hugetlb/cgroup: add support for cgroup removal
[linux-2.6-block.git] / mm / hugetlb.c
CommitLineData
1da177e4
LT
1/*
2 * Generic hugetlb support.
3 * (C) William Irwin, April 2004
4 */
1da177e4
LT
5#include <linux/list.h>
6#include <linux/init.h>
7#include <linux/module.h>
8#include <linux/mm.h>
e1759c21 9#include <linux/seq_file.h>
1da177e4
LT
10#include <linux/sysctl.h>
11#include <linux/highmem.h>
cddb8a5c 12#include <linux/mmu_notifier.h>
1da177e4 13#include <linux/nodemask.h>
63551ae0 14#include <linux/pagemap.h>
5da7ca86 15#include <linux/mempolicy.h>
aea47ff3 16#include <linux/cpuset.h>
3935baa9 17#include <linux/mutex.h>
aa888a74 18#include <linux/bootmem.h>
a3437870 19#include <linux/sysfs.h>
5a0e3ad6 20#include <linux/slab.h>
0fe6e20b 21#include <linux/rmap.h>
fd6a03ed
NH
22#include <linux/swap.h>
23#include <linux/swapops.h>
d6606683 24
63551ae0
DG
25#include <asm/page.h>
26#include <asm/pgtable.h>
24669e58 27#include <asm/tlb.h>
63551ae0 28
24669e58 29#include <linux/io.h>
63551ae0 30#include <linux/hugetlb.h>
9dd540e2 31#include <linux/hugetlb_cgroup.h>
9a305230 32#include <linux/node.h>
7835e98b 33#include "internal.h"
1da177e4
LT
34
35const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
396faf03
MG
36static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
37unsigned long hugepages_treat_as_movable;
a5516438 38
c3f38a38 39int hugetlb_max_hstate __read_mostly;
e5ff2159
AK
40unsigned int default_hstate_idx;
41struct hstate hstates[HUGE_MAX_HSTATE];
42
53ba51d2
JT
43__initdata LIST_HEAD(huge_boot_pages);
44
e5ff2159
AK
45/* for command line parsing */
46static struct hstate * __initdata parsed_hstate;
47static unsigned long __initdata default_hstate_max_huge_pages;
e11bfbfc 48static unsigned long __initdata default_hstate_size;
e5ff2159 49
3935baa9
DG
50/*
51 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
52 */
c3f38a38 53DEFINE_SPINLOCK(hugetlb_lock);
0bd0f9fb 54
90481622
DG
55static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
56{
57 bool free = (spool->count == 0) && (spool->used_hpages == 0);
58
59 spin_unlock(&spool->lock);
60
61 /* If no pages are used, and no other handles to the subpool
62 * remain, free the subpool the subpool remain */
63 if (free)
64 kfree(spool);
65}
66
67struct hugepage_subpool *hugepage_new_subpool(long nr_blocks)
68{
69 struct hugepage_subpool *spool;
70
71 spool = kmalloc(sizeof(*spool), GFP_KERNEL);
72 if (!spool)
73 return NULL;
74
75 spin_lock_init(&spool->lock);
76 spool->count = 1;
77 spool->max_hpages = nr_blocks;
78 spool->used_hpages = 0;
79
80 return spool;
81}
82
83void hugepage_put_subpool(struct hugepage_subpool *spool)
84{
85 spin_lock(&spool->lock);
86 BUG_ON(!spool->count);
87 spool->count--;
88 unlock_or_release_subpool(spool);
89}
90
91static int hugepage_subpool_get_pages(struct hugepage_subpool *spool,
92 long delta)
93{
94 int ret = 0;
95
96 if (!spool)
97 return 0;
98
99 spin_lock(&spool->lock);
100 if ((spool->used_hpages + delta) <= spool->max_hpages) {
101 spool->used_hpages += delta;
102 } else {
103 ret = -ENOMEM;
104 }
105 spin_unlock(&spool->lock);
106
107 return ret;
108}
109
110static void hugepage_subpool_put_pages(struct hugepage_subpool *spool,
111 long delta)
112{
113 if (!spool)
114 return;
115
116 spin_lock(&spool->lock);
117 spool->used_hpages -= delta;
118 /* If hugetlbfs_put_super couldn't free spool due to
119 * an outstanding quota reference, free it now. */
120 unlock_or_release_subpool(spool);
121}
122
123static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
124{
125 return HUGETLBFS_SB(inode->i_sb)->spool;
126}
127
128static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
129{
130 return subpool_inode(vma->vm_file->f_dentry->d_inode);
131}
132
96822904
AW
133/*
134 * Region tracking -- allows tracking of reservations and instantiated pages
135 * across the pages in a mapping.
84afd99b
AW
136 *
137 * The region data structures are protected by a combination of the mmap_sem
138 * and the hugetlb_instantion_mutex. To access or modify a region the caller
139 * must either hold the mmap_sem for write, or the mmap_sem for read and
140 * the hugetlb_instantiation mutex:
141 *
32f84528 142 * down_write(&mm->mmap_sem);
84afd99b 143 * or
32f84528
CF
144 * down_read(&mm->mmap_sem);
145 * mutex_lock(&hugetlb_instantiation_mutex);
96822904
AW
146 */
147struct file_region {
148 struct list_head link;
149 long from;
150 long to;
151};
152
153static long region_add(struct list_head *head, long f, long t)
154{
155 struct file_region *rg, *nrg, *trg;
156
157 /* Locate the region we are either in or before. */
158 list_for_each_entry(rg, head, link)
159 if (f <= rg->to)
160 break;
161
162 /* Round our left edge to the current segment if it encloses us. */
163 if (f > rg->from)
164 f = rg->from;
165
166 /* Check for and consume any regions we now overlap with. */
167 nrg = rg;
168 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
169 if (&rg->link == head)
170 break;
171 if (rg->from > t)
172 break;
173
174 /* If this area reaches higher then extend our area to
175 * include it completely. If this is not the first area
176 * which we intend to reuse, free it. */
177 if (rg->to > t)
178 t = rg->to;
179 if (rg != nrg) {
180 list_del(&rg->link);
181 kfree(rg);
182 }
183 }
184 nrg->from = f;
185 nrg->to = t;
186 return 0;
187}
188
189static long region_chg(struct list_head *head, long f, long t)
190{
191 struct file_region *rg, *nrg;
192 long chg = 0;
193
194 /* Locate the region we are before or in. */
195 list_for_each_entry(rg, head, link)
196 if (f <= rg->to)
197 break;
198
199 /* If we are below the current region then a new region is required.
200 * Subtle, allocate a new region at the position but make it zero
201 * size such that we can guarantee to record the reservation. */
202 if (&rg->link == head || t < rg->from) {
203 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
204 if (!nrg)
205 return -ENOMEM;
206 nrg->from = f;
207 nrg->to = f;
208 INIT_LIST_HEAD(&nrg->link);
209 list_add(&nrg->link, rg->link.prev);
210
211 return t - f;
212 }
213
214 /* Round our left edge to the current segment if it encloses us. */
215 if (f > rg->from)
216 f = rg->from;
217 chg = t - f;
218
219 /* Check for and consume any regions we now overlap with. */
220 list_for_each_entry(rg, rg->link.prev, link) {
221 if (&rg->link == head)
222 break;
223 if (rg->from > t)
224 return chg;
225
25985edc 226 /* We overlap with this area, if it extends further than
96822904
AW
227 * us then we must extend ourselves. Account for its
228 * existing reservation. */
229 if (rg->to > t) {
230 chg += rg->to - t;
231 t = rg->to;
232 }
233 chg -= rg->to - rg->from;
234 }
235 return chg;
236}
237
238static long region_truncate(struct list_head *head, long end)
239{
240 struct file_region *rg, *trg;
241 long chg = 0;
242
243 /* Locate the region we are either in or before. */
244 list_for_each_entry(rg, head, link)
245 if (end <= rg->to)
246 break;
247 if (&rg->link == head)
248 return 0;
249
250 /* If we are in the middle of a region then adjust it. */
251 if (end > rg->from) {
252 chg = rg->to - end;
253 rg->to = end;
254 rg = list_entry(rg->link.next, typeof(*rg), link);
255 }
256
257 /* Drop any remaining regions. */
258 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
259 if (&rg->link == head)
260 break;
261 chg += rg->to - rg->from;
262 list_del(&rg->link);
263 kfree(rg);
264 }
265 return chg;
266}
267
84afd99b
AW
268static long region_count(struct list_head *head, long f, long t)
269{
270 struct file_region *rg;
271 long chg = 0;
272
273 /* Locate each segment we overlap with, and count that overlap. */
274 list_for_each_entry(rg, head, link) {
f2135a4a
WSH
275 long seg_from;
276 long seg_to;
84afd99b
AW
277
278 if (rg->to <= f)
279 continue;
280 if (rg->from >= t)
281 break;
282
283 seg_from = max(rg->from, f);
284 seg_to = min(rg->to, t);
285
286 chg += seg_to - seg_from;
287 }
288
289 return chg;
290}
291
e7c4b0bf
AW
292/*
293 * Convert the address within this vma to the page offset within
294 * the mapping, in pagecache page units; huge pages here.
295 */
a5516438
AK
296static pgoff_t vma_hugecache_offset(struct hstate *h,
297 struct vm_area_struct *vma, unsigned long address)
e7c4b0bf 298{
a5516438
AK
299 return ((address - vma->vm_start) >> huge_page_shift(h)) +
300 (vma->vm_pgoff >> huge_page_order(h));
e7c4b0bf
AW
301}
302
0fe6e20b
NH
303pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
304 unsigned long address)
305{
306 return vma_hugecache_offset(hstate_vma(vma), vma, address);
307}
308
08fba699
MG
309/*
310 * Return the size of the pages allocated when backing a VMA. In the majority
311 * cases this will be same size as used by the page table entries.
312 */
313unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
314{
315 struct hstate *hstate;
316
317 if (!is_vm_hugetlb_page(vma))
318 return PAGE_SIZE;
319
320 hstate = hstate_vma(vma);
321
322 return 1UL << (hstate->order + PAGE_SHIFT);
323}
f340ca0f 324EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
08fba699 325
3340289d
MG
326/*
327 * Return the page size being used by the MMU to back a VMA. In the majority
328 * of cases, the page size used by the kernel matches the MMU size. On
329 * architectures where it differs, an architecture-specific version of this
330 * function is required.
331 */
332#ifndef vma_mmu_pagesize
333unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
334{
335 return vma_kernel_pagesize(vma);
336}
337#endif
338
84afd99b
AW
339/*
340 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
341 * bits of the reservation map pointer, which are always clear due to
342 * alignment.
343 */
344#define HPAGE_RESV_OWNER (1UL << 0)
345#define HPAGE_RESV_UNMAPPED (1UL << 1)
04f2cbe3 346#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
84afd99b 347
a1e78772
MG
348/*
349 * These helpers are used to track how many pages are reserved for
350 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
351 * is guaranteed to have their future faults succeed.
352 *
353 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
354 * the reserve counters are updated with the hugetlb_lock held. It is safe
355 * to reset the VMA at fork() time as it is not in use yet and there is no
356 * chance of the global counters getting corrupted as a result of the values.
84afd99b
AW
357 *
358 * The private mapping reservation is represented in a subtly different
359 * manner to a shared mapping. A shared mapping has a region map associated
360 * with the underlying file, this region map represents the backing file
361 * pages which have ever had a reservation assigned which this persists even
362 * after the page is instantiated. A private mapping has a region map
363 * associated with the original mmap which is attached to all VMAs which
364 * reference it, this region map represents those offsets which have consumed
365 * reservation ie. where pages have been instantiated.
a1e78772 366 */
e7c4b0bf
AW
367static unsigned long get_vma_private_data(struct vm_area_struct *vma)
368{
369 return (unsigned long)vma->vm_private_data;
370}
371
372static void set_vma_private_data(struct vm_area_struct *vma,
373 unsigned long value)
374{
375 vma->vm_private_data = (void *)value;
376}
377
84afd99b
AW
378struct resv_map {
379 struct kref refs;
380 struct list_head regions;
381};
382
2a4b3ded 383static struct resv_map *resv_map_alloc(void)
84afd99b
AW
384{
385 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
386 if (!resv_map)
387 return NULL;
388
389 kref_init(&resv_map->refs);
390 INIT_LIST_HEAD(&resv_map->regions);
391
392 return resv_map;
393}
394
2a4b3ded 395static void resv_map_release(struct kref *ref)
84afd99b
AW
396{
397 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
398
399 /* Clear out any active regions before we release the map. */
400 region_truncate(&resv_map->regions, 0);
401 kfree(resv_map);
402}
403
404static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
a1e78772
MG
405{
406 VM_BUG_ON(!is_vm_hugetlb_page(vma));
f83a275d 407 if (!(vma->vm_flags & VM_MAYSHARE))
84afd99b
AW
408 return (struct resv_map *)(get_vma_private_data(vma) &
409 ~HPAGE_RESV_MASK);
2a4b3ded 410 return NULL;
a1e78772
MG
411}
412
84afd99b 413static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
a1e78772
MG
414{
415 VM_BUG_ON(!is_vm_hugetlb_page(vma));
f83a275d 416 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
a1e78772 417
84afd99b
AW
418 set_vma_private_data(vma, (get_vma_private_data(vma) &
419 HPAGE_RESV_MASK) | (unsigned long)map);
04f2cbe3
MG
420}
421
422static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
423{
04f2cbe3 424 VM_BUG_ON(!is_vm_hugetlb_page(vma));
f83a275d 425 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
e7c4b0bf
AW
426
427 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
04f2cbe3
MG
428}
429
430static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
431{
432 VM_BUG_ON(!is_vm_hugetlb_page(vma));
e7c4b0bf
AW
433
434 return (get_vma_private_data(vma) & flag) != 0;
a1e78772
MG
435}
436
437/* Decrement the reserved pages in the hugepage pool by one */
a5516438
AK
438static void decrement_hugepage_resv_vma(struct hstate *h,
439 struct vm_area_struct *vma)
a1e78772 440{
c37f9fb1
AW
441 if (vma->vm_flags & VM_NORESERVE)
442 return;
443
f83a275d 444 if (vma->vm_flags & VM_MAYSHARE) {
a1e78772 445 /* Shared mappings always use reserves */
a5516438 446 h->resv_huge_pages--;
84afd99b 447 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
a1e78772
MG
448 /*
449 * Only the process that called mmap() has reserves for
450 * private mappings.
451 */
a5516438 452 h->resv_huge_pages--;
a1e78772
MG
453 }
454}
455
04f2cbe3 456/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
a1e78772
MG
457void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
458{
459 VM_BUG_ON(!is_vm_hugetlb_page(vma));
f83a275d 460 if (!(vma->vm_flags & VM_MAYSHARE))
a1e78772
MG
461 vma->vm_private_data = (void *)0;
462}
463
464/* Returns true if the VMA has associated reserve pages */
7f09ca51 465static int vma_has_reserves(struct vm_area_struct *vma)
a1e78772 466{
f83a275d 467 if (vma->vm_flags & VM_MAYSHARE)
7f09ca51
MG
468 return 1;
469 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
470 return 1;
471 return 0;
a1e78772
MG
472}
473
0ebabb41
NH
474static void copy_gigantic_page(struct page *dst, struct page *src)
475{
476 int i;
477 struct hstate *h = page_hstate(src);
478 struct page *dst_base = dst;
479 struct page *src_base = src;
480
481 for (i = 0; i < pages_per_huge_page(h); ) {
482 cond_resched();
483 copy_highpage(dst, src);
484
485 i++;
486 dst = mem_map_next(dst, dst_base, i);
487 src = mem_map_next(src, src_base, i);
488 }
489}
490
491void copy_huge_page(struct page *dst, struct page *src)
492{
493 int i;
494 struct hstate *h = page_hstate(src);
495
496 if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
497 copy_gigantic_page(dst, src);
498 return;
499 }
500
501 might_sleep();
502 for (i = 0; i < pages_per_huge_page(h); i++) {
503 cond_resched();
504 copy_highpage(dst + i, src + i);
505 }
506}
507
a5516438 508static void enqueue_huge_page(struct hstate *h, struct page *page)
1da177e4
LT
509{
510 int nid = page_to_nid(page);
0edaecfa 511 list_move(&page->lru, &h->hugepage_freelists[nid]);
a5516438
AK
512 h->free_huge_pages++;
513 h->free_huge_pages_node[nid]++;
1da177e4
LT
514}
515
bf50bab2
NH
516static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
517{
518 struct page *page;
519
520 if (list_empty(&h->hugepage_freelists[nid]))
521 return NULL;
522 page = list_entry(h->hugepage_freelists[nid].next, struct page, lru);
0edaecfa 523 list_move(&page->lru, &h->hugepage_activelist);
a9869b83 524 set_page_refcounted(page);
bf50bab2
NH
525 h->free_huge_pages--;
526 h->free_huge_pages_node[nid]--;
527 return page;
528}
529
a5516438
AK
530static struct page *dequeue_huge_page_vma(struct hstate *h,
531 struct vm_area_struct *vma,
04f2cbe3 532 unsigned long address, int avoid_reserve)
1da177e4 533{
b1c12cbc 534 struct page *page = NULL;
480eccf9 535 struct mempolicy *mpol;
19770b32 536 nodemask_t *nodemask;
c0ff7453 537 struct zonelist *zonelist;
dd1a239f
MG
538 struct zone *zone;
539 struct zoneref *z;
cc9a6c87 540 unsigned int cpuset_mems_cookie;
1da177e4 541
cc9a6c87
MG
542retry_cpuset:
543 cpuset_mems_cookie = get_mems_allowed();
c0ff7453
MX
544 zonelist = huge_zonelist(vma, address,
545 htlb_alloc_mask, &mpol, &nodemask);
a1e78772
MG
546 /*
547 * A child process with MAP_PRIVATE mappings created by their parent
548 * have no page reserves. This check ensures that reservations are
549 * not "stolen". The child may still get SIGKILLed
550 */
7f09ca51 551 if (!vma_has_reserves(vma) &&
a5516438 552 h->free_huge_pages - h->resv_huge_pages == 0)
c0ff7453 553 goto err;
a1e78772 554
04f2cbe3 555 /* If reserves cannot be used, ensure enough pages are in the pool */
a5516438 556 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
6eab04a8 557 goto err;
04f2cbe3 558
19770b32
MG
559 for_each_zone_zonelist_nodemask(zone, z, zonelist,
560 MAX_NR_ZONES - 1, nodemask) {
bf50bab2
NH
561 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask)) {
562 page = dequeue_huge_page_node(h, zone_to_nid(zone));
563 if (page) {
564 if (!avoid_reserve)
565 decrement_hugepage_resv_vma(h, vma);
566 break;
567 }
3abf7afd 568 }
1da177e4 569 }
cc9a6c87 570
52cd3b07 571 mpol_cond_put(mpol);
cc9a6c87
MG
572 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
573 goto retry_cpuset;
1da177e4 574 return page;
cc9a6c87
MG
575
576err:
577 mpol_cond_put(mpol);
578 return NULL;
1da177e4
LT
579}
580
a5516438 581static void update_and_free_page(struct hstate *h, struct page *page)
6af2acb6
AL
582{
583 int i;
a5516438 584
18229df5
AW
585 VM_BUG_ON(h->order >= MAX_ORDER);
586
a5516438
AK
587 h->nr_huge_pages--;
588 h->nr_huge_pages_node[page_to_nid(page)]--;
589 for (i = 0; i < pages_per_huge_page(h); i++) {
32f84528
CF
590 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
591 1 << PG_referenced | 1 << PG_dirty |
592 1 << PG_active | 1 << PG_reserved |
593 1 << PG_private | 1 << PG_writeback);
6af2acb6 594 }
9dd540e2 595 VM_BUG_ON(hugetlb_cgroup_from_page(page));
6af2acb6
AL
596 set_compound_page_dtor(page, NULL);
597 set_page_refcounted(page);
7f2e9525 598 arch_release_hugepage(page);
a5516438 599 __free_pages(page, huge_page_order(h));
6af2acb6
AL
600}
601
e5ff2159
AK
602struct hstate *size_to_hstate(unsigned long size)
603{
604 struct hstate *h;
605
606 for_each_hstate(h) {
607 if (huge_page_size(h) == size)
608 return h;
609 }
610 return NULL;
611}
612
27a85ef1
DG
613static void free_huge_page(struct page *page)
614{
a5516438
AK
615 /*
616 * Can't pass hstate in here because it is called from the
617 * compound page destructor.
618 */
e5ff2159 619 struct hstate *h = page_hstate(page);
7893d1d5 620 int nid = page_to_nid(page);
90481622
DG
621 struct hugepage_subpool *spool =
622 (struct hugepage_subpool *)page_private(page);
27a85ef1 623
e5df70ab 624 set_page_private(page, 0);
23be7468 625 page->mapping = NULL;
7893d1d5 626 BUG_ON(page_count(page));
0fe6e20b 627 BUG_ON(page_mapcount(page));
27a85ef1
DG
628
629 spin_lock(&hugetlb_lock);
6d76dcf4
AK
630 hugetlb_cgroup_uncharge_page(hstate_index(h),
631 pages_per_huge_page(h), page);
aa888a74 632 if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
0edaecfa
AK
633 /* remove the page from active list */
634 list_del(&page->lru);
a5516438
AK
635 update_and_free_page(h, page);
636 h->surplus_huge_pages--;
637 h->surplus_huge_pages_node[nid]--;
7893d1d5 638 } else {
a5516438 639 enqueue_huge_page(h, page);
7893d1d5 640 }
27a85ef1 641 spin_unlock(&hugetlb_lock);
90481622 642 hugepage_subpool_put_pages(spool, 1);
27a85ef1
DG
643}
644
a5516438 645static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
b7ba30c6 646{
0edaecfa 647 INIT_LIST_HEAD(&page->lru);
b7ba30c6
AK
648 set_compound_page_dtor(page, free_huge_page);
649 spin_lock(&hugetlb_lock);
9dd540e2 650 set_hugetlb_cgroup(page, NULL);
a5516438
AK
651 h->nr_huge_pages++;
652 h->nr_huge_pages_node[nid]++;
b7ba30c6
AK
653 spin_unlock(&hugetlb_lock);
654 put_page(page); /* free it into the hugepage allocator */
655}
656
20a0307c
WF
657static void prep_compound_gigantic_page(struct page *page, unsigned long order)
658{
659 int i;
660 int nr_pages = 1 << order;
661 struct page *p = page + 1;
662
663 /* we rely on prep_new_huge_page to set the destructor */
664 set_compound_order(page, order);
665 __SetPageHead(page);
666 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
667 __SetPageTail(p);
58a84aa9 668 set_page_count(p, 0);
20a0307c
WF
669 p->first_page = page;
670 }
671}
672
673int PageHuge(struct page *page)
674{
675 compound_page_dtor *dtor;
676
677 if (!PageCompound(page))
678 return 0;
679
680 page = compound_head(page);
681 dtor = get_compound_page_dtor(page);
682
683 return dtor == free_huge_page;
684}
43131e14
NH
685EXPORT_SYMBOL_GPL(PageHuge);
686
a5516438 687static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
1da177e4 688{
1da177e4 689 struct page *page;
f96efd58 690
aa888a74
AK
691 if (h->order >= MAX_ORDER)
692 return NULL;
693
6484eb3e 694 page = alloc_pages_exact_node(nid,
551883ae
NA
695 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
696 __GFP_REPEAT|__GFP_NOWARN,
a5516438 697 huge_page_order(h));
1da177e4 698 if (page) {
7f2e9525 699 if (arch_prepare_hugepage(page)) {
caff3a2c 700 __free_pages(page, huge_page_order(h));
7b8ee84d 701 return NULL;
7f2e9525 702 }
a5516438 703 prep_new_huge_page(h, page, nid);
1da177e4 704 }
63b4613c
NA
705
706 return page;
707}
708
9a76db09 709/*
6ae11b27
LS
710 * common helper functions for hstate_next_node_to_{alloc|free}.
711 * We may have allocated or freed a huge page based on a different
712 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
713 * be outside of *nodes_allowed. Ensure that we use an allowed
714 * node for alloc or free.
9a76db09 715 */
6ae11b27 716static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
9a76db09 717{
6ae11b27 718 nid = next_node(nid, *nodes_allowed);
9a76db09 719 if (nid == MAX_NUMNODES)
6ae11b27 720 nid = first_node(*nodes_allowed);
9a76db09
LS
721 VM_BUG_ON(nid >= MAX_NUMNODES);
722
723 return nid;
724}
725
6ae11b27
LS
726static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
727{
728 if (!node_isset(nid, *nodes_allowed))
729 nid = next_node_allowed(nid, nodes_allowed);
730 return nid;
731}
732
5ced66c9 733/*
6ae11b27
LS
734 * returns the previously saved node ["this node"] from which to
735 * allocate a persistent huge page for the pool and advance the
736 * next node from which to allocate, handling wrap at end of node
737 * mask.
5ced66c9 738 */
6ae11b27
LS
739static int hstate_next_node_to_alloc(struct hstate *h,
740 nodemask_t *nodes_allowed)
5ced66c9 741{
6ae11b27
LS
742 int nid;
743
744 VM_BUG_ON(!nodes_allowed);
745
746 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
747 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
9a76db09 748
9a76db09 749 return nid;
5ced66c9
AK
750}
751
6ae11b27 752static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
63b4613c
NA
753{
754 struct page *page;
755 int start_nid;
756 int next_nid;
757 int ret = 0;
758
6ae11b27 759 start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
e8c5c824 760 next_nid = start_nid;
63b4613c
NA
761
762 do {
e8c5c824 763 page = alloc_fresh_huge_page_node(h, next_nid);
9a76db09 764 if (page) {
63b4613c 765 ret = 1;
9a76db09
LS
766 break;
767 }
6ae11b27 768 next_nid = hstate_next_node_to_alloc(h, nodes_allowed);
9a76db09 769 } while (next_nid != start_nid);
63b4613c 770
3b116300
AL
771 if (ret)
772 count_vm_event(HTLB_BUDDY_PGALLOC);
773 else
774 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
775
63b4613c 776 return ret;
1da177e4
LT
777}
778
e8c5c824 779/*
6ae11b27
LS
780 * helper for free_pool_huge_page() - return the previously saved
781 * node ["this node"] from which to free a huge page. Advance the
782 * next node id whether or not we find a free huge page to free so
783 * that the next attempt to free addresses the next node.
e8c5c824 784 */
6ae11b27 785static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
e8c5c824 786{
6ae11b27
LS
787 int nid;
788
789 VM_BUG_ON(!nodes_allowed);
790
791 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
792 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
9a76db09 793
9a76db09 794 return nid;
e8c5c824
LS
795}
796
797/*
798 * Free huge page from pool from next node to free.
799 * Attempt to keep persistent huge pages more or less
800 * balanced over allowed nodes.
801 * Called with hugetlb_lock locked.
802 */
6ae11b27
LS
803static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
804 bool acct_surplus)
e8c5c824
LS
805{
806 int start_nid;
807 int next_nid;
808 int ret = 0;
809
6ae11b27 810 start_nid = hstate_next_node_to_free(h, nodes_allowed);
e8c5c824
LS
811 next_nid = start_nid;
812
813 do {
685f3457
LS
814 /*
815 * If we're returning unused surplus pages, only examine
816 * nodes with surplus pages.
817 */
818 if ((!acct_surplus || h->surplus_huge_pages_node[next_nid]) &&
819 !list_empty(&h->hugepage_freelists[next_nid])) {
e8c5c824
LS
820 struct page *page =
821 list_entry(h->hugepage_freelists[next_nid].next,
822 struct page, lru);
823 list_del(&page->lru);
824 h->free_huge_pages--;
825 h->free_huge_pages_node[next_nid]--;
685f3457
LS
826 if (acct_surplus) {
827 h->surplus_huge_pages--;
828 h->surplus_huge_pages_node[next_nid]--;
829 }
e8c5c824
LS
830 update_and_free_page(h, page);
831 ret = 1;
9a76db09 832 break;
e8c5c824 833 }
6ae11b27 834 next_nid = hstate_next_node_to_free(h, nodes_allowed);
9a76db09 835 } while (next_nid != start_nid);
e8c5c824
LS
836
837 return ret;
838}
839
bf50bab2 840static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
7893d1d5
AL
841{
842 struct page *page;
bf50bab2 843 unsigned int r_nid;
7893d1d5 844
aa888a74
AK
845 if (h->order >= MAX_ORDER)
846 return NULL;
847
d1c3fb1f
NA
848 /*
849 * Assume we will successfully allocate the surplus page to
850 * prevent racing processes from causing the surplus to exceed
851 * overcommit
852 *
853 * This however introduces a different race, where a process B
854 * tries to grow the static hugepage pool while alloc_pages() is
855 * called by process A. B will only examine the per-node
856 * counters in determining if surplus huge pages can be
857 * converted to normal huge pages in adjust_pool_surplus(). A
858 * won't be able to increment the per-node counter, until the
859 * lock is dropped by B, but B doesn't drop hugetlb_lock until
860 * no more huge pages can be converted from surplus to normal
861 * state (and doesn't try to convert again). Thus, we have a
862 * case where a surplus huge page exists, the pool is grown, and
863 * the surplus huge page still exists after, even though it
864 * should just have been converted to a normal huge page. This
865 * does not leak memory, though, as the hugepage will be freed
866 * once it is out of use. It also does not allow the counters to
867 * go out of whack in adjust_pool_surplus() as we don't modify
868 * the node values until we've gotten the hugepage and only the
869 * per-node value is checked there.
870 */
871 spin_lock(&hugetlb_lock);
a5516438 872 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
d1c3fb1f
NA
873 spin_unlock(&hugetlb_lock);
874 return NULL;
875 } else {
a5516438
AK
876 h->nr_huge_pages++;
877 h->surplus_huge_pages++;
d1c3fb1f
NA
878 }
879 spin_unlock(&hugetlb_lock);
880
bf50bab2
NH
881 if (nid == NUMA_NO_NODE)
882 page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
883 __GFP_REPEAT|__GFP_NOWARN,
884 huge_page_order(h));
885 else
886 page = alloc_pages_exact_node(nid,
887 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
888 __GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
d1c3fb1f 889
caff3a2c
GS
890 if (page && arch_prepare_hugepage(page)) {
891 __free_pages(page, huge_page_order(h));
ea5768c7 892 page = NULL;
caff3a2c
GS
893 }
894
d1c3fb1f 895 spin_lock(&hugetlb_lock);
7893d1d5 896 if (page) {
0edaecfa 897 INIT_LIST_HEAD(&page->lru);
bf50bab2 898 r_nid = page_to_nid(page);
7893d1d5 899 set_compound_page_dtor(page, free_huge_page);
9dd540e2 900 set_hugetlb_cgroup(page, NULL);
d1c3fb1f
NA
901 /*
902 * We incremented the global counters already
903 */
bf50bab2
NH
904 h->nr_huge_pages_node[r_nid]++;
905 h->surplus_huge_pages_node[r_nid]++;
3b116300 906 __count_vm_event(HTLB_BUDDY_PGALLOC);
d1c3fb1f 907 } else {
a5516438
AK
908 h->nr_huge_pages--;
909 h->surplus_huge_pages--;
3b116300 910 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
7893d1d5 911 }
d1c3fb1f 912 spin_unlock(&hugetlb_lock);
7893d1d5
AL
913
914 return page;
915}
916
bf50bab2
NH
917/*
918 * This allocation function is useful in the context where vma is irrelevant.
919 * E.g. soft-offlining uses this function because it only cares physical
920 * address of error page.
921 */
922struct page *alloc_huge_page_node(struct hstate *h, int nid)
923{
924 struct page *page;
925
926 spin_lock(&hugetlb_lock);
927 page = dequeue_huge_page_node(h, nid);
928 spin_unlock(&hugetlb_lock);
929
930 if (!page)
931 page = alloc_buddy_huge_page(h, nid);
932
933 return page;
934}
935
e4e574b7 936/*
25985edc 937 * Increase the hugetlb pool such that it can accommodate a reservation
e4e574b7
AL
938 * of size 'delta'.
939 */
a5516438 940static int gather_surplus_pages(struct hstate *h, int delta)
e4e574b7
AL
941{
942 struct list_head surplus_list;
943 struct page *page, *tmp;
944 int ret, i;
945 int needed, allocated;
28073b02 946 bool alloc_ok = true;
e4e574b7 947
a5516438 948 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
ac09b3a1 949 if (needed <= 0) {
a5516438 950 h->resv_huge_pages += delta;
e4e574b7 951 return 0;
ac09b3a1 952 }
e4e574b7
AL
953
954 allocated = 0;
955 INIT_LIST_HEAD(&surplus_list);
956
957 ret = -ENOMEM;
958retry:
959 spin_unlock(&hugetlb_lock);
960 for (i = 0; i < needed; i++) {
bf50bab2 961 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
28073b02
HD
962 if (!page) {
963 alloc_ok = false;
964 break;
965 }
e4e574b7
AL
966 list_add(&page->lru, &surplus_list);
967 }
28073b02 968 allocated += i;
e4e574b7
AL
969
970 /*
971 * After retaking hugetlb_lock, we need to recalculate 'needed'
972 * because either resv_huge_pages or free_huge_pages may have changed.
973 */
974 spin_lock(&hugetlb_lock);
a5516438
AK
975 needed = (h->resv_huge_pages + delta) -
976 (h->free_huge_pages + allocated);
28073b02
HD
977 if (needed > 0) {
978 if (alloc_ok)
979 goto retry;
980 /*
981 * We were not able to allocate enough pages to
982 * satisfy the entire reservation so we free what
983 * we've allocated so far.
984 */
985 goto free;
986 }
e4e574b7
AL
987 /*
988 * The surplus_list now contains _at_least_ the number of extra pages
25985edc 989 * needed to accommodate the reservation. Add the appropriate number
e4e574b7 990 * of pages to the hugetlb pool and free the extras back to the buddy
ac09b3a1
AL
991 * allocator. Commit the entire reservation here to prevent another
992 * process from stealing the pages as they are added to the pool but
993 * before they are reserved.
e4e574b7
AL
994 */
995 needed += allocated;
a5516438 996 h->resv_huge_pages += delta;
e4e574b7 997 ret = 0;
a9869b83 998
19fc3f0a 999 /* Free the needed pages to the hugetlb pool */
e4e574b7 1000 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
19fc3f0a
AL
1001 if ((--needed) < 0)
1002 break;
a9869b83
NH
1003 /*
1004 * This page is now managed by the hugetlb allocator and has
1005 * no users -- drop the buddy allocator's reference.
1006 */
1007 put_page_testzero(page);
1008 VM_BUG_ON(page_count(page));
a5516438 1009 enqueue_huge_page(h, page);
19fc3f0a 1010 }
28073b02 1011free:
b0365c8d 1012 spin_unlock(&hugetlb_lock);
19fc3f0a
AL
1013
1014 /* Free unnecessary surplus pages to the buddy allocator */
1015 if (!list_empty(&surplus_list)) {
19fc3f0a 1016 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
a9869b83 1017 put_page(page);
af767cbd 1018 }
e4e574b7 1019 }
a9869b83 1020 spin_lock(&hugetlb_lock);
e4e574b7
AL
1021
1022 return ret;
1023}
1024
1025/*
1026 * When releasing a hugetlb pool reservation, any surplus pages that were
1027 * allocated to satisfy the reservation must be explicitly freed if they were
1028 * never used.
685f3457 1029 * Called with hugetlb_lock held.
e4e574b7 1030 */
a5516438
AK
1031static void return_unused_surplus_pages(struct hstate *h,
1032 unsigned long unused_resv_pages)
e4e574b7 1033{
e4e574b7
AL
1034 unsigned long nr_pages;
1035
ac09b3a1 1036 /* Uncommit the reservation */
a5516438 1037 h->resv_huge_pages -= unused_resv_pages;
ac09b3a1 1038
aa888a74
AK
1039 /* Cannot return gigantic pages currently */
1040 if (h->order >= MAX_ORDER)
1041 return;
1042
a5516438 1043 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
e4e574b7 1044
685f3457
LS
1045 /*
1046 * We want to release as many surplus pages as possible, spread
9b5e5d0f
LS
1047 * evenly across all nodes with memory. Iterate across these nodes
1048 * until we can no longer free unreserved surplus pages. This occurs
1049 * when the nodes with surplus pages have no free pages.
1050 * free_pool_huge_page() will balance the the freed pages across the
1051 * on-line nodes with memory and will handle the hstate accounting.
685f3457
LS
1052 */
1053 while (nr_pages--) {
9b5e5d0f 1054 if (!free_pool_huge_page(h, &node_states[N_HIGH_MEMORY], 1))
685f3457 1055 break;
e4e574b7
AL
1056 }
1057}
1058
c37f9fb1
AW
1059/*
1060 * Determine if the huge page at addr within the vma has an associated
1061 * reservation. Where it does not we will need to logically increase
90481622
DG
1062 * reservation and actually increase subpool usage before an allocation
1063 * can occur. Where any new reservation would be required the
1064 * reservation change is prepared, but not committed. Once the page
1065 * has been allocated from the subpool and instantiated the change should
1066 * be committed via vma_commit_reservation. No action is required on
1067 * failure.
c37f9fb1 1068 */
e2f17d94 1069static long vma_needs_reservation(struct hstate *h,
a5516438 1070 struct vm_area_struct *vma, unsigned long addr)
c37f9fb1
AW
1071{
1072 struct address_space *mapping = vma->vm_file->f_mapping;
1073 struct inode *inode = mapping->host;
1074
f83a275d 1075 if (vma->vm_flags & VM_MAYSHARE) {
a5516438 1076 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
c37f9fb1
AW
1077 return region_chg(&inode->i_mapping->private_list,
1078 idx, idx + 1);
1079
84afd99b
AW
1080 } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1081 return 1;
c37f9fb1 1082
84afd99b 1083 } else {
e2f17d94 1084 long err;
a5516438 1085 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
84afd99b
AW
1086 struct resv_map *reservations = vma_resv_map(vma);
1087
1088 err = region_chg(&reservations->regions, idx, idx + 1);
1089 if (err < 0)
1090 return err;
1091 return 0;
1092 }
c37f9fb1 1093}
a5516438
AK
1094static void vma_commit_reservation(struct hstate *h,
1095 struct vm_area_struct *vma, unsigned long addr)
c37f9fb1
AW
1096{
1097 struct address_space *mapping = vma->vm_file->f_mapping;
1098 struct inode *inode = mapping->host;
1099
f83a275d 1100 if (vma->vm_flags & VM_MAYSHARE) {
a5516438 1101 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
c37f9fb1 1102 region_add(&inode->i_mapping->private_list, idx, idx + 1);
84afd99b
AW
1103
1104 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
a5516438 1105 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
84afd99b
AW
1106 struct resv_map *reservations = vma_resv_map(vma);
1107
1108 /* Mark this page used in the map. */
1109 region_add(&reservations->regions, idx, idx + 1);
c37f9fb1
AW
1110 }
1111}
1112
a1e78772 1113static struct page *alloc_huge_page(struct vm_area_struct *vma,
04f2cbe3 1114 unsigned long addr, int avoid_reserve)
1da177e4 1115{
90481622 1116 struct hugepage_subpool *spool = subpool_vma(vma);
a5516438 1117 struct hstate *h = hstate_vma(vma);
348ea204 1118 struct page *page;
e2f17d94 1119 long chg;
6d76dcf4
AK
1120 int ret, idx;
1121 struct hugetlb_cgroup *h_cg;
a1e78772 1122
6d76dcf4 1123 idx = hstate_index(h);
a1e78772 1124 /*
90481622
DG
1125 * Processes that did not create the mapping will have no
1126 * reserves and will not have accounted against subpool
1127 * limit. Check that the subpool limit can be made before
1128 * satisfying the allocation MAP_NORESERVE mappings may also
1129 * need pages and subpool limit allocated allocated if no reserve
1130 * mapping overlaps.
a1e78772 1131 */
a5516438 1132 chg = vma_needs_reservation(h, vma, addr);
c37f9fb1 1133 if (chg < 0)
76dcee75 1134 return ERR_PTR(-ENOMEM);
c37f9fb1 1135 if (chg)
90481622 1136 if (hugepage_subpool_get_pages(spool, chg))
76dcee75 1137 return ERR_PTR(-ENOSPC);
1da177e4 1138
6d76dcf4
AK
1139 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1140 if (ret) {
1141 hugepage_subpool_put_pages(spool, chg);
1142 return ERR_PTR(-ENOSPC);
1143 }
1da177e4 1144 spin_lock(&hugetlb_lock);
a5516438 1145 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
1da177e4 1146 spin_unlock(&hugetlb_lock);
b45b5bd6 1147
68842c9b 1148 if (!page) {
bf50bab2 1149 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
68842c9b 1150 if (!page) {
6d76dcf4
AK
1151 hugetlb_cgroup_uncharge_cgroup(idx,
1152 pages_per_huge_page(h),
1153 h_cg);
90481622 1154 hugepage_subpool_put_pages(spool, chg);
76dcee75 1155 return ERR_PTR(-ENOSPC);
68842c9b
KC
1156 }
1157 }
348ea204 1158
90481622 1159 set_page_private(page, (unsigned long)spool);
90d8b7e6 1160
a5516438 1161 vma_commit_reservation(h, vma, addr);
6d76dcf4
AK
1162 /* update page cgroup details */
1163 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
90d8b7e6 1164 return page;
b45b5bd6
DG
1165}
1166
91f47662 1167int __weak alloc_bootmem_huge_page(struct hstate *h)
aa888a74
AK
1168{
1169 struct huge_bootmem_page *m;
9b5e5d0f 1170 int nr_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
aa888a74
AK
1171
1172 while (nr_nodes) {
1173 void *addr;
1174
1175 addr = __alloc_bootmem_node_nopanic(
6ae11b27 1176 NODE_DATA(hstate_next_node_to_alloc(h,
9b5e5d0f 1177 &node_states[N_HIGH_MEMORY])),
aa888a74
AK
1178 huge_page_size(h), huge_page_size(h), 0);
1179
1180 if (addr) {
1181 /*
1182 * Use the beginning of the huge page to store the
1183 * huge_bootmem_page struct (until gather_bootmem
1184 * puts them into the mem_map).
1185 */
1186 m = addr;
91f47662 1187 goto found;
aa888a74 1188 }
aa888a74
AK
1189 nr_nodes--;
1190 }
1191 return 0;
1192
1193found:
1194 BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1195 /* Put them into a private list first because mem_map is not up yet */
1196 list_add(&m->list, &huge_boot_pages);
1197 m->hstate = h;
1198 return 1;
1199}
1200
18229df5
AW
1201static void prep_compound_huge_page(struct page *page, int order)
1202{
1203 if (unlikely(order > (MAX_ORDER - 1)))
1204 prep_compound_gigantic_page(page, order);
1205 else
1206 prep_compound_page(page, order);
1207}
1208
aa888a74
AK
1209/* Put bootmem huge pages into the standard lists after mem_map is up */
1210static void __init gather_bootmem_prealloc(void)
1211{
1212 struct huge_bootmem_page *m;
1213
1214 list_for_each_entry(m, &huge_boot_pages, list) {
aa888a74 1215 struct hstate *h = m->hstate;
ee8f248d
BB
1216 struct page *page;
1217
1218#ifdef CONFIG_HIGHMEM
1219 page = pfn_to_page(m->phys >> PAGE_SHIFT);
1220 free_bootmem_late((unsigned long)m,
1221 sizeof(struct huge_bootmem_page));
1222#else
1223 page = virt_to_page(m);
1224#endif
aa888a74
AK
1225 __ClearPageReserved(page);
1226 WARN_ON(page_count(page) != 1);
18229df5 1227 prep_compound_huge_page(page, h->order);
aa888a74 1228 prep_new_huge_page(h, page, page_to_nid(page));
b0320c7b
RA
1229 /*
1230 * If we had gigantic hugepages allocated at boot time, we need
1231 * to restore the 'stolen' pages to totalram_pages in order to
1232 * fix confusing memory reports from free(1) and another
1233 * side-effects, like CommitLimit going negative.
1234 */
1235 if (h->order > (MAX_ORDER - 1))
1236 totalram_pages += 1 << h->order;
aa888a74
AK
1237 }
1238}
1239
8faa8b07 1240static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1da177e4
LT
1241{
1242 unsigned long i;
a5516438 1243
e5ff2159 1244 for (i = 0; i < h->max_huge_pages; ++i) {
aa888a74
AK
1245 if (h->order >= MAX_ORDER) {
1246 if (!alloc_bootmem_huge_page(h))
1247 break;
9b5e5d0f
LS
1248 } else if (!alloc_fresh_huge_page(h,
1249 &node_states[N_HIGH_MEMORY]))
1da177e4 1250 break;
1da177e4 1251 }
8faa8b07 1252 h->max_huge_pages = i;
e5ff2159
AK
1253}
1254
1255static void __init hugetlb_init_hstates(void)
1256{
1257 struct hstate *h;
1258
1259 for_each_hstate(h) {
8faa8b07
AK
1260 /* oversize hugepages were init'ed in early boot */
1261 if (h->order < MAX_ORDER)
1262 hugetlb_hstate_alloc_pages(h);
e5ff2159
AK
1263 }
1264}
1265
4abd32db
AK
1266static char * __init memfmt(char *buf, unsigned long n)
1267{
1268 if (n >= (1UL << 30))
1269 sprintf(buf, "%lu GB", n >> 30);
1270 else if (n >= (1UL << 20))
1271 sprintf(buf, "%lu MB", n >> 20);
1272 else
1273 sprintf(buf, "%lu KB", n >> 10);
1274 return buf;
1275}
1276
e5ff2159
AK
1277static void __init report_hugepages(void)
1278{
1279 struct hstate *h;
1280
1281 for_each_hstate(h) {
4abd32db
AK
1282 char buf[32];
1283 printk(KERN_INFO "HugeTLB registered %s page size, "
1284 "pre-allocated %ld pages\n",
1285 memfmt(buf, huge_page_size(h)),
1286 h->free_huge_pages);
e5ff2159
AK
1287 }
1288}
1289
1da177e4 1290#ifdef CONFIG_HIGHMEM
6ae11b27
LS
1291static void try_to_free_low(struct hstate *h, unsigned long count,
1292 nodemask_t *nodes_allowed)
1da177e4 1293{
4415cc8d
CL
1294 int i;
1295
aa888a74
AK
1296 if (h->order >= MAX_ORDER)
1297 return;
1298
6ae11b27 1299 for_each_node_mask(i, *nodes_allowed) {
1da177e4 1300 struct page *page, *next;
a5516438
AK
1301 struct list_head *freel = &h->hugepage_freelists[i];
1302 list_for_each_entry_safe(page, next, freel, lru) {
1303 if (count >= h->nr_huge_pages)
6b0c880d 1304 return;
1da177e4
LT
1305 if (PageHighMem(page))
1306 continue;
1307 list_del(&page->lru);
e5ff2159 1308 update_and_free_page(h, page);
a5516438
AK
1309 h->free_huge_pages--;
1310 h->free_huge_pages_node[page_to_nid(page)]--;
1da177e4
LT
1311 }
1312 }
1313}
1314#else
6ae11b27
LS
1315static inline void try_to_free_low(struct hstate *h, unsigned long count,
1316 nodemask_t *nodes_allowed)
1da177e4
LT
1317{
1318}
1319#endif
1320
20a0307c
WF
1321/*
1322 * Increment or decrement surplus_huge_pages. Keep node-specific counters
1323 * balanced by operating on them in a round-robin fashion.
1324 * Returns 1 if an adjustment was made.
1325 */
6ae11b27
LS
1326static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1327 int delta)
20a0307c 1328{
e8c5c824 1329 int start_nid, next_nid;
20a0307c
WF
1330 int ret = 0;
1331
1332 VM_BUG_ON(delta != -1 && delta != 1);
20a0307c 1333
e8c5c824 1334 if (delta < 0)
6ae11b27 1335 start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
e8c5c824 1336 else
6ae11b27 1337 start_nid = hstate_next_node_to_free(h, nodes_allowed);
e8c5c824
LS
1338 next_nid = start_nid;
1339
1340 do {
1341 int nid = next_nid;
1342 if (delta < 0) {
e8c5c824
LS
1343 /*
1344 * To shrink on this node, there must be a surplus page
1345 */
9a76db09 1346 if (!h->surplus_huge_pages_node[nid]) {
6ae11b27
LS
1347 next_nid = hstate_next_node_to_alloc(h,
1348 nodes_allowed);
e8c5c824 1349 continue;
9a76db09 1350 }
e8c5c824
LS
1351 }
1352 if (delta > 0) {
e8c5c824
LS
1353 /*
1354 * Surplus cannot exceed the total number of pages
1355 */
1356 if (h->surplus_huge_pages_node[nid] >=
9a76db09 1357 h->nr_huge_pages_node[nid]) {
6ae11b27
LS
1358 next_nid = hstate_next_node_to_free(h,
1359 nodes_allowed);
e8c5c824 1360 continue;
9a76db09 1361 }
e8c5c824 1362 }
20a0307c
WF
1363
1364 h->surplus_huge_pages += delta;
1365 h->surplus_huge_pages_node[nid] += delta;
1366 ret = 1;
1367 break;
e8c5c824 1368 } while (next_nid != start_nid);
20a0307c 1369
20a0307c
WF
1370 return ret;
1371}
1372
a5516438 1373#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
6ae11b27
LS
1374static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1375 nodemask_t *nodes_allowed)
1da177e4 1376{
7893d1d5 1377 unsigned long min_count, ret;
1da177e4 1378
aa888a74
AK
1379 if (h->order >= MAX_ORDER)
1380 return h->max_huge_pages;
1381
7893d1d5
AL
1382 /*
1383 * Increase the pool size
1384 * First take pages out of surplus state. Then make up the
1385 * remaining difference by allocating fresh huge pages.
d1c3fb1f
NA
1386 *
1387 * We might race with alloc_buddy_huge_page() here and be unable
1388 * to convert a surplus huge page to a normal huge page. That is
1389 * not critical, though, it just means the overall size of the
1390 * pool might be one hugepage larger than it needs to be, but
1391 * within all the constraints specified by the sysctls.
7893d1d5 1392 */
1da177e4 1393 spin_lock(&hugetlb_lock);
a5516438 1394 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
6ae11b27 1395 if (!adjust_pool_surplus(h, nodes_allowed, -1))
7893d1d5
AL
1396 break;
1397 }
1398
a5516438 1399 while (count > persistent_huge_pages(h)) {
7893d1d5
AL
1400 /*
1401 * If this allocation races such that we no longer need the
1402 * page, free_huge_page will handle it by freeing the page
1403 * and reducing the surplus.
1404 */
1405 spin_unlock(&hugetlb_lock);
6ae11b27 1406 ret = alloc_fresh_huge_page(h, nodes_allowed);
7893d1d5
AL
1407 spin_lock(&hugetlb_lock);
1408 if (!ret)
1409 goto out;
1410
536240f2
MG
1411 /* Bail for signals. Probably ctrl-c from user */
1412 if (signal_pending(current))
1413 goto out;
7893d1d5 1414 }
7893d1d5
AL
1415
1416 /*
1417 * Decrease the pool size
1418 * First return free pages to the buddy allocator (being careful
1419 * to keep enough around to satisfy reservations). Then place
1420 * pages into surplus state as needed so the pool will shrink
1421 * to the desired size as pages become free.
d1c3fb1f
NA
1422 *
1423 * By placing pages into the surplus state independent of the
1424 * overcommit value, we are allowing the surplus pool size to
1425 * exceed overcommit. There are few sane options here. Since
1426 * alloc_buddy_huge_page() is checking the global counter,
1427 * though, we'll note that we're not allowed to exceed surplus
1428 * and won't grow the pool anywhere else. Not until one of the
1429 * sysctls are changed, or the surplus pages go out of use.
7893d1d5 1430 */
a5516438 1431 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
6b0c880d 1432 min_count = max(count, min_count);
6ae11b27 1433 try_to_free_low(h, min_count, nodes_allowed);
a5516438 1434 while (min_count < persistent_huge_pages(h)) {
6ae11b27 1435 if (!free_pool_huge_page(h, nodes_allowed, 0))
1da177e4 1436 break;
1da177e4 1437 }
a5516438 1438 while (count < persistent_huge_pages(h)) {
6ae11b27 1439 if (!adjust_pool_surplus(h, nodes_allowed, 1))
7893d1d5
AL
1440 break;
1441 }
1442out:
a5516438 1443 ret = persistent_huge_pages(h);
1da177e4 1444 spin_unlock(&hugetlb_lock);
7893d1d5 1445 return ret;
1da177e4
LT
1446}
1447
a3437870
NA
1448#define HSTATE_ATTR_RO(_name) \
1449 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1450
1451#define HSTATE_ATTR(_name) \
1452 static struct kobj_attribute _name##_attr = \
1453 __ATTR(_name, 0644, _name##_show, _name##_store)
1454
1455static struct kobject *hugepages_kobj;
1456static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1457
9a305230
LS
1458static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1459
1460static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
a3437870
NA
1461{
1462 int i;
9a305230 1463
a3437870 1464 for (i = 0; i < HUGE_MAX_HSTATE; i++)
9a305230
LS
1465 if (hstate_kobjs[i] == kobj) {
1466 if (nidp)
1467 *nidp = NUMA_NO_NODE;
a3437870 1468 return &hstates[i];
9a305230
LS
1469 }
1470
1471 return kobj_to_node_hstate(kobj, nidp);
a3437870
NA
1472}
1473
06808b08 1474static ssize_t nr_hugepages_show_common(struct kobject *kobj,
a3437870
NA
1475 struct kobj_attribute *attr, char *buf)
1476{
9a305230
LS
1477 struct hstate *h;
1478 unsigned long nr_huge_pages;
1479 int nid;
1480
1481 h = kobj_to_hstate(kobj, &nid);
1482 if (nid == NUMA_NO_NODE)
1483 nr_huge_pages = h->nr_huge_pages;
1484 else
1485 nr_huge_pages = h->nr_huge_pages_node[nid];
1486
1487 return sprintf(buf, "%lu\n", nr_huge_pages);
a3437870 1488}
adbe8726 1489
06808b08
LS
1490static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1491 struct kobject *kobj, struct kobj_attribute *attr,
1492 const char *buf, size_t len)
a3437870
NA
1493{
1494 int err;
9a305230 1495 int nid;
06808b08 1496 unsigned long count;
9a305230 1497 struct hstate *h;
bad44b5b 1498 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
a3437870 1499
06808b08 1500 err = strict_strtoul(buf, 10, &count);
73ae31e5 1501 if (err)
adbe8726 1502 goto out;
a3437870 1503
9a305230 1504 h = kobj_to_hstate(kobj, &nid);
adbe8726
EM
1505 if (h->order >= MAX_ORDER) {
1506 err = -EINVAL;
1507 goto out;
1508 }
1509
9a305230
LS
1510 if (nid == NUMA_NO_NODE) {
1511 /*
1512 * global hstate attribute
1513 */
1514 if (!(obey_mempolicy &&
1515 init_nodemask_of_mempolicy(nodes_allowed))) {
1516 NODEMASK_FREE(nodes_allowed);
1517 nodes_allowed = &node_states[N_HIGH_MEMORY];
1518 }
1519 } else if (nodes_allowed) {
1520 /*
1521 * per node hstate attribute: adjust count to global,
1522 * but restrict alloc/free to the specified node.
1523 */
1524 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1525 init_nodemask_of_node(nodes_allowed, nid);
1526 } else
1527 nodes_allowed = &node_states[N_HIGH_MEMORY];
1528
06808b08 1529 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
a3437870 1530
9b5e5d0f 1531 if (nodes_allowed != &node_states[N_HIGH_MEMORY])
06808b08
LS
1532 NODEMASK_FREE(nodes_allowed);
1533
1534 return len;
adbe8726
EM
1535out:
1536 NODEMASK_FREE(nodes_allowed);
1537 return err;
06808b08
LS
1538}
1539
1540static ssize_t nr_hugepages_show(struct kobject *kobj,
1541 struct kobj_attribute *attr, char *buf)
1542{
1543 return nr_hugepages_show_common(kobj, attr, buf);
1544}
1545
1546static ssize_t nr_hugepages_store(struct kobject *kobj,
1547 struct kobj_attribute *attr, const char *buf, size_t len)
1548{
1549 return nr_hugepages_store_common(false, kobj, attr, buf, len);
a3437870
NA
1550}
1551HSTATE_ATTR(nr_hugepages);
1552
06808b08
LS
1553#ifdef CONFIG_NUMA
1554
1555/*
1556 * hstate attribute for optionally mempolicy-based constraint on persistent
1557 * huge page alloc/free.
1558 */
1559static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1560 struct kobj_attribute *attr, char *buf)
1561{
1562 return nr_hugepages_show_common(kobj, attr, buf);
1563}
1564
1565static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1566 struct kobj_attribute *attr, const char *buf, size_t len)
1567{
1568 return nr_hugepages_store_common(true, kobj, attr, buf, len);
1569}
1570HSTATE_ATTR(nr_hugepages_mempolicy);
1571#endif
1572
1573
a3437870
NA
1574static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1575 struct kobj_attribute *attr, char *buf)
1576{
9a305230 1577 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870
NA
1578 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1579}
adbe8726 1580
a3437870
NA
1581static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1582 struct kobj_attribute *attr, const char *buf, size_t count)
1583{
1584 int err;
1585 unsigned long input;
9a305230 1586 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870 1587
adbe8726
EM
1588 if (h->order >= MAX_ORDER)
1589 return -EINVAL;
1590
a3437870
NA
1591 err = strict_strtoul(buf, 10, &input);
1592 if (err)
73ae31e5 1593 return err;
a3437870
NA
1594
1595 spin_lock(&hugetlb_lock);
1596 h->nr_overcommit_huge_pages = input;
1597 spin_unlock(&hugetlb_lock);
1598
1599 return count;
1600}
1601HSTATE_ATTR(nr_overcommit_hugepages);
1602
1603static ssize_t free_hugepages_show(struct kobject *kobj,
1604 struct kobj_attribute *attr, char *buf)
1605{
9a305230
LS
1606 struct hstate *h;
1607 unsigned long free_huge_pages;
1608 int nid;
1609
1610 h = kobj_to_hstate(kobj, &nid);
1611 if (nid == NUMA_NO_NODE)
1612 free_huge_pages = h->free_huge_pages;
1613 else
1614 free_huge_pages = h->free_huge_pages_node[nid];
1615
1616 return sprintf(buf, "%lu\n", free_huge_pages);
a3437870
NA
1617}
1618HSTATE_ATTR_RO(free_hugepages);
1619
1620static ssize_t resv_hugepages_show(struct kobject *kobj,
1621 struct kobj_attribute *attr, char *buf)
1622{
9a305230 1623 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870
NA
1624 return sprintf(buf, "%lu\n", h->resv_huge_pages);
1625}
1626HSTATE_ATTR_RO(resv_hugepages);
1627
1628static ssize_t surplus_hugepages_show(struct kobject *kobj,
1629 struct kobj_attribute *attr, char *buf)
1630{
9a305230
LS
1631 struct hstate *h;
1632 unsigned long surplus_huge_pages;
1633 int nid;
1634
1635 h = kobj_to_hstate(kobj, &nid);
1636 if (nid == NUMA_NO_NODE)
1637 surplus_huge_pages = h->surplus_huge_pages;
1638 else
1639 surplus_huge_pages = h->surplus_huge_pages_node[nid];
1640
1641 return sprintf(buf, "%lu\n", surplus_huge_pages);
a3437870
NA
1642}
1643HSTATE_ATTR_RO(surplus_hugepages);
1644
1645static struct attribute *hstate_attrs[] = {
1646 &nr_hugepages_attr.attr,
1647 &nr_overcommit_hugepages_attr.attr,
1648 &free_hugepages_attr.attr,
1649 &resv_hugepages_attr.attr,
1650 &surplus_hugepages_attr.attr,
06808b08
LS
1651#ifdef CONFIG_NUMA
1652 &nr_hugepages_mempolicy_attr.attr,
1653#endif
a3437870
NA
1654 NULL,
1655};
1656
1657static struct attribute_group hstate_attr_group = {
1658 .attrs = hstate_attrs,
1659};
1660
094e9539
JM
1661static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
1662 struct kobject **hstate_kobjs,
1663 struct attribute_group *hstate_attr_group)
a3437870
NA
1664{
1665 int retval;
972dc4de 1666 int hi = hstate_index(h);
a3437870 1667
9a305230
LS
1668 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
1669 if (!hstate_kobjs[hi])
a3437870
NA
1670 return -ENOMEM;
1671
9a305230 1672 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
a3437870 1673 if (retval)
9a305230 1674 kobject_put(hstate_kobjs[hi]);
a3437870
NA
1675
1676 return retval;
1677}
1678
1679static void __init hugetlb_sysfs_init(void)
1680{
1681 struct hstate *h;
1682 int err;
1683
1684 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1685 if (!hugepages_kobj)
1686 return;
1687
1688 for_each_hstate(h) {
9a305230
LS
1689 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
1690 hstate_kobjs, &hstate_attr_group);
a3437870
NA
1691 if (err)
1692 printk(KERN_ERR "Hugetlb: Unable to add hstate %s",
1693 h->name);
1694 }
1695}
1696
9a305230
LS
1697#ifdef CONFIG_NUMA
1698
1699/*
1700 * node_hstate/s - associate per node hstate attributes, via their kobjects,
10fbcf4c
KS
1701 * with node devices in node_devices[] using a parallel array. The array
1702 * index of a node device or _hstate == node id.
1703 * This is here to avoid any static dependency of the node device driver, in
9a305230
LS
1704 * the base kernel, on the hugetlb module.
1705 */
1706struct node_hstate {
1707 struct kobject *hugepages_kobj;
1708 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1709};
1710struct node_hstate node_hstates[MAX_NUMNODES];
1711
1712/*
10fbcf4c 1713 * A subset of global hstate attributes for node devices
9a305230
LS
1714 */
1715static struct attribute *per_node_hstate_attrs[] = {
1716 &nr_hugepages_attr.attr,
1717 &free_hugepages_attr.attr,
1718 &surplus_hugepages_attr.attr,
1719 NULL,
1720};
1721
1722static struct attribute_group per_node_hstate_attr_group = {
1723 .attrs = per_node_hstate_attrs,
1724};
1725
1726/*
10fbcf4c 1727 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
9a305230
LS
1728 * Returns node id via non-NULL nidp.
1729 */
1730static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1731{
1732 int nid;
1733
1734 for (nid = 0; nid < nr_node_ids; nid++) {
1735 struct node_hstate *nhs = &node_hstates[nid];
1736 int i;
1737 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1738 if (nhs->hstate_kobjs[i] == kobj) {
1739 if (nidp)
1740 *nidp = nid;
1741 return &hstates[i];
1742 }
1743 }
1744
1745 BUG();
1746 return NULL;
1747}
1748
1749/*
10fbcf4c 1750 * Unregister hstate attributes from a single node device.
9a305230
LS
1751 * No-op if no hstate attributes attached.
1752 */
1753void hugetlb_unregister_node(struct node *node)
1754{
1755 struct hstate *h;
10fbcf4c 1756 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
1757
1758 if (!nhs->hugepages_kobj)
9b5e5d0f 1759 return; /* no hstate attributes */
9a305230 1760
972dc4de
AK
1761 for_each_hstate(h) {
1762 int idx = hstate_index(h);
1763 if (nhs->hstate_kobjs[idx]) {
1764 kobject_put(nhs->hstate_kobjs[idx]);
1765 nhs->hstate_kobjs[idx] = NULL;
9a305230 1766 }
972dc4de 1767 }
9a305230
LS
1768
1769 kobject_put(nhs->hugepages_kobj);
1770 nhs->hugepages_kobj = NULL;
1771}
1772
1773/*
10fbcf4c 1774 * hugetlb module exit: unregister hstate attributes from node devices
9a305230
LS
1775 * that have them.
1776 */
1777static void hugetlb_unregister_all_nodes(void)
1778{
1779 int nid;
1780
1781 /*
10fbcf4c 1782 * disable node device registrations.
9a305230
LS
1783 */
1784 register_hugetlbfs_with_node(NULL, NULL);
1785
1786 /*
1787 * remove hstate attributes from any nodes that have them.
1788 */
1789 for (nid = 0; nid < nr_node_ids; nid++)
1790 hugetlb_unregister_node(&node_devices[nid]);
1791}
1792
1793/*
10fbcf4c 1794 * Register hstate attributes for a single node device.
9a305230
LS
1795 * No-op if attributes already registered.
1796 */
1797void hugetlb_register_node(struct node *node)
1798{
1799 struct hstate *h;
10fbcf4c 1800 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
1801 int err;
1802
1803 if (nhs->hugepages_kobj)
1804 return; /* already allocated */
1805
1806 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
10fbcf4c 1807 &node->dev.kobj);
9a305230
LS
1808 if (!nhs->hugepages_kobj)
1809 return;
1810
1811 for_each_hstate(h) {
1812 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
1813 nhs->hstate_kobjs,
1814 &per_node_hstate_attr_group);
1815 if (err) {
1816 printk(KERN_ERR "Hugetlb: Unable to add hstate %s"
1817 " for node %d\n",
10fbcf4c 1818 h->name, node->dev.id);
9a305230
LS
1819 hugetlb_unregister_node(node);
1820 break;
1821 }
1822 }
1823}
1824
1825/*
9b5e5d0f 1826 * hugetlb init time: register hstate attributes for all registered node
10fbcf4c
KS
1827 * devices of nodes that have memory. All on-line nodes should have
1828 * registered their associated device by this time.
9a305230
LS
1829 */
1830static void hugetlb_register_all_nodes(void)
1831{
1832 int nid;
1833
9b5e5d0f 1834 for_each_node_state(nid, N_HIGH_MEMORY) {
9a305230 1835 struct node *node = &node_devices[nid];
10fbcf4c 1836 if (node->dev.id == nid)
9a305230
LS
1837 hugetlb_register_node(node);
1838 }
1839
1840 /*
10fbcf4c 1841 * Let the node device driver know we're here so it can
9a305230
LS
1842 * [un]register hstate attributes on node hotplug.
1843 */
1844 register_hugetlbfs_with_node(hugetlb_register_node,
1845 hugetlb_unregister_node);
1846}
1847#else /* !CONFIG_NUMA */
1848
1849static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1850{
1851 BUG();
1852 if (nidp)
1853 *nidp = -1;
1854 return NULL;
1855}
1856
1857static void hugetlb_unregister_all_nodes(void) { }
1858
1859static void hugetlb_register_all_nodes(void) { }
1860
1861#endif
1862
a3437870
NA
1863static void __exit hugetlb_exit(void)
1864{
1865 struct hstate *h;
1866
9a305230
LS
1867 hugetlb_unregister_all_nodes();
1868
a3437870 1869 for_each_hstate(h) {
972dc4de 1870 kobject_put(hstate_kobjs[hstate_index(h)]);
a3437870
NA
1871 }
1872
1873 kobject_put(hugepages_kobj);
1874}
1875module_exit(hugetlb_exit);
1876
1877static int __init hugetlb_init(void)
1878{
0ef89d25
BH
1879 /* Some platform decide whether they support huge pages at boot
1880 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1881 * there is no such support
1882 */
1883 if (HPAGE_SHIFT == 0)
1884 return 0;
a3437870 1885
e11bfbfc
NP
1886 if (!size_to_hstate(default_hstate_size)) {
1887 default_hstate_size = HPAGE_SIZE;
1888 if (!size_to_hstate(default_hstate_size))
1889 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
a3437870 1890 }
972dc4de 1891 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
e11bfbfc
NP
1892 if (default_hstate_max_huge_pages)
1893 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
a3437870
NA
1894
1895 hugetlb_init_hstates();
1896
aa888a74
AK
1897 gather_bootmem_prealloc();
1898
a3437870
NA
1899 report_hugepages();
1900
1901 hugetlb_sysfs_init();
1902
9a305230
LS
1903 hugetlb_register_all_nodes();
1904
a3437870
NA
1905 return 0;
1906}
1907module_init(hugetlb_init);
1908
1909/* Should be called on processing a hugepagesz=... option */
1910void __init hugetlb_add_hstate(unsigned order)
1911{
1912 struct hstate *h;
8faa8b07
AK
1913 unsigned long i;
1914
a3437870
NA
1915 if (size_to_hstate(PAGE_SIZE << order)) {
1916 printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n");
1917 return;
1918 }
47d38344 1919 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
a3437870 1920 BUG_ON(order == 0);
47d38344 1921 h = &hstates[hugetlb_max_hstate++];
a3437870
NA
1922 h->order = order;
1923 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
8faa8b07
AK
1924 h->nr_huge_pages = 0;
1925 h->free_huge_pages = 0;
1926 for (i = 0; i < MAX_NUMNODES; ++i)
1927 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
0edaecfa 1928 INIT_LIST_HEAD(&h->hugepage_activelist);
9b5e5d0f
LS
1929 h->next_nid_to_alloc = first_node(node_states[N_HIGH_MEMORY]);
1930 h->next_nid_to_free = first_node(node_states[N_HIGH_MEMORY]);
a3437870
NA
1931 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
1932 huge_page_size(h)/1024);
8faa8b07 1933
a3437870
NA
1934 parsed_hstate = h;
1935}
1936
e11bfbfc 1937static int __init hugetlb_nrpages_setup(char *s)
a3437870
NA
1938{
1939 unsigned long *mhp;
8faa8b07 1940 static unsigned long *last_mhp;
a3437870
NA
1941
1942 /*
47d38344 1943 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
a3437870
NA
1944 * so this hugepages= parameter goes to the "default hstate".
1945 */
47d38344 1946 if (!hugetlb_max_hstate)
a3437870
NA
1947 mhp = &default_hstate_max_huge_pages;
1948 else
1949 mhp = &parsed_hstate->max_huge_pages;
1950
8faa8b07
AK
1951 if (mhp == last_mhp) {
1952 printk(KERN_WARNING "hugepages= specified twice without "
1953 "interleaving hugepagesz=, ignoring\n");
1954 return 1;
1955 }
1956
a3437870
NA
1957 if (sscanf(s, "%lu", mhp) <= 0)
1958 *mhp = 0;
1959
8faa8b07
AK
1960 /*
1961 * Global state is always initialized later in hugetlb_init.
1962 * But we need to allocate >= MAX_ORDER hstates here early to still
1963 * use the bootmem allocator.
1964 */
47d38344 1965 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
8faa8b07
AK
1966 hugetlb_hstate_alloc_pages(parsed_hstate);
1967
1968 last_mhp = mhp;
1969
a3437870
NA
1970 return 1;
1971}
e11bfbfc
NP
1972__setup("hugepages=", hugetlb_nrpages_setup);
1973
1974static int __init hugetlb_default_setup(char *s)
1975{
1976 default_hstate_size = memparse(s, &s);
1977 return 1;
1978}
1979__setup("default_hugepagesz=", hugetlb_default_setup);
a3437870 1980
8a213460
NA
1981static unsigned int cpuset_mems_nr(unsigned int *array)
1982{
1983 int node;
1984 unsigned int nr = 0;
1985
1986 for_each_node_mask(node, cpuset_current_mems_allowed)
1987 nr += array[node];
1988
1989 return nr;
1990}
1991
1992#ifdef CONFIG_SYSCTL
06808b08
LS
1993static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
1994 struct ctl_table *table, int write,
1995 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 1996{
e5ff2159
AK
1997 struct hstate *h = &default_hstate;
1998 unsigned long tmp;
08d4a246 1999 int ret;
e5ff2159 2000
c033a93c 2001 tmp = h->max_huge_pages;
e5ff2159 2002
adbe8726
EM
2003 if (write && h->order >= MAX_ORDER)
2004 return -EINVAL;
2005
e5ff2159
AK
2006 table->data = &tmp;
2007 table->maxlen = sizeof(unsigned long);
08d4a246
MH
2008 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2009 if (ret)
2010 goto out;
e5ff2159 2011
06808b08 2012 if (write) {
bad44b5b
DR
2013 NODEMASK_ALLOC(nodemask_t, nodes_allowed,
2014 GFP_KERNEL | __GFP_NORETRY);
06808b08
LS
2015 if (!(obey_mempolicy &&
2016 init_nodemask_of_mempolicy(nodes_allowed))) {
2017 NODEMASK_FREE(nodes_allowed);
2018 nodes_allowed = &node_states[N_HIGH_MEMORY];
2019 }
2020 h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);
2021
2022 if (nodes_allowed != &node_states[N_HIGH_MEMORY])
2023 NODEMASK_FREE(nodes_allowed);
2024 }
08d4a246
MH
2025out:
2026 return ret;
1da177e4 2027}
396faf03 2028
06808b08
LS
2029int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2030 void __user *buffer, size_t *length, loff_t *ppos)
2031{
2032
2033 return hugetlb_sysctl_handler_common(false, table, write,
2034 buffer, length, ppos);
2035}
2036
2037#ifdef CONFIG_NUMA
2038int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2039 void __user *buffer, size_t *length, loff_t *ppos)
2040{
2041 return hugetlb_sysctl_handler_common(true, table, write,
2042 buffer, length, ppos);
2043}
2044#endif /* CONFIG_NUMA */
2045
396faf03 2046int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
8d65af78 2047 void __user *buffer,
396faf03
MG
2048 size_t *length, loff_t *ppos)
2049{
8d65af78 2050 proc_dointvec(table, write, buffer, length, ppos);
396faf03
MG
2051 if (hugepages_treat_as_movable)
2052 htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
2053 else
2054 htlb_alloc_mask = GFP_HIGHUSER;
2055 return 0;
2056}
2057
a3d0c6aa 2058int hugetlb_overcommit_handler(struct ctl_table *table, int write,
8d65af78 2059 void __user *buffer,
a3d0c6aa
NA
2060 size_t *length, loff_t *ppos)
2061{
a5516438 2062 struct hstate *h = &default_hstate;
e5ff2159 2063 unsigned long tmp;
08d4a246 2064 int ret;
e5ff2159 2065
c033a93c 2066 tmp = h->nr_overcommit_huge_pages;
e5ff2159 2067
adbe8726
EM
2068 if (write && h->order >= MAX_ORDER)
2069 return -EINVAL;
2070
e5ff2159
AK
2071 table->data = &tmp;
2072 table->maxlen = sizeof(unsigned long);
08d4a246
MH
2073 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2074 if (ret)
2075 goto out;
e5ff2159
AK
2076
2077 if (write) {
2078 spin_lock(&hugetlb_lock);
2079 h->nr_overcommit_huge_pages = tmp;
2080 spin_unlock(&hugetlb_lock);
2081 }
08d4a246
MH
2082out:
2083 return ret;
a3d0c6aa
NA
2084}
2085
1da177e4
LT
2086#endif /* CONFIG_SYSCTL */
2087
e1759c21 2088void hugetlb_report_meminfo(struct seq_file *m)
1da177e4 2089{
a5516438 2090 struct hstate *h = &default_hstate;
e1759c21 2091 seq_printf(m,
4f98a2fe
RR
2092 "HugePages_Total: %5lu\n"
2093 "HugePages_Free: %5lu\n"
2094 "HugePages_Rsvd: %5lu\n"
2095 "HugePages_Surp: %5lu\n"
2096 "Hugepagesize: %8lu kB\n",
a5516438
AK
2097 h->nr_huge_pages,
2098 h->free_huge_pages,
2099 h->resv_huge_pages,
2100 h->surplus_huge_pages,
2101 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
1da177e4
LT
2102}
2103
2104int hugetlb_report_node_meminfo(int nid, char *buf)
2105{
a5516438 2106 struct hstate *h = &default_hstate;
1da177e4
LT
2107 return sprintf(buf,
2108 "Node %d HugePages_Total: %5u\n"
a1de0919
NA
2109 "Node %d HugePages_Free: %5u\n"
2110 "Node %d HugePages_Surp: %5u\n",
a5516438
AK
2111 nid, h->nr_huge_pages_node[nid],
2112 nid, h->free_huge_pages_node[nid],
2113 nid, h->surplus_huge_pages_node[nid]);
1da177e4
LT
2114}
2115
1da177e4
LT
2116/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2117unsigned long hugetlb_total_pages(void)
2118{
a5516438
AK
2119 struct hstate *h = &default_hstate;
2120 return h->nr_huge_pages * pages_per_huge_page(h);
1da177e4 2121}
1da177e4 2122
a5516438 2123static int hugetlb_acct_memory(struct hstate *h, long delta)
fc1b8a73
MG
2124{
2125 int ret = -ENOMEM;
2126
2127 spin_lock(&hugetlb_lock);
2128 /*
2129 * When cpuset is configured, it breaks the strict hugetlb page
2130 * reservation as the accounting is done on a global variable. Such
2131 * reservation is completely rubbish in the presence of cpuset because
2132 * the reservation is not checked against page availability for the
2133 * current cpuset. Application can still potentially OOM'ed by kernel
2134 * with lack of free htlb page in cpuset that the task is in.
2135 * Attempt to enforce strict accounting with cpuset is almost
2136 * impossible (or too ugly) because cpuset is too fluid that
2137 * task or memory node can be dynamically moved between cpusets.
2138 *
2139 * The change of semantics for shared hugetlb mapping with cpuset is
2140 * undesirable. However, in order to preserve some of the semantics,
2141 * we fall back to check against current free page availability as
2142 * a best attempt and hopefully to minimize the impact of changing
2143 * semantics that cpuset has.
2144 */
2145 if (delta > 0) {
a5516438 2146 if (gather_surplus_pages(h, delta) < 0)
fc1b8a73
MG
2147 goto out;
2148
a5516438
AK
2149 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2150 return_unused_surplus_pages(h, delta);
fc1b8a73
MG
2151 goto out;
2152 }
2153 }
2154
2155 ret = 0;
2156 if (delta < 0)
a5516438 2157 return_unused_surplus_pages(h, (unsigned long) -delta);
fc1b8a73
MG
2158
2159out:
2160 spin_unlock(&hugetlb_lock);
2161 return ret;
2162}
2163
84afd99b
AW
2164static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2165{
2166 struct resv_map *reservations = vma_resv_map(vma);
2167
2168 /*
2169 * This new VMA should share its siblings reservation map if present.
2170 * The VMA will only ever have a valid reservation map pointer where
2171 * it is being copied for another still existing VMA. As that VMA
25985edc 2172 * has a reference to the reservation map it cannot disappear until
84afd99b
AW
2173 * after this open call completes. It is therefore safe to take a
2174 * new reference here without additional locking.
2175 */
2176 if (reservations)
2177 kref_get(&reservations->refs);
2178}
2179
c50ac050
DH
2180static void resv_map_put(struct vm_area_struct *vma)
2181{
2182 struct resv_map *reservations = vma_resv_map(vma);
2183
2184 if (!reservations)
2185 return;
2186 kref_put(&reservations->refs, resv_map_release);
2187}
2188
a1e78772
MG
2189static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2190{
a5516438 2191 struct hstate *h = hstate_vma(vma);
84afd99b 2192 struct resv_map *reservations = vma_resv_map(vma);
90481622 2193 struct hugepage_subpool *spool = subpool_vma(vma);
84afd99b
AW
2194 unsigned long reserve;
2195 unsigned long start;
2196 unsigned long end;
2197
2198 if (reservations) {
a5516438
AK
2199 start = vma_hugecache_offset(h, vma, vma->vm_start);
2200 end = vma_hugecache_offset(h, vma, vma->vm_end);
84afd99b
AW
2201
2202 reserve = (end - start) -
2203 region_count(&reservations->regions, start, end);
2204
c50ac050 2205 resv_map_put(vma);
84afd99b 2206
7251ff78 2207 if (reserve) {
a5516438 2208 hugetlb_acct_memory(h, -reserve);
90481622 2209 hugepage_subpool_put_pages(spool, reserve);
7251ff78 2210 }
84afd99b 2211 }
a1e78772
MG
2212}
2213
1da177e4
LT
2214/*
2215 * We cannot handle pagefaults against hugetlb pages at all. They cause
2216 * handle_mm_fault() to try to instantiate regular-sized pages in the
2217 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
2218 * this far.
2219 */
d0217ac0 2220static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1da177e4
LT
2221{
2222 BUG();
d0217ac0 2223 return 0;
1da177e4
LT
2224}
2225
f0f37e2f 2226const struct vm_operations_struct hugetlb_vm_ops = {
d0217ac0 2227 .fault = hugetlb_vm_op_fault,
84afd99b 2228 .open = hugetlb_vm_op_open,
a1e78772 2229 .close = hugetlb_vm_op_close,
1da177e4
LT
2230};
2231
1e8f889b
DG
2232static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2233 int writable)
63551ae0
DG
2234{
2235 pte_t entry;
2236
1e8f889b 2237 if (writable) {
63551ae0
DG
2238 entry =
2239 pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
2240 } else {
7f2e9525 2241 entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot));
63551ae0
DG
2242 }
2243 entry = pte_mkyoung(entry);
2244 entry = pte_mkhuge(entry);
d9ed9faa 2245 entry = arch_make_huge_pte(entry, vma, page, writable);
63551ae0
DG
2246
2247 return entry;
2248}
2249
1e8f889b
DG
2250static void set_huge_ptep_writable(struct vm_area_struct *vma,
2251 unsigned long address, pte_t *ptep)
2252{
2253 pte_t entry;
2254
7f2e9525 2255 entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep)));
32f84528 2256 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4b3073e1 2257 update_mmu_cache(vma, address, ptep);
1e8f889b
DG
2258}
2259
2260
63551ae0
DG
2261int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2262 struct vm_area_struct *vma)
2263{
2264 pte_t *src_pte, *dst_pte, entry;
2265 struct page *ptepage;
1c59827d 2266 unsigned long addr;
1e8f889b 2267 int cow;
a5516438
AK
2268 struct hstate *h = hstate_vma(vma);
2269 unsigned long sz = huge_page_size(h);
1e8f889b
DG
2270
2271 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
63551ae0 2272
a5516438 2273 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
c74df32c
HD
2274 src_pte = huge_pte_offset(src, addr);
2275 if (!src_pte)
2276 continue;
a5516438 2277 dst_pte = huge_pte_alloc(dst, addr, sz);
63551ae0
DG
2278 if (!dst_pte)
2279 goto nomem;
c5c99429
LW
2280
2281 /* If the pagetables are shared don't copy or take references */
2282 if (dst_pte == src_pte)
2283 continue;
2284
c74df32c 2285 spin_lock(&dst->page_table_lock);
46478758 2286 spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
7f2e9525 2287 if (!huge_pte_none(huge_ptep_get(src_pte))) {
1e8f889b 2288 if (cow)
7f2e9525
GS
2289 huge_ptep_set_wrprotect(src, addr, src_pte);
2290 entry = huge_ptep_get(src_pte);
1c59827d
HD
2291 ptepage = pte_page(entry);
2292 get_page(ptepage);
0fe6e20b 2293 page_dup_rmap(ptepage);
1c59827d
HD
2294 set_huge_pte_at(dst, addr, dst_pte, entry);
2295 }
2296 spin_unlock(&src->page_table_lock);
c74df32c 2297 spin_unlock(&dst->page_table_lock);
63551ae0
DG
2298 }
2299 return 0;
2300
2301nomem:
2302 return -ENOMEM;
2303}
2304
290408d4
NH
2305static int is_hugetlb_entry_migration(pte_t pte)
2306{
2307 swp_entry_t swp;
2308
2309 if (huge_pte_none(pte) || pte_present(pte))
2310 return 0;
2311 swp = pte_to_swp_entry(pte);
32f84528 2312 if (non_swap_entry(swp) && is_migration_entry(swp))
290408d4 2313 return 1;
32f84528 2314 else
290408d4
NH
2315 return 0;
2316}
2317
fd6a03ed
NH
2318static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2319{
2320 swp_entry_t swp;
2321
2322 if (huge_pte_none(pte) || pte_present(pte))
2323 return 0;
2324 swp = pte_to_swp_entry(pte);
32f84528 2325 if (non_swap_entry(swp) && is_hwpoison_entry(swp))
fd6a03ed 2326 return 1;
32f84528 2327 else
fd6a03ed
NH
2328 return 0;
2329}
2330
24669e58
AK
2331void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
2332 unsigned long start, unsigned long end,
2333 struct page *ref_page)
63551ae0 2334{
24669e58 2335 int force_flush = 0;
63551ae0
DG
2336 struct mm_struct *mm = vma->vm_mm;
2337 unsigned long address;
c7546f8f 2338 pte_t *ptep;
63551ae0
DG
2339 pte_t pte;
2340 struct page *page;
a5516438
AK
2341 struct hstate *h = hstate_vma(vma);
2342 unsigned long sz = huge_page_size(h);
2343
63551ae0 2344 WARN_ON(!is_vm_hugetlb_page(vma));
a5516438
AK
2345 BUG_ON(start & ~huge_page_mask(h));
2346 BUG_ON(end & ~huge_page_mask(h));
63551ae0 2347
24669e58 2348 tlb_start_vma(tlb, vma);
cddb8a5c 2349 mmu_notifier_invalidate_range_start(mm, start, end);
24669e58 2350again:
508034a3 2351 spin_lock(&mm->page_table_lock);
a5516438 2352 for (address = start; address < end; address += sz) {
c7546f8f 2353 ptep = huge_pte_offset(mm, address);
4c887265 2354 if (!ptep)
c7546f8f
DG
2355 continue;
2356
39dde65c
CK
2357 if (huge_pmd_unshare(mm, &address, ptep))
2358 continue;
2359
6629326b
HD
2360 pte = huge_ptep_get(ptep);
2361 if (huge_pte_none(pte))
2362 continue;
2363
2364 /*
2365 * HWPoisoned hugepage is already unmapped and dropped reference
2366 */
2367 if (unlikely(is_hugetlb_entry_hwpoisoned(pte)))
2368 continue;
2369
2370 page = pte_page(pte);
04f2cbe3
MG
2371 /*
2372 * If a reference page is supplied, it is because a specific
2373 * page is being unmapped, not a range. Ensure the page we
2374 * are about to unmap is the actual page of interest.
2375 */
2376 if (ref_page) {
04f2cbe3
MG
2377 if (page != ref_page)
2378 continue;
2379
2380 /*
2381 * Mark the VMA as having unmapped its page so that
2382 * future faults in this VMA will fail rather than
2383 * looking like data was lost
2384 */
2385 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2386 }
2387
c7546f8f 2388 pte = huge_ptep_get_and_clear(mm, address, ptep);
24669e58 2389 tlb_remove_tlb_entry(tlb, ptep, address);
6649a386
KC
2390 if (pte_dirty(pte))
2391 set_page_dirty(page);
9e81130b 2392
24669e58
AK
2393 page_remove_rmap(page);
2394 force_flush = !__tlb_remove_page(tlb, page);
2395 if (force_flush)
2396 break;
9e81130b
HD
2397 /* Bail out after unmapping reference page if supplied */
2398 if (ref_page)
2399 break;
63551ae0 2400 }
cd2934a3 2401 spin_unlock(&mm->page_table_lock);
24669e58
AK
2402 /*
2403 * mmu_gather ran out of room to batch pages, we break out of
2404 * the PTE lock to avoid doing the potential expensive TLB invalidate
2405 * and page-free while holding it.
2406 */
2407 if (force_flush) {
2408 force_flush = 0;
2409 tlb_flush_mmu(tlb);
2410 if (address < end && !ref_page)
2411 goto again;
fe1668ae 2412 }
24669e58
AK
2413 mmu_notifier_invalidate_range_end(mm, start, end);
2414 tlb_end_vma(tlb, vma);
1da177e4 2415}
63551ae0 2416
502717f4 2417void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
04f2cbe3 2418 unsigned long end, struct page *ref_page)
502717f4 2419{
24669e58
AK
2420 struct mm_struct *mm;
2421 struct mmu_gather tlb;
2422
2423 mm = vma->vm_mm;
2424
2425 tlb_gather_mmu(&tlb, mm, 0);
2426 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
2427 tlb_finish_mmu(&tlb, start, end);
502717f4
CK
2428}
2429
04f2cbe3
MG
2430/*
2431 * This is called when the original mapper is failing to COW a MAP_PRIVATE
2432 * mappping it owns the reserve page for. The intention is to unmap the page
2433 * from other VMAs and let the children be SIGKILLed if they are faulting the
2434 * same region.
2435 */
2a4b3ded
HH
2436static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2437 struct page *page, unsigned long address)
04f2cbe3 2438{
7526674d 2439 struct hstate *h = hstate_vma(vma);
04f2cbe3
MG
2440 struct vm_area_struct *iter_vma;
2441 struct address_space *mapping;
2442 struct prio_tree_iter iter;
2443 pgoff_t pgoff;
2444
2445 /*
2446 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2447 * from page cache lookup which is in HPAGE_SIZE units.
2448 */
7526674d 2449 address = address & huge_page_mask(h);
0c176d52 2450 pgoff = vma_hugecache_offset(h, vma, address);
90481622 2451 mapping = vma->vm_file->f_dentry->d_inode->i_mapping;
04f2cbe3 2452
4eb2b1dc
MG
2453 /*
2454 * Take the mapping lock for the duration of the table walk. As
2455 * this mapping should be shared between all the VMAs,
2456 * __unmap_hugepage_range() is called as the lock is already held
2457 */
3d48ae45 2458 mutex_lock(&mapping->i_mmap_mutex);
04f2cbe3
MG
2459 vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
2460 /* Do not unmap the current VMA */
2461 if (iter_vma == vma)
2462 continue;
2463
2464 /*
2465 * Unmap the page from other VMAs without their own reserves.
2466 * They get marked to be SIGKILLed if they fault in these
2467 * areas. This is because a future no-page fault on this VMA
2468 * could insert a zeroed page instead of the data existing
2469 * from the time of fork. This would look like data corruption
2470 */
2471 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
24669e58
AK
2472 unmap_hugepage_range(iter_vma, address,
2473 address + huge_page_size(h), page);
04f2cbe3 2474 }
3d48ae45 2475 mutex_unlock(&mapping->i_mmap_mutex);
04f2cbe3
MG
2476
2477 return 1;
2478}
2479
0fe6e20b
NH
2480/*
2481 * Hugetlb_cow() should be called with page lock of the original hugepage held.
ef009b25
MH
2482 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
2483 * cannot race with other handlers or page migration.
2484 * Keep the pte_same checks anyway to make transition from the mutex easier.
0fe6e20b 2485 */
1e8f889b 2486static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
04f2cbe3
MG
2487 unsigned long address, pte_t *ptep, pte_t pte,
2488 struct page *pagecache_page)
1e8f889b 2489{
a5516438 2490 struct hstate *h = hstate_vma(vma);
1e8f889b 2491 struct page *old_page, *new_page;
79ac6ba4 2492 int avoidcopy;
04f2cbe3 2493 int outside_reserve = 0;
1e8f889b
DG
2494
2495 old_page = pte_page(pte);
2496
04f2cbe3 2497retry_avoidcopy:
1e8f889b
DG
2498 /* If no-one else is actually using this page, avoid the copy
2499 * and just make the page writable */
0fe6e20b 2500 avoidcopy = (page_mapcount(old_page) == 1);
1e8f889b 2501 if (avoidcopy) {
56c9cfb1
NH
2502 if (PageAnon(old_page))
2503 page_move_anon_rmap(old_page, vma, address);
1e8f889b 2504 set_huge_ptep_writable(vma, address, ptep);
83c54070 2505 return 0;
1e8f889b
DG
2506 }
2507
04f2cbe3
MG
2508 /*
2509 * If the process that created a MAP_PRIVATE mapping is about to
2510 * perform a COW due to a shared page count, attempt to satisfy
2511 * the allocation without using the existing reserves. The pagecache
2512 * page is used to determine if the reserve at this address was
2513 * consumed or not. If reserves were used, a partial faulted mapping
2514 * at the time of fork() could consume its reserves on COW instead
2515 * of the full address range.
2516 */
f83a275d 2517 if (!(vma->vm_flags & VM_MAYSHARE) &&
04f2cbe3
MG
2518 is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2519 old_page != pagecache_page)
2520 outside_reserve = 1;
2521
1e8f889b 2522 page_cache_get(old_page);
b76c8cfb
LW
2523
2524 /* Drop page_table_lock as buddy allocator may be called */
2525 spin_unlock(&mm->page_table_lock);
04f2cbe3 2526 new_page = alloc_huge_page(vma, address, outside_reserve);
1e8f889b 2527
2fc39cec 2528 if (IS_ERR(new_page)) {
76dcee75 2529 long err = PTR_ERR(new_page);
1e8f889b 2530 page_cache_release(old_page);
04f2cbe3
MG
2531
2532 /*
2533 * If a process owning a MAP_PRIVATE mapping fails to COW,
2534 * it is due to references held by a child and an insufficient
2535 * huge page pool. To guarantee the original mappers
2536 * reliability, unmap the page from child processes. The child
2537 * may get SIGKILLed if it later faults.
2538 */
2539 if (outside_reserve) {
2540 BUG_ON(huge_pte_none(pte));
2541 if (unmap_ref_private(mm, vma, old_page, address)) {
04f2cbe3 2542 BUG_ON(huge_pte_none(pte));
b76c8cfb 2543 spin_lock(&mm->page_table_lock);
a734bcc8
HD
2544 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2545 if (likely(pte_same(huge_ptep_get(ptep), pte)))
2546 goto retry_avoidcopy;
2547 /*
2548 * race occurs while re-acquiring page_table_lock, and
2549 * our job is done.
2550 */
2551 return 0;
04f2cbe3
MG
2552 }
2553 WARN_ON_ONCE(1);
2554 }
2555
b76c8cfb
LW
2556 /* Caller expects lock to be held */
2557 spin_lock(&mm->page_table_lock);
76dcee75
AK
2558 if (err == -ENOMEM)
2559 return VM_FAULT_OOM;
2560 else
2561 return VM_FAULT_SIGBUS;
1e8f889b
DG
2562 }
2563
0fe6e20b
NH
2564 /*
2565 * When the original hugepage is shared one, it does not have
2566 * anon_vma prepared.
2567 */
44e2aa93 2568 if (unlikely(anon_vma_prepare(vma))) {
ea4039a3
HD
2569 page_cache_release(new_page);
2570 page_cache_release(old_page);
44e2aa93
DN
2571 /* Caller expects lock to be held */
2572 spin_lock(&mm->page_table_lock);
0fe6e20b 2573 return VM_FAULT_OOM;
44e2aa93 2574 }
0fe6e20b 2575
47ad8475
AA
2576 copy_user_huge_page(new_page, old_page, address, vma,
2577 pages_per_huge_page(h));
0ed361de 2578 __SetPageUptodate(new_page);
1e8f889b 2579
b76c8cfb
LW
2580 /*
2581 * Retake the page_table_lock to check for racing updates
2582 * before the page tables are altered
2583 */
2584 spin_lock(&mm->page_table_lock);
a5516438 2585 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
7f2e9525 2586 if (likely(pte_same(huge_ptep_get(ptep), pte))) {
1e8f889b 2587 /* Break COW */
3edd4fc9
DD
2588 mmu_notifier_invalidate_range_start(mm,
2589 address & huge_page_mask(h),
2590 (address & huge_page_mask(h)) + huge_page_size(h));
8fe627ec 2591 huge_ptep_clear_flush(vma, address, ptep);
1e8f889b
DG
2592 set_huge_pte_at(mm, address, ptep,
2593 make_huge_pte(vma, new_page, 1));
0fe6e20b 2594 page_remove_rmap(old_page);
cd67f0d2 2595 hugepage_add_new_anon_rmap(new_page, vma, address);
1e8f889b
DG
2596 /* Make the old page be freed below */
2597 new_page = old_page;
3edd4fc9
DD
2598 mmu_notifier_invalidate_range_end(mm,
2599 address & huge_page_mask(h),
2600 (address & huge_page_mask(h)) + huge_page_size(h));
1e8f889b
DG
2601 }
2602 page_cache_release(new_page);
2603 page_cache_release(old_page);
83c54070 2604 return 0;
1e8f889b
DG
2605}
2606
04f2cbe3 2607/* Return the pagecache page at a given address within a VMA */
a5516438
AK
2608static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2609 struct vm_area_struct *vma, unsigned long address)
04f2cbe3
MG
2610{
2611 struct address_space *mapping;
e7c4b0bf 2612 pgoff_t idx;
04f2cbe3
MG
2613
2614 mapping = vma->vm_file->f_mapping;
a5516438 2615 idx = vma_hugecache_offset(h, vma, address);
04f2cbe3
MG
2616
2617 return find_lock_page(mapping, idx);
2618}
2619
3ae77f43
HD
2620/*
2621 * Return whether there is a pagecache page to back given address within VMA.
2622 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2623 */
2624static bool hugetlbfs_pagecache_present(struct hstate *h,
2a15efc9
HD
2625 struct vm_area_struct *vma, unsigned long address)
2626{
2627 struct address_space *mapping;
2628 pgoff_t idx;
2629 struct page *page;
2630
2631 mapping = vma->vm_file->f_mapping;
2632 idx = vma_hugecache_offset(h, vma, address);
2633
2634 page = find_get_page(mapping, idx);
2635 if (page)
2636 put_page(page);
2637 return page != NULL;
2638}
2639
a1ed3dda 2640static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
788c7df4 2641 unsigned long address, pte_t *ptep, unsigned int flags)
ac9b9c66 2642{
a5516438 2643 struct hstate *h = hstate_vma(vma);
ac9b9c66 2644 int ret = VM_FAULT_SIGBUS;
409eb8c2 2645 int anon_rmap = 0;
e7c4b0bf 2646 pgoff_t idx;
4c887265 2647 unsigned long size;
4c887265
AL
2648 struct page *page;
2649 struct address_space *mapping;
1e8f889b 2650 pte_t new_pte;
4c887265 2651
04f2cbe3
MG
2652 /*
2653 * Currently, we are forced to kill the process in the event the
2654 * original mapper has unmapped pages from the child due to a failed
25985edc 2655 * COW. Warn that such a situation has occurred as it may not be obvious
04f2cbe3
MG
2656 */
2657 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2658 printk(KERN_WARNING
2659 "PID %d killed due to inadequate hugepage pool\n",
2660 current->pid);
2661 return ret;
2662 }
2663
4c887265 2664 mapping = vma->vm_file->f_mapping;
a5516438 2665 idx = vma_hugecache_offset(h, vma, address);
4c887265
AL
2666
2667 /*
2668 * Use page lock to guard against racing truncation
2669 * before we get page_table_lock.
2670 */
6bda666a
CL
2671retry:
2672 page = find_lock_page(mapping, idx);
2673 if (!page) {
a5516438 2674 size = i_size_read(mapping->host) >> huge_page_shift(h);
ebed4bfc
HD
2675 if (idx >= size)
2676 goto out;
04f2cbe3 2677 page = alloc_huge_page(vma, address, 0);
2fc39cec 2678 if (IS_ERR(page)) {
76dcee75
AK
2679 ret = PTR_ERR(page);
2680 if (ret == -ENOMEM)
2681 ret = VM_FAULT_OOM;
2682 else
2683 ret = VM_FAULT_SIGBUS;
6bda666a
CL
2684 goto out;
2685 }
47ad8475 2686 clear_huge_page(page, address, pages_per_huge_page(h));
0ed361de 2687 __SetPageUptodate(page);
ac9b9c66 2688
f83a275d 2689 if (vma->vm_flags & VM_MAYSHARE) {
6bda666a 2690 int err;
45c682a6 2691 struct inode *inode = mapping->host;
6bda666a
CL
2692
2693 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2694 if (err) {
2695 put_page(page);
6bda666a
CL
2696 if (err == -EEXIST)
2697 goto retry;
2698 goto out;
2699 }
45c682a6
KC
2700
2701 spin_lock(&inode->i_lock);
a5516438 2702 inode->i_blocks += blocks_per_huge_page(h);
45c682a6 2703 spin_unlock(&inode->i_lock);
23be7468 2704 } else {
6bda666a 2705 lock_page(page);
0fe6e20b
NH
2706 if (unlikely(anon_vma_prepare(vma))) {
2707 ret = VM_FAULT_OOM;
2708 goto backout_unlocked;
2709 }
409eb8c2 2710 anon_rmap = 1;
23be7468 2711 }
0fe6e20b 2712 } else {
998b4382
NH
2713 /*
2714 * If memory error occurs between mmap() and fault, some process
2715 * don't have hwpoisoned swap entry for errored virtual address.
2716 * So we need to block hugepage fault by PG_hwpoison bit check.
2717 */
2718 if (unlikely(PageHWPoison(page))) {
32f84528 2719 ret = VM_FAULT_HWPOISON |
972dc4de 2720 VM_FAULT_SET_HINDEX(hstate_index(h));
998b4382
NH
2721 goto backout_unlocked;
2722 }
6bda666a 2723 }
1e8f889b 2724
57303d80
AW
2725 /*
2726 * If we are going to COW a private mapping later, we examine the
2727 * pending reservations for this page now. This will ensure that
2728 * any allocations necessary to record that reservation occur outside
2729 * the spinlock.
2730 */
788c7df4 2731 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2b26736c
AW
2732 if (vma_needs_reservation(h, vma, address) < 0) {
2733 ret = VM_FAULT_OOM;
2734 goto backout_unlocked;
2735 }
57303d80 2736
ac9b9c66 2737 spin_lock(&mm->page_table_lock);
a5516438 2738 size = i_size_read(mapping->host) >> huge_page_shift(h);
4c887265
AL
2739 if (idx >= size)
2740 goto backout;
2741
83c54070 2742 ret = 0;
7f2e9525 2743 if (!huge_pte_none(huge_ptep_get(ptep)))
4c887265
AL
2744 goto backout;
2745
409eb8c2
HD
2746 if (anon_rmap)
2747 hugepage_add_new_anon_rmap(page, vma, address);
2748 else
2749 page_dup_rmap(page);
1e8f889b
DG
2750 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2751 && (vma->vm_flags & VM_SHARED)));
2752 set_huge_pte_at(mm, address, ptep, new_pte);
2753
788c7df4 2754 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
1e8f889b 2755 /* Optimization, do the COW without a second fault */
04f2cbe3 2756 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
1e8f889b
DG
2757 }
2758
ac9b9c66 2759 spin_unlock(&mm->page_table_lock);
4c887265
AL
2760 unlock_page(page);
2761out:
ac9b9c66 2762 return ret;
4c887265
AL
2763
2764backout:
2765 spin_unlock(&mm->page_table_lock);
2b26736c 2766backout_unlocked:
4c887265
AL
2767 unlock_page(page);
2768 put_page(page);
2769 goto out;
ac9b9c66
HD
2770}
2771
86e5216f 2772int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
788c7df4 2773 unsigned long address, unsigned int flags)
86e5216f
AL
2774{
2775 pte_t *ptep;
2776 pte_t entry;
1e8f889b 2777 int ret;
0fe6e20b 2778 struct page *page = NULL;
57303d80 2779 struct page *pagecache_page = NULL;
3935baa9 2780 static DEFINE_MUTEX(hugetlb_instantiation_mutex);
a5516438 2781 struct hstate *h = hstate_vma(vma);
86e5216f 2782
1e16a539
KH
2783 address &= huge_page_mask(h);
2784
fd6a03ed
NH
2785 ptep = huge_pte_offset(mm, address);
2786 if (ptep) {
2787 entry = huge_ptep_get(ptep);
290408d4
NH
2788 if (unlikely(is_hugetlb_entry_migration(entry))) {
2789 migration_entry_wait(mm, (pmd_t *)ptep, address);
2790 return 0;
2791 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
32f84528 2792 return VM_FAULT_HWPOISON_LARGE |
972dc4de 2793 VM_FAULT_SET_HINDEX(hstate_index(h));
fd6a03ed
NH
2794 }
2795
a5516438 2796 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
86e5216f
AL
2797 if (!ptep)
2798 return VM_FAULT_OOM;
2799
3935baa9
DG
2800 /*
2801 * Serialize hugepage allocation and instantiation, so that we don't
2802 * get spurious allocation failures if two CPUs race to instantiate
2803 * the same page in the page cache.
2804 */
2805 mutex_lock(&hugetlb_instantiation_mutex);
7f2e9525
GS
2806 entry = huge_ptep_get(ptep);
2807 if (huge_pte_none(entry)) {
788c7df4 2808 ret = hugetlb_no_page(mm, vma, address, ptep, flags);
b4d1d99f 2809 goto out_mutex;
3935baa9 2810 }
86e5216f 2811
83c54070 2812 ret = 0;
1e8f889b 2813
57303d80
AW
2814 /*
2815 * If we are going to COW the mapping later, we examine the pending
2816 * reservations for this page now. This will ensure that any
2817 * allocations necessary to record that reservation occur outside the
2818 * spinlock. For private mappings, we also lookup the pagecache
2819 * page now as it is used to determine if a reservation has been
2820 * consumed.
2821 */
788c7df4 2822 if ((flags & FAULT_FLAG_WRITE) && !pte_write(entry)) {
2b26736c
AW
2823 if (vma_needs_reservation(h, vma, address) < 0) {
2824 ret = VM_FAULT_OOM;
b4d1d99f 2825 goto out_mutex;
2b26736c 2826 }
57303d80 2827
f83a275d 2828 if (!(vma->vm_flags & VM_MAYSHARE))
57303d80
AW
2829 pagecache_page = hugetlbfs_pagecache_page(h,
2830 vma, address);
2831 }
2832
56c9cfb1
NH
2833 /*
2834 * hugetlb_cow() requires page locks of pte_page(entry) and
2835 * pagecache_page, so here we need take the former one
2836 * when page != pagecache_page or !pagecache_page.
2837 * Note that locking order is always pagecache_page -> page,
2838 * so no worry about deadlock.
2839 */
2840 page = pte_page(entry);
66aebce7 2841 get_page(page);
56c9cfb1 2842 if (page != pagecache_page)
0fe6e20b 2843 lock_page(page);
0fe6e20b 2844
1e8f889b
DG
2845 spin_lock(&mm->page_table_lock);
2846 /* Check for a racing update before calling hugetlb_cow */
b4d1d99f
DG
2847 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
2848 goto out_page_table_lock;
2849
2850
788c7df4 2851 if (flags & FAULT_FLAG_WRITE) {
b4d1d99f 2852 if (!pte_write(entry)) {
57303d80
AW
2853 ret = hugetlb_cow(mm, vma, address, ptep, entry,
2854 pagecache_page);
b4d1d99f
DG
2855 goto out_page_table_lock;
2856 }
2857 entry = pte_mkdirty(entry);
2858 }
2859 entry = pte_mkyoung(entry);
788c7df4
HD
2860 if (huge_ptep_set_access_flags(vma, address, ptep, entry,
2861 flags & FAULT_FLAG_WRITE))
4b3073e1 2862 update_mmu_cache(vma, address, ptep);
b4d1d99f
DG
2863
2864out_page_table_lock:
1e8f889b 2865 spin_unlock(&mm->page_table_lock);
57303d80
AW
2866
2867 if (pagecache_page) {
2868 unlock_page(pagecache_page);
2869 put_page(pagecache_page);
2870 }
1f64d69c
DN
2871 if (page != pagecache_page)
2872 unlock_page(page);
66aebce7 2873 put_page(page);
57303d80 2874
b4d1d99f 2875out_mutex:
3935baa9 2876 mutex_unlock(&hugetlb_instantiation_mutex);
1e8f889b
DG
2877
2878 return ret;
86e5216f
AL
2879}
2880
ceb86879
AK
2881/* Can be overriden by architectures */
2882__attribute__((weak)) struct page *
2883follow_huge_pud(struct mm_struct *mm, unsigned long address,
2884 pud_t *pud, int write)
2885{
2886 BUG();
2887 return NULL;
2888}
2889
63551ae0
DG
2890int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
2891 struct page **pages, struct vm_area_struct **vmas,
5b23dbe8 2892 unsigned long *position, int *length, int i,
2a15efc9 2893 unsigned int flags)
63551ae0 2894{
d5d4b0aa
CK
2895 unsigned long pfn_offset;
2896 unsigned long vaddr = *position;
63551ae0 2897 int remainder = *length;
a5516438 2898 struct hstate *h = hstate_vma(vma);
63551ae0 2899
1c59827d 2900 spin_lock(&mm->page_table_lock);
63551ae0 2901 while (vaddr < vma->vm_end && remainder) {
4c887265 2902 pte_t *pte;
2a15efc9 2903 int absent;
4c887265 2904 struct page *page;
63551ae0 2905
4c887265
AL
2906 /*
2907 * Some archs (sparc64, sh*) have multiple pte_ts to
2a15efc9 2908 * each hugepage. We have to make sure we get the
4c887265
AL
2909 * first, for the page indexing below to work.
2910 */
a5516438 2911 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
2a15efc9
HD
2912 absent = !pte || huge_pte_none(huge_ptep_get(pte));
2913
2914 /*
2915 * When coredumping, it suits get_dump_page if we just return
3ae77f43
HD
2916 * an error where there's an empty slot with no huge pagecache
2917 * to back it. This way, we avoid allocating a hugepage, and
2918 * the sparse dumpfile avoids allocating disk blocks, but its
2919 * huge holes still show up with zeroes where they need to be.
2a15efc9 2920 */
3ae77f43
HD
2921 if (absent && (flags & FOLL_DUMP) &&
2922 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
2a15efc9
HD
2923 remainder = 0;
2924 break;
2925 }
63551ae0 2926
2a15efc9
HD
2927 if (absent ||
2928 ((flags & FOLL_WRITE) && !pte_write(huge_ptep_get(pte)))) {
4c887265 2929 int ret;
63551ae0 2930
4c887265 2931 spin_unlock(&mm->page_table_lock);
2a15efc9
HD
2932 ret = hugetlb_fault(mm, vma, vaddr,
2933 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
4c887265 2934 spin_lock(&mm->page_table_lock);
a89182c7 2935 if (!(ret & VM_FAULT_ERROR))
4c887265 2936 continue;
63551ae0 2937
4c887265 2938 remainder = 0;
4c887265
AL
2939 break;
2940 }
2941
a5516438 2942 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
7f2e9525 2943 page = pte_page(huge_ptep_get(pte));
d5d4b0aa 2944same_page:
d6692183 2945 if (pages) {
2a15efc9 2946 pages[i] = mem_map_offset(page, pfn_offset);
4b2e38ad 2947 get_page(pages[i]);
d6692183 2948 }
63551ae0
DG
2949
2950 if (vmas)
2951 vmas[i] = vma;
2952
2953 vaddr += PAGE_SIZE;
d5d4b0aa 2954 ++pfn_offset;
63551ae0
DG
2955 --remainder;
2956 ++i;
d5d4b0aa 2957 if (vaddr < vma->vm_end && remainder &&
a5516438 2958 pfn_offset < pages_per_huge_page(h)) {
d5d4b0aa
CK
2959 /*
2960 * We use pfn_offset to avoid touching the pageframes
2961 * of this compound page.
2962 */
2963 goto same_page;
2964 }
63551ae0 2965 }
1c59827d 2966 spin_unlock(&mm->page_table_lock);
63551ae0
DG
2967 *length = remainder;
2968 *position = vaddr;
2969
2a15efc9 2970 return i ? i : -EFAULT;
63551ae0 2971}
8f860591
ZY
2972
2973void hugetlb_change_protection(struct vm_area_struct *vma,
2974 unsigned long address, unsigned long end, pgprot_t newprot)
2975{
2976 struct mm_struct *mm = vma->vm_mm;
2977 unsigned long start = address;
2978 pte_t *ptep;
2979 pte_t pte;
a5516438 2980 struct hstate *h = hstate_vma(vma);
8f860591
ZY
2981
2982 BUG_ON(address >= end);
2983 flush_cache_range(vma, address, end);
2984
3d48ae45 2985 mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
8f860591 2986 spin_lock(&mm->page_table_lock);
a5516438 2987 for (; address < end; address += huge_page_size(h)) {
8f860591
ZY
2988 ptep = huge_pte_offset(mm, address);
2989 if (!ptep)
2990 continue;
39dde65c
CK
2991 if (huge_pmd_unshare(mm, &address, ptep))
2992 continue;
7f2e9525 2993 if (!huge_pte_none(huge_ptep_get(ptep))) {
8f860591
ZY
2994 pte = huge_ptep_get_and_clear(mm, address, ptep);
2995 pte = pte_mkhuge(pte_modify(pte, newprot));
2996 set_huge_pte_at(mm, address, ptep, pte);
8f860591
ZY
2997 }
2998 }
2999 spin_unlock(&mm->page_table_lock);
3d48ae45 3000 mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
8f860591
ZY
3001
3002 flush_tlb_range(vma, start, end);
3003}
3004
a1e78772
MG
3005int hugetlb_reserve_pages(struct inode *inode,
3006 long from, long to,
5a6fe125 3007 struct vm_area_struct *vma,
ca16d140 3008 vm_flags_t vm_flags)
e4e574b7 3009{
17c9d12e 3010 long ret, chg;
a5516438 3011 struct hstate *h = hstate_inode(inode);
90481622 3012 struct hugepage_subpool *spool = subpool_inode(inode);
e4e574b7 3013
17c9d12e
MG
3014 /*
3015 * Only apply hugepage reservation if asked. At fault time, an
3016 * attempt will be made for VM_NORESERVE to allocate a page
90481622 3017 * without using reserves
17c9d12e 3018 */
ca16d140 3019 if (vm_flags & VM_NORESERVE)
17c9d12e
MG
3020 return 0;
3021
a1e78772
MG
3022 /*
3023 * Shared mappings base their reservation on the number of pages that
3024 * are already allocated on behalf of the file. Private mappings need
3025 * to reserve the full area even if read-only as mprotect() may be
3026 * called to make the mapping read-write. Assume !vma is a shm mapping
3027 */
f83a275d 3028 if (!vma || vma->vm_flags & VM_MAYSHARE)
a1e78772 3029 chg = region_chg(&inode->i_mapping->private_list, from, to);
17c9d12e
MG
3030 else {
3031 struct resv_map *resv_map = resv_map_alloc();
3032 if (!resv_map)
3033 return -ENOMEM;
3034
a1e78772 3035 chg = to - from;
84afd99b 3036
17c9d12e
MG
3037 set_vma_resv_map(vma, resv_map);
3038 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
3039 }
3040
c50ac050
DH
3041 if (chg < 0) {
3042 ret = chg;
3043 goto out_err;
3044 }
8a630112 3045
90481622 3046 /* There must be enough pages in the subpool for the mapping */
c50ac050
DH
3047 if (hugepage_subpool_get_pages(spool, chg)) {
3048 ret = -ENOSPC;
3049 goto out_err;
3050 }
5a6fe125
MG
3051
3052 /*
17c9d12e 3053 * Check enough hugepages are available for the reservation.
90481622 3054 * Hand the pages back to the subpool if there are not
5a6fe125 3055 */
a5516438 3056 ret = hugetlb_acct_memory(h, chg);
68842c9b 3057 if (ret < 0) {
90481622 3058 hugepage_subpool_put_pages(spool, chg);
c50ac050 3059 goto out_err;
68842c9b 3060 }
17c9d12e
MG
3061
3062 /*
3063 * Account for the reservations made. Shared mappings record regions
3064 * that have reservations as they are shared by multiple VMAs.
3065 * When the last VMA disappears, the region map says how much
3066 * the reservation was and the page cache tells how much of
3067 * the reservation was consumed. Private mappings are per-VMA and
3068 * only the consumed reservations are tracked. When the VMA
3069 * disappears, the original reservation is the VMA size and the
3070 * consumed reservations are stored in the map. Hence, nothing
3071 * else has to be done for private mappings here
3072 */
f83a275d 3073 if (!vma || vma->vm_flags & VM_MAYSHARE)
a1e78772 3074 region_add(&inode->i_mapping->private_list, from, to);
a43a8c39 3075 return 0;
c50ac050 3076out_err:
4523e145
DH
3077 if (vma)
3078 resv_map_put(vma);
c50ac050 3079 return ret;
a43a8c39
CK
3080}
3081
3082void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
3083{
a5516438 3084 struct hstate *h = hstate_inode(inode);
a43a8c39 3085 long chg = region_truncate(&inode->i_mapping->private_list, offset);
90481622 3086 struct hugepage_subpool *spool = subpool_inode(inode);
45c682a6
KC
3087
3088 spin_lock(&inode->i_lock);
e4c6f8be 3089 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
45c682a6
KC
3090 spin_unlock(&inode->i_lock);
3091
90481622 3092 hugepage_subpool_put_pages(spool, (chg - freed));
a5516438 3093 hugetlb_acct_memory(h, -(chg - freed));
a43a8c39 3094}
93f70f90 3095
d5bd9106
AK
3096#ifdef CONFIG_MEMORY_FAILURE
3097
6de2b1aa
NH
3098/* Should be called in hugetlb_lock */
3099static int is_hugepage_on_freelist(struct page *hpage)
3100{
3101 struct page *page;
3102 struct page *tmp;
3103 struct hstate *h = page_hstate(hpage);
3104 int nid = page_to_nid(hpage);
3105
3106 list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
3107 if (page == hpage)
3108 return 1;
3109 return 0;
3110}
3111
93f70f90
NH
3112/*
3113 * This function is called from memory failure code.
3114 * Assume the caller holds page lock of the head page.
3115 */
6de2b1aa 3116int dequeue_hwpoisoned_huge_page(struct page *hpage)
93f70f90
NH
3117{
3118 struct hstate *h = page_hstate(hpage);
3119 int nid = page_to_nid(hpage);
6de2b1aa 3120 int ret = -EBUSY;
93f70f90
NH
3121
3122 spin_lock(&hugetlb_lock);
6de2b1aa
NH
3123 if (is_hugepage_on_freelist(hpage)) {
3124 list_del(&hpage->lru);
8c6c2ecb 3125 set_page_refcounted(hpage);
6de2b1aa
NH
3126 h->free_huge_pages--;
3127 h->free_huge_pages_node[nid]--;
3128 ret = 0;
3129 }
93f70f90 3130 spin_unlock(&hugetlb_lock);
6de2b1aa 3131 return ret;
93f70f90 3132}
6de2b1aa 3133#endif