docs: rename Documentation/vm to Documentation/mm
[linux-block.git] / mm / hugetlb.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * Generic hugetlb support.
6d49e352 4 * (C) Nadia Yvette Chambers, April 2004
1da177e4 5 */
1da177e4
LT
6#include <linux/list.h>
7#include <linux/init.h>
1da177e4 8#include <linux/mm.h>
e1759c21 9#include <linux/seq_file.h>
1da177e4
LT
10#include <linux/sysctl.h>
11#include <linux/highmem.h>
cddb8a5c 12#include <linux/mmu_notifier.h>
1da177e4 13#include <linux/nodemask.h>
63551ae0 14#include <linux/pagemap.h>
5da7ca86 15#include <linux/mempolicy.h>
3b32123d 16#include <linux/compiler.h>
aea47ff3 17#include <linux/cpuset.h>
3935baa9 18#include <linux/mutex.h>
97ad1087 19#include <linux/memblock.h>
a3437870 20#include <linux/sysfs.h>
5a0e3ad6 21#include <linux/slab.h>
bbe88753 22#include <linux/sched/mm.h>
63489f8e 23#include <linux/mmdebug.h>
174cd4b1 24#include <linux/sched/signal.h>
0fe6e20b 25#include <linux/rmap.h>
c6247f72 26#include <linux/string_helpers.h>
fd6a03ed
NH
27#include <linux/swap.h>
28#include <linux/swapops.h>
8382d914 29#include <linux/jhash.h>
98fa15f3 30#include <linux/numa.h>
c77c0a8a 31#include <linux/llist.h>
cf11e85f 32#include <linux/cma.h>
8cc5fcbb 33#include <linux/migrate.h>
f9317f77 34#include <linux/nospec.h>
662ce1dc 35#include <linux/delayacct.h>
d6606683 36
63551ae0 37#include <asm/page.h>
ca15ca40 38#include <asm/pgalloc.h>
24669e58 39#include <asm/tlb.h>
63551ae0 40
24669e58 41#include <linux/io.h>
63551ae0 42#include <linux/hugetlb.h>
9dd540e2 43#include <linux/hugetlb_cgroup.h>
9a305230 44#include <linux/node.h>
ab5ac90a 45#include <linux/page_owner.h>
7835e98b 46#include "internal.h"
f41f2ed4 47#include "hugetlb_vmemmap.h"
1da177e4 48
c3f38a38 49int hugetlb_max_hstate __read_mostly;
e5ff2159
AK
50unsigned int default_hstate_idx;
51struct hstate hstates[HUGE_MAX_HSTATE];
cf11e85f 52
dbda8fea 53#ifdef CONFIG_CMA
cf11e85f 54static struct cma *hugetlb_cma[MAX_NUMNODES];
38e719ab 55static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata;
a01f4390
MK
56static bool hugetlb_cma_page(struct page *page, unsigned int order)
57{
58 return cma_pages_valid(hugetlb_cma[page_to_nid(page)], page,
59 1 << order);
60}
61#else
62static bool hugetlb_cma_page(struct page *page, unsigned int order)
63{
64 return false;
65}
dbda8fea
BS
66#endif
67static unsigned long hugetlb_cma_size __initdata;
cf11e85f 68
641844f5
NH
69/*
70 * Minimum page order among possible hugepage sizes, set to a proper value
71 * at boot time.
72 */
73static unsigned int minimum_order __read_mostly = UINT_MAX;
e5ff2159 74
53ba51d2
JT
75__initdata LIST_HEAD(huge_boot_pages);
76
e5ff2159
AK
77/* for command line parsing */
78static struct hstate * __initdata parsed_hstate;
79static unsigned long __initdata default_hstate_max_huge_pages;
9fee021d 80static bool __initdata parsed_valid_hugepagesz = true;
282f4214 81static bool __initdata parsed_default_hugepagesz;
b5389086 82static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata;
e5ff2159 83
3935baa9 84/*
31caf665
NH
85 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
86 * free_huge_pages, and surplus_huge_pages.
3935baa9 87 */
c3f38a38 88DEFINE_SPINLOCK(hugetlb_lock);
0bd0f9fb 89
8382d914
DB
90/*
91 * Serializes faults on the same logical page. This is used to
92 * prevent spurious OOMs when the hugepage pool is fully utilized.
93 */
94static int num_fault_mutexes;
c672c7f2 95struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
8382d914 96
7ca02d0a
MK
97/* Forward declaration */
98static int hugetlb_acct_memory(struct hstate *h, long delta);
99
1d88433b 100static inline bool subpool_is_free(struct hugepage_subpool *spool)
90481622 101{
1d88433b
ML
102 if (spool->count)
103 return false;
104 if (spool->max_hpages != -1)
105 return spool->used_hpages == 0;
106 if (spool->min_hpages != -1)
107 return spool->rsv_hpages == spool->min_hpages;
108
109 return true;
110}
90481622 111
db71ef79
MK
112static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
113 unsigned long irq_flags)
1d88433b 114{
db71ef79 115 spin_unlock_irqrestore(&spool->lock, irq_flags);
90481622
DG
116
117 /* If no pages are used, and no other handles to the subpool
7c8de358 118 * remain, give up any reservations based on minimum size and
7ca02d0a 119 * free the subpool */
1d88433b 120 if (subpool_is_free(spool)) {
7ca02d0a
MK
121 if (spool->min_hpages != -1)
122 hugetlb_acct_memory(spool->hstate,
123 -spool->min_hpages);
90481622 124 kfree(spool);
7ca02d0a 125 }
90481622
DG
126}
127
7ca02d0a
MK
128struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
129 long min_hpages)
90481622
DG
130{
131 struct hugepage_subpool *spool;
132
c6a91820 133 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
90481622
DG
134 if (!spool)
135 return NULL;
136
137 spin_lock_init(&spool->lock);
138 spool->count = 1;
7ca02d0a
MK
139 spool->max_hpages = max_hpages;
140 spool->hstate = h;
141 spool->min_hpages = min_hpages;
142
143 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
144 kfree(spool);
145 return NULL;
146 }
147 spool->rsv_hpages = min_hpages;
90481622
DG
148
149 return spool;
150}
151
152void hugepage_put_subpool(struct hugepage_subpool *spool)
153{
db71ef79
MK
154 unsigned long flags;
155
156 spin_lock_irqsave(&spool->lock, flags);
90481622
DG
157 BUG_ON(!spool->count);
158 spool->count--;
db71ef79 159 unlock_or_release_subpool(spool, flags);
90481622
DG
160}
161
1c5ecae3
MK
162/*
163 * Subpool accounting for allocating and reserving pages.
164 * Return -ENOMEM if there are not enough resources to satisfy the
9e7ee400 165 * request. Otherwise, return the number of pages by which the
1c5ecae3
MK
166 * global pools must be adjusted (upward). The returned value may
167 * only be different than the passed value (delta) in the case where
7c8de358 168 * a subpool minimum size must be maintained.
1c5ecae3
MK
169 */
170static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
90481622
DG
171 long delta)
172{
1c5ecae3 173 long ret = delta;
90481622
DG
174
175 if (!spool)
1c5ecae3 176 return ret;
90481622 177
db71ef79 178 spin_lock_irq(&spool->lock);
1c5ecae3
MK
179
180 if (spool->max_hpages != -1) { /* maximum size accounting */
181 if ((spool->used_hpages + delta) <= spool->max_hpages)
182 spool->used_hpages += delta;
183 else {
184 ret = -ENOMEM;
185 goto unlock_ret;
186 }
90481622 187 }
90481622 188
09a95e29
MK
189 /* minimum size accounting */
190 if (spool->min_hpages != -1 && spool->rsv_hpages) {
1c5ecae3
MK
191 if (delta > spool->rsv_hpages) {
192 /*
193 * Asking for more reserves than those already taken on
194 * behalf of subpool. Return difference.
195 */
196 ret = delta - spool->rsv_hpages;
197 spool->rsv_hpages = 0;
198 } else {
199 ret = 0; /* reserves already accounted for */
200 spool->rsv_hpages -= delta;
201 }
202 }
203
204unlock_ret:
db71ef79 205 spin_unlock_irq(&spool->lock);
90481622
DG
206 return ret;
207}
208
1c5ecae3
MK
209/*
210 * Subpool accounting for freeing and unreserving pages.
211 * Return the number of global page reservations that must be dropped.
212 * The return value may only be different than the passed value (delta)
213 * in the case where a subpool minimum size must be maintained.
214 */
215static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
90481622
DG
216 long delta)
217{
1c5ecae3 218 long ret = delta;
db71ef79 219 unsigned long flags;
1c5ecae3 220
90481622 221 if (!spool)
1c5ecae3 222 return delta;
90481622 223
db71ef79 224 spin_lock_irqsave(&spool->lock, flags);
1c5ecae3
MK
225
226 if (spool->max_hpages != -1) /* maximum size accounting */
227 spool->used_hpages -= delta;
228
09a95e29
MK
229 /* minimum size accounting */
230 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
1c5ecae3
MK
231 if (spool->rsv_hpages + delta <= spool->min_hpages)
232 ret = 0;
233 else
234 ret = spool->rsv_hpages + delta - spool->min_hpages;
235
236 spool->rsv_hpages += delta;
237 if (spool->rsv_hpages > spool->min_hpages)
238 spool->rsv_hpages = spool->min_hpages;
239 }
240
241 /*
242 * If hugetlbfs_put_super couldn't free spool due to an outstanding
243 * quota reference, free it now.
244 */
db71ef79 245 unlock_or_release_subpool(spool, flags);
1c5ecae3
MK
246
247 return ret;
90481622
DG
248}
249
250static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
251{
252 return HUGETLBFS_SB(inode->i_sb)->spool;
253}
254
255static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
256{
496ad9aa 257 return subpool_inode(file_inode(vma->vm_file));
90481622
DG
258}
259
0db9d74e
MA
260/* Helper that removes a struct file_region from the resv_map cache and returns
261 * it for use.
262 */
263static struct file_region *
264get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
265{
266 struct file_region *nrg = NULL;
267
268 VM_BUG_ON(resv->region_cache_count <= 0);
269
270 resv->region_cache_count--;
271 nrg = list_first_entry(&resv->region_cache, struct file_region, link);
0db9d74e
MA
272 list_del(&nrg->link);
273
274 nrg->from = from;
275 nrg->to = to;
276
277 return nrg;
278}
279
075a61d0
MA
280static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
281 struct file_region *rg)
282{
283#ifdef CONFIG_CGROUP_HUGETLB
284 nrg->reservation_counter = rg->reservation_counter;
285 nrg->css = rg->css;
286 if (rg->css)
287 css_get(rg->css);
288#endif
289}
290
291/* Helper that records hugetlb_cgroup uncharge info. */
292static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
293 struct hstate *h,
294 struct resv_map *resv,
295 struct file_region *nrg)
296{
297#ifdef CONFIG_CGROUP_HUGETLB
298 if (h_cg) {
299 nrg->reservation_counter =
300 &h_cg->rsvd_hugepage[hstate_index(h)];
301 nrg->css = &h_cg->css;
d85aecf2
ML
302 /*
303 * The caller will hold exactly one h_cg->css reference for the
304 * whole contiguous reservation region. But this area might be
305 * scattered when there are already some file_regions reside in
306 * it. As a result, many file_regions may share only one css
307 * reference. In order to ensure that one file_region must hold
308 * exactly one h_cg->css reference, we should do css_get for
309 * each file_region and leave the reference held by caller
310 * untouched.
311 */
312 css_get(&h_cg->css);
075a61d0
MA
313 if (!resv->pages_per_hpage)
314 resv->pages_per_hpage = pages_per_huge_page(h);
315 /* pages_per_hpage should be the same for all entries in
316 * a resv_map.
317 */
318 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
319 } else {
320 nrg->reservation_counter = NULL;
321 nrg->css = NULL;
322 }
323#endif
324}
325
d85aecf2
ML
326static void put_uncharge_info(struct file_region *rg)
327{
328#ifdef CONFIG_CGROUP_HUGETLB
329 if (rg->css)
330 css_put(rg->css);
331#endif
332}
333
a9b3f867
MA
334static bool has_same_uncharge_info(struct file_region *rg,
335 struct file_region *org)
336{
337#ifdef CONFIG_CGROUP_HUGETLB
0739eb43 338 return rg->reservation_counter == org->reservation_counter &&
a9b3f867
MA
339 rg->css == org->css;
340
341#else
342 return true;
343#endif
344}
345
346static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
347{
348 struct file_region *nrg = NULL, *prg = NULL;
349
350 prg = list_prev_entry(rg, link);
351 if (&prg->link != &resv->regions && prg->to == rg->from &&
352 has_same_uncharge_info(prg, rg)) {
353 prg->to = rg->to;
354
355 list_del(&rg->link);
d85aecf2 356 put_uncharge_info(rg);
a9b3f867
MA
357 kfree(rg);
358
7db5e7b6 359 rg = prg;
a9b3f867
MA
360 }
361
362 nrg = list_next_entry(rg, link);
363 if (&nrg->link != &resv->regions && nrg->from == rg->to &&
364 has_same_uncharge_info(nrg, rg)) {
365 nrg->from = rg->from;
366
367 list_del(&rg->link);
d85aecf2 368 put_uncharge_info(rg);
a9b3f867 369 kfree(rg);
a9b3f867
MA
370 }
371}
372
2103cf9c 373static inline long
84448c8e 374hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from,
2103cf9c
PX
375 long to, struct hstate *h, struct hugetlb_cgroup *cg,
376 long *regions_needed)
377{
378 struct file_region *nrg;
379
380 if (!regions_needed) {
381 nrg = get_file_region_entry_from_cache(map, from, to);
382 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
84448c8e 383 list_add(&nrg->link, rg);
2103cf9c
PX
384 coalesce_file_region(map, nrg);
385 } else
386 *regions_needed += 1;
387
388 return to - from;
389}
390
972a3da3
WY
391/*
392 * Must be called with resv->lock held.
393 *
394 * Calling this with regions_needed != NULL will count the number of pages
395 * to be added but will not modify the linked list. And regions_needed will
396 * indicate the number of file_regions needed in the cache to carry out to add
397 * the regions for this range.
d75c6af9
MA
398 */
399static long add_reservation_in_range(struct resv_map *resv, long f, long t,
075a61d0 400 struct hugetlb_cgroup *h_cg,
972a3da3 401 struct hstate *h, long *regions_needed)
d75c6af9 402{
0db9d74e 403 long add = 0;
d75c6af9 404 struct list_head *head = &resv->regions;
0db9d74e 405 long last_accounted_offset = f;
84448c8e
JK
406 struct file_region *iter, *trg = NULL;
407 struct list_head *rg = NULL;
d75c6af9 408
0db9d74e
MA
409 if (regions_needed)
410 *regions_needed = 0;
d75c6af9 411
0db9d74e 412 /* In this loop, we essentially handle an entry for the range
84448c8e 413 * [last_accounted_offset, iter->from), at every iteration, with some
0db9d74e
MA
414 * bounds checking.
415 */
84448c8e 416 list_for_each_entry_safe(iter, trg, head, link) {
0db9d74e 417 /* Skip irrelevant regions that start before our range. */
84448c8e 418 if (iter->from < f) {
0db9d74e
MA
419 /* If this region ends after the last accounted offset,
420 * then we need to update last_accounted_offset.
421 */
84448c8e
JK
422 if (iter->to > last_accounted_offset)
423 last_accounted_offset = iter->to;
0db9d74e
MA
424 continue;
425 }
d75c6af9 426
0db9d74e
MA
427 /* When we find a region that starts beyond our range, we've
428 * finished.
429 */
84448c8e
JK
430 if (iter->from >= t) {
431 rg = iter->link.prev;
d75c6af9 432 break;
84448c8e 433 }
d75c6af9 434
84448c8e 435 /* Add an entry for last_accounted_offset -> iter->from, and
0db9d74e
MA
436 * update last_accounted_offset.
437 */
84448c8e
JK
438 if (iter->from > last_accounted_offset)
439 add += hugetlb_resv_map_add(resv, iter->link.prev,
2103cf9c 440 last_accounted_offset,
84448c8e 441 iter->from, h, h_cg,
2103cf9c 442 regions_needed);
0db9d74e 443
84448c8e 444 last_accounted_offset = iter->to;
0db9d74e
MA
445 }
446
447 /* Handle the case where our range extends beyond
448 * last_accounted_offset.
449 */
84448c8e
JK
450 if (!rg)
451 rg = head->prev;
2103cf9c
PX
452 if (last_accounted_offset < t)
453 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
454 t, h, h_cg, regions_needed);
0db9d74e 455
0db9d74e
MA
456 return add;
457}
458
459/* Must be called with resv->lock acquired. Will drop lock to allocate entries.
460 */
461static int allocate_file_region_entries(struct resv_map *resv,
462 int regions_needed)
463 __must_hold(&resv->lock)
464{
465 struct list_head allocated_regions;
466 int to_allocate = 0, i = 0;
467 struct file_region *trg = NULL, *rg = NULL;
468
469 VM_BUG_ON(regions_needed < 0);
470
471 INIT_LIST_HEAD(&allocated_regions);
472
473 /*
474 * Check for sufficient descriptors in the cache to accommodate
475 * the number of in progress add operations plus regions_needed.
476 *
477 * This is a while loop because when we drop the lock, some other call
478 * to region_add or region_del may have consumed some region_entries,
479 * so we keep looping here until we finally have enough entries for
480 * (adds_in_progress + regions_needed).
481 */
482 while (resv->region_cache_count <
483 (resv->adds_in_progress + regions_needed)) {
484 to_allocate = resv->adds_in_progress + regions_needed -
485 resv->region_cache_count;
486
487 /* At this point, we should have enough entries in the cache
f0953a1b 488 * for all the existing adds_in_progress. We should only be
0db9d74e 489 * needing to allocate for regions_needed.
d75c6af9 490 */
0db9d74e
MA
491 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
492
493 spin_unlock(&resv->lock);
494 for (i = 0; i < to_allocate; i++) {
495 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
496 if (!trg)
497 goto out_of_memory;
498 list_add(&trg->link, &allocated_regions);
d75c6af9 499 }
d75c6af9 500
0db9d74e
MA
501 spin_lock(&resv->lock);
502
d3ec7b6e
WY
503 list_splice(&allocated_regions, &resv->region_cache);
504 resv->region_cache_count += to_allocate;
d75c6af9
MA
505 }
506
0db9d74e 507 return 0;
d75c6af9 508
0db9d74e
MA
509out_of_memory:
510 list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
511 list_del(&rg->link);
512 kfree(rg);
513 }
514 return -ENOMEM;
d75c6af9
MA
515}
516
1dd308a7
MK
517/*
518 * Add the huge page range represented by [f, t) to the reserve
0db9d74e
MA
519 * map. Regions will be taken from the cache to fill in this range.
520 * Sufficient regions should exist in the cache due to the previous
521 * call to region_chg with the same range, but in some cases the cache will not
522 * have sufficient entries due to races with other code doing region_add or
523 * region_del. The extra needed entries will be allocated.
cf3ad20b 524 *
0db9d74e
MA
525 * regions_needed is the out value provided by a previous call to region_chg.
526 *
527 * Return the number of new huge pages added to the map. This number is greater
528 * than or equal to zero. If file_region entries needed to be allocated for
7c8de358 529 * this operation and we were not able to allocate, it returns -ENOMEM.
0db9d74e
MA
530 * region_add of regions of length 1 never allocate file_regions and cannot
531 * fail; region_chg will always allocate at least 1 entry and a region_add for
532 * 1 page will only require at most 1 entry.
1dd308a7 533 */
0db9d74e 534static long region_add(struct resv_map *resv, long f, long t,
075a61d0
MA
535 long in_regions_needed, struct hstate *h,
536 struct hugetlb_cgroup *h_cg)
96822904 537{
0db9d74e 538 long add = 0, actual_regions_needed = 0;
96822904 539
7b24d861 540 spin_lock(&resv->lock);
0db9d74e
MA
541retry:
542
543 /* Count how many regions are actually needed to execute this add. */
972a3da3
WY
544 add_reservation_in_range(resv, f, t, NULL, NULL,
545 &actual_regions_needed);
96822904 546
5e911373 547 /*
0db9d74e
MA
548 * Check for sufficient descriptors in the cache to accommodate
549 * this add operation. Note that actual_regions_needed may be greater
550 * than in_regions_needed, as the resv_map may have been modified since
551 * the region_chg call. In this case, we need to make sure that we
552 * allocate extra entries, such that we have enough for all the
553 * existing adds_in_progress, plus the excess needed for this
554 * operation.
5e911373 555 */
0db9d74e
MA
556 if (actual_regions_needed > in_regions_needed &&
557 resv->region_cache_count <
558 resv->adds_in_progress +
559 (actual_regions_needed - in_regions_needed)) {
560 /* region_add operation of range 1 should never need to
561 * allocate file_region entries.
562 */
563 VM_BUG_ON(t - f <= 1);
5e911373 564
0db9d74e
MA
565 if (allocate_file_region_entries(
566 resv, actual_regions_needed - in_regions_needed)) {
567 return -ENOMEM;
568 }
5e911373 569
0db9d74e 570 goto retry;
5e911373
MK
571 }
572
972a3da3 573 add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
0db9d74e
MA
574
575 resv->adds_in_progress -= in_regions_needed;
cf3ad20b 576
7b24d861 577 spin_unlock(&resv->lock);
cf3ad20b 578 return add;
96822904
AW
579}
580
1dd308a7
MK
581/*
582 * Examine the existing reserve map and determine how many
583 * huge pages in the specified range [f, t) are NOT currently
584 * represented. This routine is called before a subsequent
585 * call to region_add that will actually modify the reserve
586 * map to add the specified range [f, t). region_chg does
587 * not change the number of huge pages represented by the
0db9d74e
MA
588 * map. A number of new file_region structures is added to the cache as a
589 * placeholder, for the subsequent region_add call to use. At least 1
590 * file_region structure is added.
591 *
592 * out_regions_needed is the number of regions added to the
593 * resv->adds_in_progress. This value needs to be provided to a follow up call
594 * to region_add or region_abort for proper accounting.
5e911373
MK
595 *
596 * Returns the number of huge pages that need to be added to the existing
597 * reservation map for the range [f, t). This number is greater or equal to
598 * zero. -ENOMEM is returned if a new file_region structure or cache entry
599 * is needed and can not be allocated.
1dd308a7 600 */
0db9d74e
MA
601static long region_chg(struct resv_map *resv, long f, long t,
602 long *out_regions_needed)
96822904 603{
96822904
AW
604 long chg = 0;
605
7b24d861 606 spin_lock(&resv->lock);
5e911373 607
972a3da3 608 /* Count how many hugepages in this range are NOT represented. */
075a61d0 609 chg = add_reservation_in_range(resv, f, t, NULL, NULL,
972a3da3 610 out_regions_needed);
5e911373 611
0db9d74e
MA
612 if (*out_regions_needed == 0)
613 *out_regions_needed = 1;
5e911373 614
0db9d74e
MA
615 if (allocate_file_region_entries(resv, *out_regions_needed))
616 return -ENOMEM;
5e911373 617
0db9d74e 618 resv->adds_in_progress += *out_regions_needed;
7b24d861 619
7b24d861 620 spin_unlock(&resv->lock);
96822904
AW
621 return chg;
622}
623
5e911373
MK
624/*
625 * Abort the in progress add operation. The adds_in_progress field
626 * of the resv_map keeps track of the operations in progress between
627 * calls to region_chg and region_add. Operations are sometimes
628 * aborted after the call to region_chg. In such cases, region_abort
0db9d74e
MA
629 * is called to decrement the adds_in_progress counter. regions_needed
630 * is the value returned by the region_chg call, it is used to decrement
631 * the adds_in_progress counter.
5e911373
MK
632 *
633 * NOTE: The range arguments [f, t) are not needed or used in this
634 * routine. They are kept to make reading the calling code easier as
635 * arguments will match the associated region_chg call.
636 */
0db9d74e
MA
637static void region_abort(struct resv_map *resv, long f, long t,
638 long regions_needed)
5e911373
MK
639{
640 spin_lock(&resv->lock);
641 VM_BUG_ON(!resv->region_cache_count);
0db9d74e 642 resv->adds_in_progress -= regions_needed;
5e911373
MK
643 spin_unlock(&resv->lock);
644}
645
1dd308a7 646/*
feba16e2
MK
647 * Delete the specified range [f, t) from the reserve map. If the
648 * t parameter is LONG_MAX, this indicates that ALL regions after f
649 * should be deleted. Locate the regions which intersect [f, t)
650 * and either trim, delete or split the existing regions.
651 *
652 * Returns the number of huge pages deleted from the reserve map.
653 * In the normal case, the return value is zero or more. In the
654 * case where a region must be split, a new region descriptor must
655 * be allocated. If the allocation fails, -ENOMEM will be returned.
656 * NOTE: If the parameter t == LONG_MAX, then we will never split
657 * a region and possibly return -ENOMEM. Callers specifying
658 * t == LONG_MAX do not need to check for -ENOMEM error.
1dd308a7 659 */
feba16e2 660static long region_del(struct resv_map *resv, long f, long t)
96822904 661{
1406ec9b 662 struct list_head *head = &resv->regions;
96822904 663 struct file_region *rg, *trg;
feba16e2
MK
664 struct file_region *nrg = NULL;
665 long del = 0;
96822904 666
feba16e2 667retry:
7b24d861 668 spin_lock(&resv->lock);
feba16e2 669 list_for_each_entry_safe(rg, trg, head, link) {
dbe409e4
MK
670 /*
671 * Skip regions before the range to be deleted. file_region
672 * ranges are normally of the form [from, to). However, there
673 * may be a "placeholder" entry in the map which is of the form
674 * (from, to) with from == to. Check for placeholder entries
675 * at the beginning of the range to be deleted.
676 */
677 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
feba16e2 678 continue;
dbe409e4 679
feba16e2 680 if (rg->from >= t)
96822904 681 break;
96822904 682
feba16e2
MK
683 if (f > rg->from && t < rg->to) { /* Must split region */
684 /*
685 * Check for an entry in the cache before dropping
686 * lock and attempting allocation.
687 */
688 if (!nrg &&
689 resv->region_cache_count > resv->adds_in_progress) {
690 nrg = list_first_entry(&resv->region_cache,
691 struct file_region,
692 link);
693 list_del(&nrg->link);
694 resv->region_cache_count--;
695 }
96822904 696
feba16e2
MK
697 if (!nrg) {
698 spin_unlock(&resv->lock);
699 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
700 if (!nrg)
701 return -ENOMEM;
702 goto retry;
703 }
704
705 del += t - f;
79aa925b 706 hugetlb_cgroup_uncharge_file_region(
d85aecf2 707 resv, rg, t - f, false);
feba16e2
MK
708
709 /* New entry for end of split region */
710 nrg->from = t;
711 nrg->to = rg->to;
075a61d0
MA
712
713 copy_hugetlb_cgroup_uncharge_info(nrg, rg);
714
feba16e2
MK
715 INIT_LIST_HEAD(&nrg->link);
716
717 /* Original entry is trimmed */
718 rg->to = f;
719
720 list_add(&nrg->link, &rg->link);
721 nrg = NULL;
96822904 722 break;
feba16e2
MK
723 }
724
725 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
726 del += rg->to - rg->from;
075a61d0 727 hugetlb_cgroup_uncharge_file_region(resv, rg,
d85aecf2 728 rg->to - rg->from, true);
feba16e2
MK
729 list_del(&rg->link);
730 kfree(rg);
731 continue;
732 }
733
734 if (f <= rg->from) { /* Trim beginning of region */
075a61d0 735 hugetlb_cgroup_uncharge_file_region(resv, rg,
d85aecf2 736 t - rg->from, false);
075a61d0 737
79aa925b
MK
738 del += t - rg->from;
739 rg->from = t;
740 } else { /* Trim end of region */
075a61d0 741 hugetlb_cgroup_uncharge_file_region(resv, rg,
d85aecf2 742 rg->to - f, false);
79aa925b
MK
743
744 del += rg->to - f;
745 rg->to = f;
feba16e2 746 }
96822904 747 }
7b24d861 748
7b24d861 749 spin_unlock(&resv->lock);
feba16e2
MK
750 kfree(nrg);
751 return del;
96822904
AW
752}
753
b5cec28d
MK
754/*
755 * A rare out of memory error was encountered which prevented removal of
756 * the reserve map region for a page. The huge page itself was free'ed
757 * and removed from the page cache. This routine will adjust the subpool
758 * usage count, and the global reserve count if needed. By incrementing
759 * these counts, the reserve map entry which could not be deleted will
760 * appear as a "reserved" entry instead of simply dangling with incorrect
761 * counts.
762 */
72e2936c 763void hugetlb_fix_reserve_counts(struct inode *inode)
b5cec28d
MK
764{
765 struct hugepage_subpool *spool = subpool_inode(inode);
766 long rsv_adjust;
da56388c 767 bool reserved = false;
b5cec28d
MK
768
769 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
da56388c 770 if (rsv_adjust > 0) {
b5cec28d
MK
771 struct hstate *h = hstate_inode(inode);
772
da56388c
ML
773 if (!hugetlb_acct_memory(h, 1))
774 reserved = true;
775 } else if (!rsv_adjust) {
776 reserved = true;
b5cec28d 777 }
da56388c
ML
778
779 if (!reserved)
780 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
b5cec28d
MK
781}
782
1dd308a7
MK
783/*
784 * Count and return the number of huge pages in the reserve map
785 * that intersect with the range [f, t).
786 */
1406ec9b 787static long region_count(struct resv_map *resv, long f, long t)
84afd99b 788{
1406ec9b 789 struct list_head *head = &resv->regions;
84afd99b
AW
790 struct file_region *rg;
791 long chg = 0;
792
7b24d861 793 spin_lock(&resv->lock);
84afd99b
AW
794 /* Locate each segment we overlap with, and count that overlap. */
795 list_for_each_entry(rg, head, link) {
f2135a4a
WSH
796 long seg_from;
797 long seg_to;
84afd99b
AW
798
799 if (rg->to <= f)
800 continue;
801 if (rg->from >= t)
802 break;
803
804 seg_from = max(rg->from, f);
805 seg_to = min(rg->to, t);
806
807 chg += seg_to - seg_from;
808 }
7b24d861 809 spin_unlock(&resv->lock);
84afd99b
AW
810
811 return chg;
812}
813
e7c4b0bf
AW
814/*
815 * Convert the address within this vma to the page offset within
816 * the mapping, in pagecache page units; huge pages here.
817 */
a5516438
AK
818static pgoff_t vma_hugecache_offset(struct hstate *h,
819 struct vm_area_struct *vma, unsigned long address)
e7c4b0bf 820{
a5516438
AK
821 return ((address - vma->vm_start) >> huge_page_shift(h)) +
822 (vma->vm_pgoff >> huge_page_order(h));
e7c4b0bf
AW
823}
824
0fe6e20b
NH
825pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
826 unsigned long address)
827{
828 return vma_hugecache_offset(hstate_vma(vma), vma, address);
829}
dee41079 830EXPORT_SYMBOL_GPL(linear_hugepage_index);
0fe6e20b 831
08fba699
MG
832/*
833 * Return the size of the pages allocated when backing a VMA. In the majority
834 * cases this will be same size as used by the page table entries.
835 */
836unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
837{
05ea8860
DW
838 if (vma->vm_ops && vma->vm_ops->pagesize)
839 return vma->vm_ops->pagesize(vma);
840 return PAGE_SIZE;
08fba699 841}
f340ca0f 842EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
08fba699 843
3340289d
MG
844/*
845 * Return the page size being used by the MMU to back a VMA. In the majority
846 * of cases, the page size used by the kernel matches the MMU size. On
09135cc5
DW
847 * architectures where it differs, an architecture-specific 'strong'
848 * version of this symbol is required.
3340289d 849 */
09135cc5 850__weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
3340289d
MG
851{
852 return vma_kernel_pagesize(vma);
853}
3340289d 854
84afd99b
AW
855/*
856 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
857 * bits of the reservation map pointer, which are always clear due to
858 * alignment.
859 */
860#define HPAGE_RESV_OWNER (1UL << 0)
861#define HPAGE_RESV_UNMAPPED (1UL << 1)
04f2cbe3 862#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
84afd99b 863
a1e78772
MG
864/*
865 * These helpers are used to track how many pages are reserved for
866 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
867 * is guaranteed to have their future faults succeed.
868 *
869 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
870 * the reserve counters are updated with the hugetlb_lock held. It is safe
871 * to reset the VMA at fork() time as it is not in use yet and there is no
872 * chance of the global counters getting corrupted as a result of the values.
84afd99b
AW
873 *
874 * The private mapping reservation is represented in a subtly different
875 * manner to a shared mapping. A shared mapping has a region map associated
876 * with the underlying file, this region map represents the backing file
877 * pages which have ever had a reservation assigned which this persists even
878 * after the page is instantiated. A private mapping has a region map
879 * associated with the original mmap which is attached to all VMAs which
880 * reference it, this region map represents those offsets which have consumed
881 * reservation ie. where pages have been instantiated.
a1e78772 882 */
e7c4b0bf
AW
883static unsigned long get_vma_private_data(struct vm_area_struct *vma)
884{
885 return (unsigned long)vma->vm_private_data;
886}
887
888static void set_vma_private_data(struct vm_area_struct *vma,
889 unsigned long value)
890{
891 vma->vm_private_data = (void *)value;
892}
893
e9fe92ae
MA
894static void
895resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
896 struct hugetlb_cgroup *h_cg,
897 struct hstate *h)
898{
899#ifdef CONFIG_CGROUP_HUGETLB
900 if (!h_cg || !h) {
901 resv_map->reservation_counter = NULL;
902 resv_map->pages_per_hpage = 0;
903 resv_map->css = NULL;
904 } else {
905 resv_map->reservation_counter =
906 &h_cg->rsvd_hugepage[hstate_index(h)];
907 resv_map->pages_per_hpage = pages_per_huge_page(h);
908 resv_map->css = &h_cg->css;
909 }
910#endif
911}
912
9119a41e 913struct resv_map *resv_map_alloc(void)
84afd99b
AW
914{
915 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
5e911373
MK
916 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
917
918 if (!resv_map || !rg) {
919 kfree(resv_map);
920 kfree(rg);
84afd99b 921 return NULL;
5e911373 922 }
84afd99b
AW
923
924 kref_init(&resv_map->refs);
7b24d861 925 spin_lock_init(&resv_map->lock);
84afd99b
AW
926 INIT_LIST_HEAD(&resv_map->regions);
927
5e911373 928 resv_map->adds_in_progress = 0;
e9fe92ae
MA
929 /*
930 * Initialize these to 0. On shared mappings, 0's here indicate these
931 * fields don't do cgroup accounting. On private mappings, these will be
932 * re-initialized to the proper values, to indicate that hugetlb cgroup
933 * reservations are to be un-charged from here.
934 */
935 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
5e911373
MK
936
937 INIT_LIST_HEAD(&resv_map->region_cache);
938 list_add(&rg->link, &resv_map->region_cache);
939 resv_map->region_cache_count = 1;
940
84afd99b
AW
941 return resv_map;
942}
943
9119a41e 944void resv_map_release(struct kref *ref)
84afd99b
AW
945{
946 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
5e911373
MK
947 struct list_head *head = &resv_map->region_cache;
948 struct file_region *rg, *trg;
84afd99b
AW
949
950 /* Clear out any active regions before we release the map. */
feba16e2 951 region_del(resv_map, 0, LONG_MAX);
5e911373
MK
952
953 /* ... and any entries left in the cache */
954 list_for_each_entry_safe(rg, trg, head, link) {
955 list_del(&rg->link);
956 kfree(rg);
957 }
958
959 VM_BUG_ON(resv_map->adds_in_progress);
960
84afd99b
AW
961 kfree(resv_map);
962}
963
4e35f483
JK
964static inline struct resv_map *inode_resv_map(struct inode *inode)
965{
f27a5136
MK
966 /*
967 * At inode evict time, i_mapping may not point to the original
968 * address space within the inode. This original address space
969 * contains the pointer to the resv_map. So, always use the
970 * address space embedded within the inode.
971 * The VERY common case is inode->mapping == &inode->i_data but,
972 * this may not be true for device special inodes.
973 */
974 return (struct resv_map *)(&inode->i_data)->private_data;
4e35f483
JK
975}
976
84afd99b 977static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
a1e78772 978{
81d1b09c 979 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
4e35f483
JK
980 if (vma->vm_flags & VM_MAYSHARE) {
981 struct address_space *mapping = vma->vm_file->f_mapping;
982 struct inode *inode = mapping->host;
983
984 return inode_resv_map(inode);
985
986 } else {
84afd99b
AW
987 return (struct resv_map *)(get_vma_private_data(vma) &
988 ~HPAGE_RESV_MASK);
4e35f483 989 }
a1e78772
MG
990}
991
84afd99b 992static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
a1e78772 993{
81d1b09c
SL
994 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
995 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
a1e78772 996
84afd99b
AW
997 set_vma_private_data(vma, (get_vma_private_data(vma) &
998 HPAGE_RESV_MASK) | (unsigned long)map);
04f2cbe3
MG
999}
1000
1001static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
1002{
81d1b09c
SL
1003 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1004 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
e7c4b0bf
AW
1005
1006 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
04f2cbe3
MG
1007}
1008
1009static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
1010{
81d1b09c 1011 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
e7c4b0bf
AW
1012
1013 return (get_vma_private_data(vma) & flag) != 0;
a1e78772
MG
1014}
1015
04f2cbe3 1016/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
a1e78772
MG
1017void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
1018{
81d1b09c 1019 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
f83a275d 1020 if (!(vma->vm_flags & VM_MAYSHARE))
a1e78772
MG
1021 vma->vm_private_data = (void *)0;
1022}
1023
550a7d60
MA
1024/*
1025 * Reset and decrement one ref on hugepage private reservation.
1026 * Called with mm->mmap_sem writer semaphore held.
1027 * This function should be only used by move_vma() and operate on
1028 * same sized vma. It should never come here with last ref on the
1029 * reservation.
1030 */
1031void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
1032{
1033 /*
1034 * Clear the old hugetlb private page reservation.
1035 * It has already been transferred to new_vma.
1036 *
1037 * During a mremap() operation of a hugetlb vma we call move_vma()
1038 * which copies vma into new_vma and unmaps vma. After the copy
1039 * operation both new_vma and vma share a reference to the resv_map
1040 * struct, and at that point vma is about to be unmapped. We don't
1041 * want to return the reservation to the pool at unmap of vma because
1042 * the reservation still lives on in new_vma, so simply decrement the
1043 * ref here and remove the resv_map reference from this vma.
1044 */
1045 struct resv_map *reservations = vma_resv_map(vma);
1046
afe041c2
BQM
1047 if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1048 resv_map_put_hugetlb_cgroup_uncharge_info(reservations);
550a7d60 1049 kref_put(&reservations->refs, resv_map_release);
afe041c2 1050 }
550a7d60
MA
1051
1052 reset_vma_resv_huge_pages(vma);
1053}
1054
a1e78772 1055/* Returns true if the VMA has associated reserve pages */
559ec2f8 1056static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
a1e78772 1057{
af0ed73e
JK
1058 if (vma->vm_flags & VM_NORESERVE) {
1059 /*
1060 * This address is already reserved by other process(chg == 0),
1061 * so, we should decrement reserved count. Without decrementing,
1062 * reserve count remains after releasing inode, because this
1063 * allocated page will go into page cache and is regarded as
1064 * coming from reserved pool in releasing step. Currently, we
1065 * don't have any other solution to deal with this situation
1066 * properly, so add work-around here.
1067 */
1068 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
559ec2f8 1069 return true;
af0ed73e 1070 else
559ec2f8 1071 return false;
af0ed73e 1072 }
a63884e9
JK
1073
1074 /* Shared mappings always use reserves */
1fb1b0e9
MK
1075 if (vma->vm_flags & VM_MAYSHARE) {
1076 /*
1077 * We know VM_NORESERVE is not set. Therefore, there SHOULD
1078 * be a region map for all pages. The only situation where
1079 * there is no region map is if a hole was punched via
7c8de358 1080 * fallocate. In this case, there really are no reserves to
1fb1b0e9
MK
1081 * use. This situation is indicated if chg != 0.
1082 */
1083 if (chg)
1084 return false;
1085 else
1086 return true;
1087 }
a63884e9
JK
1088
1089 /*
1090 * Only the process that called mmap() has reserves for
1091 * private mappings.
1092 */
67961f9d
MK
1093 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1094 /*
1095 * Like the shared case above, a hole punch or truncate
1096 * could have been performed on the private mapping.
1097 * Examine the value of chg to determine if reserves
1098 * actually exist or were previously consumed.
1099 * Very Subtle - The value of chg comes from a previous
1100 * call to vma_needs_reserves(). The reserve map for
1101 * private mappings has different (opposite) semantics
1102 * than that of shared mappings. vma_needs_reserves()
1103 * has already taken this difference in semantics into
1104 * account. Therefore, the meaning of chg is the same
1105 * as in the shared case above. Code could easily be
1106 * combined, but keeping it separate draws attention to
1107 * subtle differences.
1108 */
1109 if (chg)
1110 return false;
1111 else
1112 return true;
1113 }
a63884e9 1114
559ec2f8 1115 return false;
a1e78772
MG
1116}
1117
a5516438 1118static void enqueue_huge_page(struct hstate *h, struct page *page)
1da177e4
LT
1119{
1120 int nid = page_to_nid(page);
9487ca60
MK
1121
1122 lockdep_assert_held(&hugetlb_lock);
b65a4eda
MK
1123 VM_BUG_ON_PAGE(page_count(page), page);
1124
0edaecfa 1125 list_move(&page->lru, &h->hugepage_freelists[nid]);
a5516438
AK
1126 h->free_huge_pages++;
1127 h->free_huge_pages_node[nid]++;
6c037149 1128 SetHPageFreed(page);
1da177e4
LT
1129}
1130
94310cbc 1131static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
bf50bab2
NH
1132{
1133 struct page *page;
1a08ae36 1134 bool pin = !!(current->flags & PF_MEMALLOC_PIN);
bbe88753 1135
9487ca60 1136 lockdep_assert_held(&hugetlb_lock);
bbe88753 1137 list_for_each_entry(page, &h->hugepage_freelists[nid], lru) {
8e3560d9 1138 if (pin && !is_pinnable_page(page))
bbe88753 1139 continue;
bf50bab2 1140
6664bfc8
WY
1141 if (PageHWPoison(page))
1142 continue;
1143
1144 list_move(&page->lru, &h->hugepage_activelist);
1145 set_page_refcounted(page);
6c037149 1146 ClearHPageFreed(page);
6664bfc8
WY
1147 h->free_huge_pages--;
1148 h->free_huge_pages_node[nid]--;
1149 return page;
bbe88753
JK
1150 }
1151
6664bfc8 1152 return NULL;
bf50bab2
NH
1153}
1154
3e59fcb0
MH
1155static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
1156 nodemask_t *nmask)
94310cbc 1157{
3e59fcb0
MH
1158 unsigned int cpuset_mems_cookie;
1159 struct zonelist *zonelist;
1160 struct zone *zone;
1161 struct zoneref *z;
98fa15f3 1162 int node = NUMA_NO_NODE;
94310cbc 1163
3e59fcb0
MH
1164 zonelist = node_zonelist(nid, gfp_mask);
1165
1166retry_cpuset:
1167 cpuset_mems_cookie = read_mems_allowed_begin();
1168 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1169 struct page *page;
1170
1171 if (!cpuset_zone_allowed(zone, gfp_mask))
1172 continue;
1173 /*
1174 * no need to ask again on the same node. Pool is node rather than
1175 * zone aware
1176 */
1177 if (zone_to_nid(zone) == node)
1178 continue;
1179 node = zone_to_nid(zone);
94310cbc 1180
94310cbc
AK
1181 page = dequeue_huge_page_node_exact(h, node);
1182 if (page)
1183 return page;
1184 }
3e59fcb0
MH
1185 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1186 goto retry_cpuset;
1187
94310cbc
AK
1188 return NULL;
1189}
1190
a5516438
AK
1191static struct page *dequeue_huge_page_vma(struct hstate *h,
1192 struct vm_area_struct *vma,
af0ed73e
JK
1193 unsigned long address, int avoid_reserve,
1194 long chg)
1da177e4 1195{
cfcaa66f 1196 struct page *page = NULL;
480eccf9 1197 struct mempolicy *mpol;
04ec6264 1198 gfp_t gfp_mask;
3e59fcb0 1199 nodemask_t *nodemask;
04ec6264 1200 int nid;
1da177e4 1201
a1e78772
MG
1202 /*
1203 * A child process with MAP_PRIVATE mappings created by their parent
1204 * have no page reserves. This check ensures that reservations are
1205 * not "stolen". The child may still get SIGKILLed
1206 */
af0ed73e 1207 if (!vma_has_reserves(vma, chg) &&
a5516438 1208 h->free_huge_pages - h->resv_huge_pages == 0)
c0ff7453 1209 goto err;
a1e78772 1210
04f2cbe3 1211 /* If reserves cannot be used, ensure enough pages are in the pool */
a5516438 1212 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
6eab04a8 1213 goto err;
04f2cbe3 1214
04ec6264
VB
1215 gfp_mask = htlb_alloc_mask(h);
1216 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
cfcaa66f
BW
1217
1218 if (mpol_is_preferred_many(mpol)) {
1219 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1220
1221 /* Fallback to all nodes if page==NULL */
1222 nodemask = NULL;
1223 }
1224
1225 if (!page)
1226 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1227
3e59fcb0 1228 if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
d6995da3 1229 SetHPageRestoreReserve(page);
3e59fcb0 1230 h->resv_huge_pages--;
1da177e4 1231 }
cc9a6c87 1232
52cd3b07 1233 mpol_cond_put(mpol);
1da177e4 1234 return page;
cc9a6c87
MG
1235
1236err:
cc9a6c87 1237 return NULL;
1da177e4
LT
1238}
1239
1cac6f2c
LC
1240/*
1241 * common helper functions for hstate_next_node_to_{alloc|free}.
1242 * We may have allocated or freed a huge page based on a different
1243 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1244 * be outside of *nodes_allowed. Ensure that we use an allowed
1245 * node for alloc or free.
1246 */
1247static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1248{
0edaf86c 1249 nid = next_node_in(nid, *nodes_allowed);
1cac6f2c
LC
1250 VM_BUG_ON(nid >= MAX_NUMNODES);
1251
1252 return nid;
1253}
1254
1255static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1256{
1257 if (!node_isset(nid, *nodes_allowed))
1258 nid = next_node_allowed(nid, nodes_allowed);
1259 return nid;
1260}
1261
1262/*
1263 * returns the previously saved node ["this node"] from which to
1264 * allocate a persistent huge page for the pool and advance the
1265 * next node from which to allocate, handling wrap at end of node
1266 * mask.
1267 */
1268static int hstate_next_node_to_alloc(struct hstate *h,
1269 nodemask_t *nodes_allowed)
1270{
1271 int nid;
1272
1273 VM_BUG_ON(!nodes_allowed);
1274
1275 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1276 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1277
1278 return nid;
1279}
1280
1281/*
10c6ec49 1282 * helper for remove_pool_huge_page() - return the previously saved
1cac6f2c
LC
1283 * node ["this node"] from which to free a huge page. Advance the
1284 * next node id whether or not we find a free huge page to free so
1285 * that the next attempt to free addresses the next node.
1286 */
1287static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1288{
1289 int nid;
1290
1291 VM_BUG_ON(!nodes_allowed);
1292
1293 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1294 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1295
1296 return nid;
1297}
1298
1299#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
1300 for (nr_nodes = nodes_weight(*mask); \
1301 nr_nodes > 0 && \
1302 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
1303 nr_nodes--)
1304
1305#define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1306 for (nr_nodes = nodes_weight(*mask); \
1307 nr_nodes > 0 && \
1308 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1309 nr_nodes--)
1310
8531fc6f 1311/* used to demote non-gigantic_huge pages as well */
34d9e35b
MK
1312static void __destroy_compound_gigantic_page(struct page *page,
1313 unsigned int order, bool demote)
944d9fec
LC
1314{
1315 int i;
1316 int nr_pages = 1 << order;
1317 struct page *p = page + 1;
1318
c8cc708a 1319 atomic_set(compound_mapcount_ptr(page), 0);
5291c09b 1320 atomic_set(compound_pincount_ptr(page), 0);
47e29d32 1321
944d9fec 1322 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
a01f4390 1323 p->mapping = NULL;
1d798ca3 1324 clear_compound_head(p);
34d9e35b
MK
1325 if (!demote)
1326 set_page_refcounted(p);
944d9fec
LC
1327 }
1328
1329 set_compound_order(page, 0);
5232c63f 1330#ifdef CONFIG_64BIT
ba9c1201 1331 page[1].compound_nr = 0;
5232c63f 1332#endif
944d9fec
LC
1333 __ClearPageHead(page);
1334}
1335
8531fc6f
MK
1336static void destroy_compound_hugetlb_page_for_demote(struct page *page,
1337 unsigned int order)
1338{
1339 __destroy_compound_gigantic_page(page, order, true);
1340}
1341
1342#ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
34d9e35b
MK
1343static void destroy_compound_gigantic_page(struct page *page,
1344 unsigned int order)
1345{
1346 __destroy_compound_gigantic_page(page, order, false);
1347}
1348
d00181b9 1349static void free_gigantic_page(struct page *page, unsigned int order)
944d9fec 1350{
cf11e85f
RG
1351 /*
1352 * If the page isn't allocated using the cma allocator,
1353 * cma_release() returns false.
1354 */
dbda8fea
BS
1355#ifdef CONFIG_CMA
1356 if (cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order))
cf11e85f 1357 return;
dbda8fea 1358#endif
cf11e85f 1359
944d9fec
LC
1360 free_contig_range(page_to_pfn(page), 1 << order);
1361}
1362
4eb0716e 1363#ifdef CONFIG_CONTIG_ALLOC
d9cc948f
MH
1364static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1365 int nid, nodemask_t *nodemask)
944d9fec 1366{
04adbc3f 1367 unsigned long nr_pages = pages_per_huge_page(h);
953f064a
LX
1368 if (nid == NUMA_NO_NODE)
1369 nid = numa_mem_id();
944d9fec 1370
dbda8fea
BS
1371#ifdef CONFIG_CMA
1372 {
cf11e85f
RG
1373 struct page *page;
1374 int node;
1375
953f064a
LX
1376 if (hugetlb_cma[nid]) {
1377 page = cma_alloc(hugetlb_cma[nid], nr_pages,
1378 huge_page_order(h), true);
cf11e85f
RG
1379 if (page)
1380 return page;
1381 }
953f064a
LX
1382
1383 if (!(gfp_mask & __GFP_THISNODE)) {
1384 for_each_node_mask(node, *nodemask) {
1385 if (node == nid || !hugetlb_cma[node])
1386 continue;
1387
1388 page = cma_alloc(hugetlb_cma[node], nr_pages,
1389 huge_page_order(h), true);
1390 if (page)
1391 return page;
1392 }
1393 }
cf11e85f 1394 }
dbda8fea 1395#endif
cf11e85f 1396
5e27a2df 1397 return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
944d9fec
LC
1398}
1399
4eb0716e
AG
1400#else /* !CONFIG_CONTIG_ALLOC */
1401static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1402 int nid, nodemask_t *nodemask)
1403{
1404 return NULL;
1405}
1406#endif /* CONFIG_CONTIG_ALLOC */
944d9fec 1407
e1073d1e 1408#else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
d9cc948f 1409static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
4eb0716e
AG
1410 int nid, nodemask_t *nodemask)
1411{
1412 return NULL;
1413}
d00181b9 1414static inline void free_gigantic_page(struct page *page, unsigned int order) { }
944d9fec 1415static inline void destroy_compound_gigantic_page(struct page *page,
d00181b9 1416 unsigned int order) { }
944d9fec
LC
1417#endif
1418
6eb4e88a
MK
1419/*
1420 * Remove hugetlb page from lists, and update dtor so that page appears
34d9e35b
MK
1421 * as just a compound page.
1422 *
1423 * A reference is held on the page, except in the case of demote.
6eb4e88a
MK
1424 *
1425 * Must be called with hugetlb lock held.
1426 */
34d9e35b
MK
1427static void __remove_hugetlb_page(struct hstate *h, struct page *page,
1428 bool adjust_surplus,
1429 bool demote)
6eb4e88a
MK
1430{
1431 int nid = page_to_nid(page);
1432
1433 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1434 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page);
1435
9487ca60 1436 lockdep_assert_held(&hugetlb_lock);
6eb4e88a
MK
1437 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1438 return;
1439
1440 list_del(&page->lru);
1441
1442 if (HPageFreed(page)) {
1443 h->free_huge_pages--;
1444 h->free_huge_pages_node[nid]--;
1445 }
1446 if (adjust_surplus) {
1447 h->surplus_huge_pages--;
1448 h->surplus_huge_pages_node[nid]--;
1449 }
1450
e32d20c0
MK
1451 /*
1452 * Very subtle
1453 *
1454 * For non-gigantic pages set the destructor to the normal compound
1455 * page dtor. This is needed in case someone takes an additional
1456 * temporary ref to the page, and freeing is delayed until they drop
1457 * their reference.
1458 *
1459 * For gigantic pages set the destructor to the null dtor. This
1460 * destructor will never be called. Before freeing the gigantic
1461 * page destroy_compound_gigantic_page will turn the compound page
1462 * into a simple group of pages. After this the destructor does not
1463 * apply.
1464 *
1465 * This handles the case where more than one ref is held when and
1466 * after update_and_free_page is called.
34d9e35b
MK
1467 *
1468 * In the case of demote we do not ref count the page as it will soon
1469 * be turned into a page of smaller size.
e32d20c0 1470 */
34d9e35b
MK
1471 if (!demote)
1472 set_page_refcounted(page);
e32d20c0
MK
1473 if (hstate_is_gigantic(h))
1474 set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1475 else
1476 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
6eb4e88a
MK
1477
1478 h->nr_huge_pages--;
1479 h->nr_huge_pages_node[nid]--;
1480}
1481
34d9e35b
MK
1482static void remove_hugetlb_page(struct hstate *h, struct page *page,
1483 bool adjust_surplus)
1484{
1485 __remove_hugetlb_page(h, page, adjust_surplus, false);
1486}
1487
8531fc6f
MK
1488static void remove_hugetlb_page_for_demote(struct hstate *h, struct page *page,
1489 bool adjust_surplus)
1490{
1491 __remove_hugetlb_page(h, page, adjust_surplus, true);
1492}
1493
ad2fa371
MS
1494static void add_hugetlb_page(struct hstate *h, struct page *page,
1495 bool adjust_surplus)
1496{
1497 int zeroed;
1498 int nid = page_to_nid(page);
1499
1500 VM_BUG_ON_PAGE(!HPageVmemmapOptimized(page), page);
1501
1502 lockdep_assert_held(&hugetlb_lock);
1503
1504 INIT_LIST_HEAD(&page->lru);
1505 h->nr_huge_pages++;
1506 h->nr_huge_pages_node[nid]++;
1507
1508 if (adjust_surplus) {
1509 h->surplus_huge_pages++;
1510 h->surplus_huge_pages_node[nid]++;
1511 }
1512
1513 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1514 set_page_private(page, 0);
1515 SetHPageVmemmapOptimized(page);
1516
1517 /*
b65a4eda
MK
1518 * This page is about to be managed by the hugetlb allocator and
1519 * should have no users. Drop our reference, and check for others
1520 * just in case.
ad2fa371
MS
1521 */
1522 zeroed = put_page_testzero(page);
b65a4eda
MK
1523 if (!zeroed)
1524 /*
1525 * It is VERY unlikely soneone else has taken a ref on
1526 * the page. In this case, we simply return as the
1527 * hugetlb destructor (free_huge_page) will be called
1528 * when this other ref is dropped.
1529 */
1530 return;
1531
ad2fa371
MS
1532 arch_clear_hugepage_flags(page);
1533 enqueue_huge_page(h, page);
1534}
1535
b65d4adb 1536static void __update_and_free_page(struct hstate *h, struct page *page)
6af2acb6
AL
1537{
1538 int i;
dbfee5ae 1539 struct page *subpage = page;
a5516438 1540
4eb0716e 1541 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
944d9fec 1542 return;
18229df5 1543
5981611d 1544 if (hugetlb_vmemmap_alloc(h, page)) {
ad2fa371
MS
1545 spin_lock_irq(&hugetlb_lock);
1546 /*
1547 * If we cannot allocate vmemmap pages, just refuse to free the
1548 * page and put the page back on the hugetlb free list and treat
1549 * as a surplus page.
1550 */
1551 add_hugetlb_page(h, page, true);
1552 spin_unlock_irq(&hugetlb_lock);
1553 return;
1554 }
1555
dbfee5ae
MK
1556 for (i = 0; i < pages_per_huge_page(h);
1557 i++, subpage = mem_map_next(subpage, page, i)) {
1558 subpage->flags &= ~(1 << PG_locked | 1 << PG_error |
32f84528 1559 1 << PG_referenced | 1 << PG_dirty |
a7407a27
LC
1560 1 << PG_active | 1 << PG_private |
1561 1 << PG_writeback);
6af2acb6 1562 }
a01f4390
MK
1563
1564 /*
1565 * Non-gigantic pages demoted from CMA allocated gigantic pages
1566 * need to be given back to CMA in free_gigantic_page.
1567 */
1568 if (hstate_is_gigantic(h) ||
1569 hugetlb_cma_page(page, huge_page_order(h))) {
944d9fec
LC
1570 destroy_compound_gigantic_page(page, huge_page_order(h));
1571 free_gigantic_page(page, huge_page_order(h));
1572 } else {
944d9fec
LC
1573 __free_pages(page, huge_page_order(h));
1574 }
6af2acb6
AL
1575}
1576
b65d4adb
MS
1577/*
1578 * As update_and_free_page() can be called under any context, so we cannot
1579 * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the
1580 * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate
1581 * the vmemmap pages.
1582 *
1583 * free_hpage_workfn() locklessly retrieves the linked list of pages to be
1584 * freed and frees them one-by-one. As the page->mapping pointer is going
1585 * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node
1586 * structure of a lockless linked list of huge pages to be freed.
1587 */
1588static LLIST_HEAD(hpage_freelist);
1589
1590static void free_hpage_workfn(struct work_struct *work)
1591{
1592 struct llist_node *node;
1593
1594 node = llist_del_all(&hpage_freelist);
1595
1596 while (node) {
1597 struct page *page;
1598 struct hstate *h;
1599
1600 page = container_of((struct address_space **)node,
1601 struct page, mapping);
1602 node = node->next;
1603 page->mapping = NULL;
1604 /*
1605 * The VM_BUG_ON_PAGE(!PageHuge(page), page) in page_hstate()
1606 * is going to trigger because a previous call to
1607 * remove_hugetlb_page() will set_compound_page_dtor(page,
1608 * NULL_COMPOUND_DTOR), so do not use page_hstate() directly.
1609 */
1610 h = size_to_hstate(page_size(page));
1611
1612 __update_and_free_page(h, page);
1613
1614 cond_resched();
1615 }
1616}
1617static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1618
1619static inline void flush_free_hpage_work(struct hstate *h)
1620{
5981611d 1621 if (hugetlb_optimize_vmemmap_pages(h))
b65d4adb
MS
1622 flush_work(&free_hpage_work);
1623}
1624
1625static void update_and_free_page(struct hstate *h, struct page *page,
1626 bool atomic)
1627{
ad2fa371 1628 if (!HPageVmemmapOptimized(page) || !atomic) {
b65d4adb
MS
1629 __update_and_free_page(h, page);
1630 return;
1631 }
1632
1633 /*
1634 * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages.
1635 *
1636 * Only call schedule_work() if hpage_freelist is previously
1637 * empty. Otherwise, schedule_work() had been called but the workfn
1638 * hasn't retrieved the list yet.
1639 */
1640 if (llist_add((struct llist_node *)&page->mapping, &hpage_freelist))
1641 schedule_work(&free_hpage_work);
1642}
1643
10c6ec49
MK
1644static void update_and_free_pages_bulk(struct hstate *h, struct list_head *list)
1645{
1646 struct page *page, *t_page;
1647
1648 list_for_each_entry_safe(page, t_page, list, lru) {
b65d4adb 1649 update_and_free_page(h, page, false);
10c6ec49
MK
1650 cond_resched();
1651 }
1652}
1653
e5ff2159
AK
1654struct hstate *size_to_hstate(unsigned long size)
1655{
1656 struct hstate *h;
1657
1658 for_each_hstate(h) {
1659 if (huge_page_size(h) == size)
1660 return h;
1661 }
1662 return NULL;
1663}
1664
db71ef79 1665void free_huge_page(struct page *page)
27a85ef1 1666{
a5516438
AK
1667 /*
1668 * Can't pass hstate in here because it is called from the
1669 * compound page destructor.
1670 */
e5ff2159 1671 struct hstate *h = page_hstate(page);
7893d1d5 1672 int nid = page_to_nid(page);
d6995da3 1673 struct hugepage_subpool *spool = hugetlb_page_subpool(page);
07443a85 1674 bool restore_reserve;
db71ef79 1675 unsigned long flags;
27a85ef1 1676
b4330afb
MK
1677 VM_BUG_ON_PAGE(page_count(page), page);
1678 VM_BUG_ON_PAGE(page_mapcount(page), page);
8ace22bc 1679
d6995da3 1680 hugetlb_set_page_subpool(page, NULL);
78fbe906
DH
1681 if (PageAnon(page))
1682 __ClearPageAnonExclusive(page);
8ace22bc 1683 page->mapping = NULL;
d6995da3
MK
1684 restore_reserve = HPageRestoreReserve(page);
1685 ClearHPageRestoreReserve(page);
27a85ef1 1686
1c5ecae3 1687 /*
d6995da3 1688 * If HPageRestoreReserve was set on page, page allocation consumed a
0919e1b6
MK
1689 * reservation. If the page was associated with a subpool, there
1690 * would have been a page reserved in the subpool before allocation
1691 * via hugepage_subpool_get_pages(). Since we are 'restoring' the
6c26d310 1692 * reservation, do not call hugepage_subpool_put_pages() as this will
0919e1b6 1693 * remove the reserved page from the subpool.
1c5ecae3 1694 */
0919e1b6
MK
1695 if (!restore_reserve) {
1696 /*
1697 * A return code of zero implies that the subpool will be
1698 * under its minimum size if the reservation is not restored
1699 * after page is free. Therefore, force restore_reserve
1700 * operation.
1701 */
1702 if (hugepage_subpool_put_pages(spool, 1) == 0)
1703 restore_reserve = true;
1704 }
1c5ecae3 1705
db71ef79 1706 spin_lock_irqsave(&hugetlb_lock, flags);
8f251a3d 1707 ClearHPageMigratable(page);
6d76dcf4
AK
1708 hugetlb_cgroup_uncharge_page(hstate_index(h),
1709 pages_per_huge_page(h), page);
08cf9faf
MA
1710 hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
1711 pages_per_huge_page(h), page);
07443a85
JK
1712 if (restore_reserve)
1713 h->resv_huge_pages++;
1714
9157c311 1715 if (HPageTemporary(page)) {
6eb4e88a 1716 remove_hugetlb_page(h, page, false);
db71ef79 1717 spin_unlock_irqrestore(&hugetlb_lock, flags);
b65d4adb 1718 update_and_free_page(h, page, true);
ab5ac90a 1719 } else if (h->surplus_huge_pages_node[nid]) {
0edaecfa 1720 /* remove the page from active list */
6eb4e88a 1721 remove_hugetlb_page(h, page, true);
db71ef79 1722 spin_unlock_irqrestore(&hugetlb_lock, flags);
b65d4adb 1723 update_and_free_page(h, page, true);
7893d1d5 1724 } else {
5d3a551c 1725 arch_clear_hugepage_flags(page);
a5516438 1726 enqueue_huge_page(h, page);
db71ef79 1727 spin_unlock_irqrestore(&hugetlb_lock, flags);
c77c0a8a 1728 }
c77c0a8a
WL
1729}
1730
d3d99fcc
OS
1731/*
1732 * Must be called with the hugetlb lock held
1733 */
1734static void __prep_account_new_huge_page(struct hstate *h, int nid)
1735{
1736 lockdep_assert_held(&hugetlb_lock);
1737 h->nr_huge_pages++;
1738 h->nr_huge_pages_node[nid]++;
1739}
1740
f41f2ed4 1741static void __prep_new_huge_page(struct hstate *h, struct page *page)
b7ba30c6 1742{
5981611d 1743 hugetlb_vmemmap_free(h, page);
0edaecfa 1744 INIT_LIST_HEAD(&page->lru);
f1e61557 1745 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
ff546117 1746 hugetlb_set_page_subpool(page, NULL);
9dd540e2 1747 set_hugetlb_cgroup(page, NULL);
1adc4d41 1748 set_hugetlb_cgroup_rsvd(page, NULL);
d3d99fcc
OS
1749}
1750
1751static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1752{
f41f2ed4 1753 __prep_new_huge_page(h, page);
db71ef79 1754 spin_lock_irq(&hugetlb_lock);
d3d99fcc 1755 __prep_account_new_huge_page(h, nid);
db71ef79 1756 spin_unlock_irq(&hugetlb_lock);
b7ba30c6
AK
1757}
1758
34d9e35b
MK
1759static bool __prep_compound_gigantic_page(struct page *page, unsigned int order,
1760 bool demote)
20a0307c 1761{
7118fc29 1762 int i, j;
20a0307c
WF
1763 int nr_pages = 1 << order;
1764 struct page *p = page + 1;
1765
1766 /* we rely on prep_new_huge_page to set the destructor */
1767 set_compound_order(page, order);
ef5a22be 1768 __ClearPageReserved(page);
de09d31d 1769 __SetPageHead(page);
20a0307c 1770 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
ef5a22be
AA
1771 /*
1772 * For gigantic hugepages allocated through bootmem at
1773 * boot, it's safer to be consistent with the not-gigantic
1774 * hugepages and clear the PG_reserved bit from all tail pages
7c8de358 1775 * too. Otherwise drivers using get_user_pages() to access tail
ef5a22be
AA
1776 * pages may get the reference counting wrong if they see
1777 * PG_reserved set on a tail page (despite the head page not
1778 * having PG_reserved set). Enforcing this consistency between
1779 * head and tail pages allows drivers to optimize away a check
1780 * on the head page when they need know if put_page() is needed
1781 * after get_user_pages().
1782 */
1783 __ClearPageReserved(p);
7118fc29
MK
1784 /*
1785 * Subtle and very unlikely
1786 *
1787 * Gigantic 'page allocators' such as memblock or cma will
1788 * return a set of pages with each page ref counted. We need
1789 * to turn this set of pages into a compound page with tail
1790 * page ref counts set to zero. Code such as speculative page
1791 * cache adding could take a ref on a 'to be' tail page.
1792 * We need to respect any increased ref count, and only set
1793 * the ref count to zero if count is currently 1. If count
416d85ed
MK
1794 * is not 1, we return an error. An error return indicates
1795 * the set of pages can not be converted to a gigantic page.
1796 * The caller who allocated the pages should then discard the
1797 * pages using the appropriate free interface.
34d9e35b
MK
1798 *
1799 * In the case of demote, the ref count will be zero.
7118fc29 1800 */
34d9e35b
MK
1801 if (!demote) {
1802 if (!page_ref_freeze(p, 1)) {
1803 pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n");
1804 goto out_error;
1805 }
1806 } else {
1807 VM_BUG_ON_PAGE(page_count(p), p);
7118fc29 1808 }
1d798ca3 1809 set_compound_head(p, page);
20a0307c 1810 }
b4330afb 1811 atomic_set(compound_mapcount_ptr(page), -1);
5291c09b 1812 atomic_set(compound_pincount_ptr(page), 0);
7118fc29
MK
1813 return true;
1814
1815out_error:
1816 /* undo tail page modifications made above */
1817 p = page + 1;
1818 for (j = 1; j < i; j++, p = mem_map_next(p, page, j)) {
1819 clear_compound_head(p);
1820 set_page_refcounted(p);
1821 }
1822 /* need to clear PG_reserved on remaining tail pages */
1823 for (; j < nr_pages; j++, p = mem_map_next(p, page, j))
1824 __ClearPageReserved(p);
1825 set_compound_order(page, 0);
5232c63f 1826#ifdef CONFIG_64BIT
7118fc29 1827 page[1].compound_nr = 0;
5232c63f 1828#endif
7118fc29
MK
1829 __ClearPageHead(page);
1830 return false;
20a0307c
WF
1831}
1832
34d9e35b
MK
1833static bool prep_compound_gigantic_page(struct page *page, unsigned int order)
1834{
1835 return __prep_compound_gigantic_page(page, order, false);
1836}
1837
8531fc6f
MK
1838static bool prep_compound_gigantic_page_for_demote(struct page *page,
1839 unsigned int order)
1840{
1841 return __prep_compound_gigantic_page(page, order, true);
1842}
1843
7795912c
AM
1844/*
1845 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1846 * transparent huge pages. See the PageTransHuge() documentation for more
1847 * details.
1848 */
20a0307c
WF
1849int PageHuge(struct page *page)
1850{
20a0307c
WF
1851 if (!PageCompound(page))
1852 return 0;
1853
1854 page = compound_head(page);
f1e61557 1855 return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
20a0307c 1856}
43131e14
NH
1857EXPORT_SYMBOL_GPL(PageHuge);
1858
27c73ae7
AA
1859/*
1860 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1861 * normal or transparent huge pages.
1862 */
1863int PageHeadHuge(struct page *page_head)
1864{
27c73ae7
AA
1865 if (!PageHead(page_head))
1866 return 0;
1867
d4af73e3 1868 return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR;
27c73ae7 1869}
4e936ecc 1870EXPORT_SYMBOL_GPL(PageHeadHuge);
27c73ae7 1871
c0d0381a
MK
1872/*
1873 * Find and lock address space (mapping) in write mode.
1874 *
336bf30e
MK
1875 * Upon entry, the page is locked which means that page_mapping() is
1876 * stable. Due to locking order, we can only trylock_write. If we can
1877 * not get the lock, simply return NULL to caller.
c0d0381a
MK
1878 */
1879struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
1880{
336bf30e 1881 struct address_space *mapping = page_mapping(hpage);
c0d0381a 1882
c0d0381a
MK
1883 if (!mapping)
1884 return mapping;
1885
c0d0381a
MK
1886 if (i_mmap_trylock_write(mapping))
1887 return mapping;
1888
336bf30e 1889 return NULL;
c0d0381a
MK
1890}
1891
fe19bd3d 1892pgoff_t hugetlb_basepage_index(struct page *page)
13d60f4b
ZY
1893{
1894 struct page *page_head = compound_head(page);
1895 pgoff_t index = page_index(page_head);
1896 unsigned long compound_idx;
1897
13d60f4b
ZY
1898 if (compound_order(page_head) >= MAX_ORDER)
1899 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1900 else
1901 compound_idx = page - page_head;
1902
1903 return (index << compound_order(page_head)) + compound_idx;
1904}
1905
0c397dae 1906static struct page *alloc_buddy_huge_page(struct hstate *h,
f60858f9
MK
1907 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1908 nodemask_t *node_alloc_noretry)
1da177e4 1909{
af0fb9df 1910 int order = huge_page_order(h);
1da177e4 1911 struct page *page;
f60858f9 1912 bool alloc_try_hard = true;
f96efd58 1913
f60858f9
MK
1914 /*
1915 * By default we always try hard to allocate the page with
1916 * __GFP_RETRY_MAYFAIL flag. However, if we are allocating pages in
1917 * a loop (to adjust global huge page counts) and previous allocation
1918 * failed, do not continue to try hard on the same node. Use the
1919 * node_alloc_noretry bitmap to manage this state information.
1920 */
1921 if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1922 alloc_try_hard = false;
1923 gfp_mask |= __GFP_COMP|__GFP_NOWARN;
1924 if (alloc_try_hard)
1925 gfp_mask |= __GFP_RETRY_MAYFAIL;
af0fb9df
MH
1926 if (nid == NUMA_NO_NODE)
1927 nid = numa_mem_id();
84172f4b 1928 page = __alloc_pages(gfp_mask, order, nid, nmask);
af0fb9df
MH
1929 if (page)
1930 __count_vm_event(HTLB_BUDDY_PGALLOC);
1931 else
1932 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
63b4613c 1933
f60858f9
MK
1934 /*
1935 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
1936 * indicates an overall state change. Clear bit so that we resume
1937 * normal 'try hard' allocations.
1938 */
1939 if (node_alloc_noretry && page && !alloc_try_hard)
1940 node_clear(nid, *node_alloc_noretry);
1941
1942 /*
1943 * If we tried hard to get a page but failed, set bit so that
1944 * subsequent attempts will not try as hard until there is an
1945 * overall state change.
1946 */
1947 if (node_alloc_noretry && !page && alloc_try_hard)
1948 node_set(nid, *node_alloc_noretry);
1949
63b4613c
NA
1950 return page;
1951}
1952
0c397dae
MH
1953/*
1954 * Common helper to allocate a fresh hugetlb page. All specific allocators
1955 * should use this function to get new hugetlb pages
1956 */
1957static struct page *alloc_fresh_huge_page(struct hstate *h,
f60858f9
MK
1958 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1959 nodemask_t *node_alloc_noretry)
0c397dae
MH
1960{
1961 struct page *page;
7118fc29 1962 bool retry = false;
0c397dae 1963
7118fc29 1964retry:
0c397dae
MH
1965 if (hstate_is_gigantic(h))
1966 page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1967 else
1968 page = alloc_buddy_huge_page(h, gfp_mask,
f60858f9 1969 nid, nmask, node_alloc_noretry);
0c397dae
MH
1970 if (!page)
1971 return NULL;
1972
7118fc29
MK
1973 if (hstate_is_gigantic(h)) {
1974 if (!prep_compound_gigantic_page(page, huge_page_order(h))) {
1975 /*
1976 * Rare failure to convert pages to compound page.
1977 * Free pages and try again - ONCE!
1978 */
1979 free_gigantic_page(page, huge_page_order(h));
1980 if (!retry) {
1981 retry = true;
1982 goto retry;
1983 }
7118fc29
MK
1984 return NULL;
1985 }
1986 }
0c397dae
MH
1987 prep_new_huge_page(h, page, page_to_nid(page));
1988
1989 return page;
1990}
1991
af0fb9df
MH
1992/*
1993 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1994 * manner.
1995 */
f60858f9
MK
1996static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1997 nodemask_t *node_alloc_noretry)
b2261026
JK
1998{
1999 struct page *page;
2000 int nr_nodes, node;
af0fb9df 2001 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
b2261026
JK
2002
2003 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
f60858f9
MK
2004 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
2005 node_alloc_noretry);
af0fb9df 2006 if (page)
b2261026 2007 break;
b2261026
JK
2008 }
2009
af0fb9df
MH
2010 if (!page)
2011 return 0;
b2261026 2012
af0fb9df
MH
2013 put_page(page); /* free it into the hugepage allocator */
2014
2015 return 1;
b2261026
JK
2016}
2017
e8c5c824 2018/*
10c6ec49
MK
2019 * Remove huge page from pool from next node to free. Attempt to keep
2020 * persistent huge pages more or less balanced over allowed nodes.
2021 * This routine only 'removes' the hugetlb page. The caller must make
2022 * an additional call to free the page to low level allocators.
e8c5c824
LS
2023 * Called with hugetlb_lock locked.
2024 */
10c6ec49
MK
2025static struct page *remove_pool_huge_page(struct hstate *h,
2026 nodemask_t *nodes_allowed,
2027 bool acct_surplus)
e8c5c824 2028{
b2261026 2029 int nr_nodes, node;
10c6ec49 2030 struct page *page = NULL;
e8c5c824 2031
9487ca60 2032 lockdep_assert_held(&hugetlb_lock);
b2261026 2033 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
685f3457
LS
2034 /*
2035 * If we're returning unused surplus pages, only examine
2036 * nodes with surplus pages.
2037 */
b2261026
JK
2038 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
2039 !list_empty(&h->hugepage_freelists[node])) {
10c6ec49 2040 page = list_entry(h->hugepage_freelists[node].next,
e8c5c824 2041 struct page, lru);
6eb4e88a 2042 remove_hugetlb_page(h, page, acct_surplus);
9a76db09 2043 break;
e8c5c824 2044 }
b2261026 2045 }
e8c5c824 2046
10c6ec49 2047 return page;
e8c5c824
LS
2048}
2049
c8721bbb
NH
2050/*
2051 * Dissolve a given free hugepage into free buddy pages. This function does
faf53def
NH
2052 * nothing for in-use hugepages and non-hugepages.
2053 * This function returns values like below:
2054 *
ad2fa371
MS
2055 * -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages
2056 * when the system is under memory pressure and the feature of
2057 * freeing unused vmemmap pages associated with each hugetlb page
2058 * is enabled.
2059 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
2060 * (allocated or reserved.)
2061 * 0: successfully dissolved free hugepages or the page is not a
2062 * hugepage (considered as already dissolved)
c8721bbb 2063 */
c3114a84 2064int dissolve_free_huge_page(struct page *page)
c8721bbb 2065{
6bc9b564 2066 int rc = -EBUSY;
082d5b6b 2067
7ffddd49 2068retry:
faf53def
NH
2069 /* Not to disrupt normal path by vainly holding hugetlb_lock */
2070 if (!PageHuge(page))
2071 return 0;
2072
db71ef79 2073 spin_lock_irq(&hugetlb_lock);
faf53def
NH
2074 if (!PageHuge(page)) {
2075 rc = 0;
2076 goto out;
2077 }
2078
2079 if (!page_count(page)) {
2247bb33
GS
2080 struct page *head = compound_head(page);
2081 struct hstate *h = page_hstate(head);
6bc9b564 2082 if (h->free_huge_pages - h->resv_huge_pages == 0)
082d5b6b 2083 goto out;
7ffddd49
MS
2084
2085 /*
2086 * We should make sure that the page is already on the free list
2087 * when it is dissolved.
2088 */
6c037149 2089 if (unlikely(!HPageFreed(head))) {
db71ef79 2090 spin_unlock_irq(&hugetlb_lock);
7ffddd49
MS
2091 cond_resched();
2092
2093 /*
2094 * Theoretically, we should return -EBUSY when we
2095 * encounter this race. In fact, we have a chance
2096 * to successfully dissolve the page if we do a
2097 * retry. Because the race window is quite small.
2098 * If we seize this opportunity, it is an optimization
2099 * for increasing the success rate of dissolving page.
2100 */
2101 goto retry;
2102 }
2103
0c5da357 2104 remove_hugetlb_page(h, head, false);
c1470b33 2105 h->max_huge_pages--;
db71ef79 2106 spin_unlock_irq(&hugetlb_lock);
ad2fa371
MS
2107
2108 /*
2109 * Normally update_and_free_page will allocate required vmemmmap
2110 * before freeing the page. update_and_free_page will fail to
2111 * free the page if it can not allocate required vmemmap. We
2112 * need to adjust max_huge_pages if the page is not freed.
2113 * Attempt to allocate vmemmmap here so that we can take
2114 * appropriate action on failure.
2115 */
5981611d 2116 rc = hugetlb_vmemmap_alloc(h, head);
ad2fa371
MS
2117 if (!rc) {
2118 /*
2119 * Move PageHWPoison flag from head page to the raw
2120 * error page, which makes any subpages rather than
2121 * the error page reusable.
2122 */
2123 if (PageHWPoison(head) && page != head) {
2124 SetPageHWPoison(page);
2125 ClearPageHWPoison(head);
2126 }
2127 update_and_free_page(h, head, false);
2128 } else {
2129 spin_lock_irq(&hugetlb_lock);
2130 add_hugetlb_page(h, head, false);
2131 h->max_huge_pages++;
2132 spin_unlock_irq(&hugetlb_lock);
2133 }
2134
2135 return rc;
c8721bbb 2136 }
082d5b6b 2137out:
db71ef79 2138 spin_unlock_irq(&hugetlb_lock);
082d5b6b 2139 return rc;
c8721bbb
NH
2140}
2141
2142/*
2143 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
2144 * make specified memory blocks removable from the system.
2247bb33
GS
2145 * Note that this will dissolve a free gigantic hugepage completely, if any
2146 * part of it lies within the given range.
082d5b6b
GS
2147 * Also note that if dissolve_free_huge_page() returns with an error, all
2148 * free hugepages that were dissolved before that error are lost.
c8721bbb 2149 */
082d5b6b 2150int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
c8721bbb 2151{
c8721bbb 2152 unsigned long pfn;
eb03aa00 2153 struct page *page;
082d5b6b 2154 int rc = 0;
c8721bbb 2155
d0177639 2156 if (!hugepages_supported())
082d5b6b 2157 return rc;
d0177639 2158
eb03aa00
GS
2159 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
2160 page = pfn_to_page(pfn);
faf53def
NH
2161 rc = dissolve_free_huge_page(page);
2162 if (rc)
2163 break;
eb03aa00 2164 }
082d5b6b
GS
2165
2166 return rc;
c8721bbb
NH
2167}
2168
ab5ac90a
MH
2169/*
2170 * Allocates a fresh surplus page from the page allocator.
2171 */
0c397dae 2172static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
b65a4eda 2173 int nid, nodemask_t *nmask, bool zero_ref)
7893d1d5 2174{
9980d744 2175 struct page *page = NULL;
b65a4eda 2176 bool retry = false;
7893d1d5 2177
bae7f4ae 2178 if (hstate_is_gigantic(h))
aa888a74
AK
2179 return NULL;
2180
db71ef79 2181 spin_lock_irq(&hugetlb_lock);
9980d744
MH
2182 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
2183 goto out_unlock;
db71ef79 2184 spin_unlock_irq(&hugetlb_lock);
d1c3fb1f 2185
b65a4eda 2186retry:
f60858f9 2187 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
9980d744 2188 if (!page)
0c397dae 2189 return NULL;
d1c3fb1f 2190
db71ef79 2191 spin_lock_irq(&hugetlb_lock);
9980d744
MH
2192 /*
2193 * We could have raced with the pool size change.
2194 * Double check that and simply deallocate the new page
2195 * if we would end up overcommiting the surpluses. Abuse
2196 * temporary page to workaround the nasty free_huge_page
2197 * codeflow
2198 */
2199 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
9157c311 2200 SetHPageTemporary(page);
db71ef79 2201 spin_unlock_irq(&hugetlb_lock);
9980d744 2202 put_page(page);
2bf753e6 2203 return NULL;
7893d1d5 2204 }
9980d744 2205
b65a4eda
MK
2206 if (zero_ref) {
2207 /*
2208 * Caller requires a page with zero ref count.
2209 * We will drop ref count here. If someone else is holding
2210 * a ref, the page will be freed when they drop it. Abuse
2211 * temporary page flag to accomplish this.
2212 */
2213 SetHPageTemporary(page);
2214 if (!put_page_testzero(page)) {
2215 /*
2216 * Unexpected inflated ref count on freshly allocated
2217 * huge. Retry once.
2218 */
2219 pr_info("HugeTLB unexpected inflated ref count on freshly allocated page\n");
2220 spin_unlock_irq(&hugetlb_lock);
2221 if (retry)
2222 return NULL;
2223
2224 retry = true;
2225 goto retry;
2226 }
2227 ClearHPageTemporary(page);
2228 }
2229
2230 h->surplus_huge_pages++;
2231 h->surplus_huge_pages_node[page_to_nid(page)]++;
2232
9980d744 2233out_unlock:
db71ef79 2234 spin_unlock_irq(&hugetlb_lock);
7893d1d5
AL
2235
2236 return page;
2237}
2238
bbe88753 2239static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
9a4e9f3b 2240 int nid, nodemask_t *nmask)
ab5ac90a
MH
2241{
2242 struct page *page;
2243
2244 if (hstate_is_gigantic(h))
2245 return NULL;
2246
f60858f9 2247 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
ab5ac90a
MH
2248 if (!page)
2249 return NULL;
2250
2251 /*
2252 * We do not account these pages as surplus because they are only
2253 * temporary and will be released properly on the last reference
2254 */
9157c311 2255 SetHPageTemporary(page);
ab5ac90a
MH
2256
2257 return page;
2258}
2259
099730d6
DH
2260/*
2261 * Use the VMA's mpolicy to allocate a huge page from the buddy.
2262 */
e0ec90ee 2263static
0c397dae 2264struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
099730d6
DH
2265 struct vm_area_struct *vma, unsigned long addr)
2266{
cfcaa66f 2267 struct page *page = NULL;
aaf14e40
MH
2268 struct mempolicy *mpol;
2269 gfp_t gfp_mask = htlb_alloc_mask(h);
2270 int nid;
2271 nodemask_t *nodemask;
2272
2273 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
cfcaa66f
BW
2274 if (mpol_is_preferred_many(mpol)) {
2275 gfp_t gfp = gfp_mask | __GFP_NOWARN;
2276
2277 gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2278 page = alloc_surplus_huge_page(h, gfp, nid, nodemask, false);
aaf14e40 2279
cfcaa66f
BW
2280 /* Fallback to all nodes if page==NULL */
2281 nodemask = NULL;
2282 }
2283
2284 if (!page)
2285 page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask, false);
2286 mpol_cond_put(mpol);
aaf14e40 2287 return page;
099730d6
DH
2288}
2289
ab5ac90a 2290/* page migration callback function */
3e59fcb0 2291struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
d92bbc27 2292 nodemask_t *nmask, gfp_t gfp_mask)
4db9b2ef 2293{
db71ef79 2294 spin_lock_irq(&hugetlb_lock);
4db9b2ef 2295 if (h->free_huge_pages - h->resv_huge_pages > 0) {
3e59fcb0
MH
2296 struct page *page;
2297
2298 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
2299 if (page) {
db71ef79 2300 spin_unlock_irq(&hugetlb_lock);
3e59fcb0 2301 return page;
4db9b2ef
MH
2302 }
2303 }
db71ef79 2304 spin_unlock_irq(&hugetlb_lock);
4db9b2ef 2305
0c397dae 2306 return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
4db9b2ef
MH
2307}
2308
ebd63723 2309/* mempolicy aware migration callback */
389c8178
MH
2310struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
2311 unsigned long address)
ebd63723
MH
2312{
2313 struct mempolicy *mpol;
2314 nodemask_t *nodemask;
2315 struct page *page;
ebd63723
MH
2316 gfp_t gfp_mask;
2317 int node;
2318
ebd63723
MH
2319 gfp_mask = htlb_alloc_mask(h);
2320 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
d92bbc27 2321 page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask);
ebd63723
MH
2322 mpol_cond_put(mpol);
2323
2324 return page;
2325}
2326
e4e574b7 2327/*
25985edc 2328 * Increase the hugetlb pool such that it can accommodate a reservation
e4e574b7
AL
2329 * of size 'delta'.
2330 */
0a4f3d1b 2331static int gather_surplus_pages(struct hstate *h, long delta)
1b2a1e7b 2332 __must_hold(&hugetlb_lock)
e4e574b7
AL
2333{
2334 struct list_head surplus_list;
2335 struct page *page, *tmp;
0a4f3d1b
LX
2336 int ret;
2337 long i;
2338 long needed, allocated;
28073b02 2339 bool alloc_ok = true;
e4e574b7 2340
9487ca60 2341 lockdep_assert_held(&hugetlb_lock);
a5516438 2342 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
ac09b3a1 2343 if (needed <= 0) {
a5516438 2344 h->resv_huge_pages += delta;
e4e574b7 2345 return 0;
ac09b3a1 2346 }
e4e574b7
AL
2347
2348 allocated = 0;
2349 INIT_LIST_HEAD(&surplus_list);
2350
2351 ret = -ENOMEM;
2352retry:
db71ef79 2353 spin_unlock_irq(&hugetlb_lock);
e4e574b7 2354 for (i = 0; i < needed; i++) {
0c397dae 2355 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
b65a4eda 2356 NUMA_NO_NODE, NULL, true);
28073b02
HD
2357 if (!page) {
2358 alloc_ok = false;
2359 break;
2360 }
e4e574b7 2361 list_add(&page->lru, &surplus_list);
69ed779a 2362 cond_resched();
e4e574b7 2363 }
28073b02 2364 allocated += i;
e4e574b7
AL
2365
2366 /*
2367 * After retaking hugetlb_lock, we need to recalculate 'needed'
2368 * because either resv_huge_pages or free_huge_pages may have changed.
2369 */
db71ef79 2370 spin_lock_irq(&hugetlb_lock);
a5516438
AK
2371 needed = (h->resv_huge_pages + delta) -
2372 (h->free_huge_pages + allocated);
28073b02
HD
2373 if (needed > 0) {
2374 if (alloc_ok)
2375 goto retry;
2376 /*
2377 * We were not able to allocate enough pages to
2378 * satisfy the entire reservation so we free what
2379 * we've allocated so far.
2380 */
2381 goto free;
2382 }
e4e574b7
AL
2383 /*
2384 * The surplus_list now contains _at_least_ the number of extra pages
25985edc 2385 * needed to accommodate the reservation. Add the appropriate number
e4e574b7 2386 * of pages to the hugetlb pool and free the extras back to the buddy
ac09b3a1
AL
2387 * allocator. Commit the entire reservation here to prevent another
2388 * process from stealing the pages as they are added to the pool but
2389 * before they are reserved.
e4e574b7
AL
2390 */
2391 needed += allocated;
a5516438 2392 h->resv_huge_pages += delta;
e4e574b7 2393 ret = 0;
a9869b83 2394
19fc3f0a 2395 /* Free the needed pages to the hugetlb pool */
e4e574b7 2396 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
19fc3f0a
AL
2397 if ((--needed) < 0)
2398 break;
b65a4eda 2399 /* Add the page to the hugetlb allocator */
a5516438 2400 enqueue_huge_page(h, page);
19fc3f0a 2401 }
28073b02 2402free:
db71ef79 2403 spin_unlock_irq(&hugetlb_lock);
19fc3f0a 2404
b65a4eda
MK
2405 /*
2406 * Free unnecessary surplus pages to the buddy allocator.
2407 * Pages have no ref count, call free_huge_page directly.
2408 */
c0d934ba 2409 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
b65a4eda 2410 free_huge_page(page);
db71ef79 2411 spin_lock_irq(&hugetlb_lock);
e4e574b7
AL
2412
2413 return ret;
2414}
2415
2416/*
e5bbc8a6
MK
2417 * This routine has two main purposes:
2418 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2419 * in unused_resv_pages. This corresponds to the prior adjustments made
2420 * to the associated reservation map.
2421 * 2) Free any unused surplus pages that may have been allocated to satisfy
2422 * the reservation. As many as unused_resv_pages may be freed.
e4e574b7 2423 */
a5516438
AK
2424static void return_unused_surplus_pages(struct hstate *h,
2425 unsigned long unused_resv_pages)
e4e574b7 2426{
e4e574b7 2427 unsigned long nr_pages;
10c6ec49
MK
2428 struct page *page;
2429 LIST_HEAD(page_list);
2430
9487ca60 2431 lockdep_assert_held(&hugetlb_lock);
10c6ec49
MK
2432 /* Uncommit the reservation */
2433 h->resv_huge_pages -= unused_resv_pages;
e4e574b7 2434
aa888a74 2435 /* Cannot return gigantic pages currently */
bae7f4ae 2436 if (hstate_is_gigantic(h))
e5bbc8a6 2437 goto out;
aa888a74 2438
e5bbc8a6
MK
2439 /*
2440 * Part (or even all) of the reservation could have been backed
2441 * by pre-allocated pages. Only free surplus pages.
2442 */
a5516438 2443 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
e4e574b7 2444
685f3457
LS
2445 /*
2446 * We want to release as many surplus pages as possible, spread
9b5e5d0f
LS
2447 * evenly across all nodes with memory. Iterate across these nodes
2448 * until we can no longer free unreserved surplus pages. This occurs
2449 * when the nodes with surplus pages have no free pages.
10c6ec49 2450 * remove_pool_huge_page() will balance the freed pages across the
9b5e5d0f 2451 * on-line nodes with memory and will handle the hstate accounting.
685f3457
LS
2452 */
2453 while (nr_pages--) {
10c6ec49
MK
2454 page = remove_pool_huge_page(h, &node_states[N_MEMORY], 1);
2455 if (!page)
e5bbc8a6 2456 goto out;
10c6ec49
MK
2457
2458 list_add(&page->lru, &page_list);
e4e574b7 2459 }
e5bbc8a6
MK
2460
2461out:
db71ef79 2462 spin_unlock_irq(&hugetlb_lock);
10c6ec49 2463 update_and_free_pages_bulk(h, &page_list);
db71ef79 2464 spin_lock_irq(&hugetlb_lock);
e4e574b7
AL
2465}
2466
5e911373 2467
c37f9fb1 2468/*
feba16e2 2469 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
5e911373 2470 * are used by the huge page allocation routines to manage reservations.
cf3ad20b
MK
2471 *
2472 * vma_needs_reservation is called to determine if the huge page at addr
2473 * within the vma has an associated reservation. If a reservation is
2474 * needed, the value 1 is returned. The caller is then responsible for
2475 * managing the global reservation and subpool usage counts. After
2476 * the huge page has been allocated, vma_commit_reservation is called
feba16e2
MK
2477 * to add the page to the reservation map. If the page allocation fails,
2478 * the reservation must be ended instead of committed. vma_end_reservation
2479 * is called in such cases.
cf3ad20b
MK
2480 *
2481 * In the normal case, vma_commit_reservation returns the same value
2482 * as the preceding vma_needs_reservation call. The only time this
2483 * is not the case is if a reserve map was changed between calls. It
2484 * is the responsibility of the caller to notice the difference and
2485 * take appropriate action.
96b96a96
MK
2486 *
2487 * vma_add_reservation is used in error paths where a reservation must
2488 * be restored when a newly allocated huge page must be freed. It is
2489 * to be called after calling vma_needs_reservation to determine if a
2490 * reservation exists.
846be085
MK
2491 *
2492 * vma_del_reservation is used in error paths where an entry in the reserve
2493 * map was created during huge page allocation and must be removed. It is to
2494 * be called after calling vma_needs_reservation to determine if a reservation
2495 * exists.
c37f9fb1 2496 */
5e911373
MK
2497enum vma_resv_mode {
2498 VMA_NEEDS_RESV,
2499 VMA_COMMIT_RESV,
feba16e2 2500 VMA_END_RESV,
96b96a96 2501 VMA_ADD_RESV,
846be085 2502 VMA_DEL_RESV,
5e911373 2503};
cf3ad20b
MK
2504static long __vma_reservation_common(struct hstate *h,
2505 struct vm_area_struct *vma, unsigned long addr,
5e911373 2506 enum vma_resv_mode mode)
c37f9fb1 2507{
4e35f483
JK
2508 struct resv_map *resv;
2509 pgoff_t idx;
cf3ad20b 2510 long ret;
0db9d74e 2511 long dummy_out_regions_needed;
c37f9fb1 2512
4e35f483
JK
2513 resv = vma_resv_map(vma);
2514 if (!resv)
84afd99b 2515 return 1;
c37f9fb1 2516
4e35f483 2517 idx = vma_hugecache_offset(h, vma, addr);
5e911373
MK
2518 switch (mode) {
2519 case VMA_NEEDS_RESV:
0db9d74e
MA
2520 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2521 /* We assume that vma_reservation_* routines always operate on
2522 * 1 page, and that adding to resv map a 1 page entry can only
2523 * ever require 1 region.
2524 */
2525 VM_BUG_ON(dummy_out_regions_needed != 1);
5e911373
MK
2526 break;
2527 case VMA_COMMIT_RESV:
075a61d0 2528 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
0db9d74e
MA
2529 /* region_add calls of range 1 should never fail. */
2530 VM_BUG_ON(ret < 0);
5e911373 2531 break;
feba16e2 2532 case VMA_END_RESV:
0db9d74e 2533 region_abort(resv, idx, idx + 1, 1);
5e911373
MK
2534 ret = 0;
2535 break;
96b96a96 2536 case VMA_ADD_RESV:
0db9d74e 2537 if (vma->vm_flags & VM_MAYSHARE) {
075a61d0 2538 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
0db9d74e
MA
2539 /* region_add calls of range 1 should never fail. */
2540 VM_BUG_ON(ret < 0);
2541 } else {
2542 region_abort(resv, idx, idx + 1, 1);
96b96a96
MK
2543 ret = region_del(resv, idx, idx + 1);
2544 }
2545 break;
846be085
MK
2546 case VMA_DEL_RESV:
2547 if (vma->vm_flags & VM_MAYSHARE) {
2548 region_abort(resv, idx, idx + 1, 1);
2549 ret = region_del(resv, idx, idx + 1);
2550 } else {
2551 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2552 /* region_add calls of range 1 should never fail. */
2553 VM_BUG_ON(ret < 0);
2554 }
2555 break;
5e911373
MK
2556 default:
2557 BUG();
2558 }
84afd99b 2559
846be085 2560 if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV)
cf3ad20b 2561 return ret;
bf3d12b9
ML
2562 /*
2563 * We know private mapping must have HPAGE_RESV_OWNER set.
2564 *
2565 * In most cases, reserves always exist for private mappings.
2566 * However, a file associated with mapping could have been
2567 * hole punched or truncated after reserves were consumed.
2568 * As subsequent fault on such a range will not use reserves.
2569 * Subtle - The reserve map for private mappings has the
2570 * opposite meaning than that of shared mappings. If NO
2571 * entry is in the reserve map, it means a reservation exists.
2572 * If an entry exists in the reserve map, it means the
2573 * reservation has already been consumed. As a result, the
2574 * return value of this routine is the opposite of the
2575 * value returned from reserve map manipulation routines above.
2576 */
2577 if (ret > 0)
2578 return 0;
2579 if (ret == 0)
2580 return 1;
2581 return ret;
c37f9fb1 2582}
cf3ad20b
MK
2583
2584static long vma_needs_reservation(struct hstate *h,
a5516438 2585 struct vm_area_struct *vma, unsigned long addr)
c37f9fb1 2586{
5e911373 2587 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
cf3ad20b 2588}
84afd99b 2589
cf3ad20b
MK
2590static long vma_commit_reservation(struct hstate *h,
2591 struct vm_area_struct *vma, unsigned long addr)
2592{
5e911373
MK
2593 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2594}
2595
feba16e2 2596static void vma_end_reservation(struct hstate *h,
5e911373
MK
2597 struct vm_area_struct *vma, unsigned long addr)
2598{
feba16e2 2599 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
c37f9fb1
AW
2600}
2601
96b96a96
MK
2602static long vma_add_reservation(struct hstate *h,
2603 struct vm_area_struct *vma, unsigned long addr)
2604{
2605 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2606}
2607
846be085
MK
2608static long vma_del_reservation(struct hstate *h,
2609 struct vm_area_struct *vma, unsigned long addr)
2610{
2611 return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV);
2612}
2613
96b96a96 2614/*
846be085
MK
2615 * This routine is called to restore reservation information on error paths.
2616 * It should ONLY be called for pages allocated via alloc_huge_page(), and
2617 * the hugetlb mutex should remain held when calling this routine.
2618 *
2619 * It handles two specific cases:
2620 * 1) A reservation was in place and the page consumed the reservation.
2621 * HPageRestoreReserve is set in the page.
2622 * 2) No reservation was in place for the page, so HPageRestoreReserve is
2623 * not set. However, alloc_huge_page always updates the reserve map.
2624 *
2625 * In case 1, free_huge_page later in the error path will increment the
2626 * global reserve count. But, free_huge_page does not have enough context
2627 * to adjust the reservation map. This case deals primarily with private
2628 * mappings. Adjust the reserve map here to be consistent with global
2629 * reserve count adjustments to be made by free_huge_page. Make sure the
2630 * reserve map indicates there is a reservation present.
2631 *
2632 * In case 2, simply undo reserve map modifications done by alloc_huge_page.
96b96a96 2633 */
846be085
MK
2634void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
2635 unsigned long address, struct page *page)
96b96a96 2636{
846be085 2637 long rc = vma_needs_reservation(h, vma, address);
96b96a96 2638
846be085
MK
2639 if (HPageRestoreReserve(page)) {
2640 if (unlikely(rc < 0))
96b96a96
MK
2641 /*
2642 * Rare out of memory condition in reserve map
d6995da3 2643 * manipulation. Clear HPageRestoreReserve so that
96b96a96
MK
2644 * global reserve count will not be incremented
2645 * by free_huge_page. This will make it appear
2646 * as though the reservation for this page was
2647 * consumed. This may prevent the task from
2648 * faulting in the page at a later time. This
2649 * is better than inconsistent global huge page
2650 * accounting of reserve counts.
2651 */
d6995da3 2652 ClearHPageRestoreReserve(page);
846be085
MK
2653 else if (rc)
2654 (void)vma_add_reservation(h, vma, address);
2655 else
2656 vma_end_reservation(h, vma, address);
2657 } else {
2658 if (!rc) {
2659 /*
2660 * This indicates there is an entry in the reserve map
c7b1850d 2661 * not added by alloc_huge_page. We know it was added
846be085
MK
2662 * before the alloc_huge_page call, otherwise
2663 * HPageRestoreReserve would be set on the page.
2664 * Remove the entry so that a subsequent allocation
2665 * does not consume a reservation.
2666 */
2667 rc = vma_del_reservation(h, vma, address);
2668 if (rc < 0)
96b96a96 2669 /*
846be085
MK
2670 * VERY rare out of memory condition. Since
2671 * we can not delete the entry, set
2672 * HPageRestoreReserve so that the reserve
2673 * count will be incremented when the page
2674 * is freed. This reserve will be consumed
2675 * on a subsequent allocation.
96b96a96 2676 */
846be085
MK
2677 SetHPageRestoreReserve(page);
2678 } else if (rc < 0) {
2679 /*
2680 * Rare out of memory condition from
2681 * vma_needs_reservation call. Memory allocation is
2682 * only attempted if a new entry is needed. Therefore,
2683 * this implies there is not an entry in the
2684 * reserve map.
2685 *
2686 * For shared mappings, no entry in the map indicates
2687 * no reservation. We are done.
2688 */
2689 if (!(vma->vm_flags & VM_MAYSHARE))
2690 /*
2691 * For private mappings, no entry indicates
2692 * a reservation is present. Since we can
2693 * not add an entry, set SetHPageRestoreReserve
2694 * on the page so reserve count will be
2695 * incremented when freed. This reserve will
2696 * be consumed on a subsequent allocation.
2697 */
2698 SetHPageRestoreReserve(page);
96b96a96 2699 } else
846be085
MK
2700 /*
2701 * No reservation present, do nothing
2702 */
2703 vma_end_reservation(h, vma, address);
96b96a96
MK
2704 }
2705}
2706
369fa227
OS
2707/*
2708 * alloc_and_dissolve_huge_page - Allocate a new page and dissolve the old one
2709 * @h: struct hstate old page belongs to
2710 * @old_page: Old page to dissolve
ae37c7ff 2711 * @list: List to isolate the page in case we need to
369fa227
OS
2712 * Returns 0 on success, otherwise negated error.
2713 */
ae37c7ff
OS
2714static int alloc_and_dissolve_huge_page(struct hstate *h, struct page *old_page,
2715 struct list_head *list)
369fa227
OS
2716{
2717 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2718 int nid = page_to_nid(old_page);
b65a4eda 2719 bool alloc_retry = false;
369fa227
OS
2720 struct page *new_page;
2721 int ret = 0;
2722
2723 /*
2724 * Before dissolving the page, we need to allocate a new one for the
f41f2ed4
MS
2725 * pool to remain stable. Here, we allocate the page and 'prep' it
2726 * by doing everything but actually updating counters and adding to
2727 * the pool. This simplifies and let us do most of the processing
2728 * under the lock.
369fa227 2729 */
b65a4eda 2730alloc_retry:
369fa227
OS
2731 new_page = alloc_buddy_huge_page(h, gfp_mask, nid, NULL, NULL);
2732 if (!new_page)
2733 return -ENOMEM;
b65a4eda
MK
2734 /*
2735 * If all goes well, this page will be directly added to the free
2736 * list in the pool. For this the ref count needs to be zero.
2737 * Attempt to drop now, and retry once if needed. It is VERY
2738 * unlikely there is another ref on the page.
2739 *
2740 * If someone else has a reference to the page, it will be freed
2741 * when they drop their ref. Abuse temporary page flag to accomplish
2742 * this. Retry once if there is an inflated ref count.
2743 */
2744 SetHPageTemporary(new_page);
2745 if (!put_page_testzero(new_page)) {
2746 if (alloc_retry)
2747 return -EBUSY;
2748
2749 alloc_retry = true;
2750 goto alloc_retry;
2751 }
2752 ClearHPageTemporary(new_page);
2753
f41f2ed4 2754 __prep_new_huge_page(h, new_page);
369fa227
OS
2755
2756retry:
2757 spin_lock_irq(&hugetlb_lock);
2758 if (!PageHuge(old_page)) {
2759 /*
2760 * Freed from under us. Drop new_page too.
2761 */
2762 goto free_new;
2763 } else if (page_count(old_page)) {
2764 /*
ae37c7ff
OS
2765 * Someone has grabbed the page, try to isolate it here.
2766 * Fail with -EBUSY if not possible.
369fa227 2767 */
ae37c7ff
OS
2768 spin_unlock_irq(&hugetlb_lock);
2769 if (!isolate_huge_page(old_page, list))
2770 ret = -EBUSY;
2771 spin_lock_irq(&hugetlb_lock);
369fa227
OS
2772 goto free_new;
2773 } else if (!HPageFreed(old_page)) {
2774 /*
2775 * Page's refcount is 0 but it has not been enqueued in the
2776 * freelist yet. Race window is small, so we can succeed here if
2777 * we retry.
2778 */
2779 spin_unlock_irq(&hugetlb_lock);
2780 cond_resched();
2781 goto retry;
2782 } else {
2783 /*
2784 * Ok, old_page is still a genuine free hugepage. Remove it from
2785 * the freelist and decrease the counters. These will be
2786 * incremented again when calling __prep_account_new_huge_page()
2787 * and enqueue_huge_page() for new_page. The counters will remain
2788 * stable since this happens under the lock.
2789 */
2790 remove_hugetlb_page(h, old_page, false);
2791
2792 /*
b65a4eda
MK
2793 * Ref count on new page is already zero as it was dropped
2794 * earlier. It can be directly added to the pool free list.
369fa227 2795 */
369fa227 2796 __prep_account_new_huge_page(h, nid);
369fa227
OS
2797 enqueue_huge_page(h, new_page);
2798
2799 /*
2800 * Pages have been replaced, we can safely free the old one.
2801 */
2802 spin_unlock_irq(&hugetlb_lock);
b65d4adb 2803 update_and_free_page(h, old_page, false);
369fa227
OS
2804 }
2805
2806 return ret;
2807
2808free_new:
2809 spin_unlock_irq(&hugetlb_lock);
b65a4eda
MK
2810 /* Page has a zero ref count, but needs a ref to be freed */
2811 set_page_refcounted(new_page);
b65d4adb 2812 update_and_free_page(h, new_page, false);
369fa227
OS
2813
2814 return ret;
2815}
2816
ae37c7ff 2817int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list)
369fa227
OS
2818{
2819 struct hstate *h;
2820 struct page *head;
ae37c7ff 2821 int ret = -EBUSY;
369fa227
OS
2822
2823 /*
2824 * The page might have been dissolved from under our feet, so make sure
2825 * to carefully check the state under the lock.
2826 * Return success when racing as if we dissolved the page ourselves.
2827 */
2828 spin_lock_irq(&hugetlb_lock);
2829 if (PageHuge(page)) {
2830 head = compound_head(page);
2831 h = page_hstate(head);
2832 } else {
2833 spin_unlock_irq(&hugetlb_lock);
2834 return 0;
2835 }
2836 spin_unlock_irq(&hugetlb_lock);
2837
2838 /*
2839 * Fence off gigantic pages as there is a cyclic dependency between
2840 * alloc_contig_range and them. Return -ENOMEM as this has the effect
2841 * of bailing out right away without further retrying.
2842 */
2843 if (hstate_is_gigantic(h))
2844 return -ENOMEM;
2845
ae37c7ff
OS
2846 if (page_count(head) && isolate_huge_page(head, list))
2847 ret = 0;
2848 else if (!page_count(head))
2849 ret = alloc_and_dissolve_huge_page(h, head, list);
2850
2851 return ret;
369fa227
OS
2852}
2853
70c3547e 2854struct page *alloc_huge_page(struct vm_area_struct *vma,
04f2cbe3 2855 unsigned long addr, int avoid_reserve)
1da177e4 2856{
90481622 2857 struct hugepage_subpool *spool = subpool_vma(vma);
a5516438 2858 struct hstate *h = hstate_vma(vma);
348ea204 2859 struct page *page;
d85f69b0
MK
2860 long map_chg, map_commit;
2861 long gbl_chg;
6d76dcf4
AK
2862 int ret, idx;
2863 struct hugetlb_cgroup *h_cg;
08cf9faf 2864 bool deferred_reserve;
a1e78772 2865
6d76dcf4 2866 idx = hstate_index(h);
a1e78772 2867 /*
d85f69b0
MK
2868 * Examine the region/reserve map to determine if the process
2869 * has a reservation for the page to be allocated. A return
2870 * code of zero indicates a reservation exists (no change).
a1e78772 2871 */
d85f69b0
MK
2872 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2873 if (map_chg < 0)
76dcee75 2874 return ERR_PTR(-ENOMEM);
d85f69b0
MK
2875
2876 /*
2877 * Processes that did not create the mapping will have no
2878 * reserves as indicated by the region/reserve map. Check
2879 * that the allocation will not exceed the subpool limit.
2880 * Allocations for MAP_NORESERVE mappings also need to be
2881 * checked against any subpool limit.
2882 */
2883 if (map_chg || avoid_reserve) {
2884 gbl_chg = hugepage_subpool_get_pages(spool, 1);
2885 if (gbl_chg < 0) {
feba16e2 2886 vma_end_reservation(h, vma, addr);
76dcee75 2887 return ERR_PTR(-ENOSPC);
5e911373 2888 }
1da177e4 2889
d85f69b0
MK
2890 /*
2891 * Even though there was no reservation in the region/reserve
2892 * map, there could be reservations associated with the
2893 * subpool that can be used. This would be indicated if the
2894 * return value of hugepage_subpool_get_pages() is zero.
2895 * However, if avoid_reserve is specified we still avoid even
2896 * the subpool reservations.
2897 */
2898 if (avoid_reserve)
2899 gbl_chg = 1;
2900 }
2901
08cf9faf
MA
2902 /* If this allocation is not consuming a reservation, charge it now.
2903 */
6501fe5f 2904 deferred_reserve = map_chg || avoid_reserve;
08cf9faf
MA
2905 if (deferred_reserve) {
2906 ret = hugetlb_cgroup_charge_cgroup_rsvd(
2907 idx, pages_per_huge_page(h), &h_cg);
2908 if (ret)
2909 goto out_subpool_put;
2910 }
2911
6d76dcf4 2912 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
8f34af6f 2913 if (ret)
08cf9faf 2914 goto out_uncharge_cgroup_reservation;
8f34af6f 2915
db71ef79 2916 spin_lock_irq(&hugetlb_lock);
d85f69b0
MK
2917 /*
2918 * glb_chg is passed to indicate whether or not a page must be taken
2919 * from the global free pool (global change). gbl_chg == 0 indicates
2920 * a reservation exists for the allocation.
2921 */
2922 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
81a6fcae 2923 if (!page) {
db71ef79 2924 spin_unlock_irq(&hugetlb_lock);
0c397dae 2925 page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
8f34af6f
JZ
2926 if (!page)
2927 goto out_uncharge_cgroup;
a88c7695 2928 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
d6995da3 2929 SetHPageRestoreReserve(page);
a88c7695
NH
2930 h->resv_huge_pages--;
2931 }
db71ef79 2932 spin_lock_irq(&hugetlb_lock);
15a8d68e 2933 list_add(&page->lru, &h->hugepage_activelist);
81a6fcae 2934 /* Fall through */
68842c9b 2935 }
81a6fcae 2936 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
08cf9faf
MA
2937 /* If allocation is not consuming a reservation, also store the
2938 * hugetlb_cgroup pointer on the page.
2939 */
2940 if (deferred_reserve) {
2941 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
2942 h_cg, page);
2943 }
2944
db71ef79 2945 spin_unlock_irq(&hugetlb_lock);
348ea204 2946
d6995da3 2947 hugetlb_set_page_subpool(page, spool);
90d8b7e6 2948
d85f69b0
MK
2949 map_commit = vma_commit_reservation(h, vma, addr);
2950 if (unlikely(map_chg > map_commit)) {
33039678
MK
2951 /*
2952 * The page was added to the reservation map between
2953 * vma_needs_reservation and vma_commit_reservation.
2954 * This indicates a race with hugetlb_reserve_pages.
2955 * Adjust for the subpool count incremented above AND
2956 * in hugetlb_reserve_pages for the same page. Also,
2957 * the reservation count added in hugetlb_reserve_pages
2958 * no longer applies.
2959 */
2960 long rsv_adjust;
2961
2962 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2963 hugetlb_acct_memory(h, -rsv_adjust);
79aa925b
MK
2964 if (deferred_reserve)
2965 hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
2966 pages_per_huge_page(h), page);
33039678 2967 }
90d8b7e6 2968 return page;
8f34af6f
JZ
2969
2970out_uncharge_cgroup:
2971 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
08cf9faf
MA
2972out_uncharge_cgroup_reservation:
2973 if (deferred_reserve)
2974 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
2975 h_cg);
8f34af6f 2976out_subpool_put:
d85f69b0 2977 if (map_chg || avoid_reserve)
8f34af6f 2978 hugepage_subpool_put_pages(spool, 1);
feba16e2 2979 vma_end_reservation(h, vma, addr);
8f34af6f 2980 return ERR_PTR(-ENOSPC);
b45b5bd6
DG
2981}
2982
b5389086 2983int alloc_bootmem_huge_page(struct hstate *h, int nid)
e24a1307 2984 __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
b5389086 2985int __alloc_bootmem_huge_page(struct hstate *h, int nid)
aa888a74 2986{
b5389086 2987 struct huge_bootmem_page *m = NULL; /* initialize for clang */
b2261026 2988 int nr_nodes, node;
aa888a74 2989
b5389086
ZY
2990 /* do node specific alloc */
2991 if (nid != NUMA_NO_NODE) {
2992 m = memblock_alloc_try_nid_raw(huge_page_size(h), huge_page_size(h),
2993 0, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
2994 if (!m)
2995 return 0;
2996 goto found;
2997 }
2998 /* allocate from next node when distributing huge pages */
b2261026 2999 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
b5389086 3000 m = memblock_alloc_try_nid_raw(
8b89a116 3001 huge_page_size(h), huge_page_size(h),
97ad1087 3002 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
b5389086
ZY
3003 /*
3004 * Use the beginning of the huge page to store the
3005 * huge_bootmem_page struct (until gather_bootmem
3006 * puts them into the mem_map).
3007 */
3008 if (!m)
3009 return 0;
3010 goto found;
aa888a74 3011 }
aa888a74
AK
3012
3013found:
aa888a74 3014 /* Put them into a private list first because mem_map is not up yet */
330d6e48 3015 INIT_LIST_HEAD(&m->list);
aa888a74
AK
3016 list_add(&m->list, &huge_boot_pages);
3017 m->hstate = h;
3018 return 1;
3019}
3020
48b8d744
MK
3021/*
3022 * Put bootmem huge pages into the standard lists after mem_map is up.
3023 * Note: This only applies to gigantic (order > MAX_ORDER) pages.
3024 */
aa888a74
AK
3025static void __init gather_bootmem_prealloc(void)
3026{
3027 struct huge_bootmem_page *m;
3028
3029 list_for_each_entry(m, &huge_boot_pages, list) {
40d18ebf 3030 struct page *page = virt_to_page(m);
aa888a74 3031 struct hstate *h = m->hstate;
ee8f248d 3032
48b8d744 3033 VM_BUG_ON(!hstate_is_gigantic(h));
aa888a74 3034 WARN_ON(page_count(page) != 1);
7118fc29
MK
3035 if (prep_compound_gigantic_page(page, huge_page_order(h))) {
3036 WARN_ON(PageReserved(page));
3037 prep_new_huge_page(h, page, page_to_nid(page));
3038 put_page(page); /* add to the hugepage allocator */
3039 } else {
416d85ed 3040 /* VERY unlikely inflated ref count on a tail page */
7118fc29 3041 free_gigantic_page(page, huge_page_order(h));
7118fc29 3042 }
af0fb9df 3043
b0320c7b 3044 /*
48b8d744
MK
3045 * We need to restore the 'stolen' pages to totalram_pages
3046 * in order to fix confusing memory reports from free(1) and
3047 * other side-effects, like CommitLimit going negative.
b0320c7b 3048 */
48b8d744 3049 adjust_managed_page_count(page, pages_per_huge_page(h));
520495fe 3050 cond_resched();
aa888a74
AK
3051 }
3052}
b5389086
ZY
3053static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid)
3054{
3055 unsigned long i;
3056 char buf[32];
3057
3058 for (i = 0; i < h->max_huge_pages_node[nid]; ++i) {
3059 if (hstate_is_gigantic(h)) {
3060 if (!alloc_bootmem_huge_page(h, nid))
3061 break;
3062 } else {
3063 struct page *page;
3064 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
3065
3066 page = alloc_fresh_huge_page(h, gfp_mask, nid,
3067 &node_states[N_MEMORY], NULL);
3068 if (!page)
3069 break;
3070 put_page(page); /* free it into the hugepage allocator */
3071 }
3072 cond_resched();
3073 }
3074 if (i == h->max_huge_pages_node[nid])
3075 return;
3076
3077 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3078 pr_warn("HugeTLB: allocating %u of page size %s failed node%d. Only allocated %lu hugepages.\n",
3079 h->max_huge_pages_node[nid], buf, nid, i);
3080 h->max_huge_pages -= (h->max_huge_pages_node[nid] - i);
3081 h->max_huge_pages_node[nid] = i;
3082}
aa888a74 3083
8faa8b07 3084static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1da177e4
LT
3085{
3086 unsigned long i;
f60858f9 3087 nodemask_t *node_alloc_noretry;
b5389086
ZY
3088 bool node_specific_alloc = false;
3089
3090 /* skip gigantic hugepages allocation if hugetlb_cma enabled */
3091 if (hstate_is_gigantic(h) && hugetlb_cma_size) {
3092 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
3093 return;
3094 }
3095
3096 /* do node specific alloc */
0a7a0f6f 3097 for_each_online_node(i) {
b5389086
ZY
3098 if (h->max_huge_pages_node[i] > 0) {
3099 hugetlb_hstate_alloc_pages_onenode(h, i);
3100 node_specific_alloc = true;
3101 }
3102 }
f60858f9 3103
b5389086
ZY
3104 if (node_specific_alloc)
3105 return;
3106
3107 /* below will do all node balanced alloc */
f60858f9
MK
3108 if (!hstate_is_gigantic(h)) {
3109 /*
3110 * Bit mask controlling how hard we retry per-node allocations.
3111 * Ignore errors as lower level routines can deal with
3112 * node_alloc_noretry == NULL. If this kmalloc fails at boot
3113 * time, we are likely in bigger trouble.
3114 */
3115 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
3116 GFP_KERNEL);
3117 } else {
3118 /* allocations done at boot time */
3119 node_alloc_noretry = NULL;
3120 }
3121
3122 /* bit mask controlling how hard we retry per-node allocations */
3123 if (node_alloc_noretry)
3124 nodes_clear(*node_alloc_noretry);
a5516438 3125
e5ff2159 3126 for (i = 0; i < h->max_huge_pages; ++i) {
bae7f4ae 3127 if (hstate_is_gigantic(h)) {
b5389086 3128 if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE))
aa888a74 3129 break;
0c397dae 3130 } else if (!alloc_pool_huge_page(h,
f60858f9
MK
3131 &node_states[N_MEMORY],
3132 node_alloc_noretry))
1da177e4 3133 break;
69ed779a 3134 cond_resched();
1da177e4 3135 }
d715cf80
LH
3136 if (i < h->max_huge_pages) {
3137 char buf[32];
3138
c6247f72 3139 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
d715cf80
LH
3140 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n",
3141 h->max_huge_pages, buf, i);
3142 h->max_huge_pages = i;
3143 }
f60858f9 3144 kfree(node_alloc_noretry);
e5ff2159
AK
3145}
3146
3147static void __init hugetlb_init_hstates(void)
3148{
79dfc695 3149 struct hstate *h, *h2;
e5ff2159
AK
3150
3151 for_each_hstate(h) {
641844f5
NH
3152 if (minimum_order > huge_page_order(h))
3153 minimum_order = huge_page_order(h);
3154
8faa8b07 3155 /* oversize hugepages were init'ed in early boot */
bae7f4ae 3156 if (!hstate_is_gigantic(h))
8faa8b07 3157 hugetlb_hstate_alloc_pages(h);
79dfc695
MK
3158
3159 /*
3160 * Set demote order for each hstate. Note that
3161 * h->demote_order is initially 0.
3162 * - We can not demote gigantic pages if runtime freeing
3163 * is not supported, so skip this.
a01f4390
MK
3164 * - If CMA allocation is possible, we can not demote
3165 * HUGETLB_PAGE_ORDER or smaller size pages.
79dfc695
MK
3166 */
3167 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3168 continue;
a01f4390
MK
3169 if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER)
3170 continue;
79dfc695
MK
3171 for_each_hstate(h2) {
3172 if (h2 == h)
3173 continue;
3174 if (h2->order < h->order &&
3175 h2->order > h->demote_order)
3176 h->demote_order = h2->order;
3177 }
e5ff2159 3178 }
641844f5 3179 VM_BUG_ON(minimum_order == UINT_MAX);
e5ff2159
AK
3180}
3181
3182static void __init report_hugepages(void)
3183{
3184 struct hstate *h;
3185
3186 for_each_hstate(h) {
4abd32db 3187 char buf[32];
c6247f72
MW
3188
3189 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
ffb22af5 3190 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
c6247f72 3191 buf, h->free_huge_pages);
e5ff2159
AK
3192 }
3193}
3194
1da177e4 3195#ifdef CONFIG_HIGHMEM
6ae11b27
LS
3196static void try_to_free_low(struct hstate *h, unsigned long count,
3197 nodemask_t *nodes_allowed)
1da177e4 3198{
4415cc8d 3199 int i;
1121828a 3200 LIST_HEAD(page_list);
4415cc8d 3201
9487ca60 3202 lockdep_assert_held(&hugetlb_lock);
bae7f4ae 3203 if (hstate_is_gigantic(h))
aa888a74
AK
3204 return;
3205
1121828a
MK
3206 /*
3207 * Collect pages to be freed on a list, and free after dropping lock
3208 */
6ae11b27 3209 for_each_node_mask(i, *nodes_allowed) {
10c6ec49 3210 struct page *page, *next;
a5516438
AK
3211 struct list_head *freel = &h->hugepage_freelists[i];
3212 list_for_each_entry_safe(page, next, freel, lru) {
3213 if (count >= h->nr_huge_pages)
1121828a 3214 goto out;
1da177e4
LT
3215 if (PageHighMem(page))
3216 continue;
6eb4e88a 3217 remove_hugetlb_page(h, page, false);
1121828a 3218 list_add(&page->lru, &page_list);
1da177e4
LT
3219 }
3220 }
1121828a
MK
3221
3222out:
db71ef79 3223 spin_unlock_irq(&hugetlb_lock);
10c6ec49 3224 update_and_free_pages_bulk(h, &page_list);
db71ef79 3225 spin_lock_irq(&hugetlb_lock);
1da177e4
LT
3226}
3227#else
6ae11b27
LS
3228static inline void try_to_free_low(struct hstate *h, unsigned long count,
3229 nodemask_t *nodes_allowed)
1da177e4
LT
3230{
3231}
3232#endif
3233
20a0307c
WF
3234/*
3235 * Increment or decrement surplus_huge_pages. Keep node-specific counters
3236 * balanced by operating on them in a round-robin fashion.
3237 * Returns 1 if an adjustment was made.
3238 */
6ae11b27
LS
3239static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
3240 int delta)
20a0307c 3241{
b2261026 3242 int nr_nodes, node;
20a0307c 3243
9487ca60 3244 lockdep_assert_held(&hugetlb_lock);
20a0307c 3245 VM_BUG_ON(delta != -1 && delta != 1);
20a0307c 3246
b2261026
JK
3247 if (delta < 0) {
3248 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
3249 if (h->surplus_huge_pages_node[node])
3250 goto found;
e8c5c824 3251 }
b2261026
JK
3252 } else {
3253 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3254 if (h->surplus_huge_pages_node[node] <
3255 h->nr_huge_pages_node[node])
3256 goto found;
e8c5c824 3257 }
b2261026
JK
3258 }
3259 return 0;
20a0307c 3260
b2261026
JK
3261found:
3262 h->surplus_huge_pages += delta;
3263 h->surplus_huge_pages_node[node] += delta;
3264 return 1;
20a0307c
WF
3265}
3266
a5516438 3267#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
fd875dca 3268static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
4eb0716e 3269 nodemask_t *nodes_allowed)
1da177e4 3270{
7893d1d5 3271 unsigned long min_count, ret;
10c6ec49
MK
3272 struct page *page;
3273 LIST_HEAD(page_list);
f60858f9
MK
3274 NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
3275
3276 /*
3277 * Bit mask controlling how hard we retry per-node allocations.
3278 * If we can not allocate the bit mask, do not attempt to allocate
3279 * the requested huge pages.
3280 */
3281 if (node_alloc_noretry)
3282 nodes_clear(*node_alloc_noretry);
3283 else
3284 return -ENOMEM;
1da177e4 3285
29383967
MK
3286 /*
3287 * resize_lock mutex prevents concurrent adjustments to number of
3288 * pages in hstate via the proc/sysfs interfaces.
3289 */
3290 mutex_lock(&h->resize_lock);
b65d4adb 3291 flush_free_hpage_work(h);
db71ef79 3292 spin_lock_irq(&hugetlb_lock);
4eb0716e 3293
fd875dca
MK
3294 /*
3295 * Check for a node specific request.
3296 * Changing node specific huge page count may require a corresponding
3297 * change to the global count. In any case, the passed node mask
3298 * (nodes_allowed) will restrict alloc/free to the specified node.
3299 */
3300 if (nid != NUMA_NO_NODE) {
3301 unsigned long old_count = count;
3302
3303 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
3304 /*
3305 * User may have specified a large count value which caused the
3306 * above calculation to overflow. In this case, they wanted
3307 * to allocate as many huge pages as possible. Set count to
3308 * largest possible value to align with their intention.
3309 */
3310 if (count < old_count)
3311 count = ULONG_MAX;
3312 }
3313
4eb0716e
AG
3314 /*
3315 * Gigantic pages runtime allocation depend on the capability for large
3316 * page range allocation.
3317 * If the system does not provide this feature, return an error when
3318 * the user tries to allocate gigantic pages but let the user free the
3319 * boottime allocated gigantic pages.
3320 */
3321 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
3322 if (count > persistent_huge_pages(h)) {
db71ef79 3323 spin_unlock_irq(&hugetlb_lock);
29383967 3324 mutex_unlock(&h->resize_lock);
f60858f9 3325 NODEMASK_FREE(node_alloc_noretry);
4eb0716e
AG
3326 return -EINVAL;
3327 }
3328 /* Fall through to decrease pool */
3329 }
aa888a74 3330
7893d1d5
AL
3331 /*
3332 * Increase the pool size
3333 * First take pages out of surplus state. Then make up the
3334 * remaining difference by allocating fresh huge pages.
d1c3fb1f 3335 *
0c397dae 3336 * We might race with alloc_surplus_huge_page() here and be unable
d1c3fb1f
NA
3337 * to convert a surplus huge page to a normal huge page. That is
3338 * not critical, though, it just means the overall size of the
3339 * pool might be one hugepage larger than it needs to be, but
3340 * within all the constraints specified by the sysctls.
7893d1d5 3341 */
a5516438 3342 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
6ae11b27 3343 if (!adjust_pool_surplus(h, nodes_allowed, -1))
7893d1d5
AL
3344 break;
3345 }
3346
a5516438 3347 while (count > persistent_huge_pages(h)) {
7893d1d5
AL
3348 /*
3349 * If this allocation races such that we no longer need the
3350 * page, free_huge_page will handle it by freeing the page
3351 * and reducing the surplus.
3352 */
db71ef79 3353 spin_unlock_irq(&hugetlb_lock);
649920c6
JH
3354
3355 /* yield cpu to avoid soft lockup */
3356 cond_resched();
3357
f60858f9
MK
3358 ret = alloc_pool_huge_page(h, nodes_allowed,
3359 node_alloc_noretry);
db71ef79 3360 spin_lock_irq(&hugetlb_lock);
7893d1d5
AL
3361 if (!ret)
3362 goto out;
3363
536240f2
MG
3364 /* Bail for signals. Probably ctrl-c from user */
3365 if (signal_pending(current))
3366 goto out;
7893d1d5 3367 }
7893d1d5
AL
3368
3369 /*
3370 * Decrease the pool size
3371 * First return free pages to the buddy allocator (being careful
3372 * to keep enough around to satisfy reservations). Then place
3373 * pages into surplus state as needed so the pool will shrink
3374 * to the desired size as pages become free.
d1c3fb1f
NA
3375 *
3376 * By placing pages into the surplus state independent of the
3377 * overcommit value, we are allowing the surplus pool size to
3378 * exceed overcommit. There are few sane options here. Since
0c397dae 3379 * alloc_surplus_huge_page() is checking the global counter,
d1c3fb1f
NA
3380 * though, we'll note that we're not allowed to exceed surplus
3381 * and won't grow the pool anywhere else. Not until one of the
3382 * sysctls are changed, or the surplus pages go out of use.
7893d1d5 3383 */
a5516438 3384 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
6b0c880d 3385 min_count = max(count, min_count);
6ae11b27 3386 try_to_free_low(h, min_count, nodes_allowed);
10c6ec49
MK
3387
3388 /*
3389 * Collect pages to be removed on list without dropping lock
3390 */
a5516438 3391 while (min_count < persistent_huge_pages(h)) {
10c6ec49
MK
3392 page = remove_pool_huge_page(h, nodes_allowed, 0);
3393 if (!page)
1da177e4 3394 break;
10c6ec49
MK
3395
3396 list_add(&page->lru, &page_list);
1da177e4 3397 }
10c6ec49 3398 /* free the pages after dropping lock */
db71ef79 3399 spin_unlock_irq(&hugetlb_lock);
10c6ec49 3400 update_and_free_pages_bulk(h, &page_list);
b65d4adb 3401 flush_free_hpage_work(h);
db71ef79 3402 spin_lock_irq(&hugetlb_lock);
10c6ec49 3403
a5516438 3404 while (count < persistent_huge_pages(h)) {
6ae11b27 3405 if (!adjust_pool_surplus(h, nodes_allowed, 1))
7893d1d5
AL
3406 break;
3407 }
3408out:
4eb0716e 3409 h->max_huge_pages = persistent_huge_pages(h);
db71ef79 3410 spin_unlock_irq(&hugetlb_lock);
29383967 3411 mutex_unlock(&h->resize_lock);
4eb0716e 3412
f60858f9
MK
3413 NODEMASK_FREE(node_alloc_noretry);
3414
4eb0716e 3415 return 0;
1da177e4
LT
3416}
3417
8531fc6f
MK
3418static int demote_free_huge_page(struct hstate *h, struct page *page)
3419{
3420 int i, nid = page_to_nid(page);
3421 struct hstate *target_hstate;
3422 int rc = 0;
3423
3424 target_hstate = size_to_hstate(PAGE_SIZE << h->demote_order);
3425
3426 remove_hugetlb_page_for_demote(h, page, false);
3427 spin_unlock_irq(&hugetlb_lock);
3428
5981611d 3429 rc = hugetlb_vmemmap_alloc(h, page);
8531fc6f
MK
3430 if (rc) {
3431 /* Allocation of vmemmmap failed, we can not demote page */
3432 spin_lock_irq(&hugetlb_lock);
3433 set_page_refcounted(page);
3434 add_hugetlb_page(h, page, false);
3435 return rc;
3436 }
3437
3438 /*
3439 * Use destroy_compound_hugetlb_page_for_demote for all huge page
3440 * sizes as it will not ref count pages.
3441 */
3442 destroy_compound_hugetlb_page_for_demote(page, huge_page_order(h));
3443
3444 /*
3445 * Taking target hstate mutex synchronizes with set_max_huge_pages.
3446 * Without the mutex, pages added to target hstate could be marked
3447 * as surplus.
3448 *
3449 * Note that we already hold h->resize_lock. To prevent deadlock,
3450 * use the convention of always taking larger size hstate mutex first.
3451 */
3452 mutex_lock(&target_hstate->resize_lock);
3453 for (i = 0; i < pages_per_huge_page(h);
3454 i += pages_per_huge_page(target_hstate)) {
3455 if (hstate_is_gigantic(target_hstate))
3456 prep_compound_gigantic_page_for_demote(page + i,
3457 target_hstate->order);
3458 else
3459 prep_compound_page(page + i, target_hstate->order);
3460 set_page_private(page + i, 0);
3461 set_page_refcounted(page + i);
3462 prep_new_huge_page(target_hstate, page + i, nid);
3463 put_page(page + i);
3464 }
3465 mutex_unlock(&target_hstate->resize_lock);
3466
3467 spin_lock_irq(&hugetlb_lock);
3468
3469 /*
3470 * Not absolutely necessary, but for consistency update max_huge_pages
3471 * based on pool changes for the demoted page.
3472 */
3473 h->max_huge_pages--;
3474 target_hstate->max_huge_pages += pages_per_huge_page(h);
3475
3476 return rc;
3477}
3478
79dfc695
MK
3479static int demote_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
3480 __must_hold(&hugetlb_lock)
3481{
8531fc6f
MK
3482 int nr_nodes, node;
3483 struct page *page;
79dfc695
MK
3484
3485 lockdep_assert_held(&hugetlb_lock);
3486
3487 /* We should never get here if no demote order */
3488 if (!h->demote_order) {
3489 pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n");
3490 return -EINVAL; /* internal error */
3491 }
3492
8531fc6f 3493 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
5a317412
MK
3494 list_for_each_entry(page, &h->hugepage_freelists[node], lru) {
3495 if (PageHWPoison(page))
3496 continue;
3497
3498 return demote_free_huge_page(h, page);
8531fc6f
MK
3499 }
3500 }
3501
5a317412
MK
3502 /*
3503 * Only way to get here is if all pages on free lists are poisoned.
3504 * Return -EBUSY so that caller will not retry.
3505 */
3506 return -EBUSY;
79dfc695
MK
3507}
3508
a3437870
NA
3509#define HSTATE_ATTR_RO(_name) \
3510 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3511
79dfc695
MK
3512#define HSTATE_ATTR_WO(_name) \
3513 static struct kobj_attribute _name##_attr = __ATTR_WO(_name)
3514
a3437870 3515#define HSTATE_ATTR(_name) \
98bc26ac 3516 static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
a3437870
NA
3517
3518static struct kobject *hugepages_kobj;
3519static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3520
9a305230
LS
3521static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
3522
3523static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
a3437870
NA
3524{
3525 int i;
9a305230 3526
a3437870 3527 for (i = 0; i < HUGE_MAX_HSTATE; i++)
9a305230
LS
3528 if (hstate_kobjs[i] == kobj) {
3529 if (nidp)
3530 *nidp = NUMA_NO_NODE;
a3437870 3531 return &hstates[i];
9a305230
LS
3532 }
3533
3534 return kobj_to_node_hstate(kobj, nidp);
a3437870
NA
3535}
3536
06808b08 3537static ssize_t nr_hugepages_show_common(struct kobject *kobj,
a3437870
NA
3538 struct kobj_attribute *attr, char *buf)
3539{
9a305230
LS
3540 struct hstate *h;
3541 unsigned long nr_huge_pages;
3542 int nid;
3543
3544 h = kobj_to_hstate(kobj, &nid);
3545 if (nid == NUMA_NO_NODE)
3546 nr_huge_pages = h->nr_huge_pages;
3547 else
3548 nr_huge_pages = h->nr_huge_pages_node[nid];
3549
ae7a927d 3550 return sysfs_emit(buf, "%lu\n", nr_huge_pages);
a3437870 3551}
adbe8726 3552
238d3c13
DR
3553static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
3554 struct hstate *h, int nid,
3555 unsigned long count, size_t len)
a3437870
NA
3556{
3557 int err;
2d0adf7e 3558 nodemask_t nodes_allowed, *n_mask;
a3437870 3559
2d0adf7e
OS
3560 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3561 return -EINVAL;
adbe8726 3562
9a305230
LS
3563 if (nid == NUMA_NO_NODE) {
3564 /*
3565 * global hstate attribute
3566 */
3567 if (!(obey_mempolicy &&
2d0adf7e
OS
3568 init_nodemask_of_mempolicy(&nodes_allowed)))
3569 n_mask = &node_states[N_MEMORY];
3570 else
3571 n_mask = &nodes_allowed;
3572 } else {
9a305230 3573 /*
fd875dca
MK
3574 * Node specific request. count adjustment happens in
3575 * set_max_huge_pages() after acquiring hugetlb_lock.
9a305230 3576 */
2d0adf7e
OS
3577 init_nodemask_of_node(&nodes_allowed, nid);
3578 n_mask = &nodes_allowed;
fd875dca 3579 }
9a305230 3580
2d0adf7e 3581 err = set_max_huge_pages(h, count, nid, n_mask);
06808b08 3582
4eb0716e 3583 return err ? err : len;
06808b08
LS
3584}
3585
238d3c13
DR
3586static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
3587 struct kobject *kobj, const char *buf,
3588 size_t len)
3589{
3590 struct hstate *h;
3591 unsigned long count;
3592 int nid;
3593 int err;
3594
3595 err = kstrtoul(buf, 10, &count);
3596 if (err)
3597 return err;
3598
3599 h = kobj_to_hstate(kobj, &nid);
3600 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
3601}
3602
06808b08
LS
3603static ssize_t nr_hugepages_show(struct kobject *kobj,
3604 struct kobj_attribute *attr, char *buf)
3605{
3606 return nr_hugepages_show_common(kobj, attr, buf);
3607}
3608
3609static ssize_t nr_hugepages_store(struct kobject *kobj,
3610 struct kobj_attribute *attr, const char *buf, size_t len)
3611{
238d3c13 3612 return nr_hugepages_store_common(false, kobj, buf, len);
a3437870
NA
3613}
3614HSTATE_ATTR(nr_hugepages);
3615
06808b08
LS
3616#ifdef CONFIG_NUMA
3617
3618/*
3619 * hstate attribute for optionally mempolicy-based constraint on persistent
3620 * huge page alloc/free.
3621 */
3622static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
ae7a927d
JP
3623 struct kobj_attribute *attr,
3624 char *buf)
06808b08
LS
3625{
3626 return nr_hugepages_show_common(kobj, attr, buf);
3627}
3628
3629static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
3630 struct kobj_attribute *attr, const char *buf, size_t len)
3631{
238d3c13 3632 return nr_hugepages_store_common(true, kobj, buf, len);
06808b08
LS
3633}
3634HSTATE_ATTR(nr_hugepages_mempolicy);
3635#endif
3636
3637
a3437870
NA
3638static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
3639 struct kobj_attribute *attr, char *buf)
3640{
9a305230 3641 struct hstate *h = kobj_to_hstate(kobj, NULL);
ae7a927d 3642 return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
a3437870 3643}
adbe8726 3644
a3437870
NA
3645static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
3646 struct kobj_attribute *attr, const char *buf, size_t count)
3647{
3648 int err;
3649 unsigned long input;
9a305230 3650 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870 3651
bae7f4ae 3652 if (hstate_is_gigantic(h))
adbe8726
EM
3653 return -EINVAL;
3654
3dbb95f7 3655 err = kstrtoul(buf, 10, &input);
a3437870 3656 if (err)
73ae31e5 3657 return err;
a3437870 3658
db71ef79 3659 spin_lock_irq(&hugetlb_lock);
a3437870 3660 h->nr_overcommit_huge_pages = input;
db71ef79 3661 spin_unlock_irq(&hugetlb_lock);
a3437870
NA
3662
3663 return count;
3664}
3665HSTATE_ATTR(nr_overcommit_hugepages);
3666
3667static ssize_t free_hugepages_show(struct kobject *kobj,
3668 struct kobj_attribute *attr, char *buf)
3669{
9a305230
LS
3670 struct hstate *h;
3671 unsigned long free_huge_pages;
3672 int nid;
3673
3674 h = kobj_to_hstate(kobj, &nid);
3675 if (nid == NUMA_NO_NODE)
3676 free_huge_pages = h->free_huge_pages;
3677 else
3678 free_huge_pages = h->free_huge_pages_node[nid];
3679
ae7a927d 3680 return sysfs_emit(buf, "%lu\n", free_huge_pages);
a3437870
NA
3681}
3682HSTATE_ATTR_RO(free_hugepages);
3683
3684static ssize_t resv_hugepages_show(struct kobject *kobj,
3685 struct kobj_attribute *attr, char *buf)
3686{
9a305230 3687 struct hstate *h = kobj_to_hstate(kobj, NULL);
ae7a927d 3688 return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
a3437870
NA
3689}
3690HSTATE_ATTR_RO(resv_hugepages);
3691
3692static ssize_t surplus_hugepages_show(struct kobject *kobj,
3693 struct kobj_attribute *attr, char *buf)
3694{
9a305230
LS
3695 struct hstate *h;
3696 unsigned long surplus_huge_pages;
3697 int nid;
3698
3699 h = kobj_to_hstate(kobj, &nid);
3700 if (nid == NUMA_NO_NODE)
3701 surplus_huge_pages = h->surplus_huge_pages;
3702 else
3703 surplus_huge_pages = h->surplus_huge_pages_node[nid];
3704
ae7a927d 3705 return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
a3437870
NA
3706}
3707HSTATE_ATTR_RO(surplus_hugepages);
3708
79dfc695
MK
3709static ssize_t demote_store(struct kobject *kobj,
3710 struct kobj_attribute *attr, const char *buf, size_t len)
3711{
3712 unsigned long nr_demote;
3713 unsigned long nr_available;
3714 nodemask_t nodes_allowed, *n_mask;
3715 struct hstate *h;
3716 int err = 0;
3717 int nid;
3718
3719 err = kstrtoul(buf, 10, &nr_demote);
3720 if (err)
3721 return err;
3722 h = kobj_to_hstate(kobj, &nid);
3723
3724 if (nid != NUMA_NO_NODE) {
3725 init_nodemask_of_node(&nodes_allowed, nid);
3726 n_mask = &nodes_allowed;
3727 } else {
3728 n_mask = &node_states[N_MEMORY];
3729 }
3730
3731 /* Synchronize with other sysfs operations modifying huge pages */
3732 mutex_lock(&h->resize_lock);
3733 spin_lock_irq(&hugetlb_lock);
3734
3735 while (nr_demote) {
3736 /*
3737 * Check for available pages to demote each time thorough the
3738 * loop as demote_pool_huge_page will drop hugetlb_lock.
79dfc695
MK
3739 */
3740 if (nid != NUMA_NO_NODE)
3741 nr_available = h->free_huge_pages_node[nid];
3742 else
3743 nr_available = h->free_huge_pages;
3744 nr_available -= h->resv_huge_pages;
3745 if (!nr_available)
3746 break;
3747
3748 err = demote_pool_huge_page(h, n_mask);
3749 if (err)
3750 break;
3751
3752 nr_demote--;
3753 }
3754
3755 spin_unlock_irq(&hugetlb_lock);
3756 mutex_unlock(&h->resize_lock);
3757
3758 if (err)
3759 return err;
3760 return len;
3761}
3762HSTATE_ATTR_WO(demote);
3763
3764static ssize_t demote_size_show(struct kobject *kobj,
3765 struct kobj_attribute *attr, char *buf)
3766{
3767 int nid;
3768 struct hstate *h = kobj_to_hstate(kobj, &nid);
3769 unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K;
3770
3771 return sysfs_emit(buf, "%lukB\n", demote_size);
3772}
3773
3774static ssize_t demote_size_store(struct kobject *kobj,
3775 struct kobj_attribute *attr,
3776 const char *buf, size_t count)
3777{
3778 struct hstate *h, *demote_hstate;
3779 unsigned long demote_size;
3780 unsigned int demote_order;
3781 int nid;
3782
3783 demote_size = (unsigned long)memparse(buf, NULL);
3784
3785 demote_hstate = size_to_hstate(demote_size);
3786 if (!demote_hstate)
3787 return -EINVAL;
3788 demote_order = demote_hstate->order;
a01f4390
MK
3789 if (demote_order < HUGETLB_PAGE_ORDER)
3790 return -EINVAL;
79dfc695
MK
3791
3792 /* demote order must be smaller than hstate order */
3793 h = kobj_to_hstate(kobj, &nid);
3794 if (demote_order >= h->order)
3795 return -EINVAL;
3796
3797 /* resize_lock synchronizes access to demote size and writes */
3798 mutex_lock(&h->resize_lock);
3799 h->demote_order = demote_order;
3800 mutex_unlock(&h->resize_lock);
3801
3802 return count;
3803}
3804HSTATE_ATTR(demote_size);
3805
a3437870
NA
3806static struct attribute *hstate_attrs[] = {
3807 &nr_hugepages_attr.attr,
3808 &nr_overcommit_hugepages_attr.attr,
3809 &free_hugepages_attr.attr,
3810 &resv_hugepages_attr.attr,
3811 &surplus_hugepages_attr.attr,
06808b08
LS
3812#ifdef CONFIG_NUMA
3813 &nr_hugepages_mempolicy_attr.attr,
3814#endif
a3437870
NA
3815 NULL,
3816};
3817
67e5ed96 3818static const struct attribute_group hstate_attr_group = {
a3437870
NA
3819 .attrs = hstate_attrs,
3820};
3821
79dfc695
MK
3822static struct attribute *hstate_demote_attrs[] = {
3823 &demote_size_attr.attr,
3824 &demote_attr.attr,
3825 NULL,
3826};
3827
3828static const struct attribute_group hstate_demote_attr_group = {
3829 .attrs = hstate_demote_attrs,
3830};
3831
094e9539
JM
3832static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
3833 struct kobject **hstate_kobjs,
67e5ed96 3834 const struct attribute_group *hstate_attr_group)
a3437870
NA
3835{
3836 int retval;
972dc4de 3837 int hi = hstate_index(h);
a3437870 3838
9a305230
LS
3839 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
3840 if (!hstate_kobjs[hi])
a3437870
NA
3841 return -ENOMEM;
3842
9a305230 3843 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
cc2205a6 3844 if (retval) {
9a305230 3845 kobject_put(hstate_kobjs[hi]);
cc2205a6
ML
3846 hstate_kobjs[hi] = NULL;
3847 }
a3437870 3848
79dfc695
MK
3849 if (h->demote_order) {
3850 if (sysfs_create_group(hstate_kobjs[hi],
3851 &hstate_demote_attr_group))
3852 pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name);
3853 }
3854
a3437870
NA
3855 return retval;
3856}
3857
3858static void __init hugetlb_sysfs_init(void)
3859{
3860 struct hstate *h;
3861 int err;
3862
3863 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
3864 if (!hugepages_kobj)
3865 return;
3866
3867 for_each_hstate(h) {
9a305230
LS
3868 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
3869 hstate_kobjs, &hstate_attr_group);
a3437870 3870 if (err)
282f4214 3871 pr_err("HugeTLB: Unable to add hstate %s", h->name);
a3437870
NA
3872 }
3873}
3874
9a305230
LS
3875#ifdef CONFIG_NUMA
3876
3877/*
3878 * node_hstate/s - associate per node hstate attributes, via their kobjects,
10fbcf4c
KS
3879 * with node devices in node_devices[] using a parallel array. The array
3880 * index of a node device or _hstate == node id.
3881 * This is here to avoid any static dependency of the node device driver, in
9a305230
LS
3882 * the base kernel, on the hugetlb module.
3883 */
3884struct node_hstate {
3885 struct kobject *hugepages_kobj;
3886 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3887};
b4e289a6 3888static struct node_hstate node_hstates[MAX_NUMNODES];
9a305230
LS
3889
3890/*
10fbcf4c 3891 * A subset of global hstate attributes for node devices
9a305230
LS
3892 */
3893static struct attribute *per_node_hstate_attrs[] = {
3894 &nr_hugepages_attr.attr,
3895 &free_hugepages_attr.attr,
3896 &surplus_hugepages_attr.attr,
3897 NULL,
3898};
3899
67e5ed96 3900static const struct attribute_group per_node_hstate_attr_group = {
9a305230
LS
3901 .attrs = per_node_hstate_attrs,
3902};
3903
3904/*
10fbcf4c 3905 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
9a305230
LS
3906 * Returns node id via non-NULL nidp.
3907 */
3908static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3909{
3910 int nid;
3911
3912 for (nid = 0; nid < nr_node_ids; nid++) {
3913 struct node_hstate *nhs = &node_hstates[nid];
3914 int i;
3915 for (i = 0; i < HUGE_MAX_HSTATE; i++)
3916 if (nhs->hstate_kobjs[i] == kobj) {
3917 if (nidp)
3918 *nidp = nid;
3919 return &hstates[i];
3920 }
3921 }
3922
3923 BUG();
3924 return NULL;
3925}
3926
3927/*
10fbcf4c 3928 * Unregister hstate attributes from a single node device.
9a305230
LS
3929 * No-op if no hstate attributes attached.
3930 */
3cd8b44f 3931static void hugetlb_unregister_node(struct node *node)
9a305230
LS
3932{
3933 struct hstate *h;
10fbcf4c 3934 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
3935
3936 if (!nhs->hugepages_kobj)
9b5e5d0f 3937 return; /* no hstate attributes */
9a305230 3938
972dc4de
AK
3939 for_each_hstate(h) {
3940 int idx = hstate_index(h);
3941 if (nhs->hstate_kobjs[idx]) {
3942 kobject_put(nhs->hstate_kobjs[idx]);
3943 nhs->hstate_kobjs[idx] = NULL;
9a305230 3944 }
972dc4de 3945 }
9a305230
LS
3946
3947 kobject_put(nhs->hugepages_kobj);
3948 nhs->hugepages_kobj = NULL;
3949}
3950
9a305230
LS
3951
3952/*
10fbcf4c 3953 * Register hstate attributes for a single node device.
9a305230
LS
3954 * No-op if attributes already registered.
3955 */
3cd8b44f 3956static void hugetlb_register_node(struct node *node)
9a305230
LS
3957{
3958 struct hstate *h;
10fbcf4c 3959 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
3960 int err;
3961
3962 if (nhs->hugepages_kobj)
3963 return; /* already allocated */
3964
3965 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
10fbcf4c 3966 &node->dev.kobj);
9a305230
LS
3967 if (!nhs->hugepages_kobj)
3968 return;
3969
3970 for_each_hstate(h) {
3971 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
3972 nhs->hstate_kobjs,
3973 &per_node_hstate_attr_group);
3974 if (err) {
282f4214 3975 pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
ffb22af5 3976 h->name, node->dev.id);
9a305230
LS
3977 hugetlb_unregister_node(node);
3978 break;
3979 }
3980 }
3981}
3982
3983/*
9b5e5d0f 3984 * hugetlb init time: register hstate attributes for all registered node
10fbcf4c
KS
3985 * devices of nodes that have memory. All on-line nodes should have
3986 * registered their associated device by this time.
9a305230 3987 */
7d9ca000 3988static void __init hugetlb_register_all_nodes(void)
9a305230
LS
3989{
3990 int nid;
3991
8cebfcd0 3992 for_each_node_state(nid, N_MEMORY) {
8732794b 3993 struct node *node = node_devices[nid];
10fbcf4c 3994 if (node->dev.id == nid)
9a305230
LS
3995 hugetlb_register_node(node);
3996 }
3997
3998 /*
10fbcf4c 3999 * Let the node device driver know we're here so it can
9a305230
LS
4000 * [un]register hstate attributes on node hotplug.
4001 */
4002 register_hugetlbfs_with_node(hugetlb_register_node,
4003 hugetlb_unregister_node);
4004}
4005#else /* !CONFIG_NUMA */
4006
4007static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4008{
4009 BUG();
4010 if (nidp)
4011 *nidp = -1;
4012 return NULL;
4013}
4014
9a305230
LS
4015static void hugetlb_register_all_nodes(void) { }
4016
4017#endif
4018
a3437870
NA
4019static int __init hugetlb_init(void)
4020{
8382d914
DB
4021 int i;
4022
d6995da3
MK
4023 BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
4024 __NR_HPAGEFLAGS);
4025
c2833a5b
MK
4026 if (!hugepages_supported()) {
4027 if (hugetlb_max_hstate || default_hstate_max_huge_pages)
4028 pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
0ef89d25 4029 return 0;
c2833a5b 4030 }
a3437870 4031
282f4214
MK
4032 /*
4033 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists. Some
4034 * architectures depend on setup being done here.
4035 */
4036 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
4037 if (!parsed_default_hugepagesz) {
4038 /*
4039 * If we did not parse a default huge page size, set
4040 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
4041 * number of huge pages for this default size was implicitly
4042 * specified, set that here as well.
4043 * Note that the implicit setting will overwrite an explicit
4044 * setting. A warning will be printed in this case.
4045 */
4046 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
4047 if (default_hstate_max_huge_pages) {
4048 if (default_hstate.max_huge_pages) {
4049 char buf[32];
4050
4051 string_get_size(huge_page_size(&default_hstate),
4052 1, STRING_UNITS_2, buf, 32);
4053 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
4054 default_hstate.max_huge_pages, buf);
4055 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
4056 default_hstate_max_huge_pages);
4057 }
4058 default_hstate.max_huge_pages =
4059 default_hstate_max_huge_pages;
b5389086 4060
0a7a0f6f 4061 for_each_online_node(i)
b5389086
ZY
4062 default_hstate.max_huge_pages_node[i] =
4063 default_hugepages_in_node[i];
d715cf80 4064 }
f8b74815 4065 }
a3437870 4066
cf11e85f 4067 hugetlb_cma_check();
a3437870 4068 hugetlb_init_hstates();
aa888a74 4069 gather_bootmem_prealloc();
a3437870
NA
4070 report_hugepages();
4071
4072 hugetlb_sysfs_init();
9a305230 4073 hugetlb_register_all_nodes();
7179e7bf 4074 hugetlb_cgroup_file_init();
9a305230 4075
8382d914
DB
4076#ifdef CONFIG_SMP
4077 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
4078#else
4079 num_fault_mutexes = 1;
4080#endif
c672c7f2 4081 hugetlb_fault_mutex_table =
6da2ec56
KC
4082 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
4083 GFP_KERNEL);
c672c7f2 4084 BUG_ON(!hugetlb_fault_mutex_table);
8382d914
DB
4085
4086 for (i = 0; i < num_fault_mutexes; i++)
c672c7f2 4087 mutex_init(&hugetlb_fault_mutex_table[i]);
a3437870
NA
4088 return 0;
4089}
3e89e1c5 4090subsys_initcall(hugetlb_init);
a3437870 4091
ae94da89
MK
4092/* Overwritten by architectures with more huge page sizes */
4093bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
9fee021d 4094{
ae94da89 4095 return size == HPAGE_SIZE;
9fee021d
VT
4096}
4097
d00181b9 4098void __init hugetlb_add_hstate(unsigned int order)
a3437870
NA
4099{
4100 struct hstate *h;
8faa8b07
AK
4101 unsigned long i;
4102
a3437870 4103 if (size_to_hstate(PAGE_SIZE << order)) {
a3437870
NA
4104 return;
4105 }
47d38344 4106 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
a3437870 4107 BUG_ON(order == 0);
47d38344 4108 h = &hstates[hugetlb_max_hstate++];
29383967 4109 mutex_init(&h->resize_lock);
a3437870 4110 h->order = order;
aca78307 4111 h->mask = ~(huge_page_size(h) - 1);
8faa8b07
AK
4112 for (i = 0; i < MAX_NUMNODES; ++i)
4113 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
0edaecfa 4114 INIT_LIST_HEAD(&h->hugepage_activelist);
54f18d35
AM
4115 h->next_nid_to_alloc = first_memory_node;
4116 h->next_nid_to_free = first_memory_node;
a3437870
NA
4117 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
4118 huge_page_size(h)/1024);
77490587 4119 hugetlb_vmemmap_init(h);
8faa8b07 4120
a3437870
NA
4121 parsed_hstate = h;
4122}
4123
b5389086
ZY
4124bool __init __weak hugetlb_node_alloc_supported(void)
4125{
4126 return true;
4127}
f87442f4
PL
4128
4129static void __init hugepages_clear_pages_in_node(void)
4130{
4131 if (!hugetlb_max_hstate) {
4132 default_hstate_max_huge_pages = 0;
4133 memset(default_hugepages_in_node, 0,
4134 MAX_NUMNODES * sizeof(unsigned int));
4135 } else {
4136 parsed_hstate->max_huge_pages = 0;
4137 memset(parsed_hstate->max_huge_pages_node, 0,
4138 MAX_NUMNODES * sizeof(unsigned int));
4139 }
4140}
4141
282f4214
MK
4142/*
4143 * hugepages command line processing
4144 * hugepages normally follows a valid hugepagsz or default_hugepagsz
4145 * specification. If not, ignore the hugepages value. hugepages can also
4146 * be the first huge page command line option in which case it implicitly
4147 * specifies the number of huge pages for the default size.
4148 */
4149static int __init hugepages_setup(char *s)
a3437870
NA
4150{
4151 unsigned long *mhp;
8faa8b07 4152 static unsigned long *last_mhp;
b5389086
ZY
4153 int node = NUMA_NO_NODE;
4154 int count;
4155 unsigned long tmp;
4156 char *p = s;
a3437870 4157
9fee021d 4158 if (!parsed_valid_hugepagesz) {
282f4214 4159 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
9fee021d 4160 parsed_valid_hugepagesz = true;
f81f6e4b 4161 return 1;
9fee021d 4162 }
282f4214 4163
a3437870 4164 /*
282f4214
MK
4165 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
4166 * yet, so this hugepages= parameter goes to the "default hstate".
4167 * Otherwise, it goes with the previously parsed hugepagesz or
4168 * default_hugepagesz.
a3437870 4169 */
9fee021d 4170 else if (!hugetlb_max_hstate)
a3437870
NA
4171 mhp = &default_hstate_max_huge_pages;
4172 else
4173 mhp = &parsed_hstate->max_huge_pages;
4174
8faa8b07 4175 if (mhp == last_mhp) {
282f4214 4176 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
f81f6e4b 4177 return 1;
8faa8b07
AK
4178 }
4179
b5389086
ZY
4180 while (*p) {
4181 count = 0;
4182 if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4183 goto invalid;
4184 /* Parameter is node format */
4185 if (p[count] == ':') {
4186 if (!hugetlb_node_alloc_supported()) {
4187 pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n");
f81f6e4b 4188 return 1;
b5389086 4189 }
0a7a0f6f 4190 if (tmp >= MAX_NUMNODES || !node_online(tmp))
e79ce983 4191 goto invalid;
0a7a0f6f 4192 node = array_index_nospec(tmp, MAX_NUMNODES);
b5389086 4193 p += count + 1;
b5389086
ZY
4194 /* Parse hugepages */
4195 if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4196 goto invalid;
4197 if (!hugetlb_max_hstate)
4198 default_hugepages_in_node[node] = tmp;
4199 else
4200 parsed_hstate->max_huge_pages_node[node] = tmp;
4201 *mhp += tmp;
4202 /* Go to parse next node*/
4203 if (p[count] == ',')
4204 p += count + 1;
4205 else
4206 break;
4207 } else {
4208 if (p != s)
4209 goto invalid;
4210 *mhp = tmp;
4211 break;
4212 }
4213 }
a3437870 4214
8faa8b07
AK
4215 /*
4216 * Global state is always initialized later in hugetlb_init.
04adbc3f 4217 * But we need to allocate gigantic hstates here early to still
8faa8b07
AK
4218 * use the bootmem allocator.
4219 */
04adbc3f 4220 if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
8faa8b07
AK
4221 hugetlb_hstate_alloc_pages(parsed_hstate);
4222
4223 last_mhp = mhp;
4224
a3437870 4225 return 1;
b5389086
ZY
4226
4227invalid:
4228 pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p);
f87442f4 4229 hugepages_clear_pages_in_node();
f81f6e4b 4230 return 1;
a3437870 4231}
282f4214 4232__setup("hugepages=", hugepages_setup);
e11bfbfc 4233
282f4214
MK
4234/*
4235 * hugepagesz command line processing
4236 * A specific huge page size can only be specified once with hugepagesz.
4237 * hugepagesz is followed by hugepages on the command line. The global
4238 * variable 'parsed_valid_hugepagesz' is used to determine if prior
4239 * hugepagesz argument was valid.
4240 */
359f2544 4241static int __init hugepagesz_setup(char *s)
e11bfbfc 4242{
359f2544 4243 unsigned long size;
282f4214
MK
4244 struct hstate *h;
4245
4246 parsed_valid_hugepagesz = false;
359f2544
MK
4247 size = (unsigned long)memparse(s, NULL);
4248
4249 if (!arch_hugetlb_valid_size(size)) {
282f4214 4250 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
f81f6e4b 4251 return 1;
359f2544
MK
4252 }
4253
282f4214
MK
4254 h = size_to_hstate(size);
4255 if (h) {
4256 /*
4257 * hstate for this size already exists. This is normally
4258 * an error, but is allowed if the existing hstate is the
4259 * default hstate. More specifically, it is only allowed if
4260 * the number of huge pages for the default hstate was not
4261 * previously specified.
4262 */
4263 if (!parsed_default_hugepagesz || h != &default_hstate ||
4264 default_hstate.max_huge_pages) {
4265 pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
f81f6e4b 4266 return 1;
282f4214
MK
4267 }
4268
4269 /*
4270 * No need to call hugetlb_add_hstate() as hstate already
4271 * exists. But, do set parsed_hstate so that a following
4272 * hugepages= parameter will be applied to this hstate.
4273 */
4274 parsed_hstate = h;
4275 parsed_valid_hugepagesz = true;
4276 return 1;
38237830
MK
4277 }
4278
359f2544 4279 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
282f4214 4280 parsed_valid_hugepagesz = true;
e11bfbfc
NP
4281 return 1;
4282}
359f2544
MK
4283__setup("hugepagesz=", hugepagesz_setup);
4284
282f4214
MK
4285/*
4286 * default_hugepagesz command line input
4287 * Only one instance of default_hugepagesz allowed on command line.
4288 */
ae94da89 4289static int __init default_hugepagesz_setup(char *s)
e11bfbfc 4290{
ae94da89 4291 unsigned long size;
b5389086 4292 int i;
ae94da89 4293
282f4214 4294 parsed_valid_hugepagesz = false;
282f4214
MK
4295 if (parsed_default_hugepagesz) {
4296 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
f81f6e4b 4297 return 1;
282f4214
MK
4298 }
4299
ae94da89
MK
4300 size = (unsigned long)memparse(s, NULL);
4301
4302 if (!arch_hugetlb_valid_size(size)) {
282f4214 4303 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
f81f6e4b 4304 return 1;
ae94da89
MK
4305 }
4306
282f4214
MK
4307 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4308 parsed_valid_hugepagesz = true;
4309 parsed_default_hugepagesz = true;
4310 default_hstate_idx = hstate_index(size_to_hstate(size));
4311
4312 /*
4313 * The number of default huge pages (for this size) could have been
4314 * specified as the first hugetlb parameter: hugepages=X. If so,
4315 * then default_hstate_max_huge_pages is set. If the default huge
4316 * page size is gigantic (>= MAX_ORDER), then the pages must be
4317 * allocated here from bootmem allocator.
4318 */
4319 if (default_hstate_max_huge_pages) {
4320 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
0a7a0f6f 4321 for_each_online_node(i)
b5389086
ZY
4322 default_hstate.max_huge_pages_node[i] =
4323 default_hugepages_in_node[i];
282f4214
MK
4324 if (hstate_is_gigantic(&default_hstate))
4325 hugetlb_hstate_alloc_pages(&default_hstate);
4326 default_hstate_max_huge_pages = 0;
4327 }
4328
e11bfbfc
NP
4329 return 1;
4330}
ae94da89 4331__setup("default_hugepagesz=", default_hugepagesz_setup);
a3437870 4332
8ca39e68 4333static unsigned int allowed_mems_nr(struct hstate *h)
8a213460
NA
4334{
4335 int node;
4336 unsigned int nr = 0;
8ca39e68
MS
4337 nodemask_t *mpol_allowed;
4338 unsigned int *array = h->free_huge_pages_node;
4339 gfp_t gfp_mask = htlb_alloc_mask(h);
4340
4341 mpol_allowed = policy_nodemask_current(gfp_mask);
8a213460 4342
8ca39e68 4343 for_each_node_mask(node, cpuset_current_mems_allowed) {
c93b0a99 4344 if (!mpol_allowed || node_isset(node, *mpol_allowed))
8ca39e68
MS
4345 nr += array[node];
4346 }
8a213460
NA
4347
4348 return nr;
4349}
4350
4351#ifdef CONFIG_SYSCTL
17743798
MS
4352static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
4353 void *buffer, size_t *length,
4354 loff_t *ppos, unsigned long *out)
4355{
4356 struct ctl_table dup_table;
4357
4358 /*
4359 * In order to avoid races with __do_proc_doulongvec_minmax(), we
4360 * can duplicate the @table and alter the duplicate of it.
4361 */
4362 dup_table = *table;
4363 dup_table.data = out;
4364
4365 return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
4366}
4367
06808b08
LS
4368static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
4369 struct ctl_table *table, int write,
32927393 4370 void *buffer, size_t *length, loff_t *ppos)
1da177e4 4371{
e5ff2159 4372 struct hstate *h = &default_hstate;
238d3c13 4373 unsigned long tmp = h->max_huge_pages;
08d4a246 4374 int ret;
e5ff2159 4375
457c1b27 4376 if (!hugepages_supported())
86613628 4377 return -EOPNOTSUPP;
457c1b27 4378
17743798
MS
4379 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4380 &tmp);
08d4a246
MH
4381 if (ret)
4382 goto out;
e5ff2159 4383
238d3c13
DR
4384 if (write)
4385 ret = __nr_hugepages_store_common(obey_mempolicy, h,
4386 NUMA_NO_NODE, tmp, *length);
08d4a246
MH
4387out:
4388 return ret;
1da177e4 4389}
396faf03 4390
06808b08 4391int hugetlb_sysctl_handler(struct ctl_table *table, int write,
32927393 4392 void *buffer, size_t *length, loff_t *ppos)
06808b08
LS
4393{
4394
4395 return hugetlb_sysctl_handler_common(false, table, write,
4396 buffer, length, ppos);
4397}
4398
4399#ifdef CONFIG_NUMA
4400int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
32927393 4401 void *buffer, size_t *length, loff_t *ppos)
06808b08
LS
4402{
4403 return hugetlb_sysctl_handler_common(true, table, write,
4404 buffer, length, ppos);
4405}
4406#endif /* CONFIG_NUMA */
4407
a3d0c6aa 4408int hugetlb_overcommit_handler(struct ctl_table *table, int write,
32927393 4409 void *buffer, size_t *length, loff_t *ppos)
a3d0c6aa 4410{
a5516438 4411 struct hstate *h = &default_hstate;
e5ff2159 4412 unsigned long tmp;
08d4a246 4413 int ret;
e5ff2159 4414
457c1b27 4415 if (!hugepages_supported())
86613628 4416 return -EOPNOTSUPP;
457c1b27 4417
c033a93c 4418 tmp = h->nr_overcommit_huge_pages;
e5ff2159 4419
bae7f4ae 4420 if (write && hstate_is_gigantic(h))
adbe8726
EM
4421 return -EINVAL;
4422
17743798
MS
4423 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4424 &tmp);
08d4a246
MH
4425 if (ret)
4426 goto out;
e5ff2159
AK
4427
4428 if (write) {
db71ef79 4429 spin_lock_irq(&hugetlb_lock);
e5ff2159 4430 h->nr_overcommit_huge_pages = tmp;
db71ef79 4431 spin_unlock_irq(&hugetlb_lock);
e5ff2159 4432 }
08d4a246
MH
4433out:
4434 return ret;
a3d0c6aa
NA
4435}
4436
1da177e4
LT
4437#endif /* CONFIG_SYSCTL */
4438
e1759c21 4439void hugetlb_report_meminfo(struct seq_file *m)
1da177e4 4440{
fcb2b0c5
RG
4441 struct hstate *h;
4442 unsigned long total = 0;
4443
457c1b27
NA
4444 if (!hugepages_supported())
4445 return;
fcb2b0c5
RG
4446
4447 for_each_hstate(h) {
4448 unsigned long count = h->nr_huge_pages;
4449
aca78307 4450 total += huge_page_size(h) * count;
fcb2b0c5
RG
4451
4452 if (h == &default_hstate)
4453 seq_printf(m,
4454 "HugePages_Total: %5lu\n"
4455 "HugePages_Free: %5lu\n"
4456 "HugePages_Rsvd: %5lu\n"
4457 "HugePages_Surp: %5lu\n"
4458 "Hugepagesize: %8lu kB\n",
4459 count,
4460 h->free_huge_pages,
4461 h->resv_huge_pages,
4462 h->surplus_huge_pages,
aca78307 4463 huge_page_size(h) / SZ_1K);
fcb2b0c5
RG
4464 }
4465
aca78307 4466 seq_printf(m, "Hugetlb: %8lu kB\n", total / SZ_1K);
1da177e4
LT
4467}
4468
7981593b 4469int hugetlb_report_node_meminfo(char *buf, int len, int nid)
1da177e4 4470{
a5516438 4471 struct hstate *h = &default_hstate;
7981593b 4472
457c1b27
NA
4473 if (!hugepages_supported())
4474 return 0;
7981593b
JP
4475
4476 return sysfs_emit_at(buf, len,
4477 "Node %d HugePages_Total: %5u\n"
4478 "Node %d HugePages_Free: %5u\n"
4479 "Node %d HugePages_Surp: %5u\n",
4480 nid, h->nr_huge_pages_node[nid],
4481 nid, h->free_huge_pages_node[nid],
4482 nid, h->surplus_huge_pages_node[nid]);
1da177e4
LT
4483}
4484
949f7ec5
DR
4485void hugetlb_show_meminfo(void)
4486{
4487 struct hstate *h;
4488 int nid;
4489
457c1b27
NA
4490 if (!hugepages_supported())
4491 return;
4492
949f7ec5
DR
4493 for_each_node_state(nid, N_MEMORY)
4494 for_each_hstate(h)
4495 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
4496 nid,
4497 h->nr_huge_pages_node[nid],
4498 h->free_huge_pages_node[nid],
4499 h->surplus_huge_pages_node[nid],
aca78307 4500 huge_page_size(h) / SZ_1K);
949f7ec5
DR
4501}
4502
5d317b2b
NH
4503void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
4504{
4505 seq_printf(m, "HugetlbPages:\t%8lu kB\n",
4506 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
4507}
4508
1da177e4
LT
4509/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
4510unsigned long hugetlb_total_pages(void)
4511{
d0028588
WL
4512 struct hstate *h;
4513 unsigned long nr_total_pages = 0;
4514
4515 for_each_hstate(h)
4516 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
4517 return nr_total_pages;
1da177e4 4518}
1da177e4 4519
a5516438 4520static int hugetlb_acct_memory(struct hstate *h, long delta)
fc1b8a73
MG
4521{
4522 int ret = -ENOMEM;
4523
0aa7f354
ML
4524 if (!delta)
4525 return 0;
4526
db71ef79 4527 spin_lock_irq(&hugetlb_lock);
fc1b8a73
MG
4528 /*
4529 * When cpuset is configured, it breaks the strict hugetlb page
4530 * reservation as the accounting is done on a global variable. Such
4531 * reservation is completely rubbish in the presence of cpuset because
4532 * the reservation is not checked against page availability for the
4533 * current cpuset. Application can still potentially OOM'ed by kernel
4534 * with lack of free htlb page in cpuset that the task is in.
4535 * Attempt to enforce strict accounting with cpuset is almost
4536 * impossible (or too ugly) because cpuset is too fluid that
4537 * task or memory node can be dynamically moved between cpusets.
4538 *
4539 * The change of semantics for shared hugetlb mapping with cpuset is
4540 * undesirable. However, in order to preserve some of the semantics,
4541 * we fall back to check against current free page availability as
4542 * a best attempt and hopefully to minimize the impact of changing
4543 * semantics that cpuset has.
8ca39e68
MS
4544 *
4545 * Apart from cpuset, we also have memory policy mechanism that
4546 * also determines from which node the kernel will allocate memory
4547 * in a NUMA system. So similar to cpuset, we also should consider
4548 * the memory policy of the current task. Similar to the description
4549 * above.
fc1b8a73
MG
4550 */
4551 if (delta > 0) {
a5516438 4552 if (gather_surplus_pages(h, delta) < 0)
fc1b8a73
MG
4553 goto out;
4554
8ca39e68 4555 if (delta > allowed_mems_nr(h)) {
a5516438 4556 return_unused_surplus_pages(h, delta);
fc1b8a73
MG
4557 goto out;
4558 }
4559 }
4560
4561 ret = 0;
4562 if (delta < 0)
a5516438 4563 return_unused_surplus_pages(h, (unsigned long) -delta);
fc1b8a73
MG
4564
4565out:
db71ef79 4566 spin_unlock_irq(&hugetlb_lock);
fc1b8a73
MG
4567 return ret;
4568}
4569
84afd99b
AW
4570static void hugetlb_vm_op_open(struct vm_area_struct *vma)
4571{
f522c3ac 4572 struct resv_map *resv = vma_resv_map(vma);
84afd99b
AW
4573
4574 /*
4575 * This new VMA should share its siblings reservation map if present.
4576 * The VMA will only ever have a valid reservation map pointer where
4577 * it is being copied for another still existing VMA. As that VMA
25985edc 4578 * has a reference to the reservation map it cannot disappear until
84afd99b
AW
4579 * after this open call completes. It is therefore safe to take a
4580 * new reference here without additional locking.
4581 */
09a26e83
MK
4582 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
4583 resv_map_dup_hugetlb_cgroup_uncharge_info(resv);
f522c3ac 4584 kref_get(&resv->refs);
09a26e83 4585 }
84afd99b
AW
4586}
4587
a1e78772
MG
4588static void hugetlb_vm_op_close(struct vm_area_struct *vma)
4589{
a5516438 4590 struct hstate *h = hstate_vma(vma);
f522c3ac 4591 struct resv_map *resv = vma_resv_map(vma);
90481622 4592 struct hugepage_subpool *spool = subpool_vma(vma);
4e35f483 4593 unsigned long reserve, start, end;
1c5ecae3 4594 long gbl_reserve;
84afd99b 4595
4e35f483
JK
4596 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4597 return;
84afd99b 4598
4e35f483
JK
4599 start = vma_hugecache_offset(h, vma, vma->vm_start);
4600 end = vma_hugecache_offset(h, vma, vma->vm_end);
84afd99b 4601
4e35f483 4602 reserve = (end - start) - region_count(resv, start, end);
e9fe92ae 4603 hugetlb_cgroup_uncharge_counter(resv, start, end);
4e35f483 4604 if (reserve) {
1c5ecae3
MK
4605 /*
4606 * Decrement reserve counts. The global reserve count may be
4607 * adjusted if the subpool has a minimum size.
4608 */
4609 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
4610 hugetlb_acct_memory(h, -gbl_reserve);
84afd99b 4611 }
e9fe92ae
MA
4612
4613 kref_put(&resv->refs, resv_map_release);
a1e78772
MG
4614}
4615
31383c68
DW
4616static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
4617{
4618 if (addr & ~(huge_page_mask(hstate_vma(vma))))
4619 return -EINVAL;
4620 return 0;
4621}
4622
05ea8860
DW
4623static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
4624{
aca78307 4625 return huge_page_size(hstate_vma(vma));
05ea8860
DW
4626}
4627
1da177e4
LT
4628/*
4629 * We cannot handle pagefaults against hugetlb pages at all. They cause
4630 * handle_mm_fault() to try to instantiate regular-sized pages in the
6c26d310 4631 * hugepage VMA. do_page_fault() is supposed to trap this, so BUG is we get
1da177e4
LT
4632 * this far.
4633 */
b3ec9f33 4634static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
1da177e4
LT
4635{
4636 BUG();
d0217ac0 4637 return 0;
1da177e4
LT
4638}
4639
eec3636a
JC
4640/*
4641 * When a new function is introduced to vm_operations_struct and added
4642 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
4643 * This is because under System V memory model, mappings created via
4644 * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
4645 * their original vm_ops are overwritten with shm_vm_ops.
4646 */
f0f37e2f 4647const struct vm_operations_struct hugetlb_vm_ops = {
d0217ac0 4648 .fault = hugetlb_vm_op_fault,
84afd99b 4649 .open = hugetlb_vm_op_open,
a1e78772 4650 .close = hugetlb_vm_op_close,
dd3b614f 4651 .may_split = hugetlb_vm_op_split,
05ea8860 4652 .pagesize = hugetlb_vm_op_pagesize,
1da177e4
LT
4653};
4654
1e8f889b
DG
4655static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
4656 int writable)
63551ae0
DG
4657{
4658 pte_t entry;
79c1c594 4659 unsigned int shift = huge_page_shift(hstate_vma(vma));
63551ae0 4660
1e8f889b 4661 if (writable) {
106c992a
GS
4662 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
4663 vma->vm_page_prot)));
63551ae0 4664 } else {
106c992a
GS
4665 entry = huge_pte_wrprotect(mk_huge_pte(page,
4666 vma->vm_page_prot));
63551ae0
DG
4667 }
4668 entry = pte_mkyoung(entry);
79c1c594 4669 entry = arch_make_huge_pte(entry, shift, vma->vm_flags);
63551ae0
DG
4670
4671 return entry;
4672}
4673
1e8f889b
DG
4674static void set_huge_ptep_writable(struct vm_area_struct *vma,
4675 unsigned long address, pte_t *ptep)
4676{
4677 pte_t entry;
4678
106c992a 4679 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
32f84528 4680 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4b3073e1 4681 update_mmu_cache(vma, address, ptep);
1e8f889b
DG
4682}
4683
d5ed7444 4684bool is_hugetlb_entry_migration(pte_t pte)
4a705fef
NH
4685{
4686 swp_entry_t swp;
4687
4688 if (huge_pte_none(pte) || pte_present(pte))
d5ed7444 4689 return false;
4a705fef 4690 swp = pte_to_swp_entry(pte);
d79d176a 4691 if (is_migration_entry(swp))
d5ed7444 4692 return true;
4a705fef 4693 else
d5ed7444 4694 return false;
4a705fef
NH
4695}
4696
3e5c3600 4697static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
4a705fef
NH
4698{
4699 swp_entry_t swp;
4700
4701 if (huge_pte_none(pte) || pte_present(pte))
3e5c3600 4702 return false;
4a705fef 4703 swp = pte_to_swp_entry(pte);
d79d176a 4704 if (is_hwpoison_entry(swp))
3e5c3600 4705 return true;
4a705fef 4706 else
3e5c3600 4707 return false;
4a705fef 4708}
1e8f889b 4709
4eae4efa
PX
4710static void
4711hugetlb_install_page(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
4712 struct page *new_page)
4713{
4714 __SetPageUptodate(new_page);
4eae4efa 4715 hugepage_add_new_anon_rmap(new_page, vma, addr);
1eba86c0 4716 set_huge_pte_at(vma->vm_mm, addr, ptep, make_huge_pte(vma, new_page, 1));
4eae4efa
PX
4717 hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
4718 ClearHPageRestoreReserve(new_page);
4719 SetHPageMigratable(new_page);
4720}
4721
63551ae0 4722int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
bc70fbf2
PX
4723 struct vm_area_struct *dst_vma,
4724 struct vm_area_struct *src_vma)
63551ae0 4725{
5e41540c 4726 pte_t *src_pte, *dst_pte, entry, dst_entry;
63551ae0 4727 struct page *ptepage;
1c59827d 4728 unsigned long addr;
bc70fbf2
PX
4729 bool cow = is_cow_mapping(src_vma->vm_flags);
4730 struct hstate *h = hstate_vma(src_vma);
a5516438 4731 unsigned long sz = huge_page_size(h);
4eae4efa 4732 unsigned long npages = pages_per_huge_page(h);
bc70fbf2 4733 struct address_space *mapping = src_vma->vm_file->f_mapping;
ac46d4f3 4734 struct mmu_notifier_range range;
e8569dd2 4735 int ret = 0;
1e8f889b 4736
ac46d4f3 4737 if (cow) {
bc70fbf2
PX
4738 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src_vma, src,
4739 src_vma->vm_start,
4740 src_vma->vm_end);
ac46d4f3 4741 mmu_notifier_invalidate_range_start(&range);
623a1ddf
DH
4742 mmap_assert_write_locked(src);
4743 raw_write_seqcount_begin(&src->write_protect_seq);
c0d0381a
MK
4744 } else {
4745 /*
4746 * For shared mappings i_mmap_rwsem must be held to call
4747 * huge_pte_alloc, otherwise the returned ptep could go
4748 * away if part of a shared pmd and another thread calls
4749 * huge_pmd_unshare.
4750 */
4751 i_mmap_lock_read(mapping);
ac46d4f3 4752 }
e8569dd2 4753
bc70fbf2 4754 for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) {
cb900f41 4755 spinlock_t *src_ptl, *dst_ptl;
7868a208 4756 src_pte = huge_pte_offset(src, addr, sz);
c74df32c
HD
4757 if (!src_pte)
4758 continue;
bc70fbf2 4759 dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz);
e8569dd2
AS
4760 if (!dst_pte) {
4761 ret = -ENOMEM;
4762 break;
4763 }
c5c99429 4764
5e41540c
MK
4765 /*
4766 * If the pagetables are shared don't copy or take references.
4767 * dst_pte == src_pte is the common case of src/dest sharing.
4768 *
4769 * However, src could have 'unshared' and dst shares with
4770 * another vma. If dst_pte !none, this implies sharing.
4771 * Check here before taking page table lock, and once again
4772 * after taking the lock below.
4773 */
4774 dst_entry = huge_ptep_get(dst_pte);
4775 if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
c5c99429
LW
4776 continue;
4777
cb900f41
KS
4778 dst_ptl = huge_pte_lock(h, dst, dst_pte);
4779 src_ptl = huge_pte_lockptr(h, src, src_pte);
4780 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4a705fef 4781 entry = huge_ptep_get(src_pte);
5e41540c 4782 dst_entry = huge_ptep_get(dst_pte);
4eae4efa 4783again:
5e41540c
MK
4784 if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
4785 /*
4786 * Skip if src entry none. Also, skip in the
4787 * unlikely case dst entry !none as this implies
4788 * sharing with another vma.
4789 */
4a705fef
NH
4790 ;
4791 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
4792 is_hugetlb_entry_hwpoisoned(entry))) {
4793 swp_entry_t swp_entry = pte_to_swp_entry(entry);
bc70fbf2 4794 bool uffd_wp = huge_pte_uffd_wp(entry);
4a705fef 4795
6c287605 4796 if (!is_readable_migration_entry(swp_entry) && cow) {
4a705fef
NH
4797 /*
4798 * COW mappings require pages in both
4799 * parent and child to be set to read.
4800 */
4dd845b5
AP
4801 swp_entry = make_readable_migration_entry(
4802 swp_offset(swp_entry));
4a705fef 4803 entry = swp_entry_to_pte(swp_entry);
bc70fbf2
PX
4804 if (userfaultfd_wp(src_vma) && uffd_wp)
4805 entry = huge_pte_mkuffd_wp(entry);
e5251fd4
PA
4806 set_huge_swap_pte_at(src, addr, src_pte,
4807 entry, sz);
4a705fef 4808 }
bc70fbf2
PX
4809 if (!userfaultfd_wp(dst_vma) && uffd_wp)
4810 entry = huge_pte_clear_uffd_wp(entry);
e5251fd4 4811 set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
bc70fbf2
PX
4812 } else if (unlikely(is_pte_marker(entry))) {
4813 /*
4814 * We copy the pte marker only if the dst vma has
4815 * uffd-wp enabled.
4816 */
4817 if (userfaultfd_wp(dst_vma))
4818 set_huge_pte_at(dst, addr, dst_pte, entry);
4a705fef 4819 } else {
4eae4efa
PX
4820 entry = huge_ptep_get(src_pte);
4821 ptepage = pte_page(entry);
4822 get_page(ptepage);
4823
4824 /*
fb3d824d
DH
4825 * Failing to duplicate the anon rmap is a rare case
4826 * where we see pinned hugetlb pages while they're
4827 * prone to COW. We need to do the COW earlier during
4828 * fork.
4eae4efa
PX
4829 *
4830 * When pre-allocating the page or copying data, we
4831 * need to be without the pgtable locks since we could
4832 * sleep during the process.
4833 */
fb3d824d
DH
4834 if (!PageAnon(ptepage)) {
4835 page_dup_file_rmap(ptepage, true);
bc70fbf2
PX
4836 } else if (page_try_dup_anon_rmap(ptepage, true,
4837 src_vma)) {
4eae4efa
PX
4838 pte_t src_pte_old = entry;
4839 struct page *new;
4840
4841 spin_unlock(src_ptl);
4842 spin_unlock(dst_ptl);
4843 /* Do not use reserve as it's private owned */
bc70fbf2 4844 new = alloc_huge_page(dst_vma, addr, 1);
4eae4efa
PX
4845 if (IS_ERR(new)) {
4846 put_page(ptepage);
4847 ret = PTR_ERR(new);
4848 break;
4849 }
bc70fbf2 4850 copy_user_huge_page(new, ptepage, addr, dst_vma,
4eae4efa
PX
4851 npages);
4852 put_page(ptepage);
4853
4854 /* Install the new huge page if src pte stable */
4855 dst_ptl = huge_pte_lock(h, dst, dst_pte);
4856 src_ptl = huge_pte_lockptr(h, src, src_pte);
4857 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4858 entry = huge_ptep_get(src_pte);
4859 if (!pte_same(src_pte_old, entry)) {
bc70fbf2 4860 restore_reserve_on_error(h, dst_vma, addr,
846be085 4861 new);
4eae4efa
PX
4862 put_page(new);
4863 /* dst_entry won't change as in child */
4864 goto again;
4865 }
bc70fbf2 4866 hugetlb_install_page(dst_vma, dst_pte, addr, new);
4eae4efa
PX
4867 spin_unlock(src_ptl);
4868 spin_unlock(dst_ptl);
4869 continue;
4870 }
4871
34ee645e 4872 if (cow) {
0f10851e
JG
4873 /*
4874 * No need to notify as we are downgrading page
4875 * table protection not changing it to point
4876 * to a new page.
4877 *
ee65728e 4878 * See Documentation/mm/mmu_notifier.rst
0f10851e 4879 */
7f2e9525 4880 huge_ptep_set_wrprotect(src, addr, src_pte);
84894e1c 4881 entry = huge_pte_wrprotect(entry);
34ee645e 4882 }
4eae4efa 4883
1c59827d 4884 set_huge_pte_at(dst, addr, dst_pte, entry);
4eae4efa 4885 hugetlb_count_add(npages, dst);
1c59827d 4886 }
cb900f41
KS
4887 spin_unlock(src_ptl);
4888 spin_unlock(dst_ptl);
63551ae0 4889 }
63551ae0 4890
623a1ddf
DH
4891 if (cow) {
4892 raw_write_seqcount_end(&src->write_protect_seq);
ac46d4f3 4893 mmu_notifier_invalidate_range_end(&range);
623a1ddf 4894 } else {
c0d0381a 4895 i_mmap_unlock_read(mapping);
623a1ddf 4896 }
e8569dd2
AS
4897
4898 return ret;
63551ae0
DG
4899}
4900
550a7d60 4901static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr,
db110a99 4902 unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte)
550a7d60
MA
4903{
4904 struct hstate *h = hstate_vma(vma);
4905 struct mm_struct *mm = vma->vm_mm;
550a7d60 4906 spinlock_t *src_ptl, *dst_ptl;
db110a99 4907 pte_t pte;
550a7d60 4908
550a7d60
MA
4909 dst_ptl = huge_pte_lock(h, mm, dst_pte);
4910 src_ptl = huge_pte_lockptr(h, mm, src_pte);
4911
4912 /*
4913 * We don't have to worry about the ordering of src and dst ptlocks
4914 * because exclusive mmap_sem (or the i_mmap_lock) prevents deadlock.
4915 */
4916 if (src_ptl != dst_ptl)
4917 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4918
4919 pte = huge_ptep_get_and_clear(mm, old_addr, src_pte);
4920 set_huge_pte_at(mm, new_addr, dst_pte, pte);
4921
4922 if (src_ptl != dst_ptl)
4923 spin_unlock(src_ptl);
4924 spin_unlock(dst_ptl);
4925}
4926
4927int move_hugetlb_page_tables(struct vm_area_struct *vma,
4928 struct vm_area_struct *new_vma,
4929 unsigned long old_addr, unsigned long new_addr,
4930 unsigned long len)
4931{
4932 struct hstate *h = hstate_vma(vma);
4933 struct address_space *mapping = vma->vm_file->f_mapping;
4934 unsigned long sz = huge_page_size(h);
4935 struct mm_struct *mm = vma->vm_mm;
4936 unsigned long old_end = old_addr + len;
4937 unsigned long old_addr_copy;
4938 pte_t *src_pte, *dst_pte;
4939 struct mmu_notifier_range range;
3d0b95cd 4940 bool shared_pmd = false;
550a7d60
MA
4941
4942 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, old_addr,
4943 old_end);
4944 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
3d0b95cd
BW
4945 /*
4946 * In case of shared PMDs, we should cover the maximum possible
4947 * range.
4948 */
4949 flush_cache_range(vma, range.start, range.end);
4950
550a7d60
MA
4951 mmu_notifier_invalidate_range_start(&range);
4952 /* Prevent race with file truncation */
4953 i_mmap_lock_write(mapping);
4954 for (; old_addr < old_end; old_addr += sz, new_addr += sz) {
4955 src_pte = huge_pte_offset(mm, old_addr, sz);
4956 if (!src_pte)
4957 continue;
4958 if (huge_pte_none(huge_ptep_get(src_pte)))
4959 continue;
4960
4961 /* old_addr arg to huge_pmd_unshare() is a pointer and so the
4962 * arg may be modified. Pass a copy instead to preserve the
4963 * value in old_addr.
4964 */
4965 old_addr_copy = old_addr;
4966
3d0b95cd
BW
4967 if (huge_pmd_unshare(mm, vma, &old_addr_copy, src_pte)) {
4968 shared_pmd = true;
550a7d60 4969 continue;
3d0b95cd 4970 }
550a7d60
MA
4971
4972 dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz);
4973 if (!dst_pte)
4974 break;
4975
db110a99 4976 move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte);
550a7d60 4977 }
3d0b95cd
BW
4978
4979 if (shared_pmd)
4980 flush_tlb_range(vma, range.start, range.end);
4981 else
4982 flush_tlb_range(vma, old_end - len, old_end);
550a7d60 4983 mmu_notifier_invalidate_range_end(&range);
13e4ad2c 4984 i_mmap_unlock_write(mapping);
550a7d60
MA
4985
4986 return len + old_addr - old_end;
4987}
4988
73c54763
PX
4989static void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
4990 unsigned long start, unsigned long end,
05e90bd0 4991 struct page *ref_page, zap_flags_t zap_flags)
63551ae0
DG
4992{
4993 struct mm_struct *mm = vma->vm_mm;
4994 unsigned long address;
c7546f8f 4995 pte_t *ptep;
63551ae0 4996 pte_t pte;
cb900f41 4997 spinlock_t *ptl;
63551ae0 4998 struct page *page;
a5516438
AK
4999 struct hstate *h = hstate_vma(vma);
5000 unsigned long sz = huge_page_size(h);
ac46d4f3 5001 struct mmu_notifier_range range;
a4a118f2 5002 bool force_flush = false;
a5516438 5003
63551ae0 5004 WARN_ON(!is_vm_hugetlb_page(vma));
a5516438
AK
5005 BUG_ON(start & ~huge_page_mask(h));
5006 BUG_ON(end & ~huge_page_mask(h));
63551ae0 5007
07e32661
AK
5008 /*
5009 * This is a hugetlb vma, all the pte entries should point
5010 * to huge page.
5011 */
ed6a7935 5012 tlb_change_page_size(tlb, sz);
24669e58 5013 tlb_start_vma(tlb, vma);
dff11abe
MK
5014
5015 /*
5016 * If sharing possible, alert mmu notifiers of worst case.
5017 */
6f4f13e8
JG
5018 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
5019 end);
ac46d4f3
JG
5020 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5021 mmu_notifier_invalidate_range_start(&range);
569f48b8 5022 address = start;
569f48b8 5023 for (; address < end; address += sz) {
7868a208 5024 ptep = huge_pte_offset(mm, address, sz);
4c887265 5025 if (!ptep)
c7546f8f
DG
5026 continue;
5027
cb900f41 5028 ptl = huge_pte_lock(h, mm, ptep);
34ae204f 5029 if (huge_pmd_unshare(mm, vma, &address, ptep)) {
31d49da5 5030 spin_unlock(ptl);
a4a118f2
NA
5031 tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE);
5032 force_flush = true;
31d49da5
AK
5033 continue;
5034 }
39dde65c 5035
6629326b 5036 pte = huge_ptep_get(ptep);
31d49da5
AK
5037 if (huge_pte_none(pte)) {
5038 spin_unlock(ptl);
5039 continue;
5040 }
6629326b
HD
5041
5042 /*
9fbc1f63
NH
5043 * Migrating hugepage or HWPoisoned hugepage is already
5044 * unmapped and its refcount is dropped, so just clear pte here.
6629326b 5045 */
9fbc1f63 5046 if (unlikely(!pte_present(pte))) {
05e90bd0
PX
5047 /*
5048 * If the pte was wr-protected by uffd-wp in any of the
5049 * swap forms, meanwhile the caller does not want to
5050 * drop the uffd-wp bit in this zap, then replace the
5051 * pte with a marker.
5052 */
5053 if (pte_swp_uffd_wp_any(pte) &&
5054 !(zap_flags & ZAP_FLAG_DROP_MARKER))
5055 set_huge_pte_at(mm, address, ptep,
5056 make_pte_marker(PTE_MARKER_UFFD_WP));
5057 else
5058 huge_pte_clear(mm, address, ptep, sz);
31d49da5
AK
5059 spin_unlock(ptl);
5060 continue;
8c4894c6 5061 }
6629326b
HD
5062
5063 page = pte_page(pte);
04f2cbe3
MG
5064 /*
5065 * If a reference page is supplied, it is because a specific
5066 * page is being unmapped, not a range. Ensure the page we
5067 * are about to unmap is the actual page of interest.
5068 */
5069 if (ref_page) {
31d49da5
AK
5070 if (page != ref_page) {
5071 spin_unlock(ptl);
5072 continue;
5073 }
04f2cbe3
MG
5074 /*
5075 * Mark the VMA as having unmapped its page so that
5076 * future faults in this VMA will fail rather than
5077 * looking like data was lost
5078 */
5079 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
5080 }
5081
c7546f8f 5082 pte = huge_ptep_get_and_clear(mm, address, ptep);
b528e4b6 5083 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
106c992a 5084 if (huge_pte_dirty(pte))
6649a386 5085 set_page_dirty(page);
05e90bd0
PX
5086 /* Leave a uffd-wp pte marker if needed */
5087 if (huge_pte_uffd_wp(pte) &&
5088 !(zap_flags & ZAP_FLAG_DROP_MARKER))
5089 set_huge_pte_at(mm, address, ptep,
5090 make_pte_marker(PTE_MARKER_UFFD_WP));
5d317b2b 5091 hugetlb_count_sub(pages_per_huge_page(h), mm);
cea86fe2 5092 page_remove_rmap(page, vma, true);
31d49da5 5093
cb900f41 5094 spin_unlock(ptl);
e77b0852 5095 tlb_remove_page_size(tlb, page, huge_page_size(h));
31d49da5
AK
5096 /*
5097 * Bail out after unmapping reference page if supplied
5098 */
5099 if (ref_page)
5100 break;
fe1668ae 5101 }
ac46d4f3 5102 mmu_notifier_invalidate_range_end(&range);
24669e58 5103 tlb_end_vma(tlb, vma);
a4a118f2
NA
5104
5105 /*
5106 * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We
5107 * could defer the flush until now, since by holding i_mmap_rwsem we
5108 * guaranteed that the last refernece would not be dropped. But we must
5109 * do the flushing before we return, as otherwise i_mmap_rwsem will be
5110 * dropped and the last reference to the shared PMDs page might be
5111 * dropped as well.
5112 *
5113 * In theory we could defer the freeing of the PMD pages as well, but
5114 * huge_pmd_unshare() relies on the exact page_count for the PMD page to
5115 * detect sharing, so we cannot defer the release of the page either.
5116 * Instead, do flush now.
5117 */
5118 if (force_flush)
5119 tlb_flush_mmu_tlbonly(tlb);
1da177e4 5120}
63551ae0 5121
d833352a
MG
5122void __unmap_hugepage_range_final(struct mmu_gather *tlb,
5123 struct vm_area_struct *vma, unsigned long start,
05e90bd0
PX
5124 unsigned long end, struct page *ref_page,
5125 zap_flags_t zap_flags)
d833352a 5126{
05e90bd0 5127 __unmap_hugepage_range(tlb, vma, start, end, ref_page, zap_flags);
d833352a
MG
5128
5129 /*
5130 * Clear this flag so that x86's huge_pmd_share page_table_shareable
5131 * test will fail on a vma being torn down, and not grab a page table
5132 * on its way out. We're lucky that the flag has such an appropriate
5133 * name, and can in fact be safely cleared here. We could clear it
5134 * before the __unmap_hugepage_range above, but all that's necessary
c8c06efa 5135 * is to clear it before releasing the i_mmap_rwsem. This works
d833352a 5136 * because in the context this is called, the VMA is about to be
c8c06efa 5137 * destroyed and the i_mmap_rwsem is held.
d833352a
MG
5138 */
5139 vma->vm_flags &= ~VM_MAYSHARE;
5140}
5141
502717f4 5142void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
05e90bd0
PX
5143 unsigned long end, struct page *ref_page,
5144 zap_flags_t zap_flags)
502717f4 5145{
24669e58 5146 struct mmu_gather tlb;
dff11abe 5147
a72afd87 5148 tlb_gather_mmu(&tlb, vma->vm_mm);
05e90bd0 5149 __unmap_hugepage_range(&tlb, vma, start, end, ref_page, zap_flags);
ae8eba8b 5150 tlb_finish_mmu(&tlb);
502717f4
CK
5151}
5152
04f2cbe3
MG
5153/*
5154 * This is called when the original mapper is failing to COW a MAP_PRIVATE
578b7725 5155 * mapping it owns the reserve page for. The intention is to unmap the page
04f2cbe3
MG
5156 * from other VMAs and let the children be SIGKILLed if they are faulting the
5157 * same region.
5158 */
2f4612af
DB
5159static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
5160 struct page *page, unsigned long address)
04f2cbe3 5161{
7526674d 5162 struct hstate *h = hstate_vma(vma);
04f2cbe3
MG
5163 struct vm_area_struct *iter_vma;
5164 struct address_space *mapping;
04f2cbe3
MG
5165 pgoff_t pgoff;
5166
5167 /*
5168 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
5169 * from page cache lookup which is in HPAGE_SIZE units.
5170 */
7526674d 5171 address = address & huge_page_mask(h);
36e4f20a
MH
5172 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
5173 vma->vm_pgoff;
93c76a3d 5174 mapping = vma->vm_file->f_mapping;
04f2cbe3 5175
4eb2b1dc
MG
5176 /*
5177 * Take the mapping lock for the duration of the table walk. As
5178 * this mapping should be shared between all the VMAs,
5179 * __unmap_hugepage_range() is called as the lock is already held
5180 */
83cde9e8 5181 i_mmap_lock_write(mapping);
6b2dbba8 5182 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
04f2cbe3
MG
5183 /* Do not unmap the current VMA */
5184 if (iter_vma == vma)
5185 continue;
5186
2f84a899
MG
5187 /*
5188 * Shared VMAs have their own reserves and do not affect
5189 * MAP_PRIVATE accounting but it is possible that a shared
5190 * VMA is using the same page so check and skip such VMAs.
5191 */
5192 if (iter_vma->vm_flags & VM_MAYSHARE)
5193 continue;
5194
04f2cbe3
MG
5195 /*
5196 * Unmap the page from other VMAs without their own reserves.
5197 * They get marked to be SIGKILLed if they fault in these
5198 * areas. This is because a future no-page fault on this VMA
5199 * could insert a zeroed page instead of the data existing
5200 * from the time of fork. This would look like data corruption
5201 */
5202 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
24669e58 5203 unmap_hugepage_range(iter_vma, address,
05e90bd0 5204 address + huge_page_size(h), page, 0);
04f2cbe3 5205 }
83cde9e8 5206 i_mmap_unlock_write(mapping);
04f2cbe3
MG
5207}
5208
0fe6e20b 5209/*
c89357e2 5210 * hugetlb_wp() should be called with page lock of the original hugepage held.
aa6d2e8c 5211 * Called with hugetlb_fault_mutex_table held and pte_page locked so we
ef009b25
MH
5212 * cannot race with other handlers or page migration.
5213 * Keep the pte_same checks anyway to make transition from the mutex easier.
0fe6e20b 5214 */
c89357e2
DH
5215static vm_fault_t hugetlb_wp(struct mm_struct *mm, struct vm_area_struct *vma,
5216 unsigned long address, pte_t *ptep, unsigned int flags,
3999f52e 5217 struct page *pagecache_page, spinlock_t *ptl)
1e8f889b 5218{
c89357e2 5219 const bool unshare = flags & FAULT_FLAG_UNSHARE;
3999f52e 5220 pte_t pte;
a5516438 5221 struct hstate *h = hstate_vma(vma);
1e8f889b 5222 struct page *old_page, *new_page;
2b740303
SJ
5223 int outside_reserve = 0;
5224 vm_fault_t ret = 0;
974e6d66 5225 unsigned long haddr = address & huge_page_mask(h);
ac46d4f3 5226 struct mmu_notifier_range range;
1e8f889b 5227
c89357e2
DH
5228 VM_BUG_ON(unshare && (flags & FOLL_WRITE));
5229 VM_BUG_ON(!unshare && !(flags & FOLL_WRITE));
5230
3999f52e 5231 pte = huge_ptep_get(ptep);
1e8f889b
DG
5232 old_page = pte_page(pte);
5233
662ce1dc
YY
5234 delayacct_wpcopy_start();
5235
04f2cbe3 5236retry_avoidcopy:
c89357e2
DH
5237 /*
5238 * If no-one else is actually using this page, we're the exclusive
5239 * owner and can reuse this page.
5240 */
37a2140d 5241 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
c89357e2
DH
5242 if (!PageAnonExclusive(old_page))
5243 page_move_anon_rmap(old_page, vma);
5244 if (likely(!unshare))
5245 set_huge_ptep_writable(vma, haddr, ptep);
662ce1dc
YY
5246
5247 delayacct_wpcopy_end();
83c54070 5248 return 0;
1e8f889b 5249 }
6c287605
DH
5250 VM_BUG_ON_PAGE(PageAnon(old_page) && PageAnonExclusive(old_page),
5251 old_page);
1e8f889b 5252
04f2cbe3
MG
5253 /*
5254 * If the process that created a MAP_PRIVATE mapping is about to
5255 * perform a COW due to a shared page count, attempt to satisfy
5256 * the allocation without using the existing reserves. The pagecache
5257 * page is used to determine if the reserve at this address was
5258 * consumed or not. If reserves were used, a partial faulted mapping
5259 * at the time of fork() could consume its reserves on COW instead
5260 * of the full address range.
5261 */
5944d011 5262 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
04f2cbe3
MG
5263 old_page != pagecache_page)
5264 outside_reserve = 1;
5265
09cbfeaf 5266 get_page(old_page);
b76c8cfb 5267
ad4404a2
DB
5268 /*
5269 * Drop page table lock as buddy allocator may be called. It will
5270 * be acquired again before returning to the caller, as expected.
5271 */
cb900f41 5272 spin_unlock(ptl);
5b7a1d40 5273 new_page = alloc_huge_page(vma, haddr, outside_reserve);
1e8f889b 5274
2fc39cec 5275 if (IS_ERR(new_page)) {
04f2cbe3
MG
5276 /*
5277 * If a process owning a MAP_PRIVATE mapping fails to COW,
5278 * it is due to references held by a child and an insufficient
5279 * huge page pool. To guarantee the original mappers
5280 * reliability, unmap the page from child processes. The child
5281 * may get SIGKILLed if it later faults.
5282 */
5283 if (outside_reserve) {
e7dd91c4
MK
5284 struct address_space *mapping = vma->vm_file->f_mapping;
5285 pgoff_t idx;
5286 u32 hash;
5287
09cbfeaf 5288 put_page(old_page);
04f2cbe3 5289 BUG_ON(huge_pte_none(pte));
e7dd91c4
MK
5290 /*
5291 * Drop hugetlb_fault_mutex and i_mmap_rwsem before
5292 * unmapping. unmapping needs to hold i_mmap_rwsem
5293 * in write mode. Dropping i_mmap_rwsem in read mode
5294 * here is OK as COW mappings do not interact with
5295 * PMD sharing.
5296 *
5297 * Reacquire both after unmap operation.
5298 */
5299 idx = vma_hugecache_offset(h, vma, haddr);
5300 hash = hugetlb_fault_mutex_hash(mapping, idx);
5301 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5302 i_mmap_unlock_read(mapping);
5303
5b7a1d40 5304 unmap_ref_private(mm, vma, old_page, haddr);
e7dd91c4
MK
5305
5306 i_mmap_lock_read(mapping);
5307 mutex_lock(&hugetlb_fault_mutex_table[hash]);
2f4612af 5308 spin_lock(ptl);
5b7a1d40 5309 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
2f4612af
DB
5310 if (likely(ptep &&
5311 pte_same(huge_ptep_get(ptep), pte)))
5312 goto retry_avoidcopy;
5313 /*
5314 * race occurs while re-acquiring page table
5315 * lock, and our job is done.
5316 */
662ce1dc 5317 delayacct_wpcopy_end();
2f4612af 5318 return 0;
04f2cbe3
MG
5319 }
5320
2b740303 5321 ret = vmf_error(PTR_ERR(new_page));
ad4404a2 5322 goto out_release_old;
1e8f889b
DG
5323 }
5324
0fe6e20b
NH
5325 /*
5326 * When the original hugepage is shared one, it does not have
5327 * anon_vma prepared.
5328 */
44e2aa93 5329 if (unlikely(anon_vma_prepare(vma))) {
ad4404a2
DB
5330 ret = VM_FAULT_OOM;
5331 goto out_release_all;
44e2aa93 5332 }
0fe6e20b 5333
974e6d66 5334 copy_user_huge_page(new_page, old_page, address, vma,
47ad8475 5335 pages_per_huge_page(h));
0ed361de 5336 __SetPageUptodate(new_page);
1e8f889b 5337
7269f999 5338 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
6f4f13e8 5339 haddr + huge_page_size(h));
ac46d4f3 5340 mmu_notifier_invalidate_range_start(&range);
ad4404a2 5341
b76c8cfb 5342 /*
cb900f41 5343 * Retake the page table lock to check for racing updates
b76c8cfb
LW
5344 * before the page tables are altered
5345 */
cb900f41 5346 spin_lock(ptl);
5b7a1d40 5347 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
a9af0c5d 5348 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
d6995da3 5349 ClearHPageRestoreReserve(new_page);
07443a85 5350
c89357e2 5351 /* Break COW or unshare */
5b7a1d40 5352 huge_ptep_clear_flush(vma, haddr, ptep);
ac46d4f3 5353 mmu_notifier_invalidate_range(mm, range.start, range.end);
cea86fe2 5354 page_remove_rmap(old_page, vma, true);
5b7a1d40 5355 hugepage_add_new_anon_rmap(new_page, vma, haddr);
1eba86c0 5356 set_huge_pte_at(mm, haddr, ptep,
c89357e2 5357 make_huge_pte(vma, new_page, !unshare));
8f251a3d 5358 SetHPageMigratable(new_page);
1e8f889b
DG
5359 /* Make the old page be freed below */
5360 new_page = old_page;
5361 }
cb900f41 5362 spin_unlock(ptl);
ac46d4f3 5363 mmu_notifier_invalidate_range_end(&range);
ad4404a2 5364out_release_all:
c89357e2
DH
5365 /*
5366 * No restore in case of successful pagetable update (Break COW or
5367 * unshare)
5368 */
c7b1850d
MK
5369 if (new_page != old_page)
5370 restore_reserve_on_error(h, vma, haddr, new_page);
09cbfeaf 5371 put_page(new_page);
ad4404a2 5372out_release_old:
09cbfeaf 5373 put_page(old_page);
8312034f 5374
ad4404a2 5375 spin_lock(ptl); /* Caller expects lock to be held */
662ce1dc
YY
5376
5377 delayacct_wpcopy_end();
ad4404a2 5378 return ret;
1e8f889b
DG
5379}
5380
04f2cbe3 5381/* Return the pagecache page at a given address within a VMA */
a5516438
AK
5382static struct page *hugetlbfs_pagecache_page(struct hstate *h,
5383 struct vm_area_struct *vma, unsigned long address)
04f2cbe3
MG
5384{
5385 struct address_space *mapping;
e7c4b0bf 5386 pgoff_t idx;
04f2cbe3
MG
5387
5388 mapping = vma->vm_file->f_mapping;
a5516438 5389 idx = vma_hugecache_offset(h, vma, address);
04f2cbe3
MG
5390
5391 return find_lock_page(mapping, idx);
5392}
5393
3ae77f43
HD
5394/*
5395 * Return whether there is a pagecache page to back given address within VMA.
5396 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
5397 */
5398static bool hugetlbfs_pagecache_present(struct hstate *h,
2a15efc9
HD
5399 struct vm_area_struct *vma, unsigned long address)
5400{
5401 struct address_space *mapping;
5402 pgoff_t idx;
5403 struct page *page;
5404
5405 mapping = vma->vm_file->f_mapping;
5406 idx = vma_hugecache_offset(h, vma, address);
5407
5408 page = find_get_page(mapping, idx);
5409 if (page)
5410 put_page(page);
5411 return page != NULL;
5412}
5413
ab76ad54
MK
5414int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
5415 pgoff_t idx)
5416{
5417 struct inode *inode = mapping->host;
5418 struct hstate *h = hstate_inode(inode);
5419 int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
5420
5421 if (err)
5422 return err;
d6995da3 5423 ClearHPageRestoreReserve(page);
ab76ad54 5424
22146c3c
MK
5425 /*
5426 * set page dirty so that it will not be removed from cache/file
5427 * by non-hugetlbfs specific code paths.
5428 */
5429 set_page_dirty(page);
5430
ab76ad54
MK
5431 spin_lock(&inode->i_lock);
5432 inode->i_blocks += blocks_per_huge_page(h);
5433 spin_unlock(&inode->i_lock);
5434 return 0;
5435}
5436
7677f7fd
AR
5437static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma,
5438 struct address_space *mapping,
5439 pgoff_t idx,
5440 unsigned int flags,
5441 unsigned long haddr,
824ddc60 5442 unsigned long addr,
7677f7fd
AR
5443 unsigned long reason)
5444{
5445 vm_fault_t ret;
5446 u32 hash;
5447 struct vm_fault vmf = {
5448 .vma = vma,
5449 .address = haddr,
824ddc60 5450 .real_address = addr,
7677f7fd
AR
5451 .flags = flags,
5452
5453 /*
5454 * Hard to debug if it ends up being
5455 * used by a callee that assumes
5456 * something about the other
5457 * uninitialized fields... same as in
5458 * memory.c
5459 */
5460 };
5461
5462 /*
5463 * hugetlb_fault_mutex and i_mmap_rwsem must be
5464 * dropped before handling userfault. Reacquire
5465 * after handling fault to make calling code simpler.
5466 */
5467 hash = hugetlb_fault_mutex_hash(mapping, idx);
5468 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5469 i_mmap_unlock_read(mapping);
5470 ret = handle_userfault(&vmf, reason);
5471 i_mmap_lock_read(mapping);
5472 mutex_lock(&hugetlb_fault_mutex_table[hash]);
5473
5474 return ret;
5475}
5476
2b740303
SJ
5477static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
5478 struct vm_area_struct *vma,
5479 struct address_space *mapping, pgoff_t idx,
c64e912c
PX
5480 unsigned long address, pte_t *ptep,
5481 pte_t old_pte, unsigned int flags)
ac9b9c66 5482{
a5516438 5483 struct hstate *h = hstate_vma(vma);
2b740303 5484 vm_fault_t ret = VM_FAULT_SIGBUS;
409eb8c2 5485 int anon_rmap = 0;
4c887265 5486 unsigned long size;
4c887265 5487 struct page *page;
1e8f889b 5488 pte_t new_pte;
cb900f41 5489 spinlock_t *ptl;
285b8dca 5490 unsigned long haddr = address & huge_page_mask(h);
c7b1850d 5491 bool new_page, new_pagecache_page = false;
4c887265 5492
04f2cbe3
MG
5493 /*
5494 * Currently, we are forced to kill the process in the event the
5495 * original mapper has unmapped pages from the child due to a failed
c89357e2
DH
5496 * COW/unsharing. Warn that such a situation has occurred as it may not
5497 * be obvious.
04f2cbe3
MG
5498 */
5499 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
910154d5 5500 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
ffb22af5 5501 current->pid);
04f2cbe3
MG
5502 return ret;
5503 }
5504
4c887265 5505 /*
87bf91d3
MK
5506 * We can not race with truncation due to holding i_mmap_rwsem.
5507 * i_size is modified when holding i_mmap_rwsem, so check here
5508 * once for faults beyond end of file.
4c887265 5509 */
87bf91d3
MK
5510 size = i_size_read(mapping->host) >> huge_page_shift(h);
5511 if (idx >= size)
5512 goto out;
5513
6bda666a 5514retry:
c7b1850d 5515 new_page = false;
6bda666a
CL
5516 page = find_lock_page(mapping, idx);
5517 if (!page) {
7677f7fd 5518 /* Check for page in userfault range */
1a1aad8a 5519 if (userfaultfd_missing(vma)) {
7677f7fd 5520 ret = hugetlb_handle_userfault(vma, mapping, idx,
824ddc60 5521 flags, haddr, address,
7677f7fd 5522 VM_UFFD_MISSING);
1a1aad8a
MK
5523 goto out;
5524 }
5525
285b8dca 5526 page = alloc_huge_page(vma, haddr, 0);
2fc39cec 5527 if (IS_ERR(page)) {
4643d67e
MK
5528 /*
5529 * Returning error will result in faulting task being
5530 * sent SIGBUS. The hugetlb fault mutex prevents two
5531 * tasks from racing to fault in the same page which
5532 * could result in false unable to allocate errors.
5533 * Page migration does not take the fault mutex, but
5534 * does a clear then write of pte's under page table
5535 * lock. Page fault code could race with migration,
5536 * notice the clear pte and try to allocate a page
5537 * here. Before returning error, get ptl and make
5538 * sure there really is no pte entry.
5539 */
5540 ptl = huge_pte_lock(h, mm, ptep);
d83e6c8a
ML
5541 ret = 0;
5542 if (huge_pte_none(huge_ptep_get(ptep)))
5543 ret = vmf_error(PTR_ERR(page));
4643d67e 5544 spin_unlock(ptl);
6bda666a
CL
5545 goto out;
5546 }
47ad8475 5547 clear_huge_page(page, address, pages_per_huge_page(h));
0ed361de 5548 __SetPageUptodate(page);
cb6acd01 5549 new_page = true;
ac9b9c66 5550
f83a275d 5551 if (vma->vm_flags & VM_MAYSHARE) {
ab76ad54 5552 int err = huge_add_to_page_cache(page, mapping, idx);
6bda666a
CL
5553 if (err) {
5554 put_page(page);
6bda666a
CL
5555 if (err == -EEXIST)
5556 goto retry;
5557 goto out;
5558 }
c7b1850d 5559 new_pagecache_page = true;
23be7468 5560 } else {
6bda666a 5561 lock_page(page);
0fe6e20b
NH
5562 if (unlikely(anon_vma_prepare(vma))) {
5563 ret = VM_FAULT_OOM;
5564 goto backout_unlocked;
5565 }
409eb8c2 5566 anon_rmap = 1;
23be7468 5567 }
0fe6e20b 5568 } else {
998b4382
NH
5569 /*
5570 * If memory error occurs between mmap() and fault, some process
5571 * don't have hwpoisoned swap entry for errored virtual address.
5572 * So we need to block hugepage fault by PG_hwpoison bit check.
5573 */
5574 if (unlikely(PageHWPoison(page))) {
0eb98f15 5575 ret = VM_FAULT_HWPOISON_LARGE |
972dc4de 5576 VM_FAULT_SET_HINDEX(hstate_index(h));
998b4382
NH
5577 goto backout_unlocked;
5578 }
7677f7fd
AR
5579
5580 /* Check for page in userfault range. */
5581 if (userfaultfd_minor(vma)) {
5582 unlock_page(page);
5583 put_page(page);
5584 ret = hugetlb_handle_userfault(vma, mapping, idx,
824ddc60 5585 flags, haddr, address,
7677f7fd
AR
5586 VM_UFFD_MINOR);
5587 goto out;
5588 }
6bda666a 5589 }
1e8f889b 5590
57303d80
AW
5591 /*
5592 * If we are going to COW a private mapping later, we examine the
5593 * pending reservations for this page now. This will ensure that
5594 * any allocations necessary to record that reservation occur outside
5595 * the spinlock.
5596 */
5e911373 5597 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
285b8dca 5598 if (vma_needs_reservation(h, vma, haddr) < 0) {
2b26736c
AW
5599 ret = VM_FAULT_OOM;
5600 goto backout_unlocked;
5601 }
5e911373 5602 /* Just decrements count, does not deallocate */
285b8dca 5603 vma_end_reservation(h, vma, haddr);
5e911373 5604 }
57303d80 5605
8bea8052 5606 ptl = huge_pte_lock(h, mm, ptep);
83c54070 5607 ret = 0;
c64e912c
PX
5608 /* If pte changed from under us, retry */
5609 if (!pte_same(huge_ptep_get(ptep), old_pte))
4c887265
AL
5610 goto backout;
5611
07443a85 5612 if (anon_rmap) {
d6995da3 5613 ClearHPageRestoreReserve(page);
285b8dca 5614 hugepage_add_new_anon_rmap(page, vma, haddr);
ac714904 5615 } else
fb3d824d 5616 page_dup_file_rmap(page, true);
1e8f889b
DG
5617 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
5618 && (vma->vm_flags & VM_SHARED)));
c64e912c
PX
5619 /*
5620 * If this pte was previously wr-protected, keep it wr-protected even
5621 * if populated.
5622 */
5623 if (unlikely(pte_marker_uffd_wp(old_pte)))
5624 new_pte = huge_pte_wrprotect(huge_pte_mkuffd_wp(new_pte));
285b8dca 5625 set_huge_pte_at(mm, haddr, ptep, new_pte);
1e8f889b 5626
5d317b2b 5627 hugetlb_count_add(pages_per_huge_page(h), mm);
788c7df4 5628 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
1e8f889b 5629 /* Optimization, do the COW without a second fault */
c89357e2 5630 ret = hugetlb_wp(mm, vma, address, ptep, flags, page, ptl);
1e8f889b
DG
5631 }
5632
cb900f41 5633 spin_unlock(ptl);
cb6acd01
MK
5634
5635 /*
8f251a3d
MK
5636 * Only set HPageMigratable in newly allocated pages. Existing pages
5637 * found in the pagecache may not have HPageMigratableset if they have
5638 * been isolated for migration.
cb6acd01
MK
5639 */
5640 if (new_page)
8f251a3d 5641 SetHPageMigratable(page);
cb6acd01 5642
4c887265
AL
5643 unlock_page(page);
5644out:
ac9b9c66 5645 return ret;
4c887265
AL
5646
5647backout:
cb900f41 5648 spin_unlock(ptl);
2b26736c 5649backout_unlocked:
4c887265 5650 unlock_page(page);
c7b1850d
MK
5651 /* restore reserve for newly allocated pages not in page cache */
5652 if (new_page && !new_pagecache_page)
5653 restore_reserve_on_error(h, vma, haddr, page);
4c887265
AL
5654 put_page(page);
5655 goto out;
ac9b9c66
HD
5656}
5657
8382d914 5658#ifdef CONFIG_SMP
188b04a7 5659u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
8382d914
DB
5660{
5661 unsigned long key[2];
5662 u32 hash;
5663
1b426bac
MK
5664 key[0] = (unsigned long) mapping;
5665 key[1] = idx;
8382d914 5666
55254636 5667 hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
8382d914
DB
5668
5669 return hash & (num_fault_mutexes - 1);
5670}
5671#else
5672/*
6c26d310 5673 * For uniprocessor systems we always use a single mutex, so just
8382d914
DB
5674 * return 0 and avoid the hashing overhead.
5675 */
188b04a7 5676u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
8382d914
DB
5677{
5678 return 0;
5679}
5680#endif
5681
2b740303 5682vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
788c7df4 5683 unsigned long address, unsigned int flags)
86e5216f 5684{
8382d914 5685 pte_t *ptep, entry;
cb900f41 5686 spinlock_t *ptl;
2b740303 5687 vm_fault_t ret;
8382d914
DB
5688 u32 hash;
5689 pgoff_t idx;
0fe6e20b 5690 struct page *page = NULL;
57303d80 5691 struct page *pagecache_page = NULL;
a5516438 5692 struct hstate *h = hstate_vma(vma);
8382d914 5693 struct address_space *mapping;
0f792cf9 5694 int need_wait_lock = 0;
285b8dca 5695 unsigned long haddr = address & huge_page_mask(h);
86e5216f 5696
285b8dca 5697 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
fd6a03ed 5698 if (ptep) {
c0d0381a
MK
5699 /*
5700 * Since we hold no locks, ptep could be stale. That is
5701 * OK as we are only making decisions based on content and
5702 * not actually modifying content here.
5703 */
fd6a03ed 5704 entry = huge_ptep_get(ptep);
290408d4 5705 if (unlikely(is_hugetlb_entry_migration(entry))) {
cb900f41 5706 migration_entry_wait_huge(vma, mm, ptep);
290408d4
NH
5707 return 0;
5708 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
32f84528 5709 return VM_FAULT_HWPOISON_LARGE |
972dc4de 5710 VM_FAULT_SET_HINDEX(hstate_index(h));
fd6a03ed
NH
5711 }
5712
c0d0381a
MK
5713 /*
5714 * Acquire i_mmap_rwsem before calling huge_pte_alloc and hold
87bf91d3
MK
5715 * until finished with ptep. This serves two purposes:
5716 * 1) It prevents huge_pmd_unshare from being called elsewhere
5717 * and making the ptep no longer valid.
5718 * 2) It synchronizes us with i_size modifications during truncation.
c0d0381a
MK
5719 *
5720 * ptep could have already be assigned via huge_pte_offset. That
5721 * is OK, as huge_pte_alloc will return the same value unless
5722 * something has changed.
5723 */
8382d914 5724 mapping = vma->vm_file->f_mapping;
c0d0381a 5725 i_mmap_lock_read(mapping);
aec44e0f 5726 ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h));
c0d0381a
MK
5727 if (!ptep) {
5728 i_mmap_unlock_read(mapping);
5729 return VM_FAULT_OOM;
5730 }
8382d914 5731
3935baa9
DG
5732 /*
5733 * Serialize hugepage allocation and instantiation, so that we don't
5734 * get spurious allocation failures if two CPUs race to instantiate
5735 * the same page in the page cache.
5736 */
c0d0381a 5737 idx = vma_hugecache_offset(h, vma, haddr);
188b04a7 5738 hash = hugetlb_fault_mutex_hash(mapping, idx);
c672c7f2 5739 mutex_lock(&hugetlb_fault_mutex_table[hash]);
8382d914 5740
7f2e9525 5741 entry = huge_ptep_get(ptep);
c64e912c
PX
5742 /* PTE markers should be handled the same way as none pte */
5743 if (huge_pte_none_mostly(entry)) {
5744 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep,
5745 entry, flags);
b4d1d99f 5746 goto out_mutex;
3935baa9 5747 }
86e5216f 5748
83c54070 5749 ret = 0;
1e8f889b 5750
0f792cf9
NH
5751 /*
5752 * entry could be a migration/hwpoison entry at this point, so this
5753 * check prevents the kernel from going below assuming that we have
7c8de358
EP
5754 * an active hugepage in pagecache. This goto expects the 2nd page
5755 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
5756 * properly handle it.
0f792cf9
NH
5757 */
5758 if (!pte_present(entry))
5759 goto out_mutex;
5760
57303d80 5761 /*
c89357e2
DH
5762 * If we are going to COW/unshare the mapping later, we examine the
5763 * pending reservations for this page now. This will ensure that any
57303d80
AW
5764 * allocations necessary to record that reservation occur outside the
5765 * spinlock. For private mappings, we also lookup the pagecache
5766 * page now as it is used to determine if a reservation has been
5767 * consumed.
5768 */
c89357e2
DH
5769 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
5770 !huge_pte_write(entry)) {
285b8dca 5771 if (vma_needs_reservation(h, vma, haddr) < 0) {
2b26736c 5772 ret = VM_FAULT_OOM;
b4d1d99f 5773 goto out_mutex;
2b26736c 5774 }
5e911373 5775 /* Just decrements count, does not deallocate */
285b8dca 5776 vma_end_reservation(h, vma, haddr);
57303d80 5777
f83a275d 5778 if (!(vma->vm_flags & VM_MAYSHARE))
57303d80 5779 pagecache_page = hugetlbfs_pagecache_page(h,
285b8dca 5780 vma, haddr);
57303d80
AW
5781 }
5782
0f792cf9
NH
5783 ptl = huge_pte_lock(h, mm, ptep);
5784
c89357e2 5785 /* Check for a racing update before calling hugetlb_wp() */
0f792cf9
NH
5786 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
5787 goto out_ptl;
5788
166f3ecc
PX
5789 /* Handle userfault-wp first, before trying to lock more pages */
5790 if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(ptep)) &&
5791 (flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
5792 struct vm_fault vmf = {
5793 .vma = vma,
5794 .address = haddr,
5795 .real_address = address,
5796 .flags = flags,
5797 };
5798
5799 spin_unlock(ptl);
5800 if (pagecache_page) {
5801 unlock_page(pagecache_page);
5802 put_page(pagecache_page);
5803 }
5804 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5805 i_mmap_unlock_read(mapping);
5806 return handle_userfault(&vmf, VM_UFFD_WP);
5807 }
5808
56c9cfb1 5809 /*
c89357e2 5810 * hugetlb_wp() requires page locks of pte_page(entry) and
56c9cfb1
NH
5811 * pagecache_page, so here we need take the former one
5812 * when page != pagecache_page or !pagecache_page.
56c9cfb1
NH
5813 */
5814 page = pte_page(entry);
5815 if (page != pagecache_page)
0f792cf9
NH
5816 if (!trylock_page(page)) {
5817 need_wait_lock = 1;
5818 goto out_ptl;
5819 }
b4d1d99f 5820
0f792cf9 5821 get_page(page);
b4d1d99f 5822
c89357e2 5823 if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
106c992a 5824 if (!huge_pte_write(entry)) {
c89357e2
DH
5825 ret = hugetlb_wp(mm, vma, address, ptep, flags,
5826 pagecache_page, ptl);
0f792cf9 5827 goto out_put_page;
c89357e2
DH
5828 } else if (likely(flags & FAULT_FLAG_WRITE)) {
5829 entry = huge_pte_mkdirty(entry);
b4d1d99f 5830 }
b4d1d99f
DG
5831 }
5832 entry = pte_mkyoung(entry);
285b8dca 5833 if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
788c7df4 5834 flags & FAULT_FLAG_WRITE))
285b8dca 5835 update_mmu_cache(vma, haddr, ptep);
0f792cf9
NH
5836out_put_page:
5837 if (page != pagecache_page)
5838 unlock_page(page);
5839 put_page(page);
cb900f41
KS
5840out_ptl:
5841 spin_unlock(ptl);
57303d80
AW
5842
5843 if (pagecache_page) {
5844 unlock_page(pagecache_page);
5845 put_page(pagecache_page);
5846 }
b4d1d99f 5847out_mutex:
c672c7f2 5848 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
c0d0381a 5849 i_mmap_unlock_read(mapping);
0f792cf9
NH
5850 /*
5851 * Generally it's safe to hold refcount during waiting page lock. But
5852 * here we just wait to defer the next page fault to avoid busy loop and
5853 * the page is not used after unlocked before returning from the current
5854 * page fault. So we are safe from accessing freed page, even if we wait
5855 * here without taking refcount.
5856 */
5857 if (need_wait_lock)
5858 wait_on_page_locked(page);
1e8f889b 5859 return ret;
86e5216f
AL
5860}
5861
714c1891 5862#ifdef CONFIG_USERFAULTFD
8fb5debc
MK
5863/*
5864 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with
5865 * modifications for huge pages.
5866 */
5867int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
5868 pte_t *dst_pte,
5869 struct vm_area_struct *dst_vma,
5870 unsigned long dst_addr,
5871 unsigned long src_addr,
f6191471 5872 enum mcopy_atomic_mode mode,
6041c691
PX
5873 struct page **pagep,
5874 bool wp_copy)
8fb5debc 5875{
f6191471 5876 bool is_continue = (mode == MCOPY_ATOMIC_CONTINUE);
8cc5fcbb
MA
5877 struct hstate *h = hstate_vma(dst_vma);
5878 struct address_space *mapping = dst_vma->vm_file->f_mapping;
5879 pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
1e392147 5880 unsigned long size;
1c9e8def 5881 int vm_shared = dst_vma->vm_flags & VM_SHARED;
8fb5debc
MK
5882 pte_t _dst_pte;
5883 spinlock_t *ptl;
8cc5fcbb 5884 int ret = -ENOMEM;
8fb5debc 5885 struct page *page;
f6191471 5886 int writable;
cc30042d 5887 bool page_in_pagecache = false;
8fb5debc 5888
f6191471
AR
5889 if (is_continue) {
5890 ret = -EFAULT;
5891 page = find_lock_page(mapping, idx);
5892 if (!page)
5893 goto out;
cc30042d 5894 page_in_pagecache = true;
f6191471 5895 } else if (!*pagep) {
d84cf06e
MA
5896 /* If a page already exists, then it's UFFDIO_COPY for
5897 * a non-missing case. Return -EEXIST.
5898 */
5899 if (vm_shared &&
5900 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
5901 ret = -EEXIST;
5902 goto out;
5903 }
5904
8fb5debc 5905 page = alloc_huge_page(dst_vma, dst_addr, 0);
d84cf06e
MA
5906 if (IS_ERR(page)) {
5907 ret = -ENOMEM;
8fb5debc 5908 goto out;
d84cf06e 5909 }
8fb5debc
MK
5910
5911 ret = copy_huge_page_from_user(page,
5912 (const void __user *) src_addr,
810a56b9 5913 pages_per_huge_page(h), false);
8fb5debc 5914
c1e8d7c6 5915 /* fallback to copy_from_user outside mmap_lock */
8fb5debc 5916 if (unlikely(ret)) {
9e368259 5917 ret = -ENOENT;
8cc5fcbb
MA
5918 /* Free the allocated page which may have
5919 * consumed a reservation.
5920 */
5921 restore_reserve_on_error(h, dst_vma, dst_addr, page);
5922 put_page(page);
5923
5924 /* Allocate a temporary page to hold the copied
5925 * contents.
5926 */
5927 page = alloc_huge_page_vma(h, dst_vma, dst_addr);
5928 if (!page) {
5929 ret = -ENOMEM;
5930 goto out;
5931 }
8fb5debc 5932 *pagep = page;
8cc5fcbb
MA
5933 /* Set the outparam pagep and return to the caller to
5934 * copy the contents outside the lock. Don't free the
5935 * page.
5936 */
8fb5debc
MK
5937 goto out;
5938 }
5939 } else {
8cc5fcbb
MA
5940 if (vm_shared &&
5941 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
5942 put_page(*pagep);
5943 ret = -EEXIST;
5944 *pagep = NULL;
5945 goto out;
5946 }
5947
5948 page = alloc_huge_page(dst_vma, dst_addr, 0);
5949 if (IS_ERR(page)) {
5950 ret = -ENOMEM;
5951 *pagep = NULL;
5952 goto out;
5953 }
34892366
MS
5954 copy_user_huge_page(page, *pagep, dst_addr, dst_vma,
5955 pages_per_huge_page(h));
8cc5fcbb 5956 put_page(*pagep);
8fb5debc
MK
5957 *pagep = NULL;
5958 }
5959
5960 /*
5961 * The memory barrier inside __SetPageUptodate makes sure that
5962 * preceding stores to the page contents become visible before
5963 * the set_pte_at() write.
5964 */
5965 __SetPageUptodate(page);
8fb5debc 5966
f6191471
AR
5967 /* Add shared, newly allocated pages to the page cache. */
5968 if (vm_shared && !is_continue) {
1e392147
AA
5969 size = i_size_read(mapping->host) >> huge_page_shift(h);
5970 ret = -EFAULT;
5971 if (idx >= size)
5972 goto out_release_nounlock;
1c9e8def 5973
1e392147
AA
5974 /*
5975 * Serialization between remove_inode_hugepages() and
5976 * huge_add_to_page_cache() below happens through the
5977 * hugetlb_fault_mutex_table that here must be hold by
5978 * the caller.
5979 */
1c9e8def
MK
5980 ret = huge_add_to_page_cache(page, mapping, idx);
5981 if (ret)
5982 goto out_release_nounlock;
cc30042d 5983 page_in_pagecache = true;
1c9e8def
MK
5984 }
5985
8fb5debc
MK
5986 ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
5987 spin_lock(ptl);
5988
1e392147
AA
5989 /*
5990 * Recheck the i_size after holding PT lock to make sure not
5991 * to leave any page mapped (as page_mapped()) beyond the end
5992 * of the i_size (remove_inode_hugepages() is strict about
5993 * enforcing that). If we bail out here, we'll also leave a
5994 * page in the radix tree in the vm_shared case beyond the end
5995 * of the i_size, but remove_inode_hugepages() will take care
5996 * of it as soon as we drop the hugetlb_fault_mutex_table.
5997 */
5998 size = i_size_read(mapping->host) >> huge_page_shift(h);
5999 ret = -EFAULT;
6000 if (idx >= size)
6001 goto out_release_unlock;
6002
8fb5debc 6003 ret = -EEXIST;
6041c691
PX
6004 /*
6005 * We allow to overwrite a pte marker: consider when both MISSING|WP
6006 * registered, we firstly wr-protect a none pte which has no page cache
6007 * page backing it, then access the page.
6008 */
6009 if (!huge_pte_none_mostly(huge_ptep_get(dst_pte)))
8fb5debc
MK
6010 goto out_release_unlock;
6011
1c9e8def 6012 if (vm_shared) {
fb3d824d 6013 page_dup_file_rmap(page, true);
1c9e8def 6014 } else {
d6995da3 6015 ClearHPageRestoreReserve(page);
1c9e8def
MK
6016 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
6017 }
8fb5debc 6018
6041c691
PX
6019 /*
6020 * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY
6021 * with wp flag set, don't set pte write bit.
6022 */
6023 if (wp_copy || (is_continue && !vm_shared))
f6191471
AR
6024 writable = 0;
6025 else
6026 writable = dst_vma->vm_flags & VM_WRITE;
6027
6028 _dst_pte = make_huge_pte(dst_vma, page, writable);
6041c691
PX
6029 /*
6030 * Always mark UFFDIO_COPY page dirty; note that this may not be
6031 * extremely important for hugetlbfs for now since swapping is not
6032 * supported, but we should still be clear in that this page cannot be
6033 * thrown away at will, even if write bit not set.
6034 */
6035 _dst_pte = huge_pte_mkdirty(_dst_pte);
8fb5debc
MK
6036 _dst_pte = pte_mkyoung(_dst_pte);
6037
6041c691
PX
6038 if (wp_copy)
6039 _dst_pte = huge_pte_mkuffd_wp(_dst_pte);
6040
8fb5debc
MK
6041 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
6042
6043 (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
6044 dst_vma->vm_flags & VM_WRITE);
6045 hugetlb_count_add(pages_per_huge_page(h), dst_mm);
6046
6047 /* No need to invalidate - it was non-present before */
6048 update_mmu_cache(dst_vma, dst_addr, dst_pte);
6049
6050 spin_unlock(ptl);
f6191471
AR
6051 if (!is_continue)
6052 SetHPageMigratable(page);
6053 if (vm_shared || is_continue)
1c9e8def 6054 unlock_page(page);
8fb5debc
MK
6055 ret = 0;
6056out:
6057 return ret;
6058out_release_unlock:
6059 spin_unlock(ptl);
f6191471 6060 if (vm_shared || is_continue)
1c9e8def 6061 unlock_page(page);
5af10dfd 6062out_release_nounlock:
cc30042d 6063 if (!page_in_pagecache)
c7b1850d 6064 restore_reserve_on_error(h, dst_vma, dst_addr, page);
8fb5debc
MK
6065 put_page(page);
6066 goto out;
6067}
714c1891 6068#endif /* CONFIG_USERFAULTFD */
8fb5debc 6069
82e5d378
JM
6070static void record_subpages_vmas(struct page *page, struct vm_area_struct *vma,
6071 int refs, struct page **pages,
6072 struct vm_area_struct **vmas)
6073{
6074 int nr;
6075
6076 for (nr = 0; nr < refs; nr++) {
6077 if (likely(pages))
6078 pages[nr] = mem_map_offset(page, nr);
6079 if (vmas)
6080 vmas[nr] = vma;
6081 }
6082}
6083
a7f22660
DH
6084static inline bool __follow_hugetlb_must_fault(unsigned int flags, pte_t *pte,
6085 bool *unshare)
6086{
6087 pte_t pteval = huge_ptep_get(pte);
6088
6089 *unshare = false;
6090 if (is_swap_pte(pteval))
6091 return true;
6092 if (huge_pte_write(pteval))
6093 return false;
6094 if (flags & FOLL_WRITE)
6095 return true;
6096 if (gup_must_unshare(flags, pte_page(pteval))) {
6097 *unshare = true;
6098 return true;
6099 }
6100 return false;
6101}
6102
28a35716
ML
6103long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
6104 struct page **pages, struct vm_area_struct **vmas,
6105 unsigned long *position, unsigned long *nr_pages,
4f6da934 6106 long i, unsigned int flags, int *locked)
63551ae0 6107{
d5d4b0aa
CK
6108 unsigned long pfn_offset;
6109 unsigned long vaddr = *position;
28a35716 6110 unsigned long remainder = *nr_pages;
a5516438 6111 struct hstate *h = hstate_vma(vma);
0fa5bc40 6112 int err = -EFAULT, refs;
63551ae0 6113
63551ae0 6114 while (vaddr < vma->vm_end && remainder) {
4c887265 6115 pte_t *pte;
cb900f41 6116 spinlock_t *ptl = NULL;
a7f22660 6117 bool unshare = false;
2a15efc9 6118 int absent;
4c887265 6119 struct page *page;
63551ae0 6120
02057967
DR
6121 /*
6122 * If we have a pending SIGKILL, don't keep faulting pages and
6123 * potentially allocating memory.
6124 */
fa45f116 6125 if (fatal_signal_pending(current)) {
02057967
DR
6126 remainder = 0;
6127 break;
6128 }
6129
4c887265
AL
6130 /*
6131 * Some archs (sparc64, sh*) have multiple pte_ts to
2a15efc9 6132 * each hugepage. We have to make sure we get the
4c887265 6133 * first, for the page indexing below to work.
cb900f41
KS
6134 *
6135 * Note that page table lock is not held when pte is null.
4c887265 6136 */
7868a208
PA
6137 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
6138 huge_page_size(h));
cb900f41
KS
6139 if (pte)
6140 ptl = huge_pte_lock(h, mm, pte);
2a15efc9
HD
6141 absent = !pte || huge_pte_none(huge_ptep_get(pte));
6142
6143 /*
6144 * When coredumping, it suits get_dump_page if we just return
3ae77f43
HD
6145 * an error where there's an empty slot with no huge pagecache
6146 * to back it. This way, we avoid allocating a hugepage, and
6147 * the sparse dumpfile avoids allocating disk blocks, but its
6148 * huge holes still show up with zeroes where they need to be.
2a15efc9 6149 */
3ae77f43
HD
6150 if (absent && (flags & FOLL_DUMP) &&
6151 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
cb900f41
KS
6152 if (pte)
6153 spin_unlock(ptl);
2a15efc9
HD
6154 remainder = 0;
6155 break;
6156 }
63551ae0 6157
9cc3a5bd
NH
6158 /*
6159 * We need call hugetlb_fault for both hugepages under migration
6160 * (in which case hugetlb_fault waits for the migration,) and
6161 * hwpoisoned hugepages (in which case we need to prevent the
6162 * caller from accessing to them.) In order to do this, we use
6163 * here is_swap_pte instead of is_hugetlb_entry_migration and
6164 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
6165 * both cases, and because we can't follow correct pages
6166 * directly from any kind of swap entries.
6167 */
a7f22660
DH
6168 if (absent ||
6169 __follow_hugetlb_must_fault(flags, pte, &unshare)) {
2b740303 6170 vm_fault_t ret;
87ffc118 6171 unsigned int fault_flags = 0;
63551ae0 6172
cb900f41
KS
6173 if (pte)
6174 spin_unlock(ptl);
87ffc118
AA
6175 if (flags & FOLL_WRITE)
6176 fault_flags |= FAULT_FLAG_WRITE;
a7f22660
DH
6177 else if (unshare)
6178 fault_flags |= FAULT_FLAG_UNSHARE;
4f6da934 6179 if (locked)
71335f37
PX
6180 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
6181 FAULT_FLAG_KILLABLE;
87ffc118
AA
6182 if (flags & FOLL_NOWAIT)
6183 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
6184 FAULT_FLAG_RETRY_NOWAIT;
6185 if (flags & FOLL_TRIED) {
4426e945
PX
6186 /*
6187 * Note: FAULT_FLAG_ALLOW_RETRY and
6188 * FAULT_FLAG_TRIED can co-exist
6189 */
87ffc118
AA
6190 fault_flags |= FAULT_FLAG_TRIED;
6191 }
6192 ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
6193 if (ret & VM_FAULT_ERROR) {
2be7cfed 6194 err = vm_fault_to_errno(ret, flags);
87ffc118
AA
6195 remainder = 0;
6196 break;
6197 }
6198 if (ret & VM_FAULT_RETRY) {
4f6da934 6199 if (locked &&
1ac25013 6200 !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
4f6da934 6201 *locked = 0;
87ffc118
AA
6202 *nr_pages = 0;
6203 /*
6204 * VM_FAULT_RETRY must not return an
6205 * error, it will return zero
6206 * instead.
6207 *
6208 * No need to update "position" as the
6209 * caller will not check it after
6210 * *nr_pages is set to 0.
6211 */
6212 return i;
6213 }
6214 continue;
4c887265
AL
6215 }
6216
a5516438 6217 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
7f2e9525 6218 page = pte_page(huge_ptep_get(pte));
8fde12ca 6219
b6a2619c
DH
6220 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
6221 !PageAnonExclusive(page), page);
6222
acbfb087
ZL
6223 /*
6224 * If subpage information not requested, update counters
6225 * and skip the same_page loop below.
6226 */
6227 if (!pages && !vmas && !pfn_offset &&
6228 (vaddr + huge_page_size(h) < vma->vm_end) &&
6229 (remainder >= pages_per_huge_page(h))) {
6230 vaddr += huge_page_size(h);
6231 remainder -= pages_per_huge_page(h);
6232 i += pages_per_huge_page(h);
6233 spin_unlock(ptl);
6234 continue;
6235 }
6236
d08af0a5
JM
6237 /* vaddr may not be aligned to PAGE_SIZE */
6238 refs = min3(pages_per_huge_page(h) - pfn_offset, remainder,
6239 (vma->vm_end - ALIGN_DOWN(vaddr, PAGE_SIZE)) >> PAGE_SHIFT);
0fa5bc40 6240
82e5d378
JM
6241 if (pages || vmas)
6242 record_subpages_vmas(mem_map_offset(page, pfn_offset),
6243 vma, refs,
6244 likely(pages) ? pages + i : NULL,
6245 vmas ? vmas + i : NULL);
63551ae0 6246
82e5d378 6247 if (pages) {
0fa5bc40 6248 /*
822951d8 6249 * try_grab_folio() should always succeed here,
0fa5bc40
JM
6250 * because: a) we hold the ptl lock, and b) we've just
6251 * checked that the huge page is present in the page
6252 * tables. If the huge page is present, then the tail
6253 * pages must also be present. The ptl prevents the
6254 * head page and tail pages from being rearranged in
6255 * any way. So this page must be available at this
6256 * point, unless the page refcount overflowed:
6257 */
822951d8
MWO
6258 if (WARN_ON_ONCE(!try_grab_folio(pages[i], refs,
6259 flags))) {
0fa5bc40
JM
6260 spin_unlock(ptl);
6261 remainder = 0;
6262 err = -ENOMEM;
6263 break;
6264 }
d5d4b0aa 6265 }
82e5d378
JM
6266
6267 vaddr += (refs << PAGE_SHIFT);
6268 remainder -= refs;
6269 i += refs;
6270
cb900f41 6271 spin_unlock(ptl);
63551ae0 6272 }
28a35716 6273 *nr_pages = remainder;
87ffc118
AA
6274 /*
6275 * setting position is actually required only if remainder is
6276 * not zero but it's faster not to add a "if (remainder)"
6277 * branch.
6278 */
63551ae0
DG
6279 *position = vaddr;
6280
2be7cfed 6281 return i ? i : err;
63551ae0 6282}
8f860591 6283
7da4d641 6284unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
5a90d5a1
PX
6285 unsigned long address, unsigned long end,
6286 pgprot_t newprot, unsigned long cp_flags)
8f860591
ZY
6287{
6288 struct mm_struct *mm = vma->vm_mm;
6289 unsigned long start = address;
6290 pte_t *ptep;
6291 pte_t pte;
a5516438 6292 struct hstate *h = hstate_vma(vma);
60dfaad6 6293 unsigned long pages = 0, psize = huge_page_size(h);
dff11abe 6294 bool shared_pmd = false;
ac46d4f3 6295 struct mmu_notifier_range range;
5a90d5a1
PX
6296 bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
6297 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
dff11abe
MK
6298
6299 /*
6300 * In the case of shared PMDs, the area to flush could be beyond
ac46d4f3 6301 * start/end. Set range.start/range.end to cover the maximum possible
dff11abe
MK
6302 * range if PMD sharing is possible.
6303 */
7269f999
JG
6304 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
6305 0, vma, mm, start, end);
ac46d4f3 6306 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
8f860591
ZY
6307
6308 BUG_ON(address >= end);
ac46d4f3 6309 flush_cache_range(vma, range.start, range.end);
8f860591 6310
ac46d4f3 6311 mmu_notifier_invalidate_range_start(&range);
83cde9e8 6312 i_mmap_lock_write(vma->vm_file->f_mapping);
60dfaad6 6313 for (; address < end; address += psize) {
cb900f41 6314 spinlock_t *ptl;
60dfaad6 6315 ptep = huge_pte_offset(mm, address, psize);
8f860591
ZY
6316 if (!ptep)
6317 continue;
cb900f41 6318 ptl = huge_pte_lock(h, mm, ptep);
34ae204f 6319 if (huge_pmd_unshare(mm, vma, &address, ptep)) {
60dfaad6
PX
6320 /*
6321 * When uffd-wp is enabled on the vma, unshare
6322 * shouldn't happen at all. Warn about it if it
6323 * happened due to some reason.
6324 */
6325 WARN_ON_ONCE(uffd_wp || uffd_wp_resolve);
7da4d641 6326 pages++;
cb900f41 6327 spin_unlock(ptl);
dff11abe 6328 shared_pmd = true;
39dde65c 6329 continue;
7da4d641 6330 }
a8bda28d
NH
6331 pte = huge_ptep_get(ptep);
6332 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
6333 spin_unlock(ptl);
6334 continue;
6335 }
6336 if (unlikely(is_hugetlb_entry_migration(pte))) {
6337 swp_entry_t entry = pte_to_swp_entry(pte);
6c287605 6338 struct page *page = pfn_swap_entry_to_page(entry);
a8bda28d 6339
6c287605 6340 if (!is_readable_migration_entry(entry)) {
a8bda28d
NH
6341 pte_t newpte;
6342
6c287605
DH
6343 if (PageAnon(page))
6344 entry = make_readable_exclusive_migration_entry(
6345 swp_offset(entry));
6346 else
6347 entry = make_readable_migration_entry(
6348 swp_offset(entry));
a8bda28d 6349 newpte = swp_entry_to_pte(entry);
5a90d5a1
PX
6350 if (uffd_wp)
6351 newpte = pte_swp_mkuffd_wp(newpte);
6352 else if (uffd_wp_resolve)
6353 newpte = pte_swp_clear_uffd_wp(newpte);
e5251fd4 6354 set_huge_swap_pte_at(mm, address, ptep,
60dfaad6 6355 newpte, psize);
a8bda28d
NH
6356 pages++;
6357 }
6358 spin_unlock(ptl);
6359 continue;
6360 }
60dfaad6
PX
6361 if (unlikely(pte_marker_uffd_wp(pte))) {
6362 /*
6363 * This is changing a non-present pte into a none pte,
6364 * no need for huge_ptep_modify_prot_start/commit().
6365 */
6366 if (uffd_wp_resolve)
6367 huge_pte_clear(mm, address, ptep, psize);
6368 }
a8bda28d 6369 if (!huge_pte_none(pte)) {
023bdd00 6370 pte_t old_pte;
79c1c594 6371 unsigned int shift = huge_page_shift(hstate_vma(vma));
023bdd00
AK
6372
6373 old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
16785bd7 6374 pte = huge_pte_modify(old_pte, newprot);
79c1c594 6375 pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
5a90d5a1
PX
6376 if (uffd_wp)
6377 pte = huge_pte_mkuffd_wp(huge_pte_wrprotect(pte));
6378 else if (uffd_wp_resolve)
6379 pte = huge_pte_clear_uffd_wp(pte);
023bdd00 6380 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
7da4d641 6381 pages++;
60dfaad6
PX
6382 } else {
6383 /* None pte */
6384 if (unlikely(uffd_wp))
6385 /* Safe to modify directly (none->non-present). */
6386 set_huge_pte_at(mm, address, ptep,
6387 make_pte_marker(PTE_MARKER_UFFD_WP));
8f860591 6388 }
cb900f41 6389 spin_unlock(ptl);
8f860591 6390 }
d833352a 6391 /*
c8c06efa 6392 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
d833352a 6393 * may have cleared our pud entry and done put_page on the page table:
c8c06efa 6394 * once we release i_mmap_rwsem, another task can do the final put_page
dff11abe
MK
6395 * and that page table be reused and filled with junk. If we actually
6396 * did unshare a page of pmds, flush the range corresponding to the pud.
d833352a 6397 */
dff11abe 6398 if (shared_pmd)
ac46d4f3 6399 flush_hugetlb_tlb_range(vma, range.start, range.end);
dff11abe
MK
6400 else
6401 flush_hugetlb_tlb_range(vma, start, end);
0f10851e
JG
6402 /*
6403 * No need to call mmu_notifier_invalidate_range() we are downgrading
6404 * page table protection not changing it to point to a new page.
6405 *
ee65728e 6406 * See Documentation/mm/mmu_notifier.rst
0f10851e 6407 */
83cde9e8 6408 i_mmap_unlock_write(vma->vm_file->f_mapping);
ac46d4f3 6409 mmu_notifier_invalidate_range_end(&range);
7da4d641
PZ
6410
6411 return pages << h->order;
8f860591
ZY
6412}
6413
33b8f84a
MK
6414/* Return true if reservation was successful, false otherwise. */
6415bool hugetlb_reserve_pages(struct inode *inode,
a1e78772 6416 long from, long to,
5a6fe125 6417 struct vm_area_struct *vma,
ca16d140 6418 vm_flags_t vm_flags)
e4e574b7 6419{
33b8f84a 6420 long chg, add = -1;
a5516438 6421 struct hstate *h = hstate_inode(inode);
90481622 6422 struct hugepage_subpool *spool = subpool_inode(inode);
9119a41e 6423 struct resv_map *resv_map;
075a61d0 6424 struct hugetlb_cgroup *h_cg = NULL;
0db9d74e 6425 long gbl_reserve, regions_needed = 0;
e4e574b7 6426
63489f8e
MK
6427 /* This should never happen */
6428 if (from > to) {
6429 VM_WARN(1, "%s called with a negative range\n", __func__);
33b8f84a 6430 return false;
63489f8e
MK
6431 }
6432
17c9d12e
MG
6433 /*
6434 * Only apply hugepage reservation if asked. At fault time, an
6435 * attempt will be made for VM_NORESERVE to allocate a page
90481622 6436 * without using reserves
17c9d12e 6437 */
ca16d140 6438 if (vm_flags & VM_NORESERVE)
33b8f84a 6439 return true;
17c9d12e 6440
a1e78772
MG
6441 /*
6442 * Shared mappings base their reservation on the number of pages that
6443 * are already allocated on behalf of the file. Private mappings need
6444 * to reserve the full area even if read-only as mprotect() may be
6445 * called to make the mapping read-write. Assume !vma is a shm mapping
6446 */
9119a41e 6447 if (!vma || vma->vm_flags & VM_MAYSHARE) {
f27a5136
MK
6448 /*
6449 * resv_map can not be NULL as hugetlb_reserve_pages is only
6450 * called for inodes for which resv_maps were created (see
6451 * hugetlbfs_get_inode).
6452 */
4e35f483 6453 resv_map = inode_resv_map(inode);
9119a41e 6454
0db9d74e 6455 chg = region_chg(resv_map, from, to, &regions_needed);
9119a41e
JK
6456
6457 } else {
e9fe92ae 6458 /* Private mapping. */
9119a41e 6459 resv_map = resv_map_alloc();
17c9d12e 6460 if (!resv_map)
33b8f84a 6461 return false;
17c9d12e 6462
a1e78772 6463 chg = to - from;
84afd99b 6464
17c9d12e
MG
6465 set_vma_resv_map(vma, resv_map);
6466 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
6467 }
6468
33b8f84a 6469 if (chg < 0)
c50ac050 6470 goto out_err;
8a630112 6471
33b8f84a
MK
6472 if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
6473 chg * pages_per_huge_page(h), &h_cg) < 0)
075a61d0 6474 goto out_err;
075a61d0
MA
6475
6476 if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
6477 /* For private mappings, the hugetlb_cgroup uncharge info hangs
6478 * of the resv_map.
6479 */
6480 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
6481 }
6482
1c5ecae3
MK
6483 /*
6484 * There must be enough pages in the subpool for the mapping. If
6485 * the subpool has a minimum size, there may be some global
6486 * reservations already in place (gbl_reserve).
6487 */
6488 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
33b8f84a 6489 if (gbl_reserve < 0)
075a61d0 6490 goto out_uncharge_cgroup;
5a6fe125
MG
6491
6492 /*
17c9d12e 6493 * Check enough hugepages are available for the reservation.
90481622 6494 * Hand the pages back to the subpool if there are not
5a6fe125 6495 */
33b8f84a 6496 if (hugetlb_acct_memory(h, gbl_reserve) < 0)
075a61d0 6497 goto out_put_pages;
17c9d12e
MG
6498
6499 /*
6500 * Account for the reservations made. Shared mappings record regions
6501 * that have reservations as they are shared by multiple VMAs.
6502 * When the last VMA disappears, the region map says how much
6503 * the reservation was and the page cache tells how much of
6504 * the reservation was consumed. Private mappings are per-VMA and
6505 * only the consumed reservations are tracked. When the VMA
6506 * disappears, the original reservation is the VMA size and the
6507 * consumed reservations are stored in the map. Hence, nothing
6508 * else has to be done for private mappings here
6509 */
33039678 6510 if (!vma || vma->vm_flags & VM_MAYSHARE) {
075a61d0 6511 add = region_add(resv_map, from, to, regions_needed, h, h_cg);
0db9d74e
MA
6512
6513 if (unlikely(add < 0)) {
6514 hugetlb_acct_memory(h, -gbl_reserve);
075a61d0 6515 goto out_put_pages;
0db9d74e 6516 } else if (unlikely(chg > add)) {
33039678
MK
6517 /*
6518 * pages in this range were added to the reserve
6519 * map between region_chg and region_add. This
6520 * indicates a race with alloc_huge_page. Adjust
6521 * the subpool and reserve counts modified above
6522 * based on the difference.
6523 */
6524 long rsv_adjust;
6525
d85aecf2
ML
6526 /*
6527 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
6528 * reference to h_cg->css. See comment below for detail.
6529 */
075a61d0
MA
6530 hugetlb_cgroup_uncharge_cgroup_rsvd(
6531 hstate_index(h),
6532 (chg - add) * pages_per_huge_page(h), h_cg);
6533
33039678
MK
6534 rsv_adjust = hugepage_subpool_put_pages(spool,
6535 chg - add);
6536 hugetlb_acct_memory(h, -rsv_adjust);
d85aecf2
ML
6537 } else if (h_cg) {
6538 /*
6539 * The file_regions will hold their own reference to
6540 * h_cg->css. So we should release the reference held
6541 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
6542 * done.
6543 */
6544 hugetlb_cgroup_put_rsvd_cgroup(h_cg);
33039678
MK
6545 }
6546 }
33b8f84a
MK
6547 return true;
6548
075a61d0
MA
6549out_put_pages:
6550 /* put back original number of pages, chg */
6551 (void)hugepage_subpool_put_pages(spool, chg);
6552out_uncharge_cgroup:
6553 hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
6554 chg * pages_per_huge_page(h), h_cg);
c50ac050 6555out_err:
5e911373 6556 if (!vma || vma->vm_flags & VM_MAYSHARE)
0db9d74e
MA
6557 /* Only call region_abort if the region_chg succeeded but the
6558 * region_add failed or didn't run.
6559 */
6560 if (chg >= 0 && add < 0)
6561 region_abort(resv_map, from, to, regions_needed);
f031dd27
JK
6562 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
6563 kref_put(&resv_map->refs, resv_map_release);
33b8f84a 6564 return false;
a43a8c39
CK
6565}
6566
b5cec28d
MK
6567long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
6568 long freed)
a43a8c39 6569{
a5516438 6570 struct hstate *h = hstate_inode(inode);
4e35f483 6571 struct resv_map *resv_map = inode_resv_map(inode);
9119a41e 6572 long chg = 0;
90481622 6573 struct hugepage_subpool *spool = subpool_inode(inode);
1c5ecae3 6574 long gbl_reserve;
45c682a6 6575
f27a5136
MK
6576 /*
6577 * Since this routine can be called in the evict inode path for all
6578 * hugetlbfs inodes, resv_map could be NULL.
6579 */
b5cec28d
MK
6580 if (resv_map) {
6581 chg = region_del(resv_map, start, end);
6582 /*
6583 * region_del() can fail in the rare case where a region
6584 * must be split and another region descriptor can not be
6585 * allocated. If end == LONG_MAX, it will not fail.
6586 */
6587 if (chg < 0)
6588 return chg;
6589 }
6590
45c682a6 6591 spin_lock(&inode->i_lock);
e4c6f8be 6592 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
45c682a6
KC
6593 spin_unlock(&inode->i_lock);
6594
1c5ecae3
MK
6595 /*
6596 * If the subpool has a minimum size, the number of global
6597 * reservations to be released may be adjusted.
dddf31a4
ML
6598 *
6599 * Note that !resv_map implies freed == 0. So (chg - freed)
6600 * won't go negative.
1c5ecae3
MK
6601 */
6602 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
6603 hugetlb_acct_memory(h, -gbl_reserve);
b5cec28d
MK
6604
6605 return 0;
a43a8c39 6606}
93f70f90 6607
3212b535
SC
6608#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
6609static unsigned long page_table_shareable(struct vm_area_struct *svma,
6610 struct vm_area_struct *vma,
6611 unsigned long addr, pgoff_t idx)
6612{
6613 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
6614 svma->vm_start;
6615 unsigned long sbase = saddr & PUD_MASK;
6616 unsigned long s_end = sbase + PUD_SIZE;
6617
6618 /* Allow segments to share if only one is marked locked */
de60f5f1
EM
6619 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
6620 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
3212b535
SC
6621
6622 /*
6623 * match the virtual addresses, permission and the alignment of the
6624 * page table page.
6625 */
6626 if (pmd_index(addr) != pmd_index(saddr) ||
6627 vm_flags != svm_flags ||
07e51edf 6628 !range_in_vma(svma, sbase, s_end))
3212b535
SC
6629 return 0;
6630
6631 return saddr;
6632}
6633
31aafb45 6634static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
3212b535
SC
6635{
6636 unsigned long base = addr & PUD_MASK;
6637 unsigned long end = base + PUD_SIZE;
6638
6639 /*
6640 * check on proper vm_flags and page table alignment
6641 */
017b1660 6642 if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
31aafb45
NK
6643 return true;
6644 return false;
3212b535
SC
6645}
6646
c1991e07
PX
6647bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
6648{
6649#ifdef CONFIG_USERFAULTFD
6650 if (uffd_disable_huge_pmd_share(vma))
6651 return false;
6652#endif
6653 return vma_shareable(vma, addr);
6654}
6655
017b1660
MK
6656/*
6657 * Determine if start,end range within vma could be mapped by shared pmd.
6658 * If yes, adjust start and end to cover range associated with possible
6659 * shared pmd mappings.
6660 */
6661void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
6662 unsigned long *start, unsigned long *end)
6663{
a1ba9da8
LX
6664 unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
6665 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
017b1660 6666
a1ba9da8 6667 /*
f0953a1b
IM
6668 * vma needs to span at least one aligned PUD size, and the range
6669 * must be at least partially within in.
a1ba9da8
LX
6670 */
6671 if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
6672 (*end <= v_start) || (*start >= v_end))
017b1660
MK
6673 return;
6674
75802ca6 6675 /* Extend the range to be PUD aligned for a worst case scenario */
a1ba9da8
LX
6676 if (*start > v_start)
6677 *start = ALIGN_DOWN(*start, PUD_SIZE);
017b1660 6678
a1ba9da8
LX
6679 if (*end < v_end)
6680 *end = ALIGN(*end, PUD_SIZE);
017b1660
MK
6681}
6682
3212b535
SC
6683/*
6684 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
6685 * and returns the corresponding pte. While this is not necessary for the
6686 * !shared pmd case because we can allocate the pmd later as well, it makes the
c0d0381a
MK
6687 * code much cleaner.
6688 *
0bf7b64e
MK
6689 * This routine must be called with i_mmap_rwsem held in at least read mode if
6690 * sharing is possible. For hugetlbfs, this prevents removal of any page
6691 * table entries associated with the address space. This is important as we
6692 * are setting up sharing based on existing page table entries (mappings).
3212b535 6693 */
aec44e0f
PX
6694pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
6695 unsigned long addr, pud_t *pud)
3212b535 6696{
3212b535
SC
6697 struct address_space *mapping = vma->vm_file->f_mapping;
6698 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
6699 vma->vm_pgoff;
6700 struct vm_area_struct *svma;
6701 unsigned long saddr;
6702 pte_t *spte = NULL;
6703 pte_t *pte;
cb900f41 6704 spinlock_t *ptl;
3212b535 6705
0bf7b64e 6706 i_mmap_assert_locked(mapping);
3212b535
SC
6707 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
6708 if (svma == vma)
6709 continue;
6710
6711 saddr = page_table_shareable(svma, vma, addr, idx);
6712 if (saddr) {
7868a208
PA
6713 spte = huge_pte_offset(svma->vm_mm, saddr,
6714 vma_mmu_pagesize(svma));
3212b535
SC
6715 if (spte) {
6716 get_page(virt_to_page(spte));
6717 break;
6718 }
6719 }
6720 }
6721
6722 if (!spte)
6723 goto out;
6724
8bea8052 6725 ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
dc6c9a35 6726 if (pud_none(*pud)) {
3212b535
SC
6727 pud_populate(mm, pud,
6728 (pmd_t *)((unsigned long)spte & PAGE_MASK));
c17b1f42 6729 mm_inc_nr_pmds(mm);
dc6c9a35 6730 } else {
3212b535 6731 put_page(virt_to_page(spte));
dc6c9a35 6732 }
cb900f41 6733 spin_unlock(ptl);
3212b535
SC
6734out:
6735 pte = (pte_t *)pmd_alloc(mm, pud, addr);
3212b535
SC
6736 return pte;
6737}
6738
6739/*
6740 * unmap huge page backed by shared pte.
6741 *
6742 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
6743 * indicated by page_count > 1, unmap is achieved by clearing pud and
6744 * decrementing the ref count. If count == 1, the pte page is not shared.
6745 *
c0d0381a 6746 * Called with page table lock held and i_mmap_rwsem held in write mode.
3212b535
SC
6747 *
6748 * returns: 1 successfully unmapped a shared pte page
6749 * 0 the underlying pte page is not shared, or it is the last user
6750 */
34ae204f
MK
6751int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
6752 unsigned long *addr, pte_t *ptep)
3212b535
SC
6753{
6754 pgd_t *pgd = pgd_offset(mm, *addr);
c2febafc
KS
6755 p4d_t *p4d = p4d_offset(pgd, *addr);
6756 pud_t *pud = pud_offset(p4d, *addr);
3212b535 6757
34ae204f 6758 i_mmap_assert_write_locked(vma->vm_file->f_mapping);
3212b535
SC
6759 BUG_ON(page_count(virt_to_page(ptep)) == 0);
6760 if (page_count(virt_to_page(ptep)) == 1)
6761 return 0;
6762
6763 pud_clear(pud);
6764 put_page(virt_to_page(ptep));
dc6c9a35 6765 mm_dec_nr_pmds(mm);
48381273
MK
6766 /*
6767 * This update of passed address optimizes loops sequentially
6768 * processing addresses in increments of huge page size (PMD_SIZE
6769 * in this case). By clearing the pud, a PUD_SIZE area is unmapped.
6770 * Update address to the 'last page' in the cleared area so that
6771 * calling loop can move to first page past this area.
6772 */
6773 *addr |= PUD_SIZE - PMD_SIZE;
3212b535
SC
6774 return 1;
6775}
c1991e07 6776
9e5fc74c 6777#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
aec44e0f
PX
6778pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
6779 unsigned long addr, pud_t *pud)
9e5fc74c
SC
6780{
6781 return NULL;
6782}
e81f2d22 6783
34ae204f
MK
6784int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
6785 unsigned long *addr, pte_t *ptep)
e81f2d22
ZZ
6786{
6787 return 0;
6788}
017b1660
MK
6789
6790void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
6791 unsigned long *start, unsigned long *end)
6792{
6793}
c1991e07
PX
6794
6795bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
6796{
6797 return false;
6798}
3212b535
SC
6799#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
6800
9e5fc74c 6801#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
aec44e0f 6802pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
9e5fc74c
SC
6803 unsigned long addr, unsigned long sz)
6804{
6805 pgd_t *pgd;
c2febafc 6806 p4d_t *p4d;
9e5fc74c
SC
6807 pud_t *pud;
6808 pte_t *pte = NULL;
6809
6810 pgd = pgd_offset(mm, addr);
f4f0a3d8
KS
6811 p4d = p4d_alloc(mm, pgd, addr);
6812 if (!p4d)
6813 return NULL;
c2febafc 6814 pud = pud_alloc(mm, p4d, addr);
9e5fc74c
SC
6815 if (pud) {
6816 if (sz == PUD_SIZE) {
6817 pte = (pte_t *)pud;
6818 } else {
6819 BUG_ON(sz != PMD_SIZE);
c1991e07 6820 if (want_pmd_share(vma, addr) && pud_none(*pud))
aec44e0f 6821 pte = huge_pmd_share(mm, vma, addr, pud);
9e5fc74c
SC
6822 else
6823 pte = (pte_t *)pmd_alloc(mm, pud, addr);
6824 }
6825 }
4e666314 6826 BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
9e5fc74c
SC
6827
6828 return pte;
6829}
6830
9b19df29
PA
6831/*
6832 * huge_pte_offset() - Walk the page table to resolve the hugepage
6833 * entry at address @addr
6834 *
8ac0b81a
LX
6835 * Return: Pointer to page table entry (PUD or PMD) for
6836 * address @addr, or NULL if a !p*d_present() entry is encountered and the
9b19df29
PA
6837 * size @sz doesn't match the hugepage size at this level of the page
6838 * table.
6839 */
7868a208
PA
6840pte_t *huge_pte_offset(struct mm_struct *mm,
6841 unsigned long addr, unsigned long sz)
9e5fc74c
SC
6842{
6843 pgd_t *pgd;
c2febafc 6844 p4d_t *p4d;
8ac0b81a
LX
6845 pud_t *pud;
6846 pmd_t *pmd;
9e5fc74c
SC
6847
6848 pgd = pgd_offset(mm, addr);
c2febafc
KS
6849 if (!pgd_present(*pgd))
6850 return NULL;
6851 p4d = p4d_offset(pgd, addr);
6852 if (!p4d_present(*p4d))
6853 return NULL;
9b19df29 6854
c2febafc 6855 pud = pud_offset(p4d, addr);
8ac0b81a
LX
6856 if (sz == PUD_SIZE)
6857 /* must be pud huge, non-present or none */
c2febafc 6858 return (pte_t *)pud;
8ac0b81a 6859 if (!pud_present(*pud))
9b19df29 6860 return NULL;
8ac0b81a 6861 /* must have a valid entry and size to go further */
9b19df29 6862
8ac0b81a
LX
6863 pmd = pmd_offset(pud, addr);
6864 /* must be pmd huge, non-present or none */
6865 return (pte_t *)pmd;
9e5fc74c
SC
6866}
6867
61f77eda
NH
6868#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
6869
6870/*
6871 * These functions are overwritable if your architecture needs its own
6872 * behavior.
6873 */
6874struct page * __weak
6875follow_huge_addr(struct mm_struct *mm, unsigned long address,
6876 int write)
6877{
6878 return ERR_PTR(-EINVAL);
6879}
6880
4dc71451
AK
6881struct page * __weak
6882follow_huge_pd(struct vm_area_struct *vma,
6883 unsigned long address, hugepd_t hpd, int flags, int pdshift)
6884{
6885 WARN(1, "hugepd follow called with no support for hugepage directory format\n");
6886 return NULL;
6887}
6888
61f77eda 6889struct page * __weak
9e5fc74c 6890follow_huge_pmd(struct mm_struct *mm, unsigned long address,
e66f17ff 6891 pmd_t *pmd, int flags)
9e5fc74c 6892{
e66f17ff
NH
6893 struct page *page = NULL;
6894 spinlock_t *ptl;
c9d398fa 6895 pte_t pte;
3faa52c0 6896
8909691b
DH
6897 /*
6898 * FOLL_PIN is not supported for follow_page(). Ordinary GUP goes via
6899 * follow_hugetlb_page().
6900 */
6901 if (WARN_ON_ONCE(flags & FOLL_PIN))
3faa52c0
JH
6902 return NULL;
6903
e66f17ff
NH
6904retry:
6905 ptl = pmd_lockptr(mm, pmd);
6906 spin_lock(ptl);
6907 /*
6908 * make sure that the address range covered by this pmd is not
6909 * unmapped from other threads.
6910 */
6911 if (!pmd_huge(*pmd))
6912 goto out;
c9d398fa
NH
6913 pte = huge_ptep_get((pte_t *)pmd);
6914 if (pte_present(pte)) {
97534127 6915 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
3faa52c0
JH
6916 /*
6917 * try_grab_page() should always succeed here, because: a) we
6918 * hold the pmd (ptl) lock, and b) we've just checked that the
6919 * huge pmd (head) page is present in the page tables. The ptl
6920 * prevents the head page and tail pages from being rearranged
6921 * in any way. So this page must be available at this point,
6922 * unless the page refcount overflowed:
6923 */
6924 if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
6925 page = NULL;
6926 goto out;
6927 }
e66f17ff 6928 } else {
c9d398fa 6929 if (is_hugetlb_entry_migration(pte)) {
e66f17ff
NH
6930 spin_unlock(ptl);
6931 __migration_entry_wait(mm, (pte_t *)pmd, ptl);
6932 goto retry;
6933 }
6934 /*
6935 * hwpoisoned entry is treated as no_page_table in
6936 * follow_page_mask().
6937 */
6938 }
6939out:
6940 spin_unlock(ptl);
9e5fc74c
SC
6941 return page;
6942}
6943
61f77eda 6944struct page * __weak
9e5fc74c 6945follow_huge_pud(struct mm_struct *mm, unsigned long address,
e66f17ff 6946 pud_t *pud, int flags)
9e5fc74c 6947{
3faa52c0 6948 if (flags & (FOLL_GET | FOLL_PIN))
e66f17ff 6949 return NULL;
9e5fc74c 6950
e66f17ff 6951 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
9e5fc74c
SC
6952}
6953
faaa5b62
AK
6954struct page * __weak
6955follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
6956{
3faa52c0 6957 if (flags & (FOLL_GET | FOLL_PIN))
faaa5b62
AK
6958 return NULL;
6959
6960 return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
6961}
6962
31caf665
NH
6963bool isolate_huge_page(struct page *page, struct list_head *list)
6964{
bcc54222
NH
6965 bool ret = true;
6966
db71ef79 6967 spin_lock_irq(&hugetlb_lock);
8f251a3d
MK
6968 if (!PageHeadHuge(page) ||
6969 !HPageMigratable(page) ||
0eb2df2b 6970 !get_page_unless_zero(page)) {
bcc54222
NH
6971 ret = false;
6972 goto unlock;
6973 }
8f251a3d 6974 ClearHPageMigratable(page);
31caf665 6975 list_move_tail(&page->lru, list);
bcc54222 6976unlock:
db71ef79 6977 spin_unlock_irq(&hugetlb_lock);
bcc54222 6978 return ret;
31caf665
NH
6979}
6980
25182f05
NH
6981int get_hwpoison_huge_page(struct page *page, bool *hugetlb)
6982{
6983 int ret = 0;
6984
6985 *hugetlb = false;
6986 spin_lock_irq(&hugetlb_lock);
6987 if (PageHeadHuge(page)) {
6988 *hugetlb = true;
b283d983
NH
6989 if (HPageFreed(page))
6990 ret = 0;
6991 else if (HPageMigratable(page))
25182f05 6992 ret = get_page_unless_zero(page);
0ed950d1
NH
6993 else
6994 ret = -EBUSY;
25182f05
NH
6995 }
6996 spin_unlock_irq(&hugetlb_lock);
6997 return ret;
6998}
6999
405ce051
NH
7000int get_huge_page_for_hwpoison(unsigned long pfn, int flags)
7001{
7002 int ret;
7003
7004 spin_lock_irq(&hugetlb_lock);
7005 ret = __get_huge_page_for_hwpoison(pfn, flags);
7006 spin_unlock_irq(&hugetlb_lock);
7007 return ret;
7008}
7009
31caf665
NH
7010void putback_active_hugepage(struct page *page)
7011{
db71ef79 7012 spin_lock_irq(&hugetlb_lock);
8f251a3d 7013 SetHPageMigratable(page);
31caf665 7014 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
db71ef79 7015 spin_unlock_irq(&hugetlb_lock);
31caf665
NH
7016 put_page(page);
7017}
ab5ac90a
MH
7018
7019void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
7020{
7021 struct hstate *h = page_hstate(oldpage);
7022
7023 hugetlb_cgroup_migrate(oldpage, newpage);
7024 set_page_owner_migrate_reason(newpage, reason);
7025
7026 /*
7027 * transfer temporary state of the new huge page. This is
7028 * reverse to other transitions because the newpage is going to
7029 * be final while the old one will be freed so it takes over
7030 * the temporary status.
7031 *
7032 * Also note that we have to transfer the per-node surplus state
7033 * here as well otherwise the global surplus count will not match
7034 * the per-node's.
7035 */
9157c311 7036 if (HPageTemporary(newpage)) {
ab5ac90a
MH
7037 int old_nid = page_to_nid(oldpage);
7038 int new_nid = page_to_nid(newpage);
7039
9157c311
MK
7040 SetHPageTemporary(oldpage);
7041 ClearHPageTemporary(newpage);
ab5ac90a 7042
5af1ab1d
ML
7043 /*
7044 * There is no need to transfer the per-node surplus state
7045 * when we do not cross the node.
7046 */
7047 if (new_nid == old_nid)
7048 return;
db71ef79 7049 spin_lock_irq(&hugetlb_lock);
ab5ac90a
MH
7050 if (h->surplus_huge_pages_node[old_nid]) {
7051 h->surplus_huge_pages_node[old_nid]--;
7052 h->surplus_huge_pages_node[new_nid]++;
7053 }
db71ef79 7054 spin_unlock_irq(&hugetlb_lock);
ab5ac90a
MH
7055 }
7056}
cf11e85f 7057
6dfeaff9
PX
7058/*
7059 * This function will unconditionally remove all the shared pmd pgtable entries
7060 * within the specific vma for a hugetlbfs memory range.
7061 */
7062void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
7063{
7064 struct hstate *h = hstate_vma(vma);
7065 unsigned long sz = huge_page_size(h);
7066 struct mm_struct *mm = vma->vm_mm;
7067 struct mmu_notifier_range range;
7068 unsigned long address, start, end;
7069 spinlock_t *ptl;
7070 pte_t *ptep;
7071
7072 if (!(vma->vm_flags & VM_MAYSHARE))
7073 return;
7074
7075 start = ALIGN(vma->vm_start, PUD_SIZE);
7076 end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
7077
7078 if (start >= end)
7079 return;
7080
9c8bbfac 7081 flush_cache_range(vma, start, end);
6dfeaff9
PX
7082 /*
7083 * No need to call adjust_range_if_pmd_sharing_possible(), because
7084 * we have already done the PUD_SIZE alignment.
7085 */
7086 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
7087 start, end);
7088 mmu_notifier_invalidate_range_start(&range);
7089 i_mmap_lock_write(vma->vm_file->f_mapping);
7090 for (address = start; address < end; address += PUD_SIZE) {
7091 unsigned long tmp = address;
7092
7093 ptep = huge_pte_offset(mm, address, sz);
7094 if (!ptep)
7095 continue;
7096 ptl = huge_pte_lock(h, mm, ptep);
7097 /* We don't want 'address' to be changed */
7098 huge_pmd_unshare(mm, vma, &tmp, ptep);
7099 spin_unlock(ptl);
7100 }
7101 flush_hugetlb_tlb_range(vma, start, end);
7102 i_mmap_unlock_write(vma->vm_file->f_mapping);
7103 /*
7104 * No need to call mmu_notifier_invalidate_range(), see
ee65728e 7105 * Documentation/mm/mmu_notifier.rst.
6dfeaff9
PX
7106 */
7107 mmu_notifier_invalidate_range_end(&range);
7108}
7109
cf11e85f 7110#ifdef CONFIG_CMA
cf11e85f
RG
7111static bool cma_reserve_called __initdata;
7112
7113static int __init cmdline_parse_hugetlb_cma(char *p)
7114{
38e719ab
BW
7115 int nid, count = 0;
7116 unsigned long tmp;
7117 char *s = p;
7118
7119 while (*s) {
7120 if (sscanf(s, "%lu%n", &tmp, &count) != 1)
7121 break;
7122
7123 if (s[count] == ':') {
f9317f77 7124 if (tmp >= MAX_NUMNODES)
38e719ab 7125 break;
f9317f77 7126 nid = array_index_nospec(tmp, MAX_NUMNODES);
38e719ab
BW
7127
7128 s += count + 1;
7129 tmp = memparse(s, &s);
7130 hugetlb_cma_size_in_node[nid] = tmp;
7131 hugetlb_cma_size += tmp;
7132
7133 /*
7134 * Skip the separator if have one, otherwise
7135 * break the parsing.
7136 */
7137 if (*s == ',')
7138 s++;
7139 else
7140 break;
7141 } else {
7142 hugetlb_cma_size = memparse(p, &p);
7143 break;
7144 }
7145 }
7146
cf11e85f
RG
7147 return 0;
7148}
7149
7150early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
7151
7152void __init hugetlb_cma_reserve(int order)
7153{
7154 unsigned long size, reserved, per_node;
38e719ab 7155 bool node_specific_cma_alloc = false;
cf11e85f
RG
7156 int nid;
7157
7158 cma_reserve_called = true;
7159
38e719ab
BW
7160 if (!hugetlb_cma_size)
7161 return;
7162
7163 for (nid = 0; nid < MAX_NUMNODES; nid++) {
7164 if (hugetlb_cma_size_in_node[nid] == 0)
7165 continue;
7166
30a51400 7167 if (!node_online(nid)) {
38e719ab
BW
7168 pr_warn("hugetlb_cma: invalid node %d specified\n", nid);
7169 hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7170 hugetlb_cma_size_in_node[nid] = 0;
7171 continue;
7172 }
7173
7174 if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) {
7175 pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n",
7176 nid, (PAGE_SIZE << order) / SZ_1M);
7177 hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7178 hugetlb_cma_size_in_node[nid] = 0;
7179 } else {
7180 node_specific_cma_alloc = true;
7181 }
7182 }
7183
7184 /* Validate the CMA size again in case some invalid nodes specified. */
cf11e85f
RG
7185 if (!hugetlb_cma_size)
7186 return;
7187
7188 if (hugetlb_cma_size < (PAGE_SIZE << order)) {
7189 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
7190 (PAGE_SIZE << order) / SZ_1M);
a01f4390 7191 hugetlb_cma_size = 0;
cf11e85f
RG
7192 return;
7193 }
7194
38e719ab
BW
7195 if (!node_specific_cma_alloc) {
7196 /*
7197 * If 3 GB area is requested on a machine with 4 numa nodes,
7198 * let's allocate 1 GB on first three nodes and ignore the last one.
7199 */
7200 per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
7201 pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
7202 hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
7203 }
cf11e85f
RG
7204
7205 reserved = 0;
30a51400 7206 for_each_online_node(nid) {
cf11e85f 7207 int res;
2281f797 7208 char name[CMA_MAX_NAME];
cf11e85f 7209
38e719ab
BW
7210 if (node_specific_cma_alloc) {
7211 if (hugetlb_cma_size_in_node[nid] == 0)
7212 continue;
7213
7214 size = hugetlb_cma_size_in_node[nid];
7215 } else {
7216 size = min(per_node, hugetlb_cma_size - reserved);
7217 }
7218
cf11e85f
RG
7219 size = round_up(size, PAGE_SIZE << order);
7220
2281f797 7221 snprintf(name, sizeof(name), "hugetlb%d", nid);
a01f4390
MK
7222 /*
7223 * Note that 'order per bit' is based on smallest size that
7224 * may be returned to CMA allocator in the case of
7225 * huge page demotion.
7226 */
7227 res = cma_declare_contiguous_nid(0, size, 0,
7228 PAGE_SIZE << HUGETLB_PAGE_ORDER,
29d0f41d 7229 0, false, name,
cf11e85f
RG
7230 &hugetlb_cma[nid], nid);
7231 if (res) {
7232 pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
7233 res, nid);
7234 continue;
7235 }
7236
7237 reserved += size;
7238 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
7239 size / SZ_1M, nid);
7240
7241 if (reserved >= hugetlb_cma_size)
7242 break;
7243 }
a01f4390
MK
7244
7245 if (!reserved)
7246 /*
7247 * hugetlb_cma_size is used to determine if allocations from
7248 * cma are possible. Set to zero if no cma regions are set up.
7249 */
7250 hugetlb_cma_size = 0;
cf11e85f
RG
7251}
7252
7253void __init hugetlb_cma_check(void)
7254{
7255 if (!hugetlb_cma_size || cma_reserve_called)
7256 return;
7257
7258 pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
7259}
7260
7261#endif /* CONFIG_CMA */