mm/mprotect: use long for page accountings and retval
[linux-block.git] / mm / hugetlb.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * Generic hugetlb support.
6d49e352 4 * (C) Nadia Yvette Chambers, April 2004
1da177e4 5 */
1da177e4
LT
6#include <linux/list.h>
7#include <linux/init.h>
1da177e4 8#include <linux/mm.h>
e1759c21 9#include <linux/seq_file.h>
1da177e4
LT
10#include <linux/sysctl.h>
11#include <linux/highmem.h>
cddb8a5c 12#include <linux/mmu_notifier.h>
1da177e4 13#include <linux/nodemask.h>
63551ae0 14#include <linux/pagemap.h>
5da7ca86 15#include <linux/mempolicy.h>
3b32123d 16#include <linux/compiler.h>
aea47ff3 17#include <linux/cpuset.h>
3935baa9 18#include <linux/mutex.h>
97ad1087 19#include <linux/memblock.h>
a3437870 20#include <linux/sysfs.h>
5a0e3ad6 21#include <linux/slab.h>
bbe88753 22#include <linux/sched/mm.h>
63489f8e 23#include <linux/mmdebug.h>
174cd4b1 24#include <linux/sched/signal.h>
0fe6e20b 25#include <linux/rmap.h>
c6247f72 26#include <linux/string_helpers.h>
fd6a03ed
NH
27#include <linux/swap.h>
28#include <linux/swapops.h>
8382d914 29#include <linux/jhash.h>
98fa15f3 30#include <linux/numa.h>
c77c0a8a 31#include <linux/llist.h>
cf11e85f 32#include <linux/cma.h>
8cc5fcbb 33#include <linux/migrate.h>
f9317f77 34#include <linux/nospec.h>
662ce1dc 35#include <linux/delayacct.h>
b958d4d0 36#include <linux/memory.h>
d6606683 37
63551ae0 38#include <asm/page.h>
ca15ca40 39#include <asm/pgalloc.h>
24669e58 40#include <asm/tlb.h>
63551ae0 41
24669e58 42#include <linux/io.h>
63551ae0 43#include <linux/hugetlb.h>
9dd540e2 44#include <linux/hugetlb_cgroup.h>
9a305230 45#include <linux/node.h>
ab5ac90a 46#include <linux/page_owner.h>
7835e98b 47#include "internal.h"
f41f2ed4 48#include "hugetlb_vmemmap.h"
1da177e4 49
c3f38a38 50int hugetlb_max_hstate __read_mostly;
e5ff2159
AK
51unsigned int default_hstate_idx;
52struct hstate hstates[HUGE_MAX_HSTATE];
cf11e85f 53
dbda8fea 54#ifdef CONFIG_CMA
cf11e85f 55static struct cma *hugetlb_cma[MAX_NUMNODES];
38e719ab 56static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata;
2f6c57d6 57static bool hugetlb_cma_folio(struct folio *folio, unsigned int order)
a01f4390 58{
2f6c57d6 59 return cma_pages_valid(hugetlb_cma[folio_nid(folio)], &folio->page,
a01f4390
MK
60 1 << order);
61}
62#else
2f6c57d6 63static bool hugetlb_cma_folio(struct folio *folio, unsigned int order)
a01f4390
MK
64{
65 return false;
66}
dbda8fea
BS
67#endif
68static unsigned long hugetlb_cma_size __initdata;
cf11e85f 69
53ba51d2
JT
70__initdata LIST_HEAD(huge_boot_pages);
71
e5ff2159
AK
72/* for command line parsing */
73static struct hstate * __initdata parsed_hstate;
74static unsigned long __initdata default_hstate_max_huge_pages;
9fee021d 75static bool __initdata parsed_valid_hugepagesz = true;
282f4214 76static bool __initdata parsed_default_hugepagesz;
b5389086 77static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata;
e5ff2159 78
3935baa9 79/*
31caf665
NH
80 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
81 * free_huge_pages, and surplus_huge_pages.
3935baa9 82 */
c3f38a38 83DEFINE_SPINLOCK(hugetlb_lock);
0bd0f9fb 84
8382d914
DB
85/*
86 * Serializes faults on the same logical page. This is used to
87 * prevent spurious OOMs when the hugepage pool is fully utilized.
88 */
89static int num_fault_mutexes;
c672c7f2 90struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
8382d914 91
7ca02d0a
MK
92/* Forward declaration */
93static int hugetlb_acct_memory(struct hstate *h, long delta);
8d9bfb26
MK
94static void hugetlb_vma_lock_free(struct vm_area_struct *vma);
95static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma);
ecfbd733 96static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma);
b30c14cd
JH
97static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
98 unsigned long start, unsigned long end);
7ca02d0a 99
1d88433b 100static inline bool subpool_is_free(struct hugepage_subpool *spool)
90481622 101{
1d88433b
ML
102 if (spool->count)
103 return false;
104 if (spool->max_hpages != -1)
105 return spool->used_hpages == 0;
106 if (spool->min_hpages != -1)
107 return spool->rsv_hpages == spool->min_hpages;
108
109 return true;
110}
90481622 111
db71ef79
MK
112static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
113 unsigned long irq_flags)
1d88433b 114{
db71ef79 115 spin_unlock_irqrestore(&spool->lock, irq_flags);
90481622
DG
116
117 /* If no pages are used, and no other handles to the subpool
7c8de358 118 * remain, give up any reservations based on minimum size and
7ca02d0a 119 * free the subpool */
1d88433b 120 if (subpool_is_free(spool)) {
7ca02d0a
MK
121 if (spool->min_hpages != -1)
122 hugetlb_acct_memory(spool->hstate,
123 -spool->min_hpages);
90481622 124 kfree(spool);
7ca02d0a 125 }
90481622
DG
126}
127
7ca02d0a
MK
128struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
129 long min_hpages)
90481622
DG
130{
131 struct hugepage_subpool *spool;
132
c6a91820 133 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
90481622
DG
134 if (!spool)
135 return NULL;
136
137 spin_lock_init(&spool->lock);
138 spool->count = 1;
7ca02d0a
MK
139 spool->max_hpages = max_hpages;
140 spool->hstate = h;
141 spool->min_hpages = min_hpages;
142
143 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
144 kfree(spool);
145 return NULL;
146 }
147 spool->rsv_hpages = min_hpages;
90481622
DG
148
149 return spool;
150}
151
152void hugepage_put_subpool(struct hugepage_subpool *spool)
153{
db71ef79
MK
154 unsigned long flags;
155
156 spin_lock_irqsave(&spool->lock, flags);
90481622
DG
157 BUG_ON(!spool->count);
158 spool->count--;
db71ef79 159 unlock_or_release_subpool(spool, flags);
90481622
DG
160}
161
1c5ecae3
MK
162/*
163 * Subpool accounting for allocating and reserving pages.
164 * Return -ENOMEM if there are not enough resources to satisfy the
9e7ee400 165 * request. Otherwise, return the number of pages by which the
1c5ecae3
MK
166 * global pools must be adjusted (upward). The returned value may
167 * only be different than the passed value (delta) in the case where
7c8de358 168 * a subpool minimum size must be maintained.
1c5ecae3
MK
169 */
170static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
90481622
DG
171 long delta)
172{
1c5ecae3 173 long ret = delta;
90481622
DG
174
175 if (!spool)
1c5ecae3 176 return ret;
90481622 177
db71ef79 178 spin_lock_irq(&spool->lock);
1c5ecae3
MK
179
180 if (spool->max_hpages != -1) { /* maximum size accounting */
181 if ((spool->used_hpages + delta) <= spool->max_hpages)
182 spool->used_hpages += delta;
183 else {
184 ret = -ENOMEM;
185 goto unlock_ret;
186 }
90481622 187 }
90481622 188
09a95e29
MK
189 /* minimum size accounting */
190 if (spool->min_hpages != -1 && spool->rsv_hpages) {
1c5ecae3
MK
191 if (delta > spool->rsv_hpages) {
192 /*
193 * Asking for more reserves than those already taken on
194 * behalf of subpool. Return difference.
195 */
196 ret = delta - spool->rsv_hpages;
197 spool->rsv_hpages = 0;
198 } else {
199 ret = 0; /* reserves already accounted for */
200 spool->rsv_hpages -= delta;
201 }
202 }
203
204unlock_ret:
db71ef79 205 spin_unlock_irq(&spool->lock);
90481622
DG
206 return ret;
207}
208
1c5ecae3
MK
209/*
210 * Subpool accounting for freeing and unreserving pages.
211 * Return the number of global page reservations that must be dropped.
212 * The return value may only be different than the passed value (delta)
213 * in the case where a subpool minimum size must be maintained.
214 */
215static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
90481622
DG
216 long delta)
217{
1c5ecae3 218 long ret = delta;
db71ef79 219 unsigned long flags;
1c5ecae3 220
90481622 221 if (!spool)
1c5ecae3 222 return delta;
90481622 223
db71ef79 224 spin_lock_irqsave(&spool->lock, flags);
1c5ecae3
MK
225
226 if (spool->max_hpages != -1) /* maximum size accounting */
227 spool->used_hpages -= delta;
228
09a95e29
MK
229 /* minimum size accounting */
230 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
1c5ecae3
MK
231 if (spool->rsv_hpages + delta <= spool->min_hpages)
232 ret = 0;
233 else
234 ret = spool->rsv_hpages + delta - spool->min_hpages;
235
236 spool->rsv_hpages += delta;
237 if (spool->rsv_hpages > spool->min_hpages)
238 spool->rsv_hpages = spool->min_hpages;
239 }
240
241 /*
242 * If hugetlbfs_put_super couldn't free spool due to an outstanding
243 * quota reference, free it now.
244 */
db71ef79 245 unlock_or_release_subpool(spool, flags);
1c5ecae3
MK
246
247 return ret;
90481622
DG
248}
249
250static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
251{
252 return HUGETLBFS_SB(inode->i_sb)->spool;
253}
254
255static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
256{
496ad9aa 257 return subpool_inode(file_inode(vma->vm_file));
90481622
DG
258}
259
e700898f
MK
260/*
261 * hugetlb vma_lock helper routines
262 */
e700898f
MK
263void hugetlb_vma_lock_read(struct vm_area_struct *vma)
264{
265 if (__vma_shareable_lock(vma)) {
266 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
267
268 down_read(&vma_lock->rw_sema);
269 }
270}
271
272void hugetlb_vma_unlock_read(struct vm_area_struct *vma)
273{
274 if (__vma_shareable_lock(vma)) {
275 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
276
277 up_read(&vma_lock->rw_sema);
278 }
279}
280
281void hugetlb_vma_lock_write(struct vm_area_struct *vma)
282{
283 if (__vma_shareable_lock(vma)) {
284 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
285
286 down_write(&vma_lock->rw_sema);
287 }
288}
289
290void hugetlb_vma_unlock_write(struct vm_area_struct *vma)
291{
292 if (__vma_shareable_lock(vma)) {
293 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
294
295 up_write(&vma_lock->rw_sema);
296 }
297}
298
299int hugetlb_vma_trylock_write(struct vm_area_struct *vma)
300{
301 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
302
303 if (!__vma_shareable_lock(vma))
304 return 1;
305
306 return down_write_trylock(&vma_lock->rw_sema);
307}
308
309void hugetlb_vma_assert_locked(struct vm_area_struct *vma)
310{
311 if (__vma_shareable_lock(vma)) {
312 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
313
314 lockdep_assert_held(&vma_lock->rw_sema);
315 }
316}
317
318void hugetlb_vma_lock_release(struct kref *kref)
319{
320 struct hugetlb_vma_lock *vma_lock = container_of(kref,
321 struct hugetlb_vma_lock, refs);
322
323 kfree(vma_lock);
324}
325
326static void __hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock *vma_lock)
327{
328 struct vm_area_struct *vma = vma_lock->vma;
329
330 /*
331 * vma_lock structure may or not be released as a result of put,
332 * it certainly will no longer be attached to vma so clear pointer.
333 * Semaphore synchronizes access to vma_lock->vma field.
334 */
335 vma_lock->vma = NULL;
336 vma->vm_private_data = NULL;
337 up_write(&vma_lock->rw_sema);
338 kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
339}
340
341static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma)
342{
343 if (__vma_shareable_lock(vma)) {
344 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
345
346 __hugetlb_vma_unlock_write_put(vma_lock);
347 }
348}
349
350static void hugetlb_vma_lock_free(struct vm_area_struct *vma)
351{
352 /*
353 * Only present in sharable vmas.
354 */
355 if (!vma || !__vma_shareable_lock(vma))
356 return;
357
358 if (vma->vm_private_data) {
359 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
360
361 down_write(&vma_lock->rw_sema);
362 __hugetlb_vma_unlock_write_put(vma_lock);
363 }
364}
365
366static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma)
367{
368 struct hugetlb_vma_lock *vma_lock;
369
370 /* Only establish in (flags) sharable vmas */
371 if (!vma || !(vma->vm_flags & VM_MAYSHARE))
372 return;
373
374 /* Should never get here with non-NULL vm_private_data */
375 if (vma->vm_private_data)
376 return;
377
378 vma_lock = kmalloc(sizeof(*vma_lock), GFP_KERNEL);
379 if (!vma_lock) {
380 /*
381 * If we can not allocate structure, then vma can not
382 * participate in pmd sharing. This is only a possible
383 * performance enhancement and memory saving issue.
384 * However, the lock is also used to synchronize page
385 * faults with truncation. If the lock is not present,
386 * unlikely races could leave pages in a file past i_size
387 * until the file is removed. Warn in the unlikely case of
388 * allocation failure.
389 */
390 pr_warn_once("HugeTLB: unable to allocate vma specific lock\n");
391 return;
392 }
393
394 kref_init(&vma_lock->refs);
395 init_rwsem(&vma_lock->rw_sema);
396 vma_lock->vma = vma;
397 vma->vm_private_data = vma_lock;
398}
399
0db9d74e
MA
400/* Helper that removes a struct file_region from the resv_map cache and returns
401 * it for use.
402 */
403static struct file_region *
404get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
405{
3259914f 406 struct file_region *nrg;
0db9d74e
MA
407
408 VM_BUG_ON(resv->region_cache_count <= 0);
409
410 resv->region_cache_count--;
411 nrg = list_first_entry(&resv->region_cache, struct file_region, link);
0db9d74e
MA
412 list_del(&nrg->link);
413
414 nrg->from = from;
415 nrg->to = to;
416
417 return nrg;
418}
419
075a61d0
MA
420static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
421 struct file_region *rg)
422{
423#ifdef CONFIG_CGROUP_HUGETLB
424 nrg->reservation_counter = rg->reservation_counter;
425 nrg->css = rg->css;
426 if (rg->css)
427 css_get(rg->css);
428#endif
429}
430
431/* Helper that records hugetlb_cgroup uncharge info. */
432static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
433 struct hstate *h,
434 struct resv_map *resv,
435 struct file_region *nrg)
436{
437#ifdef CONFIG_CGROUP_HUGETLB
438 if (h_cg) {
439 nrg->reservation_counter =
440 &h_cg->rsvd_hugepage[hstate_index(h)];
441 nrg->css = &h_cg->css;
d85aecf2
ML
442 /*
443 * The caller will hold exactly one h_cg->css reference for the
444 * whole contiguous reservation region. But this area might be
445 * scattered when there are already some file_regions reside in
446 * it. As a result, many file_regions may share only one css
447 * reference. In order to ensure that one file_region must hold
448 * exactly one h_cg->css reference, we should do css_get for
449 * each file_region and leave the reference held by caller
450 * untouched.
451 */
452 css_get(&h_cg->css);
075a61d0
MA
453 if (!resv->pages_per_hpage)
454 resv->pages_per_hpage = pages_per_huge_page(h);
455 /* pages_per_hpage should be the same for all entries in
456 * a resv_map.
457 */
458 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
459 } else {
460 nrg->reservation_counter = NULL;
461 nrg->css = NULL;
462 }
463#endif
464}
465
d85aecf2
ML
466static void put_uncharge_info(struct file_region *rg)
467{
468#ifdef CONFIG_CGROUP_HUGETLB
469 if (rg->css)
470 css_put(rg->css);
471#endif
472}
473
a9b3f867
MA
474static bool has_same_uncharge_info(struct file_region *rg,
475 struct file_region *org)
476{
477#ifdef CONFIG_CGROUP_HUGETLB
0739eb43 478 return rg->reservation_counter == org->reservation_counter &&
a9b3f867
MA
479 rg->css == org->css;
480
481#else
482 return true;
483#endif
484}
485
486static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
487{
3259914f 488 struct file_region *nrg, *prg;
a9b3f867
MA
489
490 prg = list_prev_entry(rg, link);
491 if (&prg->link != &resv->regions && prg->to == rg->from &&
492 has_same_uncharge_info(prg, rg)) {
493 prg->to = rg->to;
494
495 list_del(&rg->link);
d85aecf2 496 put_uncharge_info(rg);
a9b3f867
MA
497 kfree(rg);
498
7db5e7b6 499 rg = prg;
a9b3f867
MA
500 }
501
502 nrg = list_next_entry(rg, link);
503 if (&nrg->link != &resv->regions && nrg->from == rg->to &&
504 has_same_uncharge_info(nrg, rg)) {
505 nrg->from = rg->from;
506
507 list_del(&rg->link);
d85aecf2 508 put_uncharge_info(rg);
a9b3f867 509 kfree(rg);
a9b3f867
MA
510 }
511}
512
2103cf9c 513static inline long
84448c8e 514hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from,
2103cf9c
PX
515 long to, struct hstate *h, struct hugetlb_cgroup *cg,
516 long *regions_needed)
517{
518 struct file_region *nrg;
519
520 if (!regions_needed) {
521 nrg = get_file_region_entry_from_cache(map, from, to);
522 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
84448c8e 523 list_add(&nrg->link, rg);
2103cf9c
PX
524 coalesce_file_region(map, nrg);
525 } else
526 *regions_needed += 1;
527
528 return to - from;
529}
530
972a3da3
WY
531/*
532 * Must be called with resv->lock held.
533 *
534 * Calling this with regions_needed != NULL will count the number of pages
535 * to be added but will not modify the linked list. And regions_needed will
536 * indicate the number of file_regions needed in the cache to carry out to add
537 * the regions for this range.
d75c6af9
MA
538 */
539static long add_reservation_in_range(struct resv_map *resv, long f, long t,
075a61d0 540 struct hugetlb_cgroup *h_cg,
972a3da3 541 struct hstate *h, long *regions_needed)
d75c6af9 542{
0db9d74e 543 long add = 0;
d75c6af9 544 struct list_head *head = &resv->regions;
0db9d74e 545 long last_accounted_offset = f;
84448c8e
JK
546 struct file_region *iter, *trg = NULL;
547 struct list_head *rg = NULL;
d75c6af9 548
0db9d74e
MA
549 if (regions_needed)
550 *regions_needed = 0;
d75c6af9 551
0db9d74e 552 /* In this loop, we essentially handle an entry for the range
84448c8e 553 * [last_accounted_offset, iter->from), at every iteration, with some
0db9d74e
MA
554 * bounds checking.
555 */
84448c8e 556 list_for_each_entry_safe(iter, trg, head, link) {
0db9d74e 557 /* Skip irrelevant regions that start before our range. */
84448c8e 558 if (iter->from < f) {
0db9d74e
MA
559 /* If this region ends after the last accounted offset,
560 * then we need to update last_accounted_offset.
561 */
84448c8e
JK
562 if (iter->to > last_accounted_offset)
563 last_accounted_offset = iter->to;
0db9d74e
MA
564 continue;
565 }
d75c6af9 566
0db9d74e
MA
567 /* When we find a region that starts beyond our range, we've
568 * finished.
569 */
84448c8e
JK
570 if (iter->from >= t) {
571 rg = iter->link.prev;
d75c6af9 572 break;
84448c8e 573 }
d75c6af9 574
84448c8e 575 /* Add an entry for last_accounted_offset -> iter->from, and
0db9d74e
MA
576 * update last_accounted_offset.
577 */
84448c8e
JK
578 if (iter->from > last_accounted_offset)
579 add += hugetlb_resv_map_add(resv, iter->link.prev,
2103cf9c 580 last_accounted_offset,
84448c8e 581 iter->from, h, h_cg,
2103cf9c 582 regions_needed);
0db9d74e 583
84448c8e 584 last_accounted_offset = iter->to;
0db9d74e
MA
585 }
586
587 /* Handle the case where our range extends beyond
588 * last_accounted_offset.
589 */
84448c8e
JK
590 if (!rg)
591 rg = head->prev;
2103cf9c
PX
592 if (last_accounted_offset < t)
593 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
594 t, h, h_cg, regions_needed);
0db9d74e 595
0db9d74e
MA
596 return add;
597}
598
599/* Must be called with resv->lock acquired. Will drop lock to allocate entries.
600 */
601static int allocate_file_region_entries(struct resv_map *resv,
602 int regions_needed)
603 __must_hold(&resv->lock)
604{
34665341 605 LIST_HEAD(allocated_regions);
0db9d74e
MA
606 int to_allocate = 0, i = 0;
607 struct file_region *trg = NULL, *rg = NULL;
608
609 VM_BUG_ON(regions_needed < 0);
610
0db9d74e
MA
611 /*
612 * Check for sufficient descriptors in the cache to accommodate
613 * the number of in progress add operations plus regions_needed.
614 *
615 * This is a while loop because when we drop the lock, some other call
616 * to region_add or region_del may have consumed some region_entries,
617 * so we keep looping here until we finally have enough entries for
618 * (adds_in_progress + regions_needed).
619 */
620 while (resv->region_cache_count <
621 (resv->adds_in_progress + regions_needed)) {
622 to_allocate = resv->adds_in_progress + regions_needed -
623 resv->region_cache_count;
624
625 /* At this point, we should have enough entries in the cache
f0953a1b 626 * for all the existing adds_in_progress. We should only be
0db9d74e 627 * needing to allocate for regions_needed.
d75c6af9 628 */
0db9d74e
MA
629 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
630
631 spin_unlock(&resv->lock);
632 for (i = 0; i < to_allocate; i++) {
633 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
634 if (!trg)
635 goto out_of_memory;
636 list_add(&trg->link, &allocated_regions);
d75c6af9 637 }
d75c6af9 638
0db9d74e
MA
639 spin_lock(&resv->lock);
640
d3ec7b6e
WY
641 list_splice(&allocated_regions, &resv->region_cache);
642 resv->region_cache_count += to_allocate;
d75c6af9
MA
643 }
644
0db9d74e 645 return 0;
d75c6af9 646
0db9d74e
MA
647out_of_memory:
648 list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
649 list_del(&rg->link);
650 kfree(rg);
651 }
652 return -ENOMEM;
d75c6af9
MA
653}
654
1dd308a7
MK
655/*
656 * Add the huge page range represented by [f, t) to the reserve
0db9d74e
MA
657 * map. Regions will be taken from the cache to fill in this range.
658 * Sufficient regions should exist in the cache due to the previous
659 * call to region_chg with the same range, but in some cases the cache will not
660 * have sufficient entries due to races with other code doing region_add or
661 * region_del. The extra needed entries will be allocated.
cf3ad20b 662 *
0db9d74e
MA
663 * regions_needed is the out value provided by a previous call to region_chg.
664 *
665 * Return the number of new huge pages added to the map. This number is greater
666 * than or equal to zero. If file_region entries needed to be allocated for
7c8de358 667 * this operation and we were not able to allocate, it returns -ENOMEM.
0db9d74e
MA
668 * region_add of regions of length 1 never allocate file_regions and cannot
669 * fail; region_chg will always allocate at least 1 entry and a region_add for
670 * 1 page will only require at most 1 entry.
1dd308a7 671 */
0db9d74e 672static long region_add(struct resv_map *resv, long f, long t,
075a61d0
MA
673 long in_regions_needed, struct hstate *h,
674 struct hugetlb_cgroup *h_cg)
96822904 675{
0db9d74e 676 long add = 0, actual_regions_needed = 0;
96822904 677
7b24d861 678 spin_lock(&resv->lock);
0db9d74e
MA
679retry:
680
681 /* Count how many regions are actually needed to execute this add. */
972a3da3
WY
682 add_reservation_in_range(resv, f, t, NULL, NULL,
683 &actual_regions_needed);
96822904 684
5e911373 685 /*
0db9d74e
MA
686 * Check for sufficient descriptors in the cache to accommodate
687 * this add operation. Note that actual_regions_needed may be greater
688 * than in_regions_needed, as the resv_map may have been modified since
689 * the region_chg call. In this case, we need to make sure that we
690 * allocate extra entries, such that we have enough for all the
691 * existing adds_in_progress, plus the excess needed for this
692 * operation.
5e911373 693 */
0db9d74e
MA
694 if (actual_regions_needed > in_regions_needed &&
695 resv->region_cache_count <
696 resv->adds_in_progress +
697 (actual_regions_needed - in_regions_needed)) {
698 /* region_add operation of range 1 should never need to
699 * allocate file_region entries.
700 */
701 VM_BUG_ON(t - f <= 1);
5e911373 702
0db9d74e
MA
703 if (allocate_file_region_entries(
704 resv, actual_regions_needed - in_regions_needed)) {
705 return -ENOMEM;
706 }
5e911373 707
0db9d74e 708 goto retry;
5e911373
MK
709 }
710
972a3da3 711 add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
0db9d74e
MA
712
713 resv->adds_in_progress -= in_regions_needed;
cf3ad20b 714
7b24d861 715 spin_unlock(&resv->lock);
cf3ad20b 716 return add;
96822904
AW
717}
718
1dd308a7
MK
719/*
720 * Examine the existing reserve map and determine how many
721 * huge pages in the specified range [f, t) are NOT currently
722 * represented. This routine is called before a subsequent
723 * call to region_add that will actually modify the reserve
724 * map to add the specified range [f, t). region_chg does
725 * not change the number of huge pages represented by the
0db9d74e
MA
726 * map. A number of new file_region structures is added to the cache as a
727 * placeholder, for the subsequent region_add call to use. At least 1
728 * file_region structure is added.
729 *
730 * out_regions_needed is the number of regions added to the
731 * resv->adds_in_progress. This value needs to be provided to a follow up call
732 * to region_add or region_abort for proper accounting.
5e911373
MK
733 *
734 * Returns the number of huge pages that need to be added to the existing
735 * reservation map for the range [f, t). This number is greater or equal to
736 * zero. -ENOMEM is returned if a new file_region structure or cache entry
737 * is needed and can not be allocated.
1dd308a7 738 */
0db9d74e
MA
739static long region_chg(struct resv_map *resv, long f, long t,
740 long *out_regions_needed)
96822904 741{
96822904
AW
742 long chg = 0;
743
7b24d861 744 spin_lock(&resv->lock);
5e911373 745
972a3da3 746 /* Count how many hugepages in this range are NOT represented. */
075a61d0 747 chg = add_reservation_in_range(resv, f, t, NULL, NULL,
972a3da3 748 out_regions_needed);
5e911373 749
0db9d74e
MA
750 if (*out_regions_needed == 0)
751 *out_regions_needed = 1;
5e911373 752
0db9d74e
MA
753 if (allocate_file_region_entries(resv, *out_regions_needed))
754 return -ENOMEM;
5e911373 755
0db9d74e 756 resv->adds_in_progress += *out_regions_needed;
7b24d861 757
7b24d861 758 spin_unlock(&resv->lock);
96822904
AW
759 return chg;
760}
761
5e911373
MK
762/*
763 * Abort the in progress add operation. The adds_in_progress field
764 * of the resv_map keeps track of the operations in progress between
765 * calls to region_chg and region_add. Operations are sometimes
766 * aborted after the call to region_chg. In such cases, region_abort
0db9d74e
MA
767 * is called to decrement the adds_in_progress counter. regions_needed
768 * is the value returned by the region_chg call, it is used to decrement
769 * the adds_in_progress counter.
5e911373
MK
770 *
771 * NOTE: The range arguments [f, t) are not needed or used in this
772 * routine. They are kept to make reading the calling code easier as
773 * arguments will match the associated region_chg call.
774 */
0db9d74e
MA
775static void region_abort(struct resv_map *resv, long f, long t,
776 long regions_needed)
5e911373
MK
777{
778 spin_lock(&resv->lock);
779 VM_BUG_ON(!resv->region_cache_count);
0db9d74e 780 resv->adds_in_progress -= regions_needed;
5e911373
MK
781 spin_unlock(&resv->lock);
782}
783
1dd308a7 784/*
feba16e2
MK
785 * Delete the specified range [f, t) from the reserve map. If the
786 * t parameter is LONG_MAX, this indicates that ALL regions after f
787 * should be deleted. Locate the regions which intersect [f, t)
788 * and either trim, delete or split the existing regions.
789 *
790 * Returns the number of huge pages deleted from the reserve map.
791 * In the normal case, the return value is zero or more. In the
792 * case where a region must be split, a new region descriptor must
793 * be allocated. If the allocation fails, -ENOMEM will be returned.
794 * NOTE: If the parameter t == LONG_MAX, then we will never split
795 * a region and possibly return -ENOMEM. Callers specifying
796 * t == LONG_MAX do not need to check for -ENOMEM error.
1dd308a7 797 */
feba16e2 798static long region_del(struct resv_map *resv, long f, long t)
96822904 799{
1406ec9b 800 struct list_head *head = &resv->regions;
96822904 801 struct file_region *rg, *trg;
feba16e2
MK
802 struct file_region *nrg = NULL;
803 long del = 0;
96822904 804
feba16e2 805retry:
7b24d861 806 spin_lock(&resv->lock);
feba16e2 807 list_for_each_entry_safe(rg, trg, head, link) {
dbe409e4
MK
808 /*
809 * Skip regions before the range to be deleted. file_region
810 * ranges are normally of the form [from, to). However, there
811 * may be a "placeholder" entry in the map which is of the form
812 * (from, to) with from == to. Check for placeholder entries
813 * at the beginning of the range to be deleted.
814 */
815 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
feba16e2 816 continue;
dbe409e4 817
feba16e2 818 if (rg->from >= t)
96822904 819 break;
96822904 820
feba16e2
MK
821 if (f > rg->from && t < rg->to) { /* Must split region */
822 /*
823 * Check for an entry in the cache before dropping
824 * lock and attempting allocation.
825 */
826 if (!nrg &&
827 resv->region_cache_count > resv->adds_in_progress) {
828 nrg = list_first_entry(&resv->region_cache,
829 struct file_region,
830 link);
831 list_del(&nrg->link);
832 resv->region_cache_count--;
833 }
96822904 834
feba16e2
MK
835 if (!nrg) {
836 spin_unlock(&resv->lock);
837 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
838 if (!nrg)
839 return -ENOMEM;
840 goto retry;
841 }
842
843 del += t - f;
79aa925b 844 hugetlb_cgroup_uncharge_file_region(
d85aecf2 845 resv, rg, t - f, false);
feba16e2
MK
846
847 /* New entry for end of split region */
848 nrg->from = t;
849 nrg->to = rg->to;
075a61d0
MA
850
851 copy_hugetlb_cgroup_uncharge_info(nrg, rg);
852
feba16e2
MK
853 INIT_LIST_HEAD(&nrg->link);
854
855 /* Original entry is trimmed */
856 rg->to = f;
857
858 list_add(&nrg->link, &rg->link);
859 nrg = NULL;
96822904 860 break;
feba16e2
MK
861 }
862
863 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
864 del += rg->to - rg->from;
075a61d0 865 hugetlb_cgroup_uncharge_file_region(resv, rg,
d85aecf2 866 rg->to - rg->from, true);
feba16e2
MK
867 list_del(&rg->link);
868 kfree(rg);
869 continue;
870 }
871
872 if (f <= rg->from) { /* Trim beginning of region */
075a61d0 873 hugetlb_cgroup_uncharge_file_region(resv, rg,
d85aecf2 874 t - rg->from, false);
075a61d0 875
79aa925b
MK
876 del += t - rg->from;
877 rg->from = t;
878 } else { /* Trim end of region */
075a61d0 879 hugetlb_cgroup_uncharge_file_region(resv, rg,
d85aecf2 880 rg->to - f, false);
79aa925b
MK
881
882 del += rg->to - f;
883 rg->to = f;
feba16e2 884 }
96822904 885 }
7b24d861 886
7b24d861 887 spin_unlock(&resv->lock);
feba16e2
MK
888 kfree(nrg);
889 return del;
96822904
AW
890}
891
b5cec28d
MK
892/*
893 * A rare out of memory error was encountered which prevented removal of
894 * the reserve map region for a page. The huge page itself was free'ed
895 * and removed from the page cache. This routine will adjust the subpool
896 * usage count, and the global reserve count if needed. By incrementing
897 * these counts, the reserve map entry which could not be deleted will
898 * appear as a "reserved" entry instead of simply dangling with incorrect
899 * counts.
900 */
72e2936c 901void hugetlb_fix_reserve_counts(struct inode *inode)
b5cec28d
MK
902{
903 struct hugepage_subpool *spool = subpool_inode(inode);
904 long rsv_adjust;
da56388c 905 bool reserved = false;
b5cec28d
MK
906
907 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
da56388c 908 if (rsv_adjust > 0) {
b5cec28d
MK
909 struct hstate *h = hstate_inode(inode);
910
da56388c
ML
911 if (!hugetlb_acct_memory(h, 1))
912 reserved = true;
913 } else if (!rsv_adjust) {
914 reserved = true;
b5cec28d 915 }
da56388c
ML
916
917 if (!reserved)
918 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
b5cec28d
MK
919}
920
1dd308a7
MK
921/*
922 * Count and return the number of huge pages in the reserve map
923 * that intersect with the range [f, t).
924 */
1406ec9b 925static long region_count(struct resv_map *resv, long f, long t)
84afd99b 926{
1406ec9b 927 struct list_head *head = &resv->regions;
84afd99b
AW
928 struct file_region *rg;
929 long chg = 0;
930
7b24d861 931 spin_lock(&resv->lock);
84afd99b
AW
932 /* Locate each segment we overlap with, and count that overlap. */
933 list_for_each_entry(rg, head, link) {
f2135a4a
WSH
934 long seg_from;
935 long seg_to;
84afd99b
AW
936
937 if (rg->to <= f)
938 continue;
939 if (rg->from >= t)
940 break;
941
942 seg_from = max(rg->from, f);
943 seg_to = min(rg->to, t);
944
945 chg += seg_to - seg_from;
946 }
7b24d861 947 spin_unlock(&resv->lock);
84afd99b
AW
948
949 return chg;
950}
951
e7c4b0bf
AW
952/*
953 * Convert the address within this vma to the page offset within
954 * the mapping, in pagecache page units; huge pages here.
955 */
a5516438
AK
956static pgoff_t vma_hugecache_offset(struct hstate *h,
957 struct vm_area_struct *vma, unsigned long address)
e7c4b0bf 958{
a5516438
AK
959 return ((address - vma->vm_start) >> huge_page_shift(h)) +
960 (vma->vm_pgoff >> huge_page_order(h));
e7c4b0bf
AW
961}
962
0fe6e20b
NH
963pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
964 unsigned long address)
965{
966 return vma_hugecache_offset(hstate_vma(vma), vma, address);
967}
dee41079 968EXPORT_SYMBOL_GPL(linear_hugepage_index);
0fe6e20b 969
08fba699
MG
970/*
971 * Return the size of the pages allocated when backing a VMA. In the majority
972 * cases this will be same size as used by the page table entries.
973 */
974unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
975{
05ea8860
DW
976 if (vma->vm_ops && vma->vm_ops->pagesize)
977 return vma->vm_ops->pagesize(vma);
978 return PAGE_SIZE;
08fba699 979}
f340ca0f 980EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
08fba699 981
3340289d
MG
982/*
983 * Return the page size being used by the MMU to back a VMA. In the majority
984 * of cases, the page size used by the kernel matches the MMU size. On
09135cc5
DW
985 * architectures where it differs, an architecture-specific 'strong'
986 * version of this symbol is required.
3340289d 987 */
09135cc5 988__weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
3340289d
MG
989{
990 return vma_kernel_pagesize(vma);
991}
3340289d 992
84afd99b
AW
993/*
994 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
995 * bits of the reservation map pointer, which are always clear due to
996 * alignment.
997 */
998#define HPAGE_RESV_OWNER (1UL << 0)
999#define HPAGE_RESV_UNMAPPED (1UL << 1)
04f2cbe3 1000#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
84afd99b 1001
a1e78772
MG
1002/*
1003 * These helpers are used to track how many pages are reserved for
1004 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
1005 * is guaranteed to have their future faults succeed.
1006 *
8d9bfb26 1007 * With the exception of hugetlb_dup_vma_private() which is called at fork(),
a1e78772
MG
1008 * the reserve counters are updated with the hugetlb_lock held. It is safe
1009 * to reset the VMA at fork() time as it is not in use yet and there is no
1010 * chance of the global counters getting corrupted as a result of the values.
84afd99b
AW
1011 *
1012 * The private mapping reservation is represented in a subtly different
1013 * manner to a shared mapping. A shared mapping has a region map associated
1014 * with the underlying file, this region map represents the backing file
1015 * pages which have ever had a reservation assigned which this persists even
1016 * after the page is instantiated. A private mapping has a region map
1017 * associated with the original mmap which is attached to all VMAs which
1018 * reference it, this region map represents those offsets which have consumed
1019 * reservation ie. where pages have been instantiated.
a1e78772 1020 */
e7c4b0bf
AW
1021static unsigned long get_vma_private_data(struct vm_area_struct *vma)
1022{
1023 return (unsigned long)vma->vm_private_data;
1024}
1025
1026static void set_vma_private_data(struct vm_area_struct *vma,
1027 unsigned long value)
1028{
1029 vma->vm_private_data = (void *)value;
1030}
1031
e9fe92ae
MA
1032static void
1033resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
1034 struct hugetlb_cgroup *h_cg,
1035 struct hstate *h)
1036{
1037#ifdef CONFIG_CGROUP_HUGETLB
1038 if (!h_cg || !h) {
1039 resv_map->reservation_counter = NULL;
1040 resv_map->pages_per_hpage = 0;
1041 resv_map->css = NULL;
1042 } else {
1043 resv_map->reservation_counter =
1044 &h_cg->rsvd_hugepage[hstate_index(h)];
1045 resv_map->pages_per_hpage = pages_per_huge_page(h);
1046 resv_map->css = &h_cg->css;
1047 }
1048#endif
1049}
1050
9119a41e 1051struct resv_map *resv_map_alloc(void)
84afd99b
AW
1052{
1053 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
5e911373
MK
1054 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
1055
1056 if (!resv_map || !rg) {
1057 kfree(resv_map);
1058 kfree(rg);
84afd99b 1059 return NULL;
5e911373 1060 }
84afd99b
AW
1061
1062 kref_init(&resv_map->refs);
7b24d861 1063 spin_lock_init(&resv_map->lock);
84afd99b
AW
1064 INIT_LIST_HEAD(&resv_map->regions);
1065
5e911373 1066 resv_map->adds_in_progress = 0;
e9fe92ae
MA
1067 /*
1068 * Initialize these to 0. On shared mappings, 0's here indicate these
1069 * fields don't do cgroup accounting. On private mappings, these will be
1070 * re-initialized to the proper values, to indicate that hugetlb cgroup
1071 * reservations are to be un-charged from here.
1072 */
1073 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
5e911373
MK
1074
1075 INIT_LIST_HEAD(&resv_map->region_cache);
1076 list_add(&rg->link, &resv_map->region_cache);
1077 resv_map->region_cache_count = 1;
1078
84afd99b
AW
1079 return resv_map;
1080}
1081
9119a41e 1082void resv_map_release(struct kref *ref)
84afd99b
AW
1083{
1084 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
5e911373
MK
1085 struct list_head *head = &resv_map->region_cache;
1086 struct file_region *rg, *trg;
84afd99b
AW
1087
1088 /* Clear out any active regions before we release the map. */
feba16e2 1089 region_del(resv_map, 0, LONG_MAX);
5e911373
MK
1090
1091 /* ... and any entries left in the cache */
1092 list_for_each_entry_safe(rg, trg, head, link) {
1093 list_del(&rg->link);
1094 kfree(rg);
1095 }
1096
1097 VM_BUG_ON(resv_map->adds_in_progress);
1098
84afd99b
AW
1099 kfree(resv_map);
1100}
1101
4e35f483
JK
1102static inline struct resv_map *inode_resv_map(struct inode *inode)
1103{
f27a5136
MK
1104 /*
1105 * At inode evict time, i_mapping may not point to the original
1106 * address space within the inode. This original address space
1107 * contains the pointer to the resv_map. So, always use the
1108 * address space embedded within the inode.
1109 * The VERY common case is inode->mapping == &inode->i_data but,
1110 * this may not be true for device special inodes.
1111 */
1112 return (struct resv_map *)(&inode->i_data)->private_data;
4e35f483
JK
1113}
1114
84afd99b 1115static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
a1e78772 1116{
81d1b09c 1117 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
4e35f483
JK
1118 if (vma->vm_flags & VM_MAYSHARE) {
1119 struct address_space *mapping = vma->vm_file->f_mapping;
1120 struct inode *inode = mapping->host;
1121
1122 return inode_resv_map(inode);
1123
1124 } else {
84afd99b
AW
1125 return (struct resv_map *)(get_vma_private_data(vma) &
1126 ~HPAGE_RESV_MASK);
4e35f483 1127 }
a1e78772
MG
1128}
1129
84afd99b 1130static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
a1e78772 1131{
81d1b09c
SL
1132 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1133 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
a1e78772 1134
84afd99b
AW
1135 set_vma_private_data(vma, (get_vma_private_data(vma) &
1136 HPAGE_RESV_MASK) | (unsigned long)map);
04f2cbe3
MG
1137}
1138
1139static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
1140{
81d1b09c
SL
1141 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1142 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
e7c4b0bf
AW
1143
1144 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
04f2cbe3
MG
1145}
1146
1147static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
1148{
81d1b09c 1149 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
e7c4b0bf
AW
1150
1151 return (get_vma_private_data(vma) & flag) != 0;
a1e78772
MG
1152}
1153
8d9bfb26 1154void hugetlb_dup_vma_private(struct vm_area_struct *vma)
a1e78772 1155{
81d1b09c 1156 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
8d9bfb26
MK
1157 /*
1158 * Clear vm_private_data
612b8a31
MK
1159 * - For shared mappings this is a per-vma semaphore that may be
1160 * allocated in a subsequent call to hugetlb_vm_op_open.
1161 * Before clearing, make sure pointer is not associated with vma
1162 * as this will leak the structure. This is the case when called
1163 * via clear_vma_resv_huge_pages() and hugetlb_vm_op_open has already
1164 * been called to allocate a new structure.
8d9bfb26
MK
1165 * - For MAP_PRIVATE mappings, this is the reserve map which does
1166 * not apply to children. Faults generated by the children are
1167 * not guaranteed to succeed, even if read-only.
8d9bfb26 1168 */
612b8a31
MK
1169 if (vma->vm_flags & VM_MAYSHARE) {
1170 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
1171
1172 if (vma_lock && vma_lock->vma != vma)
1173 vma->vm_private_data = NULL;
1174 } else
1175 vma->vm_private_data = NULL;
a1e78772
MG
1176}
1177
550a7d60
MA
1178/*
1179 * Reset and decrement one ref on hugepage private reservation.
8651a137 1180 * Called with mm->mmap_lock writer semaphore held.
550a7d60
MA
1181 * This function should be only used by move_vma() and operate on
1182 * same sized vma. It should never come here with last ref on the
1183 * reservation.
1184 */
1185void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
1186{
1187 /*
1188 * Clear the old hugetlb private page reservation.
1189 * It has already been transferred to new_vma.
1190 *
1191 * During a mremap() operation of a hugetlb vma we call move_vma()
1192 * which copies vma into new_vma and unmaps vma. After the copy
1193 * operation both new_vma and vma share a reference to the resv_map
1194 * struct, and at that point vma is about to be unmapped. We don't
1195 * want to return the reservation to the pool at unmap of vma because
1196 * the reservation still lives on in new_vma, so simply decrement the
1197 * ref here and remove the resv_map reference from this vma.
1198 */
1199 struct resv_map *reservations = vma_resv_map(vma);
1200
afe041c2
BQM
1201 if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1202 resv_map_put_hugetlb_cgroup_uncharge_info(reservations);
550a7d60 1203 kref_put(&reservations->refs, resv_map_release);
afe041c2 1204 }
550a7d60 1205
8d9bfb26 1206 hugetlb_dup_vma_private(vma);
550a7d60
MA
1207}
1208
a1e78772 1209/* Returns true if the VMA has associated reserve pages */
559ec2f8 1210static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
a1e78772 1211{
af0ed73e
JK
1212 if (vma->vm_flags & VM_NORESERVE) {
1213 /*
1214 * This address is already reserved by other process(chg == 0),
1215 * so, we should decrement reserved count. Without decrementing,
1216 * reserve count remains after releasing inode, because this
1217 * allocated page will go into page cache and is regarded as
1218 * coming from reserved pool in releasing step. Currently, we
1219 * don't have any other solution to deal with this situation
1220 * properly, so add work-around here.
1221 */
1222 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
559ec2f8 1223 return true;
af0ed73e 1224 else
559ec2f8 1225 return false;
af0ed73e 1226 }
a63884e9
JK
1227
1228 /* Shared mappings always use reserves */
1fb1b0e9
MK
1229 if (vma->vm_flags & VM_MAYSHARE) {
1230 /*
1231 * We know VM_NORESERVE is not set. Therefore, there SHOULD
1232 * be a region map for all pages. The only situation where
1233 * there is no region map is if a hole was punched via
7c8de358 1234 * fallocate. In this case, there really are no reserves to
1fb1b0e9
MK
1235 * use. This situation is indicated if chg != 0.
1236 */
1237 if (chg)
1238 return false;
1239 else
1240 return true;
1241 }
a63884e9
JK
1242
1243 /*
1244 * Only the process that called mmap() has reserves for
1245 * private mappings.
1246 */
67961f9d
MK
1247 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1248 /*
1249 * Like the shared case above, a hole punch or truncate
1250 * could have been performed on the private mapping.
1251 * Examine the value of chg to determine if reserves
1252 * actually exist or were previously consumed.
1253 * Very Subtle - The value of chg comes from a previous
1254 * call to vma_needs_reserves(). The reserve map for
1255 * private mappings has different (opposite) semantics
1256 * than that of shared mappings. vma_needs_reserves()
1257 * has already taken this difference in semantics into
1258 * account. Therefore, the meaning of chg is the same
1259 * as in the shared case above. Code could easily be
1260 * combined, but keeping it separate draws attention to
1261 * subtle differences.
1262 */
1263 if (chg)
1264 return false;
1265 else
1266 return true;
1267 }
a63884e9 1268
559ec2f8 1269 return false;
a1e78772
MG
1270}
1271
240d67a8 1272static void enqueue_hugetlb_folio(struct hstate *h, struct folio *folio)
1da177e4 1273{
240d67a8 1274 int nid = folio_nid(folio);
9487ca60
MK
1275
1276 lockdep_assert_held(&hugetlb_lock);
240d67a8 1277 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
b65a4eda 1278
240d67a8 1279 list_move(&folio->lru, &h->hugepage_freelists[nid]);
a5516438
AK
1280 h->free_huge_pages++;
1281 h->free_huge_pages_node[nid]++;
240d67a8 1282 folio_set_hugetlb_freed(folio);
1da177e4
LT
1283}
1284
94310cbc 1285static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
bf50bab2
NH
1286{
1287 struct page *page;
1a08ae36 1288 bool pin = !!(current->flags & PF_MEMALLOC_PIN);
bbe88753 1289
9487ca60 1290 lockdep_assert_held(&hugetlb_lock);
bbe88753 1291 list_for_each_entry(page, &h->hugepage_freelists[nid], lru) {
6077c943 1292 if (pin && !is_longterm_pinnable_page(page))
bbe88753 1293 continue;
bf50bab2 1294
6664bfc8
WY
1295 if (PageHWPoison(page))
1296 continue;
1297
1298 list_move(&page->lru, &h->hugepage_activelist);
1299 set_page_refcounted(page);
6c037149 1300 ClearHPageFreed(page);
6664bfc8
WY
1301 h->free_huge_pages--;
1302 h->free_huge_pages_node[nid]--;
1303 return page;
bbe88753
JK
1304 }
1305
6664bfc8 1306 return NULL;
bf50bab2
NH
1307}
1308
3e59fcb0
MH
1309static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
1310 nodemask_t *nmask)
94310cbc 1311{
3e59fcb0
MH
1312 unsigned int cpuset_mems_cookie;
1313 struct zonelist *zonelist;
1314 struct zone *zone;
1315 struct zoneref *z;
98fa15f3 1316 int node = NUMA_NO_NODE;
94310cbc 1317
3e59fcb0
MH
1318 zonelist = node_zonelist(nid, gfp_mask);
1319
1320retry_cpuset:
1321 cpuset_mems_cookie = read_mems_allowed_begin();
1322 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1323 struct page *page;
1324
1325 if (!cpuset_zone_allowed(zone, gfp_mask))
1326 continue;
1327 /*
1328 * no need to ask again on the same node. Pool is node rather than
1329 * zone aware
1330 */
1331 if (zone_to_nid(zone) == node)
1332 continue;
1333 node = zone_to_nid(zone);
94310cbc 1334
94310cbc
AK
1335 page = dequeue_huge_page_node_exact(h, node);
1336 if (page)
1337 return page;
1338 }
3e59fcb0
MH
1339 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1340 goto retry_cpuset;
1341
94310cbc
AK
1342 return NULL;
1343}
1344
8346d69d
XH
1345static unsigned long available_huge_pages(struct hstate *h)
1346{
1347 return h->free_huge_pages - h->resv_huge_pages;
1348}
1349
a5516438
AK
1350static struct page *dequeue_huge_page_vma(struct hstate *h,
1351 struct vm_area_struct *vma,
af0ed73e
JK
1352 unsigned long address, int avoid_reserve,
1353 long chg)
1da177e4 1354{
cfcaa66f 1355 struct page *page = NULL;
480eccf9 1356 struct mempolicy *mpol;
04ec6264 1357 gfp_t gfp_mask;
3e59fcb0 1358 nodemask_t *nodemask;
04ec6264 1359 int nid;
1da177e4 1360
a1e78772
MG
1361 /*
1362 * A child process with MAP_PRIVATE mappings created by their parent
1363 * have no page reserves. This check ensures that reservations are
1364 * not "stolen". The child may still get SIGKILLed
1365 */
8346d69d 1366 if (!vma_has_reserves(vma, chg) && !available_huge_pages(h))
c0ff7453 1367 goto err;
a1e78772 1368
04f2cbe3 1369 /* If reserves cannot be used, ensure enough pages are in the pool */
8346d69d 1370 if (avoid_reserve && !available_huge_pages(h))
6eab04a8 1371 goto err;
04f2cbe3 1372
04ec6264
VB
1373 gfp_mask = htlb_alloc_mask(h);
1374 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
cfcaa66f
BW
1375
1376 if (mpol_is_preferred_many(mpol)) {
1377 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1378
1379 /* Fallback to all nodes if page==NULL */
1380 nodemask = NULL;
1381 }
1382
1383 if (!page)
1384 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1385
3e59fcb0 1386 if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
d6995da3 1387 SetHPageRestoreReserve(page);
3e59fcb0 1388 h->resv_huge_pages--;
1da177e4 1389 }
cc9a6c87 1390
52cd3b07 1391 mpol_cond_put(mpol);
1da177e4 1392 return page;
cc9a6c87
MG
1393
1394err:
cc9a6c87 1395 return NULL;
1da177e4
LT
1396}
1397
1cac6f2c
LC
1398/*
1399 * common helper functions for hstate_next_node_to_{alloc|free}.
1400 * We may have allocated or freed a huge page based on a different
1401 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1402 * be outside of *nodes_allowed. Ensure that we use an allowed
1403 * node for alloc or free.
1404 */
1405static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1406{
0edaf86c 1407 nid = next_node_in(nid, *nodes_allowed);
1cac6f2c
LC
1408 VM_BUG_ON(nid >= MAX_NUMNODES);
1409
1410 return nid;
1411}
1412
1413static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1414{
1415 if (!node_isset(nid, *nodes_allowed))
1416 nid = next_node_allowed(nid, nodes_allowed);
1417 return nid;
1418}
1419
1420/*
1421 * returns the previously saved node ["this node"] from which to
1422 * allocate a persistent huge page for the pool and advance the
1423 * next node from which to allocate, handling wrap at end of node
1424 * mask.
1425 */
1426static int hstate_next_node_to_alloc(struct hstate *h,
1427 nodemask_t *nodes_allowed)
1428{
1429 int nid;
1430
1431 VM_BUG_ON(!nodes_allowed);
1432
1433 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1434 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1435
1436 return nid;
1437}
1438
1439/*
10c6ec49 1440 * helper for remove_pool_huge_page() - return the previously saved
1cac6f2c
LC
1441 * node ["this node"] from which to free a huge page. Advance the
1442 * next node id whether or not we find a free huge page to free so
1443 * that the next attempt to free addresses the next node.
1444 */
1445static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1446{
1447 int nid;
1448
1449 VM_BUG_ON(!nodes_allowed);
1450
1451 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1452 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1453
1454 return nid;
1455}
1456
1457#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
1458 for (nr_nodes = nodes_weight(*mask); \
1459 nr_nodes > 0 && \
1460 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
1461 nr_nodes--)
1462
1463#define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1464 for (nr_nodes = nodes_weight(*mask); \
1465 nr_nodes > 0 && \
1466 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1467 nr_nodes--)
1468
8531fc6f 1469/* used to demote non-gigantic_huge pages as well */
911565b8 1470static void __destroy_compound_gigantic_folio(struct folio *folio,
34d9e35b 1471 unsigned int order, bool demote)
944d9fec
LC
1472{
1473 int i;
1474 int nr_pages = 1 << order;
14455eab 1475 struct page *p;
944d9fec 1476
911565b8
SK
1477 atomic_set(folio_mapcount_ptr(folio), 0);
1478 atomic_set(folio_subpages_mapcount_ptr(folio), 0);
1479 atomic_set(folio_pincount_ptr(folio), 0);
47e29d32 1480
14455eab 1481 for (i = 1; i < nr_pages; i++) {
911565b8 1482 p = folio_page(folio, i);
a01f4390 1483 p->mapping = NULL;
1d798ca3 1484 clear_compound_head(p);
34d9e35b
MK
1485 if (!demote)
1486 set_page_refcounted(p);
944d9fec
LC
1487 }
1488
04a42e72 1489 folio_set_order(folio, 0);
911565b8 1490 __folio_clear_head(folio);
944d9fec
LC
1491}
1492
911565b8 1493static void destroy_compound_hugetlb_folio_for_demote(struct folio *folio,
8531fc6f
MK
1494 unsigned int order)
1495{
911565b8 1496 __destroy_compound_gigantic_folio(folio, order, true);
8531fc6f
MK
1497}
1498
1499#ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
911565b8 1500static void destroy_compound_gigantic_folio(struct folio *folio,
34d9e35b
MK
1501 unsigned int order)
1502{
911565b8 1503 __destroy_compound_gigantic_folio(folio, order, false);
34d9e35b
MK
1504}
1505
7f325a8d 1506static void free_gigantic_folio(struct folio *folio, unsigned int order)
944d9fec 1507{
cf11e85f
RG
1508 /*
1509 * If the page isn't allocated using the cma allocator,
1510 * cma_release() returns false.
1511 */
dbda8fea 1512#ifdef CONFIG_CMA
7f325a8d
SK
1513 int nid = folio_nid(folio);
1514
1515 if (cma_release(hugetlb_cma[nid], &folio->page, 1 << order))
cf11e85f 1516 return;
dbda8fea 1517#endif
cf11e85f 1518
7f325a8d 1519 free_contig_range(folio_pfn(folio), 1 << order);
944d9fec
LC
1520}
1521
4eb0716e 1522#ifdef CONFIG_CONTIG_ALLOC
19fc1a7e 1523static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
d9cc948f 1524 int nid, nodemask_t *nodemask)
944d9fec 1525{
19fc1a7e 1526 struct page *page;
04adbc3f 1527 unsigned long nr_pages = pages_per_huge_page(h);
953f064a
LX
1528 if (nid == NUMA_NO_NODE)
1529 nid = numa_mem_id();
944d9fec 1530
dbda8fea
BS
1531#ifdef CONFIG_CMA
1532 {
cf11e85f
RG
1533 int node;
1534
953f064a
LX
1535 if (hugetlb_cma[nid]) {
1536 page = cma_alloc(hugetlb_cma[nid], nr_pages,
1537 huge_page_order(h), true);
cf11e85f 1538 if (page)
19fc1a7e 1539 return page_folio(page);
cf11e85f 1540 }
953f064a
LX
1541
1542 if (!(gfp_mask & __GFP_THISNODE)) {
1543 for_each_node_mask(node, *nodemask) {
1544 if (node == nid || !hugetlb_cma[node])
1545 continue;
1546
1547 page = cma_alloc(hugetlb_cma[node], nr_pages,
1548 huge_page_order(h), true);
1549 if (page)
19fc1a7e 1550 return page_folio(page);
953f064a
LX
1551 }
1552 }
cf11e85f 1553 }
dbda8fea 1554#endif
cf11e85f 1555
19fc1a7e
SK
1556 page = alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1557 return page ? page_folio(page) : NULL;
944d9fec
LC
1558}
1559
4eb0716e 1560#else /* !CONFIG_CONTIG_ALLOC */
19fc1a7e 1561static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
4eb0716e
AG
1562 int nid, nodemask_t *nodemask)
1563{
1564 return NULL;
1565}
1566#endif /* CONFIG_CONTIG_ALLOC */
944d9fec 1567
e1073d1e 1568#else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
19fc1a7e 1569static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
4eb0716e
AG
1570 int nid, nodemask_t *nodemask)
1571{
1572 return NULL;
1573}
7f325a8d
SK
1574static inline void free_gigantic_folio(struct folio *folio,
1575 unsigned int order) { }
911565b8 1576static inline void destroy_compound_gigantic_folio(struct folio *folio,
d00181b9 1577 unsigned int order) { }
944d9fec
LC
1578#endif
1579
6eb4e88a 1580/*
cfd5082b 1581 * Remove hugetlb folio from lists, and update dtor so that the folio appears
34d9e35b
MK
1582 * as just a compound page.
1583 *
cfd5082b 1584 * A reference is held on the folio, except in the case of demote.
6eb4e88a
MK
1585 *
1586 * Must be called with hugetlb lock held.
1587 */
cfd5082b 1588static void __remove_hugetlb_folio(struct hstate *h, struct folio *folio,
34d9e35b
MK
1589 bool adjust_surplus,
1590 bool demote)
6eb4e88a 1591{
cfd5082b 1592 int nid = folio_nid(folio);
6eb4e88a 1593
f074732d
SK
1594 VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio(folio), folio);
1595 VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio_rsvd(folio), folio);
6eb4e88a 1596
9487ca60 1597 lockdep_assert_held(&hugetlb_lock);
6eb4e88a
MK
1598 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1599 return;
1600
cfd5082b 1601 list_del(&folio->lru);
6eb4e88a 1602
cfd5082b 1603 if (folio_test_hugetlb_freed(folio)) {
6eb4e88a
MK
1604 h->free_huge_pages--;
1605 h->free_huge_pages_node[nid]--;
1606 }
1607 if (adjust_surplus) {
1608 h->surplus_huge_pages--;
1609 h->surplus_huge_pages_node[nid]--;
1610 }
1611
e32d20c0
MK
1612 /*
1613 * Very subtle
1614 *
1615 * For non-gigantic pages set the destructor to the normal compound
1616 * page dtor. This is needed in case someone takes an additional
1617 * temporary ref to the page, and freeing is delayed until they drop
1618 * their reference.
1619 *
1620 * For gigantic pages set the destructor to the null dtor. This
1621 * destructor will never be called. Before freeing the gigantic
911565b8
SK
1622 * page destroy_compound_gigantic_folio will turn the folio into a
1623 * simple group of pages. After this the destructor does not
e32d20c0
MK
1624 * apply.
1625 *
1626 * This handles the case where more than one ref is held when and
d6ef19e2 1627 * after update_and_free_hugetlb_folio is called.
34d9e35b
MK
1628 *
1629 * In the case of demote we do not ref count the page as it will soon
1630 * be turned into a page of smaller size.
e32d20c0 1631 */
34d9e35b 1632 if (!demote)
cfd5082b 1633 folio_ref_unfreeze(folio, 1);
e32d20c0 1634 if (hstate_is_gigantic(h))
cfd5082b 1635 folio_set_compound_dtor(folio, NULL_COMPOUND_DTOR);
e32d20c0 1636 else
cfd5082b 1637 folio_set_compound_dtor(folio, COMPOUND_PAGE_DTOR);
6eb4e88a
MK
1638
1639 h->nr_huge_pages--;
1640 h->nr_huge_pages_node[nid]--;
1641}
1642
cfd5082b 1643static void remove_hugetlb_folio(struct hstate *h, struct folio *folio,
34d9e35b
MK
1644 bool adjust_surplus)
1645{
cfd5082b 1646 __remove_hugetlb_folio(h, folio, adjust_surplus, false);
34d9e35b
MK
1647}
1648
cfd5082b 1649static void remove_hugetlb_folio_for_demote(struct hstate *h, struct folio *folio,
8531fc6f
MK
1650 bool adjust_surplus)
1651{
cfd5082b 1652 __remove_hugetlb_folio(h, folio, adjust_surplus, true);
8531fc6f
MK
1653}
1654
2f6c57d6 1655static void add_hugetlb_folio(struct hstate *h, struct folio *folio,
ad2fa371
MS
1656 bool adjust_surplus)
1657{
1658 int zeroed;
2f6c57d6 1659 int nid = folio_nid(folio);
ad2fa371 1660
2f6c57d6 1661 VM_BUG_ON_FOLIO(!folio_test_hugetlb_vmemmap_optimized(folio), folio);
ad2fa371
MS
1662
1663 lockdep_assert_held(&hugetlb_lock);
1664
2f6c57d6 1665 INIT_LIST_HEAD(&folio->lru);
ad2fa371
MS
1666 h->nr_huge_pages++;
1667 h->nr_huge_pages_node[nid]++;
1668
1669 if (adjust_surplus) {
1670 h->surplus_huge_pages++;
1671 h->surplus_huge_pages_node[nid]++;
1672 }
1673
2f6c57d6
SK
1674 folio_set_compound_dtor(folio, HUGETLB_PAGE_DTOR);
1675 folio_change_private(folio, NULL);
a9e1eab2 1676 /*
2f6c57d6
SK
1677 * We have to set hugetlb_vmemmap_optimized again as above
1678 * folio_change_private(folio, NULL) cleared it.
a9e1eab2 1679 */
2f6c57d6 1680 folio_set_hugetlb_vmemmap_optimized(folio);
ad2fa371
MS
1681
1682 /*
2f6c57d6 1683 * This folio is about to be managed by the hugetlb allocator and
b65a4eda
MK
1684 * should have no users. Drop our reference, and check for others
1685 * just in case.
ad2fa371 1686 */
2f6c57d6
SK
1687 zeroed = folio_put_testzero(folio);
1688 if (unlikely(!zeroed))
b65a4eda
MK
1689 /*
1690 * It is VERY unlikely soneone else has taken a ref on
1691 * the page. In this case, we simply return as the
1692 * hugetlb destructor (free_huge_page) will be called
1693 * when this other ref is dropped.
1694 */
1695 return;
1696
2f6c57d6 1697 arch_clear_hugepage_flags(&folio->page);
240d67a8 1698 enqueue_hugetlb_folio(h, folio);
ad2fa371
MS
1699}
1700
b65d4adb 1701static void __update_and_free_page(struct hstate *h, struct page *page)
6af2acb6
AL
1702{
1703 int i;
911565b8 1704 struct folio *folio = page_folio(page);
14455eab 1705 struct page *subpage;
a5516438 1706
4eb0716e 1707 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
944d9fec 1708 return;
18229df5 1709
161df60e
NH
1710 /*
1711 * If we don't know which subpages are hwpoisoned, we can't free
1712 * the hugepage, so it's leaked intentionally.
1713 */
7f325a8d 1714 if (folio_test_hugetlb_raw_hwp_unreliable(folio))
161df60e
NH
1715 return;
1716
6213834c 1717 if (hugetlb_vmemmap_restore(h, page)) {
ad2fa371
MS
1718 spin_lock_irq(&hugetlb_lock);
1719 /*
1720 * If we cannot allocate vmemmap pages, just refuse to free the
1721 * page and put the page back on the hugetlb free list and treat
1722 * as a surplus page.
1723 */
7f325a8d 1724 add_hugetlb_folio(h, folio, true);
ad2fa371
MS
1725 spin_unlock_irq(&hugetlb_lock);
1726 return;
1727 }
1728
161df60e
NH
1729 /*
1730 * Move PageHWPoison flag from head page to the raw error pages,
1731 * which makes any healthy subpages reusable.
1732 */
911565b8
SK
1733 if (unlikely(folio_test_hwpoison(folio)))
1734 hugetlb_clear_page_hwpoison(&folio->page);
161df60e 1735
14455eab 1736 for (i = 0; i < pages_per_huge_page(h); i++) {
7f325a8d 1737 subpage = folio_page(folio, i);
dbfee5ae 1738 subpage->flags &= ~(1 << PG_locked | 1 << PG_error |
32f84528 1739 1 << PG_referenced | 1 << PG_dirty |
a7407a27
LC
1740 1 << PG_active | 1 << PG_private |
1741 1 << PG_writeback);
6af2acb6 1742 }
a01f4390
MK
1743
1744 /*
1745 * Non-gigantic pages demoted from CMA allocated gigantic pages
7f325a8d 1746 * need to be given back to CMA in free_gigantic_folio.
a01f4390
MK
1747 */
1748 if (hstate_is_gigantic(h) ||
2f6c57d6 1749 hugetlb_cma_folio(folio, huge_page_order(h))) {
911565b8 1750 destroy_compound_gigantic_folio(folio, huge_page_order(h));
7f325a8d 1751 free_gigantic_folio(folio, huge_page_order(h));
944d9fec 1752 } else {
944d9fec
LC
1753 __free_pages(page, huge_page_order(h));
1754 }
6af2acb6
AL
1755}
1756
b65d4adb 1757/*
d6ef19e2 1758 * As update_and_free_hugetlb_folio() can be called under any context, so we cannot
b65d4adb
MS
1759 * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the
1760 * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate
1761 * the vmemmap pages.
1762 *
1763 * free_hpage_workfn() locklessly retrieves the linked list of pages to be
1764 * freed and frees them one-by-one. As the page->mapping pointer is going
1765 * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node
1766 * structure of a lockless linked list of huge pages to be freed.
1767 */
1768static LLIST_HEAD(hpage_freelist);
1769
1770static void free_hpage_workfn(struct work_struct *work)
1771{
1772 struct llist_node *node;
1773
1774 node = llist_del_all(&hpage_freelist);
1775
1776 while (node) {
1777 struct page *page;
1778 struct hstate *h;
1779
1780 page = container_of((struct address_space **)node,
1781 struct page, mapping);
1782 node = node->next;
1783 page->mapping = NULL;
1784 /*
1785 * The VM_BUG_ON_PAGE(!PageHuge(page), page) in page_hstate()
1786 * is going to trigger because a previous call to
cfd5082b
SK
1787 * remove_hugetlb_folio() will call folio_set_compound_dtor
1788 * (folio, NULL_COMPOUND_DTOR), so do not use page_hstate()
1789 * directly.
b65d4adb
MS
1790 */
1791 h = size_to_hstate(page_size(page));
1792
1793 __update_and_free_page(h, page);
1794
1795 cond_resched();
1796 }
1797}
1798static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1799
1800static inline void flush_free_hpage_work(struct hstate *h)
1801{
6213834c 1802 if (hugetlb_vmemmap_optimizable(h))
b65d4adb
MS
1803 flush_work(&free_hpage_work);
1804}
1805
d6ef19e2 1806static void update_and_free_hugetlb_folio(struct hstate *h, struct folio *folio,
b65d4adb
MS
1807 bool atomic)
1808{
d6ef19e2
SK
1809 if (!folio_test_hugetlb_vmemmap_optimized(folio) || !atomic) {
1810 __update_and_free_page(h, &folio->page);
b65d4adb
MS
1811 return;
1812 }
1813
1814 /*
1815 * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages.
1816 *
1817 * Only call schedule_work() if hpage_freelist is previously
1818 * empty. Otherwise, schedule_work() had been called but the workfn
1819 * hasn't retrieved the list yet.
1820 */
d6ef19e2 1821 if (llist_add((struct llist_node *)&folio->mapping, &hpage_freelist))
b65d4adb
MS
1822 schedule_work(&free_hpage_work);
1823}
1824
10c6ec49
MK
1825static void update_and_free_pages_bulk(struct hstate *h, struct list_head *list)
1826{
1827 struct page *page, *t_page;
d6ef19e2 1828 struct folio *folio;
10c6ec49
MK
1829
1830 list_for_each_entry_safe(page, t_page, list, lru) {
d6ef19e2
SK
1831 folio = page_folio(page);
1832 update_and_free_hugetlb_folio(h, folio, false);
10c6ec49
MK
1833 cond_resched();
1834 }
1835}
1836
e5ff2159
AK
1837struct hstate *size_to_hstate(unsigned long size)
1838{
1839 struct hstate *h;
1840
1841 for_each_hstate(h) {
1842 if (huge_page_size(h) == size)
1843 return h;
1844 }
1845 return NULL;
1846}
1847
db71ef79 1848void free_huge_page(struct page *page)
27a85ef1 1849{
a5516438
AK
1850 /*
1851 * Can't pass hstate in here because it is called from the
1852 * compound page destructor.
1853 */
0356c4b9
SK
1854 struct folio *folio = page_folio(page);
1855 struct hstate *h = folio_hstate(folio);
1856 int nid = folio_nid(folio);
1857 struct hugepage_subpool *spool = hugetlb_folio_subpool(folio);
07443a85 1858 bool restore_reserve;
db71ef79 1859 unsigned long flags;
27a85ef1 1860
0356c4b9
SK
1861 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1862 VM_BUG_ON_FOLIO(folio_mapcount(folio), folio);
8ace22bc 1863
0356c4b9
SK
1864 hugetlb_set_folio_subpool(folio, NULL);
1865 if (folio_test_anon(folio))
1866 __ClearPageAnonExclusive(&folio->page);
1867 folio->mapping = NULL;
1868 restore_reserve = folio_test_hugetlb_restore_reserve(folio);
1869 folio_clear_hugetlb_restore_reserve(folio);
27a85ef1 1870
1c5ecae3 1871 /*
d6995da3 1872 * If HPageRestoreReserve was set on page, page allocation consumed a
0919e1b6
MK
1873 * reservation. If the page was associated with a subpool, there
1874 * would have been a page reserved in the subpool before allocation
1875 * via hugepage_subpool_get_pages(). Since we are 'restoring' the
6c26d310 1876 * reservation, do not call hugepage_subpool_put_pages() as this will
0919e1b6 1877 * remove the reserved page from the subpool.
1c5ecae3 1878 */
0919e1b6
MK
1879 if (!restore_reserve) {
1880 /*
1881 * A return code of zero implies that the subpool will be
1882 * under its minimum size if the reservation is not restored
1883 * after page is free. Therefore, force restore_reserve
1884 * operation.
1885 */
1886 if (hugepage_subpool_put_pages(spool, 1) == 0)
1887 restore_reserve = true;
1888 }
1c5ecae3 1889
db71ef79 1890 spin_lock_irqsave(&hugetlb_lock, flags);
0356c4b9 1891 folio_clear_hugetlb_migratable(folio);
d4ab0316
SK
1892 hugetlb_cgroup_uncharge_folio(hstate_index(h),
1893 pages_per_huge_page(h), folio);
1894 hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
1895 pages_per_huge_page(h), folio);
07443a85
JK
1896 if (restore_reserve)
1897 h->resv_huge_pages++;
1898
0356c4b9 1899 if (folio_test_hugetlb_temporary(folio)) {
cfd5082b 1900 remove_hugetlb_folio(h, folio, false);
db71ef79 1901 spin_unlock_irqrestore(&hugetlb_lock, flags);
d6ef19e2 1902 update_and_free_hugetlb_folio(h, folio, true);
ab5ac90a 1903 } else if (h->surplus_huge_pages_node[nid]) {
0edaecfa 1904 /* remove the page from active list */
cfd5082b 1905 remove_hugetlb_folio(h, folio, true);
db71ef79 1906 spin_unlock_irqrestore(&hugetlb_lock, flags);
d6ef19e2 1907 update_and_free_hugetlb_folio(h, folio, true);
7893d1d5 1908 } else {
5d3a551c 1909 arch_clear_hugepage_flags(page);
240d67a8 1910 enqueue_hugetlb_folio(h, folio);
db71ef79 1911 spin_unlock_irqrestore(&hugetlb_lock, flags);
c77c0a8a 1912 }
c77c0a8a
WL
1913}
1914
d3d99fcc
OS
1915/*
1916 * Must be called with the hugetlb lock held
1917 */
1918static void __prep_account_new_huge_page(struct hstate *h, int nid)
1919{
1920 lockdep_assert_held(&hugetlb_lock);
1921 h->nr_huge_pages++;
1922 h->nr_huge_pages_node[nid]++;
1923}
1924
de656ed3 1925static void __prep_new_hugetlb_folio(struct hstate *h, struct folio *folio)
b7ba30c6 1926{
de656ed3
SK
1927 hugetlb_vmemmap_optimize(h, &folio->page);
1928 INIT_LIST_HEAD(&folio->lru);
9fd33058 1929 folio_set_compound_dtor(folio, HUGETLB_PAGE_DTOR);
de656ed3
SK
1930 hugetlb_set_folio_subpool(folio, NULL);
1931 set_hugetlb_cgroup(folio, NULL);
1932 set_hugetlb_cgroup_rsvd(folio, NULL);
d3d99fcc
OS
1933}
1934
d1c60955 1935static void prep_new_hugetlb_folio(struct hstate *h, struct folio *folio, int nid)
d3d99fcc 1936{
de656ed3 1937 __prep_new_hugetlb_folio(h, folio);
db71ef79 1938 spin_lock_irq(&hugetlb_lock);
d3d99fcc 1939 __prep_account_new_huge_page(h, nid);
db71ef79 1940 spin_unlock_irq(&hugetlb_lock);
b7ba30c6
AK
1941}
1942
d1c60955
SK
1943static bool __prep_compound_gigantic_folio(struct folio *folio,
1944 unsigned int order, bool demote)
20a0307c 1945{
7118fc29 1946 int i, j;
20a0307c 1947 int nr_pages = 1 << order;
14455eab 1948 struct page *p;
20a0307c 1949
d1c60955
SK
1950 __folio_clear_reserved(folio);
1951 __folio_set_head(folio);
c45bc55a 1952 /* we rely on prep_new_hugetlb_folio to set the destructor */
04a42e72 1953 folio_set_order(folio, order);
2b21624f 1954 for (i = 0; i < nr_pages; i++) {
d1c60955 1955 p = folio_page(folio, i);
14455eab 1956
ef5a22be
AA
1957 /*
1958 * For gigantic hugepages allocated through bootmem at
1959 * boot, it's safer to be consistent with the not-gigantic
1960 * hugepages and clear the PG_reserved bit from all tail pages
7c8de358 1961 * too. Otherwise drivers using get_user_pages() to access tail
ef5a22be
AA
1962 * pages may get the reference counting wrong if they see
1963 * PG_reserved set on a tail page (despite the head page not
1964 * having PG_reserved set). Enforcing this consistency between
1965 * head and tail pages allows drivers to optimize away a check
1966 * on the head page when they need know if put_page() is needed
1967 * after get_user_pages().
1968 */
7fb0728a
MK
1969 if (i != 0) /* head page cleared above */
1970 __ClearPageReserved(p);
7118fc29
MK
1971 /*
1972 * Subtle and very unlikely
1973 *
1974 * Gigantic 'page allocators' such as memblock or cma will
1975 * return a set of pages with each page ref counted. We need
1976 * to turn this set of pages into a compound page with tail
1977 * page ref counts set to zero. Code such as speculative page
1978 * cache adding could take a ref on a 'to be' tail page.
1979 * We need to respect any increased ref count, and only set
1980 * the ref count to zero if count is currently 1. If count
416d85ed
MK
1981 * is not 1, we return an error. An error return indicates
1982 * the set of pages can not be converted to a gigantic page.
1983 * The caller who allocated the pages should then discard the
1984 * pages using the appropriate free interface.
34d9e35b
MK
1985 *
1986 * In the case of demote, the ref count will be zero.
7118fc29 1987 */
34d9e35b
MK
1988 if (!demote) {
1989 if (!page_ref_freeze(p, 1)) {
1990 pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n");
1991 goto out_error;
1992 }
1993 } else {
1994 VM_BUG_ON_PAGE(page_count(p), p);
7118fc29 1995 }
2b21624f 1996 if (i != 0)
d1c60955 1997 set_compound_head(p, &folio->page);
20a0307c 1998 }
d1c60955
SK
1999 atomic_set(folio_mapcount_ptr(folio), -1);
2000 atomic_set(folio_subpages_mapcount_ptr(folio), 0);
2001 atomic_set(folio_pincount_ptr(folio), 0);
7118fc29
MK
2002 return true;
2003
2004out_error:
2b21624f
MK
2005 /* undo page modifications made above */
2006 for (j = 0; j < i; j++) {
d1c60955 2007 p = folio_page(folio, j);
2b21624f
MK
2008 if (j != 0)
2009 clear_compound_head(p);
7118fc29
MK
2010 set_page_refcounted(p);
2011 }
2012 /* need to clear PG_reserved on remaining tail pages */
14455eab 2013 for (; j < nr_pages; j++) {
d1c60955 2014 p = folio_page(folio, j);
7118fc29 2015 __ClearPageReserved(p);
14455eab 2016 }
04a42e72 2017 folio_set_order(folio, 0);
d1c60955 2018 __folio_clear_head(folio);
7118fc29 2019 return false;
20a0307c
WF
2020}
2021
d1c60955
SK
2022static bool prep_compound_gigantic_folio(struct folio *folio,
2023 unsigned int order)
34d9e35b 2024{
d1c60955 2025 return __prep_compound_gigantic_folio(folio, order, false);
34d9e35b
MK
2026}
2027
d1c60955 2028static bool prep_compound_gigantic_folio_for_demote(struct folio *folio,
8531fc6f
MK
2029 unsigned int order)
2030{
d1c60955 2031 return __prep_compound_gigantic_folio(folio, order, true);
8531fc6f
MK
2032}
2033
7795912c
AM
2034/*
2035 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
2036 * transparent huge pages. See the PageTransHuge() documentation for more
2037 * details.
2038 */
20a0307c
WF
2039int PageHuge(struct page *page)
2040{
20a0307c
WF
2041 if (!PageCompound(page))
2042 return 0;
2043
2044 page = compound_head(page);
f1e61557 2045 return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
20a0307c 2046}
43131e14
NH
2047EXPORT_SYMBOL_GPL(PageHuge);
2048
27c73ae7
AA
2049/*
2050 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
2051 * normal or transparent huge pages.
2052 */
2053int PageHeadHuge(struct page *page_head)
2054{
27c73ae7
AA
2055 if (!PageHead(page_head))
2056 return 0;
2057
d4af73e3 2058 return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR;
27c73ae7 2059}
4e936ecc 2060EXPORT_SYMBOL_GPL(PageHeadHuge);
27c73ae7 2061
c0d0381a
MK
2062/*
2063 * Find and lock address space (mapping) in write mode.
2064 *
336bf30e
MK
2065 * Upon entry, the page is locked which means that page_mapping() is
2066 * stable. Due to locking order, we can only trylock_write. If we can
2067 * not get the lock, simply return NULL to caller.
c0d0381a
MK
2068 */
2069struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
2070{
336bf30e 2071 struct address_space *mapping = page_mapping(hpage);
c0d0381a 2072
c0d0381a
MK
2073 if (!mapping)
2074 return mapping;
2075
c0d0381a
MK
2076 if (i_mmap_trylock_write(mapping))
2077 return mapping;
2078
336bf30e 2079 return NULL;
c0d0381a
MK
2080}
2081
fe19bd3d 2082pgoff_t hugetlb_basepage_index(struct page *page)
13d60f4b
ZY
2083{
2084 struct page *page_head = compound_head(page);
2085 pgoff_t index = page_index(page_head);
2086 unsigned long compound_idx;
2087
13d60f4b
ZY
2088 if (compound_order(page_head) >= MAX_ORDER)
2089 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
2090 else
2091 compound_idx = page - page_head;
2092
2093 return (index << compound_order(page_head)) + compound_idx;
2094}
2095
19fc1a7e 2096static struct folio *alloc_buddy_hugetlb_folio(struct hstate *h,
f60858f9
MK
2097 gfp_t gfp_mask, int nid, nodemask_t *nmask,
2098 nodemask_t *node_alloc_noretry)
1da177e4 2099{
af0fb9df 2100 int order = huge_page_order(h);
1da177e4 2101 struct page *page;
f60858f9 2102 bool alloc_try_hard = true;
2b21624f 2103 bool retry = true;
f96efd58 2104
f60858f9
MK
2105 /*
2106 * By default we always try hard to allocate the page with
2107 * __GFP_RETRY_MAYFAIL flag. However, if we are allocating pages in
2108 * a loop (to adjust global huge page counts) and previous allocation
2109 * failed, do not continue to try hard on the same node. Use the
2110 * node_alloc_noretry bitmap to manage this state information.
2111 */
2112 if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
2113 alloc_try_hard = false;
2114 gfp_mask |= __GFP_COMP|__GFP_NOWARN;
2115 if (alloc_try_hard)
2116 gfp_mask |= __GFP_RETRY_MAYFAIL;
af0fb9df
MH
2117 if (nid == NUMA_NO_NODE)
2118 nid = numa_mem_id();
2b21624f 2119retry:
84172f4b 2120 page = __alloc_pages(gfp_mask, order, nid, nmask);
2b21624f
MK
2121
2122 /* Freeze head page */
2123 if (page && !page_ref_freeze(page, 1)) {
2124 __free_pages(page, order);
2125 if (retry) { /* retry once */
2126 retry = false;
2127 goto retry;
2128 }
2129 /* WOW! twice in a row. */
2130 pr_warn("HugeTLB head page unexpected inflated ref count\n");
2131 page = NULL;
2132 }
2133
f60858f9
MK
2134 /*
2135 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
2136 * indicates an overall state change. Clear bit so that we resume
2137 * normal 'try hard' allocations.
2138 */
2139 if (node_alloc_noretry && page && !alloc_try_hard)
2140 node_clear(nid, *node_alloc_noretry);
2141
2142 /*
2143 * If we tried hard to get a page but failed, set bit so that
2144 * subsequent attempts will not try as hard until there is an
2145 * overall state change.
2146 */
2147 if (node_alloc_noretry && !page && alloc_try_hard)
2148 node_set(nid, *node_alloc_noretry);
2149
19fc1a7e
SK
2150 if (!page) {
2151 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
2152 return NULL;
2153 }
2154
2155 __count_vm_event(HTLB_BUDDY_PGALLOC);
2156 return page_folio(page);
63b4613c
NA
2157}
2158
0c397dae
MH
2159/*
2160 * Common helper to allocate a fresh hugetlb page. All specific allocators
2161 * should use this function to get new hugetlb pages
2b21624f
MK
2162 *
2163 * Note that returned page is 'frozen': ref count of head page and all tail
2164 * pages is zero.
0c397dae 2165 */
19fc1a7e 2166static struct folio *alloc_fresh_hugetlb_folio(struct hstate *h,
f60858f9
MK
2167 gfp_t gfp_mask, int nid, nodemask_t *nmask,
2168 nodemask_t *node_alloc_noretry)
0c397dae 2169{
7f325a8d 2170 struct folio *folio;
7118fc29 2171 bool retry = false;
0c397dae 2172
7118fc29 2173retry:
0c397dae 2174 if (hstate_is_gigantic(h))
19fc1a7e 2175 folio = alloc_gigantic_folio(h, gfp_mask, nid, nmask);
0c397dae 2176 else
19fc1a7e 2177 folio = alloc_buddy_hugetlb_folio(h, gfp_mask,
f60858f9 2178 nid, nmask, node_alloc_noretry);
19fc1a7e 2179 if (!folio)
0c397dae 2180 return NULL;
7118fc29 2181 if (hstate_is_gigantic(h)) {
d1c60955 2182 if (!prep_compound_gigantic_folio(folio, huge_page_order(h))) {
7118fc29
MK
2183 /*
2184 * Rare failure to convert pages to compound page.
2185 * Free pages and try again - ONCE!
2186 */
7f325a8d 2187 free_gigantic_folio(folio, huge_page_order(h));
7118fc29
MK
2188 if (!retry) {
2189 retry = true;
2190 goto retry;
2191 }
7118fc29
MK
2192 return NULL;
2193 }
2194 }
d1c60955 2195 prep_new_hugetlb_folio(h, folio, folio_nid(folio));
0c397dae 2196
19fc1a7e 2197 return folio;
0c397dae
MH
2198}
2199
af0fb9df
MH
2200/*
2201 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
2202 * manner.
2203 */
f60858f9
MK
2204static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
2205 nodemask_t *node_alloc_noretry)
b2261026 2206{
19fc1a7e 2207 struct folio *folio;
b2261026 2208 int nr_nodes, node;
af0fb9df 2209 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
b2261026
JK
2210
2211 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
19fc1a7e
SK
2212 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, node,
2213 nodes_allowed, node_alloc_noretry);
2214 if (folio) {
2215 free_huge_page(&folio->page); /* free it into the hugepage allocator */
2216 return 1;
2217 }
b2261026
JK
2218 }
2219
19fc1a7e 2220 return 0;
b2261026
JK
2221}
2222
e8c5c824 2223/*
10c6ec49
MK
2224 * Remove huge page from pool from next node to free. Attempt to keep
2225 * persistent huge pages more or less balanced over allowed nodes.
2226 * This routine only 'removes' the hugetlb page. The caller must make
2227 * an additional call to free the page to low level allocators.
e8c5c824
LS
2228 * Called with hugetlb_lock locked.
2229 */
10c6ec49
MK
2230static struct page *remove_pool_huge_page(struct hstate *h,
2231 nodemask_t *nodes_allowed,
2232 bool acct_surplus)
e8c5c824 2233{
b2261026 2234 int nr_nodes, node;
10c6ec49 2235 struct page *page = NULL;
cfd5082b 2236 struct folio *folio;
e8c5c824 2237
9487ca60 2238 lockdep_assert_held(&hugetlb_lock);
b2261026 2239 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
685f3457
LS
2240 /*
2241 * If we're returning unused surplus pages, only examine
2242 * nodes with surplus pages.
2243 */
b2261026
JK
2244 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
2245 !list_empty(&h->hugepage_freelists[node])) {
10c6ec49 2246 page = list_entry(h->hugepage_freelists[node].next,
e8c5c824 2247 struct page, lru);
cfd5082b
SK
2248 folio = page_folio(page);
2249 remove_hugetlb_folio(h, folio, acct_surplus);
9a76db09 2250 break;
e8c5c824 2251 }
b2261026 2252 }
e8c5c824 2253
10c6ec49 2254 return page;
e8c5c824
LS
2255}
2256
c8721bbb
NH
2257/*
2258 * Dissolve a given free hugepage into free buddy pages. This function does
faf53def
NH
2259 * nothing for in-use hugepages and non-hugepages.
2260 * This function returns values like below:
2261 *
ad2fa371
MS
2262 * -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages
2263 * when the system is under memory pressure and the feature of
2264 * freeing unused vmemmap pages associated with each hugetlb page
2265 * is enabled.
2266 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
2267 * (allocated or reserved.)
2268 * 0: successfully dissolved free hugepages or the page is not a
2269 * hugepage (considered as already dissolved)
c8721bbb 2270 */
c3114a84 2271int dissolve_free_huge_page(struct page *page)
c8721bbb 2272{
6bc9b564 2273 int rc = -EBUSY;
1a7cdab5 2274 struct folio *folio = page_folio(page);
082d5b6b 2275
7ffddd49 2276retry:
faf53def 2277 /* Not to disrupt normal path by vainly holding hugetlb_lock */
1a7cdab5 2278 if (!folio_test_hugetlb(folio))
faf53def
NH
2279 return 0;
2280
db71ef79 2281 spin_lock_irq(&hugetlb_lock);
1a7cdab5 2282 if (!folio_test_hugetlb(folio)) {
faf53def
NH
2283 rc = 0;
2284 goto out;
2285 }
2286
1a7cdab5
SK
2287 if (!folio_ref_count(folio)) {
2288 struct hstate *h = folio_hstate(folio);
8346d69d 2289 if (!available_huge_pages(h))
082d5b6b 2290 goto out;
7ffddd49
MS
2291
2292 /*
2293 * We should make sure that the page is already on the free list
2294 * when it is dissolved.
2295 */
1a7cdab5 2296 if (unlikely(!folio_test_hugetlb_freed(folio))) {
db71ef79 2297 spin_unlock_irq(&hugetlb_lock);
7ffddd49
MS
2298 cond_resched();
2299
2300 /*
2301 * Theoretically, we should return -EBUSY when we
2302 * encounter this race. In fact, we have a chance
2303 * to successfully dissolve the page if we do a
2304 * retry. Because the race window is quite small.
2305 * If we seize this opportunity, it is an optimization
2306 * for increasing the success rate of dissolving page.
2307 */
2308 goto retry;
2309 }
2310
cfd5082b 2311 remove_hugetlb_folio(h, folio, false);
c1470b33 2312 h->max_huge_pages--;
db71ef79 2313 spin_unlock_irq(&hugetlb_lock);
ad2fa371
MS
2314
2315 /*
d6ef19e2
SK
2316 * Normally update_and_free_hugtlb_folio will allocate required vmemmmap
2317 * before freeing the page. update_and_free_hugtlb_folio will fail to
ad2fa371
MS
2318 * free the page if it can not allocate required vmemmap. We
2319 * need to adjust max_huge_pages if the page is not freed.
2320 * Attempt to allocate vmemmmap here so that we can take
2321 * appropriate action on failure.
2322 */
1a7cdab5 2323 rc = hugetlb_vmemmap_restore(h, &folio->page);
ad2fa371 2324 if (!rc) {
d6ef19e2 2325 update_and_free_hugetlb_folio(h, folio, false);
ad2fa371
MS
2326 } else {
2327 spin_lock_irq(&hugetlb_lock);
2f6c57d6 2328 add_hugetlb_folio(h, folio, false);
ad2fa371
MS
2329 h->max_huge_pages++;
2330 spin_unlock_irq(&hugetlb_lock);
2331 }
2332
2333 return rc;
c8721bbb 2334 }
082d5b6b 2335out:
db71ef79 2336 spin_unlock_irq(&hugetlb_lock);
082d5b6b 2337 return rc;
c8721bbb
NH
2338}
2339
2340/*
2341 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
2342 * make specified memory blocks removable from the system.
2247bb33
GS
2343 * Note that this will dissolve a free gigantic hugepage completely, if any
2344 * part of it lies within the given range.
082d5b6b
GS
2345 * Also note that if dissolve_free_huge_page() returns with an error, all
2346 * free hugepages that were dissolved before that error are lost.
c8721bbb 2347 */
082d5b6b 2348int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
c8721bbb 2349{
c8721bbb 2350 unsigned long pfn;
eb03aa00 2351 struct page *page;
082d5b6b 2352 int rc = 0;
dc2628f3
MS
2353 unsigned int order;
2354 struct hstate *h;
c8721bbb 2355
d0177639 2356 if (!hugepages_supported())
082d5b6b 2357 return rc;
d0177639 2358
dc2628f3
MS
2359 order = huge_page_order(&default_hstate);
2360 for_each_hstate(h)
2361 order = min(order, huge_page_order(h));
2362
2363 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) {
eb03aa00 2364 page = pfn_to_page(pfn);
faf53def
NH
2365 rc = dissolve_free_huge_page(page);
2366 if (rc)
2367 break;
eb03aa00 2368 }
082d5b6b
GS
2369
2370 return rc;
c8721bbb
NH
2371}
2372
ab5ac90a
MH
2373/*
2374 * Allocates a fresh surplus page from the page allocator.
2375 */
0c397dae 2376static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
2b21624f 2377 int nid, nodemask_t *nmask)
7893d1d5 2378{
19fc1a7e 2379 struct folio *folio = NULL;
7893d1d5 2380
bae7f4ae 2381 if (hstate_is_gigantic(h))
aa888a74
AK
2382 return NULL;
2383
db71ef79 2384 spin_lock_irq(&hugetlb_lock);
9980d744
MH
2385 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
2386 goto out_unlock;
db71ef79 2387 spin_unlock_irq(&hugetlb_lock);
d1c3fb1f 2388
19fc1a7e
SK
2389 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2390 if (!folio)
0c397dae 2391 return NULL;
d1c3fb1f 2392
db71ef79 2393 spin_lock_irq(&hugetlb_lock);
9980d744
MH
2394 /*
2395 * We could have raced with the pool size change.
2396 * Double check that and simply deallocate the new page
2397 * if we would end up overcommiting the surpluses. Abuse
2398 * temporary page to workaround the nasty free_huge_page
2399 * codeflow
2400 */
2401 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
19fc1a7e 2402 folio_set_hugetlb_temporary(folio);
db71ef79 2403 spin_unlock_irq(&hugetlb_lock);
19fc1a7e 2404 free_huge_page(&folio->page);
2bf753e6 2405 return NULL;
7893d1d5 2406 }
9980d744 2407
b65a4eda 2408 h->surplus_huge_pages++;
19fc1a7e 2409 h->surplus_huge_pages_node[folio_nid(folio)]++;
b65a4eda 2410
9980d744 2411out_unlock:
db71ef79 2412 spin_unlock_irq(&hugetlb_lock);
7893d1d5 2413
19fc1a7e 2414 return &folio->page;
7893d1d5
AL
2415}
2416
bbe88753 2417static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
9a4e9f3b 2418 int nid, nodemask_t *nmask)
ab5ac90a 2419{
19fc1a7e 2420 struct folio *folio;
ab5ac90a
MH
2421
2422 if (hstate_is_gigantic(h))
2423 return NULL;
2424
19fc1a7e
SK
2425 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2426 if (!folio)
ab5ac90a
MH
2427 return NULL;
2428
2b21624f 2429 /* fresh huge pages are frozen */
19fc1a7e 2430 folio_ref_unfreeze(folio, 1);
ab5ac90a
MH
2431 /*
2432 * We do not account these pages as surplus because they are only
2433 * temporary and will be released properly on the last reference
2434 */
19fc1a7e 2435 folio_set_hugetlb_temporary(folio);
ab5ac90a 2436
19fc1a7e 2437 return &folio->page;
ab5ac90a
MH
2438}
2439
099730d6
DH
2440/*
2441 * Use the VMA's mpolicy to allocate a huge page from the buddy.
2442 */
e0ec90ee 2443static
0c397dae 2444struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
099730d6
DH
2445 struct vm_area_struct *vma, unsigned long addr)
2446{
cfcaa66f 2447 struct page *page = NULL;
aaf14e40
MH
2448 struct mempolicy *mpol;
2449 gfp_t gfp_mask = htlb_alloc_mask(h);
2450 int nid;
2451 nodemask_t *nodemask;
2452
2453 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
cfcaa66f
BW
2454 if (mpol_is_preferred_many(mpol)) {
2455 gfp_t gfp = gfp_mask | __GFP_NOWARN;
2456
2457 gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2b21624f 2458 page = alloc_surplus_huge_page(h, gfp, nid, nodemask);
aaf14e40 2459
cfcaa66f
BW
2460 /* Fallback to all nodes if page==NULL */
2461 nodemask = NULL;
2462 }
2463
2464 if (!page)
2b21624f 2465 page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
cfcaa66f 2466 mpol_cond_put(mpol);
aaf14e40 2467 return page;
099730d6
DH
2468}
2469
ab5ac90a 2470/* page migration callback function */
3e59fcb0 2471struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
d92bbc27 2472 nodemask_t *nmask, gfp_t gfp_mask)
4db9b2ef 2473{
db71ef79 2474 spin_lock_irq(&hugetlb_lock);
8346d69d 2475 if (available_huge_pages(h)) {
3e59fcb0
MH
2476 struct page *page;
2477
2478 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
2479 if (page) {
db71ef79 2480 spin_unlock_irq(&hugetlb_lock);
3e59fcb0 2481 return page;
4db9b2ef
MH
2482 }
2483 }
db71ef79 2484 spin_unlock_irq(&hugetlb_lock);
4db9b2ef 2485
0c397dae 2486 return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
4db9b2ef
MH
2487}
2488
ebd63723 2489/* mempolicy aware migration callback */
389c8178
MH
2490struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
2491 unsigned long address)
ebd63723
MH
2492{
2493 struct mempolicy *mpol;
2494 nodemask_t *nodemask;
2495 struct page *page;
ebd63723
MH
2496 gfp_t gfp_mask;
2497 int node;
2498
ebd63723
MH
2499 gfp_mask = htlb_alloc_mask(h);
2500 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
d92bbc27 2501 page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask);
ebd63723
MH
2502 mpol_cond_put(mpol);
2503
2504 return page;
2505}
2506
e4e574b7 2507/*
25985edc 2508 * Increase the hugetlb pool such that it can accommodate a reservation
e4e574b7
AL
2509 * of size 'delta'.
2510 */
0a4f3d1b 2511static int gather_surplus_pages(struct hstate *h, long delta)
1b2a1e7b 2512 __must_hold(&hugetlb_lock)
e4e574b7 2513{
34665341 2514 LIST_HEAD(surplus_list);
e4e574b7 2515 struct page *page, *tmp;
0a4f3d1b
LX
2516 int ret;
2517 long i;
2518 long needed, allocated;
28073b02 2519 bool alloc_ok = true;
e4e574b7 2520
9487ca60 2521 lockdep_assert_held(&hugetlb_lock);
a5516438 2522 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
ac09b3a1 2523 if (needed <= 0) {
a5516438 2524 h->resv_huge_pages += delta;
e4e574b7 2525 return 0;
ac09b3a1 2526 }
e4e574b7
AL
2527
2528 allocated = 0;
e4e574b7
AL
2529
2530 ret = -ENOMEM;
2531retry:
db71ef79 2532 spin_unlock_irq(&hugetlb_lock);
e4e574b7 2533 for (i = 0; i < needed; i++) {
0c397dae 2534 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
2b21624f 2535 NUMA_NO_NODE, NULL);
28073b02
HD
2536 if (!page) {
2537 alloc_ok = false;
2538 break;
2539 }
e4e574b7 2540 list_add(&page->lru, &surplus_list);
69ed779a 2541 cond_resched();
e4e574b7 2542 }
28073b02 2543 allocated += i;
e4e574b7
AL
2544
2545 /*
2546 * After retaking hugetlb_lock, we need to recalculate 'needed'
2547 * because either resv_huge_pages or free_huge_pages may have changed.
2548 */
db71ef79 2549 spin_lock_irq(&hugetlb_lock);
a5516438
AK
2550 needed = (h->resv_huge_pages + delta) -
2551 (h->free_huge_pages + allocated);
28073b02
HD
2552 if (needed > 0) {
2553 if (alloc_ok)
2554 goto retry;
2555 /*
2556 * We were not able to allocate enough pages to
2557 * satisfy the entire reservation so we free what
2558 * we've allocated so far.
2559 */
2560 goto free;
2561 }
e4e574b7
AL
2562 /*
2563 * The surplus_list now contains _at_least_ the number of extra pages
25985edc 2564 * needed to accommodate the reservation. Add the appropriate number
e4e574b7 2565 * of pages to the hugetlb pool and free the extras back to the buddy
ac09b3a1
AL
2566 * allocator. Commit the entire reservation here to prevent another
2567 * process from stealing the pages as they are added to the pool but
2568 * before they are reserved.
e4e574b7
AL
2569 */
2570 needed += allocated;
a5516438 2571 h->resv_huge_pages += delta;
e4e574b7 2572 ret = 0;
a9869b83 2573
19fc3f0a 2574 /* Free the needed pages to the hugetlb pool */
e4e574b7 2575 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
19fc3f0a
AL
2576 if ((--needed) < 0)
2577 break;
b65a4eda 2578 /* Add the page to the hugetlb allocator */
240d67a8 2579 enqueue_hugetlb_folio(h, page_folio(page));
19fc3f0a 2580 }
28073b02 2581free:
db71ef79 2582 spin_unlock_irq(&hugetlb_lock);
19fc3f0a 2583
b65a4eda
MK
2584 /*
2585 * Free unnecessary surplus pages to the buddy allocator.
2586 * Pages have no ref count, call free_huge_page directly.
2587 */
c0d934ba 2588 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
b65a4eda 2589 free_huge_page(page);
db71ef79 2590 spin_lock_irq(&hugetlb_lock);
e4e574b7
AL
2591
2592 return ret;
2593}
2594
2595/*
e5bbc8a6
MK
2596 * This routine has two main purposes:
2597 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2598 * in unused_resv_pages. This corresponds to the prior adjustments made
2599 * to the associated reservation map.
2600 * 2) Free any unused surplus pages that may have been allocated to satisfy
2601 * the reservation. As many as unused_resv_pages may be freed.
e4e574b7 2602 */
a5516438
AK
2603static void return_unused_surplus_pages(struct hstate *h,
2604 unsigned long unused_resv_pages)
e4e574b7 2605{
e4e574b7 2606 unsigned long nr_pages;
10c6ec49
MK
2607 struct page *page;
2608 LIST_HEAD(page_list);
2609
9487ca60 2610 lockdep_assert_held(&hugetlb_lock);
10c6ec49
MK
2611 /* Uncommit the reservation */
2612 h->resv_huge_pages -= unused_resv_pages;
e4e574b7 2613
c0531714 2614 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
e5bbc8a6 2615 goto out;
aa888a74 2616
e5bbc8a6
MK
2617 /*
2618 * Part (or even all) of the reservation could have been backed
2619 * by pre-allocated pages. Only free surplus pages.
2620 */
a5516438 2621 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
e4e574b7 2622
685f3457
LS
2623 /*
2624 * We want to release as many surplus pages as possible, spread
9b5e5d0f
LS
2625 * evenly across all nodes with memory. Iterate across these nodes
2626 * until we can no longer free unreserved surplus pages. This occurs
2627 * when the nodes with surplus pages have no free pages.
10c6ec49 2628 * remove_pool_huge_page() will balance the freed pages across the
9b5e5d0f 2629 * on-line nodes with memory and will handle the hstate accounting.
685f3457
LS
2630 */
2631 while (nr_pages--) {
10c6ec49
MK
2632 page = remove_pool_huge_page(h, &node_states[N_MEMORY], 1);
2633 if (!page)
e5bbc8a6 2634 goto out;
10c6ec49
MK
2635
2636 list_add(&page->lru, &page_list);
e4e574b7 2637 }
e5bbc8a6
MK
2638
2639out:
db71ef79 2640 spin_unlock_irq(&hugetlb_lock);
10c6ec49 2641 update_and_free_pages_bulk(h, &page_list);
db71ef79 2642 spin_lock_irq(&hugetlb_lock);
e4e574b7
AL
2643}
2644
5e911373 2645
c37f9fb1 2646/*
feba16e2 2647 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
5e911373 2648 * are used by the huge page allocation routines to manage reservations.
cf3ad20b
MK
2649 *
2650 * vma_needs_reservation is called to determine if the huge page at addr
2651 * within the vma has an associated reservation. If a reservation is
2652 * needed, the value 1 is returned. The caller is then responsible for
2653 * managing the global reservation and subpool usage counts. After
2654 * the huge page has been allocated, vma_commit_reservation is called
feba16e2
MK
2655 * to add the page to the reservation map. If the page allocation fails,
2656 * the reservation must be ended instead of committed. vma_end_reservation
2657 * is called in such cases.
cf3ad20b
MK
2658 *
2659 * In the normal case, vma_commit_reservation returns the same value
2660 * as the preceding vma_needs_reservation call. The only time this
2661 * is not the case is if a reserve map was changed between calls. It
2662 * is the responsibility of the caller to notice the difference and
2663 * take appropriate action.
96b96a96
MK
2664 *
2665 * vma_add_reservation is used in error paths where a reservation must
2666 * be restored when a newly allocated huge page must be freed. It is
2667 * to be called after calling vma_needs_reservation to determine if a
2668 * reservation exists.
846be085
MK
2669 *
2670 * vma_del_reservation is used in error paths where an entry in the reserve
2671 * map was created during huge page allocation and must be removed. It is to
2672 * be called after calling vma_needs_reservation to determine if a reservation
2673 * exists.
c37f9fb1 2674 */
5e911373
MK
2675enum vma_resv_mode {
2676 VMA_NEEDS_RESV,
2677 VMA_COMMIT_RESV,
feba16e2 2678 VMA_END_RESV,
96b96a96 2679 VMA_ADD_RESV,
846be085 2680 VMA_DEL_RESV,
5e911373 2681};
cf3ad20b
MK
2682static long __vma_reservation_common(struct hstate *h,
2683 struct vm_area_struct *vma, unsigned long addr,
5e911373 2684 enum vma_resv_mode mode)
c37f9fb1 2685{
4e35f483
JK
2686 struct resv_map *resv;
2687 pgoff_t idx;
cf3ad20b 2688 long ret;
0db9d74e 2689 long dummy_out_regions_needed;
c37f9fb1 2690
4e35f483
JK
2691 resv = vma_resv_map(vma);
2692 if (!resv)
84afd99b 2693 return 1;
c37f9fb1 2694
4e35f483 2695 idx = vma_hugecache_offset(h, vma, addr);
5e911373
MK
2696 switch (mode) {
2697 case VMA_NEEDS_RESV:
0db9d74e
MA
2698 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2699 /* We assume that vma_reservation_* routines always operate on
2700 * 1 page, and that adding to resv map a 1 page entry can only
2701 * ever require 1 region.
2702 */
2703 VM_BUG_ON(dummy_out_regions_needed != 1);
5e911373
MK
2704 break;
2705 case VMA_COMMIT_RESV:
075a61d0 2706 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
0db9d74e
MA
2707 /* region_add calls of range 1 should never fail. */
2708 VM_BUG_ON(ret < 0);
5e911373 2709 break;
feba16e2 2710 case VMA_END_RESV:
0db9d74e 2711 region_abort(resv, idx, idx + 1, 1);
5e911373
MK
2712 ret = 0;
2713 break;
96b96a96 2714 case VMA_ADD_RESV:
0db9d74e 2715 if (vma->vm_flags & VM_MAYSHARE) {
075a61d0 2716 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
0db9d74e
MA
2717 /* region_add calls of range 1 should never fail. */
2718 VM_BUG_ON(ret < 0);
2719 } else {
2720 region_abort(resv, idx, idx + 1, 1);
96b96a96
MK
2721 ret = region_del(resv, idx, idx + 1);
2722 }
2723 break;
846be085
MK
2724 case VMA_DEL_RESV:
2725 if (vma->vm_flags & VM_MAYSHARE) {
2726 region_abort(resv, idx, idx + 1, 1);
2727 ret = region_del(resv, idx, idx + 1);
2728 } else {
2729 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2730 /* region_add calls of range 1 should never fail. */
2731 VM_BUG_ON(ret < 0);
2732 }
2733 break;
5e911373
MK
2734 default:
2735 BUG();
2736 }
84afd99b 2737
846be085 2738 if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV)
cf3ad20b 2739 return ret;
bf3d12b9
ML
2740 /*
2741 * We know private mapping must have HPAGE_RESV_OWNER set.
2742 *
2743 * In most cases, reserves always exist for private mappings.
2744 * However, a file associated with mapping could have been
2745 * hole punched or truncated after reserves were consumed.
2746 * As subsequent fault on such a range will not use reserves.
2747 * Subtle - The reserve map for private mappings has the
2748 * opposite meaning than that of shared mappings. If NO
2749 * entry is in the reserve map, it means a reservation exists.
2750 * If an entry exists in the reserve map, it means the
2751 * reservation has already been consumed. As a result, the
2752 * return value of this routine is the opposite of the
2753 * value returned from reserve map manipulation routines above.
2754 */
2755 if (ret > 0)
2756 return 0;
2757 if (ret == 0)
2758 return 1;
2759 return ret;
c37f9fb1 2760}
cf3ad20b
MK
2761
2762static long vma_needs_reservation(struct hstate *h,
a5516438 2763 struct vm_area_struct *vma, unsigned long addr)
c37f9fb1 2764{
5e911373 2765 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
cf3ad20b 2766}
84afd99b 2767
cf3ad20b
MK
2768static long vma_commit_reservation(struct hstate *h,
2769 struct vm_area_struct *vma, unsigned long addr)
2770{
5e911373
MK
2771 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2772}
2773
feba16e2 2774static void vma_end_reservation(struct hstate *h,
5e911373
MK
2775 struct vm_area_struct *vma, unsigned long addr)
2776{
feba16e2 2777 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
c37f9fb1
AW
2778}
2779
96b96a96
MK
2780static long vma_add_reservation(struct hstate *h,
2781 struct vm_area_struct *vma, unsigned long addr)
2782{
2783 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2784}
2785
846be085
MK
2786static long vma_del_reservation(struct hstate *h,
2787 struct vm_area_struct *vma, unsigned long addr)
2788{
2789 return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV);
2790}
2791
96b96a96 2792/*
846be085
MK
2793 * This routine is called to restore reservation information on error paths.
2794 * It should ONLY be called for pages allocated via alloc_huge_page(), and
2795 * the hugetlb mutex should remain held when calling this routine.
2796 *
2797 * It handles two specific cases:
2798 * 1) A reservation was in place and the page consumed the reservation.
2799 * HPageRestoreReserve is set in the page.
2800 * 2) No reservation was in place for the page, so HPageRestoreReserve is
2801 * not set. However, alloc_huge_page always updates the reserve map.
2802 *
2803 * In case 1, free_huge_page later in the error path will increment the
2804 * global reserve count. But, free_huge_page does not have enough context
2805 * to adjust the reservation map. This case deals primarily with private
2806 * mappings. Adjust the reserve map here to be consistent with global
2807 * reserve count adjustments to be made by free_huge_page. Make sure the
2808 * reserve map indicates there is a reservation present.
2809 *
2810 * In case 2, simply undo reserve map modifications done by alloc_huge_page.
96b96a96 2811 */
846be085
MK
2812void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
2813 unsigned long address, struct page *page)
96b96a96 2814{
846be085 2815 long rc = vma_needs_reservation(h, vma, address);
96b96a96 2816
846be085
MK
2817 if (HPageRestoreReserve(page)) {
2818 if (unlikely(rc < 0))
96b96a96
MK
2819 /*
2820 * Rare out of memory condition in reserve map
d6995da3 2821 * manipulation. Clear HPageRestoreReserve so that
96b96a96
MK
2822 * global reserve count will not be incremented
2823 * by free_huge_page. This will make it appear
2824 * as though the reservation for this page was
2825 * consumed. This may prevent the task from
2826 * faulting in the page at a later time. This
2827 * is better than inconsistent global huge page
2828 * accounting of reserve counts.
2829 */
d6995da3 2830 ClearHPageRestoreReserve(page);
846be085
MK
2831 else if (rc)
2832 (void)vma_add_reservation(h, vma, address);
2833 else
2834 vma_end_reservation(h, vma, address);
2835 } else {
2836 if (!rc) {
2837 /*
2838 * This indicates there is an entry in the reserve map
c7b1850d 2839 * not added by alloc_huge_page. We know it was added
846be085
MK
2840 * before the alloc_huge_page call, otherwise
2841 * HPageRestoreReserve would be set on the page.
2842 * Remove the entry so that a subsequent allocation
2843 * does not consume a reservation.
2844 */
2845 rc = vma_del_reservation(h, vma, address);
2846 if (rc < 0)
96b96a96 2847 /*
846be085
MK
2848 * VERY rare out of memory condition. Since
2849 * we can not delete the entry, set
2850 * HPageRestoreReserve so that the reserve
2851 * count will be incremented when the page
2852 * is freed. This reserve will be consumed
2853 * on a subsequent allocation.
96b96a96 2854 */
846be085
MK
2855 SetHPageRestoreReserve(page);
2856 } else if (rc < 0) {
2857 /*
2858 * Rare out of memory condition from
2859 * vma_needs_reservation call. Memory allocation is
2860 * only attempted if a new entry is needed. Therefore,
2861 * this implies there is not an entry in the
2862 * reserve map.
2863 *
2864 * For shared mappings, no entry in the map indicates
2865 * no reservation. We are done.
2866 */
2867 if (!(vma->vm_flags & VM_MAYSHARE))
2868 /*
2869 * For private mappings, no entry indicates
2870 * a reservation is present. Since we can
2871 * not add an entry, set SetHPageRestoreReserve
2872 * on the page so reserve count will be
2873 * incremented when freed. This reserve will
2874 * be consumed on a subsequent allocation.
2875 */
2876 SetHPageRestoreReserve(page);
96b96a96 2877 } else
846be085
MK
2878 /*
2879 * No reservation present, do nothing
2880 */
2881 vma_end_reservation(h, vma, address);
96b96a96
MK
2882 }
2883}
2884
369fa227 2885/*
19fc1a7e
SK
2886 * alloc_and_dissolve_hugetlb_folio - Allocate a new folio and dissolve
2887 * the old one
369fa227 2888 * @h: struct hstate old page belongs to
19fc1a7e 2889 * @old_folio: Old folio to dissolve
ae37c7ff 2890 * @list: List to isolate the page in case we need to
369fa227
OS
2891 * Returns 0 on success, otherwise negated error.
2892 */
19fc1a7e
SK
2893static int alloc_and_dissolve_hugetlb_folio(struct hstate *h,
2894 struct folio *old_folio, struct list_head *list)
369fa227
OS
2895{
2896 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
de656ed3 2897 int nid = folio_nid(old_folio);
de656ed3 2898 struct folio *new_folio;
369fa227
OS
2899 int ret = 0;
2900
2901 /*
19fc1a7e
SK
2902 * Before dissolving the folio, we need to allocate a new one for the
2903 * pool to remain stable. Here, we allocate the folio and 'prep' it
f41f2ed4
MS
2904 * by doing everything but actually updating counters and adding to
2905 * the pool. This simplifies and let us do most of the processing
2906 * under the lock.
369fa227 2907 */
19fc1a7e
SK
2908 new_folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid, NULL, NULL);
2909 if (!new_folio)
369fa227 2910 return -ENOMEM;
de656ed3 2911 __prep_new_hugetlb_folio(h, new_folio);
369fa227
OS
2912
2913retry:
2914 spin_lock_irq(&hugetlb_lock);
de656ed3 2915 if (!folio_test_hugetlb(old_folio)) {
369fa227 2916 /*
19fc1a7e 2917 * Freed from under us. Drop new_folio too.
369fa227
OS
2918 */
2919 goto free_new;
de656ed3 2920 } else if (folio_ref_count(old_folio)) {
369fa227 2921 /*
19fc1a7e 2922 * Someone has grabbed the folio, try to isolate it here.
ae37c7ff 2923 * Fail with -EBUSY if not possible.
369fa227 2924 */
ae37c7ff 2925 spin_unlock_irq(&hugetlb_lock);
19fc1a7e 2926 ret = isolate_hugetlb(&old_folio->page, list);
ae37c7ff 2927 spin_lock_irq(&hugetlb_lock);
369fa227 2928 goto free_new;
de656ed3 2929 } else if (!folio_test_hugetlb_freed(old_folio)) {
369fa227 2930 /*
19fc1a7e 2931 * Folio's refcount is 0 but it has not been enqueued in the
369fa227
OS
2932 * freelist yet. Race window is small, so we can succeed here if
2933 * we retry.
2934 */
2935 spin_unlock_irq(&hugetlb_lock);
2936 cond_resched();
2937 goto retry;
2938 } else {
2939 /*
19fc1a7e 2940 * Ok, old_folio is still a genuine free hugepage. Remove it from
369fa227
OS
2941 * the freelist and decrease the counters. These will be
2942 * incremented again when calling __prep_account_new_huge_page()
240d67a8
SK
2943 * and enqueue_hugetlb_folio() for new_folio. The counters will
2944 * remain stable since this happens under the lock.
369fa227 2945 */
cfd5082b 2946 remove_hugetlb_folio(h, old_folio, false);
369fa227
OS
2947
2948 /*
19fc1a7e 2949 * Ref count on new_folio is already zero as it was dropped
b65a4eda 2950 * earlier. It can be directly added to the pool free list.
369fa227 2951 */
369fa227 2952 __prep_account_new_huge_page(h, nid);
240d67a8 2953 enqueue_hugetlb_folio(h, new_folio);
369fa227
OS
2954
2955 /*
19fc1a7e 2956 * Folio has been replaced, we can safely free the old one.
369fa227
OS
2957 */
2958 spin_unlock_irq(&hugetlb_lock);
d6ef19e2 2959 update_and_free_hugetlb_folio(h, old_folio, false);
369fa227
OS
2960 }
2961
2962 return ret;
2963
2964free_new:
2965 spin_unlock_irq(&hugetlb_lock);
19fc1a7e 2966 /* Folio has a zero ref count, but needs a ref to be freed */
de656ed3 2967 folio_ref_unfreeze(new_folio, 1);
d6ef19e2 2968 update_and_free_hugetlb_folio(h, new_folio, false);
369fa227
OS
2969
2970 return ret;
2971}
2972
ae37c7ff 2973int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list)
369fa227
OS
2974{
2975 struct hstate *h;
d5e33bd8 2976 struct folio *folio = page_folio(page);
ae37c7ff 2977 int ret = -EBUSY;
369fa227
OS
2978
2979 /*
2980 * The page might have been dissolved from under our feet, so make sure
2981 * to carefully check the state under the lock.
2982 * Return success when racing as if we dissolved the page ourselves.
2983 */
2984 spin_lock_irq(&hugetlb_lock);
d5e33bd8
SK
2985 if (folio_test_hugetlb(folio)) {
2986 h = folio_hstate(folio);
369fa227
OS
2987 } else {
2988 spin_unlock_irq(&hugetlb_lock);
2989 return 0;
2990 }
2991 spin_unlock_irq(&hugetlb_lock);
2992
2993 /*
2994 * Fence off gigantic pages as there is a cyclic dependency between
2995 * alloc_contig_range and them. Return -ENOMEM as this has the effect
2996 * of bailing out right away without further retrying.
2997 */
2998 if (hstate_is_gigantic(h))
2999 return -ENOMEM;
3000
d5e33bd8 3001 if (folio_ref_count(folio) && !isolate_hugetlb(&folio->page, list))
ae37c7ff 3002 ret = 0;
d5e33bd8 3003 else if (!folio_ref_count(folio))
19fc1a7e 3004 ret = alloc_and_dissolve_hugetlb_folio(h, folio, list);
ae37c7ff
OS
3005
3006 return ret;
369fa227
OS
3007}
3008
70c3547e 3009struct page *alloc_huge_page(struct vm_area_struct *vma,
04f2cbe3 3010 unsigned long addr, int avoid_reserve)
1da177e4 3011{
90481622 3012 struct hugepage_subpool *spool = subpool_vma(vma);
a5516438 3013 struct hstate *h = hstate_vma(vma);
348ea204 3014 struct page *page;
d4ab0316 3015 struct folio *folio;
d85f69b0
MK
3016 long map_chg, map_commit;
3017 long gbl_chg;
6d76dcf4
AK
3018 int ret, idx;
3019 struct hugetlb_cgroup *h_cg;
08cf9faf 3020 bool deferred_reserve;
a1e78772 3021
6d76dcf4 3022 idx = hstate_index(h);
a1e78772 3023 /*
d85f69b0
MK
3024 * Examine the region/reserve map to determine if the process
3025 * has a reservation for the page to be allocated. A return
3026 * code of zero indicates a reservation exists (no change).
a1e78772 3027 */
d85f69b0
MK
3028 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
3029 if (map_chg < 0)
76dcee75 3030 return ERR_PTR(-ENOMEM);
d85f69b0
MK
3031
3032 /*
3033 * Processes that did not create the mapping will have no
3034 * reserves as indicated by the region/reserve map. Check
3035 * that the allocation will not exceed the subpool limit.
3036 * Allocations for MAP_NORESERVE mappings also need to be
3037 * checked against any subpool limit.
3038 */
3039 if (map_chg || avoid_reserve) {
3040 gbl_chg = hugepage_subpool_get_pages(spool, 1);
3041 if (gbl_chg < 0) {
feba16e2 3042 vma_end_reservation(h, vma, addr);
76dcee75 3043 return ERR_PTR(-ENOSPC);
5e911373 3044 }
1da177e4 3045
d85f69b0
MK
3046 /*
3047 * Even though there was no reservation in the region/reserve
3048 * map, there could be reservations associated with the
3049 * subpool that can be used. This would be indicated if the
3050 * return value of hugepage_subpool_get_pages() is zero.
3051 * However, if avoid_reserve is specified we still avoid even
3052 * the subpool reservations.
3053 */
3054 if (avoid_reserve)
3055 gbl_chg = 1;
3056 }
3057
08cf9faf
MA
3058 /* If this allocation is not consuming a reservation, charge it now.
3059 */
6501fe5f 3060 deferred_reserve = map_chg || avoid_reserve;
08cf9faf
MA
3061 if (deferred_reserve) {
3062 ret = hugetlb_cgroup_charge_cgroup_rsvd(
3063 idx, pages_per_huge_page(h), &h_cg);
3064 if (ret)
3065 goto out_subpool_put;
3066 }
3067
6d76dcf4 3068 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
8f34af6f 3069 if (ret)
08cf9faf 3070 goto out_uncharge_cgroup_reservation;
8f34af6f 3071
db71ef79 3072 spin_lock_irq(&hugetlb_lock);
d85f69b0
MK
3073 /*
3074 * glb_chg is passed to indicate whether or not a page must be taken
3075 * from the global free pool (global change). gbl_chg == 0 indicates
3076 * a reservation exists for the allocation.
3077 */
3078 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
81a6fcae 3079 if (!page) {
db71ef79 3080 spin_unlock_irq(&hugetlb_lock);
0c397dae 3081 page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
8f34af6f
JZ
3082 if (!page)
3083 goto out_uncharge_cgroup;
12df140f 3084 spin_lock_irq(&hugetlb_lock);
a88c7695 3085 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
d6995da3 3086 SetHPageRestoreReserve(page);
a88c7695
NH
3087 h->resv_huge_pages--;
3088 }
15a8d68e 3089 list_add(&page->lru, &h->hugepage_activelist);
2b21624f 3090 set_page_refcounted(page);
81a6fcae 3091 /* Fall through */
68842c9b 3092 }
d4ab0316 3093 folio = page_folio(page);
81a6fcae 3094 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
08cf9faf
MA
3095 /* If allocation is not consuming a reservation, also store the
3096 * hugetlb_cgroup pointer on the page.
3097 */
3098 if (deferred_reserve) {
3099 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
3100 h_cg, page);
3101 }
3102
db71ef79 3103 spin_unlock_irq(&hugetlb_lock);
348ea204 3104
d6995da3 3105 hugetlb_set_page_subpool(page, spool);
90d8b7e6 3106
d85f69b0
MK
3107 map_commit = vma_commit_reservation(h, vma, addr);
3108 if (unlikely(map_chg > map_commit)) {
33039678
MK
3109 /*
3110 * The page was added to the reservation map between
3111 * vma_needs_reservation and vma_commit_reservation.
3112 * This indicates a race with hugetlb_reserve_pages.
3113 * Adjust for the subpool count incremented above AND
3114 * in hugetlb_reserve_pages for the same page. Also,
3115 * the reservation count added in hugetlb_reserve_pages
3116 * no longer applies.
3117 */
3118 long rsv_adjust;
3119
3120 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
3121 hugetlb_acct_memory(h, -rsv_adjust);
79aa925b 3122 if (deferred_reserve)
d4ab0316
SK
3123 hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
3124 pages_per_huge_page(h), folio);
33039678 3125 }
90d8b7e6 3126 return page;
8f34af6f
JZ
3127
3128out_uncharge_cgroup:
3129 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
08cf9faf
MA
3130out_uncharge_cgroup_reservation:
3131 if (deferred_reserve)
3132 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
3133 h_cg);
8f34af6f 3134out_subpool_put:
d85f69b0 3135 if (map_chg || avoid_reserve)
8f34af6f 3136 hugepage_subpool_put_pages(spool, 1);
feba16e2 3137 vma_end_reservation(h, vma, addr);
8f34af6f 3138 return ERR_PTR(-ENOSPC);
b45b5bd6
DG
3139}
3140
b5389086 3141int alloc_bootmem_huge_page(struct hstate *h, int nid)
e24a1307 3142 __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
b5389086 3143int __alloc_bootmem_huge_page(struct hstate *h, int nid)
aa888a74 3144{
b5389086 3145 struct huge_bootmem_page *m = NULL; /* initialize for clang */
b2261026 3146 int nr_nodes, node;
aa888a74 3147
b5389086
ZY
3148 /* do node specific alloc */
3149 if (nid != NUMA_NO_NODE) {
3150 m = memblock_alloc_try_nid_raw(huge_page_size(h), huge_page_size(h),
3151 0, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
3152 if (!m)
3153 return 0;
3154 goto found;
3155 }
3156 /* allocate from next node when distributing huge pages */
b2261026 3157 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
b5389086 3158 m = memblock_alloc_try_nid_raw(
8b89a116 3159 huge_page_size(h), huge_page_size(h),
97ad1087 3160 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
b5389086
ZY
3161 /*
3162 * Use the beginning of the huge page to store the
3163 * huge_bootmem_page struct (until gather_bootmem
3164 * puts them into the mem_map).
3165 */
3166 if (!m)
3167 return 0;
3168 goto found;
aa888a74 3169 }
aa888a74
AK
3170
3171found:
aa888a74 3172 /* Put them into a private list first because mem_map is not up yet */
330d6e48 3173 INIT_LIST_HEAD(&m->list);
aa888a74
AK
3174 list_add(&m->list, &huge_boot_pages);
3175 m->hstate = h;
3176 return 1;
3177}
3178
48b8d744
MK
3179/*
3180 * Put bootmem huge pages into the standard lists after mem_map is up.
3181 * Note: This only applies to gigantic (order > MAX_ORDER) pages.
3182 */
aa888a74
AK
3183static void __init gather_bootmem_prealloc(void)
3184{
3185 struct huge_bootmem_page *m;
3186
3187 list_for_each_entry(m, &huge_boot_pages, list) {
40d18ebf 3188 struct page *page = virt_to_page(m);
7f325a8d 3189 struct folio *folio = page_folio(page);
aa888a74 3190 struct hstate *h = m->hstate;
ee8f248d 3191
48b8d744 3192 VM_BUG_ON(!hstate_is_gigantic(h));
d1c60955
SK
3193 WARN_ON(folio_ref_count(folio) != 1);
3194 if (prep_compound_gigantic_folio(folio, huge_page_order(h))) {
3195 WARN_ON(folio_test_reserved(folio));
3196 prep_new_hugetlb_folio(h, folio, folio_nid(folio));
2b21624f 3197 free_huge_page(page); /* add to the hugepage allocator */
7118fc29 3198 } else {
416d85ed 3199 /* VERY unlikely inflated ref count on a tail page */
7f325a8d 3200 free_gigantic_folio(folio, huge_page_order(h));
7118fc29 3201 }
af0fb9df 3202
b0320c7b 3203 /*
48b8d744
MK
3204 * We need to restore the 'stolen' pages to totalram_pages
3205 * in order to fix confusing memory reports from free(1) and
3206 * other side-effects, like CommitLimit going negative.
b0320c7b 3207 */
48b8d744 3208 adjust_managed_page_count(page, pages_per_huge_page(h));
520495fe 3209 cond_resched();
aa888a74
AK
3210 }
3211}
b5389086
ZY
3212static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid)
3213{
3214 unsigned long i;
3215 char buf[32];
3216
3217 for (i = 0; i < h->max_huge_pages_node[nid]; ++i) {
3218 if (hstate_is_gigantic(h)) {
3219 if (!alloc_bootmem_huge_page(h, nid))
3220 break;
3221 } else {
19fc1a7e 3222 struct folio *folio;
b5389086
ZY
3223 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
3224
19fc1a7e 3225 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid,
b5389086 3226 &node_states[N_MEMORY], NULL);
19fc1a7e 3227 if (!folio)
b5389086 3228 break;
19fc1a7e 3229 free_huge_page(&folio->page); /* free it into the hugepage allocator */
b5389086
ZY
3230 }
3231 cond_resched();
3232 }
3233 if (i == h->max_huge_pages_node[nid])
3234 return;
3235
3236 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3237 pr_warn("HugeTLB: allocating %u of page size %s failed node%d. Only allocated %lu hugepages.\n",
3238 h->max_huge_pages_node[nid], buf, nid, i);
3239 h->max_huge_pages -= (h->max_huge_pages_node[nid] - i);
3240 h->max_huge_pages_node[nid] = i;
3241}
aa888a74 3242
8faa8b07 3243static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1da177e4
LT
3244{
3245 unsigned long i;
f60858f9 3246 nodemask_t *node_alloc_noretry;
b5389086
ZY
3247 bool node_specific_alloc = false;
3248
3249 /* skip gigantic hugepages allocation if hugetlb_cma enabled */
3250 if (hstate_is_gigantic(h) && hugetlb_cma_size) {
3251 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
3252 return;
3253 }
3254
3255 /* do node specific alloc */
0a7a0f6f 3256 for_each_online_node(i) {
b5389086
ZY
3257 if (h->max_huge_pages_node[i] > 0) {
3258 hugetlb_hstate_alloc_pages_onenode(h, i);
3259 node_specific_alloc = true;
3260 }
3261 }
f60858f9 3262
b5389086
ZY
3263 if (node_specific_alloc)
3264 return;
3265
3266 /* below will do all node balanced alloc */
f60858f9
MK
3267 if (!hstate_is_gigantic(h)) {
3268 /*
3269 * Bit mask controlling how hard we retry per-node allocations.
3270 * Ignore errors as lower level routines can deal with
3271 * node_alloc_noretry == NULL. If this kmalloc fails at boot
3272 * time, we are likely in bigger trouble.
3273 */
3274 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
3275 GFP_KERNEL);
3276 } else {
3277 /* allocations done at boot time */
3278 node_alloc_noretry = NULL;
3279 }
3280
3281 /* bit mask controlling how hard we retry per-node allocations */
3282 if (node_alloc_noretry)
3283 nodes_clear(*node_alloc_noretry);
a5516438 3284
e5ff2159 3285 for (i = 0; i < h->max_huge_pages; ++i) {
bae7f4ae 3286 if (hstate_is_gigantic(h)) {
b5389086 3287 if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE))
aa888a74 3288 break;
0c397dae 3289 } else if (!alloc_pool_huge_page(h,
f60858f9
MK
3290 &node_states[N_MEMORY],
3291 node_alloc_noretry))
1da177e4 3292 break;
69ed779a 3293 cond_resched();
1da177e4 3294 }
d715cf80
LH
3295 if (i < h->max_huge_pages) {
3296 char buf[32];
3297
c6247f72 3298 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
d715cf80
LH
3299 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n",
3300 h->max_huge_pages, buf, i);
3301 h->max_huge_pages = i;
3302 }
f60858f9 3303 kfree(node_alloc_noretry);
e5ff2159
AK
3304}
3305
3306static void __init hugetlb_init_hstates(void)
3307{
79dfc695 3308 struct hstate *h, *h2;
e5ff2159
AK
3309
3310 for_each_hstate(h) {
8faa8b07 3311 /* oversize hugepages were init'ed in early boot */
bae7f4ae 3312 if (!hstate_is_gigantic(h))
8faa8b07 3313 hugetlb_hstate_alloc_pages(h);
79dfc695
MK
3314
3315 /*
3316 * Set demote order for each hstate. Note that
3317 * h->demote_order is initially 0.
3318 * - We can not demote gigantic pages if runtime freeing
3319 * is not supported, so skip this.
a01f4390
MK
3320 * - If CMA allocation is possible, we can not demote
3321 * HUGETLB_PAGE_ORDER or smaller size pages.
79dfc695
MK
3322 */
3323 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3324 continue;
a01f4390
MK
3325 if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER)
3326 continue;
79dfc695
MK
3327 for_each_hstate(h2) {
3328 if (h2 == h)
3329 continue;
3330 if (h2->order < h->order &&
3331 h2->order > h->demote_order)
3332 h->demote_order = h2->order;
3333 }
e5ff2159
AK
3334 }
3335}
3336
3337static void __init report_hugepages(void)
3338{
3339 struct hstate *h;
3340
3341 for_each_hstate(h) {
4abd32db 3342 char buf[32];
c6247f72
MW
3343
3344 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
6213834c 3345 pr_info("HugeTLB: registered %s page size, pre-allocated %ld pages\n",
c6247f72 3346 buf, h->free_huge_pages);
6213834c
MS
3347 pr_info("HugeTLB: %d KiB vmemmap can be freed for a %s page\n",
3348 hugetlb_vmemmap_optimizable_size(h) / SZ_1K, buf);
e5ff2159
AK
3349 }
3350}
3351
1da177e4 3352#ifdef CONFIG_HIGHMEM
6ae11b27
LS
3353static void try_to_free_low(struct hstate *h, unsigned long count,
3354 nodemask_t *nodes_allowed)
1da177e4 3355{
4415cc8d 3356 int i;
1121828a 3357 LIST_HEAD(page_list);
4415cc8d 3358
9487ca60 3359 lockdep_assert_held(&hugetlb_lock);
bae7f4ae 3360 if (hstate_is_gigantic(h))
aa888a74
AK
3361 return;
3362
1121828a
MK
3363 /*
3364 * Collect pages to be freed on a list, and free after dropping lock
3365 */
6ae11b27 3366 for_each_node_mask(i, *nodes_allowed) {
10c6ec49 3367 struct page *page, *next;
a5516438
AK
3368 struct list_head *freel = &h->hugepage_freelists[i];
3369 list_for_each_entry_safe(page, next, freel, lru) {
3370 if (count >= h->nr_huge_pages)
1121828a 3371 goto out;
1da177e4
LT
3372 if (PageHighMem(page))
3373 continue;
cfd5082b 3374 remove_hugetlb_folio(h, page_folio(page), false);
1121828a 3375 list_add(&page->lru, &page_list);
1da177e4
LT
3376 }
3377 }
1121828a
MK
3378
3379out:
db71ef79 3380 spin_unlock_irq(&hugetlb_lock);
10c6ec49 3381 update_and_free_pages_bulk(h, &page_list);
db71ef79 3382 spin_lock_irq(&hugetlb_lock);
1da177e4
LT
3383}
3384#else
6ae11b27
LS
3385static inline void try_to_free_low(struct hstate *h, unsigned long count,
3386 nodemask_t *nodes_allowed)
1da177e4
LT
3387{
3388}
3389#endif
3390
20a0307c
WF
3391/*
3392 * Increment or decrement surplus_huge_pages. Keep node-specific counters
3393 * balanced by operating on them in a round-robin fashion.
3394 * Returns 1 if an adjustment was made.
3395 */
6ae11b27
LS
3396static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
3397 int delta)
20a0307c 3398{
b2261026 3399 int nr_nodes, node;
20a0307c 3400
9487ca60 3401 lockdep_assert_held(&hugetlb_lock);
20a0307c 3402 VM_BUG_ON(delta != -1 && delta != 1);
20a0307c 3403
b2261026
JK
3404 if (delta < 0) {
3405 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
3406 if (h->surplus_huge_pages_node[node])
3407 goto found;
e8c5c824 3408 }
b2261026
JK
3409 } else {
3410 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3411 if (h->surplus_huge_pages_node[node] <
3412 h->nr_huge_pages_node[node])
3413 goto found;
e8c5c824 3414 }
b2261026
JK
3415 }
3416 return 0;
20a0307c 3417
b2261026
JK
3418found:
3419 h->surplus_huge_pages += delta;
3420 h->surplus_huge_pages_node[node] += delta;
3421 return 1;
20a0307c
WF
3422}
3423
a5516438 3424#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
fd875dca 3425static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
4eb0716e 3426 nodemask_t *nodes_allowed)
1da177e4 3427{
7893d1d5 3428 unsigned long min_count, ret;
10c6ec49
MK
3429 struct page *page;
3430 LIST_HEAD(page_list);
f60858f9
MK
3431 NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
3432
3433 /*
3434 * Bit mask controlling how hard we retry per-node allocations.
3435 * If we can not allocate the bit mask, do not attempt to allocate
3436 * the requested huge pages.
3437 */
3438 if (node_alloc_noretry)
3439 nodes_clear(*node_alloc_noretry);
3440 else
3441 return -ENOMEM;
1da177e4 3442
29383967
MK
3443 /*
3444 * resize_lock mutex prevents concurrent adjustments to number of
3445 * pages in hstate via the proc/sysfs interfaces.
3446 */
3447 mutex_lock(&h->resize_lock);
b65d4adb 3448 flush_free_hpage_work(h);
db71ef79 3449 spin_lock_irq(&hugetlb_lock);
4eb0716e 3450
fd875dca
MK
3451 /*
3452 * Check for a node specific request.
3453 * Changing node specific huge page count may require a corresponding
3454 * change to the global count. In any case, the passed node mask
3455 * (nodes_allowed) will restrict alloc/free to the specified node.
3456 */
3457 if (nid != NUMA_NO_NODE) {
3458 unsigned long old_count = count;
3459
3460 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
3461 /*
3462 * User may have specified a large count value which caused the
3463 * above calculation to overflow. In this case, they wanted
3464 * to allocate as many huge pages as possible. Set count to
3465 * largest possible value to align with their intention.
3466 */
3467 if (count < old_count)
3468 count = ULONG_MAX;
3469 }
3470
4eb0716e
AG
3471 /*
3472 * Gigantic pages runtime allocation depend on the capability for large
3473 * page range allocation.
3474 * If the system does not provide this feature, return an error when
3475 * the user tries to allocate gigantic pages but let the user free the
3476 * boottime allocated gigantic pages.
3477 */
3478 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
3479 if (count > persistent_huge_pages(h)) {
db71ef79 3480 spin_unlock_irq(&hugetlb_lock);
29383967 3481 mutex_unlock(&h->resize_lock);
f60858f9 3482 NODEMASK_FREE(node_alloc_noretry);
4eb0716e
AG
3483 return -EINVAL;
3484 }
3485 /* Fall through to decrease pool */
3486 }
aa888a74 3487
7893d1d5
AL
3488 /*
3489 * Increase the pool size
3490 * First take pages out of surplus state. Then make up the
3491 * remaining difference by allocating fresh huge pages.
d1c3fb1f 3492 *
0c397dae 3493 * We might race with alloc_surplus_huge_page() here and be unable
d1c3fb1f
NA
3494 * to convert a surplus huge page to a normal huge page. That is
3495 * not critical, though, it just means the overall size of the
3496 * pool might be one hugepage larger than it needs to be, but
3497 * within all the constraints specified by the sysctls.
7893d1d5 3498 */
a5516438 3499 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
6ae11b27 3500 if (!adjust_pool_surplus(h, nodes_allowed, -1))
7893d1d5
AL
3501 break;
3502 }
3503
a5516438 3504 while (count > persistent_huge_pages(h)) {
7893d1d5
AL
3505 /*
3506 * If this allocation races such that we no longer need the
3507 * page, free_huge_page will handle it by freeing the page
3508 * and reducing the surplus.
3509 */
db71ef79 3510 spin_unlock_irq(&hugetlb_lock);
649920c6
JH
3511
3512 /* yield cpu to avoid soft lockup */
3513 cond_resched();
3514
f60858f9
MK
3515 ret = alloc_pool_huge_page(h, nodes_allowed,
3516 node_alloc_noretry);
db71ef79 3517 spin_lock_irq(&hugetlb_lock);
7893d1d5
AL
3518 if (!ret)
3519 goto out;
3520
536240f2
MG
3521 /* Bail for signals. Probably ctrl-c from user */
3522 if (signal_pending(current))
3523 goto out;
7893d1d5 3524 }
7893d1d5
AL
3525
3526 /*
3527 * Decrease the pool size
3528 * First return free pages to the buddy allocator (being careful
3529 * to keep enough around to satisfy reservations). Then place
3530 * pages into surplus state as needed so the pool will shrink
3531 * to the desired size as pages become free.
d1c3fb1f
NA
3532 *
3533 * By placing pages into the surplus state independent of the
3534 * overcommit value, we are allowing the surplus pool size to
3535 * exceed overcommit. There are few sane options here. Since
0c397dae 3536 * alloc_surplus_huge_page() is checking the global counter,
d1c3fb1f
NA
3537 * though, we'll note that we're not allowed to exceed surplus
3538 * and won't grow the pool anywhere else. Not until one of the
3539 * sysctls are changed, or the surplus pages go out of use.
7893d1d5 3540 */
a5516438 3541 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
6b0c880d 3542 min_count = max(count, min_count);
6ae11b27 3543 try_to_free_low(h, min_count, nodes_allowed);
10c6ec49
MK
3544
3545 /*
3546 * Collect pages to be removed on list without dropping lock
3547 */
a5516438 3548 while (min_count < persistent_huge_pages(h)) {
10c6ec49
MK
3549 page = remove_pool_huge_page(h, nodes_allowed, 0);
3550 if (!page)
1da177e4 3551 break;
10c6ec49
MK
3552
3553 list_add(&page->lru, &page_list);
1da177e4 3554 }
10c6ec49 3555 /* free the pages after dropping lock */
db71ef79 3556 spin_unlock_irq(&hugetlb_lock);
10c6ec49 3557 update_and_free_pages_bulk(h, &page_list);
b65d4adb 3558 flush_free_hpage_work(h);
db71ef79 3559 spin_lock_irq(&hugetlb_lock);
10c6ec49 3560
a5516438 3561 while (count < persistent_huge_pages(h)) {
6ae11b27 3562 if (!adjust_pool_surplus(h, nodes_allowed, 1))
7893d1d5
AL
3563 break;
3564 }
3565out:
4eb0716e 3566 h->max_huge_pages = persistent_huge_pages(h);
db71ef79 3567 spin_unlock_irq(&hugetlb_lock);
29383967 3568 mutex_unlock(&h->resize_lock);
4eb0716e 3569
f60858f9
MK
3570 NODEMASK_FREE(node_alloc_noretry);
3571
4eb0716e 3572 return 0;
1da177e4
LT
3573}
3574
8531fc6f
MK
3575static int demote_free_huge_page(struct hstate *h, struct page *page)
3576{
3577 int i, nid = page_to_nid(page);
3578 struct hstate *target_hstate;
911565b8 3579 struct folio *folio = page_folio(page);
31731452 3580 struct page *subpage;
8531fc6f
MK
3581 int rc = 0;
3582
3583 target_hstate = size_to_hstate(PAGE_SIZE << h->demote_order);
3584
cfd5082b 3585 remove_hugetlb_folio_for_demote(h, folio, false);
8531fc6f
MK
3586 spin_unlock_irq(&hugetlb_lock);
3587
6213834c 3588 rc = hugetlb_vmemmap_restore(h, page);
8531fc6f
MK
3589 if (rc) {
3590 /* Allocation of vmemmmap failed, we can not demote page */
3591 spin_lock_irq(&hugetlb_lock);
3592 set_page_refcounted(page);
2f6c57d6 3593 add_hugetlb_folio(h, page_folio(page), false);
8531fc6f
MK
3594 return rc;
3595 }
3596
3597 /*
911565b8 3598 * Use destroy_compound_hugetlb_folio_for_demote for all huge page
8531fc6f
MK
3599 * sizes as it will not ref count pages.
3600 */
911565b8 3601 destroy_compound_hugetlb_folio_for_demote(folio, huge_page_order(h));
8531fc6f
MK
3602
3603 /*
3604 * Taking target hstate mutex synchronizes with set_max_huge_pages.
3605 * Without the mutex, pages added to target hstate could be marked
3606 * as surplus.
3607 *
3608 * Note that we already hold h->resize_lock. To prevent deadlock,
3609 * use the convention of always taking larger size hstate mutex first.
3610 */
3611 mutex_lock(&target_hstate->resize_lock);
3612 for (i = 0; i < pages_per_huge_page(h);
3613 i += pages_per_huge_page(target_hstate)) {
31731452 3614 subpage = nth_page(page, i);
d1c60955 3615 folio = page_folio(subpage);
8531fc6f 3616 if (hstate_is_gigantic(target_hstate))
d1c60955 3617 prep_compound_gigantic_folio_for_demote(folio,
8531fc6f
MK
3618 target_hstate->order);
3619 else
31731452
DB
3620 prep_compound_page(subpage, target_hstate->order);
3621 set_page_private(subpage, 0);
d1c60955 3622 prep_new_hugetlb_folio(target_hstate, folio, nid);
2b21624f 3623 free_huge_page(subpage);
8531fc6f
MK
3624 }
3625 mutex_unlock(&target_hstate->resize_lock);
3626
3627 spin_lock_irq(&hugetlb_lock);
3628
3629 /*
3630 * Not absolutely necessary, but for consistency update max_huge_pages
3631 * based on pool changes for the demoted page.
3632 */
3633 h->max_huge_pages--;
a43a83c7
ML
3634 target_hstate->max_huge_pages +=
3635 pages_per_huge_page(h) / pages_per_huge_page(target_hstate);
8531fc6f
MK
3636
3637 return rc;
3638}
3639
79dfc695
MK
3640static int demote_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
3641 __must_hold(&hugetlb_lock)
3642{
8531fc6f
MK
3643 int nr_nodes, node;
3644 struct page *page;
79dfc695
MK
3645
3646 lockdep_assert_held(&hugetlb_lock);
3647
3648 /* We should never get here if no demote order */
3649 if (!h->demote_order) {
3650 pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n");
3651 return -EINVAL; /* internal error */
3652 }
3653
8531fc6f 3654 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
5a317412
MK
3655 list_for_each_entry(page, &h->hugepage_freelists[node], lru) {
3656 if (PageHWPoison(page))
3657 continue;
3658
3659 return demote_free_huge_page(h, page);
8531fc6f
MK
3660 }
3661 }
3662
5a317412
MK
3663 /*
3664 * Only way to get here is if all pages on free lists are poisoned.
3665 * Return -EBUSY so that caller will not retry.
3666 */
3667 return -EBUSY;
79dfc695
MK
3668}
3669
a3437870
NA
3670#define HSTATE_ATTR_RO(_name) \
3671 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3672
79dfc695
MK
3673#define HSTATE_ATTR_WO(_name) \
3674 static struct kobj_attribute _name##_attr = __ATTR_WO(_name)
3675
a3437870 3676#define HSTATE_ATTR(_name) \
98bc26ac 3677 static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
a3437870
NA
3678
3679static struct kobject *hugepages_kobj;
3680static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3681
9a305230
LS
3682static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
3683
3684static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
a3437870
NA
3685{
3686 int i;
9a305230 3687
a3437870 3688 for (i = 0; i < HUGE_MAX_HSTATE; i++)
9a305230
LS
3689 if (hstate_kobjs[i] == kobj) {
3690 if (nidp)
3691 *nidp = NUMA_NO_NODE;
a3437870 3692 return &hstates[i];
9a305230
LS
3693 }
3694
3695 return kobj_to_node_hstate(kobj, nidp);
a3437870
NA
3696}
3697
06808b08 3698static ssize_t nr_hugepages_show_common(struct kobject *kobj,
a3437870
NA
3699 struct kobj_attribute *attr, char *buf)
3700{
9a305230
LS
3701 struct hstate *h;
3702 unsigned long nr_huge_pages;
3703 int nid;
3704
3705 h = kobj_to_hstate(kobj, &nid);
3706 if (nid == NUMA_NO_NODE)
3707 nr_huge_pages = h->nr_huge_pages;
3708 else
3709 nr_huge_pages = h->nr_huge_pages_node[nid];
3710
ae7a927d 3711 return sysfs_emit(buf, "%lu\n", nr_huge_pages);
a3437870 3712}
adbe8726 3713
238d3c13
DR
3714static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
3715 struct hstate *h, int nid,
3716 unsigned long count, size_t len)
a3437870
NA
3717{
3718 int err;
2d0adf7e 3719 nodemask_t nodes_allowed, *n_mask;
a3437870 3720
2d0adf7e
OS
3721 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3722 return -EINVAL;
adbe8726 3723
9a305230
LS
3724 if (nid == NUMA_NO_NODE) {
3725 /*
3726 * global hstate attribute
3727 */
3728 if (!(obey_mempolicy &&
2d0adf7e
OS
3729 init_nodemask_of_mempolicy(&nodes_allowed)))
3730 n_mask = &node_states[N_MEMORY];
3731 else
3732 n_mask = &nodes_allowed;
3733 } else {
9a305230 3734 /*
fd875dca
MK
3735 * Node specific request. count adjustment happens in
3736 * set_max_huge_pages() after acquiring hugetlb_lock.
9a305230 3737 */
2d0adf7e
OS
3738 init_nodemask_of_node(&nodes_allowed, nid);
3739 n_mask = &nodes_allowed;
fd875dca 3740 }
9a305230 3741
2d0adf7e 3742 err = set_max_huge_pages(h, count, nid, n_mask);
06808b08 3743
4eb0716e 3744 return err ? err : len;
06808b08
LS
3745}
3746
238d3c13
DR
3747static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
3748 struct kobject *kobj, const char *buf,
3749 size_t len)
3750{
3751 struct hstate *h;
3752 unsigned long count;
3753 int nid;
3754 int err;
3755
3756 err = kstrtoul(buf, 10, &count);
3757 if (err)
3758 return err;
3759
3760 h = kobj_to_hstate(kobj, &nid);
3761 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
3762}
3763
06808b08
LS
3764static ssize_t nr_hugepages_show(struct kobject *kobj,
3765 struct kobj_attribute *attr, char *buf)
3766{
3767 return nr_hugepages_show_common(kobj, attr, buf);
3768}
3769
3770static ssize_t nr_hugepages_store(struct kobject *kobj,
3771 struct kobj_attribute *attr, const char *buf, size_t len)
3772{
238d3c13 3773 return nr_hugepages_store_common(false, kobj, buf, len);
a3437870
NA
3774}
3775HSTATE_ATTR(nr_hugepages);
3776
06808b08
LS
3777#ifdef CONFIG_NUMA
3778
3779/*
3780 * hstate attribute for optionally mempolicy-based constraint on persistent
3781 * huge page alloc/free.
3782 */
3783static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
ae7a927d
JP
3784 struct kobj_attribute *attr,
3785 char *buf)
06808b08
LS
3786{
3787 return nr_hugepages_show_common(kobj, attr, buf);
3788}
3789
3790static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
3791 struct kobj_attribute *attr, const char *buf, size_t len)
3792{
238d3c13 3793 return nr_hugepages_store_common(true, kobj, buf, len);
06808b08
LS
3794}
3795HSTATE_ATTR(nr_hugepages_mempolicy);
3796#endif
3797
3798
a3437870
NA
3799static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
3800 struct kobj_attribute *attr, char *buf)
3801{
9a305230 3802 struct hstate *h = kobj_to_hstate(kobj, NULL);
ae7a927d 3803 return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
a3437870 3804}
adbe8726 3805
a3437870
NA
3806static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
3807 struct kobj_attribute *attr, const char *buf, size_t count)
3808{
3809 int err;
3810 unsigned long input;
9a305230 3811 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870 3812
bae7f4ae 3813 if (hstate_is_gigantic(h))
adbe8726
EM
3814 return -EINVAL;
3815
3dbb95f7 3816 err = kstrtoul(buf, 10, &input);
a3437870 3817 if (err)
73ae31e5 3818 return err;
a3437870 3819
db71ef79 3820 spin_lock_irq(&hugetlb_lock);
a3437870 3821 h->nr_overcommit_huge_pages = input;
db71ef79 3822 spin_unlock_irq(&hugetlb_lock);
a3437870
NA
3823
3824 return count;
3825}
3826HSTATE_ATTR(nr_overcommit_hugepages);
3827
3828static ssize_t free_hugepages_show(struct kobject *kobj,
3829 struct kobj_attribute *attr, char *buf)
3830{
9a305230
LS
3831 struct hstate *h;
3832 unsigned long free_huge_pages;
3833 int nid;
3834
3835 h = kobj_to_hstate(kobj, &nid);
3836 if (nid == NUMA_NO_NODE)
3837 free_huge_pages = h->free_huge_pages;
3838 else
3839 free_huge_pages = h->free_huge_pages_node[nid];
3840
ae7a927d 3841 return sysfs_emit(buf, "%lu\n", free_huge_pages);
a3437870
NA
3842}
3843HSTATE_ATTR_RO(free_hugepages);
3844
3845static ssize_t resv_hugepages_show(struct kobject *kobj,
3846 struct kobj_attribute *attr, char *buf)
3847{
9a305230 3848 struct hstate *h = kobj_to_hstate(kobj, NULL);
ae7a927d 3849 return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
a3437870
NA
3850}
3851HSTATE_ATTR_RO(resv_hugepages);
3852
3853static ssize_t surplus_hugepages_show(struct kobject *kobj,
3854 struct kobj_attribute *attr, char *buf)
3855{
9a305230
LS
3856 struct hstate *h;
3857 unsigned long surplus_huge_pages;
3858 int nid;
3859
3860 h = kobj_to_hstate(kobj, &nid);
3861 if (nid == NUMA_NO_NODE)
3862 surplus_huge_pages = h->surplus_huge_pages;
3863 else
3864 surplus_huge_pages = h->surplus_huge_pages_node[nid];
3865
ae7a927d 3866 return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
a3437870
NA
3867}
3868HSTATE_ATTR_RO(surplus_hugepages);
3869
79dfc695
MK
3870static ssize_t demote_store(struct kobject *kobj,
3871 struct kobj_attribute *attr, const char *buf, size_t len)
3872{
3873 unsigned long nr_demote;
3874 unsigned long nr_available;
3875 nodemask_t nodes_allowed, *n_mask;
3876 struct hstate *h;
8eeda55f 3877 int err;
79dfc695
MK
3878 int nid;
3879
3880 err = kstrtoul(buf, 10, &nr_demote);
3881 if (err)
3882 return err;
3883 h = kobj_to_hstate(kobj, &nid);
3884
3885 if (nid != NUMA_NO_NODE) {
3886 init_nodemask_of_node(&nodes_allowed, nid);
3887 n_mask = &nodes_allowed;
3888 } else {
3889 n_mask = &node_states[N_MEMORY];
3890 }
3891
3892 /* Synchronize with other sysfs operations modifying huge pages */
3893 mutex_lock(&h->resize_lock);
3894 spin_lock_irq(&hugetlb_lock);
3895
3896 while (nr_demote) {
3897 /*
3898 * Check for available pages to demote each time thorough the
3899 * loop as demote_pool_huge_page will drop hugetlb_lock.
79dfc695
MK
3900 */
3901 if (nid != NUMA_NO_NODE)
3902 nr_available = h->free_huge_pages_node[nid];
3903 else
3904 nr_available = h->free_huge_pages;
3905 nr_available -= h->resv_huge_pages;
3906 if (!nr_available)
3907 break;
3908
3909 err = demote_pool_huge_page(h, n_mask);
3910 if (err)
3911 break;
3912
3913 nr_demote--;
3914 }
3915
3916 spin_unlock_irq(&hugetlb_lock);
3917 mutex_unlock(&h->resize_lock);
3918
3919 if (err)
3920 return err;
3921 return len;
3922}
3923HSTATE_ATTR_WO(demote);
3924
3925static ssize_t demote_size_show(struct kobject *kobj,
3926 struct kobj_attribute *attr, char *buf)
3927{
12658abf 3928 struct hstate *h = kobj_to_hstate(kobj, NULL);
79dfc695
MK
3929 unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K;
3930
3931 return sysfs_emit(buf, "%lukB\n", demote_size);
3932}
3933
3934static ssize_t demote_size_store(struct kobject *kobj,
3935 struct kobj_attribute *attr,
3936 const char *buf, size_t count)
3937{
3938 struct hstate *h, *demote_hstate;
3939 unsigned long demote_size;
3940 unsigned int demote_order;
79dfc695
MK
3941
3942 demote_size = (unsigned long)memparse(buf, NULL);
3943
3944 demote_hstate = size_to_hstate(demote_size);
3945 if (!demote_hstate)
3946 return -EINVAL;
3947 demote_order = demote_hstate->order;
a01f4390
MK
3948 if (demote_order < HUGETLB_PAGE_ORDER)
3949 return -EINVAL;
79dfc695
MK
3950
3951 /* demote order must be smaller than hstate order */
12658abf 3952 h = kobj_to_hstate(kobj, NULL);
79dfc695
MK
3953 if (demote_order >= h->order)
3954 return -EINVAL;
3955
3956 /* resize_lock synchronizes access to demote size and writes */
3957 mutex_lock(&h->resize_lock);
3958 h->demote_order = demote_order;
3959 mutex_unlock(&h->resize_lock);
3960
3961 return count;
3962}
3963HSTATE_ATTR(demote_size);
3964
a3437870
NA
3965static struct attribute *hstate_attrs[] = {
3966 &nr_hugepages_attr.attr,
3967 &nr_overcommit_hugepages_attr.attr,
3968 &free_hugepages_attr.attr,
3969 &resv_hugepages_attr.attr,
3970 &surplus_hugepages_attr.attr,
06808b08
LS
3971#ifdef CONFIG_NUMA
3972 &nr_hugepages_mempolicy_attr.attr,
3973#endif
a3437870
NA
3974 NULL,
3975};
3976
67e5ed96 3977static const struct attribute_group hstate_attr_group = {
a3437870
NA
3978 .attrs = hstate_attrs,
3979};
3980
79dfc695
MK
3981static struct attribute *hstate_demote_attrs[] = {
3982 &demote_size_attr.attr,
3983 &demote_attr.attr,
3984 NULL,
3985};
3986
3987static const struct attribute_group hstate_demote_attr_group = {
3988 .attrs = hstate_demote_attrs,
3989};
3990
094e9539
JM
3991static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
3992 struct kobject **hstate_kobjs,
67e5ed96 3993 const struct attribute_group *hstate_attr_group)
a3437870
NA
3994{
3995 int retval;
972dc4de 3996 int hi = hstate_index(h);
a3437870 3997
9a305230
LS
3998 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
3999 if (!hstate_kobjs[hi])
a3437870
NA
4000 return -ENOMEM;
4001
9a305230 4002 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
cc2205a6 4003 if (retval) {
9a305230 4004 kobject_put(hstate_kobjs[hi]);
cc2205a6 4005 hstate_kobjs[hi] = NULL;
3a6bdda0 4006 return retval;
cc2205a6 4007 }
a3437870 4008
79dfc695 4009 if (h->demote_order) {
01088a60
ML
4010 retval = sysfs_create_group(hstate_kobjs[hi],
4011 &hstate_demote_attr_group);
4012 if (retval) {
79dfc695 4013 pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name);
01088a60
ML
4014 sysfs_remove_group(hstate_kobjs[hi], hstate_attr_group);
4015 kobject_put(hstate_kobjs[hi]);
4016 hstate_kobjs[hi] = NULL;
4017 return retval;
4018 }
79dfc695
MK
4019 }
4020
01088a60 4021 return 0;
a3437870
NA
4022}
4023
9a305230 4024#ifdef CONFIG_NUMA
a4a00b45 4025static bool hugetlb_sysfs_initialized __ro_after_init;
9a305230
LS
4026
4027/*
4028 * node_hstate/s - associate per node hstate attributes, via their kobjects,
10fbcf4c
KS
4029 * with node devices in node_devices[] using a parallel array. The array
4030 * index of a node device or _hstate == node id.
4031 * This is here to avoid any static dependency of the node device driver, in
9a305230
LS
4032 * the base kernel, on the hugetlb module.
4033 */
4034struct node_hstate {
4035 struct kobject *hugepages_kobj;
4036 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
4037};
b4e289a6 4038static struct node_hstate node_hstates[MAX_NUMNODES];
9a305230
LS
4039
4040/*
10fbcf4c 4041 * A subset of global hstate attributes for node devices
9a305230
LS
4042 */
4043static struct attribute *per_node_hstate_attrs[] = {
4044 &nr_hugepages_attr.attr,
4045 &free_hugepages_attr.attr,
4046 &surplus_hugepages_attr.attr,
4047 NULL,
4048};
4049
67e5ed96 4050static const struct attribute_group per_node_hstate_attr_group = {
9a305230
LS
4051 .attrs = per_node_hstate_attrs,
4052};
4053
4054/*
10fbcf4c 4055 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
9a305230
LS
4056 * Returns node id via non-NULL nidp.
4057 */
4058static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4059{
4060 int nid;
4061
4062 for (nid = 0; nid < nr_node_ids; nid++) {
4063 struct node_hstate *nhs = &node_hstates[nid];
4064 int i;
4065 for (i = 0; i < HUGE_MAX_HSTATE; i++)
4066 if (nhs->hstate_kobjs[i] == kobj) {
4067 if (nidp)
4068 *nidp = nid;
4069 return &hstates[i];
4070 }
4071 }
4072
4073 BUG();
4074 return NULL;
4075}
4076
4077/*
10fbcf4c 4078 * Unregister hstate attributes from a single node device.
9a305230
LS
4079 * No-op if no hstate attributes attached.
4080 */
a4a00b45 4081void hugetlb_unregister_node(struct node *node)
9a305230
LS
4082{
4083 struct hstate *h;
10fbcf4c 4084 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
4085
4086 if (!nhs->hugepages_kobj)
9b5e5d0f 4087 return; /* no hstate attributes */
9a305230 4088
972dc4de
AK
4089 for_each_hstate(h) {
4090 int idx = hstate_index(h);
01088a60
ML
4091 struct kobject *hstate_kobj = nhs->hstate_kobjs[idx];
4092
4093 if (!hstate_kobj)
4094 continue;
4095 if (h->demote_order)
4096 sysfs_remove_group(hstate_kobj, &hstate_demote_attr_group);
4097 sysfs_remove_group(hstate_kobj, &per_node_hstate_attr_group);
4098 kobject_put(hstate_kobj);
4099 nhs->hstate_kobjs[idx] = NULL;
972dc4de 4100 }
9a305230
LS
4101
4102 kobject_put(nhs->hugepages_kobj);
4103 nhs->hugepages_kobj = NULL;
4104}
4105
9a305230
LS
4106
4107/*
10fbcf4c 4108 * Register hstate attributes for a single node device.
9a305230
LS
4109 * No-op if attributes already registered.
4110 */
a4a00b45 4111void hugetlb_register_node(struct node *node)
9a305230
LS
4112{
4113 struct hstate *h;
10fbcf4c 4114 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
4115 int err;
4116
a4a00b45
MS
4117 if (!hugetlb_sysfs_initialized)
4118 return;
4119
9a305230
LS
4120 if (nhs->hugepages_kobj)
4121 return; /* already allocated */
4122
4123 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
10fbcf4c 4124 &node->dev.kobj);
9a305230
LS
4125 if (!nhs->hugepages_kobj)
4126 return;
4127
4128 for_each_hstate(h) {
4129 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
4130 nhs->hstate_kobjs,
4131 &per_node_hstate_attr_group);
4132 if (err) {
282f4214 4133 pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
ffb22af5 4134 h->name, node->dev.id);
9a305230
LS
4135 hugetlb_unregister_node(node);
4136 break;
4137 }
4138 }
4139}
4140
4141/*
9b5e5d0f 4142 * hugetlb init time: register hstate attributes for all registered node
10fbcf4c
KS
4143 * devices of nodes that have memory. All on-line nodes should have
4144 * registered their associated device by this time.
9a305230 4145 */
7d9ca000 4146static void __init hugetlb_register_all_nodes(void)
9a305230
LS
4147{
4148 int nid;
4149
a4a00b45 4150 for_each_online_node(nid)
b958d4d0 4151 hugetlb_register_node(node_devices[nid]);
9a305230
LS
4152}
4153#else /* !CONFIG_NUMA */
4154
4155static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4156{
4157 BUG();
4158 if (nidp)
4159 *nidp = -1;
4160 return NULL;
4161}
4162
9a305230
LS
4163static void hugetlb_register_all_nodes(void) { }
4164
4165#endif
4166
263b8998
ML
4167#ifdef CONFIG_CMA
4168static void __init hugetlb_cma_check(void);
4169#else
4170static inline __init void hugetlb_cma_check(void)
4171{
4172}
4173#endif
4174
a4a00b45
MS
4175static void __init hugetlb_sysfs_init(void)
4176{
4177 struct hstate *h;
4178 int err;
4179
4180 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
4181 if (!hugepages_kobj)
4182 return;
4183
4184 for_each_hstate(h) {
4185 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
4186 hstate_kobjs, &hstate_attr_group);
4187 if (err)
4188 pr_err("HugeTLB: Unable to add hstate %s", h->name);
4189 }
4190
4191#ifdef CONFIG_NUMA
4192 hugetlb_sysfs_initialized = true;
4193#endif
4194 hugetlb_register_all_nodes();
4195}
4196
a3437870
NA
4197static int __init hugetlb_init(void)
4198{
8382d914
DB
4199 int i;
4200
d6995da3
MK
4201 BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
4202 __NR_HPAGEFLAGS);
4203
c2833a5b
MK
4204 if (!hugepages_supported()) {
4205 if (hugetlb_max_hstate || default_hstate_max_huge_pages)
4206 pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
0ef89d25 4207 return 0;
c2833a5b 4208 }
a3437870 4209
282f4214
MK
4210 /*
4211 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists. Some
4212 * architectures depend on setup being done here.
4213 */
4214 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
4215 if (!parsed_default_hugepagesz) {
4216 /*
4217 * If we did not parse a default huge page size, set
4218 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
4219 * number of huge pages for this default size was implicitly
4220 * specified, set that here as well.
4221 * Note that the implicit setting will overwrite an explicit
4222 * setting. A warning will be printed in this case.
4223 */
4224 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
4225 if (default_hstate_max_huge_pages) {
4226 if (default_hstate.max_huge_pages) {
4227 char buf[32];
4228
4229 string_get_size(huge_page_size(&default_hstate),
4230 1, STRING_UNITS_2, buf, 32);
4231 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
4232 default_hstate.max_huge_pages, buf);
4233 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
4234 default_hstate_max_huge_pages);
4235 }
4236 default_hstate.max_huge_pages =
4237 default_hstate_max_huge_pages;
b5389086 4238
0a7a0f6f 4239 for_each_online_node(i)
b5389086
ZY
4240 default_hstate.max_huge_pages_node[i] =
4241 default_hugepages_in_node[i];
d715cf80 4242 }
f8b74815 4243 }
a3437870 4244
cf11e85f 4245 hugetlb_cma_check();
a3437870 4246 hugetlb_init_hstates();
aa888a74 4247 gather_bootmem_prealloc();
a3437870
NA
4248 report_hugepages();
4249
4250 hugetlb_sysfs_init();
7179e7bf 4251 hugetlb_cgroup_file_init();
9a305230 4252
8382d914
DB
4253#ifdef CONFIG_SMP
4254 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
4255#else
4256 num_fault_mutexes = 1;
4257#endif
c672c7f2 4258 hugetlb_fault_mutex_table =
6da2ec56
KC
4259 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
4260 GFP_KERNEL);
c672c7f2 4261 BUG_ON(!hugetlb_fault_mutex_table);
8382d914
DB
4262
4263 for (i = 0; i < num_fault_mutexes; i++)
c672c7f2 4264 mutex_init(&hugetlb_fault_mutex_table[i]);
a3437870
NA
4265 return 0;
4266}
3e89e1c5 4267subsys_initcall(hugetlb_init);
a3437870 4268
ae94da89
MK
4269/* Overwritten by architectures with more huge page sizes */
4270bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
9fee021d 4271{
ae94da89 4272 return size == HPAGE_SIZE;
9fee021d
VT
4273}
4274
d00181b9 4275void __init hugetlb_add_hstate(unsigned int order)
a3437870
NA
4276{
4277 struct hstate *h;
8faa8b07
AK
4278 unsigned long i;
4279
a3437870 4280 if (size_to_hstate(PAGE_SIZE << order)) {
a3437870
NA
4281 return;
4282 }
47d38344 4283 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
a3437870 4284 BUG_ON(order == 0);
47d38344 4285 h = &hstates[hugetlb_max_hstate++];
29383967 4286 mutex_init(&h->resize_lock);
a3437870 4287 h->order = order;
aca78307 4288 h->mask = ~(huge_page_size(h) - 1);
8faa8b07
AK
4289 for (i = 0; i < MAX_NUMNODES; ++i)
4290 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
0edaecfa 4291 INIT_LIST_HEAD(&h->hugepage_activelist);
54f18d35
AM
4292 h->next_nid_to_alloc = first_memory_node;
4293 h->next_nid_to_free = first_memory_node;
a3437870 4294 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
c2c3a60a 4295 huge_page_size(h)/SZ_1K);
8faa8b07 4296
a3437870
NA
4297 parsed_hstate = h;
4298}
4299
b5389086
ZY
4300bool __init __weak hugetlb_node_alloc_supported(void)
4301{
4302 return true;
4303}
f87442f4
PL
4304
4305static void __init hugepages_clear_pages_in_node(void)
4306{
4307 if (!hugetlb_max_hstate) {
4308 default_hstate_max_huge_pages = 0;
4309 memset(default_hugepages_in_node, 0,
10395680 4310 sizeof(default_hugepages_in_node));
f87442f4
PL
4311 } else {
4312 parsed_hstate->max_huge_pages = 0;
4313 memset(parsed_hstate->max_huge_pages_node, 0,
10395680 4314 sizeof(parsed_hstate->max_huge_pages_node));
f87442f4
PL
4315 }
4316}
4317
282f4214
MK
4318/*
4319 * hugepages command line processing
4320 * hugepages normally follows a valid hugepagsz or default_hugepagsz
4321 * specification. If not, ignore the hugepages value. hugepages can also
4322 * be the first huge page command line option in which case it implicitly
4323 * specifies the number of huge pages for the default size.
4324 */
4325static int __init hugepages_setup(char *s)
a3437870
NA
4326{
4327 unsigned long *mhp;
8faa8b07 4328 static unsigned long *last_mhp;
b5389086
ZY
4329 int node = NUMA_NO_NODE;
4330 int count;
4331 unsigned long tmp;
4332 char *p = s;
a3437870 4333
9fee021d 4334 if (!parsed_valid_hugepagesz) {
282f4214 4335 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
9fee021d 4336 parsed_valid_hugepagesz = true;
f81f6e4b 4337 return 1;
9fee021d 4338 }
282f4214 4339
a3437870 4340 /*
282f4214
MK
4341 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
4342 * yet, so this hugepages= parameter goes to the "default hstate".
4343 * Otherwise, it goes with the previously parsed hugepagesz or
4344 * default_hugepagesz.
a3437870 4345 */
9fee021d 4346 else if (!hugetlb_max_hstate)
a3437870
NA
4347 mhp = &default_hstate_max_huge_pages;
4348 else
4349 mhp = &parsed_hstate->max_huge_pages;
4350
8faa8b07 4351 if (mhp == last_mhp) {
282f4214 4352 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
f81f6e4b 4353 return 1;
8faa8b07
AK
4354 }
4355
b5389086
ZY
4356 while (*p) {
4357 count = 0;
4358 if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4359 goto invalid;
4360 /* Parameter is node format */
4361 if (p[count] == ':') {
4362 if (!hugetlb_node_alloc_supported()) {
4363 pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n");
f81f6e4b 4364 return 1;
b5389086 4365 }
0a7a0f6f 4366 if (tmp >= MAX_NUMNODES || !node_online(tmp))
e79ce983 4367 goto invalid;
0a7a0f6f 4368 node = array_index_nospec(tmp, MAX_NUMNODES);
b5389086 4369 p += count + 1;
b5389086
ZY
4370 /* Parse hugepages */
4371 if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4372 goto invalid;
4373 if (!hugetlb_max_hstate)
4374 default_hugepages_in_node[node] = tmp;
4375 else
4376 parsed_hstate->max_huge_pages_node[node] = tmp;
4377 *mhp += tmp;
4378 /* Go to parse next node*/
4379 if (p[count] == ',')
4380 p += count + 1;
4381 else
4382 break;
4383 } else {
4384 if (p != s)
4385 goto invalid;
4386 *mhp = tmp;
4387 break;
4388 }
4389 }
a3437870 4390
8faa8b07
AK
4391 /*
4392 * Global state is always initialized later in hugetlb_init.
04adbc3f 4393 * But we need to allocate gigantic hstates here early to still
8faa8b07
AK
4394 * use the bootmem allocator.
4395 */
04adbc3f 4396 if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
8faa8b07
AK
4397 hugetlb_hstate_alloc_pages(parsed_hstate);
4398
4399 last_mhp = mhp;
4400
a3437870 4401 return 1;
b5389086
ZY
4402
4403invalid:
4404 pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p);
f87442f4 4405 hugepages_clear_pages_in_node();
f81f6e4b 4406 return 1;
a3437870 4407}
282f4214 4408__setup("hugepages=", hugepages_setup);
e11bfbfc 4409
282f4214
MK
4410/*
4411 * hugepagesz command line processing
4412 * A specific huge page size can only be specified once with hugepagesz.
4413 * hugepagesz is followed by hugepages on the command line. The global
4414 * variable 'parsed_valid_hugepagesz' is used to determine if prior
4415 * hugepagesz argument was valid.
4416 */
359f2544 4417static int __init hugepagesz_setup(char *s)
e11bfbfc 4418{
359f2544 4419 unsigned long size;
282f4214
MK
4420 struct hstate *h;
4421
4422 parsed_valid_hugepagesz = false;
359f2544
MK
4423 size = (unsigned long)memparse(s, NULL);
4424
4425 if (!arch_hugetlb_valid_size(size)) {
282f4214 4426 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
f81f6e4b 4427 return 1;
359f2544
MK
4428 }
4429
282f4214
MK
4430 h = size_to_hstate(size);
4431 if (h) {
4432 /*
4433 * hstate for this size already exists. This is normally
4434 * an error, but is allowed if the existing hstate is the
4435 * default hstate. More specifically, it is only allowed if
4436 * the number of huge pages for the default hstate was not
4437 * previously specified.
4438 */
4439 if (!parsed_default_hugepagesz || h != &default_hstate ||
4440 default_hstate.max_huge_pages) {
4441 pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
f81f6e4b 4442 return 1;
282f4214
MK
4443 }
4444
4445 /*
4446 * No need to call hugetlb_add_hstate() as hstate already
4447 * exists. But, do set parsed_hstate so that a following
4448 * hugepages= parameter will be applied to this hstate.
4449 */
4450 parsed_hstate = h;
4451 parsed_valid_hugepagesz = true;
4452 return 1;
38237830
MK
4453 }
4454
359f2544 4455 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
282f4214 4456 parsed_valid_hugepagesz = true;
e11bfbfc
NP
4457 return 1;
4458}
359f2544
MK
4459__setup("hugepagesz=", hugepagesz_setup);
4460
282f4214
MK
4461/*
4462 * default_hugepagesz command line input
4463 * Only one instance of default_hugepagesz allowed on command line.
4464 */
ae94da89 4465static int __init default_hugepagesz_setup(char *s)
e11bfbfc 4466{
ae94da89 4467 unsigned long size;
b5389086 4468 int i;
ae94da89 4469
282f4214 4470 parsed_valid_hugepagesz = false;
282f4214
MK
4471 if (parsed_default_hugepagesz) {
4472 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
f81f6e4b 4473 return 1;
282f4214
MK
4474 }
4475
ae94da89
MK
4476 size = (unsigned long)memparse(s, NULL);
4477
4478 if (!arch_hugetlb_valid_size(size)) {
282f4214 4479 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
f81f6e4b 4480 return 1;
ae94da89
MK
4481 }
4482
282f4214
MK
4483 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4484 parsed_valid_hugepagesz = true;
4485 parsed_default_hugepagesz = true;
4486 default_hstate_idx = hstate_index(size_to_hstate(size));
4487
4488 /*
4489 * The number of default huge pages (for this size) could have been
4490 * specified as the first hugetlb parameter: hugepages=X. If so,
4491 * then default_hstate_max_huge_pages is set. If the default huge
4492 * page size is gigantic (>= MAX_ORDER), then the pages must be
4493 * allocated here from bootmem allocator.
4494 */
4495 if (default_hstate_max_huge_pages) {
4496 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
0a7a0f6f 4497 for_each_online_node(i)
b5389086
ZY
4498 default_hstate.max_huge_pages_node[i] =
4499 default_hugepages_in_node[i];
282f4214
MK
4500 if (hstate_is_gigantic(&default_hstate))
4501 hugetlb_hstate_alloc_pages(&default_hstate);
4502 default_hstate_max_huge_pages = 0;
4503 }
4504
e11bfbfc
NP
4505 return 1;
4506}
ae94da89 4507__setup("default_hugepagesz=", default_hugepagesz_setup);
a3437870 4508
d2226ebd
FT
4509static nodemask_t *policy_mbind_nodemask(gfp_t gfp)
4510{
4511#ifdef CONFIG_NUMA
4512 struct mempolicy *mpol = get_task_policy(current);
4513
4514 /*
4515 * Only enforce MPOL_BIND policy which overlaps with cpuset policy
4516 * (from policy_nodemask) specifically for hugetlb case
4517 */
4518 if (mpol->mode == MPOL_BIND &&
4519 (apply_policy_zone(mpol, gfp_zone(gfp)) &&
4520 cpuset_nodemask_valid_mems_allowed(&mpol->nodes)))
4521 return &mpol->nodes;
4522#endif
4523 return NULL;
4524}
4525
8ca39e68 4526static unsigned int allowed_mems_nr(struct hstate *h)
8a213460
NA
4527{
4528 int node;
4529 unsigned int nr = 0;
d2226ebd 4530 nodemask_t *mbind_nodemask;
8ca39e68
MS
4531 unsigned int *array = h->free_huge_pages_node;
4532 gfp_t gfp_mask = htlb_alloc_mask(h);
4533
d2226ebd 4534 mbind_nodemask = policy_mbind_nodemask(gfp_mask);
8ca39e68 4535 for_each_node_mask(node, cpuset_current_mems_allowed) {
d2226ebd 4536 if (!mbind_nodemask || node_isset(node, *mbind_nodemask))
8ca39e68
MS
4537 nr += array[node];
4538 }
8a213460
NA
4539
4540 return nr;
4541}
4542
4543#ifdef CONFIG_SYSCTL
17743798
MS
4544static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
4545 void *buffer, size_t *length,
4546 loff_t *ppos, unsigned long *out)
4547{
4548 struct ctl_table dup_table;
4549
4550 /*
4551 * In order to avoid races with __do_proc_doulongvec_minmax(), we
4552 * can duplicate the @table and alter the duplicate of it.
4553 */
4554 dup_table = *table;
4555 dup_table.data = out;
4556
4557 return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
4558}
4559
06808b08
LS
4560static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
4561 struct ctl_table *table, int write,
32927393 4562 void *buffer, size_t *length, loff_t *ppos)
1da177e4 4563{
e5ff2159 4564 struct hstate *h = &default_hstate;
238d3c13 4565 unsigned long tmp = h->max_huge_pages;
08d4a246 4566 int ret;
e5ff2159 4567
457c1b27 4568 if (!hugepages_supported())
86613628 4569 return -EOPNOTSUPP;
457c1b27 4570
17743798
MS
4571 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4572 &tmp);
08d4a246
MH
4573 if (ret)
4574 goto out;
e5ff2159 4575
238d3c13
DR
4576 if (write)
4577 ret = __nr_hugepages_store_common(obey_mempolicy, h,
4578 NUMA_NO_NODE, tmp, *length);
08d4a246
MH
4579out:
4580 return ret;
1da177e4 4581}
396faf03 4582
06808b08 4583int hugetlb_sysctl_handler(struct ctl_table *table, int write,
32927393 4584 void *buffer, size_t *length, loff_t *ppos)
06808b08
LS
4585{
4586
4587 return hugetlb_sysctl_handler_common(false, table, write,
4588 buffer, length, ppos);
4589}
4590
4591#ifdef CONFIG_NUMA
4592int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
32927393 4593 void *buffer, size_t *length, loff_t *ppos)
06808b08
LS
4594{
4595 return hugetlb_sysctl_handler_common(true, table, write,
4596 buffer, length, ppos);
4597}
4598#endif /* CONFIG_NUMA */
4599
a3d0c6aa 4600int hugetlb_overcommit_handler(struct ctl_table *table, int write,
32927393 4601 void *buffer, size_t *length, loff_t *ppos)
a3d0c6aa 4602{
a5516438 4603 struct hstate *h = &default_hstate;
e5ff2159 4604 unsigned long tmp;
08d4a246 4605 int ret;
e5ff2159 4606
457c1b27 4607 if (!hugepages_supported())
86613628 4608 return -EOPNOTSUPP;
457c1b27 4609
c033a93c 4610 tmp = h->nr_overcommit_huge_pages;
e5ff2159 4611
bae7f4ae 4612 if (write && hstate_is_gigantic(h))
adbe8726
EM
4613 return -EINVAL;
4614
17743798
MS
4615 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4616 &tmp);
08d4a246
MH
4617 if (ret)
4618 goto out;
e5ff2159
AK
4619
4620 if (write) {
db71ef79 4621 spin_lock_irq(&hugetlb_lock);
e5ff2159 4622 h->nr_overcommit_huge_pages = tmp;
db71ef79 4623 spin_unlock_irq(&hugetlb_lock);
e5ff2159 4624 }
08d4a246
MH
4625out:
4626 return ret;
a3d0c6aa
NA
4627}
4628
1da177e4
LT
4629#endif /* CONFIG_SYSCTL */
4630
e1759c21 4631void hugetlb_report_meminfo(struct seq_file *m)
1da177e4 4632{
fcb2b0c5
RG
4633 struct hstate *h;
4634 unsigned long total = 0;
4635
457c1b27
NA
4636 if (!hugepages_supported())
4637 return;
fcb2b0c5
RG
4638
4639 for_each_hstate(h) {
4640 unsigned long count = h->nr_huge_pages;
4641
aca78307 4642 total += huge_page_size(h) * count;
fcb2b0c5
RG
4643
4644 if (h == &default_hstate)
4645 seq_printf(m,
4646 "HugePages_Total: %5lu\n"
4647 "HugePages_Free: %5lu\n"
4648 "HugePages_Rsvd: %5lu\n"
4649 "HugePages_Surp: %5lu\n"
4650 "Hugepagesize: %8lu kB\n",
4651 count,
4652 h->free_huge_pages,
4653 h->resv_huge_pages,
4654 h->surplus_huge_pages,
aca78307 4655 huge_page_size(h) / SZ_1K);
fcb2b0c5
RG
4656 }
4657
aca78307 4658 seq_printf(m, "Hugetlb: %8lu kB\n", total / SZ_1K);
1da177e4
LT
4659}
4660
7981593b 4661int hugetlb_report_node_meminfo(char *buf, int len, int nid)
1da177e4 4662{
a5516438 4663 struct hstate *h = &default_hstate;
7981593b 4664
457c1b27
NA
4665 if (!hugepages_supported())
4666 return 0;
7981593b
JP
4667
4668 return sysfs_emit_at(buf, len,
4669 "Node %d HugePages_Total: %5u\n"
4670 "Node %d HugePages_Free: %5u\n"
4671 "Node %d HugePages_Surp: %5u\n",
4672 nid, h->nr_huge_pages_node[nid],
4673 nid, h->free_huge_pages_node[nid],
4674 nid, h->surplus_huge_pages_node[nid]);
1da177e4
LT
4675}
4676
dcadcf1c 4677void hugetlb_show_meminfo_node(int nid)
949f7ec5
DR
4678{
4679 struct hstate *h;
949f7ec5 4680
457c1b27
NA
4681 if (!hugepages_supported())
4682 return;
4683
dcadcf1c
GL
4684 for_each_hstate(h)
4685 printk("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
4686 nid,
4687 h->nr_huge_pages_node[nid],
4688 h->free_huge_pages_node[nid],
4689 h->surplus_huge_pages_node[nid],
4690 huge_page_size(h) / SZ_1K);
949f7ec5
DR
4691}
4692
5d317b2b
NH
4693void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
4694{
4695 seq_printf(m, "HugetlbPages:\t%8lu kB\n",
4696 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
4697}
4698
1da177e4
LT
4699/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
4700unsigned long hugetlb_total_pages(void)
4701{
d0028588
WL
4702 struct hstate *h;
4703 unsigned long nr_total_pages = 0;
4704
4705 for_each_hstate(h)
4706 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
4707 return nr_total_pages;
1da177e4 4708}
1da177e4 4709
a5516438 4710static int hugetlb_acct_memory(struct hstate *h, long delta)
fc1b8a73
MG
4711{
4712 int ret = -ENOMEM;
4713
0aa7f354
ML
4714 if (!delta)
4715 return 0;
4716
db71ef79 4717 spin_lock_irq(&hugetlb_lock);
fc1b8a73
MG
4718 /*
4719 * When cpuset is configured, it breaks the strict hugetlb page
4720 * reservation as the accounting is done on a global variable. Such
4721 * reservation is completely rubbish in the presence of cpuset because
4722 * the reservation is not checked against page availability for the
4723 * current cpuset. Application can still potentially OOM'ed by kernel
4724 * with lack of free htlb page in cpuset that the task is in.
4725 * Attempt to enforce strict accounting with cpuset is almost
4726 * impossible (or too ugly) because cpuset is too fluid that
4727 * task or memory node can be dynamically moved between cpusets.
4728 *
4729 * The change of semantics for shared hugetlb mapping with cpuset is
4730 * undesirable. However, in order to preserve some of the semantics,
4731 * we fall back to check against current free page availability as
4732 * a best attempt and hopefully to minimize the impact of changing
4733 * semantics that cpuset has.
8ca39e68
MS
4734 *
4735 * Apart from cpuset, we also have memory policy mechanism that
4736 * also determines from which node the kernel will allocate memory
4737 * in a NUMA system. So similar to cpuset, we also should consider
4738 * the memory policy of the current task. Similar to the description
4739 * above.
fc1b8a73
MG
4740 */
4741 if (delta > 0) {
a5516438 4742 if (gather_surplus_pages(h, delta) < 0)
fc1b8a73
MG
4743 goto out;
4744
8ca39e68 4745 if (delta > allowed_mems_nr(h)) {
a5516438 4746 return_unused_surplus_pages(h, delta);
fc1b8a73
MG
4747 goto out;
4748 }
4749 }
4750
4751 ret = 0;
4752 if (delta < 0)
a5516438 4753 return_unused_surplus_pages(h, (unsigned long) -delta);
fc1b8a73
MG
4754
4755out:
db71ef79 4756 spin_unlock_irq(&hugetlb_lock);
fc1b8a73
MG
4757 return ret;
4758}
4759
84afd99b
AW
4760static void hugetlb_vm_op_open(struct vm_area_struct *vma)
4761{
f522c3ac 4762 struct resv_map *resv = vma_resv_map(vma);
84afd99b
AW
4763
4764 /*
612b8a31 4765 * HPAGE_RESV_OWNER indicates a private mapping.
84afd99b
AW
4766 * This new VMA should share its siblings reservation map if present.
4767 * The VMA will only ever have a valid reservation map pointer where
4768 * it is being copied for another still existing VMA. As that VMA
25985edc 4769 * has a reference to the reservation map it cannot disappear until
84afd99b
AW
4770 * after this open call completes. It is therefore safe to take a
4771 * new reference here without additional locking.
4772 */
09a26e83
MK
4773 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
4774 resv_map_dup_hugetlb_cgroup_uncharge_info(resv);
f522c3ac 4775 kref_get(&resv->refs);
09a26e83 4776 }
8d9bfb26 4777
131a79b4
MK
4778 /*
4779 * vma_lock structure for sharable mappings is vma specific.
612b8a31
MK
4780 * Clear old pointer (if copied via vm_area_dup) and allocate
4781 * new structure. Before clearing, make sure vma_lock is not
4782 * for this vma.
131a79b4
MK
4783 */
4784 if (vma->vm_flags & VM_MAYSHARE) {
612b8a31
MK
4785 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
4786
4787 if (vma_lock) {
4788 if (vma_lock->vma != vma) {
4789 vma->vm_private_data = NULL;
4790 hugetlb_vma_lock_alloc(vma);
4791 } else
4792 pr_warn("HugeTLB: vma_lock already exists in %s.\n", __func__);
4793 } else
4794 hugetlb_vma_lock_alloc(vma);
131a79b4 4795 }
84afd99b
AW
4796}
4797
a1e78772
MG
4798static void hugetlb_vm_op_close(struct vm_area_struct *vma)
4799{
a5516438 4800 struct hstate *h = hstate_vma(vma);
8d9bfb26 4801 struct resv_map *resv;
90481622 4802 struct hugepage_subpool *spool = subpool_vma(vma);
4e35f483 4803 unsigned long reserve, start, end;
1c5ecae3 4804 long gbl_reserve;
84afd99b 4805
8d9bfb26
MK
4806 hugetlb_vma_lock_free(vma);
4807
4808 resv = vma_resv_map(vma);
4e35f483
JK
4809 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4810 return;
84afd99b 4811
4e35f483
JK
4812 start = vma_hugecache_offset(h, vma, vma->vm_start);
4813 end = vma_hugecache_offset(h, vma, vma->vm_end);
84afd99b 4814
4e35f483 4815 reserve = (end - start) - region_count(resv, start, end);
e9fe92ae 4816 hugetlb_cgroup_uncharge_counter(resv, start, end);
4e35f483 4817 if (reserve) {
1c5ecae3
MK
4818 /*
4819 * Decrement reserve counts. The global reserve count may be
4820 * adjusted if the subpool has a minimum size.
4821 */
4822 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
4823 hugetlb_acct_memory(h, -gbl_reserve);
84afd99b 4824 }
e9fe92ae
MA
4825
4826 kref_put(&resv->refs, resv_map_release);
a1e78772
MG
4827}
4828
31383c68
DW
4829static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
4830{
4831 if (addr & ~(huge_page_mask(hstate_vma(vma))))
4832 return -EINVAL;
b30c14cd
JH
4833
4834 /*
4835 * PMD sharing is only possible for PUD_SIZE-aligned address ranges
4836 * in HugeTLB VMAs. If we will lose PUD_SIZE alignment due to this
4837 * split, unshare PMDs in the PUD_SIZE interval surrounding addr now.
4838 */
4839 if (addr & ~PUD_MASK) {
4840 /*
4841 * hugetlb_vm_op_split is called right before we attempt to
4842 * split the VMA. We will need to unshare PMDs in the old and
4843 * new VMAs, so let's unshare before we split.
4844 */
4845 unsigned long floor = addr & PUD_MASK;
4846 unsigned long ceil = floor + PUD_SIZE;
4847
4848 if (floor >= vma->vm_start && ceil <= vma->vm_end)
4849 hugetlb_unshare_pmds(vma, floor, ceil);
4850 }
4851
31383c68
DW
4852 return 0;
4853}
4854
05ea8860
DW
4855static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
4856{
aca78307 4857 return huge_page_size(hstate_vma(vma));
05ea8860
DW
4858}
4859
1da177e4
LT
4860/*
4861 * We cannot handle pagefaults against hugetlb pages at all. They cause
4862 * handle_mm_fault() to try to instantiate regular-sized pages in the
6c26d310 4863 * hugepage VMA. do_page_fault() is supposed to trap this, so BUG is we get
1da177e4
LT
4864 * this far.
4865 */
b3ec9f33 4866static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
1da177e4
LT
4867{
4868 BUG();
d0217ac0 4869 return 0;
1da177e4
LT
4870}
4871
eec3636a
JC
4872/*
4873 * When a new function is introduced to vm_operations_struct and added
4874 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
4875 * This is because under System V memory model, mappings created via
4876 * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
4877 * their original vm_ops are overwritten with shm_vm_ops.
4878 */
f0f37e2f 4879const struct vm_operations_struct hugetlb_vm_ops = {
d0217ac0 4880 .fault = hugetlb_vm_op_fault,
84afd99b 4881 .open = hugetlb_vm_op_open,
a1e78772 4882 .close = hugetlb_vm_op_close,
dd3b614f 4883 .may_split = hugetlb_vm_op_split,
05ea8860 4884 .pagesize = hugetlb_vm_op_pagesize,
1da177e4
LT
4885};
4886
1e8f889b
DG
4887static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
4888 int writable)
63551ae0
DG
4889{
4890 pte_t entry;
79c1c594 4891 unsigned int shift = huge_page_shift(hstate_vma(vma));
63551ae0 4892
1e8f889b 4893 if (writable) {
106c992a
GS
4894 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
4895 vma->vm_page_prot)));
63551ae0 4896 } else {
106c992a
GS
4897 entry = huge_pte_wrprotect(mk_huge_pte(page,
4898 vma->vm_page_prot));
63551ae0
DG
4899 }
4900 entry = pte_mkyoung(entry);
79c1c594 4901 entry = arch_make_huge_pte(entry, shift, vma->vm_flags);
63551ae0
DG
4902
4903 return entry;
4904}
4905
1e8f889b
DG
4906static void set_huge_ptep_writable(struct vm_area_struct *vma,
4907 unsigned long address, pte_t *ptep)
4908{
4909 pte_t entry;
4910
106c992a 4911 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
32f84528 4912 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4b3073e1 4913 update_mmu_cache(vma, address, ptep);
1e8f889b
DG
4914}
4915
d5ed7444 4916bool is_hugetlb_entry_migration(pte_t pte)
4a705fef
NH
4917{
4918 swp_entry_t swp;
4919
4920 if (huge_pte_none(pte) || pte_present(pte))
d5ed7444 4921 return false;
4a705fef 4922 swp = pte_to_swp_entry(pte);
d79d176a 4923 if (is_migration_entry(swp))
d5ed7444 4924 return true;
4a705fef 4925 else
d5ed7444 4926 return false;
4a705fef
NH
4927}
4928
3e5c3600 4929static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
4a705fef
NH
4930{
4931 swp_entry_t swp;
4932
4933 if (huge_pte_none(pte) || pte_present(pte))
3e5c3600 4934 return false;
4a705fef 4935 swp = pte_to_swp_entry(pte);
d79d176a 4936 if (is_hwpoison_entry(swp))
3e5c3600 4937 return true;
4a705fef 4938 else
3e5c3600 4939 return false;
4a705fef 4940}
1e8f889b 4941
4eae4efa
PX
4942static void
4943hugetlb_install_page(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
4944 struct page *new_page)
4945{
4946 __SetPageUptodate(new_page);
4eae4efa 4947 hugepage_add_new_anon_rmap(new_page, vma, addr);
1eba86c0 4948 set_huge_pte_at(vma->vm_mm, addr, ptep, make_huge_pte(vma, new_page, 1));
4eae4efa 4949 hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
4eae4efa
PX
4950 SetHPageMigratable(new_page);
4951}
4952
63551ae0 4953int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
bc70fbf2
PX
4954 struct vm_area_struct *dst_vma,
4955 struct vm_area_struct *src_vma)
63551ae0 4956{
3aa4ed80 4957 pte_t *src_pte, *dst_pte, entry;
63551ae0 4958 struct page *ptepage;
1c59827d 4959 unsigned long addr;
bc70fbf2
PX
4960 bool cow = is_cow_mapping(src_vma->vm_flags);
4961 struct hstate *h = hstate_vma(src_vma);
a5516438 4962 unsigned long sz = huge_page_size(h);
4eae4efa 4963 unsigned long npages = pages_per_huge_page(h);
ac46d4f3 4964 struct mmu_notifier_range range;
e95a9851 4965 unsigned long last_addr_mask;
e8569dd2 4966 int ret = 0;
1e8f889b 4967
ac46d4f3 4968 if (cow) {
bc70fbf2
PX
4969 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src_vma, src,
4970 src_vma->vm_start,
4971 src_vma->vm_end);
ac46d4f3 4972 mmu_notifier_invalidate_range_start(&range);
623a1ddf
DH
4973 mmap_assert_write_locked(src);
4974 raw_write_seqcount_begin(&src->write_protect_seq);
40549ba8
MK
4975 } else {
4976 /*
4977 * For shared mappings the vma lock must be held before
9c67a207 4978 * calling hugetlb_walk() in the src vma. Otherwise, the
40549ba8
MK
4979 * returned ptep could go away if part of a shared pmd and
4980 * another thread calls huge_pmd_unshare.
4981 */
4982 hugetlb_vma_lock_read(src_vma);
ac46d4f3 4983 }
e8569dd2 4984
e95a9851 4985 last_addr_mask = hugetlb_mask_last_page(h);
bc70fbf2 4986 for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) {
cb900f41 4987 spinlock_t *src_ptl, *dst_ptl;
9c67a207 4988 src_pte = hugetlb_walk(src_vma, addr, sz);
e95a9851
MK
4989 if (!src_pte) {
4990 addr |= last_addr_mask;
c74df32c 4991 continue;
e95a9851 4992 }
bc70fbf2 4993 dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz);
e8569dd2
AS
4994 if (!dst_pte) {
4995 ret = -ENOMEM;
4996 break;
4997 }
c5c99429 4998
5e41540c
MK
4999 /*
5000 * If the pagetables are shared don't copy or take references.
5e41540c 5001 *
3aa4ed80 5002 * dst_pte == src_pte is the common case of src/dest sharing.
5e41540c 5003 * However, src could have 'unshared' and dst shares with
3aa4ed80
ML
5004 * another vma. So page_count of ptep page is checked instead
5005 * to reliably determine whether pte is shared.
5e41540c 5006 */
3aa4ed80 5007 if (page_count(virt_to_page(dst_pte)) > 1) {
e95a9851 5008 addr |= last_addr_mask;
c5c99429 5009 continue;
e95a9851 5010 }
c5c99429 5011
cb900f41
KS
5012 dst_ptl = huge_pte_lock(h, dst, dst_pte);
5013 src_ptl = huge_pte_lockptr(h, src, src_pte);
5014 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4a705fef 5015 entry = huge_ptep_get(src_pte);
4eae4efa 5016again:
3aa4ed80 5017 if (huge_pte_none(entry)) {
5e41540c 5018 /*
3aa4ed80 5019 * Skip if src entry none.
5e41540c 5020 */
4a705fef 5021 ;
c2cb0dcc
NH
5022 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) {
5023 bool uffd_wp = huge_pte_uffd_wp(entry);
5024
5025 if (!userfaultfd_wp(dst_vma) && uffd_wp)
5026 entry = huge_pte_clear_uffd_wp(entry);
5027 set_huge_pte_at(dst, addr, dst_pte, entry);
5028 } else if (unlikely(is_hugetlb_entry_migration(entry))) {
4a705fef 5029 swp_entry_t swp_entry = pte_to_swp_entry(entry);
bc70fbf2 5030 bool uffd_wp = huge_pte_uffd_wp(entry);
4a705fef 5031
6c287605 5032 if (!is_readable_migration_entry(swp_entry) && cow) {
4a705fef
NH
5033 /*
5034 * COW mappings require pages in both
5035 * parent and child to be set to read.
5036 */
4dd845b5
AP
5037 swp_entry = make_readable_migration_entry(
5038 swp_offset(swp_entry));
4a705fef 5039 entry = swp_entry_to_pte(swp_entry);
bc70fbf2
PX
5040 if (userfaultfd_wp(src_vma) && uffd_wp)
5041 entry = huge_pte_mkuffd_wp(entry);
18f39629 5042 set_huge_pte_at(src, addr, src_pte, entry);
4a705fef 5043 }
bc70fbf2
PX
5044 if (!userfaultfd_wp(dst_vma) && uffd_wp)
5045 entry = huge_pte_clear_uffd_wp(entry);
18f39629 5046 set_huge_pte_at(dst, addr, dst_pte, entry);
bc70fbf2 5047 } else if (unlikely(is_pte_marker(entry))) {
7e3ce3f8
PX
5048 /* No swap on hugetlb */
5049 WARN_ON_ONCE(
5050 is_swapin_error_entry(pte_to_swp_entry(entry)));
bc70fbf2
PX
5051 /*
5052 * We copy the pte marker only if the dst vma has
5053 * uffd-wp enabled.
5054 */
5055 if (userfaultfd_wp(dst_vma))
5056 set_huge_pte_at(dst, addr, dst_pte, entry);
4a705fef 5057 } else {
4eae4efa
PX
5058 entry = huge_ptep_get(src_pte);
5059 ptepage = pte_page(entry);
5060 get_page(ptepage);
5061
5062 /*
fb3d824d
DH
5063 * Failing to duplicate the anon rmap is a rare case
5064 * where we see pinned hugetlb pages while they're
5065 * prone to COW. We need to do the COW earlier during
5066 * fork.
4eae4efa
PX
5067 *
5068 * When pre-allocating the page or copying data, we
5069 * need to be without the pgtable locks since we could
5070 * sleep during the process.
5071 */
fb3d824d
DH
5072 if (!PageAnon(ptepage)) {
5073 page_dup_file_rmap(ptepage, true);
bc70fbf2
PX
5074 } else if (page_try_dup_anon_rmap(ptepage, true,
5075 src_vma)) {
4eae4efa
PX
5076 pte_t src_pte_old = entry;
5077 struct page *new;
5078
5079 spin_unlock(src_ptl);
5080 spin_unlock(dst_ptl);
5081 /* Do not use reserve as it's private owned */
bc70fbf2 5082 new = alloc_huge_page(dst_vma, addr, 1);
4eae4efa
PX
5083 if (IS_ERR(new)) {
5084 put_page(ptepage);
5085 ret = PTR_ERR(new);
5086 break;
5087 }
bc70fbf2 5088 copy_user_huge_page(new, ptepage, addr, dst_vma,
4eae4efa
PX
5089 npages);
5090 put_page(ptepage);
5091
5092 /* Install the new huge page if src pte stable */
5093 dst_ptl = huge_pte_lock(h, dst, dst_pte);
5094 src_ptl = huge_pte_lockptr(h, src, src_pte);
5095 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5096 entry = huge_ptep_get(src_pte);
5097 if (!pte_same(src_pte_old, entry)) {
bc70fbf2 5098 restore_reserve_on_error(h, dst_vma, addr,
846be085 5099 new);
4eae4efa 5100 put_page(new);
3aa4ed80 5101 /* huge_ptep of dst_pte won't change as in child */
4eae4efa
PX
5102 goto again;
5103 }
bc70fbf2 5104 hugetlb_install_page(dst_vma, dst_pte, addr, new);
4eae4efa
PX
5105 spin_unlock(src_ptl);
5106 spin_unlock(dst_ptl);
5107 continue;
5108 }
5109
34ee645e 5110 if (cow) {
0f10851e
JG
5111 /*
5112 * No need to notify as we are downgrading page
5113 * table protection not changing it to point
5114 * to a new page.
5115 *
ee65728e 5116 * See Documentation/mm/mmu_notifier.rst
0f10851e 5117 */
7f2e9525 5118 huge_ptep_set_wrprotect(src, addr, src_pte);
84894e1c 5119 entry = huge_pte_wrprotect(entry);
34ee645e 5120 }
4eae4efa 5121
1c59827d 5122 set_huge_pte_at(dst, addr, dst_pte, entry);
4eae4efa 5123 hugetlb_count_add(npages, dst);
1c59827d 5124 }
cb900f41
KS
5125 spin_unlock(src_ptl);
5126 spin_unlock(dst_ptl);
63551ae0 5127 }
63551ae0 5128
623a1ddf
DH
5129 if (cow) {
5130 raw_write_seqcount_end(&src->write_protect_seq);
ac46d4f3 5131 mmu_notifier_invalidate_range_end(&range);
40549ba8
MK
5132 } else {
5133 hugetlb_vma_unlock_read(src_vma);
623a1ddf 5134 }
e8569dd2
AS
5135
5136 return ret;
63551ae0
DG
5137}
5138
550a7d60 5139static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr,
db110a99 5140 unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte)
550a7d60
MA
5141{
5142 struct hstate *h = hstate_vma(vma);
5143 struct mm_struct *mm = vma->vm_mm;
550a7d60 5144 spinlock_t *src_ptl, *dst_ptl;
db110a99 5145 pte_t pte;
550a7d60 5146
550a7d60
MA
5147 dst_ptl = huge_pte_lock(h, mm, dst_pte);
5148 src_ptl = huge_pte_lockptr(h, mm, src_pte);
5149
5150 /*
5151 * We don't have to worry about the ordering of src and dst ptlocks
8651a137 5152 * because exclusive mmap_lock (or the i_mmap_lock) prevents deadlock.
550a7d60
MA
5153 */
5154 if (src_ptl != dst_ptl)
5155 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5156
5157 pte = huge_ptep_get_and_clear(mm, old_addr, src_pte);
5158 set_huge_pte_at(mm, new_addr, dst_pte, pte);
5159
5160 if (src_ptl != dst_ptl)
5161 spin_unlock(src_ptl);
5162 spin_unlock(dst_ptl);
5163}
5164
5165int move_hugetlb_page_tables(struct vm_area_struct *vma,
5166 struct vm_area_struct *new_vma,
5167 unsigned long old_addr, unsigned long new_addr,
5168 unsigned long len)
5169{
5170 struct hstate *h = hstate_vma(vma);
5171 struct address_space *mapping = vma->vm_file->f_mapping;
5172 unsigned long sz = huge_page_size(h);
5173 struct mm_struct *mm = vma->vm_mm;
5174 unsigned long old_end = old_addr + len;
e95a9851 5175 unsigned long last_addr_mask;
550a7d60
MA
5176 pte_t *src_pte, *dst_pte;
5177 struct mmu_notifier_range range;
3d0b95cd 5178 bool shared_pmd = false;
550a7d60
MA
5179
5180 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, old_addr,
5181 old_end);
5182 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
3d0b95cd
BW
5183 /*
5184 * In case of shared PMDs, we should cover the maximum possible
5185 * range.
5186 */
5187 flush_cache_range(vma, range.start, range.end);
5188
550a7d60 5189 mmu_notifier_invalidate_range_start(&range);
e95a9851 5190 last_addr_mask = hugetlb_mask_last_page(h);
550a7d60 5191 /* Prevent race with file truncation */
40549ba8 5192 hugetlb_vma_lock_write(vma);
550a7d60
MA
5193 i_mmap_lock_write(mapping);
5194 for (; old_addr < old_end; old_addr += sz, new_addr += sz) {
9c67a207 5195 src_pte = hugetlb_walk(vma, old_addr, sz);
e95a9851
MK
5196 if (!src_pte) {
5197 old_addr |= last_addr_mask;
5198 new_addr |= last_addr_mask;
550a7d60 5199 continue;
e95a9851 5200 }
550a7d60
MA
5201 if (huge_pte_none(huge_ptep_get(src_pte)))
5202 continue;
5203
4ddb4d91 5204 if (huge_pmd_unshare(mm, vma, old_addr, src_pte)) {
3d0b95cd 5205 shared_pmd = true;
4ddb4d91
MK
5206 old_addr |= last_addr_mask;
5207 new_addr |= last_addr_mask;
550a7d60 5208 continue;
3d0b95cd 5209 }
550a7d60
MA
5210
5211 dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz);
5212 if (!dst_pte)
5213 break;
5214
db110a99 5215 move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte);
550a7d60 5216 }
3d0b95cd
BW
5217
5218 if (shared_pmd)
5219 flush_tlb_range(vma, range.start, range.end);
5220 else
5221 flush_tlb_range(vma, old_end - len, old_end);
550a7d60 5222 mmu_notifier_invalidate_range_end(&range);
13e4ad2c 5223 i_mmap_unlock_write(mapping);
40549ba8 5224 hugetlb_vma_unlock_write(vma);
550a7d60
MA
5225
5226 return len + old_addr - old_end;
5227}
5228
73c54763
PX
5229static void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
5230 unsigned long start, unsigned long end,
05e90bd0 5231 struct page *ref_page, zap_flags_t zap_flags)
63551ae0
DG
5232{
5233 struct mm_struct *mm = vma->vm_mm;
5234 unsigned long address;
c7546f8f 5235 pte_t *ptep;
63551ae0 5236 pte_t pte;
cb900f41 5237 spinlock_t *ptl;
63551ae0 5238 struct page *page;
a5516438
AK
5239 struct hstate *h = hstate_vma(vma);
5240 unsigned long sz = huge_page_size(h);
e95a9851 5241 unsigned long last_addr_mask;
a4a118f2 5242 bool force_flush = false;
a5516438 5243
63551ae0 5244 WARN_ON(!is_vm_hugetlb_page(vma));
a5516438
AK
5245 BUG_ON(start & ~huge_page_mask(h));
5246 BUG_ON(end & ~huge_page_mask(h));
63551ae0 5247
07e32661
AK
5248 /*
5249 * This is a hugetlb vma, all the pte entries should point
5250 * to huge page.
5251 */
ed6a7935 5252 tlb_change_page_size(tlb, sz);
24669e58 5253 tlb_start_vma(tlb, vma);
dff11abe 5254
e95a9851 5255 last_addr_mask = hugetlb_mask_last_page(h);
569f48b8 5256 address = start;
569f48b8 5257 for (; address < end; address += sz) {
9c67a207 5258 ptep = hugetlb_walk(vma, address, sz);
e95a9851
MK
5259 if (!ptep) {
5260 address |= last_addr_mask;
c7546f8f 5261 continue;
e95a9851 5262 }
c7546f8f 5263
cb900f41 5264 ptl = huge_pte_lock(h, mm, ptep);
4ddb4d91 5265 if (huge_pmd_unshare(mm, vma, address, ptep)) {
31d49da5 5266 spin_unlock(ptl);
a4a118f2
NA
5267 tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE);
5268 force_flush = true;
4ddb4d91 5269 address |= last_addr_mask;
31d49da5
AK
5270 continue;
5271 }
39dde65c 5272
6629326b 5273 pte = huge_ptep_get(ptep);
31d49da5
AK
5274 if (huge_pte_none(pte)) {
5275 spin_unlock(ptl);
5276 continue;
5277 }
6629326b
HD
5278
5279 /*
9fbc1f63
NH
5280 * Migrating hugepage or HWPoisoned hugepage is already
5281 * unmapped and its refcount is dropped, so just clear pte here.
6629326b 5282 */
9fbc1f63 5283 if (unlikely(!pte_present(pte))) {
05e90bd0
PX
5284 /*
5285 * If the pte was wr-protected by uffd-wp in any of the
5286 * swap forms, meanwhile the caller does not want to
5287 * drop the uffd-wp bit in this zap, then replace the
5288 * pte with a marker.
5289 */
5290 if (pte_swp_uffd_wp_any(pte) &&
5291 !(zap_flags & ZAP_FLAG_DROP_MARKER))
5292 set_huge_pte_at(mm, address, ptep,
5293 make_pte_marker(PTE_MARKER_UFFD_WP));
5294 else
5295 huge_pte_clear(mm, address, ptep, sz);
31d49da5
AK
5296 spin_unlock(ptl);
5297 continue;
8c4894c6 5298 }
6629326b
HD
5299
5300 page = pte_page(pte);
04f2cbe3
MG
5301 /*
5302 * If a reference page is supplied, it is because a specific
5303 * page is being unmapped, not a range. Ensure the page we
5304 * are about to unmap is the actual page of interest.
5305 */
5306 if (ref_page) {
31d49da5
AK
5307 if (page != ref_page) {
5308 spin_unlock(ptl);
5309 continue;
5310 }
04f2cbe3
MG
5311 /*
5312 * Mark the VMA as having unmapped its page so that
5313 * future faults in this VMA will fail rather than
5314 * looking like data was lost
5315 */
5316 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
5317 }
5318
c7546f8f 5319 pte = huge_ptep_get_and_clear(mm, address, ptep);
b528e4b6 5320 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
106c992a 5321 if (huge_pte_dirty(pte))
6649a386 5322 set_page_dirty(page);
05e90bd0
PX
5323 /* Leave a uffd-wp pte marker if needed */
5324 if (huge_pte_uffd_wp(pte) &&
5325 !(zap_flags & ZAP_FLAG_DROP_MARKER))
5326 set_huge_pte_at(mm, address, ptep,
5327 make_pte_marker(PTE_MARKER_UFFD_WP));
5d317b2b 5328 hugetlb_count_sub(pages_per_huge_page(h), mm);
cea86fe2 5329 page_remove_rmap(page, vma, true);
31d49da5 5330
cb900f41 5331 spin_unlock(ptl);
e77b0852 5332 tlb_remove_page_size(tlb, page, huge_page_size(h));
31d49da5
AK
5333 /*
5334 * Bail out after unmapping reference page if supplied
5335 */
5336 if (ref_page)
5337 break;
fe1668ae 5338 }
24669e58 5339 tlb_end_vma(tlb, vma);
a4a118f2
NA
5340
5341 /*
5342 * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We
5343 * could defer the flush until now, since by holding i_mmap_rwsem we
5344 * guaranteed that the last refernece would not be dropped. But we must
5345 * do the flushing before we return, as otherwise i_mmap_rwsem will be
5346 * dropped and the last reference to the shared PMDs page might be
5347 * dropped as well.
5348 *
5349 * In theory we could defer the freeing of the PMD pages as well, but
5350 * huge_pmd_unshare() relies on the exact page_count for the PMD page to
5351 * detect sharing, so we cannot defer the release of the page either.
5352 * Instead, do flush now.
5353 */
5354 if (force_flush)
5355 tlb_flush_mmu_tlbonly(tlb);
1da177e4 5356}
63551ae0 5357
d833352a
MG
5358void __unmap_hugepage_range_final(struct mmu_gather *tlb,
5359 struct vm_area_struct *vma, unsigned long start,
05e90bd0
PX
5360 unsigned long end, struct page *ref_page,
5361 zap_flags_t zap_flags)
d833352a 5362{
131a79b4
MK
5363 hugetlb_vma_lock_write(vma);
5364 i_mmap_lock_write(vma->vm_file->f_mapping);
5365
369258ce 5366 /* mmu notification performed in caller */
05e90bd0 5367 __unmap_hugepage_range(tlb, vma, start, end, ref_page, zap_flags);
d833352a 5368
04ada095
MK
5369 if (zap_flags & ZAP_FLAG_UNMAP) { /* final unmap */
5370 /*
5371 * Unlock and free the vma lock before releasing i_mmap_rwsem.
5372 * When the vma_lock is freed, this makes the vma ineligible
5373 * for pmd sharing. And, i_mmap_rwsem is required to set up
5374 * pmd sharing. This is important as page tables for this
5375 * unmapped range will be asynchrously deleted. If the page
5376 * tables are shared, there will be issues when accessed by
5377 * someone else.
5378 */
5379 __hugetlb_vma_unlock_write_free(vma);
5380 i_mmap_unlock_write(vma->vm_file->f_mapping);
5381 } else {
5382 i_mmap_unlock_write(vma->vm_file->f_mapping);
5383 hugetlb_vma_unlock_write(vma);
5384 }
d833352a
MG
5385}
5386
502717f4 5387void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
05e90bd0
PX
5388 unsigned long end, struct page *ref_page,
5389 zap_flags_t zap_flags)
502717f4 5390{
369258ce 5391 struct mmu_notifier_range range;
24669e58 5392 struct mmu_gather tlb;
dff11abe 5393
369258ce
MK
5394 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
5395 start, end);
5396 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5397 mmu_notifier_invalidate_range_start(&range);
a72afd87 5398 tlb_gather_mmu(&tlb, vma->vm_mm);
369258ce 5399
05e90bd0 5400 __unmap_hugepage_range(&tlb, vma, start, end, ref_page, zap_flags);
369258ce
MK
5401
5402 mmu_notifier_invalidate_range_end(&range);
ae8eba8b 5403 tlb_finish_mmu(&tlb);
502717f4
CK
5404}
5405
04f2cbe3
MG
5406/*
5407 * This is called when the original mapper is failing to COW a MAP_PRIVATE
578b7725 5408 * mapping it owns the reserve page for. The intention is to unmap the page
04f2cbe3
MG
5409 * from other VMAs and let the children be SIGKILLed if they are faulting the
5410 * same region.
5411 */
2f4612af
DB
5412static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
5413 struct page *page, unsigned long address)
04f2cbe3 5414{
7526674d 5415 struct hstate *h = hstate_vma(vma);
04f2cbe3
MG
5416 struct vm_area_struct *iter_vma;
5417 struct address_space *mapping;
04f2cbe3
MG
5418 pgoff_t pgoff;
5419
5420 /*
5421 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
5422 * from page cache lookup which is in HPAGE_SIZE units.
5423 */
7526674d 5424 address = address & huge_page_mask(h);
36e4f20a
MH
5425 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
5426 vma->vm_pgoff;
93c76a3d 5427 mapping = vma->vm_file->f_mapping;
04f2cbe3 5428
4eb2b1dc
MG
5429 /*
5430 * Take the mapping lock for the duration of the table walk. As
5431 * this mapping should be shared between all the VMAs,
5432 * __unmap_hugepage_range() is called as the lock is already held
5433 */
83cde9e8 5434 i_mmap_lock_write(mapping);
6b2dbba8 5435 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
04f2cbe3
MG
5436 /* Do not unmap the current VMA */
5437 if (iter_vma == vma)
5438 continue;
5439
2f84a899
MG
5440 /*
5441 * Shared VMAs have their own reserves and do not affect
5442 * MAP_PRIVATE accounting but it is possible that a shared
5443 * VMA is using the same page so check and skip such VMAs.
5444 */
5445 if (iter_vma->vm_flags & VM_MAYSHARE)
5446 continue;
5447
04f2cbe3
MG
5448 /*
5449 * Unmap the page from other VMAs without their own reserves.
5450 * They get marked to be SIGKILLed if they fault in these
5451 * areas. This is because a future no-page fault on this VMA
5452 * could insert a zeroed page instead of the data existing
5453 * from the time of fork. This would look like data corruption
5454 */
5455 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
24669e58 5456 unmap_hugepage_range(iter_vma, address,
05e90bd0 5457 address + huge_page_size(h), page, 0);
04f2cbe3 5458 }
83cde9e8 5459 i_mmap_unlock_write(mapping);
04f2cbe3
MG
5460}
5461
0fe6e20b 5462/*
c89357e2 5463 * hugetlb_wp() should be called with page lock of the original hugepage held.
aa6d2e8c 5464 * Called with hugetlb_fault_mutex_table held and pte_page locked so we
ef009b25
MH
5465 * cannot race with other handlers or page migration.
5466 * Keep the pte_same checks anyway to make transition from the mutex easier.
0fe6e20b 5467 */
c89357e2
DH
5468static vm_fault_t hugetlb_wp(struct mm_struct *mm, struct vm_area_struct *vma,
5469 unsigned long address, pte_t *ptep, unsigned int flags,
3999f52e 5470 struct page *pagecache_page, spinlock_t *ptl)
1e8f889b 5471{
c89357e2 5472 const bool unshare = flags & FAULT_FLAG_UNSHARE;
3999f52e 5473 pte_t pte;
a5516438 5474 struct hstate *h = hstate_vma(vma);
1e8f889b 5475 struct page *old_page, *new_page;
2b740303
SJ
5476 int outside_reserve = 0;
5477 vm_fault_t ret = 0;
974e6d66 5478 unsigned long haddr = address & huge_page_mask(h);
ac46d4f3 5479 struct mmu_notifier_range range;
1e8f889b 5480
1d8d1464
DH
5481 /*
5482 * hugetlb does not support FOLL_FORCE-style write faults that keep the
5483 * PTE mapped R/O such as maybe_mkwrite() would do.
5484 */
5485 if (WARN_ON_ONCE(!unshare && !(vma->vm_flags & VM_WRITE)))
5486 return VM_FAULT_SIGSEGV;
5487
5488 /* Let's take out MAP_SHARED mappings first. */
5489 if (vma->vm_flags & VM_MAYSHARE) {
1d8d1464
DH
5490 set_huge_ptep_writable(vma, haddr, ptep);
5491 return 0;
5492 }
5493
3999f52e 5494 pte = huge_ptep_get(ptep);
1e8f889b
DG
5495 old_page = pte_page(pte);
5496
662ce1dc
YY
5497 delayacct_wpcopy_start();
5498
04f2cbe3 5499retry_avoidcopy:
c89357e2
DH
5500 /*
5501 * If no-one else is actually using this page, we're the exclusive
5502 * owner and can reuse this page.
5503 */
37a2140d 5504 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
c89357e2
DH
5505 if (!PageAnonExclusive(old_page))
5506 page_move_anon_rmap(old_page, vma);
5507 if (likely(!unshare))
5508 set_huge_ptep_writable(vma, haddr, ptep);
662ce1dc
YY
5509
5510 delayacct_wpcopy_end();
83c54070 5511 return 0;
1e8f889b 5512 }
6c287605
DH
5513 VM_BUG_ON_PAGE(PageAnon(old_page) && PageAnonExclusive(old_page),
5514 old_page);
1e8f889b 5515
04f2cbe3
MG
5516 /*
5517 * If the process that created a MAP_PRIVATE mapping is about to
5518 * perform a COW due to a shared page count, attempt to satisfy
5519 * the allocation without using the existing reserves. The pagecache
5520 * page is used to determine if the reserve at this address was
5521 * consumed or not. If reserves were used, a partial faulted mapping
5522 * at the time of fork() could consume its reserves on COW instead
5523 * of the full address range.
5524 */
5944d011 5525 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
04f2cbe3
MG
5526 old_page != pagecache_page)
5527 outside_reserve = 1;
5528
09cbfeaf 5529 get_page(old_page);
b76c8cfb 5530
ad4404a2
DB
5531 /*
5532 * Drop page table lock as buddy allocator may be called. It will
5533 * be acquired again before returning to the caller, as expected.
5534 */
cb900f41 5535 spin_unlock(ptl);
5b7a1d40 5536 new_page = alloc_huge_page(vma, haddr, outside_reserve);
1e8f889b 5537
2fc39cec 5538 if (IS_ERR(new_page)) {
04f2cbe3
MG
5539 /*
5540 * If a process owning a MAP_PRIVATE mapping fails to COW,
5541 * it is due to references held by a child and an insufficient
5542 * huge page pool. To guarantee the original mappers
5543 * reliability, unmap the page from child processes. The child
5544 * may get SIGKILLed if it later faults.
5545 */
5546 if (outside_reserve) {
40549ba8
MK
5547 struct address_space *mapping = vma->vm_file->f_mapping;
5548 pgoff_t idx;
5549 u32 hash;
5550
09cbfeaf 5551 put_page(old_page);
40549ba8
MK
5552 /*
5553 * Drop hugetlb_fault_mutex and vma_lock before
5554 * unmapping. unmapping needs to hold vma_lock
5555 * in write mode. Dropping vma_lock in read mode
5556 * here is OK as COW mappings do not interact with
5557 * PMD sharing.
5558 *
5559 * Reacquire both after unmap operation.
5560 */
5561 idx = vma_hugecache_offset(h, vma, haddr);
5562 hash = hugetlb_fault_mutex_hash(mapping, idx);
5563 hugetlb_vma_unlock_read(vma);
5564 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5565
5b7a1d40 5566 unmap_ref_private(mm, vma, old_page, haddr);
40549ba8
MK
5567
5568 mutex_lock(&hugetlb_fault_mutex_table[hash]);
5569 hugetlb_vma_lock_read(vma);
2f4612af 5570 spin_lock(ptl);
9c67a207 5571 ptep = hugetlb_walk(vma, haddr, huge_page_size(h));
2f4612af
DB
5572 if (likely(ptep &&
5573 pte_same(huge_ptep_get(ptep), pte)))
5574 goto retry_avoidcopy;
5575 /*
5576 * race occurs while re-acquiring page table
5577 * lock, and our job is done.
5578 */
662ce1dc 5579 delayacct_wpcopy_end();
2f4612af 5580 return 0;
04f2cbe3
MG
5581 }
5582
2b740303 5583 ret = vmf_error(PTR_ERR(new_page));
ad4404a2 5584 goto out_release_old;
1e8f889b
DG
5585 }
5586
0fe6e20b
NH
5587 /*
5588 * When the original hugepage is shared one, it does not have
5589 * anon_vma prepared.
5590 */
44e2aa93 5591 if (unlikely(anon_vma_prepare(vma))) {
ad4404a2
DB
5592 ret = VM_FAULT_OOM;
5593 goto out_release_all;
44e2aa93 5594 }
0fe6e20b 5595
974e6d66 5596 copy_user_huge_page(new_page, old_page, address, vma,
47ad8475 5597 pages_per_huge_page(h));
0ed361de 5598 __SetPageUptodate(new_page);
1e8f889b 5599
7269f999 5600 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
6f4f13e8 5601 haddr + huge_page_size(h));
ac46d4f3 5602 mmu_notifier_invalidate_range_start(&range);
ad4404a2 5603
b76c8cfb 5604 /*
cb900f41 5605 * Retake the page table lock to check for racing updates
b76c8cfb
LW
5606 * before the page tables are altered
5607 */
cb900f41 5608 spin_lock(ptl);
9c67a207 5609 ptep = hugetlb_walk(vma, haddr, huge_page_size(h));
a9af0c5d 5610 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
c89357e2 5611 /* Break COW or unshare */
5b7a1d40 5612 huge_ptep_clear_flush(vma, haddr, ptep);
ac46d4f3 5613 mmu_notifier_invalidate_range(mm, range.start, range.end);
cea86fe2 5614 page_remove_rmap(old_page, vma, true);
5b7a1d40 5615 hugepage_add_new_anon_rmap(new_page, vma, haddr);
1eba86c0 5616 set_huge_pte_at(mm, haddr, ptep,
c89357e2 5617 make_huge_pte(vma, new_page, !unshare));
8f251a3d 5618 SetHPageMigratable(new_page);
1e8f889b
DG
5619 /* Make the old page be freed below */
5620 new_page = old_page;
5621 }
cb900f41 5622 spin_unlock(ptl);
ac46d4f3 5623 mmu_notifier_invalidate_range_end(&range);
ad4404a2 5624out_release_all:
c89357e2
DH
5625 /*
5626 * No restore in case of successful pagetable update (Break COW or
5627 * unshare)
5628 */
c7b1850d
MK
5629 if (new_page != old_page)
5630 restore_reserve_on_error(h, vma, haddr, new_page);
09cbfeaf 5631 put_page(new_page);
ad4404a2 5632out_release_old:
09cbfeaf 5633 put_page(old_page);
8312034f 5634
ad4404a2 5635 spin_lock(ptl); /* Caller expects lock to be held */
662ce1dc
YY
5636
5637 delayacct_wpcopy_end();
ad4404a2 5638 return ret;
1e8f889b
DG
5639}
5640
3ae77f43
HD
5641/*
5642 * Return whether there is a pagecache page to back given address within VMA.
5643 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
5644 */
5645static bool hugetlbfs_pagecache_present(struct hstate *h,
2a15efc9
HD
5646 struct vm_area_struct *vma, unsigned long address)
5647{
5648 struct address_space *mapping;
5649 pgoff_t idx;
5650 struct page *page;
5651
5652 mapping = vma->vm_file->f_mapping;
5653 idx = vma_hugecache_offset(h, vma, address);
5654
5655 page = find_get_page(mapping, idx);
5656 if (page)
5657 put_page(page);
5658 return page != NULL;
5659}
5660
7e1813d4 5661int hugetlb_add_to_page_cache(struct page *page, struct address_space *mapping,
ab76ad54
MK
5662 pgoff_t idx)
5663{
d9ef44de 5664 struct folio *folio = page_folio(page);
ab76ad54
MK
5665 struct inode *inode = mapping->host;
5666 struct hstate *h = hstate_inode(inode);
d9ef44de 5667 int err;
ab76ad54 5668
d9ef44de
MWO
5669 __folio_set_locked(folio);
5670 err = __filemap_add_folio(mapping, folio, idx, GFP_KERNEL, NULL);
5671
5672 if (unlikely(err)) {
5673 __folio_clear_locked(folio);
ab76ad54 5674 return err;
d9ef44de 5675 }
d6995da3 5676 ClearHPageRestoreReserve(page);
ab76ad54 5677
22146c3c 5678 /*
d9ef44de 5679 * mark folio dirty so that it will not be removed from cache/file
22146c3c
MK
5680 * by non-hugetlbfs specific code paths.
5681 */
d9ef44de 5682 folio_mark_dirty(folio);
22146c3c 5683
ab76ad54
MK
5684 spin_lock(&inode->i_lock);
5685 inode->i_blocks += blocks_per_huge_page(h);
5686 spin_unlock(&inode->i_lock);
5687 return 0;
5688}
5689
7677f7fd
AR
5690static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma,
5691 struct address_space *mapping,
5692 pgoff_t idx,
5693 unsigned int flags,
5694 unsigned long haddr,
824ddc60 5695 unsigned long addr,
7677f7fd
AR
5696 unsigned long reason)
5697{
7677f7fd
AR
5698 u32 hash;
5699 struct vm_fault vmf = {
5700 .vma = vma,
5701 .address = haddr,
824ddc60 5702 .real_address = addr,
7677f7fd
AR
5703 .flags = flags,
5704
5705 /*
5706 * Hard to debug if it ends up being
5707 * used by a callee that assumes
5708 * something about the other
5709 * uninitialized fields... same as in
5710 * memory.c
5711 */
5712 };
5713
5714 /*
958f32ce
LS
5715 * vma_lock and hugetlb_fault_mutex must be dropped before handling
5716 * userfault. Also mmap_lock could be dropped due to handling
5717 * userfault, any vma operation should be careful from here.
7677f7fd 5718 */
40549ba8 5719 hugetlb_vma_unlock_read(vma);
7677f7fd
AR
5720 hash = hugetlb_fault_mutex_hash(mapping, idx);
5721 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
958f32ce 5722 return handle_userfault(&vmf, reason);
7677f7fd
AR
5723}
5724
2ea7ff1e
PX
5725/*
5726 * Recheck pte with pgtable lock. Returns true if pte didn't change, or
5727 * false if pte changed or is changing.
5728 */
5729static bool hugetlb_pte_stable(struct hstate *h, struct mm_struct *mm,
5730 pte_t *ptep, pte_t old_pte)
5731{
5732 spinlock_t *ptl;
5733 bool same;
5734
5735 ptl = huge_pte_lock(h, mm, ptep);
5736 same = pte_same(huge_ptep_get(ptep), old_pte);
5737 spin_unlock(ptl);
5738
5739 return same;
5740}
5741
2b740303
SJ
5742static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
5743 struct vm_area_struct *vma,
5744 struct address_space *mapping, pgoff_t idx,
c64e912c
PX
5745 unsigned long address, pte_t *ptep,
5746 pte_t old_pte, unsigned int flags)
ac9b9c66 5747{
a5516438 5748 struct hstate *h = hstate_vma(vma);
2b740303 5749 vm_fault_t ret = VM_FAULT_SIGBUS;
409eb8c2 5750 int anon_rmap = 0;
4c887265 5751 unsigned long size;
4c887265 5752 struct page *page;
1e8f889b 5753 pte_t new_pte;
cb900f41 5754 spinlock_t *ptl;
285b8dca 5755 unsigned long haddr = address & huge_page_mask(h);
c7b1850d 5756 bool new_page, new_pagecache_page = false;
958f32ce 5757 u32 hash = hugetlb_fault_mutex_hash(mapping, idx);
4c887265 5758
04f2cbe3
MG
5759 /*
5760 * Currently, we are forced to kill the process in the event the
5761 * original mapper has unmapped pages from the child due to a failed
c89357e2
DH
5762 * COW/unsharing. Warn that such a situation has occurred as it may not
5763 * be obvious.
04f2cbe3
MG
5764 */
5765 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
910154d5 5766 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
ffb22af5 5767 current->pid);
958f32ce 5768 goto out;
04f2cbe3
MG
5769 }
5770
4c887265 5771 /*
188a3972
MK
5772 * Use page lock to guard against racing truncation
5773 * before we get page_table_lock.
4c887265 5774 */
c7b1850d 5775 new_page = false;
6bda666a
CL
5776 page = find_lock_page(mapping, idx);
5777 if (!page) {
188a3972
MK
5778 size = i_size_read(mapping->host) >> huge_page_shift(h);
5779 if (idx >= size)
5780 goto out;
7677f7fd 5781 /* Check for page in userfault range */
2ea7ff1e
PX
5782 if (userfaultfd_missing(vma)) {
5783 /*
5784 * Since hugetlb_no_page() was examining pte
5785 * without pgtable lock, we need to re-test under
5786 * lock because the pte may not be stable and could
5787 * have changed from under us. Try to detect
5788 * either changed or during-changing ptes and retry
5789 * properly when needed.
5790 *
5791 * Note that userfaultfd is actually fine with
5792 * false positives (e.g. caused by pte changed),
5793 * but not wrong logical events (e.g. caused by
5794 * reading a pte during changing). The latter can
5795 * confuse the userspace, so the strictness is very
5796 * much preferred. E.g., MISSING event should
5797 * never happen on the page after UFFDIO_COPY has
5798 * correctly installed the page and returned.
5799 */
5800 if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
5801 ret = 0;
5802 goto out;
5803 }
5804
5805 return hugetlb_handle_userfault(vma, mapping, idx, flags,
5806 haddr, address,
5807 VM_UFFD_MISSING);
5808 }
1a1aad8a 5809
285b8dca 5810 page = alloc_huge_page(vma, haddr, 0);
2fc39cec 5811 if (IS_ERR(page)) {
4643d67e
MK
5812 /*
5813 * Returning error will result in faulting task being
5814 * sent SIGBUS. The hugetlb fault mutex prevents two
5815 * tasks from racing to fault in the same page which
5816 * could result in false unable to allocate errors.
5817 * Page migration does not take the fault mutex, but
5818 * does a clear then write of pte's under page table
5819 * lock. Page fault code could race with migration,
5820 * notice the clear pte and try to allocate a page
5821 * here. Before returning error, get ptl and make
5822 * sure there really is no pte entry.
5823 */
f9bf6c03 5824 if (hugetlb_pte_stable(h, mm, ptep, old_pte))
d83e6c8a 5825 ret = vmf_error(PTR_ERR(page));
f9bf6c03
PX
5826 else
5827 ret = 0;
6bda666a
CL
5828 goto out;
5829 }
47ad8475 5830 clear_huge_page(page, address, pages_per_huge_page(h));
0ed361de 5831 __SetPageUptodate(page);
cb6acd01 5832 new_page = true;
ac9b9c66 5833
f83a275d 5834 if (vma->vm_flags & VM_MAYSHARE) {
7e1813d4 5835 int err = hugetlb_add_to_page_cache(page, mapping, idx);
6bda666a 5836 if (err) {
3a5497a2
ML
5837 /*
5838 * err can't be -EEXIST which implies someone
5839 * else consumed the reservation since hugetlb
5840 * fault mutex is held when add a hugetlb page
5841 * to the page cache. So it's safe to call
5842 * restore_reserve_on_error() here.
5843 */
5844 restore_reserve_on_error(h, vma, haddr, page);
6bda666a 5845 put_page(page);
6bda666a
CL
5846 goto out;
5847 }
c7b1850d 5848 new_pagecache_page = true;
23be7468 5849 } else {
6bda666a 5850 lock_page(page);
0fe6e20b
NH
5851 if (unlikely(anon_vma_prepare(vma))) {
5852 ret = VM_FAULT_OOM;
5853 goto backout_unlocked;
5854 }
409eb8c2 5855 anon_rmap = 1;
23be7468 5856 }
0fe6e20b 5857 } else {
998b4382
NH
5858 /*
5859 * If memory error occurs between mmap() and fault, some process
5860 * don't have hwpoisoned swap entry for errored virtual address.
5861 * So we need to block hugepage fault by PG_hwpoison bit check.
5862 */
5863 if (unlikely(PageHWPoison(page))) {
0eb98f15 5864 ret = VM_FAULT_HWPOISON_LARGE |
972dc4de 5865 VM_FAULT_SET_HINDEX(hstate_index(h));
998b4382
NH
5866 goto backout_unlocked;
5867 }
7677f7fd
AR
5868
5869 /* Check for page in userfault range. */
5870 if (userfaultfd_minor(vma)) {
5871 unlock_page(page);
5872 put_page(page);
2ea7ff1e
PX
5873 /* See comment in userfaultfd_missing() block above */
5874 if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
5875 ret = 0;
5876 goto out;
5877 }
5878 return hugetlb_handle_userfault(vma, mapping, idx, flags,
5879 haddr, address,
5880 VM_UFFD_MINOR);
7677f7fd 5881 }
6bda666a 5882 }
1e8f889b 5883
57303d80
AW
5884 /*
5885 * If we are going to COW a private mapping later, we examine the
5886 * pending reservations for this page now. This will ensure that
5887 * any allocations necessary to record that reservation occur outside
5888 * the spinlock.
5889 */
5e911373 5890 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
285b8dca 5891 if (vma_needs_reservation(h, vma, haddr) < 0) {
2b26736c
AW
5892 ret = VM_FAULT_OOM;
5893 goto backout_unlocked;
5894 }
5e911373 5895 /* Just decrements count, does not deallocate */
285b8dca 5896 vma_end_reservation(h, vma, haddr);
5e911373 5897 }
57303d80 5898
8bea8052 5899 ptl = huge_pte_lock(h, mm, ptep);
83c54070 5900 ret = 0;
c64e912c
PX
5901 /* If pte changed from under us, retry */
5902 if (!pte_same(huge_ptep_get(ptep), old_pte))
4c887265
AL
5903 goto backout;
5904
4781593d 5905 if (anon_rmap)
285b8dca 5906 hugepage_add_new_anon_rmap(page, vma, haddr);
4781593d 5907 else
fb3d824d 5908 page_dup_file_rmap(page, true);
1e8f889b
DG
5909 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
5910 && (vma->vm_flags & VM_SHARED)));
c64e912c
PX
5911 /*
5912 * If this pte was previously wr-protected, keep it wr-protected even
5913 * if populated.
5914 */
5915 if (unlikely(pte_marker_uffd_wp(old_pte)))
f1eb1bac 5916 new_pte = huge_pte_mkuffd_wp(new_pte);
285b8dca 5917 set_huge_pte_at(mm, haddr, ptep, new_pte);
1e8f889b 5918
5d317b2b 5919 hugetlb_count_add(pages_per_huge_page(h), mm);
788c7df4 5920 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
1e8f889b 5921 /* Optimization, do the COW without a second fault */
c89357e2 5922 ret = hugetlb_wp(mm, vma, address, ptep, flags, page, ptl);
1e8f889b
DG
5923 }
5924
cb900f41 5925 spin_unlock(ptl);
cb6acd01
MK
5926
5927 /*
8f251a3d
MK
5928 * Only set HPageMigratable in newly allocated pages. Existing pages
5929 * found in the pagecache may not have HPageMigratableset if they have
5930 * been isolated for migration.
cb6acd01
MK
5931 */
5932 if (new_page)
8f251a3d 5933 SetHPageMigratable(page);
cb6acd01 5934
4c887265
AL
5935 unlock_page(page);
5936out:
958f32ce
LS
5937 hugetlb_vma_unlock_read(vma);
5938 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
ac9b9c66 5939 return ret;
4c887265
AL
5940
5941backout:
cb900f41 5942 spin_unlock(ptl);
2b26736c 5943backout_unlocked:
c7b1850d
MK
5944 if (new_page && !new_pagecache_page)
5945 restore_reserve_on_error(h, vma, haddr, page);
fa27759a
MK
5946
5947 unlock_page(page);
4c887265
AL
5948 put_page(page);
5949 goto out;
ac9b9c66
HD
5950}
5951
8382d914 5952#ifdef CONFIG_SMP
188b04a7 5953u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
8382d914
DB
5954{
5955 unsigned long key[2];
5956 u32 hash;
5957
1b426bac
MK
5958 key[0] = (unsigned long) mapping;
5959 key[1] = idx;
8382d914 5960
55254636 5961 hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
8382d914
DB
5962
5963 return hash & (num_fault_mutexes - 1);
5964}
5965#else
5966/*
6c26d310 5967 * For uniprocessor systems we always use a single mutex, so just
8382d914
DB
5968 * return 0 and avoid the hashing overhead.
5969 */
188b04a7 5970u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
8382d914
DB
5971{
5972 return 0;
5973}
5974#endif
5975
2b740303 5976vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
788c7df4 5977 unsigned long address, unsigned int flags)
86e5216f 5978{
8382d914 5979 pte_t *ptep, entry;
cb900f41 5980 spinlock_t *ptl;
2b740303 5981 vm_fault_t ret;
8382d914
DB
5982 u32 hash;
5983 pgoff_t idx;
0fe6e20b 5984 struct page *page = NULL;
57303d80 5985 struct page *pagecache_page = NULL;
a5516438 5986 struct hstate *h = hstate_vma(vma);
8382d914 5987 struct address_space *mapping;
0f792cf9 5988 int need_wait_lock = 0;
285b8dca 5989 unsigned long haddr = address & huge_page_mask(h);
86e5216f 5990
3935baa9
DG
5991 /*
5992 * Serialize hugepage allocation and instantiation, so that we don't
5993 * get spurious allocation failures if two CPUs race to instantiate
5994 * the same page in the page cache.
5995 */
40549ba8
MK
5996 mapping = vma->vm_file->f_mapping;
5997 idx = vma_hugecache_offset(h, vma, haddr);
188b04a7 5998 hash = hugetlb_fault_mutex_hash(mapping, idx);
c672c7f2 5999 mutex_lock(&hugetlb_fault_mutex_table[hash]);
8382d914 6000
40549ba8
MK
6001 /*
6002 * Acquire vma lock before calling huge_pte_alloc and hold
6003 * until finished with ptep. This prevents huge_pmd_unshare from
6004 * being called elsewhere and making the ptep no longer valid.
40549ba8
MK
6005 */
6006 hugetlb_vma_lock_read(vma);
6007 ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h));
6008 if (!ptep) {
6009 hugetlb_vma_unlock_read(vma);
6010 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6011 return VM_FAULT_OOM;
6012 }
6013
7f2e9525 6014 entry = huge_ptep_get(ptep);
c64e912c 6015 /* PTE markers should be handled the same way as none pte */
958f32ce
LS
6016 if (huge_pte_none_mostly(entry))
6017 /*
6018 * hugetlb_no_page will drop vma lock and hugetlb fault
6019 * mutex internally, which make us return immediately.
6020 */
6021 return hugetlb_no_page(mm, vma, mapping, idx, address, ptep,
c64e912c 6022 entry, flags);
86e5216f 6023
83c54070 6024 ret = 0;
1e8f889b 6025
0f792cf9
NH
6026 /*
6027 * entry could be a migration/hwpoison entry at this point, so this
6028 * check prevents the kernel from going below assuming that we have
7c8de358
EP
6029 * an active hugepage in pagecache. This goto expects the 2nd page
6030 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
6031 * properly handle it.
0f792cf9 6032 */
fcd48540
PX
6033 if (!pte_present(entry)) {
6034 if (unlikely(is_hugetlb_entry_migration(entry))) {
6035 /*
6036 * Release the hugetlb fault lock now, but retain
6037 * the vma lock, because it is needed to guard the
6038 * huge_pte_lockptr() later in
6039 * migration_entry_wait_huge(). The vma lock will
6040 * be released there.
6041 */
6042 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6043 migration_entry_wait_huge(vma, ptep);
6044 return 0;
6045 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
6046 ret = VM_FAULT_HWPOISON_LARGE |
6047 VM_FAULT_SET_HINDEX(hstate_index(h));
0f792cf9 6048 goto out_mutex;
fcd48540 6049 }
0f792cf9 6050
57303d80 6051 /*
c89357e2
DH
6052 * If we are going to COW/unshare the mapping later, we examine the
6053 * pending reservations for this page now. This will ensure that any
57303d80 6054 * allocations necessary to record that reservation occur outside the
1d8d1464
DH
6055 * spinlock. Also lookup the pagecache page now as it is used to
6056 * determine if a reservation has been consumed.
57303d80 6057 */
c89357e2 6058 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
1d8d1464 6059 !(vma->vm_flags & VM_MAYSHARE) && !huge_pte_write(entry)) {
285b8dca 6060 if (vma_needs_reservation(h, vma, haddr) < 0) {
2b26736c 6061 ret = VM_FAULT_OOM;
b4d1d99f 6062 goto out_mutex;
2b26736c 6063 }
5e911373 6064 /* Just decrements count, does not deallocate */
285b8dca 6065 vma_end_reservation(h, vma, haddr);
57303d80 6066
29be8426 6067 pagecache_page = find_lock_page(mapping, idx);
57303d80
AW
6068 }
6069
0f792cf9
NH
6070 ptl = huge_pte_lock(h, mm, ptep);
6071
c89357e2 6072 /* Check for a racing update before calling hugetlb_wp() */
0f792cf9
NH
6073 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
6074 goto out_ptl;
6075
166f3ecc
PX
6076 /* Handle userfault-wp first, before trying to lock more pages */
6077 if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(ptep)) &&
6078 (flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
6079 struct vm_fault vmf = {
6080 .vma = vma,
6081 .address = haddr,
6082 .real_address = address,
6083 .flags = flags,
6084 };
6085
6086 spin_unlock(ptl);
6087 if (pagecache_page) {
6088 unlock_page(pagecache_page);
6089 put_page(pagecache_page);
6090 }
40549ba8 6091 hugetlb_vma_unlock_read(vma);
166f3ecc 6092 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
166f3ecc
PX
6093 return handle_userfault(&vmf, VM_UFFD_WP);
6094 }
6095
56c9cfb1 6096 /*
c89357e2 6097 * hugetlb_wp() requires page locks of pte_page(entry) and
56c9cfb1
NH
6098 * pagecache_page, so here we need take the former one
6099 * when page != pagecache_page or !pagecache_page.
56c9cfb1
NH
6100 */
6101 page = pte_page(entry);
6102 if (page != pagecache_page)
0f792cf9
NH
6103 if (!trylock_page(page)) {
6104 need_wait_lock = 1;
6105 goto out_ptl;
6106 }
b4d1d99f 6107
0f792cf9 6108 get_page(page);
b4d1d99f 6109
c89357e2 6110 if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
106c992a 6111 if (!huge_pte_write(entry)) {
c89357e2
DH
6112 ret = hugetlb_wp(mm, vma, address, ptep, flags,
6113 pagecache_page, ptl);
0f792cf9 6114 goto out_put_page;
c89357e2
DH
6115 } else if (likely(flags & FAULT_FLAG_WRITE)) {
6116 entry = huge_pte_mkdirty(entry);
b4d1d99f 6117 }
b4d1d99f
DG
6118 }
6119 entry = pte_mkyoung(entry);
285b8dca 6120 if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
788c7df4 6121 flags & FAULT_FLAG_WRITE))
285b8dca 6122 update_mmu_cache(vma, haddr, ptep);
0f792cf9
NH
6123out_put_page:
6124 if (page != pagecache_page)
6125 unlock_page(page);
6126 put_page(page);
cb900f41
KS
6127out_ptl:
6128 spin_unlock(ptl);
57303d80
AW
6129
6130 if (pagecache_page) {
6131 unlock_page(pagecache_page);
6132 put_page(pagecache_page);
6133 }
b4d1d99f 6134out_mutex:
40549ba8 6135 hugetlb_vma_unlock_read(vma);
c672c7f2 6136 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
0f792cf9
NH
6137 /*
6138 * Generally it's safe to hold refcount during waiting page lock. But
6139 * here we just wait to defer the next page fault to avoid busy loop and
6140 * the page is not used after unlocked before returning from the current
6141 * page fault. So we are safe from accessing freed page, even if we wait
6142 * here without taking refcount.
6143 */
6144 if (need_wait_lock)
6145 wait_on_page_locked(page);
1e8f889b 6146 return ret;
86e5216f
AL
6147}
6148
714c1891 6149#ifdef CONFIG_USERFAULTFD
8fb5debc
MK
6150/*
6151 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with
6152 * modifications for huge pages.
6153 */
6154int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
6155 pte_t *dst_pte,
6156 struct vm_area_struct *dst_vma,
6157 unsigned long dst_addr,
6158 unsigned long src_addr,
f6191471 6159 enum mcopy_atomic_mode mode,
6041c691
PX
6160 struct page **pagep,
6161 bool wp_copy)
8fb5debc 6162{
f6191471 6163 bool is_continue = (mode == MCOPY_ATOMIC_CONTINUE);
8cc5fcbb
MA
6164 struct hstate *h = hstate_vma(dst_vma);
6165 struct address_space *mapping = dst_vma->vm_file->f_mapping;
6166 pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
1e392147 6167 unsigned long size;
1c9e8def 6168 int vm_shared = dst_vma->vm_flags & VM_SHARED;
8fb5debc
MK
6169 pte_t _dst_pte;
6170 spinlock_t *ptl;
8cc5fcbb 6171 int ret = -ENOMEM;
8fb5debc 6172 struct page *page;
f6191471 6173 int writable;
cc30042d 6174 bool page_in_pagecache = false;
8fb5debc 6175
f6191471
AR
6176 if (is_continue) {
6177 ret = -EFAULT;
6178 page = find_lock_page(mapping, idx);
6179 if (!page)
6180 goto out;
cc30042d 6181 page_in_pagecache = true;
f6191471 6182 } else if (!*pagep) {
d84cf06e
MA
6183 /* If a page already exists, then it's UFFDIO_COPY for
6184 * a non-missing case. Return -EEXIST.
6185 */
6186 if (vm_shared &&
6187 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6188 ret = -EEXIST;
6189 goto out;
6190 }
6191
8fb5debc 6192 page = alloc_huge_page(dst_vma, dst_addr, 0);
d84cf06e
MA
6193 if (IS_ERR(page)) {
6194 ret = -ENOMEM;
8fb5debc 6195 goto out;
d84cf06e 6196 }
8fb5debc
MK
6197
6198 ret = copy_huge_page_from_user(page,
6199 (const void __user *) src_addr,
810a56b9 6200 pages_per_huge_page(h), false);
8fb5debc 6201
c1e8d7c6 6202 /* fallback to copy_from_user outside mmap_lock */
8fb5debc 6203 if (unlikely(ret)) {
9e368259 6204 ret = -ENOENT;
8cc5fcbb
MA
6205 /* Free the allocated page which may have
6206 * consumed a reservation.
6207 */
6208 restore_reserve_on_error(h, dst_vma, dst_addr, page);
6209 put_page(page);
6210
6211 /* Allocate a temporary page to hold the copied
6212 * contents.
6213 */
6214 page = alloc_huge_page_vma(h, dst_vma, dst_addr);
6215 if (!page) {
6216 ret = -ENOMEM;
6217 goto out;
6218 }
8fb5debc 6219 *pagep = page;
8cc5fcbb
MA
6220 /* Set the outparam pagep and return to the caller to
6221 * copy the contents outside the lock. Don't free the
6222 * page.
6223 */
8fb5debc
MK
6224 goto out;
6225 }
6226 } else {
8cc5fcbb
MA
6227 if (vm_shared &&
6228 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6229 put_page(*pagep);
6230 ret = -EEXIST;
6231 *pagep = NULL;
6232 goto out;
6233 }
6234
6235 page = alloc_huge_page(dst_vma, dst_addr, 0);
6236 if (IS_ERR(page)) {
da9a298f 6237 put_page(*pagep);
8cc5fcbb
MA
6238 ret = -ENOMEM;
6239 *pagep = NULL;
6240 goto out;
6241 }
34892366
MS
6242 copy_user_huge_page(page, *pagep, dst_addr, dst_vma,
6243 pages_per_huge_page(h));
8cc5fcbb 6244 put_page(*pagep);
8fb5debc
MK
6245 *pagep = NULL;
6246 }
6247
6248 /*
6249 * The memory barrier inside __SetPageUptodate makes sure that
6250 * preceding stores to the page contents become visible before
6251 * the set_pte_at() write.
6252 */
6253 __SetPageUptodate(page);
8fb5debc 6254
f6191471
AR
6255 /* Add shared, newly allocated pages to the page cache. */
6256 if (vm_shared && !is_continue) {
1e392147
AA
6257 size = i_size_read(mapping->host) >> huge_page_shift(h);
6258 ret = -EFAULT;
6259 if (idx >= size)
6260 goto out_release_nounlock;
1c9e8def 6261
1e392147
AA
6262 /*
6263 * Serialization between remove_inode_hugepages() and
7e1813d4 6264 * hugetlb_add_to_page_cache() below happens through the
1e392147
AA
6265 * hugetlb_fault_mutex_table that here must be hold by
6266 * the caller.
6267 */
7e1813d4 6268 ret = hugetlb_add_to_page_cache(page, mapping, idx);
1c9e8def
MK
6269 if (ret)
6270 goto out_release_nounlock;
cc30042d 6271 page_in_pagecache = true;
1c9e8def
MK
6272 }
6273
bcc66543 6274 ptl = huge_pte_lock(h, dst_mm, dst_pte);
8fb5debc 6275
8625147c
JH
6276 ret = -EIO;
6277 if (PageHWPoison(page))
6278 goto out_release_unlock;
6279
6041c691
PX
6280 /*
6281 * We allow to overwrite a pte marker: consider when both MISSING|WP
6282 * registered, we firstly wr-protect a none pte which has no page cache
6283 * page backing it, then access the page.
6284 */
fa27759a 6285 ret = -EEXIST;
6041c691 6286 if (!huge_pte_none_mostly(huge_ptep_get(dst_pte)))
8fb5debc
MK
6287 goto out_release_unlock;
6288
4781593d 6289 if (page_in_pagecache)
fb3d824d 6290 page_dup_file_rmap(page, true);
4781593d 6291 else
1c9e8def 6292 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
8fb5debc 6293
6041c691
PX
6294 /*
6295 * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY
6296 * with wp flag set, don't set pte write bit.
6297 */
6298 if (wp_copy || (is_continue && !vm_shared))
f6191471
AR
6299 writable = 0;
6300 else
6301 writable = dst_vma->vm_flags & VM_WRITE;
6302
6303 _dst_pte = make_huge_pte(dst_vma, page, writable);
6041c691
PX
6304 /*
6305 * Always mark UFFDIO_COPY page dirty; note that this may not be
6306 * extremely important for hugetlbfs for now since swapping is not
6307 * supported, but we should still be clear in that this page cannot be
6308 * thrown away at will, even if write bit not set.
6309 */
6310 _dst_pte = huge_pte_mkdirty(_dst_pte);
8fb5debc
MK
6311 _dst_pte = pte_mkyoung(_dst_pte);
6312
6041c691
PX
6313 if (wp_copy)
6314 _dst_pte = huge_pte_mkuffd_wp(_dst_pte);
6315
8fb5debc
MK
6316 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
6317
8fb5debc
MK
6318 hugetlb_count_add(pages_per_huge_page(h), dst_mm);
6319
6320 /* No need to invalidate - it was non-present before */
6321 update_mmu_cache(dst_vma, dst_addr, dst_pte);
6322
6323 spin_unlock(ptl);
f6191471
AR
6324 if (!is_continue)
6325 SetHPageMigratable(page);
6326 if (vm_shared || is_continue)
1c9e8def 6327 unlock_page(page);
8fb5debc
MK
6328 ret = 0;
6329out:
6330 return ret;
6331out_release_unlock:
6332 spin_unlock(ptl);
f6191471 6333 if (vm_shared || is_continue)
1c9e8def 6334 unlock_page(page);
5af10dfd 6335out_release_nounlock:
cc30042d 6336 if (!page_in_pagecache)
c7b1850d 6337 restore_reserve_on_error(h, dst_vma, dst_addr, page);
8fb5debc
MK
6338 put_page(page);
6339 goto out;
6340}
714c1891 6341#endif /* CONFIG_USERFAULTFD */
8fb5debc 6342
82e5d378
JM
6343static void record_subpages_vmas(struct page *page, struct vm_area_struct *vma,
6344 int refs, struct page **pages,
6345 struct vm_area_struct **vmas)
6346{
6347 int nr;
6348
6349 for (nr = 0; nr < refs; nr++) {
6350 if (likely(pages))
14455eab 6351 pages[nr] = nth_page(page, nr);
82e5d378
JM
6352 if (vmas)
6353 vmas[nr] = vma;
6354 }
6355}
6356
84209e87
DH
6357static inline bool __follow_hugetlb_must_fault(struct vm_area_struct *vma,
6358 unsigned int flags, pte_t *pte,
a7f22660
DH
6359 bool *unshare)
6360{
6361 pte_t pteval = huge_ptep_get(pte);
6362
6363 *unshare = false;
6364 if (is_swap_pte(pteval))
6365 return true;
6366 if (huge_pte_write(pteval))
6367 return false;
6368 if (flags & FOLL_WRITE)
6369 return true;
84209e87 6370 if (gup_must_unshare(vma, flags, pte_page(pteval))) {
a7f22660
DH
6371 *unshare = true;
6372 return true;
6373 }
6374 return false;
6375}
6376
57a196a5
MK
6377struct page *hugetlb_follow_page_mask(struct vm_area_struct *vma,
6378 unsigned long address, unsigned int flags)
6379{
6380 struct hstate *h = hstate_vma(vma);
6381 struct mm_struct *mm = vma->vm_mm;
6382 unsigned long haddr = address & huge_page_mask(h);
6383 struct page *page = NULL;
6384 spinlock_t *ptl;
6385 pte_t *pte, entry;
6386
6387 /*
6388 * FOLL_PIN is not supported for follow_page(). Ordinary GUP goes via
6389 * follow_hugetlb_page().
6390 */
6391 if (WARN_ON_ONCE(flags & FOLL_PIN))
6392 return NULL;
6393
7d049f3a 6394 hugetlb_vma_lock_read(vma);
9c67a207 6395 pte = hugetlb_walk(vma, haddr, huge_page_size(h));
57a196a5 6396 if (!pte)
7d049f3a 6397 goto out_unlock;
57a196a5
MK
6398
6399 ptl = huge_pte_lock(h, mm, pte);
6400 entry = huge_ptep_get(pte);
6401 if (pte_present(entry)) {
6402 page = pte_page(entry) +
6403 ((address & ~huge_page_mask(h)) >> PAGE_SHIFT);
6404 /*
6405 * Note that page may be a sub-page, and with vmemmap
6406 * optimizations the page struct may be read only.
6407 * try_grab_page() will increase the ref count on the
6408 * head page, so this will be OK.
6409 *
e2ca6ba6
LT
6410 * try_grab_page() should always be able to get the page here,
6411 * because we hold the ptl lock and have verified pte_present().
57a196a5 6412 */
e2ca6ba6 6413 if (try_grab_page(page, flags)) {
57a196a5
MK
6414 page = NULL;
6415 goto out;
6416 }
57a196a5
MK
6417 }
6418out:
6419 spin_unlock(ptl);
7d049f3a
PX
6420out_unlock:
6421 hugetlb_vma_unlock_read(vma);
57a196a5
MK
6422 return page;
6423}
6424
28a35716
ML
6425long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
6426 struct page **pages, struct vm_area_struct **vmas,
6427 unsigned long *position, unsigned long *nr_pages,
4f6da934 6428 long i, unsigned int flags, int *locked)
63551ae0 6429{
d5d4b0aa
CK
6430 unsigned long pfn_offset;
6431 unsigned long vaddr = *position;
28a35716 6432 unsigned long remainder = *nr_pages;
a5516438 6433 struct hstate *h = hstate_vma(vma);
0fa5bc40 6434 int err = -EFAULT, refs;
63551ae0 6435
63551ae0 6436 while (vaddr < vma->vm_end && remainder) {
4c887265 6437 pte_t *pte;
cb900f41 6438 spinlock_t *ptl = NULL;
a7f22660 6439 bool unshare = false;
2a15efc9 6440 int absent;
4c887265 6441 struct page *page;
63551ae0 6442
02057967
DR
6443 /*
6444 * If we have a pending SIGKILL, don't keep faulting pages and
6445 * potentially allocating memory.
6446 */
fa45f116 6447 if (fatal_signal_pending(current)) {
02057967
DR
6448 remainder = 0;
6449 break;
6450 }
6451
eefc7fa5 6452 hugetlb_vma_lock_read(vma);
4c887265
AL
6453 /*
6454 * Some archs (sparc64, sh*) have multiple pte_ts to
2a15efc9 6455 * each hugepage. We have to make sure we get the
4c887265 6456 * first, for the page indexing below to work.
cb900f41
KS
6457 *
6458 * Note that page table lock is not held when pte is null.
4c887265 6459 */
9c67a207
PX
6460 pte = hugetlb_walk(vma, vaddr & huge_page_mask(h),
6461 huge_page_size(h));
cb900f41
KS
6462 if (pte)
6463 ptl = huge_pte_lock(h, mm, pte);
2a15efc9
HD
6464 absent = !pte || huge_pte_none(huge_ptep_get(pte));
6465
6466 /*
6467 * When coredumping, it suits get_dump_page if we just return
3ae77f43
HD
6468 * an error where there's an empty slot with no huge pagecache
6469 * to back it. This way, we avoid allocating a hugepage, and
6470 * the sparse dumpfile avoids allocating disk blocks, but its
6471 * huge holes still show up with zeroes where they need to be.
2a15efc9 6472 */
3ae77f43
HD
6473 if (absent && (flags & FOLL_DUMP) &&
6474 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
cb900f41
KS
6475 if (pte)
6476 spin_unlock(ptl);
eefc7fa5 6477 hugetlb_vma_unlock_read(vma);
2a15efc9
HD
6478 remainder = 0;
6479 break;
6480 }
63551ae0 6481
9cc3a5bd
NH
6482 /*
6483 * We need call hugetlb_fault for both hugepages under migration
6484 * (in which case hugetlb_fault waits for the migration,) and
6485 * hwpoisoned hugepages (in which case we need to prevent the
6486 * caller from accessing to them.) In order to do this, we use
6487 * here is_swap_pte instead of is_hugetlb_entry_migration and
6488 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
6489 * both cases, and because we can't follow correct pages
6490 * directly from any kind of swap entries.
6491 */
a7f22660 6492 if (absent ||
84209e87 6493 __follow_hugetlb_must_fault(vma, flags, pte, &unshare)) {
2b740303 6494 vm_fault_t ret;
87ffc118 6495 unsigned int fault_flags = 0;
63551ae0 6496
cb900f41
KS
6497 if (pte)
6498 spin_unlock(ptl);
eefc7fa5
PX
6499 hugetlb_vma_unlock_read(vma);
6500
87ffc118
AA
6501 if (flags & FOLL_WRITE)
6502 fault_flags |= FAULT_FLAG_WRITE;
a7f22660
DH
6503 else if (unshare)
6504 fault_flags |= FAULT_FLAG_UNSHARE;
93c5c61d 6505 if (locked) {
71335f37
PX
6506 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
6507 FAULT_FLAG_KILLABLE;
93c5c61d
PX
6508 if (flags & FOLL_INTERRUPTIBLE)
6509 fault_flags |= FAULT_FLAG_INTERRUPTIBLE;
6510 }
87ffc118
AA
6511 if (flags & FOLL_NOWAIT)
6512 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
6513 FAULT_FLAG_RETRY_NOWAIT;
6514 if (flags & FOLL_TRIED) {
4426e945
PX
6515 /*
6516 * Note: FAULT_FLAG_ALLOW_RETRY and
6517 * FAULT_FLAG_TRIED can co-exist
6518 */
87ffc118
AA
6519 fault_flags |= FAULT_FLAG_TRIED;
6520 }
6521 ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
6522 if (ret & VM_FAULT_ERROR) {
2be7cfed 6523 err = vm_fault_to_errno(ret, flags);
87ffc118
AA
6524 remainder = 0;
6525 break;
6526 }
6527 if (ret & VM_FAULT_RETRY) {
4f6da934 6528 if (locked &&
1ac25013 6529 !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
4f6da934 6530 *locked = 0;
87ffc118
AA
6531 *nr_pages = 0;
6532 /*
6533 * VM_FAULT_RETRY must not return an
6534 * error, it will return zero
6535 * instead.
6536 *
6537 * No need to update "position" as the
6538 * caller will not check it after
6539 * *nr_pages is set to 0.
6540 */
6541 return i;
6542 }
6543 continue;
4c887265
AL
6544 }
6545
a5516438 6546 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
7f2e9525 6547 page = pte_page(huge_ptep_get(pte));
8fde12ca 6548
b6a2619c
DH
6549 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
6550 !PageAnonExclusive(page), page);
6551
acbfb087
ZL
6552 /*
6553 * If subpage information not requested, update counters
6554 * and skip the same_page loop below.
6555 */
6556 if (!pages && !vmas && !pfn_offset &&
6557 (vaddr + huge_page_size(h) < vma->vm_end) &&
6558 (remainder >= pages_per_huge_page(h))) {
6559 vaddr += huge_page_size(h);
6560 remainder -= pages_per_huge_page(h);
6561 i += pages_per_huge_page(h);
6562 spin_unlock(ptl);
eefc7fa5 6563 hugetlb_vma_unlock_read(vma);
acbfb087
ZL
6564 continue;
6565 }
6566
d08af0a5
JM
6567 /* vaddr may not be aligned to PAGE_SIZE */
6568 refs = min3(pages_per_huge_page(h) - pfn_offset, remainder,
6569 (vma->vm_end - ALIGN_DOWN(vaddr, PAGE_SIZE)) >> PAGE_SHIFT);
0fa5bc40 6570
82e5d378 6571 if (pages || vmas)
14455eab 6572 record_subpages_vmas(nth_page(page, pfn_offset),
82e5d378
JM
6573 vma, refs,
6574 likely(pages) ? pages + i : NULL,
6575 vmas ? vmas + i : NULL);
63551ae0 6576
82e5d378 6577 if (pages) {
0fa5bc40 6578 /*
822951d8 6579 * try_grab_folio() should always succeed here,
0fa5bc40
JM
6580 * because: a) we hold the ptl lock, and b) we've just
6581 * checked that the huge page is present in the page
6582 * tables. If the huge page is present, then the tail
6583 * pages must also be present. The ptl prevents the
6584 * head page and tail pages from being rearranged in
4003f107
LG
6585 * any way. As this is hugetlb, the pages will never
6586 * be p2pdma or not longterm pinable. So this page
6587 * must be available at this point, unless the page
6588 * refcount overflowed:
0fa5bc40 6589 */
822951d8
MWO
6590 if (WARN_ON_ONCE(!try_grab_folio(pages[i], refs,
6591 flags))) {
0fa5bc40 6592 spin_unlock(ptl);
eefc7fa5 6593 hugetlb_vma_unlock_read(vma);
0fa5bc40
JM
6594 remainder = 0;
6595 err = -ENOMEM;
6596 break;
6597 }
d5d4b0aa 6598 }
82e5d378
JM
6599
6600 vaddr += (refs << PAGE_SHIFT);
6601 remainder -= refs;
6602 i += refs;
6603
cb900f41 6604 spin_unlock(ptl);
eefc7fa5 6605 hugetlb_vma_unlock_read(vma);
63551ae0 6606 }
28a35716 6607 *nr_pages = remainder;
87ffc118
AA
6608 /*
6609 * setting position is actually required only if remainder is
6610 * not zero but it's faster not to add a "if (remainder)"
6611 * branch.
6612 */
63551ae0
DG
6613 *position = vaddr;
6614
2be7cfed 6615 return i ? i : err;
63551ae0 6616}
8f860591 6617
a79390f5 6618long hugetlb_change_protection(struct vm_area_struct *vma,
5a90d5a1
PX
6619 unsigned long address, unsigned long end,
6620 pgprot_t newprot, unsigned long cp_flags)
8f860591
ZY
6621{
6622 struct mm_struct *mm = vma->vm_mm;
6623 unsigned long start = address;
6624 pte_t *ptep;
6625 pte_t pte;
a5516438 6626 struct hstate *h = hstate_vma(vma);
a79390f5 6627 long pages = 0, psize = huge_page_size(h);
dff11abe 6628 bool shared_pmd = false;
ac46d4f3 6629 struct mmu_notifier_range range;
e95a9851 6630 unsigned long last_addr_mask;
5a90d5a1
PX
6631 bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
6632 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
dff11abe
MK
6633
6634 /*
6635 * In the case of shared PMDs, the area to flush could be beyond
ac46d4f3 6636 * start/end. Set range.start/range.end to cover the maximum possible
dff11abe
MK
6637 * range if PMD sharing is possible.
6638 */
7269f999
JG
6639 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
6640 0, vma, mm, start, end);
ac46d4f3 6641 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
8f860591
ZY
6642
6643 BUG_ON(address >= end);
ac46d4f3 6644 flush_cache_range(vma, range.start, range.end);
8f860591 6645
ac46d4f3 6646 mmu_notifier_invalidate_range_start(&range);
40549ba8 6647 hugetlb_vma_lock_write(vma);
83cde9e8 6648 i_mmap_lock_write(vma->vm_file->f_mapping);
40549ba8 6649 last_addr_mask = hugetlb_mask_last_page(h);
60dfaad6 6650 for (; address < end; address += psize) {
cb900f41 6651 spinlock_t *ptl;
9c67a207 6652 ptep = hugetlb_walk(vma, address, psize);
e95a9851 6653 if (!ptep) {
fed15f13
PX
6654 if (!uffd_wp) {
6655 address |= last_addr_mask;
6656 continue;
6657 }
6658 /*
6659 * Userfaultfd wr-protect requires pgtable
6660 * pre-allocations to install pte markers.
6661 */
6662 ptep = huge_pte_alloc(mm, vma, address, psize);
6663 if (!ptep)
6664 break;
e95a9851 6665 }
cb900f41 6666 ptl = huge_pte_lock(h, mm, ptep);
4ddb4d91 6667 if (huge_pmd_unshare(mm, vma, address, ptep)) {
60dfaad6
PX
6668 /*
6669 * When uffd-wp is enabled on the vma, unshare
6670 * shouldn't happen at all. Warn about it if it
6671 * happened due to some reason.
6672 */
6673 WARN_ON_ONCE(uffd_wp || uffd_wp_resolve);
7da4d641 6674 pages++;
cb900f41 6675 spin_unlock(ptl);
dff11abe 6676 shared_pmd = true;
4ddb4d91 6677 address |= last_addr_mask;
39dde65c 6678 continue;
7da4d641 6679 }
a8bda28d
NH
6680 pte = huge_ptep_get(ptep);
6681 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
0e678153
DH
6682 /* Nothing to do. */
6683 } else if (unlikely(is_hugetlb_entry_migration(pte))) {
a8bda28d 6684 swp_entry_t entry = pte_to_swp_entry(pte);
6c287605 6685 struct page *page = pfn_swap_entry_to_page(entry);
44f86392 6686 pte_t newpte = pte;
a8bda28d 6687
44f86392 6688 if (is_writable_migration_entry(entry)) {
6c287605
DH
6689 if (PageAnon(page))
6690 entry = make_readable_exclusive_migration_entry(
6691 swp_offset(entry));
6692 else
6693 entry = make_readable_migration_entry(
6694 swp_offset(entry));
a8bda28d 6695 newpte = swp_entry_to_pte(entry);
a8bda28d
NH
6696 pages++;
6697 }
44f86392
DH
6698
6699 if (uffd_wp)
6700 newpte = pte_swp_mkuffd_wp(newpte);
6701 else if (uffd_wp_resolve)
6702 newpte = pte_swp_clear_uffd_wp(newpte);
6703 if (!pte_same(pte, newpte))
6704 set_huge_pte_at(mm, address, ptep, newpte);
0e678153
DH
6705 } else if (unlikely(is_pte_marker(pte))) {
6706 /* No other markers apply for now. */
6707 WARN_ON_ONCE(!pte_marker_uffd_wp(pte));
60dfaad6 6708 if (uffd_wp_resolve)
0e678153 6709 /* Safe to modify directly (non-present->none). */
60dfaad6 6710 huge_pte_clear(mm, address, ptep, psize);
0e678153 6711 } else if (!huge_pte_none(pte)) {
023bdd00 6712 pte_t old_pte;
79c1c594 6713 unsigned int shift = huge_page_shift(hstate_vma(vma));
023bdd00
AK
6714
6715 old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
16785bd7 6716 pte = huge_pte_modify(old_pte, newprot);
79c1c594 6717 pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
5a90d5a1 6718 if (uffd_wp)
f1eb1bac 6719 pte = huge_pte_mkuffd_wp(pte);
5a90d5a1
PX
6720 else if (uffd_wp_resolve)
6721 pte = huge_pte_clear_uffd_wp(pte);
023bdd00 6722 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
7da4d641 6723 pages++;
60dfaad6
PX
6724 } else {
6725 /* None pte */
6726 if (unlikely(uffd_wp))
6727 /* Safe to modify directly (none->non-present). */
6728 set_huge_pte_at(mm, address, ptep,
6729 make_pte_marker(PTE_MARKER_UFFD_WP));
8f860591 6730 }
cb900f41 6731 spin_unlock(ptl);
8f860591 6732 }
d833352a 6733 /*
c8c06efa 6734 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
d833352a 6735 * may have cleared our pud entry and done put_page on the page table:
c8c06efa 6736 * once we release i_mmap_rwsem, another task can do the final put_page
dff11abe
MK
6737 * and that page table be reused and filled with junk. If we actually
6738 * did unshare a page of pmds, flush the range corresponding to the pud.
d833352a 6739 */
dff11abe 6740 if (shared_pmd)
ac46d4f3 6741 flush_hugetlb_tlb_range(vma, range.start, range.end);
dff11abe
MK
6742 else
6743 flush_hugetlb_tlb_range(vma, start, end);
0f10851e
JG
6744 /*
6745 * No need to call mmu_notifier_invalidate_range() we are downgrading
6746 * page table protection not changing it to point to a new page.
6747 *
ee65728e 6748 * See Documentation/mm/mmu_notifier.rst
0f10851e 6749 */
83cde9e8 6750 i_mmap_unlock_write(vma->vm_file->f_mapping);
40549ba8 6751 hugetlb_vma_unlock_write(vma);
ac46d4f3 6752 mmu_notifier_invalidate_range_end(&range);
7da4d641
PZ
6753
6754 return pages << h->order;
8f860591
ZY
6755}
6756
33b8f84a
MK
6757/* Return true if reservation was successful, false otherwise. */
6758bool hugetlb_reserve_pages(struct inode *inode,
a1e78772 6759 long from, long to,
5a6fe125 6760 struct vm_area_struct *vma,
ca16d140 6761 vm_flags_t vm_flags)
e4e574b7 6762{
c5094ec7 6763 long chg = -1, add = -1;
a5516438 6764 struct hstate *h = hstate_inode(inode);
90481622 6765 struct hugepage_subpool *spool = subpool_inode(inode);
9119a41e 6766 struct resv_map *resv_map;
075a61d0 6767 struct hugetlb_cgroup *h_cg = NULL;
0db9d74e 6768 long gbl_reserve, regions_needed = 0;
e4e574b7 6769
63489f8e
MK
6770 /* This should never happen */
6771 if (from > to) {
6772 VM_WARN(1, "%s called with a negative range\n", __func__);
33b8f84a 6773 return false;
63489f8e
MK
6774 }
6775
8d9bfb26 6776 /*
e700898f
MK
6777 * vma specific semaphore used for pmd sharing and fault/truncation
6778 * synchronization
8d9bfb26
MK
6779 */
6780 hugetlb_vma_lock_alloc(vma);
6781
17c9d12e
MG
6782 /*
6783 * Only apply hugepage reservation if asked. At fault time, an
6784 * attempt will be made for VM_NORESERVE to allocate a page
90481622 6785 * without using reserves
17c9d12e 6786 */
ca16d140 6787 if (vm_flags & VM_NORESERVE)
33b8f84a 6788 return true;
17c9d12e 6789
a1e78772
MG
6790 /*
6791 * Shared mappings base their reservation on the number of pages that
6792 * are already allocated on behalf of the file. Private mappings need
6793 * to reserve the full area even if read-only as mprotect() may be
6794 * called to make the mapping read-write. Assume !vma is a shm mapping
6795 */
9119a41e 6796 if (!vma || vma->vm_flags & VM_MAYSHARE) {
f27a5136
MK
6797 /*
6798 * resv_map can not be NULL as hugetlb_reserve_pages is only
6799 * called for inodes for which resv_maps were created (see
6800 * hugetlbfs_get_inode).
6801 */
4e35f483 6802 resv_map = inode_resv_map(inode);
9119a41e 6803
0db9d74e 6804 chg = region_chg(resv_map, from, to, &regions_needed);
9119a41e 6805 } else {
e9fe92ae 6806 /* Private mapping. */
9119a41e 6807 resv_map = resv_map_alloc();
17c9d12e 6808 if (!resv_map)
8d9bfb26 6809 goto out_err;
17c9d12e 6810
a1e78772 6811 chg = to - from;
84afd99b 6812
17c9d12e
MG
6813 set_vma_resv_map(vma, resv_map);
6814 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
6815 }
6816
33b8f84a 6817 if (chg < 0)
c50ac050 6818 goto out_err;
8a630112 6819
33b8f84a
MK
6820 if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
6821 chg * pages_per_huge_page(h), &h_cg) < 0)
075a61d0 6822 goto out_err;
075a61d0
MA
6823
6824 if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
6825 /* For private mappings, the hugetlb_cgroup uncharge info hangs
6826 * of the resv_map.
6827 */
6828 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
6829 }
6830
1c5ecae3
MK
6831 /*
6832 * There must be enough pages in the subpool for the mapping. If
6833 * the subpool has a minimum size, there may be some global
6834 * reservations already in place (gbl_reserve).
6835 */
6836 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
33b8f84a 6837 if (gbl_reserve < 0)
075a61d0 6838 goto out_uncharge_cgroup;
5a6fe125
MG
6839
6840 /*
17c9d12e 6841 * Check enough hugepages are available for the reservation.
90481622 6842 * Hand the pages back to the subpool if there are not
5a6fe125 6843 */
33b8f84a 6844 if (hugetlb_acct_memory(h, gbl_reserve) < 0)
075a61d0 6845 goto out_put_pages;
17c9d12e
MG
6846
6847 /*
6848 * Account for the reservations made. Shared mappings record regions
6849 * that have reservations as they are shared by multiple VMAs.
6850 * When the last VMA disappears, the region map says how much
6851 * the reservation was and the page cache tells how much of
6852 * the reservation was consumed. Private mappings are per-VMA and
6853 * only the consumed reservations are tracked. When the VMA
6854 * disappears, the original reservation is the VMA size and the
6855 * consumed reservations are stored in the map. Hence, nothing
6856 * else has to be done for private mappings here
6857 */
33039678 6858 if (!vma || vma->vm_flags & VM_MAYSHARE) {
075a61d0 6859 add = region_add(resv_map, from, to, regions_needed, h, h_cg);
0db9d74e
MA
6860
6861 if (unlikely(add < 0)) {
6862 hugetlb_acct_memory(h, -gbl_reserve);
075a61d0 6863 goto out_put_pages;
0db9d74e 6864 } else if (unlikely(chg > add)) {
33039678
MK
6865 /*
6866 * pages in this range were added to the reserve
6867 * map between region_chg and region_add. This
6868 * indicates a race with alloc_huge_page. Adjust
6869 * the subpool and reserve counts modified above
6870 * based on the difference.
6871 */
6872 long rsv_adjust;
6873
d85aecf2
ML
6874 /*
6875 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
6876 * reference to h_cg->css. See comment below for detail.
6877 */
075a61d0
MA
6878 hugetlb_cgroup_uncharge_cgroup_rsvd(
6879 hstate_index(h),
6880 (chg - add) * pages_per_huge_page(h), h_cg);
6881
33039678
MK
6882 rsv_adjust = hugepage_subpool_put_pages(spool,
6883 chg - add);
6884 hugetlb_acct_memory(h, -rsv_adjust);
d85aecf2
ML
6885 } else if (h_cg) {
6886 /*
6887 * The file_regions will hold their own reference to
6888 * h_cg->css. So we should release the reference held
6889 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
6890 * done.
6891 */
6892 hugetlb_cgroup_put_rsvd_cgroup(h_cg);
33039678
MK
6893 }
6894 }
33b8f84a
MK
6895 return true;
6896
075a61d0
MA
6897out_put_pages:
6898 /* put back original number of pages, chg */
6899 (void)hugepage_subpool_put_pages(spool, chg);
6900out_uncharge_cgroup:
6901 hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
6902 chg * pages_per_huge_page(h), h_cg);
c50ac050 6903out_err:
8d9bfb26 6904 hugetlb_vma_lock_free(vma);
5e911373 6905 if (!vma || vma->vm_flags & VM_MAYSHARE)
0db9d74e
MA
6906 /* Only call region_abort if the region_chg succeeded but the
6907 * region_add failed or didn't run.
6908 */
6909 if (chg >= 0 && add < 0)
6910 region_abort(resv_map, from, to, regions_needed);
f031dd27
JK
6911 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
6912 kref_put(&resv_map->refs, resv_map_release);
33b8f84a 6913 return false;
a43a8c39
CK
6914}
6915
b5cec28d
MK
6916long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
6917 long freed)
a43a8c39 6918{
a5516438 6919 struct hstate *h = hstate_inode(inode);
4e35f483 6920 struct resv_map *resv_map = inode_resv_map(inode);
9119a41e 6921 long chg = 0;
90481622 6922 struct hugepage_subpool *spool = subpool_inode(inode);
1c5ecae3 6923 long gbl_reserve;
45c682a6 6924
f27a5136
MK
6925 /*
6926 * Since this routine can be called in the evict inode path for all
6927 * hugetlbfs inodes, resv_map could be NULL.
6928 */
b5cec28d
MK
6929 if (resv_map) {
6930 chg = region_del(resv_map, start, end);
6931 /*
6932 * region_del() can fail in the rare case where a region
6933 * must be split and another region descriptor can not be
6934 * allocated. If end == LONG_MAX, it will not fail.
6935 */
6936 if (chg < 0)
6937 return chg;
6938 }
6939
45c682a6 6940 spin_lock(&inode->i_lock);
e4c6f8be 6941 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
45c682a6
KC
6942 spin_unlock(&inode->i_lock);
6943
1c5ecae3
MK
6944 /*
6945 * If the subpool has a minimum size, the number of global
6946 * reservations to be released may be adjusted.
dddf31a4
ML
6947 *
6948 * Note that !resv_map implies freed == 0. So (chg - freed)
6949 * won't go negative.
1c5ecae3
MK
6950 */
6951 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
6952 hugetlb_acct_memory(h, -gbl_reserve);
b5cec28d
MK
6953
6954 return 0;
a43a8c39 6955}
93f70f90 6956
3212b535
SC
6957#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
6958static unsigned long page_table_shareable(struct vm_area_struct *svma,
6959 struct vm_area_struct *vma,
6960 unsigned long addr, pgoff_t idx)
6961{
6962 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
6963 svma->vm_start;
6964 unsigned long sbase = saddr & PUD_MASK;
6965 unsigned long s_end = sbase + PUD_SIZE;
6966
6967 /* Allow segments to share if only one is marked locked */
de60f5f1
EM
6968 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
6969 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
3212b535
SC
6970
6971 /*
6972 * match the virtual addresses, permission and the alignment of the
6973 * page table page.
131a79b4
MK
6974 *
6975 * Also, vma_lock (vm_private_data) is required for sharing.
3212b535
SC
6976 */
6977 if (pmd_index(addr) != pmd_index(saddr) ||
6978 vm_flags != svm_flags ||
131a79b4
MK
6979 !range_in_vma(svma, sbase, s_end) ||
6980 !svma->vm_private_data)
3212b535
SC
6981 return 0;
6982
6983 return saddr;
6984}
6985
bbff39cc 6986bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
3212b535 6987{
bbff39cc
MK
6988 unsigned long start = addr & PUD_MASK;
6989 unsigned long end = start + PUD_SIZE;
6990
8d9bfb26
MK
6991#ifdef CONFIG_USERFAULTFD
6992 if (uffd_disable_huge_pmd_share(vma))
6993 return false;
6994#endif
3212b535
SC
6995 /*
6996 * check on proper vm_flags and page table alignment
6997 */
8d9bfb26
MK
6998 if (!(vma->vm_flags & VM_MAYSHARE))
6999 return false;
bbff39cc 7000 if (!vma->vm_private_data) /* vma lock required for sharing */
8d9bfb26
MK
7001 return false;
7002 if (!range_in_vma(vma, start, end))
7003 return false;
7004 return true;
7005}
7006
017b1660
MK
7007/*
7008 * Determine if start,end range within vma could be mapped by shared pmd.
7009 * If yes, adjust start and end to cover range associated with possible
7010 * shared pmd mappings.
7011 */
7012void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7013 unsigned long *start, unsigned long *end)
7014{
a1ba9da8
LX
7015 unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
7016 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
017b1660 7017
a1ba9da8 7018 /*
f0953a1b
IM
7019 * vma needs to span at least one aligned PUD size, and the range
7020 * must be at least partially within in.
a1ba9da8
LX
7021 */
7022 if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
7023 (*end <= v_start) || (*start >= v_end))
017b1660
MK
7024 return;
7025
75802ca6 7026 /* Extend the range to be PUD aligned for a worst case scenario */
a1ba9da8
LX
7027 if (*start > v_start)
7028 *start = ALIGN_DOWN(*start, PUD_SIZE);
017b1660 7029
a1ba9da8
LX
7030 if (*end < v_end)
7031 *end = ALIGN(*end, PUD_SIZE);
017b1660
MK
7032}
7033
3212b535
SC
7034/*
7035 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
7036 * and returns the corresponding pte. While this is not necessary for the
7037 * !shared pmd case because we can allocate the pmd later as well, it makes the
3a47c54f
MK
7038 * code much cleaner. pmd allocation is essential for the shared case because
7039 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
7040 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
7041 * bad pmd for sharing.
3212b535 7042 */
aec44e0f
PX
7043pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7044 unsigned long addr, pud_t *pud)
3212b535 7045{
3212b535
SC
7046 struct address_space *mapping = vma->vm_file->f_mapping;
7047 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
7048 vma->vm_pgoff;
7049 struct vm_area_struct *svma;
7050 unsigned long saddr;
7051 pte_t *spte = NULL;
7052 pte_t *pte;
cb900f41 7053 spinlock_t *ptl;
3212b535 7054
3a47c54f 7055 i_mmap_lock_read(mapping);
3212b535
SC
7056 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
7057 if (svma == vma)
7058 continue;
7059
7060 saddr = page_table_shareable(svma, vma, addr, idx);
7061 if (saddr) {
9c67a207
PX
7062 spte = hugetlb_walk(svma, saddr,
7063 vma_mmu_pagesize(svma));
3212b535
SC
7064 if (spte) {
7065 get_page(virt_to_page(spte));
7066 break;
7067 }
7068 }
7069 }
7070
7071 if (!spte)
7072 goto out;
7073
8bea8052 7074 ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
dc6c9a35 7075 if (pud_none(*pud)) {
3212b535
SC
7076 pud_populate(mm, pud,
7077 (pmd_t *)((unsigned long)spte & PAGE_MASK));
c17b1f42 7078 mm_inc_nr_pmds(mm);
dc6c9a35 7079 } else {
3212b535 7080 put_page(virt_to_page(spte));
dc6c9a35 7081 }
cb900f41 7082 spin_unlock(ptl);
3212b535
SC
7083out:
7084 pte = (pte_t *)pmd_alloc(mm, pud, addr);
3a47c54f 7085 i_mmap_unlock_read(mapping);
3212b535
SC
7086 return pte;
7087}
7088
7089/*
7090 * unmap huge page backed by shared pte.
7091 *
7092 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
7093 * indicated by page_count > 1, unmap is achieved by clearing pud and
7094 * decrementing the ref count. If count == 1, the pte page is not shared.
7095 *
3a47c54f 7096 * Called with page table lock held.
3212b535
SC
7097 *
7098 * returns: 1 successfully unmapped a shared pte page
7099 * 0 the underlying pte page is not shared, or it is the last user
7100 */
34ae204f 7101int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
4ddb4d91 7102 unsigned long addr, pte_t *ptep)
3212b535 7103{
4ddb4d91
MK
7104 pgd_t *pgd = pgd_offset(mm, addr);
7105 p4d_t *p4d = p4d_offset(pgd, addr);
7106 pud_t *pud = pud_offset(p4d, addr);
3212b535 7107
34ae204f 7108 i_mmap_assert_write_locked(vma->vm_file->f_mapping);
40549ba8 7109 hugetlb_vma_assert_locked(vma);
3212b535
SC
7110 BUG_ON(page_count(virt_to_page(ptep)) == 0);
7111 if (page_count(virt_to_page(ptep)) == 1)
7112 return 0;
7113
7114 pud_clear(pud);
7115 put_page(virt_to_page(ptep));
dc6c9a35 7116 mm_dec_nr_pmds(mm);
3212b535
SC
7117 return 1;
7118}
c1991e07 7119
9e5fc74c 7120#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
8d9bfb26 7121
aec44e0f
PX
7122pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7123 unsigned long addr, pud_t *pud)
9e5fc74c
SC
7124{
7125 return NULL;
7126}
e81f2d22 7127
34ae204f 7128int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
4ddb4d91 7129 unsigned long addr, pte_t *ptep)
e81f2d22
ZZ
7130{
7131 return 0;
7132}
017b1660
MK
7133
7134void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7135 unsigned long *start, unsigned long *end)
7136{
7137}
c1991e07
PX
7138
7139bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
7140{
7141 return false;
7142}
3212b535
SC
7143#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7144
9e5fc74c 7145#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
aec44e0f 7146pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
9e5fc74c
SC
7147 unsigned long addr, unsigned long sz)
7148{
7149 pgd_t *pgd;
c2febafc 7150 p4d_t *p4d;
9e5fc74c
SC
7151 pud_t *pud;
7152 pte_t *pte = NULL;
7153
7154 pgd = pgd_offset(mm, addr);
f4f0a3d8
KS
7155 p4d = p4d_alloc(mm, pgd, addr);
7156 if (!p4d)
7157 return NULL;
c2febafc 7158 pud = pud_alloc(mm, p4d, addr);
9e5fc74c
SC
7159 if (pud) {
7160 if (sz == PUD_SIZE) {
7161 pte = (pte_t *)pud;
7162 } else {
7163 BUG_ON(sz != PMD_SIZE);
c1991e07 7164 if (want_pmd_share(vma, addr) && pud_none(*pud))
aec44e0f 7165 pte = huge_pmd_share(mm, vma, addr, pud);
9e5fc74c
SC
7166 else
7167 pte = (pte_t *)pmd_alloc(mm, pud, addr);
7168 }
7169 }
4e666314 7170 BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
9e5fc74c
SC
7171
7172 return pte;
7173}
7174
9b19df29
PA
7175/*
7176 * huge_pte_offset() - Walk the page table to resolve the hugepage
7177 * entry at address @addr
7178 *
8ac0b81a
LX
7179 * Return: Pointer to page table entry (PUD or PMD) for
7180 * address @addr, or NULL if a !p*d_present() entry is encountered and the
9b19df29
PA
7181 * size @sz doesn't match the hugepage size at this level of the page
7182 * table.
7183 */
7868a208
PA
7184pte_t *huge_pte_offset(struct mm_struct *mm,
7185 unsigned long addr, unsigned long sz)
9e5fc74c
SC
7186{
7187 pgd_t *pgd;
c2febafc 7188 p4d_t *p4d;
8ac0b81a
LX
7189 pud_t *pud;
7190 pmd_t *pmd;
9e5fc74c
SC
7191
7192 pgd = pgd_offset(mm, addr);
c2febafc
KS
7193 if (!pgd_present(*pgd))
7194 return NULL;
7195 p4d = p4d_offset(pgd, addr);
7196 if (!p4d_present(*p4d))
7197 return NULL;
9b19df29 7198
c2febafc 7199 pud = pud_offset(p4d, addr);
8ac0b81a
LX
7200 if (sz == PUD_SIZE)
7201 /* must be pud huge, non-present or none */
c2febafc 7202 return (pte_t *)pud;
8ac0b81a 7203 if (!pud_present(*pud))
9b19df29 7204 return NULL;
8ac0b81a 7205 /* must have a valid entry and size to go further */
9b19df29 7206
8ac0b81a
LX
7207 pmd = pmd_offset(pud, addr);
7208 /* must be pmd huge, non-present or none */
7209 return (pte_t *)pmd;
9e5fc74c
SC
7210}
7211
e95a9851
MK
7212/*
7213 * Return a mask that can be used to update an address to the last huge
7214 * page in a page table page mapping size. Used to skip non-present
7215 * page table entries when linearly scanning address ranges. Architectures
7216 * with unique huge page to page table relationships can define their own
7217 * version of this routine.
7218 */
7219unsigned long hugetlb_mask_last_page(struct hstate *h)
7220{
7221 unsigned long hp_size = huge_page_size(h);
7222
7223 if (hp_size == PUD_SIZE)
7224 return P4D_SIZE - PUD_SIZE;
7225 else if (hp_size == PMD_SIZE)
7226 return PUD_SIZE - PMD_SIZE;
7227 else
7228 return 0UL;
7229}
7230
7231#else
7232
7233/* See description above. Architectures can provide their own version. */
7234__weak unsigned long hugetlb_mask_last_page(struct hstate *h)
7235{
4ddb4d91
MK
7236#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
7237 if (huge_page_size(h) == PMD_SIZE)
7238 return PUD_SIZE - PMD_SIZE;
7239#endif
e95a9851
MK
7240 return 0UL;
7241}
7242
61f77eda
NH
7243#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
7244
7245/*
7246 * These functions are overwritable if your architecture needs its own
7247 * behavior.
7248 */
7ce82f4c 7249int isolate_hugetlb(struct page *page, struct list_head *list)
31caf665 7250{
7ce82f4c 7251 int ret = 0;
bcc54222 7252
db71ef79 7253 spin_lock_irq(&hugetlb_lock);
8f251a3d
MK
7254 if (!PageHeadHuge(page) ||
7255 !HPageMigratable(page) ||
0eb2df2b 7256 !get_page_unless_zero(page)) {
7ce82f4c 7257 ret = -EBUSY;
bcc54222
NH
7258 goto unlock;
7259 }
8f251a3d 7260 ClearHPageMigratable(page);
31caf665 7261 list_move_tail(&page->lru, list);
bcc54222 7262unlock:
db71ef79 7263 spin_unlock_irq(&hugetlb_lock);
bcc54222 7264 return ret;
31caf665
NH
7265}
7266
e591ef7d 7267int get_hwpoison_huge_page(struct page *page, bool *hugetlb, bool unpoison)
25182f05
NH
7268{
7269 int ret = 0;
7270
7271 *hugetlb = false;
7272 spin_lock_irq(&hugetlb_lock);
7273 if (PageHeadHuge(page)) {
7274 *hugetlb = true;
b283d983
NH
7275 if (HPageFreed(page))
7276 ret = 0;
e591ef7d 7277 else if (HPageMigratable(page) || unpoison)
25182f05 7278 ret = get_page_unless_zero(page);
0ed950d1
NH
7279 else
7280 ret = -EBUSY;
25182f05
NH
7281 }
7282 spin_unlock_irq(&hugetlb_lock);
7283 return ret;
7284}
7285
e591ef7d
NH
7286int get_huge_page_for_hwpoison(unsigned long pfn, int flags,
7287 bool *migratable_cleared)
405ce051
NH
7288{
7289 int ret;
7290
7291 spin_lock_irq(&hugetlb_lock);
e591ef7d 7292 ret = __get_huge_page_for_hwpoison(pfn, flags, migratable_cleared);
405ce051
NH
7293 spin_unlock_irq(&hugetlb_lock);
7294 return ret;
7295}
7296
31caf665
NH
7297void putback_active_hugepage(struct page *page)
7298{
db71ef79 7299 spin_lock_irq(&hugetlb_lock);
8f251a3d 7300 SetHPageMigratable(page);
31caf665 7301 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
db71ef79 7302 spin_unlock_irq(&hugetlb_lock);
31caf665
NH
7303 put_page(page);
7304}
ab5ac90a 7305
345c62d1 7306void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason)
ab5ac90a 7307{
345c62d1 7308 struct hstate *h = folio_hstate(old_folio);
ab5ac90a 7309
345c62d1
SK
7310 hugetlb_cgroup_migrate(old_folio, new_folio);
7311 set_page_owner_migrate_reason(&new_folio->page, reason);
ab5ac90a
MH
7312
7313 /*
345c62d1 7314 * transfer temporary state of the new hugetlb folio. This is
ab5ac90a
MH
7315 * reverse to other transitions because the newpage is going to
7316 * be final while the old one will be freed so it takes over
7317 * the temporary status.
7318 *
7319 * Also note that we have to transfer the per-node surplus state
7320 * here as well otherwise the global surplus count will not match
7321 * the per-node's.
7322 */
345c62d1
SK
7323 if (folio_test_hugetlb_temporary(new_folio)) {
7324 int old_nid = folio_nid(old_folio);
7325 int new_nid = folio_nid(new_folio);
7326
345c62d1
SK
7327 folio_set_hugetlb_temporary(old_folio);
7328 folio_clear_hugetlb_temporary(new_folio);
ab5ac90a 7329
ab5ac90a 7330
5af1ab1d
ML
7331 /*
7332 * There is no need to transfer the per-node surplus state
7333 * when we do not cross the node.
7334 */
7335 if (new_nid == old_nid)
7336 return;
db71ef79 7337 spin_lock_irq(&hugetlb_lock);
ab5ac90a
MH
7338 if (h->surplus_huge_pages_node[old_nid]) {
7339 h->surplus_huge_pages_node[old_nid]--;
7340 h->surplus_huge_pages_node[new_nid]++;
7341 }
db71ef79 7342 spin_unlock_irq(&hugetlb_lock);
ab5ac90a
MH
7343 }
7344}
cf11e85f 7345
b30c14cd
JH
7346static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
7347 unsigned long start,
7348 unsigned long end)
6dfeaff9
PX
7349{
7350 struct hstate *h = hstate_vma(vma);
7351 unsigned long sz = huge_page_size(h);
7352 struct mm_struct *mm = vma->vm_mm;
7353 struct mmu_notifier_range range;
b30c14cd 7354 unsigned long address;
6dfeaff9
PX
7355 spinlock_t *ptl;
7356 pte_t *ptep;
7357
7358 if (!(vma->vm_flags & VM_MAYSHARE))
7359 return;
7360
6dfeaff9
PX
7361 if (start >= end)
7362 return;
7363
9c8bbfac 7364 flush_cache_range(vma, start, end);
6dfeaff9
PX
7365 /*
7366 * No need to call adjust_range_if_pmd_sharing_possible(), because
7367 * we have already done the PUD_SIZE alignment.
7368 */
7369 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
7370 start, end);
7371 mmu_notifier_invalidate_range_start(&range);
40549ba8 7372 hugetlb_vma_lock_write(vma);
6dfeaff9
PX
7373 i_mmap_lock_write(vma->vm_file->f_mapping);
7374 for (address = start; address < end; address += PUD_SIZE) {
9c67a207 7375 ptep = hugetlb_walk(vma, address, sz);
6dfeaff9
PX
7376 if (!ptep)
7377 continue;
7378 ptl = huge_pte_lock(h, mm, ptep);
4ddb4d91 7379 huge_pmd_unshare(mm, vma, address, ptep);
6dfeaff9
PX
7380 spin_unlock(ptl);
7381 }
7382 flush_hugetlb_tlb_range(vma, start, end);
7383 i_mmap_unlock_write(vma->vm_file->f_mapping);
40549ba8 7384 hugetlb_vma_unlock_write(vma);
6dfeaff9
PX
7385 /*
7386 * No need to call mmu_notifier_invalidate_range(), see
ee65728e 7387 * Documentation/mm/mmu_notifier.rst.
6dfeaff9
PX
7388 */
7389 mmu_notifier_invalidate_range_end(&range);
7390}
7391
b30c14cd
JH
7392/*
7393 * This function will unconditionally remove all the shared pmd pgtable entries
7394 * within the specific vma for a hugetlbfs memory range.
7395 */
7396void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
7397{
7398 hugetlb_unshare_pmds(vma, ALIGN(vma->vm_start, PUD_SIZE),
7399 ALIGN_DOWN(vma->vm_end, PUD_SIZE));
7400}
7401
cf11e85f 7402#ifdef CONFIG_CMA
cf11e85f
RG
7403static bool cma_reserve_called __initdata;
7404
7405static int __init cmdline_parse_hugetlb_cma(char *p)
7406{
38e719ab
BW
7407 int nid, count = 0;
7408 unsigned long tmp;
7409 char *s = p;
7410
7411 while (*s) {
7412 if (sscanf(s, "%lu%n", &tmp, &count) != 1)
7413 break;
7414
7415 if (s[count] == ':') {
f9317f77 7416 if (tmp >= MAX_NUMNODES)
38e719ab 7417 break;
f9317f77 7418 nid = array_index_nospec(tmp, MAX_NUMNODES);
38e719ab
BW
7419
7420 s += count + 1;
7421 tmp = memparse(s, &s);
7422 hugetlb_cma_size_in_node[nid] = tmp;
7423 hugetlb_cma_size += tmp;
7424
7425 /*
7426 * Skip the separator if have one, otherwise
7427 * break the parsing.
7428 */
7429 if (*s == ',')
7430 s++;
7431 else
7432 break;
7433 } else {
7434 hugetlb_cma_size = memparse(p, &p);
7435 break;
7436 }
7437 }
7438
cf11e85f
RG
7439 return 0;
7440}
7441
7442early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
7443
7444void __init hugetlb_cma_reserve(int order)
7445{
7446 unsigned long size, reserved, per_node;
38e719ab 7447 bool node_specific_cma_alloc = false;
cf11e85f
RG
7448 int nid;
7449
7450 cma_reserve_called = true;
7451
38e719ab
BW
7452 if (!hugetlb_cma_size)
7453 return;
7454
7455 for (nid = 0; nid < MAX_NUMNODES; nid++) {
7456 if (hugetlb_cma_size_in_node[nid] == 0)
7457 continue;
7458
30a51400 7459 if (!node_online(nid)) {
38e719ab
BW
7460 pr_warn("hugetlb_cma: invalid node %d specified\n", nid);
7461 hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7462 hugetlb_cma_size_in_node[nid] = 0;
7463 continue;
7464 }
7465
7466 if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) {
7467 pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n",
7468 nid, (PAGE_SIZE << order) / SZ_1M);
7469 hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7470 hugetlb_cma_size_in_node[nid] = 0;
7471 } else {
7472 node_specific_cma_alloc = true;
7473 }
7474 }
7475
7476 /* Validate the CMA size again in case some invalid nodes specified. */
cf11e85f
RG
7477 if (!hugetlb_cma_size)
7478 return;
7479
7480 if (hugetlb_cma_size < (PAGE_SIZE << order)) {
7481 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
7482 (PAGE_SIZE << order) / SZ_1M);
a01f4390 7483 hugetlb_cma_size = 0;
cf11e85f
RG
7484 return;
7485 }
7486
38e719ab
BW
7487 if (!node_specific_cma_alloc) {
7488 /*
7489 * If 3 GB area is requested on a machine with 4 numa nodes,
7490 * let's allocate 1 GB on first three nodes and ignore the last one.
7491 */
7492 per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
7493 pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
7494 hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
7495 }
cf11e85f
RG
7496
7497 reserved = 0;
30a51400 7498 for_each_online_node(nid) {
cf11e85f 7499 int res;
2281f797 7500 char name[CMA_MAX_NAME];
cf11e85f 7501
38e719ab
BW
7502 if (node_specific_cma_alloc) {
7503 if (hugetlb_cma_size_in_node[nid] == 0)
7504 continue;
7505
7506 size = hugetlb_cma_size_in_node[nid];
7507 } else {
7508 size = min(per_node, hugetlb_cma_size - reserved);
7509 }
7510
cf11e85f
RG
7511 size = round_up(size, PAGE_SIZE << order);
7512
2281f797 7513 snprintf(name, sizeof(name), "hugetlb%d", nid);
a01f4390
MK
7514 /*
7515 * Note that 'order per bit' is based on smallest size that
7516 * may be returned to CMA allocator in the case of
7517 * huge page demotion.
7518 */
7519 res = cma_declare_contiguous_nid(0, size, 0,
7520 PAGE_SIZE << HUGETLB_PAGE_ORDER,
29d0f41d 7521 0, false, name,
cf11e85f
RG
7522 &hugetlb_cma[nid], nid);
7523 if (res) {
7524 pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
7525 res, nid);
7526 continue;
7527 }
7528
7529 reserved += size;
7530 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
7531 size / SZ_1M, nid);
7532
7533 if (reserved >= hugetlb_cma_size)
7534 break;
7535 }
a01f4390
MK
7536
7537 if (!reserved)
7538 /*
7539 * hugetlb_cma_size is used to determine if allocations from
7540 * cma are possible. Set to zero if no cma regions are set up.
7541 */
7542 hugetlb_cma_size = 0;
cf11e85f
RG
7543}
7544
263b8998 7545static void __init hugetlb_cma_check(void)
cf11e85f
RG
7546{
7547 if (!hugetlb_cma_size || cma_reserve_called)
7548 return;
7549
7550 pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
7551}
7552
7553#endif /* CONFIG_CMA */