mm, hugetlb: unify core page allocation accounting and initialization
[linux-2.6-block.git] / mm / hugetlb.c
CommitLineData
1da177e4
LT
1/*
2 * Generic hugetlb support.
6d49e352 3 * (C) Nadia Yvette Chambers, April 2004
1da177e4 4 */
1da177e4
LT
5#include <linux/list.h>
6#include <linux/init.h>
1da177e4 7#include <linux/mm.h>
e1759c21 8#include <linux/seq_file.h>
1da177e4
LT
9#include <linux/sysctl.h>
10#include <linux/highmem.h>
cddb8a5c 11#include <linux/mmu_notifier.h>
1da177e4 12#include <linux/nodemask.h>
63551ae0 13#include <linux/pagemap.h>
5da7ca86 14#include <linux/mempolicy.h>
3b32123d 15#include <linux/compiler.h>
aea47ff3 16#include <linux/cpuset.h>
3935baa9 17#include <linux/mutex.h>
aa888a74 18#include <linux/bootmem.h>
a3437870 19#include <linux/sysfs.h>
5a0e3ad6 20#include <linux/slab.h>
174cd4b1 21#include <linux/sched/signal.h>
0fe6e20b 22#include <linux/rmap.h>
c6247f72 23#include <linux/string_helpers.h>
fd6a03ed
NH
24#include <linux/swap.h>
25#include <linux/swapops.h>
8382d914 26#include <linux/jhash.h>
d6606683 27
63551ae0
DG
28#include <asm/page.h>
29#include <asm/pgtable.h>
24669e58 30#include <asm/tlb.h>
63551ae0 31
24669e58 32#include <linux/io.h>
63551ae0 33#include <linux/hugetlb.h>
9dd540e2 34#include <linux/hugetlb_cgroup.h>
9a305230 35#include <linux/node.h>
1a1aad8a 36#include <linux/userfaultfd_k.h>
7835e98b 37#include "internal.h"
1da177e4 38
c3f38a38 39int hugetlb_max_hstate __read_mostly;
e5ff2159
AK
40unsigned int default_hstate_idx;
41struct hstate hstates[HUGE_MAX_HSTATE];
641844f5
NH
42/*
43 * Minimum page order among possible hugepage sizes, set to a proper value
44 * at boot time.
45 */
46static unsigned int minimum_order __read_mostly = UINT_MAX;
e5ff2159 47
53ba51d2
JT
48__initdata LIST_HEAD(huge_boot_pages);
49
e5ff2159
AK
50/* for command line parsing */
51static struct hstate * __initdata parsed_hstate;
52static unsigned long __initdata default_hstate_max_huge_pages;
e11bfbfc 53static unsigned long __initdata default_hstate_size;
9fee021d 54static bool __initdata parsed_valid_hugepagesz = true;
e5ff2159 55
3935baa9 56/*
31caf665
NH
57 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
58 * free_huge_pages, and surplus_huge_pages.
3935baa9 59 */
c3f38a38 60DEFINE_SPINLOCK(hugetlb_lock);
0bd0f9fb 61
8382d914
DB
62/*
63 * Serializes faults on the same logical page. This is used to
64 * prevent spurious OOMs when the hugepage pool is fully utilized.
65 */
66static int num_fault_mutexes;
c672c7f2 67struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
8382d914 68
7ca02d0a
MK
69/* Forward declaration */
70static int hugetlb_acct_memory(struct hstate *h, long delta);
71
90481622
DG
72static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
73{
74 bool free = (spool->count == 0) && (spool->used_hpages == 0);
75
76 spin_unlock(&spool->lock);
77
78 /* If no pages are used, and no other handles to the subpool
7ca02d0a
MK
79 * remain, give up any reservations mased on minimum size and
80 * free the subpool */
81 if (free) {
82 if (spool->min_hpages != -1)
83 hugetlb_acct_memory(spool->hstate,
84 -spool->min_hpages);
90481622 85 kfree(spool);
7ca02d0a 86 }
90481622
DG
87}
88
7ca02d0a
MK
89struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
90 long min_hpages)
90481622
DG
91{
92 struct hugepage_subpool *spool;
93
c6a91820 94 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
90481622
DG
95 if (!spool)
96 return NULL;
97
98 spin_lock_init(&spool->lock);
99 spool->count = 1;
7ca02d0a
MK
100 spool->max_hpages = max_hpages;
101 spool->hstate = h;
102 spool->min_hpages = min_hpages;
103
104 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
105 kfree(spool);
106 return NULL;
107 }
108 spool->rsv_hpages = min_hpages;
90481622
DG
109
110 return spool;
111}
112
113void hugepage_put_subpool(struct hugepage_subpool *spool)
114{
115 spin_lock(&spool->lock);
116 BUG_ON(!spool->count);
117 spool->count--;
118 unlock_or_release_subpool(spool);
119}
120
1c5ecae3
MK
121/*
122 * Subpool accounting for allocating and reserving pages.
123 * Return -ENOMEM if there are not enough resources to satisfy the
124 * the request. Otherwise, return the number of pages by which the
125 * global pools must be adjusted (upward). The returned value may
126 * only be different than the passed value (delta) in the case where
127 * a subpool minimum size must be manitained.
128 */
129static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
90481622
DG
130 long delta)
131{
1c5ecae3 132 long ret = delta;
90481622
DG
133
134 if (!spool)
1c5ecae3 135 return ret;
90481622
DG
136
137 spin_lock(&spool->lock);
1c5ecae3
MK
138
139 if (spool->max_hpages != -1) { /* maximum size accounting */
140 if ((spool->used_hpages + delta) <= spool->max_hpages)
141 spool->used_hpages += delta;
142 else {
143 ret = -ENOMEM;
144 goto unlock_ret;
145 }
90481622 146 }
90481622 147
09a95e29
MK
148 /* minimum size accounting */
149 if (spool->min_hpages != -1 && spool->rsv_hpages) {
1c5ecae3
MK
150 if (delta > spool->rsv_hpages) {
151 /*
152 * Asking for more reserves than those already taken on
153 * behalf of subpool. Return difference.
154 */
155 ret = delta - spool->rsv_hpages;
156 spool->rsv_hpages = 0;
157 } else {
158 ret = 0; /* reserves already accounted for */
159 spool->rsv_hpages -= delta;
160 }
161 }
162
163unlock_ret:
164 spin_unlock(&spool->lock);
90481622
DG
165 return ret;
166}
167
1c5ecae3
MK
168/*
169 * Subpool accounting for freeing and unreserving pages.
170 * Return the number of global page reservations that must be dropped.
171 * The return value may only be different than the passed value (delta)
172 * in the case where a subpool minimum size must be maintained.
173 */
174static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
90481622
DG
175 long delta)
176{
1c5ecae3
MK
177 long ret = delta;
178
90481622 179 if (!spool)
1c5ecae3 180 return delta;
90481622
DG
181
182 spin_lock(&spool->lock);
1c5ecae3
MK
183
184 if (spool->max_hpages != -1) /* maximum size accounting */
185 spool->used_hpages -= delta;
186
09a95e29
MK
187 /* minimum size accounting */
188 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
1c5ecae3
MK
189 if (spool->rsv_hpages + delta <= spool->min_hpages)
190 ret = 0;
191 else
192 ret = spool->rsv_hpages + delta - spool->min_hpages;
193
194 spool->rsv_hpages += delta;
195 if (spool->rsv_hpages > spool->min_hpages)
196 spool->rsv_hpages = spool->min_hpages;
197 }
198
199 /*
200 * If hugetlbfs_put_super couldn't free spool due to an outstanding
201 * quota reference, free it now.
202 */
90481622 203 unlock_or_release_subpool(spool);
1c5ecae3
MK
204
205 return ret;
90481622
DG
206}
207
208static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
209{
210 return HUGETLBFS_SB(inode->i_sb)->spool;
211}
212
213static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
214{
496ad9aa 215 return subpool_inode(file_inode(vma->vm_file));
90481622
DG
216}
217
96822904
AW
218/*
219 * Region tracking -- allows tracking of reservations and instantiated pages
220 * across the pages in a mapping.
84afd99b 221 *
1dd308a7
MK
222 * The region data structures are embedded into a resv_map and protected
223 * by a resv_map's lock. The set of regions within the resv_map represent
224 * reservations for huge pages, or huge pages that have already been
225 * instantiated within the map. The from and to elements are huge page
226 * indicies into the associated mapping. from indicates the starting index
227 * of the region. to represents the first index past the end of the region.
228 *
229 * For example, a file region structure with from == 0 and to == 4 represents
230 * four huge pages in a mapping. It is important to note that the to element
231 * represents the first element past the end of the region. This is used in
232 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
233 *
234 * Interval notation of the form [from, to) will be used to indicate that
235 * the endpoint from is inclusive and to is exclusive.
96822904
AW
236 */
237struct file_region {
238 struct list_head link;
239 long from;
240 long to;
241};
242
1dd308a7
MK
243/*
244 * Add the huge page range represented by [f, t) to the reserve
5e911373
MK
245 * map. In the normal case, existing regions will be expanded
246 * to accommodate the specified range. Sufficient regions should
247 * exist for expansion due to the previous call to region_chg
248 * with the same range. However, it is possible that region_del
249 * could have been called after region_chg and modifed the map
250 * in such a way that no region exists to be expanded. In this
251 * case, pull a region descriptor from the cache associated with
252 * the map and use that for the new range.
cf3ad20b
MK
253 *
254 * Return the number of new huge pages added to the map. This
255 * number is greater than or equal to zero.
1dd308a7 256 */
1406ec9b 257static long region_add(struct resv_map *resv, long f, long t)
96822904 258{
1406ec9b 259 struct list_head *head = &resv->regions;
96822904 260 struct file_region *rg, *nrg, *trg;
cf3ad20b 261 long add = 0;
96822904 262
7b24d861 263 spin_lock(&resv->lock);
96822904
AW
264 /* Locate the region we are either in or before. */
265 list_for_each_entry(rg, head, link)
266 if (f <= rg->to)
267 break;
268
5e911373
MK
269 /*
270 * If no region exists which can be expanded to include the
271 * specified range, the list must have been modified by an
272 * interleving call to region_del(). Pull a region descriptor
273 * from the cache and use it for this range.
274 */
275 if (&rg->link == head || t < rg->from) {
276 VM_BUG_ON(resv->region_cache_count <= 0);
277
278 resv->region_cache_count--;
279 nrg = list_first_entry(&resv->region_cache, struct file_region,
280 link);
281 list_del(&nrg->link);
282
283 nrg->from = f;
284 nrg->to = t;
285 list_add(&nrg->link, rg->link.prev);
286
287 add += t - f;
288 goto out_locked;
289 }
290
96822904
AW
291 /* Round our left edge to the current segment if it encloses us. */
292 if (f > rg->from)
293 f = rg->from;
294
295 /* Check for and consume any regions we now overlap with. */
296 nrg = rg;
297 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
298 if (&rg->link == head)
299 break;
300 if (rg->from > t)
301 break;
302
303 /* If this area reaches higher then extend our area to
304 * include it completely. If this is not the first area
305 * which we intend to reuse, free it. */
306 if (rg->to > t)
307 t = rg->to;
308 if (rg != nrg) {
cf3ad20b
MK
309 /* Decrement return value by the deleted range.
310 * Another range will span this area so that by
311 * end of routine add will be >= zero
312 */
313 add -= (rg->to - rg->from);
96822904
AW
314 list_del(&rg->link);
315 kfree(rg);
316 }
317 }
cf3ad20b
MK
318
319 add += (nrg->from - f); /* Added to beginning of region */
96822904 320 nrg->from = f;
cf3ad20b 321 add += t - nrg->to; /* Added to end of region */
96822904 322 nrg->to = t;
cf3ad20b 323
5e911373
MK
324out_locked:
325 resv->adds_in_progress--;
7b24d861 326 spin_unlock(&resv->lock);
cf3ad20b
MK
327 VM_BUG_ON(add < 0);
328 return add;
96822904
AW
329}
330
1dd308a7
MK
331/*
332 * Examine the existing reserve map and determine how many
333 * huge pages in the specified range [f, t) are NOT currently
334 * represented. This routine is called before a subsequent
335 * call to region_add that will actually modify the reserve
336 * map to add the specified range [f, t). region_chg does
337 * not change the number of huge pages represented by the
338 * map. However, if the existing regions in the map can not
339 * be expanded to represent the new range, a new file_region
340 * structure is added to the map as a placeholder. This is
341 * so that the subsequent region_add call will have all the
342 * regions it needs and will not fail.
343 *
5e911373
MK
344 * Upon entry, region_chg will also examine the cache of region descriptors
345 * associated with the map. If there are not enough descriptors cached, one
346 * will be allocated for the in progress add operation.
347 *
348 * Returns the number of huge pages that need to be added to the existing
349 * reservation map for the range [f, t). This number is greater or equal to
350 * zero. -ENOMEM is returned if a new file_region structure or cache entry
351 * is needed and can not be allocated.
1dd308a7 352 */
1406ec9b 353static long region_chg(struct resv_map *resv, long f, long t)
96822904 354{
1406ec9b 355 struct list_head *head = &resv->regions;
7b24d861 356 struct file_region *rg, *nrg = NULL;
96822904
AW
357 long chg = 0;
358
7b24d861
DB
359retry:
360 spin_lock(&resv->lock);
5e911373
MK
361retry_locked:
362 resv->adds_in_progress++;
363
364 /*
365 * Check for sufficient descriptors in the cache to accommodate
366 * the number of in progress add operations.
367 */
368 if (resv->adds_in_progress > resv->region_cache_count) {
369 struct file_region *trg;
370
371 VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
372 /* Must drop lock to allocate a new descriptor. */
373 resv->adds_in_progress--;
374 spin_unlock(&resv->lock);
375
376 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
dbe409e4
MK
377 if (!trg) {
378 kfree(nrg);
5e911373 379 return -ENOMEM;
dbe409e4 380 }
5e911373
MK
381
382 spin_lock(&resv->lock);
383 list_add(&trg->link, &resv->region_cache);
384 resv->region_cache_count++;
385 goto retry_locked;
386 }
387
96822904
AW
388 /* Locate the region we are before or in. */
389 list_for_each_entry(rg, head, link)
390 if (f <= rg->to)
391 break;
392
393 /* If we are below the current region then a new region is required.
394 * Subtle, allocate a new region at the position but make it zero
395 * size such that we can guarantee to record the reservation. */
396 if (&rg->link == head || t < rg->from) {
7b24d861 397 if (!nrg) {
5e911373 398 resv->adds_in_progress--;
7b24d861
DB
399 spin_unlock(&resv->lock);
400 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
401 if (!nrg)
402 return -ENOMEM;
403
404 nrg->from = f;
405 nrg->to = f;
406 INIT_LIST_HEAD(&nrg->link);
407 goto retry;
408 }
96822904 409
7b24d861
DB
410 list_add(&nrg->link, rg->link.prev);
411 chg = t - f;
412 goto out_nrg;
96822904
AW
413 }
414
415 /* Round our left edge to the current segment if it encloses us. */
416 if (f > rg->from)
417 f = rg->from;
418 chg = t - f;
419
420 /* Check for and consume any regions we now overlap with. */
421 list_for_each_entry(rg, rg->link.prev, link) {
422 if (&rg->link == head)
423 break;
424 if (rg->from > t)
7b24d861 425 goto out;
96822904 426
25985edc 427 /* We overlap with this area, if it extends further than
96822904
AW
428 * us then we must extend ourselves. Account for its
429 * existing reservation. */
430 if (rg->to > t) {
431 chg += rg->to - t;
432 t = rg->to;
433 }
434 chg -= rg->to - rg->from;
435 }
7b24d861
DB
436
437out:
438 spin_unlock(&resv->lock);
439 /* We already know we raced and no longer need the new region */
440 kfree(nrg);
441 return chg;
442out_nrg:
443 spin_unlock(&resv->lock);
96822904
AW
444 return chg;
445}
446
5e911373
MK
447/*
448 * Abort the in progress add operation. The adds_in_progress field
449 * of the resv_map keeps track of the operations in progress between
450 * calls to region_chg and region_add. Operations are sometimes
451 * aborted after the call to region_chg. In such cases, region_abort
452 * is called to decrement the adds_in_progress counter.
453 *
454 * NOTE: The range arguments [f, t) are not needed or used in this
455 * routine. They are kept to make reading the calling code easier as
456 * arguments will match the associated region_chg call.
457 */
458static void region_abort(struct resv_map *resv, long f, long t)
459{
460 spin_lock(&resv->lock);
461 VM_BUG_ON(!resv->region_cache_count);
462 resv->adds_in_progress--;
463 spin_unlock(&resv->lock);
464}
465
1dd308a7 466/*
feba16e2
MK
467 * Delete the specified range [f, t) from the reserve map. If the
468 * t parameter is LONG_MAX, this indicates that ALL regions after f
469 * should be deleted. Locate the regions which intersect [f, t)
470 * and either trim, delete or split the existing regions.
471 *
472 * Returns the number of huge pages deleted from the reserve map.
473 * In the normal case, the return value is zero or more. In the
474 * case where a region must be split, a new region descriptor must
475 * be allocated. If the allocation fails, -ENOMEM will be returned.
476 * NOTE: If the parameter t == LONG_MAX, then we will never split
477 * a region and possibly return -ENOMEM. Callers specifying
478 * t == LONG_MAX do not need to check for -ENOMEM error.
1dd308a7 479 */
feba16e2 480static long region_del(struct resv_map *resv, long f, long t)
96822904 481{
1406ec9b 482 struct list_head *head = &resv->regions;
96822904 483 struct file_region *rg, *trg;
feba16e2
MK
484 struct file_region *nrg = NULL;
485 long del = 0;
96822904 486
feba16e2 487retry:
7b24d861 488 spin_lock(&resv->lock);
feba16e2 489 list_for_each_entry_safe(rg, trg, head, link) {
dbe409e4
MK
490 /*
491 * Skip regions before the range to be deleted. file_region
492 * ranges are normally of the form [from, to). However, there
493 * may be a "placeholder" entry in the map which is of the form
494 * (from, to) with from == to. Check for placeholder entries
495 * at the beginning of the range to be deleted.
496 */
497 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
feba16e2 498 continue;
dbe409e4 499
feba16e2 500 if (rg->from >= t)
96822904 501 break;
96822904 502
feba16e2
MK
503 if (f > rg->from && t < rg->to) { /* Must split region */
504 /*
505 * Check for an entry in the cache before dropping
506 * lock and attempting allocation.
507 */
508 if (!nrg &&
509 resv->region_cache_count > resv->adds_in_progress) {
510 nrg = list_first_entry(&resv->region_cache,
511 struct file_region,
512 link);
513 list_del(&nrg->link);
514 resv->region_cache_count--;
515 }
96822904 516
feba16e2
MK
517 if (!nrg) {
518 spin_unlock(&resv->lock);
519 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
520 if (!nrg)
521 return -ENOMEM;
522 goto retry;
523 }
524
525 del += t - f;
526
527 /* New entry for end of split region */
528 nrg->from = t;
529 nrg->to = rg->to;
530 INIT_LIST_HEAD(&nrg->link);
531
532 /* Original entry is trimmed */
533 rg->to = f;
534
535 list_add(&nrg->link, &rg->link);
536 nrg = NULL;
96822904 537 break;
feba16e2
MK
538 }
539
540 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
541 del += rg->to - rg->from;
542 list_del(&rg->link);
543 kfree(rg);
544 continue;
545 }
546
547 if (f <= rg->from) { /* Trim beginning of region */
548 del += t - rg->from;
549 rg->from = t;
550 } else { /* Trim end of region */
551 del += rg->to - f;
552 rg->to = f;
553 }
96822904 554 }
7b24d861 555
7b24d861 556 spin_unlock(&resv->lock);
feba16e2
MK
557 kfree(nrg);
558 return del;
96822904
AW
559}
560
b5cec28d
MK
561/*
562 * A rare out of memory error was encountered which prevented removal of
563 * the reserve map region for a page. The huge page itself was free'ed
564 * and removed from the page cache. This routine will adjust the subpool
565 * usage count, and the global reserve count if needed. By incrementing
566 * these counts, the reserve map entry which could not be deleted will
567 * appear as a "reserved" entry instead of simply dangling with incorrect
568 * counts.
569 */
72e2936c 570void hugetlb_fix_reserve_counts(struct inode *inode)
b5cec28d
MK
571{
572 struct hugepage_subpool *spool = subpool_inode(inode);
573 long rsv_adjust;
574
575 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
72e2936c 576 if (rsv_adjust) {
b5cec28d
MK
577 struct hstate *h = hstate_inode(inode);
578
579 hugetlb_acct_memory(h, 1);
580 }
581}
582
1dd308a7
MK
583/*
584 * Count and return the number of huge pages in the reserve map
585 * that intersect with the range [f, t).
586 */
1406ec9b 587static long region_count(struct resv_map *resv, long f, long t)
84afd99b 588{
1406ec9b 589 struct list_head *head = &resv->regions;
84afd99b
AW
590 struct file_region *rg;
591 long chg = 0;
592
7b24d861 593 spin_lock(&resv->lock);
84afd99b
AW
594 /* Locate each segment we overlap with, and count that overlap. */
595 list_for_each_entry(rg, head, link) {
f2135a4a
WSH
596 long seg_from;
597 long seg_to;
84afd99b
AW
598
599 if (rg->to <= f)
600 continue;
601 if (rg->from >= t)
602 break;
603
604 seg_from = max(rg->from, f);
605 seg_to = min(rg->to, t);
606
607 chg += seg_to - seg_from;
608 }
7b24d861 609 spin_unlock(&resv->lock);
84afd99b
AW
610
611 return chg;
612}
613
e7c4b0bf
AW
614/*
615 * Convert the address within this vma to the page offset within
616 * the mapping, in pagecache page units; huge pages here.
617 */
a5516438
AK
618static pgoff_t vma_hugecache_offset(struct hstate *h,
619 struct vm_area_struct *vma, unsigned long address)
e7c4b0bf 620{
a5516438
AK
621 return ((address - vma->vm_start) >> huge_page_shift(h)) +
622 (vma->vm_pgoff >> huge_page_order(h));
e7c4b0bf
AW
623}
624
0fe6e20b
NH
625pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
626 unsigned long address)
627{
628 return vma_hugecache_offset(hstate_vma(vma), vma, address);
629}
dee41079 630EXPORT_SYMBOL_GPL(linear_hugepage_index);
0fe6e20b 631
08fba699
MG
632/*
633 * Return the size of the pages allocated when backing a VMA. In the majority
634 * cases this will be same size as used by the page table entries.
635 */
636unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
637{
638 struct hstate *hstate;
639
640 if (!is_vm_hugetlb_page(vma))
641 return PAGE_SIZE;
642
643 hstate = hstate_vma(vma);
644
2415cf12 645 return 1UL << huge_page_shift(hstate);
08fba699 646}
f340ca0f 647EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
08fba699 648
3340289d
MG
649/*
650 * Return the page size being used by the MMU to back a VMA. In the majority
651 * of cases, the page size used by the kernel matches the MMU size. On
652 * architectures where it differs, an architecture-specific version of this
653 * function is required.
654 */
655#ifndef vma_mmu_pagesize
656unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
657{
658 return vma_kernel_pagesize(vma);
659}
660#endif
661
84afd99b
AW
662/*
663 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
664 * bits of the reservation map pointer, which are always clear due to
665 * alignment.
666 */
667#define HPAGE_RESV_OWNER (1UL << 0)
668#define HPAGE_RESV_UNMAPPED (1UL << 1)
04f2cbe3 669#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
84afd99b 670
a1e78772
MG
671/*
672 * These helpers are used to track how many pages are reserved for
673 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
674 * is guaranteed to have their future faults succeed.
675 *
676 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
677 * the reserve counters are updated with the hugetlb_lock held. It is safe
678 * to reset the VMA at fork() time as it is not in use yet and there is no
679 * chance of the global counters getting corrupted as a result of the values.
84afd99b
AW
680 *
681 * The private mapping reservation is represented in a subtly different
682 * manner to a shared mapping. A shared mapping has a region map associated
683 * with the underlying file, this region map represents the backing file
684 * pages which have ever had a reservation assigned which this persists even
685 * after the page is instantiated. A private mapping has a region map
686 * associated with the original mmap which is attached to all VMAs which
687 * reference it, this region map represents those offsets which have consumed
688 * reservation ie. where pages have been instantiated.
a1e78772 689 */
e7c4b0bf
AW
690static unsigned long get_vma_private_data(struct vm_area_struct *vma)
691{
692 return (unsigned long)vma->vm_private_data;
693}
694
695static void set_vma_private_data(struct vm_area_struct *vma,
696 unsigned long value)
697{
698 vma->vm_private_data = (void *)value;
699}
700
9119a41e 701struct resv_map *resv_map_alloc(void)
84afd99b
AW
702{
703 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
5e911373
MK
704 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
705
706 if (!resv_map || !rg) {
707 kfree(resv_map);
708 kfree(rg);
84afd99b 709 return NULL;
5e911373 710 }
84afd99b
AW
711
712 kref_init(&resv_map->refs);
7b24d861 713 spin_lock_init(&resv_map->lock);
84afd99b
AW
714 INIT_LIST_HEAD(&resv_map->regions);
715
5e911373
MK
716 resv_map->adds_in_progress = 0;
717
718 INIT_LIST_HEAD(&resv_map->region_cache);
719 list_add(&rg->link, &resv_map->region_cache);
720 resv_map->region_cache_count = 1;
721
84afd99b
AW
722 return resv_map;
723}
724
9119a41e 725void resv_map_release(struct kref *ref)
84afd99b
AW
726{
727 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
5e911373
MK
728 struct list_head *head = &resv_map->region_cache;
729 struct file_region *rg, *trg;
84afd99b
AW
730
731 /* Clear out any active regions before we release the map. */
feba16e2 732 region_del(resv_map, 0, LONG_MAX);
5e911373
MK
733
734 /* ... and any entries left in the cache */
735 list_for_each_entry_safe(rg, trg, head, link) {
736 list_del(&rg->link);
737 kfree(rg);
738 }
739
740 VM_BUG_ON(resv_map->adds_in_progress);
741
84afd99b
AW
742 kfree(resv_map);
743}
744
4e35f483
JK
745static inline struct resv_map *inode_resv_map(struct inode *inode)
746{
747 return inode->i_mapping->private_data;
748}
749
84afd99b 750static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
a1e78772 751{
81d1b09c 752 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
4e35f483
JK
753 if (vma->vm_flags & VM_MAYSHARE) {
754 struct address_space *mapping = vma->vm_file->f_mapping;
755 struct inode *inode = mapping->host;
756
757 return inode_resv_map(inode);
758
759 } else {
84afd99b
AW
760 return (struct resv_map *)(get_vma_private_data(vma) &
761 ~HPAGE_RESV_MASK);
4e35f483 762 }
a1e78772
MG
763}
764
84afd99b 765static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
a1e78772 766{
81d1b09c
SL
767 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
768 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
a1e78772 769
84afd99b
AW
770 set_vma_private_data(vma, (get_vma_private_data(vma) &
771 HPAGE_RESV_MASK) | (unsigned long)map);
04f2cbe3
MG
772}
773
774static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
775{
81d1b09c
SL
776 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
777 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
e7c4b0bf
AW
778
779 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
04f2cbe3
MG
780}
781
782static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
783{
81d1b09c 784 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
e7c4b0bf
AW
785
786 return (get_vma_private_data(vma) & flag) != 0;
a1e78772
MG
787}
788
04f2cbe3 789/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
a1e78772
MG
790void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
791{
81d1b09c 792 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
f83a275d 793 if (!(vma->vm_flags & VM_MAYSHARE))
a1e78772
MG
794 vma->vm_private_data = (void *)0;
795}
796
797/* Returns true if the VMA has associated reserve pages */
559ec2f8 798static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
a1e78772 799{
af0ed73e
JK
800 if (vma->vm_flags & VM_NORESERVE) {
801 /*
802 * This address is already reserved by other process(chg == 0),
803 * so, we should decrement reserved count. Without decrementing,
804 * reserve count remains after releasing inode, because this
805 * allocated page will go into page cache and is regarded as
806 * coming from reserved pool in releasing step. Currently, we
807 * don't have any other solution to deal with this situation
808 * properly, so add work-around here.
809 */
810 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
559ec2f8 811 return true;
af0ed73e 812 else
559ec2f8 813 return false;
af0ed73e 814 }
a63884e9
JK
815
816 /* Shared mappings always use reserves */
1fb1b0e9
MK
817 if (vma->vm_flags & VM_MAYSHARE) {
818 /*
819 * We know VM_NORESERVE is not set. Therefore, there SHOULD
820 * be a region map for all pages. The only situation where
821 * there is no region map is if a hole was punched via
822 * fallocate. In this case, there really are no reverves to
823 * use. This situation is indicated if chg != 0.
824 */
825 if (chg)
826 return false;
827 else
828 return true;
829 }
a63884e9
JK
830
831 /*
832 * Only the process that called mmap() has reserves for
833 * private mappings.
834 */
67961f9d
MK
835 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
836 /*
837 * Like the shared case above, a hole punch or truncate
838 * could have been performed on the private mapping.
839 * Examine the value of chg to determine if reserves
840 * actually exist or were previously consumed.
841 * Very Subtle - The value of chg comes from a previous
842 * call to vma_needs_reserves(). The reserve map for
843 * private mappings has different (opposite) semantics
844 * than that of shared mappings. vma_needs_reserves()
845 * has already taken this difference in semantics into
846 * account. Therefore, the meaning of chg is the same
847 * as in the shared case above. Code could easily be
848 * combined, but keeping it separate draws attention to
849 * subtle differences.
850 */
851 if (chg)
852 return false;
853 else
854 return true;
855 }
a63884e9 856
559ec2f8 857 return false;
a1e78772
MG
858}
859
a5516438 860static void enqueue_huge_page(struct hstate *h, struct page *page)
1da177e4
LT
861{
862 int nid = page_to_nid(page);
0edaecfa 863 list_move(&page->lru, &h->hugepage_freelists[nid]);
a5516438
AK
864 h->free_huge_pages++;
865 h->free_huge_pages_node[nid]++;
1da177e4
LT
866}
867
94310cbc 868static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
bf50bab2
NH
869{
870 struct page *page;
871
c8721bbb 872 list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
243abd5b 873 if (!PageHWPoison(page))
c8721bbb
NH
874 break;
875 /*
876 * if 'non-isolated free hugepage' not found on the list,
877 * the allocation fails.
878 */
879 if (&h->hugepage_freelists[nid] == &page->lru)
bf50bab2 880 return NULL;
0edaecfa 881 list_move(&page->lru, &h->hugepage_activelist);
a9869b83 882 set_page_refcounted(page);
bf50bab2
NH
883 h->free_huge_pages--;
884 h->free_huge_pages_node[nid]--;
885 return page;
886}
887
3e59fcb0
MH
888static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
889 nodemask_t *nmask)
94310cbc 890{
3e59fcb0
MH
891 unsigned int cpuset_mems_cookie;
892 struct zonelist *zonelist;
893 struct zone *zone;
894 struct zoneref *z;
895 int node = -1;
94310cbc 896
3e59fcb0
MH
897 zonelist = node_zonelist(nid, gfp_mask);
898
899retry_cpuset:
900 cpuset_mems_cookie = read_mems_allowed_begin();
901 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
902 struct page *page;
903
904 if (!cpuset_zone_allowed(zone, gfp_mask))
905 continue;
906 /*
907 * no need to ask again on the same node. Pool is node rather than
908 * zone aware
909 */
910 if (zone_to_nid(zone) == node)
911 continue;
912 node = zone_to_nid(zone);
94310cbc 913
94310cbc
AK
914 page = dequeue_huge_page_node_exact(h, node);
915 if (page)
916 return page;
917 }
3e59fcb0
MH
918 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
919 goto retry_cpuset;
920
94310cbc
AK
921 return NULL;
922}
923
86cdb465
NH
924/* Movability of hugepages depends on migration support. */
925static inline gfp_t htlb_alloc_mask(struct hstate *h)
926{
d6cb41cc 927 if (hugepage_migration_supported(h))
86cdb465
NH
928 return GFP_HIGHUSER_MOVABLE;
929 else
930 return GFP_HIGHUSER;
931}
932
a5516438
AK
933static struct page *dequeue_huge_page_vma(struct hstate *h,
934 struct vm_area_struct *vma,
af0ed73e
JK
935 unsigned long address, int avoid_reserve,
936 long chg)
1da177e4 937{
3e59fcb0 938 struct page *page;
480eccf9 939 struct mempolicy *mpol;
04ec6264 940 gfp_t gfp_mask;
3e59fcb0 941 nodemask_t *nodemask;
04ec6264 942 int nid;
1da177e4 943
a1e78772
MG
944 /*
945 * A child process with MAP_PRIVATE mappings created by their parent
946 * have no page reserves. This check ensures that reservations are
947 * not "stolen". The child may still get SIGKILLed
948 */
af0ed73e 949 if (!vma_has_reserves(vma, chg) &&
a5516438 950 h->free_huge_pages - h->resv_huge_pages == 0)
c0ff7453 951 goto err;
a1e78772 952
04f2cbe3 953 /* If reserves cannot be used, ensure enough pages are in the pool */
a5516438 954 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
6eab04a8 955 goto err;
04f2cbe3 956
04ec6264
VB
957 gfp_mask = htlb_alloc_mask(h);
958 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
3e59fcb0
MH
959 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
960 if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
961 SetPagePrivate(page);
962 h->resv_huge_pages--;
1da177e4 963 }
cc9a6c87 964
52cd3b07 965 mpol_cond_put(mpol);
1da177e4 966 return page;
cc9a6c87
MG
967
968err:
cc9a6c87 969 return NULL;
1da177e4
LT
970}
971
1cac6f2c
LC
972/*
973 * common helper functions for hstate_next_node_to_{alloc|free}.
974 * We may have allocated or freed a huge page based on a different
975 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
976 * be outside of *nodes_allowed. Ensure that we use an allowed
977 * node for alloc or free.
978 */
979static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
980{
0edaf86c 981 nid = next_node_in(nid, *nodes_allowed);
1cac6f2c
LC
982 VM_BUG_ON(nid >= MAX_NUMNODES);
983
984 return nid;
985}
986
987static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
988{
989 if (!node_isset(nid, *nodes_allowed))
990 nid = next_node_allowed(nid, nodes_allowed);
991 return nid;
992}
993
994/*
995 * returns the previously saved node ["this node"] from which to
996 * allocate a persistent huge page for the pool and advance the
997 * next node from which to allocate, handling wrap at end of node
998 * mask.
999 */
1000static int hstate_next_node_to_alloc(struct hstate *h,
1001 nodemask_t *nodes_allowed)
1002{
1003 int nid;
1004
1005 VM_BUG_ON(!nodes_allowed);
1006
1007 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1008 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1009
1010 return nid;
1011}
1012
1013/*
1014 * helper for free_pool_huge_page() - return the previously saved
1015 * node ["this node"] from which to free a huge page. Advance the
1016 * next node id whether or not we find a free huge page to free so
1017 * that the next attempt to free addresses the next node.
1018 */
1019static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1020{
1021 int nid;
1022
1023 VM_BUG_ON(!nodes_allowed);
1024
1025 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1026 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1027
1028 return nid;
1029}
1030
1031#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
1032 for (nr_nodes = nodes_weight(*mask); \
1033 nr_nodes > 0 && \
1034 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
1035 nr_nodes--)
1036
1037#define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1038 for (nr_nodes = nodes_weight(*mask); \
1039 nr_nodes > 0 && \
1040 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1041 nr_nodes--)
1042
e1073d1e 1043#ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
944d9fec 1044static void destroy_compound_gigantic_page(struct page *page,
d00181b9 1045 unsigned int order)
944d9fec
LC
1046{
1047 int i;
1048 int nr_pages = 1 << order;
1049 struct page *p = page + 1;
1050
c8cc708a 1051 atomic_set(compound_mapcount_ptr(page), 0);
944d9fec 1052 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1d798ca3 1053 clear_compound_head(p);
944d9fec 1054 set_page_refcounted(p);
944d9fec
LC
1055 }
1056
1057 set_compound_order(page, 0);
1058 __ClearPageHead(page);
1059}
1060
d00181b9 1061static void free_gigantic_page(struct page *page, unsigned int order)
944d9fec
LC
1062{
1063 free_contig_range(page_to_pfn(page), 1 << order);
1064}
1065
1066static int __alloc_gigantic_page(unsigned long start_pfn,
79b63f12 1067 unsigned long nr_pages, gfp_t gfp_mask)
944d9fec
LC
1068{
1069 unsigned long end_pfn = start_pfn + nr_pages;
ca96b625 1070 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
79b63f12 1071 gfp_mask);
944d9fec
LC
1072}
1073
f44b2dda
JK
1074static bool pfn_range_valid_gigantic(struct zone *z,
1075 unsigned long start_pfn, unsigned long nr_pages)
944d9fec
LC
1076{
1077 unsigned long i, end_pfn = start_pfn + nr_pages;
1078 struct page *page;
1079
1080 for (i = start_pfn; i < end_pfn; i++) {
1081 if (!pfn_valid(i))
1082 return false;
1083
1084 page = pfn_to_page(i);
1085
f44b2dda
JK
1086 if (page_zone(page) != z)
1087 return false;
1088
944d9fec
LC
1089 if (PageReserved(page))
1090 return false;
1091
1092 if (page_count(page) > 0)
1093 return false;
1094
1095 if (PageHuge(page))
1096 return false;
1097 }
1098
1099 return true;
1100}
1101
1102static bool zone_spans_last_pfn(const struct zone *zone,
1103 unsigned long start_pfn, unsigned long nr_pages)
1104{
1105 unsigned long last_pfn = start_pfn + nr_pages - 1;
1106 return zone_spans_pfn(zone, last_pfn);
1107}
1108
79b63f12 1109static struct page *alloc_gigantic_page(int nid, struct hstate *h)
944d9fec 1110{
79b63f12 1111 unsigned int order = huge_page_order(h);
944d9fec
LC
1112 unsigned long nr_pages = 1 << order;
1113 unsigned long ret, pfn, flags;
79b63f12
MH
1114 struct zonelist *zonelist;
1115 struct zone *zone;
1116 struct zoneref *z;
1117 gfp_t gfp_mask;
944d9fec 1118
79b63f12
MH
1119 gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1120 zonelist = node_zonelist(nid, gfp_mask);
1121 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), NULL) {
1122 spin_lock_irqsave(&zone->lock, flags);
944d9fec 1123
79b63f12
MH
1124 pfn = ALIGN(zone->zone_start_pfn, nr_pages);
1125 while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
1126 if (pfn_range_valid_gigantic(zone, pfn, nr_pages)) {
944d9fec
LC
1127 /*
1128 * We release the zone lock here because
1129 * alloc_contig_range() will also lock the zone
1130 * at some point. If there's an allocation
1131 * spinning on this lock, it may win the race
1132 * and cause alloc_contig_range() to fail...
1133 */
79b63f12
MH
1134 spin_unlock_irqrestore(&zone->lock, flags);
1135 ret = __alloc_gigantic_page(pfn, nr_pages, gfp_mask);
944d9fec
LC
1136 if (!ret)
1137 return pfn_to_page(pfn);
79b63f12 1138 spin_lock_irqsave(&zone->lock, flags);
944d9fec
LC
1139 }
1140 pfn += nr_pages;
1141 }
1142
79b63f12 1143 spin_unlock_irqrestore(&zone->lock, flags);
944d9fec
LC
1144 }
1145
1146 return NULL;
1147}
1148
1149static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
d00181b9 1150static void prep_compound_gigantic_page(struct page *page, unsigned int order);
944d9fec
LC
1151
1152static struct page *alloc_fresh_gigantic_page_node(struct hstate *h, int nid)
1153{
1154 struct page *page;
1155
79b63f12 1156 page = alloc_gigantic_page(nid, h);
944d9fec
LC
1157 if (page) {
1158 prep_compound_gigantic_page(page, huge_page_order(h));
1159 prep_new_huge_page(h, page, nid);
af0fb9df 1160 put_page(page); /* free it into the hugepage allocator */
944d9fec
LC
1161 }
1162
1163 return page;
1164}
1165
1166static int alloc_fresh_gigantic_page(struct hstate *h,
1167 nodemask_t *nodes_allowed)
1168{
1169 struct page *page = NULL;
1170 int nr_nodes, node;
1171
1172 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1173 page = alloc_fresh_gigantic_page_node(h, node);
1174 if (page)
1175 return 1;
1176 }
1177
1178 return 0;
1179}
1180
e1073d1e 1181#else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
944d9fec 1182static inline bool gigantic_page_supported(void) { return false; }
d00181b9 1183static inline void free_gigantic_page(struct page *page, unsigned int order) { }
944d9fec 1184static inline void destroy_compound_gigantic_page(struct page *page,
d00181b9 1185 unsigned int order) { }
944d9fec
LC
1186static inline int alloc_fresh_gigantic_page(struct hstate *h,
1187 nodemask_t *nodes_allowed) { return 0; }
1188#endif
1189
a5516438 1190static void update_and_free_page(struct hstate *h, struct page *page)
6af2acb6
AL
1191{
1192 int i;
a5516438 1193
944d9fec
LC
1194 if (hstate_is_gigantic(h) && !gigantic_page_supported())
1195 return;
18229df5 1196
a5516438
AK
1197 h->nr_huge_pages--;
1198 h->nr_huge_pages_node[page_to_nid(page)]--;
1199 for (i = 0; i < pages_per_huge_page(h); i++) {
32f84528
CF
1200 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1201 1 << PG_referenced | 1 << PG_dirty |
a7407a27
LC
1202 1 << PG_active | 1 << PG_private |
1203 1 << PG_writeback);
6af2acb6 1204 }
309381fe 1205 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
f1e61557 1206 set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
6af2acb6 1207 set_page_refcounted(page);
944d9fec
LC
1208 if (hstate_is_gigantic(h)) {
1209 destroy_compound_gigantic_page(page, huge_page_order(h));
1210 free_gigantic_page(page, huge_page_order(h));
1211 } else {
944d9fec
LC
1212 __free_pages(page, huge_page_order(h));
1213 }
6af2acb6
AL
1214}
1215
e5ff2159
AK
1216struct hstate *size_to_hstate(unsigned long size)
1217{
1218 struct hstate *h;
1219
1220 for_each_hstate(h) {
1221 if (huge_page_size(h) == size)
1222 return h;
1223 }
1224 return NULL;
1225}
1226
bcc54222
NH
1227/*
1228 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1229 * to hstate->hugepage_activelist.)
1230 *
1231 * This function can be called for tail pages, but never returns true for them.
1232 */
1233bool page_huge_active(struct page *page)
1234{
1235 VM_BUG_ON_PAGE(!PageHuge(page), page);
1236 return PageHead(page) && PagePrivate(&page[1]);
1237}
1238
1239/* never called for tail page */
1240static void set_page_huge_active(struct page *page)
1241{
1242 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1243 SetPagePrivate(&page[1]);
1244}
1245
1246static void clear_page_huge_active(struct page *page)
1247{
1248 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1249 ClearPagePrivate(&page[1]);
1250}
1251
8f1d26d0 1252void free_huge_page(struct page *page)
27a85ef1 1253{
a5516438
AK
1254 /*
1255 * Can't pass hstate in here because it is called from the
1256 * compound page destructor.
1257 */
e5ff2159 1258 struct hstate *h = page_hstate(page);
7893d1d5 1259 int nid = page_to_nid(page);
90481622
DG
1260 struct hugepage_subpool *spool =
1261 (struct hugepage_subpool *)page_private(page);
07443a85 1262 bool restore_reserve;
27a85ef1 1263
e5df70ab 1264 set_page_private(page, 0);
23be7468 1265 page->mapping = NULL;
b4330afb
MK
1266 VM_BUG_ON_PAGE(page_count(page), page);
1267 VM_BUG_ON_PAGE(page_mapcount(page), page);
07443a85 1268 restore_reserve = PagePrivate(page);
16c794b4 1269 ClearPagePrivate(page);
27a85ef1 1270
1c5ecae3
MK
1271 /*
1272 * A return code of zero implies that the subpool will be under its
1273 * minimum size if the reservation is not restored after page is free.
1274 * Therefore, force restore_reserve operation.
1275 */
1276 if (hugepage_subpool_put_pages(spool, 1) == 0)
1277 restore_reserve = true;
1278
27a85ef1 1279 spin_lock(&hugetlb_lock);
bcc54222 1280 clear_page_huge_active(page);
6d76dcf4
AK
1281 hugetlb_cgroup_uncharge_page(hstate_index(h),
1282 pages_per_huge_page(h), page);
07443a85
JK
1283 if (restore_reserve)
1284 h->resv_huge_pages++;
1285
944d9fec 1286 if (h->surplus_huge_pages_node[nid]) {
0edaecfa
AK
1287 /* remove the page from active list */
1288 list_del(&page->lru);
a5516438
AK
1289 update_and_free_page(h, page);
1290 h->surplus_huge_pages--;
1291 h->surplus_huge_pages_node[nid]--;
7893d1d5 1292 } else {
5d3a551c 1293 arch_clear_hugepage_flags(page);
a5516438 1294 enqueue_huge_page(h, page);
7893d1d5 1295 }
27a85ef1
DG
1296 spin_unlock(&hugetlb_lock);
1297}
1298
a5516438 1299static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
b7ba30c6 1300{
0edaecfa 1301 INIT_LIST_HEAD(&page->lru);
f1e61557 1302 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
b7ba30c6 1303 spin_lock(&hugetlb_lock);
9dd540e2 1304 set_hugetlb_cgroup(page, NULL);
a5516438
AK
1305 h->nr_huge_pages++;
1306 h->nr_huge_pages_node[nid]++;
b7ba30c6 1307 spin_unlock(&hugetlb_lock);
b7ba30c6
AK
1308}
1309
d00181b9 1310static void prep_compound_gigantic_page(struct page *page, unsigned int order)
20a0307c
WF
1311{
1312 int i;
1313 int nr_pages = 1 << order;
1314 struct page *p = page + 1;
1315
1316 /* we rely on prep_new_huge_page to set the destructor */
1317 set_compound_order(page, order);
ef5a22be 1318 __ClearPageReserved(page);
de09d31d 1319 __SetPageHead(page);
20a0307c 1320 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
ef5a22be
AA
1321 /*
1322 * For gigantic hugepages allocated through bootmem at
1323 * boot, it's safer to be consistent with the not-gigantic
1324 * hugepages and clear the PG_reserved bit from all tail pages
1325 * too. Otherwse drivers using get_user_pages() to access tail
1326 * pages may get the reference counting wrong if they see
1327 * PG_reserved set on a tail page (despite the head page not
1328 * having PG_reserved set). Enforcing this consistency between
1329 * head and tail pages allows drivers to optimize away a check
1330 * on the head page when they need know if put_page() is needed
1331 * after get_user_pages().
1332 */
1333 __ClearPageReserved(p);
58a84aa9 1334 set_page_count(p, 0);
1d798ca3 1335 set_compound_head(p, page);
20a0307c 1336 }
b4330afb 1337 atomic_set(compound_mapcount_ptr(page), -1);
20a0307c
WF
1338}
1339
7795912c
AM
1340/*
1341 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1342 * transparent huge pages. See the PageTransHuge() documentation for more
1343 * details.
1344 */
20a0307c
WF
1345int PageHuge(struct page *page)
1346{
20a0307c
WF
1347 if (!PageCompound(page))
1348 return 0;
1349
1350 page = compound_head(page);
f1e61557 1351 return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
20a0307c 1352}
43131e14
NH
1353EXPORT_SYMBOL_GPL(PageHuge);
1354
27c73ae7
AA
1355/*
1356 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1357 * normal or transparent huge pages.
1358 */
1359int PageHeadHuge(struct page *page_head)
1360{
27c73ae7
AA
1361 if (!PageHead(page_head))
1362 return 0;
1363
758f66a2 1364 return get_compound_page_dtor(page_head) == free_huge_page;
27c73ae7 1365}
27c73ae7 1366
13d60f4b
ZY
1367pgoff_t __basepage_index(struct page *page)
1368{
1369 struct page *page_head = compound_head(page);
1370 pgoff_t index = page_index(page_head);
1371 unsigned long compound_idx;
1372
1373 if (!PageHuge(page_head))
1374 return page_index(page);
1375
1376 if (compound_order(page_head) >= MAX_ORDER)
1377 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1378 else
1379 compound_idx = page - page_head;
1380
1381 return (index << compound_order(page_head)) + compound_idx;
1382}
1383
af0fb9df
MH
1384static struct page *__hugetlb_alloc_buddy_huge_page(struct hstate *h,
1385 gfp_t gfp_mask, int nid, nodemask_t *nmask)
1da177e4 1386{
af0fb9df 1387 int order = huge_page_order(h);
1da177e4 1388 struct page *page;
f96efd58 1389
af0fb9df
MH
1390 gfp_mask |= __GFP_COMP|__GFP_RETRY_MAYFAIL|__GFP_NOWARN;
1391 if (nid == NUMA_NO_NODE)
1392 nid = numa_mem_id();
1393 page = __alloc_pages_nodemask(gfp_mask, order, nid, nmask);
1394 if (page)
1395 __count_vm_event(HTLB_BUDDY_PGALLOC);
1396 else
1397 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
63b4613c
NA
1398
1399 return page;
1400}
1401
af0fb9df
MH
1402/*
1403 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1404 * manner.
1405 */
b2261026
JK
1406static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
1407{
1408 struct page *page;
1409 int nr_nodes, node;
af0fb9df 1410 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
b2261026
JK
1411
1412 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
af0fb9df
MH
1413 page = __hugetlb_alloc_buddy_huge_page(h, gfp_mask,
1414 node, nodes_allowed);
1415 if (page)
b2261026 1416 break;
af0fb9df 1417
b2261026
JK
1418 }
1419
af0fb9df
MH
1420 if (!page)
1421 return 0;
b2261026 1422
af0fb9df
MH
1423 prep_new_huge_page(h, page, page_to_nid(page));
1424 put_page(page); /* free it into the hugepage allocator */
1425
1426 return 1;
b2261026
JK
1427}
1428
e8c5c824
LS
1429/*
1430 * Free huge page from pool from next node to free.
1431 * Attempt to keep persistent huge pages more or less
1432 * balanced over allowed nodes.
1433 * Called with hugetlb_lock locked.
1434 */
6ae11b27
LS
1435static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1436 bool acct_surplus)
e8c5c824 1437{
b2261026 1438 int nr_nodes, node;
e8c5c824
LS
1439 int ret = 0;
1440
b2261026 1441 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
685f3457
LS
1442 /*
1443 * If we're returning unused surplus pages, only examine
1444 * nodes with surplus pages.
1445 */
b2261026
JK
1446 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1447 !list_empty(&h->hugepage_freelists[node])) {
e8c5c824 1448 struct page *page =
b2261026 1449 list_entry(h->hugepage_freelists[node].next,
e8c5c824
LS
1450 struct page, lru);
1451 list_del(&page->lru);
1452 h->free_huge_pages--;
b2261026 1453 h->free_huge_pages_node[node]--;
685f3457
LS
1454 if (acct_surplus) {
1455 h->surplus_huge_pages--;
b2261026 1456 h->surplus_huge_pages_node[node]--;
685f3457 1457 }
e8c5c824
LS
1458 update_and_free_page(h, page);
1459 ret = 1;
9a76db09 1460 break;
e8c5c824 1461 }
b2261026 1462 }
e8c5c824
LS
1463
1464 return ret;
1465}
1466
c8721bbb
NH
1467/*
1468 * Dissolve a given free hugepage into free buddy pages. This function does
082d5b6b
GS
1469 * nothing for in-use (including surplus) hugepages. Returns -EBUSY if the
1470 * number of free hugepages would be reduced below the number of reserved
1471 * hugepages.
c8721bbb 1472 */
c3114a84 1473int dissolve_free_huge_page(struct page *page)
c8721bbb 1474{
082d5b6b
GS
1475 int rc = 0;
1476
c8721bbb
NH
1477 spin_lock(&hugetlb_lock);
1478 if (PageHuge(page) && !page_count(page)) {
2247bb33
GS
1479 struct page *head = compound_head(page);
1480 struct hstate *h = page_hstate(head);
1481 int nid = page_to_nid(head);
082d5b6b
GS
1482 if (h->free_huge_pages - h->resv_huge_pages == 0) {
1483 rc = -EBUSY;
1484 goto out;
1485 }
c3114a84
AK
1486 /*
1487 * Move PageHWPoison flag from head page to the raw error page,
1488 * which makes any subpages rather than the error page reusable.
1489 */
1490 if (PageHWPoison(head) && page != head) {
1491 SetPageHWPoison(page);
1492 ClearPageHWPoison(head);
1493 }
2247bb33 1494 list_del(&head->lru);
c8721bbb
NH
1495 h->free_huge_pages--;
1496 h->free_huge_pages_node[nid]--;
c1470b33 1497 h->max_huge_pages--;
2247bb33 1498 update_and_free_page(h, head);
c8721bbb 1499 }
082d5b6b 1500out:
c8721bbb 1501 spin_unlock(&hugetlb_lock);
082d5b6b 1502 return rc;
c8721bbb
NH
1503}
1504
1505/*
1506 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1507 * make specified memory blocks removable from the system.
2247bb33
GS
1508 * Note that this will dissolve a free gigantic hugepage completely, if any
1509 * part of it lies within the given range.
082d5b6b
GS
1510 * Also note that if dissolve_free_huge_page() returns with an error, all
1511 * free hugepages that were dissolved before that error are lost.
c8721bbb 1512 */
082d5b6b 1513int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
c8721bbb 1514{
c8721bbb 1515 unsigned long pfn;
eb03aa00 1516 struct page *page;
082d5b6b 1517 int rc = 0;
c8721bbb 1518
d0177639 1519 if (!hugepages_supported())
082d5b6b 1520 return rc;
d0177639 1521
eb03aa00
GS
1522 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1523 page = pfn_to_page(pfn);
1524 if (PageHuge(page) && !page_count(page)) {
1525 rc = dissolve_free_huge_page(page);
1526 if (rc)
1527 break;
1528 }
1529 }
082d5b6b
GS
1530
1531 return rc;
c8721bbb
NH
1532}
1533
aaf14e40
MH
1534static struct page *__alloc_buddy_huge_page(struct hstate *h, gfp_t gfp_mask,
1535 int nid, nodemask_t *nmask)
7893d1d5
AL
1536{
1537 struct page *page;
bf50bab2 1538 unsigned int r_nid;
7893d1d5 1539
bae7f4ae 1540 if (hstate_is_gigantic(h))
aa888a74
AK
1541 return NULL;
1542
d1c3fb1f
NA
1543 /*
1544 * Assume we will successfully allocate the surplus page to
1545 * prevent racing processes from causing the surplus to exceed
1546 * overcommit
1547 *
1548 * This however introduces a different race, where a process B
1549 * tries to grow the static hugepage pool while alloc_pages() is
1550 * called by process A. B will only examine the per-node
1551 * counters in determining if surplus huge pages can be
1552 * converted to normal huge pages in adjust_pool_surplus(). A
1553 * won't be able to increment the per-node counter, until the
1554 * lock is dropped by B, but B doesn't drop hugetlb_lock until
1555 * no more huge pages can be converted from surplus to normal
1556 * state (and doesn't try to convert again). Thus, we have a
1557 * case where a surplus huge page exists, the pool is grown, and
1558 * the surplus huge page still exists after, even though it
1559 * should just have been converted to a normal huge page. This
1560 * does not leak memory, though, as the hugepage will be freed
1561 * once it is out of use. It also does not allow the counters to
1562 * go out of whack in adjust_pool_surplus() as we don't modify
1563 * the node values until we've gotten the hugepage and only the
1564 * per-node value is checked there.
1565 */
1566 spin_lock(&hugetlb_lock);
a5516438 1567 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
d1c3fb1f
NA
1568 spin_unlock(&hugetlb_lock);
1569 return NULL;
1570 } else {
a5516438
AK
1571 h->nr_huge_pages++;
1572 h->surplus_huge_pages++;
d1c3fb1f
NA
1573 }
1574 spin_unlock(&hugetlb_lock);
1575
aaf14e40 1576 page = __hugetlb_alloc_buddy_huge_page(h, gfp_mask, nid, nmask);
d1c3fb1f
NA
1577
1578 spin_lock(&hugetlb_lock);
7893d1d5 1579 if (page) {
0edaecfa 1580 INIT_LIST_HEAD(&page->lru);
bf50bab2 1581 r_nid = page_to_nid(page);
f1e61557 1582 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
9dd540e2 1583 set_hugetlb_cgroup(page, NULL);
d1c3fb1f
NA
1584 /*
1585 * We incremented the global counters already
1586 */
bf50bab2
NH
1587 h->nr_huge_pages_node[r_nid]++;
1588 h->surplus_huge_pages_node[r_nid]++;
d1c3fb1f 1589 } else {
a5516438
AK
1590 h->nr_huge_pages--;
1591 h->surplus_huge_pages--;
7893d1d5 1592 }
d1c3fb1f 1593 spin_unlock(&hugetlb_lock);
7893d1d5
AL
1594
1595 return page;
1596}
1597
099730d6
DH
1598/*
1599 * Use the VMA's mpolicy to allocate a huge page from the buddy.
1600 */
e0ec90ee 1601static
099730d6
DH
1602struct page *__alloc_buddy_huge_page_with_mpol(struct hstate *h,
1603 struct vm_area_struct *vma, unsigned long addr)
1604{
aaf14e40
MH
1605 struct page *page;
1606 struct mempolicy *mpol;
1607 gfp_t gfp_mask = htlb_alloc_mask(h);
1608 int nid;
1609 nodemask_t *nodemask;
1610
1611 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
1612 page = __alloc_buddy_huge_page(h, gfp_mask, nid, nodemask);
1613 mpol_cond_put(mpol);
1614
1615 return page;
099730d6
DH
1616}
1617
bf50bab2
NH
1618/*
1619 * This allocation function is useful in the context where vma is irrelevant.
1620 * E.g. soft-offlining uses this function because it only cares physical
1621 * address of error page.
1622 */
1623struct page *alloc_huge_page_node(struct hstate *h, int nid)
1624{
aaf14e40 1625 gfp_t gfp_mask = htlb_alloc_mask(h);
4ef91848 1626 struct page *page = NULL;
bf50bab2 1627
aaf14e40
MH
1628 if (nid != NUMA_NO_NODE)
1629 gfp_mask |= __GFP_THISNODE;
1630
bf50bab2 1631 spin_lock(&hugetlb_lock);
4ef91848 1632 if (h->free_huge_pages - h->resv_huge_pages > 0)
3e59fcb0 1633 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, NULL);
bf50bab2
NH
1634 spin_unlock(&hugetlb_lock);
1635
94ae8ba7 1636 if (!page)
aaf14e40 1637 page = __alloc_buddy_huge_page(h, gfp_mask, nid, NULL);
bf50bab2
NH
1638
1639 return page;
1640}
1641
3e59fcb0
MH
1642
1643struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
1644 nodemask_t *nmask)
4db9b2ef 1645{
aaf14e40 1646 gfp_t gfp_mask = htlb_alloc_mask(h);
4db9b2ef
MH
1647
1648 spin_lock(&hugetlb_lock);
1649 if (h->free_huge_pages - h->resv_huge_pages > 0) {
3e59fcb0
MH
1650 struct page *page;
1651
1652 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
1653 if (page) {
1654 spin_unlock(&hugetlb_lock);
1655 return page;
4db9b2ef
MH
1656 }
1657 }
1658 spin_unlock(&hugetlb_lock);
4db9b2ef
MH
1659
1660 /* No reservations, try to overcommit */
3e59fcb0
MH
1661
1662 return __alloc_buddy_huge_page(h, gfp_mask, preferred_nid, nmask);
4db9b2ef
MH
1663}
1664
e4e574b7 1665/*
25985edc 1666 * Increase the hugetlb pool such that it can accommodate a reservation
e4e574b7
AL
1667 * of size 'delta'.
1668 */
a5516438 1669static int gather_surplus_pages(struct hstate *h, int delta)
e4e574b7
AL
1670{
1671 struct list_head surplus_list;
1672 struct page *page, *tmp;
1673 int ret, i;
1674 int needed, allocated;
28073b02 1675 bool alloc_ok = true;
e4e574b7 1676
a5516438 1677 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
ac09b3a1 1678 if (needed <= 0) {
a5516438 1679 h->resv_huge_pages += delta;
e4e574b7 1680 return 0;
ac09b3a1 1681 }
e4e574b7
AL
1682
1683 allocated = 0;
1684 INIT_LIST_HEAD(&surplus_list);
1685
1686 ret = -ENOMEM;
1687retry:
1688 spin_unlock(&hugetlb_lock);
1689 for (i = 0; i < needed; i++) {
aaf14e40
MH
1690 page = __alloc_buddy_huge_page(h, htlb_alloc_mask(h),
1691 NUMA_NO_NODE, NULL);
28073b02
HD
1692 if (!page) {
1693 alloc_ok = false;
1694 break;
1695 }
e4e574b7 1696 list_add(&page->lru, &surplus_list);
69ed779a 1697 cond_resched();
e4e574b7 1698 }
28073b02 1699 allocated += i;
e4e574b7
AL
1700
1701 /*
1702 * After retaking hugetlb_lock, we need to recalculate 'needed'
1703 * because either resv_huge_pages or free_huge_pages may have changed.
1704 */
1705 spin_lock(&hugetlb_lock);
a5516438
AK
1706 needed = (h->resv_huge_pages + delta) -
1707 (h->free_huge_pages + allocated);
28073b02
HD
1708 if (needed > 0) {
1709 if (alloc_ok)
1710 goto retry;
1711 /*
1712 * We were not able to allocate enough pages to
1713 * satisfy the entire reservation so we free what
1714 * we've allocated so far.
1715 */
1716 goto free;
1717 }
e4e574b7
AL
1718 /*
1719 * The surplus_list now contains _at_least_ the number of extra pages
25985edc 1720 * needed to accommodate the reservation. Add the appropriate number
e4e574b7 1721 * of pages to the hugetlb pool and free the extras back to the buddy
ac09b3a1
AL
1722 * allocator. Commit the entire reservation here to prevent another
1723 * process from stealing the pages as they are added to the pool but
1724 * before they are reserved.
e4e574b7
AL
1725 */
1726 needed += allocated;
a5516438 1727 h->resv_huge_pages += delta;
e4e574b7 1728 ret = 0;
a9869b83 1729
19fc3f0a 1730 /* Free the needed pages to the hugetlb pool */
e4e574b7 1731 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
19fc3f0a
AL
1732 if ((--needed) < 0)
1733 break;
a9869b83
NH
1734 /*
1735 * This page is now managed by the hugetlb allocator and has
1736 * no users -- drop the buddy allocator's reference.
1737 */
1738 put_page_testzero(page);
309381fe 1739 VM_BUG_ON_PAGE(page_count(page), page);
a5516438 1740 enqueue_huge_page(h, page);
19fc3f0a 1741 }
28073b02 1742free:
b0365c8d 1743 spin_unlock(&hugetlb_lock);
19fc3f0a
AL
1744
1745 /* Free unnecessary surplus pages to the buddy allocator */
c0d934ba
JK
1746 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1747 put_page(page);
a9869b83 1748 spin_lock(&hugetlb_lock);
e4e574b7
AL
1749
1750 return ret;
1751}
1752
1753/*
e5bbc8a6
MK
1754 * This routine has two main purposes:
1755 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
1756 * in unused_resv_pages. This corresponds to the prior adjustments made
1757 * to the associated reservation map.
1758 * 2) Free any unused surplus pages that may have been allocated to satisfy
1759 * the reservation. As many as unused_resv_pages may be freed.
1760 *
1761 * Called with hugetlb_lock held. However, the lock could be dropped (and
1762 * reacquired) during calls to cond_resched_lock. Whenever dropping the lock,
1763 * we must make sure nobody else can claim pages we are in the process of
1764 * freeing. Do this by ensuring resv_huge_page always is greater than the
1765 * number of huge pages we plan to free when dropping the lock.
e4e574b7 1766 */
a5516438
AK
1767static void return_unused_surplus_pages(struct hstate *h,
1768 unsigned long unused_resv_pages)
e4e574b7 1769{
e4e574b7
AL
1770 unsigned long nr_pages;
1771
aa888a74 1772 /* Cannot return gigantic pages currently */
bae7f4ae 1773 if (hstate_is_gigantic(h))
e5bbc8a6 1774 goto out;
aa888a74 1775
e5bbc8a6
MK
1776 /*
1777 * Part (or even all) of the reservation could have been backed
1778 * by pre-allocated pages. Only free surplus pages.
1779 */
a5516438 1780 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
e4e574b7 1781
685f3457
LS
1782 /*
1783 * We want to release as many surplus pages as possible, spread
9b5e5d0f
LS
1784 * evenly across all nodes with memory. Iterate across these nodes
1785 * until we can no longer free unreserved surplus pages. This occurs
1786 * when the nodes with surplus pages have no free pages.
1787 * free_pool_huge_page() will balance the the freed pages across the
1788 * on-line nodes with memory and will handle the hstate accounting.
e5bbc8a6
MK
1789 *
1790 * Note that we decrement resv_huge_pages as we free the pages. If
1791 * we drop the lock, resv_huge_pages will still be sufficiently large
1792 * to cover subsequent pages we may free.
685f3457
LS
1793 */
1794 while (nr_pages--) {
e5bbc8a6
MK
1795 h->resv_huge_pages--;
1796 unused_resv_pages--;
8cebfcd0 1797 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
e5bbc8a6 1798 goto out;
7848a4bf 1799 cond_resched_lock(&hugetlb_lock);
e4e574b7 1800 }
e5bbc8a6
MK
1801
1802out:
1803 /* Fully uncommit the reservation */
1804 h->resv_huge_pages -= unused_resv_pages;
e4e574b7
AL
1805}
1806
5e911373 1807
c37f9fb1 1808/*
feba16e2 1809 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
5e911373 1810 * are used by the huge page allocation routines to manage reservations.
cf3ad20b
MK
1811 *
1812 * vma_needs_reservation is called to determine if the huge page at addr
1813 * within the vma has an associated reservation. If a reservation is
1814 * needed, the value 1 is returned. The caller is then responsible for
1815 * managing the global reservation and subpool usage counts. After
1816 * the huge page has been allocated, vma_commit_reservation is called
feba16e2
MK
1817 * to add the page to the reservation map. If the page allocation fails,
1818 * the reservation must be ended instead of committed. vma_end_reservation
1819 * is called in such cases.
cf3ad20b
MK
1820 *
1821 * In the normal case, vma_commit_reservation returns the same value
1822 * as the preceding vma_needs_reservation call. The only time this
1823 * is not the case is if a reserve map was changed between calls. It
1824 * is the responsibility of the caller to notice the difference and
1825 * take appropriate action.
96b96a96
MK
1826 *
1827 * vma_add_reservation is used in error paths where a reservation must
1828 * be restored when a newly allocated huge page must be freed. It is
1829 * to be called after calling vma_needs_reservation to determine if a
1830 * reservation exists.
c37f9fb1 1831 */
5e911373
MK
1832enum vma_resv_mode {
1833 VMA_NEEDS_RESV,
1834 VMA_COMMIT_RESV,
feba16e2 1835 VMA_END_RESV,
96b96a96 1836 VMA_ADD_RESV,
5e911373 1837};
cf3ad20b
MK
1838static long __vma_reservation_common(struct hstate *h,
1839 struct vm_area_struct *vma, unsigned long addr,
5e911373 1840 enum vma_resv_mode mode)
c37f9fb1 1841{
4e35f483
JK
1842 struct resv_map *resv;
1843 pgoff_t idx;
cf3ad20b 1844 long ret;
c37f9fb1 1845
4e35f483
JK
1846 resv = vma_resv_map(vma);
1847 if (!resv)
84afd99b 1848 return 1;
c37f9fb1 1849
4e35f483 1850 idx = vma_hugecache_offset(h, vma, addr);
5e911373
MK
1851 switch (mode) {
1852 case VMA_NEEDS_RESV:
cf3ad20b 1853 ret = region_chg(resv, idx, idx + 1);
5e911373
MK
1854 break;
1855 case VMA_COMMIT_RESV:
1856 ret = region_add(resv, idx, idx + 1);
1857 break;
feba16e2 1858 case VMA_END_RESV:
5e911373
MK
1859 region_abort(resv, idx, idx + 1);
1860 ret = 0;
1861 break;
96b96a96
MK
1862 case VMA_ADD_RESV:
1863 if (vma->vm_flags & VM_MAYSHARE)
1864 ret = region_add(resv, idx, idx + 1);
1865 else {
1866 region_abort(resv, idx, idx + 1);
1867 ret = region_del(resv, idx, idx + 1);
1868 }
1869 break;
5e911373
MK
1870 default:
1871 BUG();
1872 }
84afd99b 1873
4e35f483 1874 if (vma->vm_flags & VM_MAYSHARE)
cf3ad20b 1875 return ret;
67961f9d
MK
1876 else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
1877 /*
1878 * In most cases, reserves always exist for private mappings.
1879 * However, a file associated with mapping could have been
1880 * hole punched or truncated after reserves were consumed.
1881 * As subsequent fault on such a range will not use reserves.
1882 * Subtle - The reserve map for private mappings has the
1883 * opposite meaning than that of shared mappings. If NO
1884 * entry is in the reserve map, it means a reservation exists.
1885 * If an entry exists in the reserve map, it means the
1886 * reservation has already been consumed. As a result, the
1887 * return value of this routine is the opposite of the
1888 * value returned from reserve map manipulation routines above.
1889 */
1890 if (ret)
1891 return 0;
1892 else
1893 return 1;
1894 }
4e35f483 1895 else
cf3ad20b 1896 return ret < 0 ? ret : 0;
c37f9fb1 1897}
cf3ad20b
MK
1898
1899static long vma_needs_reservation(struct hstate *h,
a5516438 1900 struct vm_area_struct *vma, unsigned long addr)
c37f9fb1 1901{
5e911373 1902 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
cf3ad20b 1903}
84afd99b 1904
cf3ad20b
MK
1905static long vma_commit_reservation(struct hstate *h,
1906 struct vm_area_struct *vma, unsigned long addr)
1907{
5e911373
MK
1908 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
1909}
1910
feba16e2 1911static void vma_end_reservation(struct hstate *h,
5e911373
MK
1912 struct vm_area_struct *vma, unsigned long addr)
1913{
feba16e2 1914 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
c37f9fb1
AW
1915}
1916
96b96a96
MK
1917static long vma_add_reservation(struct hstate *h,
1918 struct vm_area_struct *vma, unsigned long addr)
1919{
1920 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
1921}
1922
1923/*
1924 * This routine is called to restore a reservation on error paths. In the
1925 * specific error paths, a huge page was allocated (via alloc_huge_page)
1926 * and is about to be freed. If a reservation for the page existed,
1927 * alloc_huge_page would have consumed the reservation and set PagePrivate
1928 * in the newly allocated page. When the page is freed via free_huge_page,
1929 * the global reservation count will be incremented if PagePrivate is set.
1930 * However, free_huge_page can not adjust the reserve map. Adjust the
1931 * reserve map here to be consistent with global reserve count adjustments
1932 * to be made by free_huge_page.
1933 */
1934static void restore_reserve_on_error(struct hstate *h,
1935 struct vm_area_struct *vma, unsigned long address,
1936 struct page *page)
1937{
1938 if (unlikely(PagePrivate(page))) {
1939 long rc = vma_needs_reservation(h, vma, address);
1940
1941 if (unlikely(rc < 0)) {
1942 /*
1943 * Rare out of memory condition in reserve map
1944 * manipulation. Clear PagePrivate so that
1945 * global reserve count will not be incremented
1946 * by free_huge_page. This will make it appear
1947 * as though the reservation for this page was
1948 * consumed. This may prevent the task from
1949 * faulting in the page at a later time. This
1950 * is better than inconsistent global huge page
1951 * accounting of reserve counts.
1952 */
1953 ClearPagePrivate(page);
1954 } else if (rc) {
1955 rc = vma_add_reservation(h, vma, address);
1956 if (unlikely(rc < 0))
1957 /*
1958 * See above comment about rare out of
1959 * memory condition.
1960 */
1961 ClearPagePrivate(page);
1962 } else
1963 vma_end_reservation(h, vma, address);
1964 }
1965}
1966
70c3547e 1967struct page *alloc_huge_page(struct vm_area_struct *vma,
04f2cbe3 1968 unsigned long addr, int avoid_reserve)
1da177e4 1969{
90481622 1970 struct hugepage_subpool *spool = subpool_vma(vma);
a5516438 1971 struct hstate *h = hstate_vma(vma);
348ea204 1972 struct page *page;
d85f69b0
MK
1973 long map_chg, map_commit;
1974 long gbl_chg;
6d76dcf4
AK
1975 int ret, idx;
1976 struct hugetlb_cgroup *h_cg;
a1e78772 1977
6d76dcf4 1978 idx = hstate_index(h);
a1e78772 1979 /*
d85f69b0
MK
1980 * Examine the region/reserve map to determine if the process
1981 * has a reservation for the page to be allocated. A return
1982 * code of zero indicates a reservation exists (no change).
a1e78772 1983 */
d85f69b0
MK
1984 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
1985 if (map_chg < 0)
76dcee75 1986 return ERR_PTR(-ENOMEM);
d85f69b0
MK
1987
1988 /*
1989 * Processes that did not create the mapping will have no
1990 * reserves as indicated by the region/reserve map. Check
1991 * that the allocation will not exceed the subpool limit.
1992 * Allocations for MAP_NORESERVE mappings also need to be
1993 * checked against any subpool limit.
1994 */
1995 if (map_chg || avoid_reserve) {
1996 gbl_chg = hugepage_subpool_get_pages(spool, 1);
1997 if (gbl_chg < 0) {
feba16e2 1998 vma_end_reservation(h, vma, addr);
76dcee75 1999 return ERR_PTR(-ENOSPC);
5e911373 2000 }
1da177e4 2001
d85f69b0
MK
2002 /*
2003 * Even though there was no reservation in the region/reserve
2004 * map, there could be reservations associated with the
2005 * subpool that can be used. This would be indicated if the
2006 * return value of hugepage_subpool_get_pages() is zero.
2007 * However, if avoid_reserve is specified we still avoid even
2008 * the subpool reservations.
2009 */
2010 if (avoid_reserve)
2011 gbl_chg = 1;
2012 }
2013
6d76dcf4 2014 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
8f34af6f
JZ
2015 if (ret)
2016 goto out_subpool_put;
2017
1da177e4 2018 spin_lock(&hugetlb_lock);
d85f69b0
MK
2019 /*
2020 * glb_chg is passed to indicate whether or not a page must be taken
2021 * from the global free pool (global change). gbl_chg == 0 indicates
2022 * a reservation exists for the allocation.
2023 */
2024 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
81a6fcae 2025 if (!page) {
94ae8ba7 2026 spin_unlock(&hugetlb_lock);
099730d6 2027 page = __alloc_buddy_huge_page_with_mpol(h, vma, addr);
8f34af6f
JZ
2028 if (!page)
2029 goto out_uncharge_cgroup;
a88c7695
NH
2030 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2031 SetPagePrivate(page);
2032 h->resv_huge_pages--;
2033 }
79dbb236
AK
2034 spin_lock(&hugetlb_lock);
2035 list_move(&page->lru, &h->hugepage_activelist);
81a6fcae 2036 /* Fall through */
68842c9b 2037 }
81a6fcae
JK
2038 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2039 spin_unlock(&hugetlb_lock);
348ea204 2040
90481622 2041 set_page_private(page, (unsigned long)spool);
90d8b7e6 2042
d85f69b0
MK
2043 map_commit = vma_commit_reservation(h, vma, addr);
2044 if (unlikely(map_chg > map_commit)) {
33039678
MK
2045 /*
2046 * The page was added to the reservation map between
2047 * vma_needs_reservation and vma_commit_reservation.
2048 * This indicates a race with hugetlb_reserve_pages.
2049 * Adjust for the subpool count incremented above AND
2050 * in hugetlb_reserve_pages for the same page. Also,
2051 * the reservation count added in hugetlb_reserve_pages
2052 * no longer applies.
2053 */
2054 long rsv_adjust;
2055
2056 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2057 hugetlb_acct_memory(h, -rsv_adjust);
2058 }
90d8b7e6 2059 return page;
8f34af6f
JZ
2060
2061out_uncharge_cgroup:
2062 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2063out_subpool_put:
d85f69b0 2064 if (map_chg || avoid_reserve)
8f34af6f 2065 hugepage_subpool_put_pages(spool, 1);
feba16e2 2066 vma_end_reservation(h, vma, addr);
8f34af6f 2067 return ERR_PTR(-ENOSPC);
b45b5bd6
DG
2068}
2069
74060e4d
NH
2070/*
2071 * alloc_huge_page()'s wrapper which simply returns the page if allocation
2072 * succeeds, otherwise NULL. This function is called from new_vma_page(),
2073 * where no ERR_VALUE is expected to be returned.
2074 */
2075struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
2076 unsigned long addr, int avoid_reserve)
2077{
2078 struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
2079 if (IS_ERR(page))
2080 page = NULL;
2081 return page;
2082}
2083
e24a1307
AK
2084int alloc_bootmem_huge_page(struct hstate *h)
2085 __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2086int __alloc_bootmem_huge_page(struct hstate *h)
aa888a74
AK
2087{
2088 struct huge_bootmem_page *m;
b2261026 2089 int nr_nodes, node;
aa888a74 2090
b2261026 2091 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
aa888a74
AK
2092 void *addr;
2093
8b89a116
GS
2094 addr = memblock_virt_alloc_try_nid_nopanic(
2095 huge_page_size(h), huge_page_size(h),
2096 0, BOOTMEM_ALLOC_ACCESSIBLE, node);
aa888a74
AK
2097 if (addr) {
2098 /*
2099 * Use the beginning of the huge page to store the
2100 * huge_bootmem_page struct (until gather_bootmem
2101 * puts them into the mem_map).
2102 */
2103 m = addr;
91f47662 2104 goto found;
aa888a74 2105 }
aa888a74
AK
2106 }
2107 return 0;
2108
2109found:
df994ead 2110 BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
aa888a74
AK
2111 /* Put them into a private list first because mem_map is not up yet */
2112 list_add(&m->list, &huge_boot_pages);
2113 m->hstate = h;
2114 return 1;
2115}
2116
d00181b9
KS
2117static void __init prep_compound_huge_page(struct page *page,
2118 unsigned int order)
18229df5
AW
2119{
2120 if (unlikely(order > (MAX_ORDER - 1)))
2121 prep_compound_gigantic_page(page, order);
2122 else
2123 prep_compound_page(page, order);
2124}
2125
aa888a74
AK
2126/* Put bootmem huge pages into the standard lists after mem_map is up */
2127static void __init gather_bootmem_prealloc(void)
2128{
2129 struct huge_bootmem_page *m;
2130
2131 list_for_each_entry(m, &huge_boot_pages, list) {
aa888a74 2132 struct hstate *h = m->hstate;
ee8f248d
BB
2133 struct page *page;
2134
2135#ifdef CONFIG_HIGHMEM
2136 page = pfn_to_page(m->phys >> PAGE_SHIFT);
8b89a116
GS
2137 memblock_free_late(__pa(m),
2138 sizeof(struct huge_bootmem_page));
ee8f248d
BB
2139#else
2140 page = virt_to_page(m);
2141#endif
aa888a74 2142 WARN_ON(page_count(page) != 1);
18229df5 2143 prep_compound_huge_page(page, h->order);
ef5a22be 2144 WARN_ON(PageReserved(page));
aa888a74 2145 prep_new_huge_page(h, page, page_to_nid(page));
af0fb9df
MH
2146 put_page(page); /* free it into the hugepage allocator */
2147
b0320c7b
RA
2148 /*
2149 * If we had gigantic hugepages allocated at boot time, we need
2150 * to restore the 'stolen' pages to totalram_pages in order to
2151 * fix confusing memory reports from free(1) and another
2152 * side-effects, like CommitLimit going negative.
2153 */
bae7f4ae 2154 if (hstate_is_gigantic(h))
3dcc0571 2155 adjust_managed_page_count(page, 1 << h->order);
aa888a74
AK
2156 }
2157}
2158
8faa8b07 2159static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1da177e4
LT
2160{
2161 unsigned long i;
a5516438 2162
e5ff2159 2163 for (i = 0; i < h->max_huge_pages; ++i) {
bae7f4ae 2164 if (hstate_is_gigantic(h)) {
aa888a74
AK
2165 if (!alloc_bootmem_huge_page(h))
2166 break;
9b5e5d0f 2167 } else if (!alloc_fresh_huge_page(h,
8cebfcd0 2168 &node_states[N_MEMORY]))
1da177e4 2169 break;
69ed779a 2170 cond_resched();
1da177e4 2171 }
d715cf80
LH
2172 if (i < h->max_huge_pages) {
2173 char buf[32];
2174
c6247f72 2175 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
d715cf80
LH
2176 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n",
2177 h->max_huge_pages, buf, i);
2178 h->max_huge_pages = i;
2179 }
e5ff2159
AK
2180}
2181
2182static void __init hugetlb_init_hstates(void)
2183{
2184 struct hstate *h;
2185
2186 for_each_hstate(h) {
641844f5
NH
2187 if (minimum_order > huge_page_order(h))
2188 minimum_order = huge_page_order(h);
2189
8faa8b07 2190 /* oversize hugepages were init'ed in early boot */
bae7f4ae 2191 if (!hstate_is_gigantic(h))
8faa8b07 2192 hugetlb_hstate_alloc_pages(h);
e5ff2159 2193 }
641844f5 2194 VM_BUG_ON(minimum_order == UINT_MAX);
e5ff2159
AK
2195}
2196
2197static void __init report_hugepages(void)
2198{
2199 struct hstate *h;
2200
2201 for_each_hstate(h) {
4abd32db 2202 char buf[32];
c6247f72
MW
2203
2204 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
ffb22af5 2205 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
c6247f72 2206 buf, h->free_huge_pages);
e5ff2159
AK
2207 }
2208}
2209
1da177e4 2210#ifdef CONFIG_HIGHMEM
6ae11b27
LS
2211static void try_to_free_low(struct hstate *h, unsigned long count,
2212 nodemask_t *nodes_allowed)
1da177e4 2213{
4415cc8d
CL
2214 int i;
2215
bae7f4ae 2216 if (hstate_is_gigantic(h))
aa888a74
AK
2217 return;
2218
6ae11b27 2219 for_each_node_mask(i, *nodes_allowed) {
1da177e4 2220 struct page *page, *next;
a5516438
AK
2221 struct list_head *freel = &h->hugepage_freelists[i];
2222 list_for_each_entry_safe(page, next, freel, lru) {
2223 if (count >= h->nr_huge_pages)
6b0c880d 2224 return;
1da177e4
LT
2225 if (PageHighMem(page))
2226 continue;
2227 list_del(&page->lru);
e5ff2159 2228 update_and_free_page(h, page);
a5516438
AK
2229 h->free_huge_pages--;
2230 h->free_huge_pages_node[page_to_nid(page)]--;
1da177e4
LT
2231 }
2232 }
2233}
2234#else
6ae11b27
LS
2235static inline void try_to_free_low(struct hstate *h, unsigned long count,
2236 nodemask_t *nodes_allowed)
1da177e4
LT
2237{
2238}
2239#endif
2240
20a0307c
WF
2241/*
2242 * Increment or decrement surplus_huge_pages. Keep node-specific counters
2243 * balanced by operating on them in a round-robin fashion.
2244 * Returns 1 if an adjustment was made.
2245 */
6ae11b27
LS
2246static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2247 int delta)
20a0307c 2248{
b2261026 2249 int nr_nodes, node;
20a0307c
WF
2250
2251 VM_BUG_ON(delta != -1 && delta != 1);
20a0307c 2252
b2261026
JK
2253 if (delta < 0) {
2254 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2255 if (h->surplus_huge_pages_node[node])
2256 goto found;
e8c5c824 2257 }
b2261026
JK
2258 } else {
2259 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2260 if (h->surplus_huge_pages_node[node] <
2261 h->nr_huge_pages_node[node])
2262 goto found;
e8c5c824 2263 }
b2261026
JK
2264 }
2265 return 0;
20a0307c 2266
b2261026
JK
2267found:
2268 h->surplus_huge_pages += delta;
2269 h->surplus_huge_pages_node[node] += delta;
2270 return 1;
20a0307c
WF
2271}
2272
a5516438 2273#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
6ae11b27
LS
2274static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
2275 nodemask_t *nodes_allowed)
1da177e4 2276{
7893d1d5 2277 unsigned long min_count, ret;
1da177e4 2278
944d9fec 2279 if (hstate_is_gigantic(h) && !gigantic_page_supported())
aa888a74
AK
2280 return h->max_huge_pages;
2281
7893d1d5
AL
2282 /*
2283 * Increase the pool size
2284 * First take pages out of surplus state. Then make up the
2285 * remaining difference by allocating fresh huge pages.
d1c3fb1f 2286 *
d15c7c09 2287 * We might race with __alloc_buddy_huge_page() here and be unable
d1c3fb1f
NA
2288 * to convert a surplus huge page to a normal huge page. That is
2289 * not critical, though, it just means the overall size of the
2290 * pool might be one hugepage larger than it needs to be, but
2291 * within all the constraints specified by the sysctls.
7893d1d5 2292 */
1da177e4 2293 spin_lock(&hugetlb_lock);
a5516438 2294 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
6ae11b27 2295 if (!adjust_pool_surplus(h, nodes_allowed, -1))
7893d1d5
AL
2296 break;
2297 }
2298
a5516438 2299 while (count > persistent_huge_pages(h)) {
7893d1d5
AL
2300 /*
2301 * If this allocation races such that we no longer need the
2302 * page, free_huge_page will handle it by freeing the page
2303 * and reducing the surplus.
2304 */
2305 spin_unlock(&hugetlb_lock);
649920c6
JH
2306
2307 /* yield cpu to avoid soft lockup */
2308 cond_resched();
2309
944d9fec
LC
2310 if (hstate_is_gigantic(h))
2311 ret = alloc_fresh_gigantic_page(h, nodes_allowed);
2312 else
2313 ret = alloc_fresh_huge_page(h, nodes_allowed);
7893d1d5
AL
2314 spin_lock(&hugetlb_lock);
2315 if (!ret)
2316 goto out;
2317
536240f2
MG
2318 /* Bail for signals. Probably ctrl-c from user */
2319 if (signal_pending(current))
2320 goto out;
7893d1d5 2321 }
7893d1d5
AL
2322
2323 /*
2324 * Decrease the pool size
2325 * First return free pages to the buddy allocator (being careful
2326 * to keep enough around to satisfy reservations). Then place
2327 * pages into surplus state as needed so the pool will shrink
2328 * to the desired size as pages become free.
d1c3fb1f
NA
2329 *
2330 * By placing pages into the surplus state independent of the
2331 * overcommit value, we are allowing the surplus pool size to
2332 * exceed overcommit. There are few sane options here. Since
d15c7c09 2333 * __alloc_buddy_huge_page() is checking the global counter,
d1c3fb1f
NA
2334 * though, we'll note that we're not allowed to exceed surplus
2335 * and won't grow the pool anywhere else. Not until one of the
2336 * sysctls are changed, or the surplus pages go out of use.
7893d1d5 2337 */
a5516438 2338 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
6b0c880d 2339 min_count = max(count, min_count);
6ae11b27 2340 try_to_free_low(h, min_count, nodes_allowed);
a5516438 2341 while (min_count < persistent_huge_pages(h)) {
6ae11b27 2342 if (!free_pool_huge_page(h, nodes_allowed, 0))
1da177e4 2343 break;
55f67141 2344 cond_resched_lock(&hugetlb_lock);
1da177e4 2345 }
a5516438 2346 while (count < persistent_huge_pages(h)) {
6ae11b27 2347 if (!adjust_pool_surplus(h, nodes_allowed, 1))
7893d1d5
AL
2348 break;
2349 }
2350out:
a5516438 2351 ret = persistent_huge_pages(h);
1da177e4 2352 spin_unlock(&hugetlb_lock);
7893d1d5 2353 return ret;
1da177e4
LT
2354}
2355
a3437870
NA
2356#define HSTATE_ATTR_RO(_name) \
2357 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2358
2359#define HSTATE_ATTR(_name) \
2360 static struct kobj_attribute _name##_attr = \
2361 __ATTR(_name, 0644, _name##_show, _name##_store)
2362
2363static struct kobject *hugepages_kobj;
2364static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2365
9a305230
LS
2366static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2367
2368static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
a3437870
NA
2369{
2370 int i;
9a305230 2371
a3437870 2372 for (i = 0; i < HUGE_MAX_HSTATE; i++)
9a305230
LS
2373 if (hstate_kobjs[i] == kobj) {
2374 if (nidp)
2375 *nidp = NUMA_NO_NODE;
a3437870 2376 return &hstates[i];
9a305230
LS
2377 }
2378
2379 return kobj_to_node_hstate(kobj, nidp);
a3437870
NA
2380}
2381
06808b08 2382static ssize_t nr_hugepages_show_common(struct kobject *kobj,
a3437870
NA
2383 struct kobj_attribute *attr, char *buf)
2384{
9a305230
LS
2385 struct hstate *h;
2386 unsigned long nr_huge_pages;
2387 int nid;
2388
2389 h = kobj_to_hstate(kobj, &nid);
2390 if (nid == NUMA_NO_NODE)
2391 nr_huge_pages = h->nr_huge_pages;
2392 else
2393 nr_huge_pages = h->nr_huge_pages_node[nid];
2394
2395 return sprintf(buf, "%lu\n", nr_huge_pages);
a3437870 2396}
adbe8726 2397
238d3c13
DR
2398static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2399 struct hstate *h, int nid,
2400 unsigned long count, size_t len)
a3437870
NA
2401{
2402 int err;
bad44b5b 2403 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
a3437870 2404
944d9fec 2405 if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
adbe8726
EM
2406 err = -EINVAL;
2407 goto out;
2408 }
2409
9a305230
LS
2410 if (nid == NUMA_NO_NODE) {
2411 /*
2412 * global hstate attribute
2413 */
2414 if (!(obey_mempolicy &&
2415 init_nodemask_of_mempolicy(nodes_allowed))) {
2416 NODEMASK_FREE(nodes_allowed);
8cebfcd0 2417 nodes_allowed = &node_states[N_MEMORY];
9a305230
LS
2418 }
2419 } else if (nodes_allowed) {
2420 /*
2421 * per node hstate attribute: adjust count to global,
2422 * but restrict alloc/free to the specified node.
2423 */
2424 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2425 init_nodemask_of_node(nodes_allowed, nid);
2426 } else
8cebfcd0 2427 nodes_allowed = &node_states[N_MEMORY];
9a305230 2428
06808b08 2429 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
a3437870 2430
8cebfcd0 2431 if (nodes_allowed != &node_states[N_MEMORY])
06808b08
LS
2432 NODEMASK_FREE(nodes_allowed);
2433
2434 return len;
adbe8726
EM
2435out:
2436 NODEMASK_FREE(nodes_allowed);
2437 return err;
06808b08
LS
2438}
2439
238d3c13
DR
2440static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2441 struct kobject *kobj, const char *buf,
2442 size_t len)
2443{
2444 struct hstate *h;
2445 unsigned long count;
2446 int nid;
2447 int err;
2448
2449 err = kstrtoul(buf, 10, &count);
2450 if (err)
2451 return err;
2452
2453 h = kobj_to_hstate(kobj, &nid);
2454 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2455}
2456
06808b08
LS
2457static ssize_t nr_hugepages_show(struct kobject *kobj,
2458 struct kobj_attribute *attr, char *buf)
2459{
2460 return nr_hugepages_show_common(kobj, attr, buf);
2461}
2462
2463static ssize_t nr_hugepages_store(struct kobject *kobj,
2464 struct kobj_attribute *attr, const char *buf, size_t len)
2465{
238d3c13 2466 return nr_hugepages_store_common(false, kobj, buf, len);
a3437870
NA
2467}
2468HSTATE_ATTR(nr_hugepages);
2469
06808b08
LS
2470#ifdef CONFIG_NUMA
2471
2472/*
2473 * hstate attribute for optionally mempolicy-based constraint on persistent
2474 * huge page alloc/free.
2475 */
2476static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2477 struct kobj_attribute *attr, char *buf)
2478{
2479 return nr_hugepages_show_common(kobj, attr, buf);
2480}
2481
2482static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2483 struct kobj_attribute *attr, const char *buf, size_t len)
2484{
238d3c13 2485 return nr_hugepages_store_common(true, kobj, buf, len);
06808b08
LS
2486}
2487HSTATE_ATTR(nr_hugepages_mempolicy);
2488#endif
2489
2490
a3437870
NA
2491static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2492 struct kobj_attribute *attr, char *buf)
2493{
9a305230 2494 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870
NA
2495 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2496}
adbe8726 2497
a3437870
NA
2498static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2499 struct kobj_attribute *attr, const char *buf, size_t count)
2500{
2501 int err;
2502 unsigned long input;
9a305230 2503 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870 2504
bae7f4ae 2505 if (hstate_is_gigantic(h))
adbe8726
EM
2506 return -EINVAL;
2507
3dbb95f7 2508 err = kstrtoul(buf, 10, &input);
a3437870 2509 if (err)
73ae31e5 2510 return err;
a3437870
NA
2511
2512 spin_lock(&hugetlb_lock);
2513 h->nr_overcommit_huge_pages = input;
2514 spin_unlock(&hugetlb_lock);
2515
2516 return count;
2517}
2518HSTATE_ATTR(nr_overcommit_hugepages);
2519
2520static ssize_t free_hugepages_show(struct kobject *kobj,
2521 struct kobj_attribute *attr, char *buf)
2522{
9a305230
LS
2523 struct hstate *h;
2524 unsigned long free_huge_pages;
2525 int nid;
2526
2527 h = kobj_to_hstate(kobj, &nid);
2528 if (nid == NUMA_NO_NODE)
2529 free_huge_pages = h->free_huge_pages;
2530 else
2531 free_huge_pages = h->free_huge_pages_node[nid];
2532
2533 return sprintf(buf, "%lu\n", free_huge_pages);
a3437870
NA
2534}
2535HSTATE_ATTR_RO(free_hugepages);
2536
2537static ssize_t resv_hugepages_show(struct kobject *kobj,
2538 struct kobj_attribute *attr, char *buf)
2539{
9a305230 2540 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870
NA
2541 return sprintf(buf, "%lu\n", h->resv_huge_pages);
2542}
2543HSTATE_ATTR_RO(resv_hugepages);
2544
2545static ssize_t surplus_hugepages_show(struct kobject *kobj,
2546 struct kobj_attribute *attr, char *buf)
2547{
9a305230
LS
2548 struct hstate *h;
2549 unsigned long surplus_huge_pages;
2550 int nid;
2551
2552 h = kobj_to_hstate(kobj, &nid);
2553 if (nid == NUMA_NO_NODE)
2554 surplus_huge_pages = h->surplus_huge_pages;
2555 else
2556 surplus_huge_pages = h->surplus_huge_pages_node[nid];
2557
2558 return sprintf(buf, "%lu\n", surplus_huge_pages);
a3437870
NA
2559}
2560HSTATE_ATTR_RO(surplus_hugepages);
2561
2562static struct attribute *hstate_attrs[] = {
2563 &nr_hugepages_attr.attr,
2564 &nr_overcommit_hugepages_attr.attr,
2565 &free_hugepages_attr.attr,
2566 &resv_hugepages_attr.attr,
2567 &surplus_hugepages_attr.attr,
06808b08
LS
2568#ifdef CONFIG_NUMA
2569 &nr_hugepages_mempolicy_attr.attr,
2570#endif
a3437870
NA
2571 NULL,
2572};
2573
67e5ed96 2574static const struct attribute_group hstate_attr_group = {
a3437870
NA
2575 .attrs = hstate_attrs,
2576};
2577
094e9539
JM
2578static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2579 struct kobject **hstate_kobjs,
67e5ed96 2580 const struct attribute_group *hstate_attr_group)
a3437870
NA
2581{
2582 int retval;
972dc4de 2583 int hi = hstate_index(h);
a3437870 2584
9a305230
LS
2585 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2586 if (!hstate_kobjs[hi])
a3437870
NA
2587 return -ENOMEM;
2588
9a305230 2589 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
a3437870 2590 if (retval)
9a305230 2591 kobject_put(hstate_kobjs[hi]);
a3437870
NA
2592
2593 return retval;
2594}
2595
2596static void __init hugetlb_sysfs_init(void)
2597{
2598 struct hstate *h;
2599 int err;
2600
2601 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2602 if (!hugepages_kobj)
2603 return;
2604
2605 for_each_hstate(h) {
9a305230
LS
2606 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2607 hstate_kobjs, &hstate_attr_group);
a3437870 2608 if (err)
ffb22af5 2609 pr_err("Hugetlb: Unable to add hstate %s", h->name);
a3437870
NA
2610 }
2611}
2612
9a305230
LS
2613#ifdef CONFIG_NUMA
2614
2615/*
2616 * node_hstate/s - associate per node hstate attributes, via their kobjects,
10fbcf4c
KS
2617 * with node devices in node_devices[] using a parallel array. The array
2618 * index of a node device or _hstate == node id.
2619 * This is here to avoid any static dependency of the node device driver, in
9a305230
LS
2620 * the base kernel, on the hugetlb module.
2621 */
2622struct node_hstate {
2623 struct kobject *hugepages_kobj;
2624 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2625};
b4e289a6 2626static struct node_hstate node_hstates[MAX_NUMNODES];
9a305230
LS
2627
2628/*
10fbcf4c 2629 * A subset of global hstate attributes for node devices
9a305230
LS
2630 */
2631static struct attribute *per_node_hstate_attrs[] = {
2632 &nr_hugepages_attr.attr,
2633 &free_hugepages_attr.attr,
2634 &surplus_hugepages_attr.attr,
2635 NULL,
2636};
2637
67e5ed96 2638static const struct attribute_group per_node_hstate_attr_group = {
9a305230
LS
2639 .attrs = per_node_hstate_attrs,
2640};
2641
2642/*
10fbcf4c 2643 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
9a305230
LS
2644 * Returns node id via non-NULL nidp.
2645 */
2646static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2647{
2648 int nid;
2649
2650 for (nid = 0; nid < nr_node_ids; nid++) {
2651 struct node_hstate *nhs = &node_hstates[nid];
2652 int i;
2653 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2654 if (nhs->hstate_kobjs[i] == kobj) {
2655 if (nidp)
2656 *nidp = nid;
2657 return &hstates[i];
2658 }
2659 }
2660
2661 BUG();
2662 return NULL;
2663}
2664
2665/*
10fbcf4c 2666 * Unregister hstate attributes from a single node device.
9a305230
LS
2667 * No-op if no hstate attributes attached.
2668 */
3cd8b44f 2669static void hugetlb_unregister_node(struct node *node)
9a305230
LS
2670{
2671 struct hstate *h;
10fbcf4c 2672 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
2673
2674 if (!nhs->hugepages_kobj)
9b5e5d0f 2675 return; /* no hstate attributes */
9a305230 2676
972dc4de
AK
2677 for_each_hstate(h) {
2678 int idx = hstate_index(h);
2679 if (nhs->hstate_kobjs[idx]) {
2680 kobject_put(nhs->hstate_kobjs[idx]);
2681 nhs->hstate_kobjs[idx] = NULL;
9a305230 2682 }
972dc4de 2683 }
9a305230
LS
2684
2685 kobject_put(nhs->hugepages_kobj);
2686 nhs->hugepages_kobj = NULL;
2687}
2688
9a305230
LS
2689
2690/*
10fbcf4c 2691 * Register hstate attributes for a single node device.
9a305230
LS
2692 * No-op if attributes already registered.
2693 */
3cd8b44f 2694static void hugetlb_register_node(struct node *node)
9a305230
LS
2695{
2696 struct hstate *h;
10fbcf4c 2697 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
2698 int err;
2699
2700 if (nhs->hugepages_kobj)
2701 return; /* already allocated */
2702
2703 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
10fbcf4c 2704 &node->dev.kobj);
9a305230
LS
2705 if (!nhs->hugepages_kobj)
2706 return;
2707
2708 for_each_hstate(h) {
2709 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2710 nhs->hstate_kobjs,
2711 &per_node_hstate_attr_group);
2712 if (err) {
ffb22af5
AM
2713 pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2714 h->name, node->dev.id);
9a305230
LS
2715 hugetlb_unregister_node(node);
2716 break;
2717 }
2718 }
2719}
2720
2721/*
9b5e5d0f 2722 * hugetlb init time: register hstate attributes for all registered node
10fbcf4c
KS
2723 * devices of nodes that have memory. All on-line nodes should have
2724 * registered their associated device by this time.
9a305230 2725 */
7d9ca000 2726static void __init hugetlb_register_all_nodes(void)
9a305230
LS
2727{
2728 int nid;
2729
8cebfcd0 2730 for_each_node_state(nid, N_MEMORY) {
8732794b 2731 struct node *node = node_devices[nid];
10fbcf4c 2732 if (node->dev.id == nid)
9a305230
LS
2733 hugetlb_register_node(node);
2734 }
2735
2736 /*
10fbcf4c 2737 * Let the node device driver know we're here so it can
9a305230
LS
2738 * [un]register hstate attributes on node hotplug.
2739 */
2740 register_hugetlbfs_with_node(hugetlb_register_node,
2741 hugetlb_unregister_node);
2742}
2743#else /* !CONFIG_NUMA */
2744
2745static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2746{
2747 BUG();
2748 if (nidp)
2749 *nidp = -1;
2750 return NULL;
2751}
2752
9a305230
LS
2753static void hugetlb_register_all_nodes(void) { }
2754
2755#endif
2756
a3437870
NA
2757static int __init hugetlb_init(void)
2758{
8382d914
DB
2759 int i;
2760
457c1b27 2761 if (!hugepages_supported())
0ef89d25 2762 return 0;
a3437870 2763
e11bfbfc 2764 if (!size_to_hstate(default_hstate_size)) {
d715cf80
LH
2765 if (default_hstate_size != 0) {
2766 pr_err("HugeTLB: unsupported default_hugepagesz %lu. Reverting to %lu\n",
2767 default_hstate_size, HPAGE_SIZE);
2768 }
2769
e11bfbfc
NP
2770 default_hstate_size = HPAGE_SIZE;
2771 if (!size_to_hstate(default_hstate_size))
2772 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
a3437870 2773 }
972dc4de 2774 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
f8b74815
VT
2775 if (default_hstate_max_huge_pages) {
2776 if (!default_hstate.max_huge_pages)
2777 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2778 }
a3437870
NA
2779
2780 hugetlb_init_hstates();
aa888a74 2781 gather_bootmem_prealloc();
a3437870
NA
2782 report_hugepages();
2783
2784 hugetlb_sysfs_init();
9a305230 2785 hugetlb_register_all_nodes();
7179e7bf 2786 hugetlb_cgroup_file_init();
9a305230 2787
8382d914
DB
2788#ifdef CONFIG_SMP
2789 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2790#else
2791 num_fault_mutexes = 1;
2792#endif
c672c7f2 2793 hugetlb_fault_mutex_table =
8382d914 2794 kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
c672c7f2 2795 BUG_ON(!hugetlb_fault_mutex_table);
8382d914
DB
2796
2797 for (i = 0; i < num_fault_mutexes; i++)
c672c7f2 2798 mutex_init(&hugetlb_fault_mutex_table[i]);
a3437870
NA
2799 return 0;
2800}
3e89e1c5 2801subsys_initcall(hugetlb_init);
a3437870
NA
2802
2803/* Should be called on processing a hugepagesz=... option */
9fee021d
VT
2804void __init hugetlb_bad_size(void)
2805{
2806 parsed_valid_hugepagesz = false;
2807}
2808
d00181b9 2809void __init hugetlb_add_hstate(unsigned int order)
a3437870
NA
2810{
2811 struct hstate *h;
8faa8b07
AK
2812 unsigned long i;
2813
a3437870 2814 if (size_to_hstate(PAGE_SIZE << order)) {
598d8091 2815 pr_warn("hugepagesz= specified twice, ignoring\n");
a3437870
NA
2816 return;
2817 }
47d38344 2818 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
a3437870 2819 BUG_ON(order == 0);
47d38344 2820 h = &hstates[hugetlb_max_hstate++];
a3437870
NA
2821 h->order = order;
2822 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
8faa8b07
AK
2823 h->nr_huge_pages = 0;
2824 h->free_huge_pages = 0;
2825 for (i = 0; i < MAX_NUMNODES; ++i)
2826 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
0edaecfa 2827 INIT_LIST_HEAD(&h->hugepage_activelist);
54f18d35
AM
2828 h->next_nid_to_alloc = first_memory_node;
2829 h->next_nid_to_free = first_memory_node;
a3437870
NA
2830 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2831 huge_page_size(h)/1024);
8faa8b07 2832
a3437870
NA
2833 parsed_hstate = h;
2834}
2835
e11bfbfc 2836static int __init hugetlb_nrpages_setup(char *s)
a3437870
NA
2837{
2838 unsigned long *mhp;
8faa8b07 2839 static unsigned long *last_mhp;
a3437870 2840
9fee021d
VT
2841 if (!parsed_valid_hugepagesz) {
2842 pr_warn("hugepages = %s preceded by "
2843 "an unsupported hugepagesz, ignoring\n", s);
2844 parsed_valid_hugepagesz = true;
2845 return 1;
2846 }
a3437870 2847 /*
47d38344 2848 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
a3437870
NA
2849 * so this hugepages= parameter goes to the "default hstate".
2850 */
9fee021d 2851 else if (!hugetlb_max_hstate)
a3437870
NA
2852 mhp = &default_hstate_max_huge_pages;
2853 else
2854 mhp = &parsed_hstate->max_huge_pages;
2855
8faa8b07 2856 if (mhp == last_mhp) {
598d8091 2857 pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
8faa8b07
AK
2858 return 1;
2859 }
2860
a3437870
NA
2861 if (sscanf(s, "%lu", mhp) <= 0)
2862 *mhp = 0;
2863
8faa8b07
AK
2864 /*
2865 * Global state is always initialized later in hugetlb_init.
2866 * But we need to allocate >= MAX_ORDER hstates here early to still
2867 * use the bootmem allocator.
2868 */
47d38344 2869 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
8faa8b07
AK
2870 hugetlb_hstate_alloc_pages(parsed_hstate);
2871
2872 last_mhp = mhp;
2873
a3437870
NA
2874 return 1;
2875}
e11bfbfc
NP
2876__setup("hugepages=", hugetlb_nrpages_setup);
2877
2878static int __init hugetlb_default_setup(char *s)
2879{
2880 default_hstate_size = memparse(s, &s);
2881 return 1;
2882}
2883__setup("default_hugepagesz=", hugetlb_default_setup);
a3437870 2884
8a213460
NA
2885static unsigned int cpuset_mems_nr(unsigned int *array)
2886{
2887 int node;
2888 unsigned int nr = 0;
2889
2890 for_each_node_mask(node, cpuset_current_mems_allowed)
2891 nr += array[node];
2892
2893 return nr;
2894}
2895
2896#ifdef CONFIG_SYSCTL
06808b08
LS
2897static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2898 struct ctl_table *table, int write,
2899 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 2900{
e5ff2159 2901 struct hstate *h = &default_hstate;
238d3c13 2902 unsigned long tmp = h->max_huge_pages;
08d4a246 2903 int ret;
e5ff2159 2904
457c1b27 2905 if (!hugepages_supported())
86613628 2906 return -EOPNOTSUPP;
457c1b27 2907
e5ff2159
AK
2908 table->data = &tmp;
2909 table->maxlen = sizeof(unsigned long);
08d4a246
MH
2910 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2911 if (ret)
2912 goto out;
e5ff2159 2913
238d3c13
DR
2914 if (write)
2915 ret = __nr_hugepages_store_common(obey_mempolicy, h,
2916 NUMA_NO_NODE, tmp, *length);
08d4a246
MH
2917out:
2918 return ret;
1da177e4 2919}
396faf03 2920
06808b08
LS
2921int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2922 void __user *buffer, size_t *length, loff_t *ppos)
2923{
2924
2925 return hugetlb_sysctl_handler_common(false, table, write,
2926 buffer, length, ppos);
2927}
2928
2929#ifdef CONFIG_NUMA
2930int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2931 void __user *buffer, size_t *length, loff_t *ppos)
2932{
2933 return hugetlb_sysctl_handler_common(true, table, write,
2934 buffer, length, ppos);
2935}
2936#endif /* CONFIG_NUMA */
2937
a3d0c6aa 2938int hugetlb_overcommit_handler(struct ctl_table *table, int write,
8d65af78 2939 void __user *buffer,
a3d0c6aa
NA
2940 size_t *length, loff_t *ppos)
2941{
a5516438 2942 struct hstate *h = &default_hstate;
e5ff2159 2943 unsigned long tmp;
08d4a246 2944 int ret;
e5ff2159 2945
457c1b27 2946 if (!hugepages_supported())
86613628 2947 return -EOPNOTSUPP;
457c1b27 2948
c033a93c 2949 tmp = h->nr_overcommit_huge_pages;
e5ff2159 2950
bae7f4ae 2951 if (write && hstate_is_gigantic(h))
adbe8726
EM
2952 return -EINVAL;
2953
e5ff2159
AK
2954 table->data = &tmp;
2955 table->maxlen = sizeof(unsigned long);
08d4a246
MH
2956 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2957 if (ret)
2958 goto out;
e5ff2159
AK
2959
2960 if (write) {
2961 spin_lock(&hugetlb_lock);
2962 h->nr_overcommit_huge_pages = tmp;
2963 spin_unlock(&hugetlb_lock);
2964 }
08d4a246
MH
2965out:
2966 return ret;
a3d0c6aa
NA
2967}
2968
1da177e4
LT
2969#endif /* CONFIG_SYSCTL */
2970
e1759c21 2971void hugetlb_report_meminfo(struct seq_file *m)
1da177e4 2972{
fcb2b0c5
RG
2973 struct hstate *h;
2974 unsigned long total = 0;
2975
457c1b27
NA
2976 if (!hugepages_supported())
2977 return;
fcb2b0c5
RG
2978
2979 for_each_hstate(h) {
2980 unsigned long count = h->nr_huge_pages;
2981
2982 total += (PAGE_SIZE << huge_page_order(h)) * count;
2983
2984 if (h == &default_hstate)
2985 seq_printf(m,
2986 "HugePages_Total: %5lu\n"
2987 "HugePages_Free: %5lu\n"
2988 "HugePages_Rsvd: %5lu\n"
2989 "HugePages_Surp: %5lu\n"
2990 "Hugepagesize: %8lu kB\n",
2991 count,
2992 h->free_huge_pages,
2993 h->resv_huge_pages,
2994 h->surplus_huge_pages,
2995 (PAGE_SIZE << huge_page_order(h)) / 1024);
2996 }
2997
2998 seq_printf(m, "Hugetlb: %8lu kB\n", total / 1024);
1da177e4
LT
2999}
3000
3001int hugetlb_report_node_meminfo(int nid, char *buf)
3002{
a5516438 3003 struct hstate *h = &default_hstate;
457c1b27
NA
3004 if (!hugepages_supported())
3005 return 0;
1da177e4
LT
3006 return sprintf(buf,
3007 "Node %d HugePages_Total: %5u\n"
a1de0919
NA
3008 "Node %d HugePages_Free: %5u\n"
3009 "Node %d HugePages_Surp: %5u\n",
a5516438
AK
3010 nid, h->nr_huge_pages_node[nid],
3011 nid, h->free_huge_pages_node[nid],
3012 nid, h->surplus_huge_pages_node[nid]);
1da177e4
LT
3013}
3014
949f7ec5
DR
3015void hugetlb_show_meminfo(void)
3016{
3017 struct hstate *h;
3018 int nid;
3019
457c1b27
NA
3020 if (!hugepages_supported())
3021 return;
3022
949f7ec5
DR
3023 for_each_node_state(nid, N_MEMORY)
3024 for_each_hstate(h)
3025 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3026 nid,
3027 h->nr_huge_pages_node[nid],
3028 h->free_huge_pages_node[nid],
3029 h->surplus_huge_pages_node[nid],
3030 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3031}
3032
5d317b2b
NH
3033void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3034{
3035 seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3036 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3037}
3038
1da177e4
LT
3039/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3040unsigned long hugetlb_total_pages(void)
3041{
d0028588
WL
3042 struct hstate *h;
3043 unsigned long nr_total_pages = 0;
3044
3045 for_each_hstate(h)
3046 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3047 return nr_total_pages;
1da177e4 3048}
1da177e4 3049
a5516438 3050static int hugetlb_acct_memory(struct hstate *h, long delta)
fc1b8a73
MG
3051{
3052 int ret = -ENOMEM;
3053
3054 spin_lock(&hugetlb_lock);
3055 /*
3056 * When cpuset is configured, it breaks the strict hugetlb page
3057 * reservation as the accounting is done on a global variable. Such
3058 * reservation is completely rubbish in the presence of cpuset because
3059 * the reservation is not checked against page availability for the
3060 * current cpuset. Application can still potentially OOM'ed by kernel
3061 * with lack of free htlb page in cpuset that the task is in.
3062 * Attempt to enforce strict accounting with cpuset is almost
3063 * impossible (or too ugly) because cpuset is too fluid that
3064 * task or memory node can be dynamically moved between cpusets.
3065 *
3066 * The change of semantics for shared hugetlb mapping with cpuset is
3067 * undesirable. However, in order to preserve some of the semantics,
3068 * we fall back to check against current free page availability as
3069 * a best attempt and hopefully to minimize the impact of changing
3070 * semantics that cpuset has.
3071 */
3072 if (delta > 0) {
a5516438 3073 if (gather_surplus_pages(h, delta) < 0)
fc1b8a73
MG
3074 goto out;
3075
a5516438
AK
3076 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
3077 return_unused_surplus_pages(h, delta);
fc1b8a73
MG
3078 goto out;
3079 }
3080 }
3081
3082 ret = 0;
3083 if (delta < 0)
a5516438 3084 return_unused_surplus_pages(h, (unsigned long) -delta);
fc1b8a73
MG
3085
3086out:
3087 spin_unlock(&hugetlb_lock);
3088 return ret;
3089}
3090
84afd99b
AW
3091static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3092{
f522c3ac 3093 struct resv_map *resv = vma_resv_map(vma);
84afd99b
AW
3094
3095 /*
3096 * This new VMA should share its siblings reservation map if present.
3097 * The VMA will only ever have a valid reservation map pointer where
3098 * it is being copied for another still existing VMA. As that VMA
25985edc 3099 * has a reference to the reservation map it cannot disappear until
84afd99b
AW
3100 * after this open call completes. It is therefore safe to take a
3101 * new reference here without additional locking.
3102 */
4e35f483 3103 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
f522c3ac 3104 kref_get(&resv->refs);
84afd99b
AW
3105}
3106
a1e78772
MG
3107static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3108{
a5516438 3109 struct hstate *h = hstate_vma(vma);
f522c3ac 3110 struct resv_map *resv = vma_resv_map(vma);
90481622 3111 struct hugepage_subpool *spool = subpool_vma(vma);
4e35f483 3112 unsigned long reserve, start, end;
1c5ecae3 3113 long gbl_reserve;
84afd99b 3114
4e35f483
JK
3115 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3116 return;
84afd99b 3117
4e35f483
JK
3118 start = vma_hugecache_offset(h, vma, vma->vm_start);
3119 end = vma_hugecache_offset(h, vma, vma->vm_end);
84afd99b 3120
4e35f483 3121 reserve = (end - start) - region_count(resv, start, end);
84afd99b 3122
4e35f483
JK
3123 kref_put(&resv->refs, resv_map_release);
3124
3125 if (reserve) {
1c5ecae3
MK
3126 /*
3127 * Decrement reserve counts. The global reserve count may be
3128 * adjusted if the subpool has a minimum size.
3129 */
3130 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3131 hugetlb_acct_memory(h, -gbl_reserve);
84afd99b 3132 }
a1e78772
MG
3133}
3134
31383c68
DW
3135static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
3136{
3137 if (addr & ~(huge_page_mask(hstate_vma(vma))))
3138 return -EINVAL;
3139 return 0;
3140}
3141
1da177e4
LT
3142/*
3143 * We cannot handle pagefaults against hugetlb pages at all. They cause
3144 * handle_mm_fault() to try to instantiate regular-sized pages in the
3145 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
3146 * this far.
3147 */
11bac800 3148static int hugetlb_vm_op_fault(struct vm_fault *vmf)
1da177e4
LT
3149{
3150 BUG();
d0217ac0 3151 return 0;
1da177e4
LT
3152}
3153
f0f37e2f 3154const struct vm_operations_struct hugetlb_vm_ops = {
d0217ac0 3155 .fault = hugetlb_vm_op_fault,
84afd99b 3156 .open = hugetlb_vm_op_open,
a1e78772 3157 .close = hugetlb_vm_op_close,
31383c68 3158 .split = hugetlb_vm_op_split,
1da177e4
LT
3159};
3160
1e8f889b
DG
3161static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3162 int writable)
63551ae0
DG
3163{
3164 pte_t entry;
3165
1e8f889b 3166 if (writable) {
106c992a
GS
3167 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3168 vma->vm_page_prot)));
63551ae0 3169 } else {
106c992a
GS
3170 entry = huge_pte_wrprotect(mk_huge_pte(page,
3171 vma->vm_page_prot));
63551ae0
DG
3172 }
3173 entry = pte_mkyoung(entry);
3174 entry = pte_mkhuge(entry);
d9ed9faa 3175 entry = arch_make_huge_pte(entry, vma, page, writable);
63551ae0
DG
3176
3177 return entry;
3178}
3179
1e8f889b
DG
3180static void set_huge_ptep_writable(struct vm_area_struct *vma,
3181 unsigned long address, pte_t *ptep)
3182{
3183 pte_t entry;
3184
106c992a 3185 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
32f84528 3186 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4b3073e1 3187 update_mmu_cache(vma, address, ptep);
1e8f889b
DG
3188}
3189
d5ed7444 3190bool is_hugetlb_entry_migration(pte_t pte)
4a705fef
NH
3191{
3192 swp_entry_t swp;
3193
3194 if (huge_pte_none(pte) || pte_present(pte))
d5ed7444 3195 return false;
4a705fef
NH
3196 swp = pte_to_swp_entry(pte);
3197 if (non_swap_entry(swp) && is_migration_entry(swp))
d5ed7444 3198 return true;
4a705fef 3199 else
d5ed7444 3200 return false;
4a705fef
NH
3201}
3202
3203static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3204{
3205 swp_entry_t swp;
3206
3207 if (huge_pte_none(pte) || pte_present(pte))
3208 return 0;
3209 swp = pte_to_swp_entry(pte);
3210 if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3211 return 1;
3212 else
3213 return 0;
3214}
1e8f889b 3215
63551ae0
DG
3216int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3217 struct vm_area_struct *vma)
3218{
3219 pte_t *src_pte, *dst_pte, entry;
3220 struct page *ptepage;
1c59827d 3221 unsigned long addr;
1e8f889b 3222 int cow;
a5516438
AK
3223 struct hstate *h = hstate_vma(vma);
3224 unsigned long sz = huge_page_size(h);
e8569dd2
AS
3225 unsigned long mmun_start; /* For mmu_notifiers */
3226 unsigned long mmun_end; /* For mmu_notifiers */
3227 int ret = 0;
1e8f889b
DG
3228
3229 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
63551ae0 3230
e8569dd2
AS
3231 mmun_start = vma->vm_start;
3232 mmun_end = vma->vm_end;
3233 if (cow)
3234 mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
3235
a5516438 3236 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
cb900f41 3237 spinlock_t *src_ptl, *dst_ptl;
7868a208 3238 src_pte = huge_pte_offset(src, addr, sz);
c74df32c
HD
3239 if (!src_pte)
3240 continue;
a5516438 3241 dst_pte = huge_pte_alloc(dst, addr, sz);
e8569dd2
AS
3242 if (!dst_pte) {
3243 ret = -ENOMEM;
3244 break;
3245 }
c5c99429
LW
3246
3247 /* If the pagetables are shared don't copy or take references */
3248 if (dst_pte == src_pte)
3249 continue;
3250
cb900f41
KS
3251 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3252 src_ptl = huge_pte_lockptr(h, src, src_pte);
3253 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4a705fef
NH
3254 entry = huge_ptep_get(src_pte);
3255 if (huge_pte_none(entry)) { /* skip none entry */
3256 ;
3257 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3258 is_hugetlb_entry_hwpoisoned(entry))) {
3259 swp_entry_t swp_entry = pte_to_swp_entry(entry);
3260
3261 if (is_write_migration_entry(swp_entry) && cow) {
3262 /*
3263 * COW mappings require pages in both
3264 * parent and child to be set to read.
3265 */
3266 make_migration_entry_read(&swp_entry);
3267 entry = swp_entry_to_pte(swp_entry);
e5251fd4
PA
3268 set_huge_swap_pte_at(src, addr, src_pte,
3269 entry, sz);
4a705fef 3270 }
e5251fd4 3271 set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
4a705fef 3272 } else {
34ee645e 3273 if (cow) {
0f10851e
JG
3274 /*
3275 * No need to notify as we are downgrading page
3276 * table protection not changing it to point
3277 * to a new page.
3278 *
3279 * See Documentation/vm/mmu_notifier.txt
3280 */
7f2e9525 3281 huge_ptep_set_wrprotect(src, addr, src_pte);
34ee645e 3282 }
0253d634 3283 entry = huge_ptep_get(src_pte);
1c59827d
HD
3284 ptepage = pte_page(entry);
3285 get_page(ptepage);
53f9263b 3286 page_dup_rmap(ptepage, true);
1c59827d 3287 set_huge_pte_at(dst, addr, dst_pte, entry);
5d317b2b 3288 hugetlb_count_add(pages_per_huge_page(h), dst);
1c59827d 3289 }
cb900f41
KS
3290 spin_unlock(src_ptl);
3291 spin_unlock(dst_ptl);
63551ae0 3292 }
63551ae0 3293
e8569dd2
AS
3294 if (cow)
3295 mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
3296
3297 return ret;
63551ae0
DG
3298}
3299
24669e58
AK
3300void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3301 unsigned long start, unsigned long end,
3302 struct page *ref_page)
63551ae0
DG
3303{
3304 struct mm_struct *mm = vma->vm_mm;
3305 unsigned long address;
c7546f8f 3306 pte_t *ptep;
63551ae0 3307 pte_t pte;
cb900f41 3308 spinlock_t *ptl;
63551ae0 3309 struct page *page;
a5516438
AK
3310 struct hstate *h = hstate_vma(vma);
3311 unsigned long sz = huge_page_size(h);
2ec74c3e
SG
3312 const unsigned long mmun_start = start; /* For mmu_notifiers */
3313 const unsigned long mmun_end = end; /* For mmu_notifiers */
a5516438 3314
63551ae0 3315 WARN_ON(!is_vm_hugetlb_page(vma));
a5516438
AK
3316 BUG_ON(start & ~huge_page_mask(h));
3317 BUG_ON(end & ~huge_page_mask(h));
63551ae0 3318
07e32661
AK
3319 /*
3320 * This is a hugetlb vma, all the pte entries should point
3321 * to huge page.
3322 */
3323 tlb_remove_check_page_size_change(tlb, sz);
24669e58 3324 tlb_start_vma(tlb, vma);
2ec74c3e 3325 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
569f48b8 3326 address = start;
569f48b8 3327 for (; address < end; address += sz) {
7868a208 3328 ptep = huge_pte_offset(mm, address, sz);
4c887265 3329 if (!ptep)
c7546f8f
DG
3330 continue;
3331
cb900f41 3332 ptl = huge_pte_lock(h, mm, ptep);
31d49da5
AK
3333 if (huge_pmd_unshare(mm, &address, ptep)) {
3334 spin_unlock(ptl);
3335 continue;
3336 }
39dde65c 3337
6629326b 3338 pte = huge_ptep_get(ptep);
31d49da5
AK
3339 if (huge_pte_none(pte)) {
3340 spin_unlock(ptl);
3341 continue;
3342 }
6629326b
HD
3343
3344 /*
9fbc1f63
NH
3345 * Migrating hugepage or HWPoisoned hugepage is already
3346 * unmapped and its refcount is dropped, so just clear pte here.
6629326b 3347 */
9fbc1f63 3348 if (unlikely(!pte_present(pte))) {
9386fac3 3349 huge_pte_clear(mm, address, ptep, sz);
31d49da5
AK
3350 spin_unlock(ptl);
3351 continue;
8c4894c6 3352 }
6629326b
HD
3353
3354 page = pte_page(pte);
04f2cbe3
MG
3355 /*
3356 * If a reference page is supplied, it is because a specific
3357 * page is being unmapped, not a range. Ensure the page we
3358 * are about to unmap is the actual page of interest.
3359 */
3360 if (ref_page) {
31d49da5
AK
3361 if (page != ref_page) {
3362 spin_unlock(ptl);
3363 continue;
3364 }
04f2cbe3
MG
3365 /*
3366 * Mark the VMA as having unmapped its page so that
3367 * future faults in this VMA will fail rather than
3368 * looking like data was lost
3369 */
3370 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3371 }
3372
c7546f8f 3373 pte = huge_ptep_get_and_clear(mm, address, ptep);
b528e4b6 3374 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
106c992a 3375 if (huge_pte_dirty(pte))
6649a386 3376 set_page_dirty(page);
9e81130b 3377
5d317b2b 3378 hugetlb_count_sub(pages_per_huge_page(h), mm);
d281ee61 3379 page_remove_rmap(page, true);
31d49da5 3380
cb900f41 3381 spin_unlock(ptl);
e77b0852 3382 tlb_remove_page_size(tlb, page, huge_page_size(h));
31d49da5
AK
3383 /*
3384 * Bail out after unmapping reference page if supplied
3385 */
3386 if (ref_page)
3387 break;
fe1668ae 3388 }
2ec74c3e 3389 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
24669e58 3390 tlb_end_vma(tlb, vma);
1da177e4 3391}
63551ae0 3392
d833352a
MG
3393void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3394 struct vm_area_struct *vma, unsigned long start,
3395 unsigned long end, struct page *ref_page)
3396{
3397 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
3398
3399 /*
3400 * Clear this flag so that x86's huge_pmd_share page_table_shareable
3401 * test will fail on a vma being torn down, and not grab a page table
3402 * on its way out. We're lucky that the flag has such an appropriate
3403 * name, and can in fact be safely cleared here. We could clear it
3404 * before the __unmap_hugepage_range above, but all that's necessary
c8c06efa 3405 * is to clear it before releasing the i_mmap_rwsem. This works
d833352a 3406 * because in the context this is called, the VMA is about to be
c8c06efa 3407 * destroyed and the i_mmap_rwsem is held.
d833352a
MG
3408 */
3409 vma->vm_flags &= ~VM_MAYSHARE;
3410}
3411
502717f4 3412void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
04f2cbe3 3413 unsigned long end, struct page *ref_page)
502717f4 3414{
24669e58
AK
3415 struct mm_struct *mm;
3416 struct mmu_gather tlb;
3417
3418 mm = vma->vm_mm;
3419
2b047252 3420 tlb_gather_mmu(&tlb, mm, start, end);
24669e58
AK
3421 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
3422 tlb_finish_mmu(&tlb, start, end);
502717f4
CK
3423}
3424
04f2cbe3
MG
3425/*
3426 * This is called when the original mapper is failing to COW a MAP_PRIVATE
3427 * mappping it owns the reserve page for. The intention is to unmap the page
3428 * from other VMAs and let the children be SIGKILLed if they are faulting the
3429 * same region.
3430 */
2f4612af
DB
3431static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3432 struct page *page, unsigned long address)
04f2cbe3 3433{
7526674d 3434 struct hstate *h = hstate_vma(vma);
04f2cbe3
MG
3435 struct vm_area_struct *iter_vma;
3436 struct address_space *mapping;
04f2cbe3
MG
3437 pgoff_t pgoff;
3438
3439 /*
3440 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3441 * from page cache lookup which is in HPAGE_SIZE units.
3442 */
7526674d 3443 address = address & huge_page_mask(h);
36e4f20a
MH
3444 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3445 vma->vm_pgoff;
93c76a3d 3446 mapping = vma->vm_file->f_mapping;
04f2cbe3 3447
4eb2b1dc
MG
3448 /*
3449 * Take the mapping lock for the duration of the table walk. As
3450 * this mapping should be shared between all the VMAs,
3451 * __unmap_hugepage_range() is called as the lock is already held
3452 */
83cde9e8 3453 i_mmap_lock_write(mapping);
6b2dbba8 3454 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
04f2cbe3
MG
3455 /* Do not unmap the current VMA */
3456 if (iter_vma == vma)
3457 continue;
3458
2f84a899
MG
3459 /*
3460 * Shared VMAs have their own reserves and do not affect
3461 * MAP_PRIVATE accounting but it is possible that a shared
3462 * VMA is using the same page so check and skip such VMAs.
3463 */
3464 if (iter_vma->vm_flags & VM_MAYSHARE)
3465 continue;
3466
04f2cbe3
MG
3467 /*
3468 * Unmap the page from other VMAs without their own reserves.
3469 * They get marked to be SIGKILLed if they fault in these
3470 * areas. This is because a future no-page fault on this VMA
3471 * could insert a zeroed page instead of the data existing
3472 * from the time of fork. This would look like data corruption
3473 */
3474 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
24669e58
AK
3475 unmap_hugepage_range(iter_vma, address,
3476 address + huge_page_size(h), page);
04f2cbe3 3477 }
83cde9e8 3478 i_mmap_unlock_write(mapping);
04f2cbe3
MG
3479}
3480
0fe6e20b
NH
3481/*
3482 * Hugetlb_cow() should be called with page lock of the original hugepage held.
ef009b25
MH
3483 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3484 * cannot race with other handlers or page migration.
3485 * Keep the pte_same checks anyway to make transition from the mutex easier.
0fe6e20b 3486 */
1e8f889b 3487static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
3999f52e
AK
3488 unsigned long address, pte_t *ptep,
3489 struct page *pagecache_page, spinlock_t *ptl)
1e8f889b 3490{
3999f52e 3491 pte_t pte;
a5516438 3492 struct hstate *h = hstate_vma(vma);
1e8f889b 3493 struct page *old_page, *new_page;
ad4404a2 3494 int ret = 0, outside_reserve = 0;
2ec74c3e
SG
3495 unsigned long mmun_start; /* For mmu_notifiers */
3496 unsigned long mmun_end; /* For mmu_notifiers */
1e8f889b 3497
3999f52e 3498 pte = huge_ptep_get(ptep);
1e8f889b
DG
3499 old_page = pte_page(pte);
3500
04f2cbe3 3501retry_avoidcopy:
1e8f889b
DG
3502 /* If no-one else is actually using this page, avoid the copy
3503 * and just make the page writable */
37a2140d 3504 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
5a49973d 3505 page_move_anon_rmap(old_page, vma);
1e8f889b 3506 set_huge_ptep_writable(vma, address, ptep);
83c54070 3507 return 0;
1e8f889b
DG
3508 }
3509
04f2cbe3
MG
3510 /*
3511 * If the process that created a MAP_PRIVATE mapping is about to
3512 * perform a COW due to a shared page count, attempt to satisfy
3513 * the allocation without using the existing reserves. The pagecache
3514 * page is used to determine if the reserve at this address was
3515 * consumed or not. If reserves were used, a partial faulted mapping
3516 * at the time of fork() could consume its reserves on COW instead
3517 * of the full address range.
3518 */
5944d011 3519 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
04f2cbe3
MG
3520 old_page != pagecache_page)
3521 outside_reserve = 1;
3522
09cbfeaf 3523 get_page(old_page);
b76c8cfb 3524
ad4404a2
DB
3525 /*
3526 * Drop page table lock as buddy allocator may be called. It will
3527 * be acquired again before returning to the caller, as expected.
3528 */
cb900f41 3529 spin_unlock(ptl);
04f2cbe3 3530 new_page = alloc_huge_page(vma, address, outside_reserve);
1e8f889b 3531
2fc39cec 3532 if (IS_ERR(new_page)) {
04f2cbe3
MG
3533 /*
3534 * If a process owning a MAP_PRIVATE mapping fails to COW,
3535 * it is due to references held by a child and an insufficient
3536 * huge page pool. To guarantee the original mappers
3537 * reliability, unmap the page from child processes. The child
3538 * may get SIGKILLed if it later faults.
3539 */
3540 if (outside_reserve) {
09cbfeaf 3541 put_page(old_page);
04f2cbe3 3542 BUG_ON(huge_pte_none(pte));
2f4612af
DB
3543 unmap_ref_private(mm, vma, old_page, address);
3544 BUG_ON(huge_pte_none(pte));
3545 spin_lock(ptl);
7868a208
PA
3546 ptep = huge_pte_offset(mm, address & huge_page_mask(h),
3547 huge_page_size(h));
2f4612af
DB
3548 if (likely(ptep &&
3549 pte_same(huge_ptep_get(ptep), pte)))
3550 goto retry_avoidcopy;
3551 /*
3552 * race occurs while re-acquiring page table
3553 * lock, and our job is done.
3554 */
3555 return 0;
04f2cbe3
MG
3556 }
3557
ad4404a2
DB
3558 ret = (PTR_ERR(new_page) == -ENOMEM) ?
3559 VM_FAULT_OOM : VM_FAULT_SIGBUS;
3560 goto out_release_old;
1e8f889b
DG
3561 }
3562
0fe6e20b
NH
3563 /*
3564 * When the original hugepage is shared one, it does not have
3565 * anon_vma prepared.
3566 */
44e2aa93 3567 if (unlikely(anon_vma_prepare(vma))) {
ad4404a2
DB
3568 ret = VM_FAULT_OOM;
3569 goto out_release_all;
44e2aa93 3570 }
0fe6e20b 3571
47ad8475
AA
3572 copy_user_huge_page(new_page, old_page, address, vma,
3573 pages_per_huge_page(h));
0ed361de 3574 __SetPageUptodate(new_page);
bcc54222 3575 set_page_huge_active(new_page);
1e8f889b 3576
2ec74c3e
SG
3577 mmun_start = address & huge_page_mask(h);
3578 mmun_end = mmun_start + huge_page_size(h);
3579 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
ad4404a2 3580
b76c8cfb 3581 /*
cb900f41 3582 * Retake the page table lock to check for racing updates
b76c8cfb
LW
3583 * before the page tables are altered
3584 */
cb900f41 3585 spin_lock(ptl);
7868a208
PA
3586 ptep = huge_pte_offset(mm, address & huge_page_mask(h),
3587 huge_page_size(h));
a9af0c5d 3588 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
07443a85
JK
3589 ClearPagePrivate(new_page);
3590
1e8f889b 3591 /* Break COW */
8fe627ec 3592 huge_ptep_clear_flush(vma, address, ptep);
34ee645e 3593 mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
1e8f889b
DG
3594 set_huge_pte_at(mm, address, ptep,
3595 make_huge_pte(vma, new_page, 1));
d281ee61 3596 page_remove_rmap(old_page, true);
cd67f0d2 3597 hugepage_add_new_anon_rmap(new_page, vma, address);
1e8f889b
DG
3598 /* Make the old page be freed below */
3599 new_page = old_page;
3600 }
cb900f41 3601 spin_unlock(ptl);
2ec74c3e 3602 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
ad4404a2 3603out_release_all:
96b96a96 3604 restore_reserve_on_error(h, vma, address, new_page);
09cbfeaf 3605 put_page(new_page);
ad4404a2 3606out_release_old:
09cbfeaf 3607 put_page(old_page);
8312034f 3608
ad4404a2
DB
3609 spin_lock(ptl); /* Caller expects lock to be held */
3610 return ret;
1e8f889b
DG
3611}
3612
04f2cbe3 3613/* Return the pagecache page at a given address within a VMA */
a5516438
AK
3614static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3615 struct vm_area_struct *vma, unsigned long address)
04f2cbe3
MG
3616{
3617 struct address_space *mapping;
e7c4b0bf 3618 pgoff_t idx;
04f2cbe3
MG
3619
3620 mapping = vma->vm_file->f_mapping;
a5516438 3621 idx = vma_hugecache_offset(h, vma, address);
04f2cbe3
MG
3622
3623 return find_lock_page(mapping, idx);
3624}
3625
3ae77f43
HD
3626/*
3627 * Return whether there is a pagecache page to back given address within VMA.
3628 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3629 */
3630static bool hugetlbfs_pagecache_present(struct hstate *h,
2a15efc9
HD
3631 struct vm_area_struct *vma, unsigned long address)
3632{
3633 struct address_space *mapping;
3634 pgoff_t idx;
3635 struct page *page;
3636
3637 mapping = vma->vm_file->f_mapping;
3638 idx = vma_hugecache_offset(h, vma, address);
3639
3640 page = find_get_page(mapping, idx);
3641 if (page)
3642 put_page(page);
3643 return page != NULL;
3644}
3645
ab76ad54
MK
3646int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
3647 pgoff_t idx)
3648{
3649 struct inode *inode = mapping->host;
3650 struct hstate *h = hstate_inode(inode);
3651 int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3652
3653 if (err)
3654 return err;
3655 ClearPagePrivate(page);
3656
3657 spin_lock(&inode->i_lock);
3658 inode->i_blocks += blocks_per_huge_page(h);
3659 spin_unlock(&inode->i_lock);
3660 return 0;
3661}
3662
a1ed3dda 3663static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
8382d914
DB
3664 struct address_space *mapping, pgoff_t idx,
3665 unsigned long address, pte_t *ptep, unsigned int flags)
ac9b9c66 3666{
a5516438 3667 struct hstate *h = hstate_vma(vma);
ac9b9c66 3668 int ret = VM_FAULT_SIGBUS;
409eb8c2 3669 int anon_rmap = 0;
4c887265 3670 unsigned long size;
4c887265 3671 struct page *page;
1e8f889b 3672 pte_t new_pte;
cb900f41 3673 spinlock_t *ptl;
4c887265 3674
04f2cbe3
MG
3675 /*
3676 * Currently, we are forced to kill the process in the event the
3677 * original mapper has unmapped pages from the child due to a failed
25985edc 3678 * COW. Warn that such a situation has occurred as it may not be obvious
04f2cbe3
MG
3679 */
3680 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
910154d5 3681 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
ffb22af5 3682 current->pid);
04f2cbe3
MG
3683 return ret;
3684 }
3685
4c887265
AL
3686 /*
3687 * Use page lock to guard against racing truncation
3688 * before we get page_table_lock.
3689 */
6bda666a
CL
3690retry:
3691 page = find_lock_page(mapping, idx);
3692 if (!page) {
a5516438 3693 size = i_size_read(mapping->host) >> huge_page_shift(h);
ebed4bfc
HD
3694 if (idx >= size)
3695 goto out;
1a1aad8a
MK
3696
3697 /*
3698 * Check for page in userfault range
3699 */
3700 if (userfaultfd_missing(vma)) {
3701 u32 hash;
3702 struct vm_fault vmf = {
3703 .vma = vma,
3704 .address = address,
3705 .flags = flags,
3706 /*
3707 * Hard to debug if it ends up being
3708 * used by a callee that assumes
3709 * something about the other
3710 * uninitialized fields... same as in
3711 * memory.c
3712 */
3713 };
3714
3715 /*
3716 * hugetlb_fault_mutex must be dropped before
3717 * handling userfault. Reacquire after handling
3718 * fault to make calling code simpler.
3719 */
3720 hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping,
3721 idx, address);
3722 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3723 ret = handle_userfault(&vmf, VM_UFFD_MISSING);
3724 mutex_lock(&hugetlb_fault_mutex_table[hash]);
3725 goto out;
3726 }
3727
04f2cbe3 3728 page = alloc_huge_page(vma, address, 0);
2fc39cec 3729 if (IS_ERR(page)) {
76dcee75
AK
3730 ret = PTR_ERR(page);
3731 if (ret == -ENOMEM)
3732 ret = VM_FAULT_OOM;
3733 else
3734 ret = VM_FAULT_SIGBUS;
6bda666a
CL
3735 goto out;
3736 }
47ad8475 3737 clear_huge_page(page, address, pages_per_huge_page(h));
0ed361de 3738 __SetPageUptodate(page);
bcc54222 3739 set_page_huge_active(page);
ac9b9c66 3740
f83a275d 3741 if (vma->vm_flags & VM_MAYSHARE) {
ab76ad54 3742 int err = huge_add_to_page_cache(page, mapping, idx);
6bda666a
CL
3743 if (err) {
3744 put_page(page);
6bda666a
CL
3745 if (err == -EEXIST)
3746 goto retry;
3747 goto out;
3748 }
23be7468 3749 } else {
6bda666a 3750 lock_page(page);
0fe6e20b
NH
3751 if (unlikely(anon_vma_prepare(vma))) {
3752 ret = VM_FAULT_OOM;
3753 goto backout_unlocked;
3754 }
409eb8c2 3755 anon_rmap = 1;
23be7468 3756 }
0fe6e20b 3757 } else {
998b4382
NH
3758 /*
3759 * If memory error occurs between mmap() and fault, some process
3760 * don't have hwpoisoned swap entry for errored virtual address.
3761 * So we need to block hugepage fault by PG_hwpoison bit check.
3762 */
3763 if (unlikely(PageHWPoison(page))) {
32f84528 3764 ret = VM_FAULT_HWPOISON |
972dc4de 3765 VM_FAULT_SET_HINDEX(hstate_index(h));
998b4382
NH
3766 goto backout_unlocked;
3767 }
6bda666a 3768 }
1e8f889b 3769
57303d80
AW
3770 /*
3771 * If we are going to COW a private mapping later, we examine the
3772 * pending reservations for this page now. This will ensure that
3773 * any allocations necessary to record that reservation occur outside
3774 * the spinlock.
3775 */
5e911373 3776 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2b26736c
AW
3777 if (vma_needs_reservation(h, vma, address) < 0) {
3778 ret = VM_FAULT_OOM;
3779 goto backout_unlocked;
3780 }
5e911373 3781 /* Just decrements count, does not deallocate */
feba16e2 3782 vma_end_reservation(h, vma, address);
5e911373 3783 }
57303d80 3784
8bea8052 3785 ptl = huge_pte_lock(h, mm, ptep);
a5516438 3786 size = i_size_read(mapping->host) >> huge_page_shift(h);
4c887265
AL
3787 if (idx >= size)
3788 goto backout;
3789
83c54070 3790 ret = 0;
7f2e9525 3791 if (!huge_pte_none(huge_ptep_get(ptep)))
4c887265
AL
3792 goto backout;
3793
07443a85
JK
3794 if (anon_rmap) {
3795 ClearPagePrivate(page);
409eb8c2 3796 hugepage_add_new_anon_rmap(page, vma, address);
ac714904 3797 } else
53f9263b 3798 page_dup_rmap(page, true);
1e8f889b
DG
3799 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3800 && (vma->vm_flags & VM_SHARED)));
3801 set_huge_pte_at(mm, address, ptep, new_pte);
3802
5d317b2b 3803 hugetlb_count_add(pages_per_huge_page(h), mm);
788c7df4 3804 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
1e8f889b 3805 /* Optimization, do the COW without a second fault */
3999f52e 3806 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
1e8f889b
DG
3807 }
3808
cb900f41 3809 spin_unlock(ptl);
4c887265
AL
3810 unlock_page(page);
3811out:
ac9b9c66 3812 return ret;
4c887265
AL
3813
3814backout:
cb900f41 3815 spin_unlock(ptl);
2b26736c 3816backout_unlocked:
4c887265 3817 unlock_page(page);
96b96a96 3818 restore_reserve_on_error(h, vma, address, page);
4c887265
AL
3819 put_page(page);
3820 goto out;
ac9b9c66
HD
3821}
3822
8382d914 3823#ifdef CONFIG_SMP
c672c7f2 3824u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
8382d914
DB
3825 struct vm_area_struct *vma,
3826 struct address_space *mapping,
3827 pgoff_t idx, unsigned long address)
3828{
3829 unsigned long key[2];
3830 u32 hash;
3831
3832 if (vma->vm_flags & VM_SHARED) {
3833 key[0] = (unsigned long) mapping;
3834 key[1] = idx;
3835 } else {
3836 key[0] = (unsigned long) mm;
3837 key[1] = address >> huge_page_shift(h);
3838 }
3839
3840 hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
3841
3842 return hash & (num_fault_mutexes - 1);
3843}
3844#else
3845/*
3846 * For uniprocesor systems we always use a single mutex, so just
3847 * return 0 and avoid the hashing overhead.
3848 */
c672c7f2 3849u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
8382d914
DB
3850 struct vm_area_struct *vma,
3851 struct address_space *mapping,
3852 pgoff_t idx, unsigned long address)
3853{
3854 return 0;
3855}
3856#endif
3857
86e5216f 3858int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
788c7df4 3859 unsigned long address, unsigned int flags)
86e5216f 3860{
8382d914 3861 pte_t *ptep, entry;
cb900f41 3862 spinlock_t *ptl;
1e8f889b 3863 int ret;
8382d914
DB
3864 u32 hash;
3865 pgoff_t idx;
0fe6e20b 3866 struct page *page = NULL;
57303d80 3867 struct page *pagecache_page = NULL;
a5516438 3868 struct hstate *h = hstate_vma(vma);
8382d914 3869 struct address_space *mapping;
0f792cf9 3870 int need_wait_lock = 0;
86e5216f 3871
1e16a539
KH
3872 address &= huge_page_mask(h);
3873
7868a208 3874 ptep = huge_pte_offset(mm, address, huge_page_size(h));
fd6a03ed
NH
3875 if (ptep) {
3876 entry = huge_ptep_get(ptep);
290408d4 3877 if (unlikely(is_hugetlb_entry_migration(entry))) {
cb900f41 3878 migration_entry_wait_huge(vma, mm, ptep);
290408d4
NH
3879 return 0;
3880 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
32f84528 3881 return VM_FAULT_HWPOISON_LARGE |
972dc4de 3882 VM_FAULT_SET_HINDEX(hstate_index(h));
0d777df5
NH
3883 } else {
3884 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
3885 if (!ptep)
3886 return VM_FAULT_OOM;
fd6a03ed
NH
3887 }
3888
8382d914
DB
3889 mapping = vma->vm_file->f_mapping;
3890 idx = vma_hugecache_offset(h, vma, address);
3891
3935baa9
DG
3892 /*
3893 * Serialize hugepage allocation and instantiation, so that we don't
3894 * get spurious allocation failures if two CPUs race to instantiate
3895 * the same page in the page cache.
3896 */
c672c7f2
MK
3897 hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, idx, address);
3898 mutex_lock(&hugetlb_fault_mutex_table[hash]);
8382d914 3899
7f2e9525
GS
3900 entry = huge_ptep_get(ptep);
3901 if (huge_pte_none(entry)) {
8382d914 3902 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
b4d1d99f 3903 goto out_mutex;
3935baa9 3904 }
86e5216f 3905
83c54070 3906 ret = 0;
1e8f889b 3907
0f792cf9
NH
3908 /*
3909 * entry could be a migration/hwpoison entry at this point, so this
3910 * check prevents the kernel from going below assuming that we have
3911 * a active hugepage in pagecache. This goto expects the 2nd page fault,
3912 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
3913 * handle it.
3914 */
3915 if (!pte_present(entry))
3916 goto out_mutex;
3917
57303d80
AW
3918 /*
3919 * If we are going to COW the mapping later, we examine the pending
3920 * reservations for this page now. This will ensure that any
3921 * allocations necessary to record that reservation occur outside the
3922 * spinlock. For private mappings, we also lookup the pagecache
3923 * page now as it is used to determine if a reservation has been
3924 * consumed.
3925 */
106c992a 3926 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
2b26736c
AW
3927 if (vma_needs_reservation(h, vma, address) < 0) {
3928 ret = VM_FAULT_OOM;
b4d1d99f 3929 goto out_mutex;
2b26736c 3930 }
5e911373 3931 /* Just decrements count, does not deallocate */
feba16e2 3932 vma_end_reservation(h, vma, address);
57303d80 3933
f83a275d 3934 if (!(vma->vm_flags & VM_MAYSHARE))
57303d80
AW
3935 pagecache_page = hugetlbfs_pagecache_page(h,
3936 vma, address);
3937 }
3938
0f792cf9
NH
3939 ptl = huge_pte_lock(h, mm, ptep);
3940
3941 /* Check for a racing update before calling hugetlb_cow */
3942 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
3943 goto out_ptl;
3944
56c9cfb1
NH
3945 /*
3946 * hugetlb_cow() requires page locks of pte_page(entry) and
3947 * pagecache_page, so here we need take the former one
3948 * when page != pagecache_page or !pagecache_page.
56c9cfb1
NH
3949 */
3950 page = pte_page(entry);
3951 if (page != pagecache_page)
0f792cf9
NH
3952 if (!trylock_page(page)) {
3953 need_wait_lock = 1;
3954 goto out_ptl;
3955 }
b4d1d99f 3956
0f792cf9 3957 get_page(page);
b4d1d99f 3958
788c7df4 3959 if (flags & FAULT_FLAG_WRITE) {
106c992a 3960 if (!huge_pte_write(entry)) {
3999f52e
AK
3961 ret = hugetlb_cow(mm, vma, address, ptep,
3962 pagecache_page, ptl);
0f792cf9 3963 goto out_put_page;
b4d1d99f 3964 }
106c992a 3965 entry = huge_pte_mkdirty(entry);
b4d1d99f
DG
3966 }
3967 entry = pte_mkyoung(entry);
788c7df4
HD
3968 if (huge_ptep_set_access_flags(vma, address, ptep, entry,
3969 flags & FAULT_FLAG_WRITE))
4b3073e1 3970 update_mmu_cache(vma, address, ptep);
0f792cf9
NH
3971out_put_page:
3972 if (page != pagecache_page)
3973 unlock_page(page);
3974 put_page(page);
cb900f41
KS
3975out_ptl:
3976 spin_unlock(ptl);
57303d80
AW
3977
3978 if (pagecache_page) {
3979 unlock_page(pagecache_page);
3980 put_page(pagecache_page);
3981 }
b4d1d99f 3982out_mutex:
c672c7f2 3983 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
0f792cf9
NH
3984 /*
3985 * Generally it's safe to hold refcount during waiting page lock. But
3986 * here we just wait to defer the next page fault to avoid busy loop and
3987 * the page is not used after unlocked before returning from the current
3988 * page fault. So we are safe from accessing freed page, even if we wait
3989 * here without taking refcount.
3990 */
3991 if (need_wait_lock)
3992 wait_on_page_locked(page);
1e8f889b 3993 return ret;
86e5216f
AL
3994}
3995
8fb5debc
MK
3996/*
3997 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with
3998 * modifications for huge pages.
3999 */
4000int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
4001 pte_t *dst_pte,
4002 struct vm_area_struct *dst_vma,
4003 unsigned long dst_addr,
4004 unsigned long src_addr,
4005 struct page **pagep)
4006{
1e392147
AA
4007 struct address_space *mapping;
4008 pgoff_t idx;
4009 unsigned long size;
1c9e8def 4010 int vm_shared = dst_vma->vm_flags & VM_SHARED;
8fb5debc
MK
4011 struct hstate *h = hstate_vma(dst_vma);
4012 pte_t _dst_pte;
4013 spinlock_t *ptl;
4014 int ret;
4015 struct page *page;
4016
4017 if (!*pagep) {
4018 ret = -ENOMEM;
4019 page = alloc_huge_page(dst_vma, dst_addr, 0);
4020 if (IS_ERR(page))
4021 goto out;
4022
4023 ret = copy_huge_page_from_user(page,
4024 (const void __user *) src_addr,
810a56b9 4025 pages_per_huge_page(h), false);
8fb5debc
MK
4026
4027 /* fallback to copy_from_user outside mmap_sem */
4028 if (unlikely(ret)) {
4029 ret = -EFAULT;
4030 *pagep = page;
4031 /* don't free the page */
4032 goto out;
4033 }
4034 } else {
4035 page = *pagep;
4036 *pagep = NULL;
4037 }
4038
4039 /*
4040 * The memory barrier inside __SetPageUptodate makes sure that
4041 * preceding stores to the page contents become visible before
4042 * the set_pte_at() write.
4043 */
4044 __SetPageUptodate(page);
4045 set_page_huge_active(page);
4046
1e392147
AA
4047 mapping = dst_vma->vm_file->f_mapping;
4048 idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4049
1c9e8def
MK
4050 /*
4051 * If shared, add to page cache
4052 */
4053 if (vm_shared) {
1e392147
AA
4054 size = i_size_read(mapping->host) >> huge_page_shift(h);
4055 ret = -EFAULT;
4056 if (idx >= size)
4057 goto out_release_nounlock;
1c9e8def 4058
1e392147
AA
4059 /*
4060 * Serialization between remove_inode_hugepages() and
4061 * huge_add_to_page_cache() below happens through the
4062 * hugetlb_fault_mutex_table that here must be hold by
4063 * the caller.
4064 */
1c9e8def
MK
4065 ret = huge_add_to_page_cache(page, mapping, idx);
4066 if (ret)
4067 goto out_release_nounlock;
4068 }
4069
8fb5debc
MK
4070 ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4071 spin_lock(ptl);
4072
1e392147
AA
4073 /*
4074 * Recheck the i_size after holding PT lock to make sure not
4075 * to leave any page mapped (as page_mapped()) beyond the end
4076 * of the i_size (remove_inode_hugepages() is strict about
4077 * enforcing that). If we bail out here, we'll also leave a
4078 * page in the radix tree in the vm_shared case beyond the end
4079 * of the i_size, but remove_inode_hugepages() will take care
4080 * of it as soon as we drop the hugetlb_fault_mutex_table.
4081 */
4082 size = i_size_read(mapping->host) >> huge_page_shift(h);
4083 ret = -EFAULT;
4084 if (idx >= size)
4085 goto out_release_unlock;
4086
8fb5debc
MK
4087 ret = -EEXIST;
4088 if (!huge_pte_none(huge_ptep_get(dst_pte)))
4089 goto out_release_unlock;
4090
1c9e8def
MK
4091 if (vm_shared) {
4092 page_dup_rmap(page, true);
4093 } else {
4094 ClearPagePrivate(page);
4095 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4096 }
8fb5debc
MK
4097
4098 _dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4099 if (dst_vma->vm_flags & VM_WRITE)
4100 _dst_pte = huge_pte_mkdirty(_dst_pte);
4101 _dst_pte = pte_mkyoung(_dst_pte);
4102
4103 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4104
4105 (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4106 dst_vma->vm_flags & VM_WRITE);
4107 hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4108
4109 /* No need to invalidate - it was non-present before */
4110 update_mmu_cache(dst_vma, dst_addr, dst_pte);
4111
4112 spin_unlock(ptl);
1c9e8def
MK
4113 if (vm_shared)
4114 unlock_page(page);
8fb5debc
MK
4115 ret = 0;
4116out:
4117 return ret;
4118out_release_unlock:
4119 spin_unlock(ptl);
1c9e8def
MK
4120 if (vm_shared)
4121 unlock_page(page);
5af10dfd 4122out_release_nounlock:
8fb5debc
MK
4123 put_page(page);
4124 goto out;
4125}
4126
28a35716
ML
4127long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4128 struct page **pages, struct vm_area_struct **vmas,
4129 unsigned long *position, unsigned long *nr_pages,
87ffc118 4130 long i, unsigned int flags, int *nonblocking)
63551ae0 4131{
d5d4b0aa
CK
4132 unsigned long pfn_offset;
4133 unsigned long vaddr = *position;
28a35716 4134 unsigned long remainder = *nr_pages;
a5516438 4135 struct hstate *h = hstate_vma(vma);
2be7cfed 4136 int err = -EFAULT;
63551ae0 4137
63551ae0 4138 while (vaddr < vma->vm_end && remainder) {
4c887265 4139 pte_t *pte;
cb900f41 4140 spinlock_t *ptl = NULL;
2a15efc9 4141 int absent;
4c887265 4142 struct page *page;
63551ae0 4143
02057967
DR
4144 /*
4145 * If we have a pending SIGKILL, don't keep faulting pages and
4146 * potentially allocating memory.
4147 */
4148 if (unlikely(fatal_signal_pending(current))) {
4149 remainder = 0;
4150 break;
4151 }
4152
4c887265
AL
4153 /*
4154 * Some archs (sparc64, sh*) have multiple pte_ts to
2a15efc9 4155 * each hugepage. We have to make sure we get the
4c887265 4156 * first, for the page indexing below to work.
cb900f41
KS
4157 *
4158 * Note that page table lock is not held when pte is null.
4c887265 4159 */
7868a208
PA
4160 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
4161 huge_page_size(h));
cb900f41
KS
4162 if (pte)
4163 ptl = huge_pte_lock(h, mm, pte);
2a15efc9
HD
4164 absent = !pte || huge_pte_none(huge_ptep_get(pte));
4165
4166 /*
4167 * When coredumping, it suits get_dump_page if we just return
3ae77f43
HD
4168 * an error where there's an empty slot with no huge pagecache
4169 * to back it. This way, we avoid allocating a hugepage, and
4170 * the sparse dumpfile avoids allocating disk blocks, but its
4171 * huge holes still show up with zeroes where they need to be.
2a15efc9 4172 */
3ae77f43
HD
4173 if (absent && (flags & FOLL_DUMP) &&
4174 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
cb900f41
KS
4175 if (pte)
4176 spin_unlock(ptl);
2a15efc9
HD
4177 remainder = 0;
4178 break;
4179 }
63551ae0 4180
9cc3a5bd
NH
4181 /*
4182 * We need call hugetlb_fault for both hugepages under migration
4183 * (in which case hugetlb_fault waits for the migration,) and
4184 * hwpoisoned hugepages (in which case we need to prevent the
4185 * caller from accessing to them.) In order to do this, we use
4186 * here is_swap_pte instead of is_hugetlb_entry_migration and
4187 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4188 * both cases, and because we can't follow correct pages
4189 * directly from any kind of swap entries.
4190 */
4191 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
106c992a
GS
4192 ((flags & FOLL_WRITE) &&
4193 !huge_pte_write(huge_ptep_get(pte)))) {
4c887265 4194 int ret;
87ffc118 4195 unsigned int fault_flags = 0;
63551ae0 4196
cb900f41
KS
4197 if (pte)
4198 spin_unlock(ptl);
87ffc118
AA
4199 if (flags & FOLL_WRITE)
4200 fault_flags |= FAULT_FLAG_WRITE;
4201 if (nonblocking)
4202 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
4203 if (flags & FOLL_NOWAIT)
4204 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4205 FAULT_FLAG_RETRY_NOWAIT;
4206 if (flags & FOLL_TRIED) {
4207 VM_WARN_ON_ONCE(fault_flags &
4208 FAULT_FLAG_ALLOW_RETRY);
4209 fault_flags |= FAULT_FLAG_TRIED;
4210 }
4211 ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4212 if (ret & VM_FAULT_ERROR) {
2be7cfed 4213 err = vm_fault_to_errno(ret, flags);
87ffc118
AA
4214 remainder = 0;
4215 break;
4216 }
4217 if (ret & VM_FAULT_RETRY) {
4218 if (nonblocking)
4219 *nonblocking = 0;
4220 *nr_pages = 0;
4221 /*
4222 * VM_FAULT_RETRY must not return an
4223 * error, it will return zero
4224 * instead.
4225 *
4226 * No need to update "position" as the
4227 * caller will not check it after
4228 * *nr_pages is set to 0.
4229 */
4230 return i;
4231 }
4232 continue;
4c887265
AL
4233 }
4234
a5516438 4235 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
7f2e9525 4236 page = pte_page(huge_ptep_get(pte));
d5d4b0aa 4237same_page:
d6692183 4238 if (pages) {
2a15efc9 4239 pages[i] = mem_map_offset(page, pfn_offset);
ddc58f27 4240 get_page(pages[i]);
d6692183 4241 }
63551ae0
DG
4242
4243 if (vmas)
4244 vmas[i] = vma;
4245
4246 vaddr += PAGE_SIZE;
d5d4b0aa 4247 ++pfn_offset;
63551ae0
DG
4248 --remainder;
4249 ++i;
d5d4b0aa 4250 if (vaddr < vma->vm_end && remainder &&
a5516438 4251 pfn_offset < pages_per_huge_page(h)) {
d5d4b0aa
CK
4252 /*
4253 * We use pfn_offset to avoid touching the pageframes
4254 * of this compound page.
4255 */
4256 goto same_page;
4257 }
cb900f41 4258 spin_unlock(ptl);
63551ae0 4259 }
28a35716 4260 *nr_pages = remainder;
87ffc118
AA
4261 /*
4262 * setting position is actually required only if remainder is
4263 * not zero but it's faster not to add a "if (remainder)"
4264 * branch.
4265 */
63551ae0
DG
4266 *position = vaddr;
4267
2be7cfed 4268 return i ? i : err;
63551ae0 4269}
8f860591 4270
5491ae7b
AK
4271#ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4272/*
4273 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4274 * implement this.
4275 */
4276#define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
4277#endif
4278
7da4d641 4279unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
8f860591
ZY
4280 unsigned long address, unsigned long end, pgprot_t newprot)
4281{
4282 struct mm_struct *mm = vma->vm_mm;
4283 unsigned long start = address;
4284 pte_t *ptep;
4285 pte_t pte;
a5516438 4286 struct hstate *h = hstate_vma(vma);
7da4d641 4287 unsigned long pages = 0;
8f860591
ZY
4288
4289 BUG_ON(address >= end);
4290 flush_cache_range(vma, address, end);
4291
a5338093 4292 mmu_notifier_invalidate_range_start(mm, start, end);
83cde9e8 4293 i_mmap_lock_write(vma->vm_file->f_mapping);
a5516438 4294 for (; address < end; address += huge_page_size(h)) {
cb900f41 4295 spinlock_t *ptl;
7868a208 4296 ptep = huge_pte_offset(mm, address, huge_page_size(h));
8f860591
ZY
4297 if (!ptep)
4298 continue;
cb900f41 4299 ptl = huge_pte_lock(h, mm, ptep);
7da4d641
PZ
4300 if (huge_pmd_unshare(mm, &address, ptep)) {
4301 pages++;
cb900f41 4302 spin_unlock(ptl);
39dde65c 4303 continue;
7da4d641 4304 }
a8bda28d
NH
4305 pte = huge_ptep_get(ptep);
4306 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
4307 spin_unlock(ptl);
4308 continue;
4309 }
4310 if (unlikely(is_hugetlb_entry_migration(pte))) {
4311 swp_entry_t entry = pte_to_swp_entry(pte);
4312
4313 if (is_write_migration_entry(entry)) {
4314 pte_t newpte;
4315
4316 make_migration_entry_read(&entry);
4317 newpte = swp_entry_to_pte(entry);
e5251fd4
PA
4318 set_huge_swap_pte_at(mm, address, ptep,
4319 newpte, huge_page_size(h));
a8bda28d
NH
4320 pages++;
4321 }
4322 spin_unlock(ptl);
4323 continue;
4324 }
4325 if (!huge_pte_none(pte)) {
8f860591 4326 pte = huge_ptep_get_and_clear(mm, address, ptep);
106c992a 4327 pte = pte_mkhuge(huge_pte_modify(pte, newprot));
be7517d6 4328 pte = arch_make_huge_pte(pte, vma, NULL, 0);
8f860591 4329 set_huge_pte_at(mm, address, ptep, pte);
7da4d641 4330 pages++;
8f860591 4331 }
cb900f41 4332 spin_unlock(ptl);
8f860591 4333 }
d833352a 4334 /*
c8c06efa 4335 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
d833352a 4336 * may have cleared our pud entry and done put_page on the page table:
c8c06efa 4337 * once we release i_mmap_rwsem, another task can do the final put_page
d833352a
MG
4338 * and that page table be reused and filled with junk.
4339 */
5491ae7b 4340 flush_hugetlb_tlb_range(vma, start, end);
0f10851e
JG
4341 /*
4342 * No need to call mmu_notifier_invalidate_range() we are downgrading
4343 * page table protection not changing it to point to a new page.
4344 *
4345 * See Documentation/vm/mmu_notifier.txt
4346 */
83cde9e8 4347 i_mmap_unlock_write(vma->vm_file->f_mapping);
a5338093 4348 mmu_notifier_invalidate_range_end(mm, start, end);
7da4d641
PZ
4349
4350 return pages << h->order;
8f860591
ZY
4351}
4352
a1e78772
MG
4353int hugetlb_reserve_pages(struct inode *inode,
4354 long from, long to,
5a6fe125 4355 struct vm_area_struct *vma,
ca16d140 4356 vm_flags_t vm_flags)
e4e574b7 4357{
17c9d12e 4358 long ret, chg;
a5516438 4359 struct hstate *h = hstate_inode(inode);
90481622 4360 struct hugepage_subpool *spool = subpool_inode(inode);
9119a41e 4361 struct resv_map *resv_map;
1c5ecae3 4362 long gbl_reserve;
e4e574b7 4363
17c9d12e
MG
4364 /*
4365 * Only apply hugepage reservation if asked. At fault time, an
4366 * attempt will be made for VM_NORESERVE to allocate a page
90481622 4367 * without using reserves
17c9d12e 4368 */
ca16d140 4369 if (vm_flags & VM_NORESERVE)
17c9d12e
MG
4370 return 0;
4371
a1e78772
MG
4372 /*
4373 * Shared mappings base their reservation on the number of pages that
4374 * are already allocated on behalf of the file. Private mappings need
4375 * to reserve the full area even if read-only as mprotect() may be
4376 * called to make the mapping read-write. Assume !vma is a shm mapping
4377 */
9119a41e 4378 if (!vma || vma->vm_flags & VM_MAYSHARE) {
4e35f483 4379 resv_map = inode_resv_map(inode);
9119a41e 4380
1406ec9b 4381 chg = region_chg(resv_map, from, to);
9119a41e
JK
4382
4383 } else {
4384 resv_map = resv_map_alloc();
17c9d12e
MG
4385 if (!resv_map)
4386 return -ENOMEM;
4387
a1e78772 4388 chg = to - from;
84afd99b 4389
17c9d12e
MG
4390 set_vma_resv_map(vma, resv_map);
4391 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
4392 }
4393
c50ac050
DH
4394 if (chg < 0) {
4395 ret = chg;
4396 goto out_err;
4397 }
8a630112 4398
1c5ecae3
MK
4399 /*
4400 * There must be enough pages in the subpool for the mapping. If
4401 * the subpool has a minimum size, there may be some global
4402 * reservations already in place (gbl_reserve).
4403 */
4404 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
4405 if (gbl_reserve < 0) {
c50ac050
DH
4406 ret = -ENOSPC;
4407 goto out_err;
4408 }
5a6fe125
MG
4409
4410 /*
17c9d12e 4411 * Check enough hugepages are available for the reservation.
90481622 4412 * Hand the pages back to the subpool if there are not
5a6fe125 4413 */
1c5ecae3 4414 ret = hugetlb_acct_memory(h, gbl_reserve);
68842c9b 4415 if (ret < 0) {
1c5ecae3
MK
4416 /* put back original number of pages, chg */
4417 (void)hugepage_subpool_put_pages(spool, chg);
c50ac050 4418 goto out_err;
68842c9b 4419 }
17c9d12e
MG
4420
4421 /*
4422 * Account for the reservations made. Shared mappings record regions
4423 * that have reservations as they are shared by multiple VMAs.
4424 * When the last VMA disappears, the region map says how much
4425 * the reservation was and the page cache tells how much of
4426 * the reservation was consumed. Private mappings are per-VMA and
4427 * only the consumed reservations are tracked. When the VMA
4428 * disappears, the original reservation is the VMA size and the
4429 * consumed reservations are stored in the map. Hence, nothing
4430 * else has to be done for private mappings here
4431 */
33039678
MK
4432 if (!vma || vma->vm_flags & VM_MAYSHARE) {
4433 long add = region_add(resv_map, from, to);
4434
4435 if (unlikely(chg > add)) {
4436 /*
4437 * pages in this range were added to the reserve
4438 * map between region_chg and region_add. This
4439 * indicates a race with alloc_huge_page. Adjust
4440 * the subpool and reserve counts modified above
4441 * based on the difference.
4442 */
4443 long rsv_adjust;
4444
4445 rsv_adjust = hugepage_subpool_put_pages(spool,
4446 chg - add);
4447 hugetlb_acct_memory(h, -rsv_adjust);
4448 }
4449 }
a43a8c39 4450 return 0;
c50ac050 4451out_err:
5e911373 4452 if (!vma || vma->vm_flags & VM_MAYSHARE)
ff8c0c53
MK
4453 /* Don't call region_abort if region_chg failed */
4454 if (chg >= 0)
4455 region_abort(resv_map, from, to);
f031dd27
JK
4456 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4457 kref_put(&resv_map->refs, resv_map_release);
c50ac050 4458 return ret;
a43a8c39
CK
4459}
4460
b5cec28d
MK
4461long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
4462 long freed)
a43a8c39 4463{
a5516438 4464 struct hstate *h = hstate_inode(inode);
4e35f483 4465 struct resv_map *resv_map = inode_resv_map(inode);
9119a41e 4466 long chg = 0;
90481622 4467 struct hugepage_subpool *spool = subpool_inode(inode);
1c5ecae3 4468 long gbl_reserve;
45c682a6 4469
b5cec28d
MK
4470 if (resv_map) {
4471 chg = region_del(resv_map, start, end);
4472 /*
4473 * region_del() can fail in the rare case where a region
4474 * must be split and another region descriptor can not be
4475 * allocated. If end == LONG_MAX, it will not fail.
4476 */
4477 if (chg < 0)
4478 return chg;
4479 }
4480
45c682a6 4481 spin_lock(&inode->i_lock);
e4c6f8be 4482 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
45c682a6
KC
4483 spin_unlock(&inode->i_lock);
4484
1c5ecae3
MK
4485 /*
4486 * If the subpool has a minimum size, the number of global
4487 * reservations to be released may be adjusted.
4488 */
4489 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
4490 hugetlb_acct_memory(h, -gbl_reserve);
b5cec28d
MK
4491
4492 return 0;
a43a8c39 4493}
93f70f90 4494
3212b535
SC
4495#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
4496static unsigned long page_table_shareable(struct vm_area_struct *svma,
4497 struct vm_area_struct *vma,
4498 unsigned long addr, pgoff_t idx)
4499{
4500 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
4501 svma->vm_start;
4502 unsigned long sbase = saddr & PUD_MASK;
4503 unsigned long s_end = sbase + PUD_SIZE;
4504
4505 /* Allow segments to share if only one is marked locked */
de60f5f1
EM
4506 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
4507 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
3212b535
SC
4508
4509 /*
4510 * match the virtual addresses, permission and the alignment of the
4511 * page table page.
4512 */
4513 if (pmd_index(addr) != pmd_index(saddr) ||
4514 vm_flags != svm_flags ||
4515 sbase < svma->vm_start || svma->vm_end < s_end)
4516 return 0;
4517
4518 return saddr;
4519}
4520
31aafb45 4521static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
3212b535
SC
4522{
4523 unsigned long base = addr & PUD_MASK;
4524 unsigned long end = base + PUD_SIZE;
4525
4526 /*
4527 * check on proper vm_flags and page table alignment
4528 */
4529 if (vma->vm_flags & VM_MAYSHARE &&
4530 vma->vm_start <= base && end <= vma->vm_end)
31aafb45
NK
4531 return true;
4532 return false;
3212b535
SC
4533}
4534
4535/*
4536 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4537 * and returns the corresponding pte. While this is not necessary for the
4538 * !shared pmd case because we can allocate the pmd later as well, it makes the
4539 * code much cleaner. pmd allocation is essential for the shared case because
c8c06efa 4540 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
3212b535
SC
4541 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4542 * bad pmd for sharing.
4543 */
4544pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4545{
4546 struct vm_area_struct *vma = find_vma(mm, addr);
4547 struct address_space *mapping = vma->vm_file->f_mapping;
4548 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
4549 vma->vm_pgoff;
4550 struct vm_area_struct *svma;
4551 unsigned long saddr;
4552 pte_t *spte = NULL;
4553 pte_t *pte;
cb900f41 4554 spinlock_t *ptl;
3212b535
SC
4555
4556 if (!vma_shareable(vma, addr))
4557 return (pte_t *)pmd_alloc(mm, pud, addr);
4558
83cde9e8 4559 i_mmap_lock_write(mapping);
3212b535
SC
4560 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
4561 if (svma == vma)
4562 continue;
4563
4564 saddr = page_table_shareable(svma, vma, addr, idx);
4565 if (saddr) {
7868a208
PA
4566 spte = huge_pte_offset(svma->vm_mm, saddr,
4567 vma_mmu_pagesize(svma));
3212b535
SC
4568 if (spte) {
4569 get_page(virt_to_page(spte));
4570 break;
4571 }
4572 }
4573 }
4574
4575 if (!spte)
4576 goto out;
4577
8bea8052 4578 ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
dc6c9a35 4579 if (pud_none(*pud)) {
3212b535
SC
4580 pud_populate(mm, pud,
4581 (pmd_t *)((unsigned long)spte & PAGE_MASK));
c17b1f42 4582 mm_inc_nr_pmds(mm);
dc6c9a35 4583 } else {
3212b535 4584 put_page(virt_to_page(spte));
dc6c9a35 4585 }
cb900f41 4586 spin_unlock(ptl);
3212b535
SC
4587out:
4588 pte = (pte_t *)pmd_alloc(mm, pud, addr);
83cde9e8 4589 i_mmap_unlock_write(mapping);
3212b535
SC
4590 return pte;
4591}
4592
4593/*
4594 * unmap huge page backed by shared pte.
4595 *
4596 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
4597 * indicated by page_count > 1, unmap is achieved by clearing pud and
4598 * decrementing the ref count. If count == 1, the pte page is not shared.
4599 *
cb900f41 4600 * called with page table lock held.
3212b535
SC
4601 *
4602 * returns: 1 successfully unmapped a shared pte page
4603 * 0 the underlying pte page is not shared, or it is the last user
4604 */
4605int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4606{
4607 pgd_t *pgd = pgd_offset(mm, *addr);
c2febafc
KS
4608 p4d_t *p4d = p4d_offset(pgd, *addr);
4609 pud_t *pud = pud_offset(p4d, *addr);
3212b535
SC
4610
4611 BUG_ON(page_count(virt_to_page(ptep)) == 0);
4612 if (page_count(virt_to_page(ptep)) == 1)
4613 return 0;
4614
4615 pud_clear(pud);
4616 put_page(virt_to_page(ptep));
dc6c9a35 4617 mm_dec_nr_pmds(mm);
3212b535
SC
4618 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
4619 return 1;
4620}
9e5fc74c
SC
4621#define want_pmd_share() (1)
4622#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4623pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4624{
4625 return NULL;
4626}
e81f2d22
ZZ
4627
4628int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4629{
4630 return 0;
4631}
9e5fc74c 4632#define want_pmd_share() (0)
3212b535
SC
4633#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4634
9e5fc74c
SC
4635#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
4636pte_t *huge_pte_alloc(struct mm_struct *mm,
4637 unsigned long addr, unsigned long sz)
4638{
4639 pgd_t *pgd;
c2febafc 4640 p4d_t *p4d;
9e5fc74c
SC
4641 pud_t *pud;
4642 pte_t *pte = NULL;
4643
4644 pgd = pgd_offset(mm, addr);
f4f0a3d8
KS
4645 p4d = p4d_alloc(mm, pgd, addr);
4646 if (!p4d)
4647 return NULL;
c2febafc 4648 pud = pud_alloc(mm, p4d, addr);
9e5fc74c
SC
4649 if (pud) {
4650 if (sz == PUD_SIZE) {
4651 pte = (pte_t *)pud;
4652 } else {
4653 BUG_ON(sz != PMD_SIZE);
4654 if (want_pmd_share() && pud_none(*pud))
4655 pte = huge_pmd_share(mm, addr, pud);
4656 else
4657 pte = (pte_t *)pmd_alloc(mm, pud, addr);
4658 }
4659 }
4e666314 4660 BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
9e5fc74c
SC
4661
4662 return pte;
4663}
4664
9b19df29
PA
4665/*
4666 * huge_pte_offset() - Walk the page table to resolve the hugepage
4667 * entry at address @addr
4668 *
4669 * Return: Pointer to page table or swap entry (PUD or PMD) for
4670 * address @addr, or NULL if a p*d_none() entry is encountered and the
4671 * size @sz doesn't match the hugepage size at this level of the page
4672 * table.
4673 */
7868a208
PA
4674pte_t *huge_pte_offset(struct mm_struct *mm,
4675 unsigned long addr, unsigned long sz)
9e5fc74c
SC
4676{
4677 pgd_t *pgd;
c2febafc 4678 p4d_t *p4d;
9e5fc74c 4679 pud_t *pud;
c2febafc 4680 pmd_t *pmd;
9e5fc74c
SC
4681
4682 pgd = pgd_offset(mm, addr);
c2febafc
KS
4683 if (!pgd_present(*pgd))
4684 return NULL;
4685 p4d = p4d_offset(pgd, addr);
4686 if (!p4d_present(*p4d))
4687 return NULL;
9b19df29 4688
c2febafc 4689 pud = pud_offset(p4d, addr);
9b19df29 4690 if (sz != PUD_SIZE && pud_none(*pud))
c2febafc 4691 return NULL;
9b19df29
PA
4692 /* hugepage or swap? */
4693 if (pud_huge(*pud) || !pud_present(*pud))
c2febafc 4694 return (pte_t *)pud;
9b19df29 4695
c2febafc 4696 pmd = pmd_offset(pud, addr);
9b19df29
PA
4697 if (sz != PMD_SIZE && pmd_none(*pmd))
4698 return NULL;
4699 /* hugepage or swap? */
4700 if (pmd_huge(*pmd) || !pmd_present(*pmd))
4701 return (pte_t *)pmd;
4702
4703 return NULL;
9e5fc74c
SC
4704}
4705
61f77eda
NH
4706#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4707
4708/*
4709 * These functions are overwritable if your architecture needs its own
4710 * behavior.
4711 */
4712struct page * __weak
4713follow_huge_addr(struct mm_struct *mm, unsigned long address,
4714 int write)
4715{
4716 return ERR_PTR(-EINVAL);
4717}
4718
4dc71451
AK
4719struct page * __weak
4720follow_huge_pd(struct vm_area_struct *vma,
4721 unsigned long address, hugepd_t hpd, int flags, int pdshift)
4722{
4723 WARN(1, "hugepd follow called with no support for hugepage directory format\n");
4724 return NULL;
4725}
4726
61f77eda 4727struct page * __weak
9e5fc74c 4728follow_huge_pmd(struct mm_struct *mm, unsigned long address,
e66f17ff 4729 pmd_t *pmd, int flags)
9e5fc74c 4730{
e66f17ff
NH
4731 struct page *page = NULL;
4732 spinlock_t *ptl;
c9d398fa 4733 pte_t pte;
e66f17ff
NH
4734retry:
4735 ptl = pmd_lockptr(mm, pmd);
4736 spin_lock(ptl);
4737 /*
4738 * make sure that the address range covered by this pmd is not
4739 * unmapped from other threads.
4740 */
4741 if (!pmd_huge(*pmd))
4742 goto out;
c9d398fa
NH
4743 pte = huge_ptep_get((pte_t *)pmd);
4744 if (pte_present(pte)) {
97534127 4745 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
e66f17ff
NH
4746 if (flags & FOLL_GET)
4747 get_page(page);
4748 } else {
c9d398fa 4749 if (is_hugetlb_entry_migration(pte)) {
e66f17ff
NH
4750 spin_unlock(ptl);
4751 __migration_entry_wait(mm, (pte_t *)pmd, ptl);
4752 goto retry;
4753 }
4754 /*
4755 * hwpoisoned entry is treated as no_page_table in
4756 * follow_page_mask().
4757 */
4758 }
4759out:
4760 spin_unlock(ptl);
9e5fc74c
SC
4761 return page;
4762}
4763
61f77eda 4764struct page * __weak
9e5fc74c 4765follow_huge_pud(struct mm_struct *mm, unsigned long address,
e66f17ff 4766 pud_t *pud, int flags)
9e5fc74c 4767{
e66f17ff
NH
4768 if (flags & FOLL_GET)
4769 return NULL;
9e5fc74c 4770
e66f17ff 4771 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
9e5fc74c
SC
4772}
4773
faaa5b62
AK
4774struct page * __weak
4775follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
4776{
4777 if (flags & FOLL_GET)
4778 return NULL;
4779
4780 return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
4781}
4782
31caf665
NH
4783bool isolate_huge_page(struct page *page, struct list_head *list)
4784{
bcc54222
NH
4785 bool ret = true;
4786
309381fe 4787 VM_BUG_ON_PAGE(!PageHead(page), page);
31caf665 4788 spin_lock(&hugetlb_lock);
bcc54222
NH
4789 if (!page_huge_active(page) || !get_page_unless_zero(page)) {
4790 ret = false;
4791 goto unlock;
4792 }
4793 clear_page_huge_active(page);
31caf665 4794 list_move_tail(&page->lru, list);
bcc54222 4795unlock:
31caf665 4796 spin_unlock(&hugetlb_lock);
bcc54222 4797 return ret;
31caf665
NH
4798}
4799
4800void putback_active_hugepage(struct page *page)
4801{
309381fe 4802 VM_BUG_ON_PAGE(!PageHead(page), page);
31caf665 4803 spin_lock(&hugetlb_lock);
bcc54222 4804 set_page_huge_active(page);
31caf665
NH
4805 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
4806 spin_unlock(&hugetlb_lock);
4807 put_page(page);
4808}