfile avoids allocating disk blocks, but its
5061 * huge holes still show up with zeroes where they need to be.
2a15efc9 5062 */
3ae77f43
HD
5063 if (absent && (flags & FOLL_DUMP) &&
5064 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
cb900f41
KS
5065 if (pte)
5066 spin_unlock(ptl);
2a15efc9
HD
5067 remainder = 0;
5068 break;
5069 }
63551ae0 5070
9cc3a5bd
NH
5071 /*
5072 * We need call hugetlb_fault for both hugepages under migration
5073 * (in which case hugetlb_fault waits for the migration,) and
5074 * hwpoisoned hugepages (in which case we need to prevent the
5075 * caller from accessing to them.) In order to do this, we use
5076 * here is_swap_pte instead of is_hugetlb_entry_migration and
5077 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
5078 * both cases, and because we can't follow correct pages
5079 * directly from any kind of swap entries.
5080 */
5081 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
106c992a
GS
5082 ((flags & FOLL_WRITE) &&
5083 !huge_pte_write(huge_ptep_get(pte)))) {
2b740303 5084 vm_fault_t ret;
87ffc118 5085 unsigned int fault_flags = 0;
63551ae0 5086
cb900f41
KS
5087 if (pte)
5088 spin_unlock(ptl);
87ffc118
AA
5089 if (flags & FOLL_WRITE)
5090 fault_flags |= FAULT_FLAG_WRITE;
4f6da934 5091 if (locked)
71335f37
PX
5092 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
5093 FAULT_FLAG_KILLABLE;
87ffc118
AA
5094 if (flags & FOLL_NOWAIT)
5095 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
5096 FAULT_FLAG_RETRY_NOWAIT;
5097 if (flags & FOLL_TRIED) {
4426e945
PX
5098 /*
5099 * Note: FAULT_FLAG_ALLOW_RETRY and
5100 * FAULT_FLAG_TRIED can co-exist
5101 */
87ffc118
AA
5102 fault_flags |= FAULT_FLAG_TRIED;
5103 }
5104 ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
5105 if (ret & VM_FAULT_ERROR) {
2be7cfed 5106 err = vm_fault_to_errno(ret, flags);
87ffc118
AA
5107 remainder = 0;
5108 break;
5109 }
5110 if (ret & VM_FAULT_RETRY) {
4f6da934 5111 if (locked &&
1ac25013 5112 !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
4f6da934 5113 *locked = 0;
87ffc118
AA
5114 *nr_pages = 0;
5115 /*
5116 * VM_FAULT_RETRY must not return an
5117 * error, it will return zero
5118 * instead.
5119 *
5120 * No need to update "position" as the
5121 * caller will not check it after
5122 * *nr_pages is set to 0.
5123 */
5124 return i;
5125 }
5126 continue;
4c887265
AL
5127 }
5128
a5516438 5129 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
7f2e9525 5130 page = pte_page(huge_ptep_get(pte));
8fde12ca 5131
acbfb087
ZL
5132 /*
5133 * If subpage information not requested, update counters
5134 * and skip the same_page loop below.
5135 */
5136 if (!pages && !vmas && !pfn_offset &&
5137 (vaddr + huge_page_size(h) < vma->vm_end) &&
5138 (remainder >= pages_per_huge_page(h))) {
5139 vaddr += huge_page_size(h);
5140 remainder -= pages_per_huge_page(h);
5141 i += pages_per_huge_page(h);
5142 spin_unlock(ptl);
5143 continue;
5144 }
5145
82e5d378
JM
5146 refs = min3(pages_per_huge_page(h) - pfn_offset,
5147 (vma->vm_end - vaddr) >> PAGE_SHIFT, remainder);
0fa5bc40 5148
82e5d378
JM
5149 if (pages || vmas)
5150 record_subpages_vmas(mem_map_offset(page, pfn_offset),
5151 vma, refs,
5152 likely(pages) ? pages + i : NULL,
5153 vmas ? vmas + i : NULL);
63551ae0 5154
82e5d378 5155 if (pages) {
0fa5bc40
JM
5156 /*
5157 * try_grab_compound_head() should always succeed here,
5158 * because: a) we hold the ptl lock, and b) we've just
5159 * checked that the huge page is present in the page
5160 * tables. If the huge page is present, then the tail
5161 * pages must also be present. The ptl prevents the
5162 * head page and tail pages from being rearranged in
5163 * any way. So this page must be available at this
5164 * point, unless the page refcount overflowed:
5165 */
82e5d378 5166 if (WARN_ON_ONCE(!try_grab_compound_head(pages[i],
0fa5bc40
JM
5167 refs,
5168 flags))) {
5169 spin_unlock(ptl);
5170 remainder = 0;
5171 err = -ENOMEM;
5172 break;
5173 }
d5d4b0aa 5174 }
82e5d378
JM
5175
5176 vaddr += (refs << PAGE_SHIFT);
5177 remainder -= refs;
5178 i += refs;
5179
cb900f41 5180 spin_unlock(ptl);
63551ae0 5181 }
28a35716 5182 *nr_pages = remainder;
87ffc118
AA
5183 /*
5184 * setting position is actually required only if remainder is
5185 * not zero but it's faster not to add a "if (remainder)"
5186 * branch.
5187 */
63551ae0
DG
5188 *position = vaddr;
5189
2be7cfed 5190 return i ? i : err;
63551ae0 5191}
8f860591 5192
7da4d641 5193unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
8f860591
ZY
5194 unsigned long address, unsigned long end, pgprot_t newprot)
5195{
5196 struct mm_struct *mm = vma->vm_mm;
5197 unsigned long start = address;
5198 pte_t *ptep;
5199 pte_t pte;
a5516438 5200 struct hstate *h = hstate_vma(vma);
7da4d641 5201 unsigned long pages = 0;
dff11abe 5202 bool shared_pmd = false;
ac46d4f3 5203 struct mmu_notifier_range range;
dff11abe
MK
5204
5205 /*
5206 * In the case of shared PMDs, the area to flush could be beyond
ac46d4f3 5207 * start/end. Set range.start/range.end to cover the maximum possible
dff11abe
MK
5208 * range if PMD sharing is possible.
5209 */
7269f999
JG
5210 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
5211 0, vma, mm, start, end);
ac46d4f3 5212 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
8f860591
ZY
5213
5214 BUG_ON(address >= end);
ac46d4f3 5215 flush_cache_range(vma, range.start, range.end);
8f860591 5216
ac46d4f3 5217 mmu_notifier_invalidate_range_start(&range);
83cde9e8 5218 i_mmap_lock_write(vma->vm_file->f_mapping);
a5516438 5219 for (; address < end; address += huge_page_size(h)) {
cb900f41 5220 spinlock_t *ptl;
7868a208 5221 ptep = huge_pte_offset(mm, address, huge_page_size(h));
8f860591
ZY
5222 if (!ptep)
5223 continue;
cb900f41 5224 ptl = huge_pte_lock(h, mm, ptep);
34ae204f 5225 if (huge_pmd_unshare(mm, vma, &address, ptep)) {
7da4d641 5226 pages++;
cb900f41 5227 spin_unlock(ptl);
dff11abe 5228 shared_pmd = true;
39dde65c 5229 continue;
7da4d641 5230 }
a8bda28d
NH
5231 pte = huge_ptep_get(ptep);
5232 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
5233 spin_unlock(ptl);
5234 continue;
5235 }
5236 if (unlikely(is_hugetlb_entry_migration(pte))) {
5237 swp_entry_t entry = pte_to_swp_entry(pte);
5238
5239 if (is_write_migration_entry(entry)) {
5240 pte_t newpte;
5241
5242 make_migration_entry_read(&entry);
5243 newpte = swp_entry_to_pte(entry);
e5251fd4
PA
5244 set_huge_swap_pte_at(mm, address, ptep,
5245 newpte, huge_page_size(h));
a8bda28d
NH
5246 pages++;
5247 }
5248 spin_unlock(ptl);
5249 continue;
5250 }
5251 if (!huge_pte_none(pte)) {
023bdd00
AK
5252 pte_t old_pte;
5253
5254 old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
5255 pte = pte_mkhuge(huge_pte_modify(old_pte, newprot));
be7517d6 5256 pte = arch_make_huge_pte(pte, vma, NULL, 0);
023bdd00 5257 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
7da4d641 5258 pages++;
8f860591 5259 }
cb900f41 5260 spin_unlock(ptl);
8f860591 5261 }
d833352a 5262 /*
c8c06efa 5263 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
d833352a 5264 * may have cleared our pud entry and done put_page on the page table:
c8c06efa 5265 * once we release i_mmap_rwsem, another task can do the final put_page
dff11abe
MK
5266 * and that page table be reused and filled with junk. If we actually
5267 * did unshare a page of pmds, flush the range corresponding to the pud.
d833352a 5268 */
dff11abe 5269 if (shared_pmd)
ac46d4f3 5270 flush_hugetlb_tlb_range(vma, range.start, range.end);
dff11abe
MK
5271 else
5272 flush_hugetlb_tlb_range(vma, start, end);
0f10851e
JG
5273 /*
5274 * No need to call mmu_notifier_invalidate_range() we are downgrading
5275 * page table protection not changing it to point to a new page.
5276 *
ad56b738 5277 * See Documentation/vm/mmu_notifier.rst
0f10851e 5278 */
83cde9e8 5279 i_mmap_unlock_write(vma->vm_file->f_mapping);
ac46d4f3 5280 mmu_notifier_invalidate_range_end(&range);
7da4d641
PZ
5281
5282 return pages << h->order;
8f860591
ZY
5283}
5284
33b8f84a
MK
5285/* Return true if reservation was successful, false otherwise. */
5286bool hugetlb_reserve_pages(struct inode *inode,
a1e78772 5287 long from, long to,
5a6fe125 5288 struct vm_area_struct *vma,
ca16d140 5289 vm_flags_t vm_flags)
e4e574b7 5290{
33b8f84a 5291 long chg, add = -1;
a5516438 5292 struct hstate *h = hstate_inode(inode);
90481622 5293 struct hugepage_subpool *spool = subpool_inode(inode);
9119a41e 5294 struct resv_map *resv_map;
075a61d0 5295 struct hugetlb_cgroup *h_cg = NULL;
0db9d74e 5296 long gbl_reserve, regions_needed = 0;
e4e574b7 5297
63489f8e
MK
5298 /* This should never happen */
5299 if (from > to) {
5300 VM_WARN(1, "%s called with a negative range\n", __func__);
33b8f84a 5301 return false;
63489f8e
MK
5302 }
5303
17c9d12e
MG
5304 /*
5305 * Only apply hugepage reservation if asked. At fault time, an
5306 * attempt will be made for VM_NORESERVE to allocate a page
90481622 5307 * without using reserves
17c9d12e 5308 */
ca16d140 5309 if (vm_flags & VM_NORESERVE)
33b8f84a 5310 return true;
17c9d12e 5311
a1e78772
MG
5312 /*
5313 * Shared mappings base their reservation on the number of pages that
5314 * are already allocated on behalf of the file. Private mappings need
5315 * to reserve the full area even if read-only as mprotect() may be
5316 * called to make the mapping read-write. Assume !vma is a shm mapping
5317 */
9119a41e 5318 if (!vma || vma->vm_flags & VM_MAYSHARE) {
f27a5136
MK
5319 /*
5320 * resv_map can not be NULL as hugetlb_reserve_pages is only
5321 * called for inodes for which resv_maps were created (see
5322 * hugetlbfs_get_inode).
5323 */
4e35f483 5324 resv_map = inode_resv_map(inode);
9119a41e 5325
0db9d74e 5326 chg = region_chg(resv_map, from, to, &regions_needed);
9119a41e
JK
5327
5328 } else {
e9fe92ae 5329 /* Private mapping. */
9119a41e 5330 resv_map = resv_map_alloc();
17c9d12e 5331 if (!resv_map)
33b8f84a 5332 return false;
17c9d12e 5333
a1e78772 5334 chg = to - from;
84afd99b 5335
17c9d12e
MG
5336 set_vma_resv_map(vma, resv_map);
5337 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
5338 }
5339
33b8f84a 5340 if (chg < 0)
c50ac050 5341 goto out_err;
8a630112 5342
33b8f84a
MK
5343 if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
5344 chg * pages_per_huge_page(h), &h_cg) < 0)
075a61d0 5345 goto out_err;
075a61d0
MA
5346
5347 if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
5348 /* For private mappings, the hugetlb_cgroup uncharge info hangs
5349 * of the resv_map.
5350 */
5351 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
5352 }
5353
1c5ecae3
MK
5354 /*
5355 * There must be enough pages in the subpool for the mapping. If
5356 * the subpool has a minimum size, there may be some global
5357 * reservations already in place (gbl_reserve).
5358 */
5359 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
33b8f84a 5360 if (gbl_reserve < 0)
075a61d0 5361 goto out_uncharge_cgroup;
5a6fe125
MG
5362
5363 /*
17c9d12e 5364 * Check enough hugepages are available for the reservation.
90481622 5365 * Hand the pages back to the subpool if there are not
5a6fe125 5366 */
33b8f84a 5367 if (hugetlb_acct_memory(h, gbl_reserve) < 0)
075a61d0 5368 goto out_put_pages;
17c9d12e
MG
5369
5370 /*
5371 * Account for the reservations made. Shared mappings record regions
5372 * that have reservations as they are shared by multiple VMAs.
5373 * When the last VMA disappears, the region map says how much
5374 * the reservation was and the page cache tells how much of
5375 * the reservation was consumed. Private mappings are per-VMA and
5376 * only the consumed reservations are tracked. When the VMA
5377 * disappears, the original reservation is the VMA size and the
5378 * consumed reservations are stored in the map. Hence, nothing
5379 * else has to be done for private mappings here
5380 */
33039678 5381 if (!vma || vma->vm_flags & VM_MAYSHARE) {
075a61d0 5382 add = region_add(resv_map, from, to, regions_needed, h, h_cg);
0db9d74e
MA
5383
5384 if (unlikely(add < 0)) {
5385 hugetlb_acct_memory(h, -gbl_reserve);
075a61d0 5386 goto out_put_pages;
0db9d74e 5387 } else if (unlikely(chg > add)) {
33039678
MK
5388 /*
5389 * pages in this range were added to the reserve
5390 * map between region_chg and region_add. This
5391 * indicates a race with alloc_huge_page. Adjust
5392 * the subpool and reserve counts modified above
5393 * based on the difference.
5394 */
5395 long rsv_adjust;
5396
d85aecf2
ML
5397 /*
5398 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
5399 * reference to h_cg->css. See comment below for detail.
5400 */
075a61d0
MA
5401 hugetlb_cgroup_uncharge_cgroup_rsvd(
5402 hstate_index(h),
5403 (chg - add) * pages_per_huge_page(h), h_cg);
5404
33039678
MK
5405 rsv_adjust = hugepage_subpool_put_pages(spool,
5406 chg - add);
5407 hugetlb_acct_memory(h, -rsv_adjust);
d85aecf2
ML
5408 } else if (h_cg) {
5409 /*
5410 * The file_regions will hold their own reference to
5411 * h_cg->css. So we should release the reference held
5412 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
5413 * done.
5414 */
5415 hugetlb_cgroup_put_rsvd_cgroup(h_cg);
33039678
MK
5416 }
5417 }
33b8f84a
MK
5418 return true;
5419
075a61d0
MA
5420out_put_pages:
5421 /* put back original number of pages, chg */
5422 (void)hugepage_subpool_put_pages(spool, chg);
5423out_uncharge_cgroup:
5424 hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
5425 chg * pages_per_huge_page(h), h_cg);
c50ac050 5426out_err:
5e911373 5427 if (!vma || vma->vm_flags & VM_MAYSHARE)
0db9d74e
MA
5428 /* Only call region_abort if the region_chg succeeded but the
5429 * region_add failed or didn't run.
5430 */
5431 if (chg >= 0 && add < 0)
5432 region_abort(resv_map, from, to, regions_needed);
f031dd27
JK
5433 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
5434 kref_put(&resv_map->refs, resv_map_release);
33b8f84a 5435 return false;
a43a8c39
CK
5436}
5437
b5cec28d
MK
5438long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
5439 long freed)
a43a8c39 5440{
a5516438 5441 struct hstate *h = hstate_inode(inode);
4e35f483 5442 struct resv_map *resv_map = inode_resv_map(inode);
9119a41e 5443 long chg = 0;
90481622 5444 struct hugepage_subpool *spool = subpool_inode(inode);
1c5ecae3 5445 long gbl_reserve;
45c682a6 5446
f27a5136
MK
5447 /*
5448 * Since this routine can be called in the evict inode path for all
5449 * hugetlbfs inodes, resv_map could be NULL.
5450 */
b5cec28d
MK
5451 if (resv_map) {
5452 chg = region_del(resv_map, start, end);
5453 /*
5454 * region_del() can fail in the rare case where a region
5455 * must be split and another region descriptor can not be
5456 * allocated. If end == LONG_MAX, it will not fail.
5457 */
5458 if (chg < 0)
5459 return chg;
5460 }
5461
45c682a6 5462 spin_lock(&inode->i_lock);
e4c6f8be 5463 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
45c682a6
KC
5464 spin_unlock(&inode->i_lock);
5465
1c5ecae3
MK
5466 /*
5467 * If the subpool has a minimum size, the number of global
5468 * reservations to be released may be adjusted.
dddf31a4
ML
5469 *
5470 * Note that !resv_map implies freed == 0. So (chg - freed)
5471 * won't go negative.
1c5ecae3
MK
5472 */
5473 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
5474 hugetlb_acct_memory(h, -gbl_reserve);
b5cec28d
MK
5475
5476 return 0;
a43a8c39 5477}
93f70f90 5478
3212b535
SC
5479#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
5480static unsigned long page_table_shareable(struct vm_area_struct *svma,
5481 struct vm_area_struct *vma,
5482 unsigned long addr, pgoff_t idx)
5483{
5484 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
5485 svma->vm_start;
5486 unsigned long sbase = saddr & PUD_MASK;
5487 unsigned long s_end = sbase + PUD_SIZE;
5488
5489 /* Allow segments to share if only one is marked locked */
de60f5f1
EM
5490 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
5491 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
3212b535
SC
5492
5493 /*
5494 * match the virtual addresses, permission and the alignment of the
5495 * page table page.
5496 */
5497 if (pmd_index(addr) != pmd_index(saddr) ||
5498 vm_flags != svm_flags ||
07e51edf 5499 !range_in_vma(svma, sbase, s_end))
3212b535
SC
5500 return 0;
5501
5502 return saddr;
5503}
5504
31aafb45 5505static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
3212b535
SC
5506{
5507 unsigned long base = addr & PUD_MASK;
5508 unsigned long end = base + PUD_SIZE;
5509
5510 /*
5511 * check on proper vm_flags and page table alignment
5512 */
017b1660 5513 if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
31aafb45
NK
5514 return true;
5515 return false;
3212b535
SC
5516}
5517
c1991e07
PX
5518bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
5519{
5520#ifdef CONFIG_USERFAULTFD
5521 if (uffd_disable_huge_pmd_share(vma))
5522 return false;
5523#endif
5524 return vma_shareable(vma, addr);
5525}
5526
017b1660
MK
5527/*
5528 * Determine if start,end range within vma could be mapped by shared pmd.
5529 * If yes, adjust start and end to cover range associated with possible
5530 * shared pmd mappings.
5531 */
5532void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5533 unsigned long *start, unsigned long *end)
5534{
a1ba9da8
LX
5535 unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
5536 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
017b1660 5537
a1ba9da8 5538 /*
f0953a1b
IM
5539 * vma needs to span at least one aligned PUD size, and the range
5540 * must be at least partially within in.
a1ba9da8
LX
5541 */
5542 if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
5543 (*end <= v_start) || (*start >= v_end))
017b1660
MK
5544 return;
5545
75802ca6 5546 /* Extend the range to be PUD aligned for a worst case scenario */
a1ba9da8
LX
5547 if (*start > v_start)
5548 *start = ALIGN_DOWN(*start, PUD_SIZE);
017b1660 5549
a1ba9da8
LX
5550 if (*end < v_end)
5551 *end = ALIGN(*end, PUD_SIZE);
017b1660
MK
5552}
5553
3212b535
SC
5554/*
5555 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
5556 * and returns the corresponding pte. While this is not necessary for the
5557 * !shared pmd case because we can allocate the pmd later as well, it makes the
c0d0381a
MK
5558 * code much cleaner.
5559 *
0bf7b64e
MK
5560 * This routine must be called with i_mmap_rwsem held in at least read mode if
5561 * sharing is possible. For hugetlbfs, this prevents removal of any page
5562 * table entries associated with the address space. This is important as we
5563 * are setting up sharing based on existing page table entries (mappings).
5564 *
5565 * NOTE: This routine is only called from huge_pte_alloc. Some callers of
5566 * huge_pte_alloc know that sharing is not possible and do not take
5567 * i_mmap_rwsem as a performance optimization. This is handled by the
5568 * if !vma_shareable check at the beginning of the routine. i_mmap_rwsem is
5569 * only required for subsequent processing.
3212b535 5570 */
aec44e0f
PX
5571pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
5572 unsigned long addr, pud_t *pud)
3212b535 5573{
3212b535
SC
5574 struct address_space *mapping = vma->vm_file->f_mapping;
5575 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
5576 vma->vm_pgoff;
5577 struct vm_area_struct *svma;
5578 unsigned long saddr;
5579 pte_t *spte = NULL;
5580 pte_t *pte;
cb900f41 5581 spinlock_t *ptl;
3212b535 5582
0bf7b64e 5583 i_mmap_assert_locked(mapping);
3212b535
SC
5584 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
5585 if (svma == vma)
5586 continue;
5587
5588 saddr = page_table_shareable(svma, vma, addr, idx);
5589 if (saddr) {
7868a208
PA
5590 spte = huge_pte_offset(svma->vm_mm, saddr,
5591 vma_mmu_pagesize(svma));
3212b535
SC
5592 if (spte) {
5593 get_page(virt_to_page(spte));
5594 break;
5595 }
5596 }
5597 }
5598
5599 if (!spte)
5600 goto out;
5601
8bea8052 5602 ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
dc6c9a35 5603 if (pud_none(*pud)) {
3212b535
SC
5604 pud_populate(mm, pud,
5605 (pmd_t *)((unsigned long)spte & PAGE_MASK));
c17b1f42 5606 mm_inc_nr_pmds(mm);
dc6c9a35 5607 } else {
3212b535 5608 put_page(virt_to_page(spte));
dc6c9a35 5609 }
cb900f41 5610 spin_unlock(ptl);
3212b535
SC
5611out:
5612 pte = (pte_t *)pmd_alloc(mm, pud, addr);
3212b535
SC
5613 return pte;
5614}
5615
5616/*
5617 * unmap huge page backed by shared pte.
5618 *
5619 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
5620 * indicated by page_count > 1, unmap is achieved by clearing pud and
5621 * decrementing the ref count. If count == 1, the pte page is not shared.
5622 *
c0d0381a 5623 * Called with page table lock held and i_mmap_rwsem held in write mode.
3212b535
SC
5624 *
5625 * returns: 1 successfully unmapped a shared pte page
5626 * 0 the underlying pte page is not shared, or it is the last user
5627 */
34ae204f
MK
5628int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
5629 unsigned long *addr, pte_t *ptep)
3212b535
SC
5630{
5631 pgd_t *pgd = pgd_offset(mm, *addr);
c2febafc
KS
5632 p4d_t *p4d = p4d_offset(pgd, *addr);
5633 pud_t *pud = pud_offset(p4d, *addr);
3212b535 5634
34ae204f 5635 i_mmap_assert_write_locked(vma->vm_file->f_mapping);
3212b535
SC
5636 BUG_ON(page_count(virt_to_page(ptep)) == 0);
5637 if (page_count(virt_to_page(ptep)) == 1)
5638 return 0;
5639
5640 pud_clear(pud);
5641 put_page(virt_to_page(ptep));
dc6c9a35 5642 mm_dec_nr_pmds(mm);
3212b535
SC
5643 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
5644 return 1;
5645}
c1991e07 5646
9e5fc74c 5647#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
aec44e0f
PX
5648pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
5649 unsigned long addr, pud_t *pud)
9e5fc74c
SC
5650{
5651 return NULL;
5652}
e81f2d22 5653
34ae204f
MK
5654int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
5655 unsigned long *addr, pte_t *ptep)
e81f2d22
ZZ
5656{
5657 return 0;
5658}
017b1660
MK
5659
5660void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5661 unsigned long *start, unsigned long *end)
5662{
5663}
c1991e07
PX
5664
5665bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
5666{
5667 return false;
5668}
3212b535
SC
5669#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5670
9e5fc74c 5671#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
aec44e0f 5672pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
9e5fc74c
SC
5673 unsigned long addr, unsigned long sz)
5674{
5675 pgd_t *pgd;
c2febafc 5676 p4d_t *p4d;
9e5fc74c
SC
5677 pud_t *pud;
5678 pte_t *pte = NULL;
5679
5680 pgd = pgd_offset(mm, addr);
f4f0a3d8
KS
5681 p4d = p4d_alloc(mm, pgd, addr);
5682 if (!p4d)
5683 return NULL;
c2febafc 5684 pud = pud_alloc(mm, p4d, addr);
9e5fc74c
SC
5685 if (pud) {
5686 if (sz == PUD_SIZE) {
5687 pte = (pte_t *)pud;
5688 } else {
5689 BUG_ON(sz != PMD_SIZE);
c1991e07 5690 if (want_pmd_share(vma, addr) && pud_none(*pud))
aec44e0f 5691 pte = huge_pmd_share(mm, vma, addr, pud);
9e5fc74c
SC
5692 else
5693 pte = (pte_t *)pmd_alloc(mm, pud, addr);
5694 }
5695 }
4e666314 5696 BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
9e5fc74c
SC
5697
5698 return pte;
5699}
5700
9b19df29
PA
5701/*
5702 * huge_pte_offset() - Walk the page table to resolve the hugepage
5703 * entry at address @addr
5704 *
8ac0b81a
LX
5705 * Return: Pointer to page table entry (PUD or PMD) for
5706 * address @addr, or NULL if a !p*d_present() entry is encountered and the
9b19df29
PA
5707 * size @sz doesn't match the hugepage size at this level of the page
5708 * table.
5709 */
7868a208
PA
5710pte_t *huge_pte_offset(struct mm_struct *mm,
5711 unsigned long addr, unsigned long sz)
9e5fc74c
SC
5712{
5713 pgd_t *pgd;
c2febafc 5714 p4d_t *p4d;
8ac0b81a
LX
5715 pud_t *pud;
5716 pmd_t *pmd;
9e5fc74c
SC
5717
5718 pgd = pgd_offset(mm, addr);
c2febafc
KS
5719 if (!pgd_present(*pgd))
5720 return NULL;
5721 p4d = p4d_offset(pgd, addr);
5722 if (!p4d_present(*p4d))
5723 return NULL;
9b19df29 5724
c2febafc 5725 pud = pud_offset(p4d, addr);
8ac0b81a
LX
5726 if (sz == PUD_SIZE)
5727 /* must be pud huge, non-present or none */
c2febafc 5728 return (pte_t *)pud;
8ac0b81a 5729 if (!pud_present(*pud))
9b19df29 5730 return NULL;
8ac0b81a 5731 /* must have a valid entry and size to go further */
9b19df29 5732
8ac0b81a
LX
5733 pmd = pmd_offset(pud, addr);
5734 /* must be pmd huge, non-present or none */
5735 return (pte_t *)pmd;
9e5fc74c
SC
5736}
5737
61f77eda
NH
5738#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
5739
5740/*
5741 * These functions are overwritable if your architecture needs its own
5742 * behavior.
5743 */
5744struct page * __weak
5745follow_huge_addr(struct mm_struct *mm, unsigned long address,
5746 int write)
5747{
5748 return ERR_PTR(-EINVAL);
5749}
5750
4dc71451
AK
5751struct page * __weak
5752follow_huge_pd(struct vm_area_struct *vma,
5753 unsigned long address, hugepd_t hpd, int flags, int pdshift)
5754{
5755 WARN(1, "hugepd follow called with no support for hugepage directory format\n");
5756 return NULL;
5757}
5758
61f77eda 5759struct page * __weak
9e5fc74c 5760follow_huge_pmd(struct mm_struct *mm, unsigned long address,
e66f17ff 5761 pmd_t *pmd, int flags)
9e5fc74c 5762{
e66f17ff
NH
5763 struct page *page = NULL;
5764 spinlock_t *ptl;
c9d398fa 5765 pte_t pte;
3faa52c0
JH
5766
5767 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
5768 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
5769 (FOLL_PIN | FOLL_GET)))
5770 return NULL;
5771
e66f17ff
NH
5772retry:
5773 ptl = pmd_lockptr(mm, pmd);
5774 spin_lock(ptl);
5775 /*
5776 * make sure that the address range covered by this pmd is not
5777 * unmapped from other threads.
5778 */
5779 if (!pmd_huge(*pmd))
5780 goto out;
c9d398fa
NH
5781 pte = huge_ptep_get((pte_t *)pmd);
5782 if (pte_present(pte)) {
97534127 5783 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
3faa52c0
JH
5784 /*
5785 * try_grab_page() should always succeed here, because: a) we
5786 * hold the pmd (ptl) lock, and b) we've just checked that the
5787 * huge pmd (head) page is present in the page tables. The ptl
5788 * prevents the head page and tail pages from being rearranged
5789 * in any way. So this page must be available at this point,
5790 * unless the page refcount overflowed:
5791 */
5792 if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
5793 page = NULL;
5794 goto out;
5795 }
e66f17ff 5796 } else {
c9d398fa 5797 if (is_hugetlb_entry_migration(pte)) {
e66f17ff
NH
5798 spin_unlock(ptl);
5799 __migration_entry_wait(mm, (pte_t *)pmd, ptl);
5800 goto retry;
5801 }
5802 /*
5803 * hwpoisoned entry is treated as no_page_table in
5804 * follow_page_mask().
5805 */
5806 }
5807out:
5808 spin_unlock(ptl);
9e5fc74c
SC
5809 return page;
5810}
5811
61f77eda 5812struct page * __weak
9e5fc74c 5813follow_huge_pud(struct mm_struct *mm, unsigned long address,
e66f17ff 5814 pud_t *pud, int flags)
9e5fc74c 5815{
3faa52c0 5816 if (flags & (FOLL_GET | FOLL_PIN))
e66f17ff 5817 return NULL;
9e5fc74c 5818
e66f17ff 5819 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
9e5fc74c
SC
5820}
5821
faaa5b62
AK
5822struct page * __weak
5823follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
5824{
3faa52c0 5825 if (flags & (FOLL_GET | FOLL_PIN))
faaa5b62
AK
5826 return NULL;
5827
5828 return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
5829}
5830
31caf665
NH
5831bool isolate_huge_page(struct page *page, struct list_head *list)
5832{
bcc54222
NH
5833 bool ret = true;
5834
db71ef79 5835 spin_lock_irq(&hugetlb_lock);
8f251a3d
MK
5836 if (!PageHeadHuge(page) ||
5837 !HPageMigratable(page) ||
0eb2df2b 5838 !get_page_unless_zero(page)) {
bcc54222
NH
5839 ret = false;
5840 goto unlock;
5841 }
8f251a3d 5842 ClearHPageMigratable(page);
31caf665 5843 list_move_tail(&page->lru, list);
bcc54222 5844unlock:
db71ef79 5845 spin_unlock_irq(&hugetlb_lock);
bcc54222 5846 return ret;
31caf665
NH
5847}
5848
5849void putback_active_hugepage(struct page *page)
5850{
db71ef79 5851 spin_lock_irq(&hugetlb_lock);
8f251a3d 5852 SetHPageMigratable(page);
31caf665 5853 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
db71ef79 5854 spin_unlock_irq(&hugetlb_lock);
31caf665
NH
5855 put_page(page);
5856}
ab5ac90a
MH
5857
5858void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
5859{
5860 struct hstate *h = page_hstate(oldpage);
5861
5862 hugetlb_cgroup_migrate(oldpage, newpage);
5863 set_page_owner_migrate_reason(newpage, reason);
5864
5865 /*
5866 * transfer temporary state of the new huge page. This is
5867 * reverse to other transitions because the newpage is going to
5868 * be final while the old one will be freed so it takes over
5869 * the temporary status.
5870 *
5871 * Also note that we have to transfer the per-node surplus state
5872 * here as well otherwise the global surplus count will not match
5873 * the per-node's.
5874 */
9157c311 5875 if (HPageTemporary(newpage)) {
ab5ac90a
MH
5876 int old_nid = page_to_nid(oldpage);
5877 int new_nid = page_to_nid(newpage);
5878
9157c311
MK
5879 SetHPageTemporary(oldpage);
5880 ClearHPageTemporary(newpage);
ab5ac90a 5881
5af1ab1d
ML
5882 /*
5883 * There is no need to transfer the per-node surplus state
5884 * when we do not cross the node.
5885 */
5886 if (new_nid == old_nid)
5887 return;
db71ef79 5888 spin_lock_irq(&hugetlb_lock);
ab5ac90a
MH
5889 if (h->surplus_huge_pages_node[old_nid]) {
5890 h->surplus_huge_pages_node[old_nid]--;
5891 h->surplus_huge_pages_node[new_nid]++;
5892 }
db71ef79 5893 spin_unlock_irq(&hugetlb_lock);
ab5ac90a
MH
5894 }
5895}
cf11e85f 5896
6dfeaff9
PX
5897/*
5898 * This function will unconditionally remove all the shared pmd pgtable entries
5899 * within the specific vma for a hugetlbfs memory range.
5900 */
5901void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
5902{
5903 struct hstate *h = hstate_vma(vma);
5904 unsigned long sz = huge_page_size(h);
5905 struct mm_struct *mm = vma->vm_mm;
5906 struct mmu_notifier_range range;
5907 unsigned long address, start, end;
5908 spinlock_t *ptl;
5909 pte_t *ptep;
5910
5911 if (!(vma->vm_flags & VM_MAYSHARE))
5912 return;
5913
5914 start = ALIGN(vma->vm_start, PUD_SIZE);
5915 end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
5916
5917 if (start >= end)
5918 return;
5919
5920 /*
5921 * No need to call adjust_range_if_pmd_sharing_possible(), because
5922 * we have already done the PUD_SIZE alignment.
5923 */
5924 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
5925 start, end);
5926 mmu_notifier_invalidate_range_start(&range);
5927 i_mmap_lock_write(vma->vm_file->f_mapping);
5928 for (address = start; address < end; address += PUD_SIZE) {
5929 unsigned long tmp = address;
5930
5931 ptep = huge_pte_offset(mm, address, sz);
5932 if (!ptep)
5933 continue;
5934 ptl = huge_pte_lock(h, mm, ptep);
5935 /* We don't want 'address' to be changed */
5936 huge_pmd_unshare(mm, vma, &tmp, ptep);
5937 spin_unlock(ptl);
5938 }
5939 flush_hugetlb_tlb_range(vma, start, end);
5940 i_mmap_unlock_write(vma->vm_file->f_mapping);
5941 /*
5942 * No need to call mmu_notifier_invalidate_range(), see
5943 * Documentation/vm/mmu_notifier.rst.
5944 */
5945 mmu_notifier_invalidate_range_end(&range);
5946}
5947
cf11e85f 5948#ifdef CONFIG_CMA
cf11e85f
RG
5949static bool cma_reserve_called __initdata;
5950
5951static int __init cmdline_parse_hugetlb_cma(char *p)
5952{
5953 hugetlb_cma_size = memparse(p, &p);
5954 return 0;
5955}
5956
5957early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
5958
5959void __init hugetlb_cma_reserve(int order)
5960{
5961 unsigned long size, reserved, per_node;
5962 int nid;
5963
5964 cma_reserve_called = true;
5965
5966 if (!hugetlb_cma_size)
5967 return;
5968
5969 if (hugetlb_cma_size < (PAGE_SIZE << order)) {
5970 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
5971 (PAGE_SIZE << order) / SZ_1M);
5972 return;
5973 }
5974
5975 /*
5976 * If 3 GB area is requested on a machine with 4 numa nodes,
5977 * let's allocate 1 GB on first three nodes and ignore the last one.
5978 */
5979 per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
5980 pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
5981 hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
5982
5983 reserved = 0;
5984 for_each_node_state(nid, N_ONLINE) {
5985 int res;
2281f797 5986 char name[CMA_MAX_NAME];
cf11e85f
RG
5987
5988 size = min(per_node, hugetlb_cma_size - reserved);
5989 size = round_up(size, PAGE_SIZE << order);
5990
2281f797 5991 snprintf(name, sizeof(name), "hugetlb%d", nid);
cf11e85f 5992 res = cma_declare_contiguous_nid(0, size, 0, PAGE_SIZE << order,
29d0f41d 5993 0, false, name,
cf11e85f
RG
5994 &hugetlb_cma[nid], nid);
5995 if (res) {
5996 pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
5997 res, nid);
5998 continue;
5999 }
6000
6001 reserved += size;
6002 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
6003 size / SZ_1M, nid);
6004
6005 if (reserved >= hugetlb_cma_size)
6006 break;
6007 }
6008}
6009
6010void __init hugetlb_cma_check(void)
6011{
6012 if (!hugetlb_cma_size || cma_reserve_called)
6013 return;
6014
6015 pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
6016}
6017
6018#endif /* CONFIG_CMA */