mm/hugetlb_cgroup: convert __set_hugetlb_cgroup() to folios
[linux-block.git] / mm / hugetlb.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * Generic hugetlb support.
6d49e352 4 * (C) Nadia Yvette Chambers, April 2004
1da177e4 5 */
1da177e4
LT
6#include <linux/list.h>
7#include <linux/init.h>
1da177e4 8#include <linux/mm.h>
e1759c21 9#include <linux/seq_file.h>
1da177e4
LT
10#include <linux/sysctl.h>
11#include <linux/highmem.h>
cddb8a5c 12#include <linux/mmu_notifier.h>
1da177e4 13#include <linux/nodemask.h>
63551ae0 14#include <linux/pagemap.h>
5da7ca86 15#include <linux/mempolicy.h>
3b32123d 16#include <linux/compiler.h>
aea47ff3 17#include <linux/cpuset.h>
3935baa9 18#include <linux/mutex.h>
97ad1087 19#include <linux/memblock.h>
a3437870 20#include <linux/sysfs.h>
5a0e3ad6 21#include <linux/slab.h>
bbe88753 22#include <linux/sched/mm.h>
63489f8e 23#include <linux/mmdebug.h>
174cd4b1 24#include <linux/sched/signal.h>
0fe6e20b 25#include <linux/rmap.h>
c6247f72 26#include <linux/string_helpers.h>
fd6a03ed
NH
27#include <linux/swap.h>
28#include <linux/swapops.h>
8382d914 29#include <linux/jhash.h>
98fa15f3 30#include <linux/numa.h>
c77c0a8a 31#include <linux/llist.h>
cf11e85f 32#include <linux/cma.h>
8cc5fcbb 33#include <linux/migrate.h>
f9317f77 34#include <linux/nospec.h>
662ce1dc 35#include <linux/delayacct.h>
b958d4d0 36#include <linux/memory.h>
d6606683 37
63551ae0 38#include <asm/page.h>
ca15ca40 39#include <asm/pgalloc.h>
24669e58 40#include <asm/tlb.h>
63551ae0 41
24669e58 42#include <linux/io.h>
63551ae0 43#include <linux/hugetlb.h>
9dd540e2 44#include <linux/hugetlb_cgroup.h>
9a305230 45#include <linux/node.h>
ab5ac90a 46#include <linux/page_owner.h>
7835e98b 47#include "internal.h"
f41f2ed4 48#include "hugetlb_vmemmap.h"
1da177e4 49
c3f38a38 50int hugetlb_max_hstate __read_mostly;
e5ff2159
AK
51unsigned int default_hstate_idx;
52struct hstate hstates[HUGE_MAX_HSTATE];
cf11e85f 53
dbda8fea 54#ifdef CONFIG_CMA
cf11e85f 55static struct cma *hugetlb_cma[MAX_NUMNODES];
38e719ab 56static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata;
a01f4390
MK
57static bool hugetlb_cma_page(struct page *page, unsigned int order)
58{
59 return cma_pages_valid(hugetlb_cma[page_to_nid(page)], page,
60 1 << order);
61}
62#else
63static bool hugetlb_cma_page(struct page *page, unsigned int order)
64{
65 return false;
66}
dbda8fea
BS
67#endif
68static unsigned long hugetlb_cma_size __initdata;
cf11e85f 69
53ba51d2
JT
70__initdata LIST_HEAD(huge_boot_pages);
71
e5ff2159
AK
72/* for command line parsing */
73static struct hstate * __initdata parsed_hstate;
74static unsigned long __initdata default_hstate_max_huge_pages;
9fee021d 75static bool __initdata parsed_valid_hugepagesz = true;
282f4214 76static bool __initdata parsed_default_hugepagesz;
b5389086 77static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata;
e5ff2159 78
3935baa9 79/*
31caf665
NH
80 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
81 * free_huge_pages, and surplus_huge_pages.
3935baa9 82 */
c3f38a38 83DEFINE_SPINLOCK(hugetlb_lock);
0bd0f9fb 84
8382d914
DB
85/*
86 * Serializes faults on the same logical page. This is used to
87 * prevent spurious OOMs when the hugepage pool is fully utilized.
88 */
89static int num_fault_mutexes;
c672c7f2 90struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
8382d914 91
7ca02d0a
MK
92/* Forward declaration */
93static int hugetlb_acct_memory(struct hstate *h, long delta);
8d9bfb26
MK
94static void hugetlb_vma_lock_free(struct vm_area_struct *vma);
95static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma);
ecfbd733 96static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma);
7ca02d0a 97
1d88433b 98static inline bool subpool_is_free(struct hugepage_subpool *spool)
90481622 99{
1d88433b
ML
100 if (spool->count)
101 return false;
102 if (spool->max_hpages != -1)
103 return spool->used_hpages == 0;
104 if (spool->min_hpages != -1)
105 return spool->rsv_hpages == spool->min_hpages;
106
107 return true;
108}
90481622 109
db71ef79
MK
110static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
111 unsigned long irq_flags)
1d88433b 112{
db71ef79 113 spin_unlock_irqrestore(&spool->lock, irq_flags);
90481622
DG
114
115 /* If no pages are used, and no other handles to the subpool
7c8de358 116 * remain, give up any reservations based on minimum size and
7ca02d0a 117 * free the subpool */
1d88433b 118 if (subpool_is_free(spool)) {
7ca02d0a
MK
119 if (spool->min_hpages != -1)
120 hugetlb_acct_memory(spool->hstate,
121 -spool->min_hpages);
90481622 122 kfree(spool);
7ca02d0a 123 }
90481622
DG
124}
125
7ca02d0a
MK
126struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
127 long min_hpages)
90481622
DG
128{
129 struct hugepage_subpool *spool;
130
c6a91820 131 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
90481622
DG
132 if (!spool)
133 return NULL;
134
135 spin_lock_init(&spool->lock);
136 spool->count = 1;
7ca02d0a
MK
137 spool->max_hpages = max_hpages;
138 spool->hstate = h;
139 spool->min_hpages = min_hpages;
140
141 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
142 kfree(spool);
143 return NULL;
144 }
145 spool->rsv_hpages = min_hpages;
90481622
DG
146
147 return spool;
148}
149
150void hugepage_put_subpool(struct hugepage_subpool *spool)
151{
db71ef79
MK
152 unsigned long flags;
153
154 spin_lock_irqsave(&spool->lock, flags);
90481622
DG
155 BUG_ON(!spool->count);
156 spool->count--;
db71ef79 157 unlock_or_release_subpool(spool, flags);
90481622
DG
158}
159
1c5ecae3
MK
160/*
161 * Subpool accounting for allocating and reserving pages.
162 * Return -ENOMEM if there are not enough resources to satisfy the
9e7ee400 163 * request. Otherwise, return the number of pages by which the
1c5ecae3
MK
164 * global pools must be adjusted (upward). The returned value may
165 * only be different than the passed value (delta) in the case where
7c8de358 166 * a subpool minimum size must be maintained.
1c5ecae3
MK
167 */
168static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
90481622
DG
169 long delta)
170{
1c5ecae3 171 long ret = delta;
90481622
DG
172
173 if (!spool)
1c5ecae3 174 return ret;
90481622 175
db71ef79 176 spin_lock_irq(&spool->lock);
1c5ecae3
MK
177
178 if (spool->max_hpages != -1) { /* maximum size accounting */
179 if ((spool->used_hpages + delta) <= spool->max_hpages)
180 spool->used_hpages += delta;
181 else {
182 ret = -ENOMEM;
183 goto unlock_ret;
184 }
90481622 185 }
90481622 186
09a95e29
MK
187 /* minimum size accounting */
188 if (spool->min_hpages != -1 && spool->rsv_hpages) {
1c5ecae3
MK
189 if (delta > spool->rsv_hpages) {
190 /*
191 * Asking for more reserves than those already taken on
192 * behalf of subpool. Return difference.
193 */
194 ret = delta - spool->rsv_hpages;
195 spool->rsv_hpages = 0;
196 } else {
197 ret = 0; /* reserves already accounted for */
198 spool->rsv_hpages -= delta;
199 }
200 }
201
202unlock_ret:
db71ef79 203 spin_unlock_irq(&spool->lock);
90481622
DG
204 return ret;
205}
206
1c5ecae3
MK
207/*
208 * Subpool accounting for freeing and unreserving pages.
209 * Return the number of global page reservations that must be dropped.
210 * The return value may only be different than the passed value (delta)
211 * in the case where a subpool minimum size must be maintained.
212 */
213static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
90481622
DG
214 long delta)
215{
1c5ecae3 216 long ret = delta;
db71ef79 217 unsigned long flags;
1c5ecae3 218
90481622 219 if (!spool)
1c5ecae3 220 return delta;
90481622 221
db71ef79 222 spin_lock_irqsave(&spool->lock, flags);
1c5ecae3
MK
223
224 if (spool->max_hpages != -1) /* maximum size accounting */
225 spool->used_hpages -= delta;
226
09a95e29
MK
227 /* minimum size accounting */
228 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
1c5ecae3
MK
229 if (spool->rsv_hpages + delta <= spool->min_hpages)
230 ret = 0;
231 else
232 ret = spool->rsv_hpages + delta - spool->min_hpages;
233
234 spool->rsv_hpages += delta;
235 if (spool->rsv_hpages > spool->min_hpages)
236 spool->rsv_hpages = spool->min_hpages;
237 }
238
239 /*
240 * If hugetlbfs_put_super couldn't free spool due to an outstanding
241 * quota reference, free it now.
242 */
db71ef79 243 unlock_or_release_subpool(spool, flags);
1c5ecae3
MK
244
245 return ret;
90481622
DG
246}
247
248static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
249{
250 return HUGETLBFS_SB(inode->i_sb)->spool;
251}
252
253static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
254{
496ad9aa 255 return subpool_inode(file_inode(vma->vm_file));
90481622
DG
256}
257
0db9d74e
MA
258/* Helper that removes a struct file_region from the resv_map cache and returns
259 * it for use.
260 */
261static struct file_region *
262get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
263{
3259914f 264 struct file_region *nrg;
0db9d74e
MA
265
266 VM_BUG_ON(resv->region_cache_count <= 0);
267
268 resv->region_cache_count--;
269 nrg = list_first_entry(&resv->region_cache, struct file_region, link);
0db9d74e
MA
270 list_del(&nrg->link);
271
272 nrg->from = from;
273 nrg->to = to;
274
275 return nrg;
276}
277
075a61d0
MA
278static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
279 struct file_region *rg)
280{
281#ifdef CONFIG_CGROUP_HUGETLB
282 nrg->reservation_counter = rg->reservation_counter;
283 nrg->css = rg->css;
284 if (rg->css)
285 css_get(rg->css);
286#endif
287}
288
289/* Helper that records hugetlb_cgroup uncharge info. */
290static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
291 struct hstate *h,
292 struct resv_map *resv,
293 struct file_region *nrg)
294{
295#ifdef CONFIG_CGROUP_HUGETLB
296 if (h_cg) {
297 nrg->reservation_counter =
298 &h_cg->rsvd_hugepage[hstate_index(h)];
299 nrg->css = &h_cg->css;
d85aecf2
ML
300 /*
301 * The caller will hold exactly one h_cg->css reference for the
302 * whole contiguous reservation region. But this area might be
303 * scattered when there are already some file_regions reside in
304 * it. As a result, many file_regions may share only one css
305 * reference. In order to ensure that one file_region must hold
306 * exactly one h_cg->css reference, we should do css_get for
307 * each file_region and leave the reference held by caller
308 * untouched.
309 */
310 css_get(&h_cg->css);
075a61d0
MA
311 if (!resv->pages_per_hpage)
312 resv->pages_per_hpage = pages_per_huge_page(h);
313 /* pages_per_hpage should be the same for all entries in
314 * a resv_map.
315 */
316 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
317 } else {
318 nrg->reservation_counter = NULL;
319 nrg->css = NULL;
320 }
321#endif
322}
323
d85aecf2
ML
324static void put_uncharge_info(struct file_region *rg)
325{
326#ifdef CONFIG_CGROUP_HUGETLB
327 if (rg->css)
328 css_put(rg->css);
329#endif
330}
331
a9b3f867
MA
332static bool has_same_uncharge_info(struct file_region *rg,
333 struct file_region *org)
334{
335#ifdef CONFIG_CGROUP_HUGETLB
0739eb43 336 return rg->reservation_counter == org->reservation_counter &&
a9b3f867
MA
337 rg->css == org->css;
338
339#else
340 return true;
341#endif
342}
343
344static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
345{
3259914f 346 struct file_region *nrg, *prg;
a9b3f867
MA
347
348 prg = list_prev_entry(rg, link);
349 if (&prg->link != &resv->regions && prg->to == rg->from &&
350 has_same_uncharge_info(prg, rg)) {
351 prg->to = rg->to;
352
353 list_del(&rg->link);
d85aecf2 354 put_uncharge_info(rg);
a9b3f867
MA
355 kfree(rg);
356
7db5e7b6 357 rg = prg;
a9b3f867
MA
358 }
359
360 nrg = list_next_entry(rg, link);
361 if (&nrg->link != &resv->regions && nrg->from == rg->to &&
362 has_same_uncharge_info(nrg, rg)) {
363 nrg->from = rg->from;
364
365 list_del(&rg->link);
d85aecf2 366 put_uncharge_info(rg);
a9b3f867 367 kfree(rg);
a9b3f867
MA
368 }
369}
370
2103cf9c 371static inline long
84448c8e 372hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from,
2103cf9c
PX
373 long to, struct hstate *h, struct hugetlb_cgroup *cg,
374 long *regions_needed)
375{
376 struct file_region *nrg;
377
378 if (!regions_needed) {
379 nrg = get_file_region_entry_from_cache(map, from, to);
380 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
84448c8e 381 list_add(&nrg->link, rg);
2103cf9c
PX
382 coalesce_file_region(map, nrg);
383 } else
384 *regions_needed += 1;
385
386 return to - from;
387}
388
972a3da3
WY
389/*
390 * Must be called with resv->lock held.
391 *
392 * Calling this with regions_needed != NULL will count the number of pages
393 * to be added but will not modify the linked list. And regions_needed will
394 * indicate the number of file_regions needed in the cache to carry out to add
395 * the regions for this range.
d75c6af9
MA
396 */
397static long add_reservation_in_range(struct resv_map *resv, long f, long t,
075a61d0 398 struct hugetlb_cgroup *h_cg,
972a3da3 399 struct hstate *h, long *regions_needed)
d75c6af9 400{
0db9d74e 401 long add = 0;
d75c6af9 402 struct list_head *head = &resv->regions;
0db9d74e 403 long last_accounted_offset = f;
84448c8e
JK
404 struct file_region *iter, *trg = NULL;
405 struct list_head *rg = NULL;
d75c6af9 406
0db9d74e
MA
407 if (regions_needed)
408 *regions_needed = 0;
d75c6af9 409
0db9d74e 410 /* In this loop, we essentially handle an entry for the range
84448c8e 411 * [last_accounted_offset, iter->from), at every iteration, with some
0db9d74e
MA
412 * bounds checking.
413 */
84448c8e 414 list_for_each_entry_safe(iter, trg, head, link) {
0db9d74e 415 /* Skip irrelevant regions that start before our range. */
84448c8e 416 if (iter->from < f) {
0db9d74e
MA
417 /* If this region ends after the last accounted offset,
418 * then we need to update last_accounted_offset.
419 */
84448c8e
JK
420 if (iter->to > last_accounted_offset)
421 last_accounted_offset = iter->to;
0db9d74e
MA
422 continue;
423 }
d75c6af9 424
0db9d74e
MA
425 /* When we find a region that starts beyond our range, we've
426 * finished.
427 */
84448c8e
JK
428 if (iter->from >= t) {
429 rg = iter->link.prev;
d75c6af9 430 break;
84448c8e 431 }
d75c6af9 432
84448c8e 433 /* Add an entry for last_accounted_offset -> iter->from, and
0db9d74e
MA
434 * update last_accounted_offset.
435 */
84448c8e
JK
436 if (iter->from > last_accounted_offset)
437 add += hugetlb_resv_map_add(resv, iter->link.prev,
2103cf9c 438 last_accounted_offset,
84448c8e 439 iter->from, h, h_cg,
2103cf9c 440 regions_needed);
0db9d74e 441
84448c8e 442 last_accounted_offset = iter->to;
0db9d74e
MA
443 }
444
445 /* Handle the case where our range extends beyond
446 * last_accounted_offset.
447 */
84448c8e
JK
448 if (!rg)
449 rg = head->prev;
2103cf9c
PX
450 if (last_accounted_offset < t)
451 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
452 t, h, h_cg, regions_needed);
0db9d74e 453
0db9d74e
MA
454 return add;
455}
456
457/* Must be called with resv->lock acquired. Will drop lock to allocate entries.
458 */
459static int allocate_file_region_entries(struct resv_map *resv,
460 int regions_needed)
461 __must_hold(&resv->lock)
462{
34665341 463 LIST_HEAD(allocated_regions);
0db9d74e
MA
464 int to_allocate = 0, i = 0;
465 struct file_region *trg = NULL, *rg = NULL;
466
467 VM_BUG_ON(regions_needed < 0);
468
0db9d74e
MA
469 /*
470 * Check for sufficient descriptors in the cache to accommodate
471 * the number of in progress add operations plus regions_needed.
472 *
473 * This is a while loop because when we drop the lock, some other call
474 * to region_add or region_del may have consumed some region_entries,
475 * so we keep looping here until we finally have enough entries for
476 * (adds_in_progress + regions_needed).
477 */
478 while (resv->region_cache_count <
479 (resv->adds_in_progress + regions_needed)) {
480 to_allocate = resv->adds_in_progress + regions_needed -
481 resv->region_cache_count;
482
483 /* At this point, we should have enough entries in the cache
f0953a1b 484 * for all the existing adds_in_progress. We should only be
0db9d74e 485 * needing to allocate for regions_needed.
d75c6af9 486 */
0db9d74e
MA
487 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
488
489 spin_unlock(&resv->lock);
490 for (i = 0; i < to_allocate; i++) {
491 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
492 if (!trg)
493 goto out_of_memory;
494 list_add(&trg->link, &allocated_regions);
d75c6af9 495 }
d75c6af9 496
0db9d74e
MA
497 spin_lock(&resv->lock);
498
d3ec7b6e
WY
499 list_splice(&allocated_regions, &resv->region_cache);
500 resv->region_cache_count += to_allocate;
d75c6af9
MA
501 }
502
0db9d74e 503 return 0;
d75c6af9 504
0db9d74e
MA
505out_of_memory:
506 list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
507 list_del(&rg->link);
508 kfree(rg);
509 }
510 return -ENOMEM;
d75c6af9
MA
511}
512
1dd308a7
MK
513/*
514 * Add the huge page range represented by [f, t) to the reserve
0db9d74e
MA
515 * map. Regions will be taken from the cache to fill in this range.
516 * Sufficient regions should exist in the cache due to the previous
517 * call to region_chg with the same range, but in some cases the cache will not
518 * have sufficient entries due to races with other code doing region_add or
519 * region_del. The extra needed entries will be allocated.
cf3ad20b 520 *
0db9d74e
MA
521 * regions_needed is the out value provided by a previous call to region_chg.
522 *
523 * Return the number of new huge pages added to the map. This number is greater
524 * than or equal to zero. If file_region entries needed to be allocated for
7c8de358 525 * this operation and we were not able to allocate, it returns -ENOMEM.
0db9d74e
MA
526 * region_add of regions of length 1 never allocate file_regions and cannot
527 * fail; region_chg will always allocate at least 1 entry and a region_add for
528 * 1 page will only require at most 1 entry.
1dd308a7 529 */
0db9d74e 530static long region_add(struct resv_map *resv, long f, long t,
075a61d0
MA
531 long in_regions_needed, struct hstate *h,
532 struct hugetlb_cgroup *h_cg)
96822904 533{
0db9d74e 534 long add = 0, actual_regions_needed = 0;
96822904 535
7b24d861 536 spin_lock(&resv->lock);
0db9d74e
MA
537retry:
538
539 /* Count how many regions are actually needed to execute this add. */
972a3da3
WY
540 add_reservation_in_range(resv, f, t, NULL, NULL,
541 &actual_regions_needed);
96822904 542
5e911373 543 /*
0db9d74e
MA
544 * Check for sufficient descriptors in the cache to accommodate
545 * this add operation. Note that actual_regions_needed may be greater
546 * than in_regions_needed, as the resv_map may have been modified since
547 * the region_chg call. In this case, we need to make sure that we
548 * allocate extra entries, such that we have enough for all the
549 * existing adds_in_progress, plus the excess needed for this
550 * operation.
5e911373 551 */
0db9d74e
MA
552 if (actual_regions_needed > in_regions_needed &&
553 resv->region_cache_count <
554 resv->adds_in_progress +
555 (actual_regions_needed - in_regions_needed)) {
556 /* region_add operation of range 1 should never need to
557 * allocate file_region entries.
558 */
559 VM_BUG_ON(t - f <= 1);
5e911373 560
0db9d74e
MA
561 if (allocate_file_region_entries(
562 resv, actual_regions_needed - in_regions_needed)) {
563 return -ENOMEM;
564 }
5e911373 565
0db9d74e 566 goto retry;
5e911373
MK
567 }
568
972a3da3 569 add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
0db9d74e
MA
570
571 resv->adds_in_progress -= in_regions_needed;
cf3ad20b 572
7b24d861 573 spin_unlock(&resv->lock);
cf3ad20b 574 return add;
96822904
AW
575}
576
1dd308a7
MK
577/*
578 * Examine the existing reserve map and determine how many
579 * huge pages in the specified range [f, t) are NOT currently
580 * represented. This routine is called before a subsequent
581 * call to region_add that will actually modify the reserve
582 * map to add the specified range [f, t). region_chg does
583 * not change the number of huge pages represented by the
0db9d74e
MA
584 * map. A number of new file_region structures is added to the cache as a
585 * placeholder, for the subsequent region_add call to use. At least 1
586 * file_region structure is added.
587 *
588 * out_regions_needed is the number of regions added to the
589 * resv->adds_in_progress. This value needs to be provided to a follow up call
590 * to region_add or region_abort for proper accounting.
5e911373
MK
591 *
592 * Returns the number of huge pages that need to be added to the existing
593 * reservation map for the range [f, t). This number is greater or equal to
594 * zero. -ENOMEM is returned if a new file_region structure or cache entry
595 * is needed and can not be allocated.
1dd308a7 596 */
0db9d74e
MA
597static long region_chg(struct resv_map *resv, long f, long t,
598 long *out_regions_needed)
96822904 599{
96822904
AW
600 long chg = 0;
601
7b24d861 602 spin_lock(&resv->lock);
5e911373 603
972a3da3 604 /* Count how many hugepages in this range are NOT represented. */
075a61d0 605 chg = add_reservation_in_range(resv, f, t, NULL, NULL,
972a3da3 606 out_regions_needed);
5e911373 607
0db9d74e
MA
608 if (*out_regions_needed == 0)
609 *out_regions_needed = 1;
5e911373 610
0db9d74e
MA
611 if (allocate_file_region_entries(resv, *out_regions_needed))
612 return -ENOMEM;
5e911373 613
0db9d74e 614 resv->adds_in_progress += *out_regions_needed;
7b24d861 615
7b24d861 616 spin_unlock(&resv->lock);
96822904
AW
617 return chg;
618}
619
5e911373
MK
620/*
621 * Abort the in progress add operation. The adds_in_progress field
622 * of the resv_map keeps track of the operations in progress between
623 * calls to region_chg and region_add. Operations are sometimes
624 * aborted after the call to region_chg. In such cases, region_abort
0db9d74e
MA
625 * is called to decrement the adds_in_progress counter. regions_needed
626 * is the value returned by the region_chg call, it is used to decrement
627 * the adds_in_progress counter.
5e911373
MK
628 *
629 * NOTE: The range arguments [f, t) are not needed or used in this
630 * routine. They are kept to make reading the calling code easier as
631 * arguments will match the associated region_chg call.
632 */
0db9d74e
MA
633static void region_abort(struct resv_map *resv, long f, long t,
634 long regions_needed)
5e911373
MK
635{
636 spin_lock(&resv->lock);
637 VM_BUG_ON(!resv->region_cache_count);
0db9d74e 638 resv->adds_in_progress -= regions_needed;
5e911373
MK
639 spin_unlock(&resv->lock);
640}
641
1dd308a7 642/*
feba16e2
MK
643 * Delete the specified range [f, t) from the reserve map. If the
644 * t parameter is LONG_MAX, this indicates that ALL regions after f
645 * should be deleted. Locate the regions which intersect [f, t)
646 * and either trim, delete or split the existing regions.
647 *
648 * Returns the number of huge pages deleted from the reserve map.
649 * In the normal case, the return value is zero or more. In the
650 * case where a region must be split, a new region descriptor must
651 * be allocated. If the allocation fails, -ENOMEM will be returned.
652 * NOTE: If the parameter t == LONG_MAX, then we will never split
653 * a region and possibly return -ENOMEM. Callers specifying
654 * t == LONG_MAX do not need to check for -ENOMEM error.
1dd308a7 655 */
feba16e2 656static long region_del(struct resv_map *resv, long f, long t)
96822904 657{
1406ec9b 658 struct list_head *head = &resv->regions;
96822904 659 struct file_region *rg, *trg;
feba16e2
MK
660 struct file_region *nrg = NULL;
661 long del = 0;
96822904 662
feba16e2 663retry:
7b24d861 664 spin_lock(&resv->lock);
feba16e2 665 list_for_each_entry_safe(rg, trg, head, link) {
dbe409e4
MK
666 /*
667 * Skip regions before the range to be deleted. file_region
668 * ranges are normally of the form [from, to). However, there
669 * may be a "placeholder" entry in the map which is of the form
670 * (from, to) with from == to. Check for placeholder entries
671 * at the beginning of the range to be deleted.
672 */
673 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
feba16e2 674 continue;
dbe409e4 675
feba16e2 676 if (rg->from >= t)
96822904 677 break;
96822904 678
feba16e2
MK
679 if (f > rg->from && t < rg->to) { /* Must split region */
680 /*
681 * Check for an entry in the cache before dropping
682 * lock and attempting allocation.
683 */
684 if (!nrg &&
685 resv->region_cache_count > resv->adds_in_progress) {
686 nrg = list_first_entry(&resv->region_cache,
687 struct file_region,
688 link);
689 list_del(&nrg->link);
690 resv->region_cache_count--;
691 }
96822904 692
feba16e2
MK
693 if (!nrg) {
694 spin_unlock(&resv->lock);
695 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
696 if (!nrg)
697 return -ENOMEM;
698 goto retry;
699 }
700
701 del += t - f;
79aa925b 702 hugetlb_cgroup_uncharge_file_region(
d85aecf2 703 resv, rg, t - f, false);
feba16e2
MK
704
705 /* New entry for end of split region */
706 nrg->from = t;
707 nrg->to = rg->to;
075a61d0
MA
708
709 copy_hugetlb_cgroup_uncharge_info(nrg, rg);
710
feba16e2
MK
711 INIT_LIST_HEAD(&nrg->link);
712
713 /* Original entry is trimmed */
714 rg->to = f;
715
716 list_add(&nrg->link, &rg->link);
717 nrg = NULL;
96822904 718 break;
feba16e2
MK
719 }
720
721 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
722 del += rg->to - rg->from;
075a61d0 723 hugetlb_cgroup_uncharge_file_region(resv, rg,
d85aecf2 724 rg->to - rg->from, true);
feba16e2
MK
725 list_del(&rg->link);
726 kfree(rg);
727 continue;
728 }
729
730 if (f <= rg->from) { /* Trim beginning of region */
075a61d0 731 hugetlb_cgroup_uncharge_file_region(resv, rg,
d85aecf2 732 t - rg->from, false);
075a61d0 733
79aa925b
MK
734 del += t - rg->from;
735 rg->from = t;
736 } else { /* Trim end of region */
075a61d0 737 hugetlb_cgroup_uncharge_file_region(resv, rg,
d85aecf2 738 rg->to - f, false);
79aa925b
MK
739
740 del += rg->to - f;
741 rg->to = f;
feba16e2 742 }
96822904 743 }
7b24d861 744
7b24d861 745 spin_unlock(&resv->lock);
feba16e2
MK
746 kfree(nrg);
747 return del;
96822904
AW
748}
749
b5cec28d
MK
750/*
751 * A rare out of memory error was encountered which prevented removal of
752 * the reserve map region for a page. The huge page itself was free'ed
753 * and removed from the page cache. This routine will adjust the subpool
754 * usage count, and the global reserve count if needed. By incrementing
755 * these counts, the reserve map entry which could not be deleted will
756 * appear as a "reserved" entry instead of simply dangling with incorrect
757 * counts.
758 */
72e2936c 759void hugetlb_fix_reserve_counts(struct inode *inode)
b5cec28d
MK
760{
761 struct hugepage_subpool *spool = subpool_inode(inode);
762 long rsv_adjust;
da56388c 763 bool reserved = false;
b5cec28d
MK
764
765 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
da56388c 766 if (rsv_adjust > 0) {
b5cec28d
MK
767 struct hstate *h = hstate_inode(inode);
768
da56388c
ML
769 if (!hugetlb_acct_memory(h, 1))
770 reserved = true;
771 } else if (!rsv_adjust) {
772 reserved = true;
b5cec28d 773 }
da56388c
ML
774
775 if (!reserved)
776 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
b5cec28d
MK
777}
778
1dd308a7
MK
779/*
780 * Count and return the number of huge pages in the reserve map
781 * that intersect with the range [f, t).
782 */
1406ec9b 783static long region_count(struct resv_map *resv, long f, long t)
84afd99b 784{
1406ec9b 785 struct list_head *head = &resv->regions;
84afd99b
AW
786 struct file_region *rg;
787 long chg = 0;
788
7b24d861 789 spin_lock(&resv->lock);
84afd99b
AW
790 /* Locate each segment we overlap with, and count that overlap. */
791 list_for_each_entry(rg, head, link) {
f2135a4a
WSH
792 long seg_from;
793 long seg_to;
84afd99b
AW
794
795 if (rg->to <= f)
796 continue;
797 if (rg->from >= t)
798 break;
799
800 seg_from = max(rg->from, f);
801 seg_to = min(rg->to, t);
802
803 chg += seg_to - seg_from;
804 }
7b24d861 805 spin_unlock(&resv->lock);
84afd99b
AW
806
807 return chg;
808}
809
e7c4b0bf
AW
810/*
811 * Convert the address within this vma to the page offset within
812 * the mapping, in pagecache page units; huge pages here.
813 */
a5516438
AK
814static pgoff_t vma_hugecache_offset(struct hstate *h,
815 struct vm_area_struct *vma, unsigned long address)
e7c4b0bf 816{
a5516438
AK
817 return ((address - vma->vm_start) >> huge_page_shift(h)) +
818 (vma->vm_pgoff >> huge_page_order(h));
e7c4b0bf
AW
819}
820
0fe6e20b
NH
821pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
822 unsigned long address)
823{
824 return vma_hugecache_offset(hstate_vma(vma), vma, address);
825}
dee41079 826EXPORT_SYMBOL_GPL(linear_hugepage_index);
0fe6e20b 827
08fba699
MG
828/*
829 * Return the size of the pages allocated when backing a VMA. In the majority
830 * cases this will be same size as used by the page table entries.
831 */
832unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
833{
05ea8860
DW
834 if (vma->vm_ops && vma->vm_ops->pagesize)
835 return vma->vm_ops->pagesize(vma);
836 return PAGE_SIZE;
08fba699 837}
f340ca0f 838EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
08fba699 839
3340289d
MG
840/*
841 * Return the page size being used by the MMU to back a VMA. In the majority
842 * of cases, the page size used by the kernel matches the MMU size. On
09135cc5
DW
843 * architectures where it differs, an architecture-specific 'strong'
844 * version of this symbol is required.
3340289d 845 */
09135cc5 846__weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
3340289d
MG
847{
848 return vma_kernel_pagesize(vma);
849}
3340289d 850
84afd99b
AW
851/*
852 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
853 * bits of the reservation map pointer, which are always clear due to
854 * alignment.
855 */
856#define HPAGE_RESV_OWNER (1UL << 0)
857#define HPAGE_RESV_UNMAPPED (1UL << 1)
04f2cbe3 858#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
84afd99b 859
a1e78772
MG
860/*
861 * These helpers are used to track how many pages are reserved for
862 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
863 * is guaranteed to have their future faults succeed.
864 *
8d9bfb26 865 * With the exception of hugetlb_dup_vma_private() which is called at fork(),
a1e78772
MG
866 * the reserve counters are updated with the hugetlb_lock held. It is safe
867 * to reset the VMA at fork() time as it is not in use yet and there is no
868 * chance of the global counters getting corrupted as a result of the values.
84afd99b
AW
869 *
870 * The private mapping reservation is represented in a subtly different
871 * manner to a shared mapping. A shared mapping has a region map associated
872 * with the underlying file, this region map represents the backing file
873 * pages which have ever had a reservation assigned which this persists even
874 * after the page is instantiated. A private mapping has a region map
875 * associated with the original mmap which is attached to all VMAs which
876 * reference it, this region map represents those offsets which have consumed
877 * reservation ie. where pages have been instantiated.
a1e78772 878 */
e7c4b0bf
AW
879static unsigned long get_vma_private_data(struct vm_area_struct *vma)
880{
881 return (unsigned long)vma->vm_private_data;
882}
883
884static void set_vma_private_data(struct vm_area_struct *vma,
885 unsigned long value)
886{
887 vma->vm_private_data = (void *)value;
888}
889
e9fe92ae
MA
890static void
891resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
892 struct hugetlb_cgroup *h_cg,
893 struct hstate *h)
894{
895#ifdef CONFIG_CGROUP_HUGETLB
896 if (!h_cg || !h) {
897 resv_map->reservation_counter = NULL;
898 resv_map->pages_per_hpage = 0;
899 resv_map->css = NULL;
900 } else {
901 resv_map->reservation_counter =
902 &h_cg->rsvd_hugepage[hstate_index(h)];
903 resv_map->pages_per_hpage = pages_per_huge_page(h);
904 resv_map->css = &h_cg->css;
905 }
906#endif
907}
908
9119a41e 909struct resv_map *resv_map_alloc(void)
84afd99b
AW
910{
911 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
5e911373
MK
912 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
913
914 if (!resv_map || !rg) {
915 kfree(resv_map);
916 kfree(rg);
84afd99b 917 return NULL;
5e911373 918 }
84afd99b
AW
919
920 kref_init(&resv_map->refs);
7b24d861 921 spin_lock_init(&resv_map->lock);
84afd99b
AW
922 INIT_LIST_HEAD(&resv_map->regions);
923
5e911373 924 resv_map->adds_in_progress = 0;
e9fe92ae
MA
925 /*
926 * Initialize these to 0. On shared mappings, 0's here indicate these
927 * fields don't do cgroup accounting. On private mappings, these will be
928 * re-initialized to the proper values, to indicate that hugetlb cgroup
929 * reservations are to be un-charged from here.
930 */
931 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
5e911373
MK
932
933 INIT_LIST_HEAD(&resv_map->region_cache);
934 list_add(&rg->link, &resv_map->region_cache);
935 resv_map->region_cache_count = 1;
936
84afd99b
AW
937 return resv_map;
938}
939
9119a41e 940void resv_map_release(struct kref *ref)
84afd99b
AW
941{
942 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
5e911373
MK
943 struct list_head *head = &resv_map->region_cache;
944 struct file_region *rg, *trg;
84afd99b
AW
945
946 /* Clear out any active regions before we release the map. */
feba16e2 947 region_del(resv_map, 0, LONG_MAX);
5e911373
MK
948
949 /* ... and any entries left in the cache */
950 list_for_each_entry_safe(rg, trg, head, link) {
951 list_del(&rg->link);
952 kfree(rg);
953 }
954
955 VM_BUG_ON(resv_map->adds_in_progress);
956
84afd99b
AW
957 kfree(resv_map);
958}
959
4e35f483
JK
960static inline struct resv_map *inode_resv_map(struct inode *inode)
961{
f27a5136
MK
962 /*
963 * At inode evict time, i_mapping may not point to the original
964 * address space within the inode. This original address space
965 * contains the pointer to the resv_map. So, always use the
966 * address space embedded within the inode.
967 * The VERY common case is inode->mapping == &inode->i_data but,
968 * this may not be true for device special inodes.
969 */
970 return (struct resv_map *)(&inode->i_data)->private_data;
4e35f483
JK
971}
972
84afd99b 973static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
a1e78772 974{
81d1b09c 975 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
4e35f483
JK
976 if (vma->vm_flags & VM_MAYSHARE) {
977 struct address_space *mapping = vma->vm_file->f_mapping;
978 struct inode *inode = mapping->host;
979
980 return inode_resv_map(inode);
981
982 } else {
84afd99b
AW
983 return (struct resv_map *)(get_vma_private_data(vma) &
984 ~HPAGE_RESV_MASK);
4e35f483 985 }
a1e78772
MG
986}
987
84afd99b 988static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
a1e78772 989{
81d1b09c
SL
990 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
991 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
a1e78772 992
84afd99b
AW
993 set_vma_private_data(vma, (get_vma_private_data(vma) &
994 HPAGE_RESV_MASK) | (unsigned long)map);
04f2cbe3
MG
995}
996
997static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
998{
81d1b09c
SL
999 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1000 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
e7c4b0bf
AW
1001
1002 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
04f2cbe3
MG
1003}
1004
1005static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
1006{
81d1b09c 1007 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
e7c4b0bf
AW
1008
1009 return (get_vma_private_data(vma) & flag) != 0;
a1e78772
MG
1010}
1011
8d9bfb26 1012void hugetlb_dup_vma_private(struct vm_area_struct *vma)
a1e78772 1013{
81d1b09c 1014 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
8d9bfb26
MK
1015 /*
1016 * Clear vm_private_data
612b8a31
MK
1017 * - For shared mappings this is a per-vma semaphore that may be
1018 * allocated in a subsequent call to hugetlb_vm_op_open.
1019 * Before clearing, make sure pointer is not associated with vma
1020 * as this will leak the structure. This is the case when called
1021 * via clear_vma_resv_huge_pages() and hugetlb_vm_op_open has already
1022 * been called to allocate a new structure.
8d9bfb26
MK
1023 * - For MAP_PRIVATE mappings, this is the reserve map which does
1024 * not apply to children. Faults generated by the children are
1025 * not guaranteed to succeed, even if read-only.
8d9bfb26 1026 */
612b8a31
MK
1027 if (vma->vm_flags & VM_MAYSHARE) {
1028 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
1029
1030 if (vma_lock && vma_lock->vma != vma)
1031 vma->vm_private_data = NULL;
1032 } else
1033 vma->vm_private_data = NULL;
a1e78772
MG
1034}
1035
550a7d60
MA
1036/*
1037 * Reset and decrement one ref on hugepage private reservation.
1038 * Called with mm->mmap_sem writer semaphore held.
1039 * This function should be only used by move_vma() and operate on
1040 * same sized vma. It should never come here with last ref on the
1041 * reservation.
1042 */
1043void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
1044{
1045 /*
1046 * Clear the old hugetlb private page reservation.
1047 * It has already been transferred to new_vma.
1048 *
1049 * During a mremap() operation of a hugetlb vma we call move_vma()
1050 * which copies vma into new_vma and unmaps vma. After the copy
1051 * operation both new_vma and vma share a reference to the resv_map
1052 * struct, and at that point vma is about to be unmapped. We don't
1053 * want to return the reservation to the pool at unmap of vma because
1054 * the reservation still lives on in new_vma, so simply decrement the
1055 * ref here and remove the resv_map reference from this vma.
1056 */
1057 struct resv_map *reservations = vma_resv_map(vma);
1058
afe041c2
BQM
1059 if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1060 resv_map_put_hugetlb_cgroup_uncharge_info(reservations);
550a7d60 1061 kref_put(&reservations->refs, resv_map_release);
afe041c2 1062 }
550a7d60 1063
8d9bfb26 1064 hugetlb_dup_vma_private(vma);
550a7d60
MA
1065}
1066
a1e78772 1067/* Returns true if the VMA has associated reserve pages */
559ec2f8 1068static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
a1e78772 1069{
af0ed73e
JK
1070 if (vma->vm_flags & VM_NORESERVE) {
1071 /*
1072 * This address is already reserved by other process(chg == 0),
1073 * so, we should decrement reserved count. Without decrementing,
1074 * reserve count remains after releasing inode, because this
1075 * allocated page will go into page cache and is regarded as
1076 * coming from reserved pool in releasing step. Currently, we
1077 * don't have any other solution to deal with this situation
1078 * properly, so add work-around here.
1079 */
1080 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
559ec2f8 1081 return true;
af0ed73e 1082 else
559ec2f8 1083 return false;
af0ed73e 1084 }
a63884e9
JK
1085
1086 /* Shared mappings always use reserves */
1fb1b0e9
MK
1087 if (vma->vm_flags & VM_MAYSHARE) {
1088 /*
1089 * We know VM_NORESERVE is not set. Therefore, there SHOULD
1090 * be a region map for all pages. The only situation where
1091 * there is no region map is if a hole was punched via
7c8de358 1092 * fallocate. In this case, there really are no reserves to
1fb1b0e9
MK
1093 * use. This situation is indicated if chg != 0.
1094 */
1095 if (chg)
1096 return false;
1097 else
1098 return true;
1099 }
a63884e9
JK
1100
1101 /*
1102 * Only the process that called mmap() has reserves for
1103 * private mappings.
1104 */
67961f9d
MK
1105 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1106 /*
1107 * Like the shared case above, a hole punch or truncate
1108 * could have been performed on the private mapping.
1109 * Examine the value of chg to determine if reserves
1110 * actually exist or were previously consumed.
1111 * Very Subtle - The value of chg comes from a previous
1112 * call to vma_needs_reserves(). The reserve map for
1113 * private mappings has different (opposite) semantics
1114 * than that of shared mappings. vma_needs_reserves()
1115 * has already taken this difference in semantics into
1116 * account. Therefore, the meaning of chg is the same
1117 * as in the shared case above. Code could easily be
1118 * combined, but keeping it separate draws attention to
1119 * subtle differences.
1120 */
1121 if (chg)
1122 return false;
1123 else
1124 return true;
1125 }
a63884e9 1126
559ec2f8 1127 return false;
a1e78772
MG
1128}
1129
a5516438 1130static void enqueue_huge_page(struct hstate *h, struct page *page)
1da177e4
LT
1131{
1132 int nid = page_to_nid(page);
9487ca60
MK
1133
1134 lockdep_assert_held(&hugetlb_lock);
b65a4eda
MK
1135 VM_BUG_ON_PAGE(page_count(page), page);
1136
0edaecfa 1137 list_move(&page->lru, &h->hugepage_freelists[nid]);
a5516438
AK
1138 h->free_huge_pages++;
1139 h->free_huge_pages_node[nid]++;
6c037149 1140 SetHPageFreed(page);
1da177e4
LT
1141}
1142
94310cbc 1143static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
bf50bab2
NH
1144{
1145 struct page *page;
1a08ae36 1146 bool pin = !!(current->flags & PF_MEMALLOC_PIN);
bbe88753 1147
9487ca60 1148 lockdep_assert_held(&hugetlb_lock);
bbe88753 1149 list_for_each_entry(page, &h->hugepage_freelists[nid], lru) {
6077c943 1150 if (pin && !is_longterm_pinnable_page(page))
bbe88753 1151 continue;
bf50bab2 1152
6664bfc8
WY
1153 if (PageHWPoison(page))
1154 continue;
1155
1156 list_move(&page->lru, &h->hugepage_activelist);
1157 set_page_refcounted(page);
6c037149 1158 ClearHPageFreed(page);
6664bfc8
WY
1159 h->free_huge_pages--;
1160 h->free_huge_pages_node[nid]--;
1161 return page;
bbe88753
JK
1162 }
1163
6664bfc8 1164 return NULL;
bf50bab2
NH
1165}
1166
3e59fcb0
MH
1167static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
1168 nodemask_t *nmask)
94310cbc 1169{
3e59fcb0
MH
1170 unsigned int cpuset_mems_cookie;
1171 struct zonelist *zonelist;
1172 struct zone *zone;
1173 struct zoneref *z;
98fa15f3 1174 int node = NUMA_NO_NODE;
94310cbc 1175
3e59fcb0
MH
1176 zonelist = node_zonelist(nid, gfp_mask);
1177
1178retry_cpuset:
1179 cpuset_mems_cookie = read_mems_allowed_begin();
1180 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1181 struct page *page;
1182
1183 if (!cpuset_zone_allowed(zone, gfp_mask))
1184 continue;
1185 /*
1186 * no need to ask again on the same node. Pool is node rather than
1187 * zone aware
1188 */
1189 if (zone_to_nid(zone) == node)
1190 continue;
1191 node = zone_to_nid(zone);
94310cbc 1192
94310cbc
AK
1193 page = dequeue_huge_page_node_exact(h, node);
1194 if (page)
1195 return page;
1196 }
3e59fcb0
MH
1197 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1198 goto retry_cpuset;
1199
94310cbc
AK
1200 return NULL;
1201}
1202
8346d69d
XH
1203static unsigned long available_huge_pages(struct hstate *h)
1204{
1205 return h->free_huge_pages - h->resv_huge_pages;
1206}
1207
a5516438
AK
1208static struct page *dequeue_huge_page_vma(struct hstate *h,
1209 struct vm_area_struct *vma,
af0ed73e
JK
1210 unsigned long address, int avoid_reserve,
1211 long chg)
1da177e4 1212{
cfcaa66f 1213 struct page *page = NULL;
480eccf9 1214 struct mempolicy *mpol;
04ec6264 1215 gfp_t gfp_mask;
3e59fcb0 1216 nodemask_t *nodemask;
04ec6264 1217 int nid;
1da177e4 1218
a1e78772
MG
1219 /*
1220 * A child process with MAP_PRIVATE mappings created by their parent
1221 * have no page reserves. This check ensures that reservations are
1222 * not "stolen". The child may still get SIGKILLed
1223 */
8346d69d 1224 if (!vma_has_reserves(vma, chg) && !available_huge_pages(h))
c0ff7453 1225 goto err;
a1e78772 1226
04f2cbe3 1227 /* If reserves cannot be used, ensure enough pages are in the pool */
8346d69d 1228 if (avoid_reserve && !available_huge_pages(h))
6eab04a8 1229 goto err;
04f2cbe3 1230
04ec6264
VB
1231 gfp_mask = htlb_alloc_mask(h);
1232 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
cfcaa66f
BW
1233
1234 if (mpol_is_preferred_many(mpol)) {
1235 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1236
1237 /* Fallback to all nodes if page==NULL */
1238 nodemask = NULL;
1239 }
1240
1241 if (!page)
1242 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1243
3e59fcb0 1244 if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
d6995da3 1245 SetHPageRestoreReserve(page);
3e59fcb0 1246 h->resv_huge_pages--;
1da177e4 1247 }
cc9a6c87 1248
52cd3b07 1249 mpol_cond_put(mpol);
1da177e4 1250 return page;
cc9a6c87
MG
1251
1252err:
cc9a6c87 1253 return NULL;
1da177e4
LT
1254}
1255
1cac6f2c
LC
1256/*
1257 * common helper functions for hstate_next_node_to_{alloc|free}.
1258 * We may have allocated or freed a huge page based on a different
1259 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1260 * be outside of *nodes_allowed. Ensure that we use an allowed
1261 * node for alloc or free.
1262 */
1263static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1264{
0edaf86c 1265 nid = next_node_in(nid, *nodes_allowed);
1cac6f2c
LC
1266 VM_BUG_ON(nid >= MAX_NUMNODES);
1267
1268 return nid;
1269}
1270
1271static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1272{
1273 if (!node_isset(nid, *nodes_allowed))
1274 nid = next_node_allowed(nid, nodes_allowed);
1275 return nid;
1276}
1277
1278/*
1279 * returns the previously saved node ["this node"] from which to
1280 * allocate a persistent huge page for the pool and advance the
1281 * next node from which to allocate, handling wrap at end of node
1282 * mask.
1283 */
1284static int hstate_next_node_to_alloc(struct hstate *h,
1285 nodemask_t *nodes_allowed)
1286{
1287 int nid;
1288
1289 VM_BUG_ON(!nodes_allowed);
1290
1291 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1292 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1293
1294 return nid;
1295}
1296
1297/*
10c6ec49 1298 * helper for remove_pool_huge_page() - return the previously saved
1cac6f2c
LC
1299 * node ["this node"] from which to free a huge page. Advance the
1300 * next node id whether or not we find a free huge page to free so
1301 * that the next attempt to free addresses the next node.
1302 */
1303static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1304{
1305 int nid;
1306
1307 VM_BUG_ON(!nodes_allowed);
1308
1309 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1310 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1311
1312 return nid;
1313}
1314
1315#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
1316 for (nr_nodes = nodes_weight(*mask); \
1317 nr_nodes > 0 && \
1318 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
1319 nr_nodes--)
1320
1321#define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1322 for (nr_nodes = nodes_weight(*mask); \
1323 nr_nodes > 0 && \
1324 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1325 nr_nodes--)
1326
8531fc6f 1327/* used to demote non-gigantic_huge pages as well */
34d9e35b
MK
1328static void __destroy_compound_gigantic_page(struct page *page,
1329 unsigned int order, bool demote)
944d9fec
LC
1330{
1331 int i;
1332 int nr_pages = 1 << order;
14455eab 1333 struct page *p;
944d9fec 1334
c8cc708a 1335 atomic_set(compound_mapcount_ptr(page), 0);
5291c09b 1336 atomic_set(compound_pincount_ptr(page), 0);
47e29d32 1337
14455eab
CL
1338 for (i = 1; i < nr_pages; i++) {
1339 p = nth_page(page, i);
a01f4390 1340 p->mapping = NULL;
1d798ca3 1341 clear_compound_head(p);
34d9e35b
MK
1342 if (!demote)
1343 set_page_refcounted(p);
944d9fec
LC
1344 }
1345
1346 set_compound_order(page, 0);
5232c63f 1347#ifdef CONFIG_64BIT
ba9c1201 1348 page[1].compound_nr = 0;
5232c63f 1349#endif
944d9fec
LC
1350 __ClearPageHead(page);
1351}
1352
8531fc6f
MK
1353static void destroy_compound_hugetlb_page_for_demote(struct page *page,
1354 unsigned int order)
1355{
1356 __destroy_compound_gigantic_page(page, order, true);
1357}
1358
1359#ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
34d9e35b
MK
1360static void destroy_compound_gigantic_page(struct page *page,
1361 unsigned int order)
1362{
1363 __destroy_compound_gigantic_page(page, order, false);
1364}
1365
d00181b9 1366static void free_gigantic_page(struct page *page, unsigned int order)
944d9fec 1367{
cf11e85f
RG
1368 /*
1369 * If the page isn't allocated using the cma allocator,
1370 * cma_release() returns false.
1371 */
dbda8fea
BS
1372#ifdef CONFIG_CMA
1373 if (cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order))
cf11e85f 1374 return;
dbda8fea 1375#endif
cf11e85f 1376
944d9fec
LC
1377 free_contig_range(page_to_pfn(page), 1 << order);
1378}
1379
4eb0716e 1380#ifdef CONFIG_CONTIG_ALLOC
d9cc948f
MH
1381static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1382 int nid, nodemask_t *nodemask)
944d9fec 1383{
04adbc3f 1384 unsigned long nr_pages = pages_per_huge_page(h);
953f064a
LX
1385 if (nid == NUMA_NO_NODE)
1386 nid = numa_mem_id();
944d9fec 1387
dbda8fea
BS
1388#ifdef CONFIG_CMA
1389 {
cf11e85f
RG
1390 struct page *page;
1391 int node;
1392
953f064a
LX
1393 if (hugetlb_cma[nid]) {
1394 page = cma_alloc(hugetlb_cma[nid], nr_pages,
1395 huge_page_order(h), true);
cf11e85f
RG
1396 if (page)
1397 return page;
1398 }
953f064a
LX
1399
1400 if (!(gfp_mask & __GFP_THISNODE)) {
1401 for_each_node_mask(node, *nodemask) {
1402 if (node == nid || !hugetlb_cma[node])
1403 continue;
1404
1405 page = cma_alloc(hugetlb_cma[node], nr_pages,
1406 huge_page_order(h), true);
1407 if (page)
1408 return page;
1409 }
1410 }
cf11e85f 1411 }
dbda8fea 1412#endif
cf11e85f 1413
5e27a2df 1414 return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
944d9fec
LC
1415}
1416
4eb0716e
AG
1417#else /* !CONFIG_CONTIG_ALLOC */
1418static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1419 int nid, nodemask_t *nodemask)
1420{
1421 return NULL;
1422}
1423#endif /* CONFIG_CONTIG_ALLOC */
944d9fec 1424
e1073d1e 1425#else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
d9cc948f 1426static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
4eb0716e
AG
1427 int nid, nodemask_t *nodemask)
1428{
1429 return NULL;
1430}
d00181b9 1431static inline void free_gigantic_page(struct page *page, unsigned int order) { }
944d9fec 1432static inline void destroy_compound_gigantic_page(struct page *page,
d00181b9 1433 unsigned int order) { }
944d9fec
LC
1434#endif
1435
6eb4e88a
MK
1436/*
1437 * Remove hugetlb page from lists, and update dtor so that page appears
34d9e35b
MK
1438 * as just a compound page.
1439 *
1440 * A reference is held on the page, except in the case of demote.
6eb4e88a
MK
1441 *
1442 * Must be called with hugetlb lock held.
1443 */
34d9e35b
MK
1444static void __remove_hugetlb_page(struct hstate *h, struct page *page,
1445 bool adjust_surplus,
1446 bool demote)
6eb4e88a
MK
1447{
1448 int nid = page_to_nid(page);
1449
1450 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1451 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page);
1452
9487ca60 1453 lockdep_assert_held(&hugetlb_lock);
6eb4e88a
MK
1454 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1455 return;
1456
1457 list_del(&page->lru);
1458
1459 if (HPageFreed(page)) {
1460 h->free_huge_pages--;
1461 h->free_huge_pages_node[nid]--;
1462 }
1463 if (adjust_surplus) {
1464 h->surplus_huge_pages--;
1465 h->surplus_huge_pages_node[nid]--;
1466 }
1467
e32d20c0
MK
1468 /*
1469 * Very subtle
1470 *
1471 * For non-gigantic pages set the destructor to the normal compound
1472 * page dtor. This is needed in case someone takes an additional
1473 * temporary ref to the page, and freeing is delayed until they drop
1474 * their reference.
1475 *
1476 * For gigantic pages set the destructor to the null dtor. This
1477 * destructor will never be called. Before freeing the gigantic
1478 * page destroy_compound_gigantic_page will turn the compound page
1479 * into a simple group of pages. After this the destructor does not
1480 * apply.
1481 *
1482 * This handles the case where more than one ref is held when and
1483 * after update_and_free_page is called.
34d9e35b
MK
1484 *
1485 * In the case of demote we do not ref count the page as it will soon
1486 * be turned into a page of smaller size.
e32d20c0 1487 */
34d9e35b
MK
1488 if (!demote)
1489 set_page_refcounted(page);
e32d20c0
MK
1490 if (hstate_is_gigantic(h))
1491 set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1492 else
1493 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
6eb4e88a
MK
1494
1495 h->nr_huge_pages--;
1496 h->nr_huge_pages_node[nid]--;
1497}
1498
34d9e35b
MK
1499static void remove_hugetlb_page(struct hstate *h, struct page *page,
1500 bool adjust_surplus)
1501{
1502 __remove_hugetlb_page(h, page, adjust_surplus, false);
1503}
1504
8531fc6f
MK
1505static void remove_hugetlb_page_for_demote(struct hstate *h, struct page *page,
1506 bool adjust_surplus)
1507{
1508 __remove_hugetlb_page(h, page, adjust_surplus, true);
1509}
1510
ad2fa371
MS
1511static void add_hugetlb_page(struct hstate *h, struct page *page,
1512 bool adjust_surplus)
1513{
1514 int zeroed;
1515 int nid = page_to_nid(page);
1516
1517 VM_BUG_ON_PAGE(!HPageVmemmapOptimized(page), page);
1518
1519 lockdep_assert_held(&hugetlb_lock);
1520
1521 INIT_LIST_HEAD(&page->lru);
1522 h->nr_huge_pages++;
1523 h->nr_huge_pages_node[nid]++;
1524
1525 if (adjust_surplus) {
1526 h->surplus_huge_pages++;
1527 h->surplus_huge_pages_node[nid]++;
1528 }
1529
1530 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1531 set_page_private(page, 0);
a9e1eab2
ML
1532 /*
1533 * We have to set HPageVmemmapOptimized again as above
1534 * set_page_private(page, 0) cleared it.
1535 */
ad2fa371
MS
1536 SetHPageVmemmapOptimized(page);
1537
1538 /*
b65a4eda
MK
1539 * This page is about to be managed by the hugetlb allocator and
1540 * should have no users. Drop our reference, and check for others
1541 * just in case.
ad2fa371
MS
1542 */
1543 zeroed = put_page_testzero(page);
b65a4eda
MK
1544 if (!zeroed)
1545 /*
1546 * It is VERY unlikely soneone else has taken a ref on
1547 * the page. In this case, we simply return as the
1548 * hugetlb destructor (free_huge_page) will be called
1549 * when this other ref is dropped.
1550 */
1551 return;
1552
ad2fa371
MS
1553 arch_clear_hugepage_flags(page);
1554 enqueue_huge_page(h, page);
1555}
1556
b65d4adb 1557static void __update_and_free_page(struct hstate *h, struct page *page)
6af2acb6
AL
1558{
1559 int i;
14455eab 1560 struct page *subpage;
a5516438 1561
4eb0716e 1562 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
944d9fec 1563 return;
18229df5 1564
161df60e
NH
1565 /*
1566 * If we don't know which subpages are hwpoisoned, we can't free
1567 * the hugepage, so it's leaked intentionally.
1568 */
1569 if (HPageRawHwpUnreliable(page))
1570 return;
1571
6213834c 1572 if (hugetlb_vmemmap_restore(h, page)) {
ad2fa371
MS
1573 spin_lock_irq(&hugetlb_lock);
1574 /*
1575 * If we cannot allocate vmemmap pages, just refuse to free the
1576 * page and put the page back on the hugetlb free list and treat
1577 * as a surplus page.
1578 */
1579 add_hugetlb_page(h, page, true);
1580 spin_unlock_irq(&hugetlb_lock);
1581 return;
1582 }
1583
161df60e
NH
1584 /*
1585 * Move PageHWPoison flag from head page to the raw error pages,
1586 * which makes any healthy subpages reusable.
1587 */
1588 if (unlikely(PageHWPoison(page)))
1589 hugetlb_clear_page_hwpoison(page);
1590
14455eab
CL
1591 for (i = 0; i < pages_per_huge_page(h); i++) {
1592 subpage = nth_page(page, i);
dbfee5ae 1593 subpage->flags &= ~(1 << PG_locked | 1 << PG_error |
32f84528 1594 1 << PG_referenced | 1 << PG_dirty |
a7407a27
LC
1595 1 << PG_active | 1 << PG_private |
1596 1 << PG_writeback);
6af2acb6 1597 }
a01f4390
MK
1598
1599 /*
1600 * Non-gigantic pages demoted from CMA allocated gigantic pages
1601 * need to be given back to CMA in free_gigantic_page.
1602 */
1603 if (hstate_is_gigantic(h) ||
1604 hugetlb_cma_page(page, huge_page_order(h))) {
944d9fec
LC
1605 destroy_compound_gigantic_page(page, huge_page_order(h));
1606 free_gigantic_page(page, huge_page_order(h));
1607 } else {
944d9fec
LC
1608 __free_pages(page, huge_page_order(h));
1609 }
6af2acb6
AL
1610}
1611
b65d4adb
MS
1612/*
1613 * As update_and_free_page() can be called under any context, so we cannot
1614 * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the
1615 * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate
1616 * the vmemmap pages.
1617 *
1618 * free_hpage_workfn() locklessly retrieves the linked list of pages to be
1619 * freed and frees them one-by-one. As the page->mapping pointer is going
1620 * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node
1621 * structure of a lockless linked list of huge pages to be freed.
1622 */
1623static LLIST_HEAD(hpage_freelist);
1624
1625static void free_hpage_workfn(struct work_struct *work)
1626{
1627 struct llist_node *node;
1628
1629 node = llist_del_all(&hpage_freelist);
1630
1631 while (node) {
1632 struct page *page;
1633 struct hstate *h;
1634
1635 page = container_of((struct address_space **)node,
1636 struct page, mapping);
1637 node = node->next;
1638 page->mapping = NULL;
1639 /*
1640 * The VM_BUG_ON_PAGE(!PageHuge(page), page) in page_hstate()
1641 * is going to trigger because a previous call to
1642 * remove_hugetlb_page() will set_compound_page_dtor(page,
1643 * NULL_COMPOUND_DTOR), so do not use page_hstate() directly.
1644 */
1645 h = size_to_hstate(page_size(page));
1646
1647 __update_and_free_page(h, page);
1648
1649 cond_resched();
1650 }
1651}
1652static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1653
1654static inline void flush_free_hpage_work(struct hstate *h)
1655{
6213834c 1656 if (hugetlb_vmemmap_optimizable(h))
b65d4adb
MS
1657 flush_work(&free_hpage_work);
1658}
1659
1660static void update_and_free_page(struct hstate *h, struct page *page,
1661 bool atomic)
1662{
ad2fa371 1663 if (!HPageVmemmapOptimized(page) || !atomic) {
b65d4adb
MS
1664 __update_and_free_page(h, page);
1665 return;
1666 }
1667
1668 /*
1669 * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages.
1670 *
1671 * Only call schedule_work() if hpage_freelist is previously
1672 * empty. Otherwise, schedule_work() had been called but the workfn
1673 * hasn't retrieved the list yet.
1674 */
1675 if (llist_add((struct llist_node *)&page->mapping, &hpage_freelist))
1676 schedule_work(&free_hpage_work);
1677}
1678
10c6ec49
MK
1679static void update_and_free_pages_bulk(struct hstate *h, struct list_head *list)
1680{
1681 struct page *page, *t_page;
1682
1683 list_for_each_entry_safe(page, t_page, list, lru) {
b65d4adb 1684 update_and_free_page(h, page, false);
10c6ec49
MK
1685 cond_resched();
1686 }
1687}
1688
e5ff2159
AK
1689struct hstate *size_to_hstate(unsigned long size)
1690{
1691 struct hstate *h;
1692
1693 for_each_hstate(h) {
1694 if (huge_page_size(h) == size)
1695 return h;
1696 }
1697 return NULL;
1698}
1699
db71ef79 1700void free_huge_page(struct page *page)
27a85ef1 1701{
a5516438
AK
1702 /*
1703 * Can't pass hstate in here because it is called from the
1704 * compound page destructor.
1705 */
e5ff2159 1706 struct hstate *h = page_hstate(page);
7893d1d5 1707 int nid = page_to_nid(page);
d6995da3 1708 struct hugepage_subpool *spool = hugetlb_page_subpool(page);
07443a85 1709 bool restore_reserve;
db71ef79 1710 unsigned long flags;
27a85ef1 1711
b4330afb
MK
1712 VM_BUG_ON_PAGE(page_count(page), page);
1713 VM_BUG_ON_PAGE(page_mapcount(page), page);
8ace22bc 1714
d6995da3 1715 hugetlb_set_page_subpool(page, NULL);
78fbe906
DH
1716 if (PageAnon(page))
1717 __ClearPageAnonExclusive(page);
8ace22bc 1718 page->mapping = NULL;
d6995da3
MK
1719 restore_reserve = HPageRestoreReserve(page);
1720 ClearHPageRestoreReserve(page);
27a85ef1 1721
1c5ecae3 1722 /*
d6995da3 1723 * If HPageRestoreReserve was set on page, page allocation consumed a
0919e1b6
MK
1724 * reservation. If the page was associated with a subpool, there
1725 * would have been a page reserved in the subpool before allocation
1726 * via hugepage_subpool_get_pages(). Since we are 'restoring' the
6c26d310 1727 * reservation, do not call hugepage_subpool_put_pages() as this will
0919e1b6 1728 * remove the reserved page from the subpool.
1c5ecae3 1729 */
0919e1b6
MK
1730 if (!restore_reserve) {
1731 /*
1732 * A return code of zero implies that the subpool will be
1733 * under its minimum size if the reservation is not restored
1734 * after page is free. Therefore, force restore_reserve
1735 * operation.
1736 */
1737 if (hugepage_subpool_put_pages(spool, 1) == 0)
1738 restore_reserve = true;
1739 }
1c5ecae3 1740
db71ef79 1741 spin_lock_irqsave(&hugetlb_lock, flags);
8f251a3d 1742 ClearHPageMigratable(page);
6d76dcf4
AK
1743 hugetlb_cgroup_uncharge_page(hstate_index(h),
1744 pages_per_huge_page(h), page);
08cf9faf
MA
1745 hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
1746 pages_per_huge_page(h), page);
07443a85
JK
1747 if (restore_reserve)
1748 h->resv_huge_pages++;
1749
9157c311 1750 if (HPageTemporary(page)) {
6eb4e88a 1751 remove_hugetlb_page(h, page, false);
db71ef79 1752 spin_unlock_irqrestore(&hugetlb_lock, flags);
b65d4adb 1753 update_and_free_page(h, page, true);
ab5ac90a 1754 } else if (h->surplus_huge_pages_node[nid]) {
0edaecfa 1755 /* remove the page from active list */
6eb4e88a 1756 remove_hugetlb_page(h, page, true);
db71ef79 1757 spin_unlock_irqrestore(&hugetlb_lock, flags);
b65d4adb 1758 update_and_free_page(h, page, true);
7893d1d5 1759 } else {
5d3a551c 1760 arch_clear_hugepage_flags(page);
a5516438 1761 enqueue_huge_page(h, page);
db71ef79 1762 spin_unlock_irqrestore(&hugetlb_lock, flags);
c77c0a8a 1763 }
c77c0a8a
WL
1764}
1765
d3d99fcc
OS
1766/*
1767 * Must be called with the hugetlb lock held
1768 */
1769static void __prep_account_new_huge_page(struct hstate *h, int nid)
1770{
1771 lockdep_assert_held(&hugetlb_lock);
1772 h->nr_huge_pages++;
1773 h->nr_huge_pages_node[nid]++;
1774}
1775
f41f2ed4 1776static void __prep_new_huge_page(struct hstate *h, struct page *page)
b7ba30c6 1777{
6213834c 1778 hugetlb_vmemmap_optimize(h, page);
0edaecfa 1779 INIT_LIST_HEAD(&page->lru);
f1e61557 1780 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
ff546117 1781 hugetlb_set_page_subpool(page, NULL);
9dd540e2 1782 set_hugetlb_cgroup(page, NULL);
1adc4d41 1783 set_hugetlb_cgroup_rsvd(page, NULL);
d3d99fcc
OS
1784}
1785
1786static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1787{
f41f2ed4 1788 __prep_new_huge_page(h, page);
db71ef79 1789 spin_lock_irq(&hugetlb_lock);
d3d99fcc 1790 __prep_account_new_huge_page(h, nid);
db71ef79 1791 spin_unlock_irq(&hugetlb_lock);
b7ba30c6
AK
1792}
1793
34d9e35b
MK
1794static bool __prep_compound_gigantic_page(struct page *page, unsigned int order,
1795 bool demote)
20a0307c 1796{
7118fc29 1797 int i, j;
20a0307c 1798 int nr_pages = 1 << order;
14455eab 1799 struct page *p;
20a0307c
WF
1800
1801 /* we rely on prep_new_huge_page to set the destructor */
1802 set_compound_order(page, order);
7fb0728a 1803 __ClearPageReserved(page);
de09d31d 1804 __SetPageHead(page);
2b21624f 1805 for (i = 0; i < nr_pages; i++) {
14455eab
CL
1806 p = nth_page(page, i);
1807
ef5a22be
AA
1808 /*
1809 * For gigantic hugepages allocated through bootmem at
1810 * boot, it's safer to be consistent with the not-gigantic
1811 * hugepages and clear the PG_reserved bit from all tail pages
7c8de358 1812 * too. Otherwise drivers using get_user_pages() to access tail
ef5a22be
AA
1813 * pages may get the reference counting wrong if they see
1814 * PG_reserved set on a tail page (despite the head page not
1815 * having PG_reserved set). Enforcing this consistency between
1816 * head and tail pages allows drivers to optimize away a check
1817 * on the head page when they need know if put_page() is needed
1818 * after get_user_pages().
1819 */
7fb0728a
MK
1820 if (i != 0) /* head page cleared above */
1821 __ClearPageReserved(p);
7118fc29
MK
1822 /*
1823 * Subtle and very unlikely
1824 *
1825 * Gigantic 'page allocators' such as memblock or cma will
1826 * return a set of pages with each page ref counted. We need
1827 * to turn this set of pages into a compound page with tail
1828 * page ref counts set to zero. Code such as speculative page
1829 * cache adding could take a ref on a 'to be' tail page.
1830 * We need to respect any increased ref count, and only set
1831 * the ref count to zero if count is currently 1. If count
416d85ed
MK
1832 * is not 1, we return an error. An error return indicates
1833 * the set of pages can not be converted to a gigantic page.
1834 * The caller who allocated the pages should then discard the
1835 * pages using the appropriate free interface.
34d9e35b
MK
1836 *
1837 * In the case of demote, the ref count will be zero.
7118fc29 1838 */
34d9e35b
MK
1839 if (!demote) {
1840 if (!page_ref_freeze(p, 1)) {
1841 pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n");
1842 goto out_error;
1843 }
1844 } else {
1845 VM_BUG_ON_PAGE(page_count(p), p);
7118fc29 1846 }
2b21624f
MK
1847 if (i != 0)
1848 set_compound_head(p, page);
20a0307c 1849 }
b4330afb 1850 atomic_set(compound_mapcount_ptr(page), -1);
5291c09b 1851 atomic_set(compound_pincount_ptr(page), 0);
7118fc29
MK
1852 return true;
1853
1854out_error:
2b21624f
MK
1855 /* undo page modifications made above */
1856 for (j = 0; j < i; j++) {
14455eab 1857 p = nth_page(page, j);
2b21624f
MK
1858 if (j != 0)
1859 clear_compound_head(p);
7118fc29
MK
1860 set_page_refcounted(p);
1861 }
1862 /* need to clear PG_reserved on remaining tail pages */
14455eab
CL
1863 for (; j < nr_pages; j++) {
1864 p = nth_page(page, j);
7118fc29 1865 __ClearPageReserved(p);
14455eab 1866 }
7118fc29 1867 set_compound_order(page, 0);
5232c63f 1868#ifdef CONFIG_64BIT
7118fc29 1869 page[1].compound_nr = 0;
5232c63f 1870#endif
7118fc29
MK
1871 __ClearPageHead(page);
1872 return false;
20a0307c
WF
1873}
1874
34d9e35b
MK
1875static bool prep_compound_gigantic_page(struct page *page, unsigned int order)
1876{
1877 return __prep_compound_gigantic_page(page, order, false);
1878}
1879
8531fc6f
MK
1880static bool prep_compound_gigantic_page_for_demote(struct page *page,
1881 unsigned int order)
1882{
1883 return __prep_compound_gigantic_page(page, order, true);
1884}
1885
7795912c
AM
1886/*
1887 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1888 * transparent huge pages. See the PageTransHuge() documentation for more
1889 * details.
1890 */
20a0307c
WF
1891int PageHuge(struct page *page)
1892{
20a0307c
WF
1893 if (!PageCompound(page))
1894 return 0;
1895
1896 page = compound_head(page);
f1e61557 1897 return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
20a0307c 1898}
43131e14
NH
1899EXPORT_SYMBOL_GPL(PageHuge);
1900
27c73ae7
AA
1901/*
1902 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1903 * normal or transparent huge pages.
1904 */
1905int PageHeadHuge(struct page *page_head)
1906{
27c73ae7
AA
1907 if (!PageHead(page_head))
1908 return 0;
1909
d4af73e3 1910 return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR;
27c73ae7 1911}
4e936ecc 1912EXPORT_SYMBOL_GPL(PageHeadHuge);
27c73ae7 1913
c0d0381a
MK
1914/*
1915 * Find and lock address space (mapping) in write mode.
1916 *
336bf30e
MK
1917 * Upon entry, the page is locked which means that page_mapping() is
1918 * stable. Due to locking order, we can only trylock_write. If we can
1919 * not get the lock, simply return NULL to caller.
c0d0381a
MK
1920 */
1921struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
1922{
336bf30e 1923 struct address_space *mapping = page_mapping(hpage);
c0d0381a 1924
c0d0381a
MK
1925 if (!mapping)
1926 return mapping;
1927
c0d0381a
MK
1928 if (i_mmap_trylock_write(mapping))
1929 return mapping;
1930
336bf30e 1931 return NULL;
c0d0381a
MK
1932}
1933
fe19bd3d 1934pgoff_t hugetlb_basepage_index(struct page *page)
13d60f4b
ZY
1935{
1936 struct page *page_head = compound_head(page);
1937 pgoff_t index = page_index(page_head);
1938 unsigned long compound_idx;
1939
13d60f4b
ZY
1940 if (compound_order(page_head) >= MAX_ORDER)
1941 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1942 else
1943 compound_idx = page - page_head;
1944
1945 return (index << compound_order(page_head)) + compound_idx;
1946}
1947
0c397dae 1948static struct page *alloc_buddy_huge_page(struct hstate *h,
f60858f9
MK
1949 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1950 nodemask_t *node_alloc_noretry)
1da177e4 1951{
af0fb9df 1952 int order = huge_page_order(h);
1da177e4 1953 struct page *page;
f60858f9 1954 bool alloc_try_hard = true;
2b21624f 1955 bool retry = true;
f96efd58 1956
f60858f9
MK
1957 /*
1958 * By default we always try hard to allocate the page with
1959 * __GFP_RETRY_MAYFAIL flag. However, if we are allocating pages in
1960 * a loop (to adjust global huge page counts) and previous allocation
1961 * failed, do not continue to try hard on the same node. Use the
1962 * node_alloc_noretry bitmap to manage this state information.
1963 */
1964 if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1965 alloc_try_hard = false;
1966 gfp_mask |= __GFP_COMP|__GFP_NOWARN;
1967 if (alloc_try_hard)
1968 gfp_mask |= __GFP_RETRY_MAYFAIL;
af0fb9df
MH
1969 if (nid == NUMA_NO_NODE)
1970 nid = numa_mem_id();
2b21624f 1971retry:
84172f4b 1972 page = __alloc_pages(gfp_mask, order, nid, nmask);
2b21624f
MK
1973
1974 /* Freeze head page */
1975 if (page && !page_ref_freeze(page, 1)) {
1976 __free_pages(page, order);
1977 if (retry) { /* retry once */
1978 retry = false;
1979 goto retry;
1980 }
1981 /* WOW! twice in a row. */
1982 pr_warn("HugeTLB head page unexpected inflated ref count\n");
1983 page = NULL;
1984 }
1985
af0fb9df
MH
1986 if (page)
1987 __count_vm_event(HTLB_BUDDY_PGALLOC);
1988 else
1989 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
63b4613c 1990
f60858f9
MK
1991 /*
1992 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
1993 * indicates an overall state change. Clear bit so that we resume
1994 * normal 'try hard' allocations.
1995 */
1996 if (node_alloc_noretry && page && !alloc_try_hard)
1997 node_clear(nid, *node_alloc_noretry);
1998
1999 /*
2000 * If we tried hard to get a page but failed, set bit so that
2001 * subsequent attempts will not try as hard until there is an
2002 * overall state change.
2003 */
2004 if (node_alloc_noretry && !page && alloc_try_hard)
2005 node_set(nid, *node_alloc_noretry);
2006
63b4613c
NA
2007 return page;
2008}
2009
0c397dae
MH
2010/*
2011 * Common helper to allocate a fresh hugetlb page. All specific allocators
2012 * should use this function to get new hugetlb pages
2b21624f
MK
2013 *
2014 * Note that returned page is 'frozen': ref count of head page and all tail
2015 * pages is zero.
0c397dae
MH
2016 */
2017static struct page *alloc_fresh_huge_page(struct hstate *h,
f60858f9
MK
2018 gfp_t gfp_mask, int nid, nodemask_t *nmask,
2019 nodemask_t *node_alloc_noretry)
0c397dae
MH
2020{
2021 struct page *page;
7118fc29 2022 bool retry = false;
0c397dae 2023
7118fc29 2024retry:
0c397dae
MH
2025 if (hstate_is_gigantic(h))
2026 page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
2027 else
2028 page = alloc_buddy_huge_page(h, gfp_mask,
f60858f9 2029 nid, nmask, node_alloc_noretry);
0c397dae
MH
2030 if (!page)
2031 return NULL;
2032
7118fc29
MK
2033 if (hstate_is_gigantic(h)) {
2034 if (!prep_compound_gigantic_page(page, huge_page_order(h))) {
2035 /*
2036 * Rare failure to convert pages to compound page.
2037 * Free pages and try again - ONCE!
2038 */
2039 free_gigantic_page(page, huge_page_order(h));
2040 if (!retry) {
2041 retry = true;
2042 goto retry;
2043 }
7118fc29
MK
2044 return NULL;
2045 }
2046 }
0c397dae
MH
2047 prep_new_huge_page(h, page, page_to_nid(page));
2048
2049 return page;
2050}
2051
af0fb9df
MH
2052/*
2053 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
2054 * manner.
2055 */
f60858f9
MK
2056static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
2057 nodemask_t *node_alloc_noretry)
b2261026
JK
2058{
2059 struct page *page;
2060 int nr_nodes, node;
af0fb9df 2061 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
b2261026
JK
2062
2063 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
f60858f9
MK
2064 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
2065 node_alloc_noretry);
af0fb9df 2066 if (page)
b2261026 2067 break;
b2261026
JK
2068 }
2069
af0fb9df
MH
2070 if (!page)
2071 return 0;
b2261026 2072
2b21624f 2073 free_huge_page(page); /* free it into the hugepage allocator */
af0fb9df
MH
2074
2075 return 1;
b2261026
JK
2076}
2077
e8c5c824 2078/*
10c6ec49
MK
2079 * Remove huge page from pool from next node to free. Attempt to keep
2080 * persistent huge pages more or less balanced over allowed nodes.
2081 * This routine only 'removes' the hugetlb page. The caller must make
2082 * an additional call to free the page to low level allocators.
e8c5c824
LS
2083 * Called with hugetlb_lock locked.
2084 */
10c6ec49
MK
2085static struct page *remove_pool_huge_page(struct hstate *h,
2086 nodemask_t *nodes_allowed,
2087 bool acct_surplus)
e8c5c824 2088{
b2261026 2089 int nr_nodes, node;
10c6ec49 2090 struct page *page = NULL;
e8c5c824 2091
9487ca60 2092 lockdep_assert_held(&hugetlb_lock);
b2261026 2093 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
685f3457
LS
2094 /*
2095 * If we're returning unused surplus pages, only examine
2096 * nodes with surplus pages.
2097 */
b2261026
JK
2098 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
2099 !list_empty(&h->hugepage_freelists[node])) {
10c6ec49 2100 page = list_entry(h->hugepage_freelists[node].next,
e8c5c824 2101 struct page, lru);
6eb4e88a 2102 remove_hugetlb_page(h, page, acct_surplus);
9a76db09 2103 break;
e8c5c824 2104 }
b2261026 2105 }
e8c5c824 2106
10c6ec49 2107 return page;
e8c5c824
LS
2108}
2109
c8721bbb
NH
2110/*
2111 * Dissolve a given free hugepage into free buddy pages. This function does
faf53def
NH
2112 * nothing for in-use hugepages and non-hugepages.
2113 * This function returns values like below:
2114 *
ad2fa371
MS
2115 * -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages
2116 * when the system is under memory pressure and the feature of
2117 * freeing unused vmemmap pages associated with each hugetlb page
2118 * is enabled.
2119 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
2120 * (allocated or reserved.)
2121 * 0: successfully dissolved free hugepages or the page is not a
2122 * hugepage (considered as already dissolved)
c8721bbb 2123 */
c3114a84 2124int dissolve_free_huge_page(struct page *page)
c8721bbb 2125{
6bc9b564 2126 int rc = -EBUSY;
082d5b6b 2127
7ffddd49 2128retry:
faf53def
NH
2129 /* Not to disrupt normal path by vainly holding hugetlb_lock */
2130 if (!PageHuge(page))
2131 return 0;
2132
db71ef79 2133 spin_lock_irq(&hugetlb_lock);
faf53def
NH
2134 if (!PageHuge(page)) {
2135 rc = 0;
2136 goto out;
2137 }
2138
2139 if (!page_count(page)) {
2247bb33
GS
2140 struct page *head = compound_head(page);
2141 struct hstate *h = page_hstate(head);
8346d69d 2142 if (!available_huge_pages(h))
082d5b6b 2143 goto out;
7ffddd49
MS
2144
2145 /*
2146 * We should make sure that the page is already on the free list
2147 * when it is dissolved.
2148 */
6c037149 2149 if (unlikely(!HPageFreed(head))) {
db71ef79 2150 spin_unlock_irq(&hugetlb_lock);
7ffddd49
MS
2151 cond_resched();
2152
2153 /*
2154 * Theoretically, we should return -EBUSY when we
2155 * encounter this race. In fact, we have a chance
2156 * to successfully dissolve the page if we do a
2157 * retry. Because the race window is quite small.
2158 * If we seize this opportunity, it is an optimization
2159 * for increasing the success rate of dissolving page.
2160 */
2161 goto retry;
2162 }
2163
0c5da357 2164 remove_hugetlb_page(h, head, false);
c1470b33 2165 h->max_huge_pages--;
db71ef79 2166 spin_unlock_irq(&hugetlb_lock);
ad2fa371
MS
2167
2168 /*
2169 * Normally update_and_free_page will allocate required vmemmmap
2170 * before freeing the page. update_and_free_page will fail to
2171 * free the page if it can not allocate required vmemmap. We
2172 * need to adjust max_huge_pages if the page is not freed.
2173 * Attempt to allocate vmemmmap here so that we can take
2174 * appropriate action on failure.
2175 */
6213834c 2176 rc = hugetlb_vmemmap_restore(h, head);
ad2fa371 2177 if (!rc) {
ad2fa371
MS
2178 update_and_free_page(h, head, false);
2179 } else {
2180 spin_lock_irq(&hugetlb_lock);
2181 add_hugetlb_page(h, head, false);
2182 h->max_huge_pages++;
2183 spin_unlock_irq(&hugetlb_lock);
2184 }
2185
2186 return rc;
c8721bbb 2187 }
082d5b6b 2188out:
db71ef79 2189 spin_unlock_irq(&hugetlb_lock);
082d5b6b 2190 return rc;
c8721bbb
NH
2191}
2192
2193/*
2194 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
2195 * make specified memory blocks removable from the system.
2247bb33
GS
2196 * Note that this will dissolve a free gigantic hugepage completely, if any
2197 * part of it lies within the given range.
082d5b6b
GS
2198 * Also note that if dissolve_free_huge_page() returns with an error, all
2199 * free hugepages that were dissolved before that error are lost.
c8721bbb 2200 */
082d5b6b 2201int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
c8721bbb 2202{
c8721bbb 2203 unsigned long pfn;
eb03aa00 2204 struct page *page;
082d5b6b 2205 int rc = 0;
dc2628f3
MS
2206 unsigned int order;
2207 struct hstate *h;
c8721bbb 2208
d0177639 2209 if (!hugepages_supported())
082d5b6b 2210 return rc;
d0177639 2211
dc2628f3
MS
2212 order = huge_page_order(&default_hstate);
2213 for_each_hstate(h)
2214 order = min(order, huge_page_order(h));
2215
2216 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) {
eb03aa00 2217 page = pfn_to_page(pfn);
faf53def
NH
2218 rc = dissolve_free_huge_page(page);
2219 if (rc)
2220 break;
eb03aa00 2221 }
082d5b6b
GS
2222
2223 return rc;
c8721bbb
NH
2224}
2225
ab5ac90a
MH
2226/*
2227 * Allocates a fresh surplus page from the page allocator.
2228 */
0c397dae 2229static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
2b21624f 2230 int nid, nodemask_t *nmask)
7893d1d5 2231{
9980d744 2232 struct page *page = NULL;
7893d1d5 2233
bae7f4ae 2234 if (hstate_is_gigantic(h))
aa888a74
AK
2235 return NULL;
2236
db71ef79 2237 spin_lock_irq(&hugetlb_lock);
9980d744
MH
2238 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
2239 goto out_unlock;
db71ef79 2240 spin_unlock_irq(&hugetlb_lock);
d1c3fb1f 2241
f60858f9 2242 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
9980d744 2243 if (!page)
0c397dae 2244 return NULL;
d1c3fb1f 2245
db71ef79 2246 spin_lock_irq(&hugetlb_lock);
9980d744
MH
2247 /*
2248 * We could have raced with the pool size change.
2249 * Double check that and simply deallocate the new page
2250 * if we would end up overcommiting the surpluses. Abuse
2251 * temporary page to workaround the nasty free_huge_page
2252 * codeflow
2253 */
2254 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
9157c311 2255 SetHPageTemporary(page);
db71ef79 2256 spin_unlock_irq(&hugetlb_lock);
2b21624f 2257 free_huge_page(page);
2bf753e6 2258 return NULL;
7893d1d5 2259 }
9980d744 2260
b65a4eda
MK
2261 h->surplus_huge_pages++;
2262 h->surplus_huge_pages_node[page_to_nid(page)]++;
2263
9980d744 2264out_unlock:
db71ef79 2265 spin_unlock_irq(&hugetlb_lock);
7893d1d5
AL
2266
2267 return page;
2268}
2269
bbe88753 2270static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
9a4e9f3b 2271 int nid, nodemask_t *nmask)
ab5ac90a
MH
2272{
2273 struct page *page;
2274
2275 if (hstate_is_gigantic(h))
2276 return NULL;
2277
f60858f9 2278 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
ab5ac90a
MH
2279 if (!page)
2280 return NULL;
2281
2b21624f
MK
2282 /* fresh huge pages are frozen */
2283 set_page_refcounted(page);
2284
ab5ac90a
MH
2285 /*
2286 * We do not account these pages as surplus because they are only
2287 * temporary and will be released properly on the last reference
2288 */
9157c311 2289 SetHPageTemporary(page);
ab5ac90a
MH
2290
2291 return page;
2292}
2293
099730d6
DH
2294/*
2295 * Use the VMA's mpolicy to allocate a huge page from the buddy.
2296 */
e0ec90ee 2297static
0c397dae 2298struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
099730d6
DH
2299 struct vm_area_struct *vma, unsigned long addr)
2300{
cfcaa66f 2301 struct page *page = NULL;
aaf14e40
MH
2302 struct mempolicy *mpol;
2303 gfp_t gfp_mask = htlb_alloc_mask(h);
2304 int nid;
2305 nodemask_t *nodemask;
2306
2307 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
cfcaa66f
BW
2308 if (mpol_is_preferred_many(mpol)) {
2309 gfp_t gfp = gfp_mask | __GFP_NOWARN;
2310
2311 gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2b21624f 2312 page = alloc_surplus_huge_page(h, gfp, nid, nodemask);
aaf14e40 2313
cfcaa66f
BW
2314 /* Fallback to all nodes if page==NULL */
2315 nodemask = NULL;
2316 }
2317
2318 if (!page)
2b21624f 2319 page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
cfcaa66f 2320 mpol_cond_put(mpol);
aaf14e40 2321 return page;
099730d6
DH
2322}
2323
ab5ac90a 2324/* page migration callback function */
3e59fcb0 2325struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
d92bbc27 2326 nodemask_t *nmask, gfp_t gfp_mask)
4db9b2ef 2327{
db71ef79 2328 spin_lock_irq(&hugetlb_lock);
8346d69d 2329 if (available_huge_pages(h)) {
3e59fcb0
MH
2330 struct page *page;
2331
2332 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
2333 if (page) {
db71ef79 2334 spin_unlock_irq(&hugetlb_lock);
3e59fcb0 2335 return page;
4db9b2ef
MH
2336 }
2337 }
db71ef79 2338 spin_unlock_irq(&hugetlb_lock);
4db9b2ef 2339
0c397dae 2340 return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
4db9b2ef
MH
2341}
2342
ebd63723 2343/* mempolicy aware migration callback */
389c8178
MH
2344struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
2345 unsigned long address)
ebd63723
MH
2346{
2347 struct mempolicy *mpol;
2348 nodemask_t *nodemask;
2349 struct page *page;
ebd63723
MH
2350 gfp_t gfp_mask;
2351 int node;
2352
ebd63723
MH
2353 gfp_mask = htlb_alloc_mask(h);
2354 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
d92bbc27 2355 page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask);
ebd63723
MH
2356 mpol_cond_put(mpol);
2357
2358 return page;
2359}
2360
e4e574b7 2361/*
25985edc 2362 * Increase the hugetlb pool such that it can accommodate a reservation
e4e574b7
AL
2363 * of size 'delta'.
2364 */
0a4f3d1b 2365static int gather_surplus_pages(struct hstate *h, long delta)
1b2a1e7b 2366 __must_hold(&hugetlb_lock)
e4e574b7 2367{
34665341 2368 LIST_HEAD(surplus_list);
e4e574b7 2369 struct page *page, *tmp;
0a4f3d1b
LX
2370 int ret;
2371 long i;
2372 long needed, allocated;
28073b02 2373 bool alloc_ok = true;
e4e574b7 2374
9487ca60 2375 lockdep_assert_held(&hugetlb_lock);
a5516438 2376 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
ac09b3a1 2377 if (needed <= 0) {
a5516438 2378 h->resv_huge_pages += delta;
e4e574b7 2379 return 0;
ac09b3a1 2380 }
e4e574b7
AL
2381
2382 allocated = 0;
e4e574b7
AL
2383
2384 ret = -ENOMEM;
2385retry:
db71ef79 2386 spin_unlock_irq(&hugetlb_lock);
e4e574b7 2387 for (i = 0; i < needed; i++) {
0c397dae 2388 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
2b21624f 2389 NUMA_NO_NODE, NULL);
28073b02
HD
2390 if (!page) {
2391 alloc_ok = false;
2392 break;
2393 }
e4e574b7 2394 list_add(&page->lru, &surplus_list);
69ed779a 2395 cond_resched();
e4e574b7 2396 }
28073b02 2397 allocated += i;
e4e574b7
AL
2398
2399 /*
2400 * After retaking hugetlb_lock, we need to recalculate 'needed'
2401 * because either resv_huge_pages or free_huge_pages may have changed.
2402 */
db71ef79 2403 spin_lock_irq(&hugetlb_lock);
a5516438
AK
2404 needed = (h->resv_huge_pages + delta) -
2405 (h->free_huge_pages + allocated);
28073b02
HD
2406 if (needed > 0) {
2407 if (alloc_ok)
2408 goto retry;
2409 /*
2410 * We were not able to allocate enough pages to
2411 * satisfy the entire reservation so we free what
2412 * we've allocated so far.
2413 */
2414 goto free;
2415 }
e4e574b7
AL
2416 /*
2417 * The surplus_list now contains _at_least_ the number of extra pages
25985edc 2418 * needed to accommodate the reservation. Add the appropriate number
e4e574b7 2419 * of pages to the hugetlb pool and free the extras back to the buddy
ac09b3a1
AL
2420 * allocator. Commit the entire reservation here to prevent another
2421 * process from stealing the pages as they are added to the pool but
2422 * before they are reserved.
e4e574b7
AL
2423 */
2424 needed += allocated;
a5516438 2425 h->resv_huge_pages += delta;
e4e574b7 2426 ret = 0;
a9869b83 2427
19fc3f0a 2428 /* Free the needed pages to the hugetlb pool */
e4e574b7 2429 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
19fc3f0a
AL
2430 if ((--needed) < 0)
2431 break;
b65a4eda 2432 /* Add the page to the hugetlb allocator */
a5516438 2433 enqueue_huge_page(h, page);
19fc3f0a 2434 }
28073b02 2435free:
db71ef79 2436 spin_unlock_irq(&hugetlb_lock);
19fc3f0a 2437
b65a4eda
MK
2438 /*
2439 * Free unnecessary surplus pages to the buddy allocator.
2440 * Pages have no ref count, call free_huge_page directly.
2441 */
c0d934ba 2442 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
b65a4eda 2443 free_huge_page(page);
db71ef79 2444 spin_lock_irq(&hugetlb_lock);
e4e574b7
AL
2445
2446 return ret;
2447}
2448
2449/*
e5bbc8a6
MK
2450 * This routine has two main purposes:
2451 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2452 * in unused_resv_pages. This corresponds to the prior adjustments made
2453 * to the associated reservation map.
2454 * 2) Free any unused surplus pages that may have been allocated to satisfy
2455 * the reservation. As many as unused_resv_pages may be freed.
e4e574b7 2456 */
a5516438
AK
2457static void return_unused_surplus_pages(struct hstate *h,
2458 unsigned long unused_resv_pages)
e4e574b7 2459{
e4e574b7 2460 unsigned long nr_pages;
10c6ec49
MK
2461 struct page *page;
2462 LIST_HEAD(page_list);
2463
9487ca60 2464 lockdep_assert_held(&hugetlb_lock);
10c6ec49
MK
2465 /* Uncommit the reservation */
2466 h->resv_huge_pages -= unused_resv_pages;
e4e574b7 2467
c0531714 2468 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
e5bbc8a6 2469 goto out;
aa888a74 2470
e5bbc8a6
MK
2471 /*
2472 * Part (or even all) of the reservation could have been backed
2473 * by pre-allocated pages. Only free surplus pages.
2474 */
a5516438 2475 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
e4e574b7 2476
685f3457
LS
2477 /*
2478 * We want to release as many surplus pages as possible, spread
9b5e5d0f
LS
2479 * evenly across all nodes with memory. Iterate across these nodes
2480 * until we can no longer free unreserved surplus pages. This occurs
2481 * when the nodes with surplus pages have no free pages.
10c6ec49 2482 * remove_pool_huge_page() will balance the freed pages across the
9b5e5d0f 2483 * on-line nodes with memory and will handle the hstate accounting.
685f3457
LS
2484 */
2485 while (nr_pages--) {
10c6ec49
MK
2486 page = remove_pool_huge_page(h, &node_states[N_MEMORY], 1);
2487 if (!page)
e5bbc8a6 2488 goto out;
10c6ec49
MK
2489
2490 list_add(&page->lru, &page_list);
e4e574b7 2491 }
e5bbc8a6
MK
2492
2493out:
db71ef79 2494 spin_unlock_irq(&hugetlb_lock);
10c6ec49 2495 update_and_free_pages_bulk(h, &page_list);
db71ef79 2496 spin_lock_irq(&hugetlb_lock);
e4e574b7
AL
2497}
2498
5e911373 2499
c37f9fb1 2500/*
feba16e2 2501 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
5e911373 2502 * are used by the huge page allocation routines to manage reservations.
cf3ad20b
MK
2503 *
2504 * vma_needs_reservation is called to determine if the huge page at addr
2505 * within the vma has an associated reservation. If a reservation is
2506 * needed, the value 1 is returned. The caller is then responsible for
2507 * managing the global reservation and subpool usage counts. After
2508 * the huge page has been allocated, vma_commit_reservation is called
feba16e2
MK
2509 * to add the page to the reservation map. If the page allocation fails,
2510 * the reservation must be ended instead of committed. vma_end_reservation
2511 * is called in such cases.
cf3ad20b
MK
2512 *
2513 * In the normal case, vma_commit_reservation returns the same value
2514 * as the preceding vma_needs_reservation call. The only time this
2515 * is not the case is if a reserve map was changed between calls. It
2516 * is the responsibility of the caller to notice the difference and
2517 * take appropriate action.
96b96a96
MK
2518 *
2519 * vma_add_reservation is used in error paths where a reservation must
2520 * be restored when a newly allocated huge page must be freed. It is
2521 * to be called after calling vma_needs_reservation to determine if a
2522 * reservation exists.
846be085
MK
2523 *
2524 * vma_del_reservation is used in error paths where an entry in the reserve
2525 * map was created during huge page allocation and must be removed. It is to
2526 * be called after calling vma_needs_reservation to determine if a reservation
2527 * exists.
c37f9fb1 2528 */
5e911373
MK
2529enum vma_resv_mode {
2530 VMA_NEEDS_RESV,
2531 VMA_COMMIT_RESV,
feba16e2 2532 VMA_END_RESV,
96b96a96 2533 VMA_ADD_RESV,
846be085 2534 VMA_DEL_RESV,
5e911373 2535};
cf3ad20b
MK
2536static long __vma_reservation_common(struct hstate *h,
2537 struct vm_area_struct *vma, unsigned long addr,
5e911373 2538 enum vma_resv_mode mode)
c37f9fb1 2539{
4e35f483
JK
2540 struct resv_map *resv;
2541 pgoff_t idx;
cf3ad20b 2542 long ret;
0db9d74e 2543 long dummy_out_regions_needed;
c37f9fb1 2544
4e35f483
JK
2545 resv = vma_resv_map(vma);
2546 if (!resv)
84afd99b 2547 return 1;
c37f9fb1 2548
4e35f483 2549 idx = vma_hugecache_offset(h, vma, addr);
5e911373
MK
2550 switch (mode) {
2551 case VMA_NEEDS_RESV:
0db9d74e
MA
2552 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2553 /* We assume that vma_reservation_* routines always operate on
2554 * 1 page, and that adding to resv map a 1 page entry can only
2555 * ever require 1 region.
2556 */
2557 VM_BUG_ON(dummy_out_regions_needed != 1);
5e911373
MK
2558 break;
2559 case VMA_COMMIT_RESV:
075a61d0 2560 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
0db9d74e
MA
2561 /* region_add calls of range 1 should never fail. */
2562 VM_BUG_ON(ret < 0);
5e911373 2563 break;
feba16e2 2564 case VMA_END_RESV:
0db9d74e 2565 region_abort(resv, idx, idx + 1, 1);
5e911373
MK
2566 ret = 0;
2567 break;
96b96a96 2568 case VMA_ADD_RESV:
0db9d74e 2569 if (vma->vm_flags & VM_MAYSHARE) {
075a61d0 2570 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
0db9d74e
MA
2571 /* region_add calls of range 1 should never fail. */
2572 VM_BUG_ON(ret < 0);
2573 } else {
2574 region_abort(resv, idx, idx + 1, 1);
96b96a96
MK
2575 ret = region_del(resv, idx, idx + 1);
2576 }
2577 break;
846be085
MK
2578 case VMA_DEL_RESV:
2579 if (vma->vm_flags & VM_MAYSHARE) {
2580 region_abort(resv, idx, idx + 1, 1);
2581 ret = region_del(resv, idx, idx + 1);
2582 } else {
2583 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2584 /* region_add calls of range 1 should never fail. */
2585 VM_BUG_ON(ret < 0);
2586 }
2587 break;
5e911373
MK
2588 default:
2589 BUG();
2590 }
84afd99b 2591
846be085 2592 if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV)
cf3ad20b 2593 return ret;
bf3d12b9
ML
2594 /*
2595 * We know private mapping must have HPAGE_RESV_OWNER set.
2596 *
2597 * In most cases, reserves always exist for private mappings.
2598 * However, a file associated with mapping could have been
2599 * hole punched or truncated after reserves were consumed.
2600 * As subsequent fault on such a range will not use reserves.
2601 * Subtle - The reserve map for private mappings has the
2602 * opposite meaning than that of shared mappings. If NO
2603 * entry is in the reserve map, it means a reservation exists.
2604 * If an entry exists in the reserve map, it means the
2605 * reservation has already been consumed. As a result, the
2606 * return value of this routine is the opposite of the
2607 * value returned from reserve map manipulation routines above.
2608 */
2609 if (ret > 0)
2610 return 0;
2611 if (ret == 0)
2612 return 1;
2613 return ret;
c37f9fb1 2614}
cf3ad20b
MK
2615
2616static long vma_needs_reservation(struct hstate *h,
a5516438 2617 struct vm_area_struct *vma, unsigned long addr)
c37f9fb1 2618{
5e911373 2619 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
cf3ad20b 2620}
84afd99b 2621
cf3ad20b
MK
2622static long vma_commit_reservation(struct hstate *h,
2623 struct vm_area_struct *vma, unsigned long addr)
2624{
5e911373
MK
2625 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2626}
2627
feba16e2 2628static void vma_end_reservation(struct hstate *h,
5e911373
MK
2629 struct vm_area_struct *vma, unsigned long addr)
2630{
feba16e2 2631 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
c37f9fb1
AW
2632}
2633
96b96a96
MK
2634static long vma_add_reservation(struct hstate *h,
2635 struct vm_area_struct *vma, unsigned long addr)
2636{
2637 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2638}
2639
846be085
MK
2640static long vma_del_reservation(struct hstate *h,
2641 struct vm_area_struct *vma, unsigned long addr)
2642{
2643 return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV);
2644}
2645
96b96a96 2646/*
846be085
MK
2647 * This routine is called to restore reservation information on error paths.
2648 * It should ONLY be called for pages allocated via alloc_huge_page(), and
2649 * the hugetlb mutex should remain held when calling this routine.
2650 *
2651 * It handles two specific cases:
2652 * 1) A reservation was in place and the page consumed the reservation.
2653 * HPageRestoreReserve is set in the page.
2654 * 2) No reservation was in place for the page, so HPageRestoreReserve is
2655 * not set. However, alloc_huge_page always updates the reserve map.
2656 *
2657 * In case 1, free_huge_page later in the error path will increment the
2658 * global reserve count. But, free_huge_page does not have enough context
2659 * to adjust the reservation map. This case deals primarily with private
2660 * mappings. Adjust the reserve map here to be consistent with global
2661 * reserve count adjustments to be made by free_huge_page. Make sure the
2662 * reserve map indicates there is a reservation present.
2663 *
2664 * In case 2, simply undo reserve map modifications done by alloc_huge_page.
96b96a96 2665 */
846be085
MK
2666void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
2667 unsigned long address, struct page *page)
96b96a96 2668{
846be085 2669 long rc = vma_needs_reservation(h, vma, address);
96b96a96 2670
846be085
MK
2671 if (HPageRestoreReserve(page)) {
2672 if (unlikely(rc < 0))
96b96a96
MK
2673 /*
2674 * Rare out of memory condition in reserve map
d6995da3 2675 * manipulation. Clear HPageRestoreReserve so that
96b96a96
MK
2676 * global reserve count will not be incremented
2677 * by free_huge_page. This will make it appear
2678 * as though the reservation for this page was
2679 * consumed. This may prevent the task from
2680 * faulting in the page at a later time. This
2681 * is better than inconsistent global huge page
2682 * accounting of reserve counts.
2683 */
d6995da3 2684 ClearHPageRestoreReserve(page);
846be085
MK
2685 else if (rc)
2686 (void)vma_add_reservation(h, vma, address);
2687 else
2688 vma_end_reservation(h, vma, address);
2689 } else {
2690 if (!rc) {
2691 /*
2692 * This indicates there is an entry in the reserve map
c7b1850d 2693 * not added by alloc_huge_page. We know it was added
846be085
MK
2694 * before the alloc_huge_page call, otherwise
2695 * HPageRestoreReserve would be set on the page.
2696 * Remove the entry so that a subsequent allocation
2697 * does not consume a reservation.
2698 */
2699 rc = vma_del_reservation(h, vma, address);
2700 if (rc < 0)
96b96a96 2701 /*
846be085
MK
2702 * VERY rare out of memory condition. Since
2703 * we can not delete the entry, set
2704 * HPageRestoreReserve so that the reserve
2705 * count will be incremented when the page
2706 * is freed. This reserve will be consumed
2707 * on a subsequent allocation.
96b96a96 2708 */
846be085
MK
2709 SetHPageRestoreReserve(page);
2710 } else if (rc < 0) {
2711 /*
2712 * Rare out of memory condition from
2713 * vma_needs_reservation call. Memory allocation is
2714 * only attempted if a new entry is needed. Therefore,
2715 * this implies there is not an entry in the
2716 * reserve map.
2717 *
2718 * For shared mappings, no entry in the map indicates
2719 * no reservation. We are done.
2720 */
2721 if (!(vma->vm_flags & VM_MAYSHARE))
2722 /*
2723 * For private mappings, no entry indicates
2724 * a reservation is present. Since we can
2725 * not add an entry, set SetHPageRestoreReserve
2726 * on the page so reserve count will be
2727 * incremented when freed. This reserve will
2728 * be consumed on a subsequent allocation.
2729 */
2730 SetHPageRestoreReserve(page);
96b96a96 2731 } else
846be085
MK
2732 /*
2733 * No reservation present, do nothing
2734 */
2735 vma_end_reservation(h, vma, address);
96b96a96
MK
2736 }
2737}
2738
369fa227
OS
2739/*
2740 * alloc_and_dissolve_huge_page - Allocate a new page and dissolve the old one
2741 * @h: struct hstate old page belongs to
2742 * @old_page: Old page to dissolve
ae37c7ff 2743 * @list: List to isolate the page in case we need to
369fa227
OS
2744 * Returns 0 on success, otherwise negated error.
2745 */
ae37c7ff
OS
2746static int alloc_and_dissolve_huge_page(struct hstate *h, struct page *old_page,
2747 struct list_head *list)
369fa227
OS
2748{
2749 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2750 int nid = page_to_nid(old_page);
2751 struct page *new_page;
2752 int ret = 0;
2753
2754 /*
2755 * Before dissolving the page, we need to allocate a new one for the
f41f2ed4
MS
2756 * pool to remain stable. Here, we allocate the page and 'prep' it
2757 * by doing everything but actually updating counters and adding to
2758 * the pool. This simplifies and let us do most of the processing
2759 * under the lock.
369fa227
OS
2760 */
2761 new_page = alloc_buddy_huge_page(h, gfp_mask, nid, NULL, NULL);
2762 if (!new_page)
2763 return -ENOMEM;
f41f2ed4 2764 __prep_new_huge_page(h, new_page);
369fa227
OS
2765
2766retry:
2767 spin_lock_irq(&hugetlb_lock);
2768 if (!PageHuge(old_page)) {
2769 /*
2770 * Freed from under us. Drop new_page too.
2771 */
2772 goto free_new;
2773 } else if (page_count(old_page)) {
2774 /*
ae37c7ff
OS
2775 * Someone has grabbed the page, try to isolate it here.
2776 * Fail with -EBUSY if not possible.
369fa227 2777 */
ae37c7ff 2778 spin_unlock_irq(&hugetlb_lock);
7ce82f4c 2779 ret = isolate_hugetlb(old_page, list);
ae37c7ff 2780 spin_lock_irq(&hugetlb_lock);
369fa227
OS
2781 goto free_new;
2782 } else if (!HPageFreed(old_page)) {
2783 /*
2784 * Page's refcount is 0 but it has not been enqueued in the
2785 * freelist yet. Race window is small, so we can succeed here if
2786 * we retry.
2787 */
2788 spin_unlock_irq(&hugetlb_lock);
2789 cond_resched();
2790 goto retry;
2791 } else {
2792 /*
2793 * Ok, old_page is still a genuine free hugepage. Remove it from
2794 * the freelist and decrease the counters. These will be
2795 * incremented again when calling __prep_account_new_huge_page()
2796 * and enqueue_huge_page() for new_page. The counters will remain
2797 * stable since this happens under the lock.
2798 */
2799 remove_hugetlb_page(h, old_page, false);
2800
2801 /*
b65a4eda
MK
2802 * Ref count on new page is already zero as it was dropped
2803 * earlier. It can be directly added to the pool free list.
369fa227 2804 */
369fa227 2805 __prep_account_new_huge_page(h, nid);
369fa227
OS
2806 enqueue_huge_page(h, new_page);
2807
2808 /*
2809 * Pages have been replaced, we can safely free the old one.
2810 */
2811 spin_unlock_irq(&hugetlb_lock);
b65d4adb 2812 update_and_free_page(h, old_page, false);
369fa227
OS
2813 }
2814
2815 return ret;
2816
2817free_new:
2818 spin_unlock_irq(&hugetlb_lock);
b65a4eda
MK
2819 /* Page has a zero ref count, but needs a ref to be freed */
2820 set_page_refcounted(new_page);
b65d4adb 2821 update_and_free_page(h, new_page, false);
369fa227
OS
2822
2823 return ret;
2824}
2825
ae37c7ff 2826int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list)
369fa227
OS
2827{
2828 struct hstate *h;
2829 struct page *head;
ae37c7ff 2830 int ret = -EBUSY;
369fa227
OS
2831
2832 /*
2833 * The page might have been dissolved from under our feet, so make sure
2834 * to carefully check the state under the lock.
2835 * Return success when racing as if we dissolved the page ourselves.
2836 */
2837 spin_lock_irq(&hugetlb_lock);
2838 if (PageHuge(page)) {
2839 head = compound_head(page);
2840 h = page_hstate(head);
2841 } else {
2842 spin_unlock_irq(&hugetlb_lock);
2843 return 0;
2844 }
2845 spin_unlock_irq(&hugetlb_lock);
2846
2847 /*
2848 * Fence off gigantic pages as there is a cyclic dependency between
2849 * alloc_contig_range and them. Return -ENOMEM as this has the effect
2850 * of bailing out right away without further retrying.
2851 */
2852 if (hstate_is_gigantic(h))
2853 return -ENOMEM;
2854
7ce82f4c 2855 if (page_count(head) && !isolate_hugetlb(head, list))
ae37c7ff
OS
2856 ret = 0;
2857 else if (!page_count(head))
2858 ret = alloc_and_dissolve_huge_page(h, head, list);
2859
2860 return ret;
369fa227
OS
2861}
2862
70c3547e 2863struct page *alloc_huge_page(struct vm_area_struct *vma,
04f2cbe3 2864 unsigned long addr, int avoid_reserve)
1da177e4 2865{
90481622 2866 struct hugepage_subpool *spool = subpool_vma(vma);
a5516438 2867 struct hstate *h = hstate_vma(vma);
348ea204 2868 struct page *page;
d85f69b0
MK
2869 long map_chg, map_commit;
2870 long gbl_chg;
6d76dcf4
AK
2871 int ret, idx;
2872 struct hugetlb_cgroup *h_cg;
08cf9faf 2873 bool deferred_reserve;
a1e78772 2874
6d76dcf4 2875 idx = hstate_index(h);
a1e78772 2876 /*
d85f69b0
MK
2877 * Examine the region/reserve map to determine if the process
2878 * has a reservation for the page to be allocated. A return
2879 * code of zero indicates a reservation exists (no change).
a1e78772 2880 */
d85f69b0
MK
2881 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2882 if (map_chg < 0)
76dcee75 2883 return ERR_PTR(-ENOMEM);
d85f69b0
MK
2884
2885 /*
2886 * Processes that did not create the mapping will have no
2887 * reserves as indicated by the region/reserve map. Check
2888 * that the allocation will not exceed the subpool limit.
2889 * Allocations for MAP_NORESERVE mappings also need to be
2890 * checked against any subpool limit.
2891 */
2892 if (map_chg || avoid_reserve) {
2893 gbl_chg = hugepage_subpool_get_pages(spool, 1);
2894 if (gbl_chg < 0) {
feba16e2 2895 vma_end_reservation(h, vma, addr);
76dcee75 2896 return ERR_PTR(-ENOSPC);
5e911373 2897 }
1da177e4 2898
d85f69b0
MK
2899 /*
2900 * Even though there was no reservation in the region/reserve
2901 * map, there could be reservations associated with the
2902 * subpool that can be used. This would be indicated if the
2903 * return value of hugepage_subpool_get_pages() is zero.
2904 * However, if avoid_reserve is specified we still avoid even
2905 * the subpool reservations.
2906 */
2907 if (avoid_reserve)
2908 gbl_chg = 1;
2909 }
2910
08cf9faf
MA
2911 /* If this allocation is not consuming a reservation, charge it now.
2912 */
6501fe5f 2913 deferred_reserve = map_chg || avoid_reserve;
08cf9faf
MA
2914 if (deferred_reserve) {
2915 ret = hugetlb_cgroup_charge_cgroup_rsvd(
2916 idx, pages_per_huge_page(h), &h_cg);
2917 if (ret)
2918 goto out_subpool_put;
2919 }
2920
6d76dcf4 2921 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
8f34af6f 2922 if (ret)
08cf9faf 2923 goto out_uncharge_cgroup_reservation;
8f34af6f 2924
db71ef79 2925 spin_lock_irq(&hugetlb_lock);
d85f69b0
MK
2926 /*
2927 * glb_chg is passed to indicate whether or not a page must be taken
2928 * from the global free pool (global change). gbl_chg == 0 indicates
2929 * a reservation exists for the allocation.
2930 */
2931 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
81a6fcae 2932 if (!page) {
db71ef79 2933 spin_unlock_irq(&hugetlb_lock);
0c397dae 2934 page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
8f34af6f
JZ
2935 if (!page)
2936 goto out_uncharge_cgroup;
12df140f 2937 spin_lock_irq(&hugetlb_lock);
a88c7695 2938 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
d6995da3 2939 SetHPageRestoreReserve(page);
a88c7695
NH
2940 h->resv_huge_pages--;
2941 }
15a8d68e 2942 list_add(&page->lru, &h->hugepage_activelist);
2b21624f 2943 set_page_refcounted(page);
81a6fcae 2944 /* Fall through */
68842c9b 2945 }
81a6fcae 2946 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
08cf9faf
MA
2947 /* If allocation is not consuming a reservation, also store the
2948 * hugetlb_cgroup pointer on the page.
2949 */
2950 if (deferred_reserve) {
2951 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
2952 h_cg, page);
2953 }
2954
db71ef79 2955 spin_unlock_irq(&hugetlb_lock);
348ea204 2956
d6995da3 2957 hugetlb_set_page_subpool(page, spool);
90d8b7e6 2958
d85f69b0
MK
2959 map_commit = vma_commit_reservation(h, vma, addr);
2960 if (unlikely(map_chg > map_commit)) {
33039678
MK
2961 /*
2962 * The page was added to the reservation map between
2963 * vma_needs_reservation and vma_commit_reservation.
2964 * This indicates a race with hugetlb_reserve_pages.
2965 * Adjust for the subpool count incremented above AND
2966 * in hugetlb_reserve_pages for the same page. Also,
2967 * the reservation count added in hugetlb_reserve_pages
2968 * no longer applies.
2969 */
2970 long rsv_adjust;
2971
2972 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2973 hugetlb_acct_memory(h, -rsv_adjust);
79aa925b
MK
2974 if (deferred_reserve)
2975 hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
2976 pages_per_huge_page(h), page);
33039678 2977 }
90d8b7e6 2978 return page;
8f34af6f
JZ
2979
2980out_uncharge_cgroup:
2981 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
08cf9faf
MA
2982out_uncharge_cgroup_reservation:
2983 if (deferred_reserve)
2984 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
2985 h_cg);
8f34af6f 2986out_subpool_put:
d85f69b0 2987 if (map_chg || avoid_reserve)
8f34af6f 2988 hugepage_subpool_put_pages(spool, 1);
feba16e2 2989 vma_end_reservation(h, vma, addr);
8f34af6f 2990 return ERR_PTR(-ENOSPC);
b45b5bd6
DG
2991}
2992
b5389086 2993int alloc_bootmem_huge_page(struct hstate *h, int nid)
e24a1307 2994 __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
b5389086 2995int __alloc_bootmem_huge_page(struct hstate *h, int nid)
aa888a74 2996{
b5389086 2997 struct huge_bootmem_page *m = NULL; /* initialize for clang */
b2261026 2998 int nr_nodes, node;
aa888a74 2999
b5389086
ZY
3000 /* do node specific alloc */
3001 if (nid != NUMA_NO_NODE) {
3002 m = memblock_alloc_try_nid_raw(huge_page_size(h), huge_page_size(h),
3003 0, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
3004 if (!m)
3005 return 0;
3006 goto found;
3007 }
3008 /* allocate from next node when distributing huge pages */
b2261026 3009 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
b5389086 3010 m = memblock_alloc_try_nid_raw(
8b89a116 3011 huge_page_size(h), huge_page_size(h),
97ad1087 3012 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
b5389086
ZY
3013 /*
3014 * Use the beginning of the huge page to store the
3015 * huge_bootmem_page struct (until gather_bootmem
3016 * puts them into the mem_map).
3017 */
3018 if (!m)
3019 return 0;
3020 goto found;
aa888a74 3021 }
aa888a74
AK
3022
3023found:
aa888a74 3024 /* Put them into a private list first because mem_map is not up yet */
330d6e48 3025 INIT_LIST_HEAD(&m->list);
aa888a74
AK
3026 list_add(&m->list, &huge_boot_pages);
3027 m->hstate = h;
3028 return 1;
3029}
3030
48b8d744
MK
3031/*
3032 * Put bootmem huge pages into the standard lists after mem_map is up.
3033 * Note: This only applies to gigantic (order > MAX_ORDER) pages.
3034 */
aa888a74
AK
3035static void __init gather_bootmem_prealloc(void)
3036{
3037 struct huge_bootmem_page *m;
3038
3039 list_for_each_entry(m, &huge_boot_pages, list) {
40d18ebf 3040 struct page *page = virt_to_page(m);
aa888a74 3041 struct hstate *h = m->hstate;
ee8f248d 3042
48b8d744 3043 VM_BUG_ON(!hstate_is_gigantic(h));
aa888a74 3044 WARN_ON(page_count(page) != 1);
7118fc29
MK
3045 if (prep_compound_gigantic_page(page, huge_page_order(h))) {
3046 WARN_ON(PageReserved(page));
3047 prep_new_huge_page(h, page, page_to_nid(page));
2b21624f 3048 free_huge_page(page); /* add to the hugepage allocator */
7118fc29 3049 } else {
416d85ed 3050 /* VERY unlikely inflated ref count on a tail page */
7118fc29 3051 free_gigantic_page(page, huge_page_order(h));
7118fc29 3052 }
af0fb9df 3053
b0320c7b 3054 /*
48b8d744
MK
3055 * We need to restore the 'stolen' pages to totalram_pages
3056 * in order to fix confusing memory reports from free(1) and
3057 * other side-effects, like CommitLimit going negative.
b0320c7b 3058 */
48b8d744 3059 adjust_managed_page_count(page, pages_per_huge_page(h));
520495fe 3060 cond_resched();
aa888a74
AK
3061 }
3062}
b5389086
ZY
3063static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid)
3064{
3065 unsigned long i;
3066 char buf[32];
3067
3068 for (i = 0; i < h->max_huge_pages_node[nid]; ++i) {
3069 if (hstate_is_gigantic(h)) {
3070 if (!alloc_bootmem_huge_page(h, nid))
3071 break;
3072 } else {
3073 struct page *page;
3074 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
3075
3076 page = alloc_fresh_huge_page(h, gfp_mask, nid,
3077 &node_states[N_MEMORY], NULL);
3078 if (!page)
3079 break;
2b21624f 3080 free_huge_page(page); /* free it into the hugepage allocator */
b5389086
ZY
3081 }
3082 cond_resched();
3083 }
3084 if (i == h->max_huge_pages_node[nid])
3085 return;
3086
3087 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3088 pr_warn("HugeTLB: allocating %u of page size %s failed node%d. Only allocated %lu hugepages.\n",
3089 h->max_huge_pages_node[nid], buf, nid, i);
3090 h->max_huge_pages -= (h->max_huge_pages_node[nid] - i);
3091 h->max_huge_pages_node[nid] = i;
3092}
aa888a74 3093
8faa8b07 3094static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1da177e4
LT
3095{
3096 unsigned long i;
f60858f9 3097 nodemask_t *node_alloc_noretry;
b5389086
ZY
3098 bool node_specific_alloc = false;
3099
3100 /* skip gigantic hugepages allocation if hugetlb_cma enabled */
3101 if (hstate_is_gigantic(h) && hugetlb_cma_size) {
3102 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
3103 return;
3104 }
3105
3106 /* do node specific alloc */
0a7a0f6f 3107 for_each_online_node(i) {
b5389086
ZY
3108 if (h->max_huge_pages_node[i] > 0) {
3109 hugetlb_hstate_alloc_pages_onenode(h, i);
3110 node_specific_alloc = true;
3111 }
3112 }
f60858f9 3113
b5389086
ZY
3114 if (node_specific_alloc)
3115 return;
3116
3117 /* below will do all node balanced alloc */
f60858f9
MK
3118 if (!hstate_is_gigantic(h)) {
3119 /*
3120 * Bit mask controlling how hard we retry per-node allocations.
3121 * Ignore errors as lower level routines can deal with
3122 * node_alloc_noretry == NULL. If this kmalloc fails at boot
3123 * time, we are likely in bigger trouble.
3124 */
3125 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
3126 GFP_KERNEL);
3127 } else {
3128 /* allocations done at boot time */
3129 node_alloc_noretry = NULL;
3130 }
3131
3132 /* bit mask controlling how hard we retry per-node allocations */
3133 if (node_alloc_noretry)
3134 nodes_clear(*node_alloc_noretry);
a5516438 3135
e5ff2159 3136 for (i = 0; i < h->max_huge_pages; ++i) {
bae7f4ae 3137 if (hstate_is_gigantic(h)) {
b5389086 3138 if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE))
aa888a74 3139 break;
0c397dae 3140 } else if (!alloc_pool_huge_page(h,
f60858f9
MK
3141 &node_states[N_MEMORY],
3142 node_alloc_noretry))
1da177e4 3143 break;
69ed779a 3144 cond_resched();
1da177e4 3145 }
d715cf80
LH
3146 if (i < h->max_huge_pages) {
3147 char buf[32];
3148
c6247f72 3149 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
d715cf80
LH
3150 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n",
3151 h->max_huge_pages, buf, i);
3152 h->max_huge_pages = i;
3153 }
f60858f9 3154 kfree(node_alloc_noretry);
e5ff2159
AK
3155}
3156
3157static void __init hugetlb_init_hstates(void)
3158{
79dfc695 3159 struct hstate *h, *h2;
e5ff2159
AK
3160
3161 for_each_hstate(h) {
8faa8b07 3162 /* oversize hugepages were init'ed in early boot */
bae7f4ae 3163 if (!hstate_is_gigantic(h))
8faa8b07 3164 hugetlb_hstate_alloc_pages(h);
79dfc695
MK
3165
3166 /*
3167 * Set demote order for each hstate. Note that
3168 * h->demote_order is initially 0.
3169 * - We can not demote gigantic pages if runtime freeing
3170 * is not supported, so skip this.
a01f4390
MK
3171 * - If CMA allocation is possible, we can not demote
3172 * HUGETLB_PAGE_ORDER or smaller size pages.
79dfc695
MK
3173 */
3174 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3175 continue;
a01f4390
MK
3176 if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER)
3177 continue;
79dfc695
MK
3178 for_each_hstate(h2) {
3179 if (h2 == h)
3180 continue;
3181 if (h2->order < h->order &&
3182 h2->order > h->demote_order)
3183 h->demote_order = h2->order;
3184 }
e5ff2159
AK
3185 }
3186}
3187
3188static void __init report_hugepages(void)
3189{
3190 struct hstate *h;
3191
3192 for_each_hstate(h) {
4abd32db 3193 char buf[32];
c6247f72
MW
3194
3195 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
6213834c 3196 pr_info("HugeTLB: registered %s page size, pre-allocated %ld pages\n",
c6247f72 3197 buf, h->free_huge_pages);
6213834c
MS
3198 pr_info("HugeTLB: %d KiB vmemmap can be freed for a %s page\n",
3199 hugetlb_vmemmap_optimizable_size(h) / SZ_1K, buf);
e5ff2159
AK
3200 }
3201}
3202
1da177e4 3203#ifdef CONFIG_HIGHMEM
6ae11b27
LS
3204static void try_to_free_low(struct hstate *h, unsigned long count,
3205 nodemask_t *nodes_allowed)
1da177e4 3206{
4415cc8d 3207 int i;
1121828a 3208 LIST_HEAD(page_list);
4415cc8d 3209
9487ca60 3210 lockdep_assert_held(&hugetlb_lock);
bae7f4ae 3211 if (hstate_is_gigantic(h))
aa888a74
AK
3212 return;
3213
1121828a
MK
3214 /*
3215 * Collect pages to be freed on a list, and free after dropping lock
3216 */
6ae11b27 3217 for_each_node_mask(i, *nodes_allowed) {
10c6ec49 3218 struct page *page, *next;
a5516438
AK
3219 struct list_head *freel = &h->hugepage_freelists[i];
3220 list_for_each_entry_safe(page, next, freel, lru) {
3221 if (count >= h->nr_huge_pages)
1121828a 3222 goto out;
1da177e4
LT
3223 if (PageHighMem(page))
3224 continue;
6eb4e88a 3225 remove_hugetlb_page(h, page, false);
1121828a 3226 list_add(&page->lru, &page_list);
1da177e4
LT
3227 }
3228 }
1121828a
MK
3229
3230out:
db71ef79 3231 spin_unlock_irq(&hugetlb_lock);
10c6ec49 3232 update_and_free_pages_bulk(h, &page_list);
db71ef79 3233 spin_lock_irq(&hugetlb_lock);
1da177e4
LT
3234}
3235#else
6ae11b27
LS
3236static inline void try_to_free_low(struct hstate *h, unsigned long count,
3237 nodemask_t *nodes_allowed)
1da177e4
LT
3238{
3239}
3240#endif
3241
20a0307c
WF
3242/*
3243 * Increment or decrement surplus_huge_pages. Keep node-specific counters
3244 * balanced by operating on them in a round-robin fashion.
3245 * Returns 1 if an adjustment was made.
3246 */
6ae11b27
LS
3247static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
3248 int delta)
20a0307c 3249{
b2261026 3250 int nr_nodes, node;
20a0307c 3251
9487ca60 3252 lockdep_assert_held(&hugetlb_lock);
20a0307c 3253 VM_BUG_ON(delta != -1 && delta != 1);
20a0307c 3254
b2261026
JK
3255 if (delta < 0) {
3256 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
3257 if (h->surplus_huge_pages_node[node])
3258 goto found;
e8c5c824 3259 }
b2261026
JK
3260 } else {
3261 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3262 if (h->surplus_huge_pages_node[node] <
3263 h->nr_huge_pages_node[node])
3264 goto found;
e8c5c824 3265 }
b2261026
JK
3266 }
3267 return 0;
20a0307c 3268
b2261026
JK
3269found:
3270 h->surplus_huge_pages += delta;
3271 h->surplus_huge_pages_node[node] += delta;
3272 return 1;
20a0307c
WF
3273}
3274
a5516438 3275#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
fd875dca 3276static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
4eb0716e 3277 nodemask_t *nodes_allowed)
1da177e4 3278{
7893d1d5 3279 unsigned long min_count, ret;
10c6ec49
MK
3280 struct page *page;
3281 LIST_HEAD(page_list);
f60858f9
MK
3282 NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
3283
3284 /*
3285 * Bit mask controlling how hard we retry per-node allocations.
3286 * If we can not allocate the bit mask, do not attempt to allocate
3287 * the requested huge pages.
3288 */
3289 if (node_alloc_noretry)
3290 nodes_clear(*node_alloc_noretry);
3291 else
3292 return -ENOMEM;
1da177e4 3293
29383967
MK
3294 /*
3295 * resize_lock mutex prevents concurrent adjustments to number of
3296 * pages in hstate via the proc/sysfs interfaces.
3297 */
3298 mutex_lock(&h->resize_lock);
b65d4adb 3299 flush_free_hpage_work(h);
db71ef79 3300 spin_lock_irq(&hugetlb_lock);
4eb0716e 3301
fd875dca
MK
3302 /*
3303 * Check for a node specific request.
3304 * Changing node specific huge page count may require a corresponding
3305 * change to the global count. In any case, the passed node mask
3306 * (nodes_allowed) will restrict alloc/free to the specified node.
3307 */
3308 if (nid != NUMA_NO_NODE) {
3309 unsigned long old_count = count;
3310
3311 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
3312 /*
3313 * User may have specified a large count value which caused the
3314 * above calculation to overflow. In this case, they wanted
3315 * to allocate as many huge pages as possible. Set count to
3316 * largest possible value to align with their intention.
3317 */
3318 if (count < old_count)
3319 count = ULONG_MAX;
3320 }
3321
4eb0716e
AG
3322 /*
3323 * Gigantic pages runtime allocation depend on the capability for large
3324 * page range allocation.
3325 * If the system does not provide this feature, return an error when
3326 * the user tries to allocate gigantic pages but let the user free the
3327 * boottime allocated gigantic pages.
3328 */
3329 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
3330 if (count > persistent_huge_pages(h)) {
db71ef79 3331 spin_unlock_irq(&hugetlb_lock);
29383967 3332 mutex_unlock(&h->resize_lock);
f60858f9 3333 NODEMASK_FREE(node_alloc_noretry);
4eb0716e
AG
3334 return -EINVAL;
3335 }
3336 /* Fall through to decrease pool */
3337 }
aa888a74 3338
7893d1d5
AL
3339 /*
3340 * Increase the pool size
3341 * First take pages out of surplus state. Then make up the
3342 * remaining difference by allocating fresh huge pages.
d1c3fb1f 3343 *
0c397dae 3344 * We might race with alloc_surplus_huge_page() here and be unable
d1c3fb1f
NA
3345 * to convert a surplus huge page to a normal huge page. That is
3346 * not critical, though, it just means the overall size of the
3347 * pool might be one hugepage larger than it needs to be, but
3348 * within all the constraints specified by the sysctls.
7893d1d5 3349 */
a5516438 3350 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
6ae11b27 3351 if (!adjust_pool_surplus(h, nodes_allowed, -1))
7893d1d5
AL
3352 break;
3353 }
3354
a5516438 3355 while (count > persistent_huge_pages(h)) {
7893d1d5
AL
3356 /*
3357 * If this allocation races such that we no longer need the
3358 * page, free_huge_page will handle it by freeing the page
3359 * and reducing the surplus.
3360 */
db71ef79 3361 spin_unlock_irq(&hugetlb_lock);
649920c6
JH
3362
3363 /* yield cpu to avoid soft lockup */
3364 cond_resched();
3365
f60858f9
MK
3366 ret = alloc_pool_huge_page(h, nodes_allowed,
3367 node_alloc_noretry);
db71ef79 3368 spin_lock_irq(&hugetlb_lock);
7893d1d5
AL
3369 if (!ret)
3370 goto out;
3371
536240f2
MG
3372 /* Bail for signals. Probably ctrl-c from user */
3373 if (signal_pending(current))
3374 goto out;
7893d1d5 3375 }
7893d1d5
AL
3376
3377 /*
3378 * Decrease the pool size
3379 * First return free pages to the buddy allocator (being careful
3380 * to keep enough around to satisfy reservations). Then place
3381 * pages into surplus state as needed so the pool will shrink
3382 * to the desired size as pages become free.
d1c3fb1f
NA
3383 *
3384 * By placing pages into the surplus state independent of the
3385 * overcommit value, we are allowing the surplus pool size to
3386 * exceed overcommit. There are few sane options here. Since
0c397dae 3387 * alloc_surplus_huge_page() is checking the global counter,
d1c3fb1f
NA
3388 * though, we'll note that we're not allowed to exceed surplus
3389 * and won't grow the pool anywhere else. Not until one of the
3390 * sysctls are changed, or the surplus pages go out of use.
7893d1d5 3391 */
a5516438 3392 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
6b0c880d 3393 min_count = max(count, min_count);
6ae11b27 3394 try_to_free_low(h, min_count, nodes_allowed);
10c6ec49
MK
3395
3396 /*
3397 * Collect pages to be removed on list without dropping lock
3398 */
a5516438 3399 while (min_count < persistent_huge_pages(h)) {
10c6ec49
MK
3400 page = remove_pool_huge_page(h, nodes_allowed, 0);
3401 if (!page)
1da177e4 3402 break;
10c6ec49
MK
3403
3404 list_add(&page->lru, &page_list);
1da177e4 3405 }
10c6ec49 3406 /* free the pages after dropping lock */
db71ef79 3407 spin_unlock_irq(&hugetlb_lock);
10c6ec49 3408 update_and_free_pages_bulk(h, &page_list);
b65d4adb 3409 flush_free_hpage_work(h);
db71ef79 3410 spin_lock_irq(&hugetlb_lock);
10c6ec49 3411
a5516438 3412 while (count < persistent_huge_pages(h)) {
6ae11b27 3413 if (!adjust_pool_surplus(h, nodes_allowed, 1))
7893d1d5
AL
3414 break;
3415 }
3416out:
4eb0716e 3417 h->max_huge_pages = persistent_huge_pages(h);
db71ef79 3418 spin_unlock_irq(&hugetlb_lock);
29383967 3419 mutex_unlock(&h->resize_lock);
4eb0716e 3420
f60858f9
MK
3421 NODEMASK_FREE(node_alloc_noretry);
3422
4eb0716e 3423 return 0;
1da177e4
LT
3424}
3425
8531fc6f
MK
3426static int demote_free_huge_page(struct hstate *h, struct page *page)
3427{
3428 int i, nid = page_to_nid(page);
3429 struct hstate *target_hstate;
31731452 3430 struct page *subpage;
8531fc6f
MK
3431 int rc = 0;
3432
3433 target_hstate = size_to_hstate(PAGE_SIZE << h->demote_order);
3434
3435 remove_hugetlb_page_for_demote(h, page, false);
3436 spin_unlock_irq(&hugetlb_lock);
3437
6213834c 3438 rc = hugetlb_vmemmap_restore(h, page);
8531fc6f
MK
3439 if (rc) {
3440 /* Allocation of vmemmmap failed, we can not demote page */
3441 spin_lock_irq(&hugetlb_lock);
3442 set_page_refcounted(page);
3443 add_hugetlb_page(h, page, false);
3444 return rc;
3445 }
3446
3447 /*
3448 * Use destroy_compound_hugetlb_page_for_demote for all huge page
3449 * sizes as it will not ref count pages.
3450 */
3451 destroy_compound_hugetlb_page_for_demote(page, huge_page_order(h));
3452
3453 /*
3454 * Taking target hstate mutex synchronizes with set_max_huge_pages.
3455 * Without the mutex, pages added to target hstate could be marked
3456 * as surplus.
3457 *
3458 * Note that we already hold h->resize_lock. To prevent deadlock,
3459 * use the convention of always taking larger size hstate mutex first.
3460 */
3461 mutex_lock(&target_hstate->resize_lock);
3462 for (i = 0; i < pages_per_huge_page(h);
3463 i += pages_per_huge_page(target_hstate)) {
31731452 3464 subpage = nth_page(page, i);
8531fc6f 3465 if (hstate_is_gigantic(target_hstate))
31731452 3466 prep_compound_gigantic_page_for_demote(subpage,
8531fc6f
MK
3467 target_hstate->order);
3468 else
31731452
DB
3469 prep_compound_page(subpage, target_hstate->order);
3470 set_page_private(subpage, 0);
31731452 3471 prep_new_huge_page(target_hstate, subpage, nid);
2b21624f 3472 free_huge_page(subpage);
8531fc6f
MK
3473 }
3474 mutex_unlock(&target_hstate->resize_lock);
3475
3476 spin_lock_irq(&hugetlb_lock);
3477
3478 /*
3479 * Not absolutely necessary, but for consistency update max_huge_pages
3480 * based on pool changes for the demoted page.
3481 */
3482 h->max_huge_pages--;
a43a83c7
ML
3483 target_hstate->max_huge_pages +=
3484 pages_per_huge_page(h) / pages_per_huge_page(target_hstate);
8531fc6f
MK
3485
3486 return rc;
3487}
3488
79dfc695
MK
3489static int demote_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
3490 __must_hold(&hugetlb_lock)
3491{
8531fc6f
MK
3492 int nr_nodes, node;
3493 struct page *page;
79dfc695
MK
3494
3495 lockdep_assert_held(&hugetlb_lock);
3496
3497 /* We should never get here if no demote order */
3498 if (!h->demote_order) {
3499 pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n");
3500 return -EINVAL; /* internal error */
3501 }
3502
8531fc6f 3503 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
5a317412
MK
3504 list_for_each_entry(page, &h->hugepage_freelists[node], lru) {
3505 if (PageHWPoison(page))
3506 continue;
3507
3508 return demote_free_huge_page(h, page);
8531fc6f
MK
3509 }
3510 }
3511
5a317412
MK
3512 /*
3513 * Only way to get here is if all pages on free lists are poisoned.
3514 * Return -EBUSY so that caller will not retry.
3515 */
3516 return -EBUSY;
79dfc695
MK
3517}
3518
a3437870
NA
3519#define HSTATE_ATTR_RO(_name) \
3520 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3521
79dfc695
MK
3522#define HSTATE_ATTR_WO(_name) \
3523 static struct kobj_attribute _name##_attr = __ATTR_WO(_name)
3524
a3437870 3525#define HSTATE_ATTR(_name) \
98bc26ac 3526 static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
a3437870
NA
3527
3528static struct kobject *hugepages_kobj;
3529static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3530
9a305230
LS
3531static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
3532
3533static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
a3437870
NA
3534{
3535 int i;
9a305230 3536
a3437870 3537 for (i = 0; i < HUGE_MAX_HSTATE; i++)
9a305230
LS
3538 if (hstate_kobjs[i] == kobj) {
3539 if (nidp)
3540 *nidp = NUMA_NO_NODE;
a3437870 3541 return &hstates[i];
9a305230
LS
3542 }
3543
3544 return kobj_to_node_hstate(kobj, nidp);
a3437870
NA
3545}
3546
06808b08 3547static ssize_t nr_hugepages_show_common(struct kobject *kobj,
a3437870
NA
3548 struct kobj_attribute *attr, char *buf)
3549{
9a305230
LS
3550 struct hstate *h;
3551 unsigned long nr_huge_pages;
3552 int nid;
3553
3554 h = kobj_to_hstate(kobj, &nid);
3555 if (nid == NUMA_NO_NODE)
3556 nr_huge_pages = h->nr_huge_pages;
3557 else
3558 nr_huge_pages = h->nr_huge_pages_node[nid];
3559
ae7a927d 3560 return sysfs_emit(buf, "%lu\n", nr_huge_pages);
a3437870 3561}
adbe8726 3562
238d3c13
DR
3563static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
3564 struct hstate *h, int nid,
3565 unsigned long count, size_t len)
a3437870
NA
3566{
3567 int err;
2d0adf7e 3568 nodemask_t nodes_allowed, *n_mask;
a3437870 3569
2d0adf7e
OS
3570 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3571 return -EINVAL;
adbe8726 3572
9a305230
LS
3573 if (nid == NUMA_NO_NODE) {
3574 /*
3575 * global hstate attribute
3576 */
3577 if (!(obey_mempolicy &&
2d0adf7e
OS
3578 init_nodemask_of_mempolicy(&nodes_allowed)))
3579 n_mask = &node_states[N_MEMORY];
3580 else
3581 n_mask = &nodes_allowed;
3582 } else {
9a305230 3583 /*
fd875dca
MK
3584 * Node specific request. count adjustment happens in
3585 * set_max_huge_pages() after acquiring hugetlb_lock.
9a305230 3586 */
2d0adf7e
OS
3587 init_nodemask_of_node(&nodes_allowed, nid);
3588 n_mask = &nodes_allowed;
fd875dca 3589 }
9a305230 3590
2d0adf7e 3591 err = set_max_huge_pages(h, count, nid, n_mask);
06808b08 3592
4eb0716e 3593 return err ? err : len;
06808b08
LS
3594}
3595
238d3c13
DR
3596static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
3597 struct kobject *kobj, const char *buf,
3598 size_t len)
3599{
3600 struct hstate *h;
3601 unsigned long count;
3602 int nid;
3603 int err;
3604
3605 err = kstrtoul(buf, 10, &count);
3606 if (err)
3607 return err;
3608
3609 h = kobj_to_hstate(kobj, &nid);
3610 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
3611}
3612
06808b08
LS
3613static ssize_t nr_hugepages_show(struct kobject *kobj,
3614 struct kobj_attribute *attr, char *buf)
3615{
3616 return nr_hugepages_show_common(kobj, attr, buf);
3617}
3618
3619static ssize_t nr_hugepages_store(struct kobject *kobj,
3620 struct kobj_attribute *attr, const char *buf, size_t len)
3621{
238d3c13 3622 return nr_hugepages_store_common(false, kobj, buf, len);
a3437870
NA
3623}
3624HSTATE_ATTR(nr_hugepages);
3625
06808b08
LS
3626#ifdef CONFIG_NUMA
3627
3628/*
3629 * hstate attribute for optionally mempolicy-based constraint on persistent
3630 * huge page alloc/free.
3631 */
3632static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
ae7a927d
JP
3633 struct kobj_attribute *attr,
3634 char *buf)
06808b08
LS
3635{
3636 return nr_hugepages_show_common(kobj, attr, buf);
3637}
3638
3639static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
3640 struct kobj_attribute *attr, const char *buf, size_t len)
3641{
238d3c13 3642 return nr_hugepages_store_common(true, kobj, buf, len);
06808b08
LS
3643}
3644HSTATE_ATTR(nr_hugepages_mempolicy);
3645#endif
3646
3647
a3437870
NA
3648static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
3649 struct kobj_attribute *attr, char *buf)
3650{
9a305230 3651 struct hstate *h = kobj_to_hstate(kobj, NULL);
ae7a927d 3652 return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
a3437870 3653}
adbe8726 3654
a3437870
NA
3655static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
3656 struct kobj_attribute *attr, const char *buf, size_t count)
3657{
3658 int err;
3659 unsigned long input;
9a305230 3660 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870 3661
bae7f4ae 3662 if (hstate_is_gigantic(h))
adbe8726
EM
3663 return -EINVAL;
3664
3dbb95f7 3665 err = kstrtoul(buf, 10, &input);
a3437870 3666 if (err)
73ae31e5 3667 return err;
a3437870 3668
db71ef79 3669 spin_lock_irq(&hugetlb_lock);
a3437870 3670 h->nr_overcommit_huge_pages = input;
db71ef79 3671 spin_unlock_irq(&hugetlb_lock);
a3437870
NA
3672
3673 return count;
3674}
3675HSTATE_ATTR(nr_overcommit_hugepages);
3676
3677static ssize_t free_hugepages_show(struct kobject *kobj,
3678 struct kobj_attribute *attr, char *buf)
3679{
9a305230
LS
3680 struct hstate *h;
3681 unsigned long free_huge_pages;
3682 int nid;
3683
3684 h = kobj_to_hstate(kobj, &nid);
3685 if (nid == NUMA_NO_NODE)
3686 free_huge_pages = h->free_huge_pages;
3687 else
3688 free_huge_pages = h->free_huge_pages_node[nid];
3689
ae7a927d 3690 return sysfs_emit(buf, "%lu\n", free_huge_pages);
a3437870
NA
3691}
3692HSTATE_ATTR_RO(free_hugepages);
3693
3694static ssize_t resv_hugepages_show(struct kobject *kobj,
3695 struct kobj_attribute *attr, char *buf)
3696{
9a305230 3697 struct hstate *h = kobj_to_hstate(kobj, NULL);
ae7a927d 3698 return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
a3437870
NA
3699}
3700HSTATE_ATTR_RO(resv_hugepages);
3701
3702static ssize_t surplus_hugepages_show(struct kobject *kobj,
3703 struct kobj_attribute *attr, char *buf)
3704{
9a305230
LS
3705 struct hstate *h;
3706 unsigned long surplus_huge_pages;
3707 int nid;
3708
3709 h = kobj_to_hstate(kobj, &nid);
3710 if (nid == NUMA_NO_NODE)
3711 surplus_huge_pages = h->surplus_huge_pages;
3712 else
3713 surplus_huge_pages = h->surplus_huge_pages_node[nid];
3714
ae7a927d 3715 return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
a3437870
NA
3716}
3717HSTATE_ATTR_RO(surplus_hugepages);
3718
79dfc695
MK
3719static ssize_t demote_store(struct kobject *kobj,
3720 struct kobj_attribute *attr, const char *buf, size_t len)
3721{
3722 unsigned long nr_demote;
3723 unsigned long nr_available;
3724 nodemask_t nodes_allowed, *n_mask;
3725 struct hstate *h;
8eeda55f 3726 int err;
79dfc695
MK
3727 int nid;
3728
3729 err = kstrtoul(buf, 10, &nr_demote);
3730 if (err)
3731 return err;
3732 h = kobj_to_hstate(kobj, &nid);
3733
3734 if (nid != NUMA_NO_NODE) {
3735 init_nodemask_of_node(&nodes_allowed, nid);
3736 n_mask = &nodes_allowed;
3737 } else {
3738 n_mask = &node_states[N_MEMORY];
3739 }
3740
3741 /* Synchronize with other sysfs operations modifying huge pages */
3742 mutex_lock(&h->resize_lock);
3743 spin_lock_irq(&hugetlb_lock);
3744
3745 while (nr_demote) {
3746 /*
3747 * Check for available pages to demote each time thorough the
3748 * loop as demote_pool_huge_page will drop hugetlb_lock.
79dfc695
MK
3749 */
3750 if (nid != NUMA_NO_NODE)
3751 nr_available = h->free_huge_pages_node[nid];
3752 else
3753 nr_available = h->free_huge_pages;
3754 nr_available -= h->resv_huge_pages;
3755 if (!nr_available)
3756 break;
3757
3758 err = demote_pool_huge_page(h, n_mask);
3759 if (err)
3760 break;
3761
3762 nr_demote--;
3763 }
3764
3765 spin_unlock_irq(&hugetlb_lock);
3766 mutex_unlock(&h->resize_lock);
3767
3768 if (err)
3769 return err;
3770 return len;
3771}
3772HSTATE_ATTR_WO(demote);
3773
3774static ssize_t demote_size_show(struct kobject *kobj,
3775 struct kobj_attribute *attr, char *buf)
3776{
12658abf 3777 struct hstate *h = kobj_to_hstate(kobj, NULL);
79dfc695
MK
3778 unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K;
3779
3780 return sysfs_emit(buf, "%lukB\n", demote_size);
3781}
3782
3783static ssize_t demote_size_store(struct kobject *kobj,
3784 struct kobj_attribute *attr,
3785 const char *buf, size_t count)
3786{
3787 struct hstate *h, *demote_hstate;
3788 unsigned long demote_size;
3789 unsigned int demote_order;
79dfc695
MK
3790
3791 demote_size = (unsigned long)memparse(buf, NULL);
3792
3793 demote_hstate = size_to_hstate(demote_size);
3794 if (!demote_hstate)
3795 return -EINVAL;
3796 demote_order = demote_hstate->order;
a01f4390
MK
3797 if (demote_order < HUGETLB_PAGE_ORDER)
3798 return -EINVAL;
79dfc695
MK
3799
3800 /* demote order must be smaller than hstate order */
12658abf 3801 h = kobj_to_hstate(kobj, NULL);
79dfc695
MK
3802 if (demote_order >= h->order)
3803 return -EINVAL;
3804
3805 /* resize_lock synchronizes access to demote size and writes */
3806 mutex_lock(&h->resize_lock);
3807 h->demote_order = demote_order;
3808 mutex_unlock(&h->resize_lock);
3809
3810 return count;
3811}
3812HSTATE_ATTR(demote_size);
3813
a3437870
NA
3814static struct attribute *hstate_attrs[] = {
3815 &nr_hugepages_attr.attr,
3816 &nr_overcommit_hugepages_attr.attr,
3817 &free_hugepages_attr.attr,
3818 &resv_hugepages_attr.attr,
3819 &surplus_hugepages_attr.attr,
06808b08
LS
3820#ifdef CONFIG_NUMA
3821 &nr_hugepages_mempolicy_attr.attr,
3822#endif
a3437870
NA
3823 NULL,
3824};
3825
67e5ed96 3826static const struct attribute_group hstate_attr_group = {
a3437870
NA
3827 .attrs = hstate_attrs,
3828};
3829
79dfc695
MK
3830static struct attribute *hstate_demote_attrs[] = {
3831 &demote_size_attr.attr,
3832 &demote_attr.attr,
3833 NULL,
3834};
3835
3836static const struct attribute_group hstate_demote_attr_group = {
3837 .attrs = hstate_demote_attrs,
3838};
3839
094e9539
JM
3840static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
3841 struct kobject **hstate_kobjs,
67e5ed96 3842 const struct attribute_group *hstate_attr_group)
a3437870
NA
3843{
3844 int retval;
972dc4de 3845 int hi = hstate_index(h);
a3437870 3846
9a305230
LS
3847 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
3848 if (!hstate_kobjs[hi])
a3437870
NA
3849 return -ENOMEM;
3850
9a305230 3851 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
cc2205a6 3852 if (retval) {
9a305230 3853 kobject_put(hstate_kobjs[hi]);
cc2205a6 3854 hstate_kobjs[hi] = NULL;
3a6bdda0 3855 return retval;
cc2205a6 3856 }
a3437870 3857
79dfc695 3858 if (h->demote_order) {
01088a60
ML
3859 retval = sysfs_create_group(hstate_kobjs[hi],
3860 &hstate_demote_attr_group);
3861 if (retval) {
79dfc695 3862 pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name);
01088a60
ML
3863 sysfs_remove_group(hstate_kobjs[hi], hstate_attr_group);
3864 kobject_put(hstate_kobjs[hi]);
3865 hstate_kobjs[hi] = NULL;
3866 return retval;
3867 }
79dfc695
MK
3868 }
3869
01088a60 3870 return 0;
a3437870
NA
3871}
3872
9a305230 3873#ifdef CONFIG_NUMA
a4a00b45 3874static bool hugetlb_sysfs_initialized __ro_after_init;
9a305230
LS
3875
3876/*
3877 * node_hstate/s - associate per node hstate attributes, via their kobjects,
10fbcf4c
KS
3878 * with node devices in node_devices[] using a parallel array. The array
3879 * index of a node device or _hstate == node id.
3880 * This is here to avoid any static dependency of the node device driver, in
9a305230
LS
3881 * the base kernel, on the hugetlb module.
3882 */
3883struct node_hstate {
3884 struct kobject *hugepages_kobj;
3885 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3886};
b4e289a6 3887static struct node_hstate node_hstates[MAX_NUMNODES];
9a305230
LS
3888
3889/*
10fbcf4c 3890 * A subset of global hstate attributes for node devices
9a305230
LS
3891 */
3892static struct attribute *per_node_hstate_attrs[] = {
3893 &nr_hugepages_attr.attr,
3894 &free_hugepages_attr.attr,
3895 &surplus_hugepages_attr.attr,
3896 NULL,
3897};
3898
67e5ed96 3899static const struct attribute_group per_node_hstate_attr_group = {
9a305230
LS
3900 .attrs = per_node_hstate_attrs,
3901};
3902
3903/*
10fbcf4c 3904 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
9a305230
LS
3905 * Returns node id via non-NULL nidp.
3906 */
3907static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3908{
3909 int nid;
3910
3911 for (nid = 0; nid < nr_node_ids; nid++) {
3912 struct node_hstate *nhs = &node_hstates[nid];
3913 int i;
3914 for (i = 0; i < HUGE_MAX_HSTATE; i++)
3915 if (nhs->hstate_kobjs[i] == kobj) {
3916 if (nidp)
3917 *nidp = nid;
3918 return &hstates[i];
3919 }
3920 }
3921
3922 BUG();
3923 return NULL;
3924}
3925
3926/*
10fbcf4c 3927 * Unregister hstate attributes from a single node device.
9a305230
LS
3928 * No-op if no hstate attributes attached.
3929 */
a4a00b45 3930void hugetlb_unregister_node(struct node *node)
9a305230
LS
3931{
3932 struct hstate *h;
10fbcf4c 3933 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
3934
3935 if (!nhs->hugepages_kobj)
9b5e5d0f 3936 return; /* no hstate attributes */
9a305230 3937
972dc4de
AK
3938 for_each_hstate(h) {
3939 int idx = hstate_index(h);
01088a60
ML
3940 struct kobject *hstate_kobj = nhs->hstate_kobjs[idx];
3941
3942 if (!hstate_kobj)
3943 continue;
3944 if (h->demote_order)
3945 sysfs_remove_group(hstate_kobj, &hstate_demote_attr_group);
3946 sysfs_remove_group(hstate_kobj, &per_node_hstate_attr_group);
3947 kobject_put(hstate_kobj);
3948 nhs->hstate_kobjs[idx] = NULL;
972dc4de 3949 }
9a305230
LS
3950
3951 kobject_put(nhs->hugepages_kobj);
3952 nhs->hugepages_kobj = NULL;
3953}
3954
9a305230
LS
3955
3956/*
10fbcf4c 3957 * Register hstate attributes for a single node device.
9a305230
LS
3958 * No-op if attributes already registered.
3959 */
a4a00b45 3960void hugetlb_register_node(struct node *node)
9a305230
LS
3961{
3962 struct hstate *h;
10fbcf4c 3963 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
3964 int err;
3965
a4a00b45
MS
3966 if (!hugetlb_sysfs_initialized)
3967 return;
3968
9a305230
LS
3969 if (nhs->hugepages_kobj)
3970 return; /* already allocated */
3971
3972 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
10fbcf4c 3973 &node->dev.kobj);
9a305230
LS
3974 if (!nhs->hugepages_kobj)
3975 return;
3976
3977 for_each_hstate(h) {
3978 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
3979 nhs->hstate_kobjs,
3980 &per_node_hstate_attr_group);
3981 if (err) {
282f4214 3982 pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
ffb22af5 3983 h->name, node->dev.id);
9a305230
LS
3984 hugetlb_unregister_node(node);
3985 break;
3986 }
3987 }
3988}
3989
3990/*
9b5e5d0f 3991 * hugetlb init time: register hstate attributes for all registered node
10fbcf4c
KS
3992 * devices of nodes that have memory. All on-line nodes should have
3993 * registered their associated device by this time.
9a305230 3994 */
7d9ca000 3995static void __init hugetlb_register_all_nodes(void)
9a305230
LS
3996{
3997 int nid;
3998
a4a00b45 3999 for_each_online_node(nid)
b958d4d0 4000 hugetlb_register_node(node_devices[nid]);
9a305230
LS
4001}
4002#else /* !CONFIG_NUMA */
4003
4004static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4005{
4006 BUG();
4007 if (nidp)
4008 *nidp = -1;
4009 return NULL;
4010}
4011
9a305230
LS
4012static void hugetlb_register_all_nodes(void) { }
4013
4014#endif
4015
263b8998
ML
4016#ifdef CONFIG_CMA
4017static void __init hugetlb_cma_check(void);
4018#else
4019static inline __init void hugetlb_cma_check(void)
4020{
4021}
4022#endif
4023
a4a00b45
MS
4024static void __init hugetlb_sysfs_init(void)
4025{
4026 struct hstate *h;
4027 int err;
4028
4029 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
4030 if (!hugepages_kobj)
4031 return;
4032
4033 for_each_hstate(h) {
4034 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
4035 hstate_kobjs, &hstate_attr_group);
4036 if (err)
4037 pr_err("HugeTLB: Unable to add hstate %s", h->name);
4038 }
4039
4040#ifdef CONFIG_NUMA
4041 hugetlb_sysfs_initialized = true;
4042#endif
4043 hugetlb_register_all_nodes();
4044}
4045
a3437870
NA
4046static int __init hugetlb_init(void)
4047{
8382d914
DB
4048 int i;
4049
d6995da3
MK
4050 BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
4051 __NR_HPAGEFLAGS);
4052
c2833a5b
MK
4053 if (!hugepages_supported()) {
4054 if (hugetlb_max_hstate || default_hstate_max_huge_pages)
4055 pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
0ef89d25 4056 return 0;
c2833a5b 4057 }
a3437870 4058
282f4214
MK
4059 /*
4060 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists. Some
4061 * architectures depend on setup being done here.
4062 */
4063 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
4064 if (!parsed_default_hugepagesz) {
4065 /*
4066 * If we did not parse a default huge page size, set
4067 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
4068 * number of huge pages for this default size was implicitly
4069 * specified, set that here as well.
4070 * Note that the implicit setting will overwrite an explicit
4071 * setting. A warning will be printed in this case.
4072 */
4073 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
4074 if (default_hstate_max_huge_pages) {
4075 if (default_hstate.max_huge_pages) {
4076 char buf[32];
4077
4078 string_get_size(huge_page_size(&default_hstate),
4079 1, STRING_UNITS_2, buf, 32);
4080 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
4081 default_hstate.max_huge_pages, buf);
4082 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
4083 default_hstate_max_huge_pages);
4084 }
4085 default_hstate.max_huge_pages =
4086 default_hstate_max_huge_pages;
b5389086 4087
0a7a0f6f 4088 for_each_online_node(i)
b5389086
ZY
4089 default_hstate.max_huge_pages_node[i] =
4090 default_hugepages_in_node[i];
d715cf80 4091 }
f8b74815 4092 }
a3437870 4093
cf11e85f 4094 hugetlb_cma_check();
a3437870 4095 hugetlb_init_hstates();
aa888a74 4096 gather_bootmem_prealloc();
a3437870
NA
4097 report_hugepages();
4098
4099 hugetlb_sysfs_init();
7179e7bf 4100 hugetlb_cgroup_file_init();
9a305230 4101
8382d914
DB
4102#ifdef CONFIG_SMP
4103 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
4104#else
4105 num_fault_mutexes = 1;
4106#endif
c672c7f2 4107 hugetlb_fault_mutex_table =
6da2ec56
KC
4108 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
4109 GFP_KERNEL);
c672c7f2 4110 BUG_ON(!hugetlb_fault_mutex_table);
8382d914
DB
4111
4112 for (i = 0; i < num_fault_mutexes; i++)
c672c7f2 4113 mutex_init(&hugetlb_fault_mutex_table[i]);
a3437870
NA
4114 return 0;
4115}
3e89e1c5 4116subsys_initcall(hugetlb_init);
a3437870 4117
ae94da89
MK
4118/* Overwritten by architectures with more huge page sizes */
4119bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
9fee021d 4120{
ae94da89 4121 return size == HPAGE_SIZE;
9fee021d
VT
4122}
4123
d00181b9 4124void __init hugetlb_add_hstate(unsigned int order)
a3437870
NA
4125{
4126 struct hstate *h;
8faa8b07
AK
4127 unsigned long i;
4128
a3437870 4129 if (size_to_hstate(PAGE_SIZE << order)) {
a3437870
NA
4130 return;
4131 }
47d38344 4132 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
a3437870 4133 BUG_ON(order == 0);
47d38344 4134 h = &hstates[hugetlb_max_hstate++];
29383967 4135 mutex_init(&h->resize_lock);
a3437870 4136 h->order = order;
aca78307 4137 h->mask = ~(huge_page_size(h) - 1);
8faa8b07
AK
4138 for (i = 0; i < MAX_NUMNODES; ++i)
4139 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
0edaecfa 4140 INIT_LIST_HEAD(&h->hugepage_activelist);
54f18d35
AM
4141 h->next_nid_to_alloc = first_memory_node;
4142 h->next_nid_to_free = first_memory_node;
a3437870 4143 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
c2c3a60a 4144 huge_page_size(h)/SZ_1K);
8faa8b07 4145
a3437870
NA
4146 parsed_hstate = h;
4147}
4148
b5389086
ZY
4149bool __init __weak hugetlb_node_alloc_supported(void)
4150{
4151 return true;
4152}
f87442f4
PL
4153
4154static void __init hugepages_clear_pages_in_node(void)
4155{
4156 if (!hugetlb_max_hstate) {
4157 default_hstate_max_huge_pages = 0;
4158 memset(default_hugepages_in_node, 0,
10395680 4159 sizeof(default_hugepages_in_node));
f87442f4
PL
4160 } else {
4161 parsed_hstate->max_huge_pages = 0;
4162 memset(parsed_hstate->max_huge_pages_node, 0,
10395680 4163 sizeof(parsed_hstate->max_huge_pages_node));
f87442f4
PL
4164 }
4165}
4166
282f4214
MK
4167/*
4168 * hugepages command line processing
4169 * hugepages normally follows a valid hugepagsz or default_hugepagsz
4170 * specification. If not, ignore the hugepages value. hugepages can also
4171 * be the first huge page command line option in which case it implicitly
4172 * specifies the number of huge pages for the default size.
4173 */
4174static int __init hugepages_setup(char *s)
a3437870
NA
4175{
4176 unsigned long *mhp;
8faa8b07 4177 static unsigned long *last_mhp;
b5389086
ZY
4178 int node = NUMA_NO_NODE;
4179 int count;
4180 unsigned long tmp;
4181 char *p = s;
a3437870 4182
9fee021d 4183 if (!parsed_valid_hugepagesz) {
282f4214 4184 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
9fee021d 4185 parsed_valid_hugepagesz = true;
f81f6e4b 4186 return 1;
9fee021d 4187 }
282f4214 4188
a3437870 4189 /*
282f4214
MK
4190 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
4191 * yet, so this hugepages= parameter goes to the "default hstate".
4192 * Otherwise, it goes with the previously parsed hugepagesz or
4193 * default_hugepagesz.
a3437870 4194 */
9fee021d 4195 else if (!hugetlb_max_hstate)
a3437870
NA
4196 mhp = &default_hstate_max_huge_pages;
4197 else
4198 mhp = &parsed_hstate->max_huge_pages;
4199
8faa8b07 4200 if (mhp == last_mhp) {
282f4214 4201 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
f81f6e4b 4202 return 1;
8faa8b07
AK
4203 }
4204
b5389086
ZY
4205 while (*p) {
4206 count = 0;
4207 if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4208 goto invalid;
4209 /* Parameter is node format */
4210 if (p[count] == ':') {
4211 if (!hugetlb_node_alloc_supported()) {
4212 pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n");
f81f6e4b 4213 return 1;
b5389086 4214 }
0a7a0f6f 4215 if (tmp >= MAX_NUMNODES || !node_online(tmp))
e79ce983 4216 goto invalid;
0a7a0f6f 4217 node = array_index_nospec(tmp, MAX_NUMNODES);
b5389086 4218 p += count + 1;
b5389086
ZY
4219 /* Parse hugepages */
4220 if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4221 goto invalid;
4222 if (!hugetlb_max_hstate)
4223 default_hugepages_in_node[node] = tmp;
4224 else
4225 parsed_hstate->max_huge_pages_node[node] = tmp;
4226 *mhp += tmp;
4227 /* Go to parse next node*/
4228 if (p[count] == ',')
4229 p += count + 1;
4230 else
4231 break;
4232 } else {
4233 if (p != s)
4234 goto invalid;
4235 *mhp = tmp;
4236 break;
4237 }
4238 }
a3437870 4239
8faa8b07
AK
4240 /*
4241 * Global state is always initialized later in hugetlb_init.
04adbc3f 4242 * But we need to allocate gigantic hstates here early to still
8faa8b07
AK
4243 * use the bootmem allocator.
4244 */
04adbc3f 4245 if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
8faa8b07
AK
4246 hugetlb_hstate_alloc_pages(parsed_hstate);
4247
4248 last_mhp = mhp;
4249
a3437870 4250 return 1;
b5389086
ZY
4251
4252invalid:
4253 pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p);
f87442f4 4254 hugepages_clear_pages_in_node();
f81f6e4b 4255 return 1;
a3437870 4256}
282f4214 4257__setup("hugepages=", hugepages_setup);
e11bfbfc 4258
282f4214
MK
4259/*
4260 * hugepagesz command line processing
4261 * A specific huge page size can only be specified once with hugepagesz.
4262 * hugepagesz is followed by hugepages on the command line. The global
4263 * variable 'parsed_valid_hugepagesz' is used to determine if prior
4264 * hugepagesz argument was valid.
4265 */
359f2544 4266static int __init hugepagesz_setup(char *s)
e11bfbfc 4267{
359f2544 4268 unsigned long size;
282f4214
MK
4269 struct hstate *h;
4270
4271 parsed_valid_hugepagesz = false;
359f2544
MK
4272 size = (unsigned long)memparse(s, NULL);
4273
4274 if (!arch_hugetlb_valid_size(size)) {
282f4214 4275 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
f81f6e4b 4276 return 1;
359f2544
MK
4277 }
4278
282f4214
MK
4279 h = size_to_hstate(size);
4280 if (h) {
4281 /*
4282 * hstate for this size already exists. This is normally
4283 * an error, but is allowed if the existing hstate is the
4284 * default hstate. More specifically, it is only allowed if
4285 * the number of huge pages for the default hstate was not
4286 * previously specified.
4287 */
4288 if (!parsed_default_hugepagesz || h != &default_hstate ||
4289 default_hstate.max_huge_pages) {
4290 pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
f81f6e4b 4291 return 1;
282f4214
MK
4292 }
4293
4294 /*
4295 * No need to call hugetlb_add_hstate() as hstate already
4296 * exists. But, do set parsed_hstate so that a following
4297 * hugepages= parameter will be applied to this hstate.
4298 */
4299 parsed_hstate = h;
4300 parsed_valid_hugepagesz = true;
4301 return 1;
38237830
MK
4302 }
4303
359f2544 4304 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
282f4214 4305 parsed_valid_hugepagesz = true;
e11bfbfc
NP
4306 return 1;
4307}
359f2544
MK
4308__setup("hugepagesz=", hugepagesz_setup);
4309
282f4214
MK
4310/*
4311 * default_hugepagesz command line input
4312 * Only one instance of default_hugepagesz allowed on command line.
4313 */
ae94da89 4314static int __init default_hugepagesz_setup(char *s)
e11bfbfc 4315{
ae94da89 4316 unsigned long size;
b5389086 4317 int i;
ae94da89 4318
282f4214 4319 parsed_valid_hugepagesz = false;
282f4214
MK
4320 if (parsed_default_hugepagesz) {
4321 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
f81f6e4b 4322 return 1;
282f4214
MK
4323 }
4324
ae94da89
MK
4325 size = (unsigned long)memparse(s, NULL);
4326
4327 if (!arch_hugetlb_valid_size(size)) {
282f4214 4328 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
f81f6e4b 4329 return 1;
ae94da89
MK
4330 }
4331
282f4214
MK
4332 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4333 parsed_valid_hugepagesz = true;
4334 parsed_default_hugepagesz = true;
4335 default_hstate_idx = hstate_index(size_to_hstate(size));
4336
4337 /*
4338 * The number of default huge pages (for this size) could have been
4339 * specified as the first hugetlb parameter: hugepages=X. If so,
4340 * then default_hstate_max_huge_pages is set. If the default huge
4341 * page size is gigantic (>= MAX_ORDER), then the pages must be
4342 * allocated here from bootmem allocator.
4343 */
4344 if (default_hstate_max_huge_pages) {
4345 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
0a7a0f6f 4346 for_each_online_node(i)
b5389086
ZY
4347 default_hstate.max_huge_pages_node[i] =
4348 default_hugepages_in_node[i];
282f4214
MK
4349 if (hstate_is_gigantic(&default_hstate))
4350 hugetlb_hstate_alloc_pages(&default_hstate);
4351 default_hstate_max_huge_pages = 0;
4352 }
4353
e11bfbfc
NP
4354 return 1;
4355}
ae94da89 4356__setup("default_hugepagesz=", default_hugepagesz_setup);
a3437870 4357
d2226ebd
FT
4358static nodemask_t *policy_mbind_nodemask(gfp_t gfp)
4359{
4360#ifdef CONFIG_NUMA
4361 struct mempolicy *mpol = get_task_policy(current);
4362
4363 /*
4364 * Only enforce MPOL_BIND policy which overlaps with cpuset policy
4365 * (from policy_nodemask) specifically for hugetlb case
4366 */
4367 if (mpol->mode == MPOL_BIND &&
4368 (apply_policy_zone(mpol, gfp_zone(gfp)) &&
4369 cpuset_nodemask_valid_mems_allowed(&mpol->nodes)))
4370 return &mpol->nodes;
4371#endif
4372 return NULL;
4373}
4374
8ca39e68 4375static unsigned int allowed_mems_nr(struct hstate *h)
8a213460
NA
4376{
4377 int node;
4378 unsigned int nr = 0;
d2226ebd 4379 nodemask_t *mbind_nodemask;
8ca39e68
MS
4380 unsigned int *array = h->free_huge_pages_node;
4381 gfp_t gfp_mask = htlb_alloc_mask(h);
4382
d2226ebd 4383 mbind_nodemask = policy_mbind_nodemask(gfp_mask);
8ca39e68 4384 for_each_node_mask(node, cpuset_current_mems_allowed) {
d2226ebd 4385 if (!mbind_nodemask || node_isset(node, *mbind_nodemask))
8ca39e68
MS
4386 nr += array[node];
4387 }
8a213460
NA
4388
4389 return nr;
4390}
4391
4392#ifdef CONFIG_SYSCTL
17743798
MS
4393static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
4394 void *buffer, size_t *length,
4395 loff_t *ppos, unsigned long *out)
4396{
4397 struct ctl_table dup_table;
4398
4399 /*
4400 * In order to avoid races with __do_proc_doulongvec_minmax(), we
4401 * can duplicate the @table and alter the duplicate of it.
4402 */
4403 dup_table = *table;
4404 dup_table.data = out;
4405
4406 return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
4407}
4408
06808b08
LS
4409static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
4410 struct ctl_table *table, int write,
32927393 4411 void *buffer, size_t *length, loff_t *ppos)
1da177e4 4412{
e5ff2159 4413 struct hstate *h = &default_hstate;
238d3c13 4414 unsigned long tmp = h->max_huge_pages;
08d4a246 4415 int ret;
e5ff2159 4416
457c1b27 4417 if (!hugepages_supported())
86613628 4418 return -EOPNOTSUPP;
457c1b27 4419
17743798
MS
4420 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4421 &tmp);
08d4a246
MH
4422 if (ret)
4423 goto out;
e5ff2159 4424
238d3c13
DR
4425 if (write)
4426 ret = __nr_hugepages_store_common(obey_mempolicy, h,
4427 NUMA_NO_NODE, tmp, *length);
08d4a246
MH
4428out:
4429 return ret;
1da177e4 4430}
396faf03 4431
06808b08 4432int hugetlb_sysctl_handler(struct ctl_table *table, int write,
32927393 4433 void *buffer, size_t *length, loff_t *ppos)
06808b08
LS
4434{
4435
4436 return hugetlb_sysctl_handler_common(false, table, write,
4437 buffer, length, ppos);
4438}
4439
4440#ifdef CONFIG_NUMA
4441int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
32927393 4442 void *buffer, size_t *length, loff_t *ppos)
06808b08
LS
4443{
4444 return hugetlb_sysctl_handler_common(true, table, write,
4445 buffer, length, ppos);
4446}
4447#endif /* CONFIG_NUMA */
4448
a3d0c6aa 4449int hugetlb_overcommit_handler(struct ctl_table *table, int write,
32927393 4450 void *buffer, size_t *length, loff_t *ppos)
a3d0c6aa 4451{
a5516438 4452 struct hstate *h = &default_hstate;
e5ff2159 4453 unsigned long tmp;
08d4a246 4454 int ret;
e5ff2159 4455
457c1b27 4456 if (!hugepages_supported())
86613628 4457 return -EOPNOTSUPP;
457c1b27 4458
c033a93c 4459 tmp = h->nr_overcommit_huge_pages;
e5ff2159 4460
bae7f4ae 4461 if (write && hstate_is_gigantic(h))
adbe8726
EM
4462 return -EINVAL;
4463
17743798
MS
4464 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4465 &tmp);
08d4a246
MH
4466 if (ret)
4467 goto out;
e5ff2159
AK
4468
4469 if (write) {
db71ef79 4470 spin_lock_irq(&hugetlb_lock);
e5ff2159 4471 h->nr_overcommit_huge_pages = tmp;
db71ef79 4472 spin_unlock_irq(&hugetlb_lock);
e5ff2159 4473 }
08d4a246
MH
4474out:
4475 return ret;
a3d0c6aa
NA
4476}
4477
1da177e4
LT
4478#endif /* CONFIG_SYSCTL */
4479
e1759c21 4480void hugetlb_report_meminfo(struct seq_file *m)
1da177e4 4481{
fcb2b0c5
RG
4482 struct hstate *h;
4483 unsigned long total = 0;
4484
457c1b27
NA
4485 if (!hugepages_supported())
4486 return;
fcb2b0c5
RG
4487
4488 for_each_hstate(h) {
4489 unsigned long count = h->nr_huge_pages;
4490
aca78307 4491 total += huge_page_size(h) * count;
fcb2b0c5
RG
4492
4493 if (h == &default_hstate)
4494 seq_printf(m,
4495 "HugePages_Total: %5lu\n"
4496 "HugePages_Free: %5lu\n"
4497 "HugePages_Rsvd: %5lu\n"
4498 "HugePages_Surp: %5lu\n"
4499 "Hugepagesize: %8lu kB\n",
4500 count,
4501 h->free_huge_pages,
4502 h->resv_huge_pages,
4503 h->surplus_huge_pages,
aca78307 4504 huge_page_size(h) / SZ_1K);
fcb2b0c5
RG
4505 }
4506
aca78307 4507 seq_printf(m, "Hugetlb: %8lu kB\n", total / SZ_1K);
1da177e4
LT
4508}
4509
7981593b 4510int hugetlb_report_node_meminfo(char *buf, int len, int nid)
1da177e4 4511{
a5516438 4512 struct hstate *h = &default_hstate;
7981593b 4513
457c1b27
NA
4514 if (!hugepages_supported())
4515 return 0;
7981593b
JP
4516
4517 return sysfs_emit_at(buf, len,
4518 "Node %d HugePages_Total: %5u\n"
4519 "Node %d HugePages_Free: %5u\n"
4520 "Node %d HugePages_Surp: %5u\n",
4521 nid, h->nr_huge_pages_node[nid],
4522 nid, h->free_huge_pages_node[nid],
4523 nid, h->surplus_huge_pages_node[nid]);
1da177e4
LT
4524}
4525
dcadcf1c 4526void hugetlb_show_meminfo_node(int nid)
949f7ec5
DR
4527{
4528 struct hstate *h;
949f7ec5 4529
457c1b27
NA
4530 if (!hugepages_supported())
4531 return;
4532
dcadcf1c
GL
4533 for_each_hstate(h)
4534 printk("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
4535 nid,
4536 h->nr_huge_pages_node[nid],
4537 h->free_huge_pages_node[nid],
4538 h->surplus_huge_pages_node[nid],
4539 huge_page_size(h) / SZ_1K);
949f7ec5
DR
4540}
4541
5d317b2b
NH
4542void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
4543{
4544 seq_printf(m, "HugetlbPages:\t%8lu kB\n",
4545 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
4546}
4547
1da177e4
LT
4548/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
4549unsigned long hugetlb_total_pages(void)
4550{
d0028588
WL
4551 struct hstate *h;
4552 unsigned long nr_total_pages = 0;
4553
4554 for_each_hstate(h)
4555 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
4556 return nr_total_pages;
1da177e4 4557}
1da177e4 4558
a5516438 4559static int hugetlb_acct_memory(struct hstate *h, long delta)
fc1b8a73
MG
4560{
4561 int ret = -ENOMEM;
4562
0aa7f354
ML
4563 if (!delta)
4564 return 0;
4565
db71ef79 4566 spin_lock_irq(&hugetlb_lock);
fc1b8a73
MG
4567 /*
4568 * When cpuset is configured, it breaks the strict hugetlb page
4569 * reservation as the accounting is done on a global variable. Such
4570 * reservation is completely rubbish in the presence of cpuset because
4571 * the reservation is not checked against page availability for the
4572 * current cpuset. Application can still potentially OOM'ed by kernel
4573 * with lack of free htlb page in cpuset that the task is in.
4574 * Attempt to enforce strict accounting with cpuset is almost
4575 * impossible (or too ugly) because cpuset is too fluid that
4576 * task or memory node can be dynamically moved between cpusets.
4577 *
4578 * The change of semantics for shared hugetlb mapping with cpuset is
4579 * undesirable. However, in order to preserve some of the semantics,
4580 * we fall back to check against current free page availability as
4581 * a best attempt and hopefully to minimize the impact of changing
4582 * semantics that cpuset has.
8ca39e68
MS
4583 *
4584 * Apart from cpuset, we also have memory policy mechanism that
4585 * also determines from which node the kernel will allocate memory
4586 * in a NUMA system. So similar to cpuset, we also should consider
4587 * the memory policy of the current task. Similar to the description
4588 * above.
fc1b8a73
MG
4589 */
4590 if (delta > 0) {
a5516438 4591 if (gather_surplus_pages(h, delta) < 0)
fc1b8a73
MG
4592 goto out;
4593
8ca39e68 4594 if (delta > allowed_mems_nr(h)) {
a5516438 4595 return_unused_surplus_pages(h, delta);
fc1b8a73
MG
4596 goto out;
4597 }
4598 }
4599
4600 ret = 0;
4601 if (delta < 0)
a5516438 4602 return_unused_surplus_pages(h, (unsigned long) -delta);
fc1b8a73
MG
4603
4604out:
db71ef79 4605 spin_unlock_irq(&hugetlb_lock);
fc1b8a73
MG
4606 return ret;
4607}
4608
84afd99b
AW
4609static void hugetlb_vm_op_open(struct vm_area_struct *vma)
4610{
f522c3ac 4611 struct resv_map *resv = vma_resv_map(vma);
84afd99b
AW
4612
4613 /*
612b8a31 4614 * HPAGE_RESV_OWNER indicates a private mapping.
84afd99b
AW
4615 * This new VMA should share its siblings reservation map if present.
4616 * The VMA will only ever have a valid reservation map pointer where
4617 * it is being copied for another still existing VMA. As that VMA
25985edc 4618 * has a reference to the reservation map it cannot disappear until
84afd99b
AW
4619 * after this open call completes. It is therefore safe to take a
4620 * new reference here without additional locking.
4621 */
09a26e83
MK
4622 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
4623 resv_map_dup_hugetlb_cgroup_uncharge_info(resv);
f522c3ac 4624 kref_get(&resv->refs);
09a26e83 4625 }
8d9bfb26 4626
131a79b4
MK
4627 /*
4628 * vma_lock structure for sharable mappings is vma specific.
612b8a31
MK
4629 * Clear old pointer (if copied via vm_area_dup) and allocate
4630 * new structure. Before clearing, make sure vma_lock is not
4631 * for this vma.
131a79b4
MK
4632 */
4633 if (vma->vm_flags & VM_MAYSHARE) {
612b8a31
MK
4634 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
4635
4636 if (vma_lock) {
4637 if (vma_lock->vma != vma) {
4638 vma->vm_private_data = NULL;
4639 hugetlb_vma_lock_alloc(vma);
4640 } else
4641 pr_warn("HugeTLB: vma_lock already exists in %s.\n", __func__);
4642 } else
4643 hugetlb_vma_lock_alloc(vma);
131a79b4 4644 }
84afd99b
AW
4645}
4646
a1e78772
MG
4647static void hugetlb_vm_op_close(struct vm_area_struct *vma)
4648{
a5516438 4649 struct hstate *h = hstate_vma(vma);
8d9bfb26 4650 struct resv_map *resv;
90481622 4651 struct hugepage_subpool *spool = subpool_vma(vma);
4e35f483 4652 unsigned long reserve, start, end;
1c5ecae3 4653 long gbl_reserve;
84afd99b 4654
8d9bfb26
MK
4655 hugetlb_vma_lock_free(vma);
4656
4657 resv = vma_resv_map(vma);
4e35f483
JK
4658 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4659 return;
84afd99b 4660
4e35f483
JK
4661 start = vma_hugecache_offset(h, vma, vma->vm_start);
4662 end = vma_hugecache_offset(h, vma, vma->vm_end);
84afd99b 4663
4e35f483 4664 reserve = (end - start) - region_count(resv, start, end);
e9fe92ae 4665 hugetlb_cgroup_uncharge_counter(resv, start, end);
4e35f483 4666 if (reserve) {
1c5ecae3
MK
4667 /*
4668 * Decrement reserve counts. The global reserve count may be
4669 * adjusted if the subpool has a minimum size.
4670 */
4671 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
4672 hugetlb_acct_memory(h, -gbl_reserve);
84afd99b 4673 }
e9fe92ae
MA
4674
4675 kref_put(&resv->refs, resv_map_release);
a1e78772
MG
4676}
4677
31383c68
DW
4678static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
4679{
4680 if (addr & ~(huge_page_mask(hstate_vma(vma))))
4681 return -EINVAL;
4682 return 0;
4683}
4684
05ea8860
DW
4685static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
4686{
aca78307 4687 return huge_page_size(hstate_vma(vma));
05ea8860
DW
4688}
4689
1da177e4
LT
4690/*
4691 * We cannot handle pagefaults against hugetlb pages at all. They cause
4692 * handle_mm_fault() to try to instantiate regular-sized pages in the
6c26d310 4693 * hugepage VMA. do_page_fault() is supposed to trap this, so BUG is we get
1da177e4
LT
4694 * this far.
4695 */
b3ec9f33 4696static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
1da177e4
LT
4697{
4698 BUG();
d0217ac0 4699 return 0;
1da177e4
LT
4700}
4701
eec3636a
JC
4702/*
4703 * When a new function is introduced to vm_operations_struct and added
4704 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
4705 * This is because under System V memory model, mappings created via
4706 * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
4707 * their original vm_ops are overwritten with shm_vm_ops.
4708 */
f0f37e2f 4709const struct vm_operations_struct hugetlb_vm_ops = {
d0217ac0 4710 .fault = hugetlb_vm_op_fault,
84afd99b 4711 .open = hugetlb_vm_op_open,
a1e78772 4712 .close = hugetlb_vm_op_close,
dd3b614f 4713 .may_split = hugetlb_vm_op_split,
05ea8860 4714 .pagesize = hugetlb_vm_op_pagesize,
1da177e4
LT
4715};
4716
1e8f889b
DG
4717static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
4718 int writable)
63551ae0
DG
4719{
4720 pte_t entry;
79c1c594 4721 unsigned int shift = huge_page_shift(hstate_vma(vma));
63551ae0 4722
1e8f889b 4723 if (writable) {
106c992a
GS
4724 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
4725 vma->vm_page_prot)));
63551ae0 4726 } else {
106c992a
GS
4727 entry = huge_pte_wrprotect(mk_huge_pte(page,
4728 vma->vm_page_prot));
63551ae0
DG
4729 }
4730 entry = pte_mkyoung(entry);
79c1c594 4731 entry = arch_make_huge_pte(entry, shift, vma->vm_flags);
63551ae0
DG
4732
4733 return entry;
4734}
4735
1e8f889b
DG
4736static void set_huge_ptep_writable(struct vm_area_struct *vma,
4737 unsigned long address, pte_t *ptep)
4738{
4739 pte_t entry;
4740
106c992a 4741 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
32f84528 4742 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4b3073e1 4743 update_mmu_cache(vma, address, ptep);
1e8f889b
DG
4744}
4745
d5ed7444 4746bool is_hugetlb_entry_migration(pte_t pte)
4a705fef
NH
4747{
4748 swp_entry_t swp;
4749
4750 if (huge_pte_none(pte) || pte_present(pte))
d5ed7444 4751 return false;
4a705fef 4752 swp = pte_to_swp_entry(pte);
d79d176a 4753 if (is_migration_entry(swp))
d5ed7444 4754 return true;
4a705fef 4755 else
d5ed7444 4756 return false;
4a705fef
NH
4757}
4758
3e5c3600 4759static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
4a705fef
NH
4760{
4761 swp_entry_t swp;
4762
4763 if (huge_pte_none(pte) || pte_present(pte))
3e5c3600 4764 return false;
4a705fef 4765 swp = pte_to_swp_entry(pte);
d79d176a 4766 if (is_hwpoison_entry(swp))
3e5c3600 4767 return true;
4a705fef 4768 else
3e5c3600 4769 return false;
4a705fef 4770}
1e8f889b 4771
4eae4efa
PX
4772static void
4773hugetlb_install_page(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
4774 struct page *new_page)
4775{
4776 __SetPageUptodate(new_page);
4eae4efa 4777 hugepage_add_new_anon_rmap(new_page, vma, addr);
1eba86c0 4778 set_huge_pte_at(vma->vm_mm, addr, ptep, make_huge_pte(vma, new_page, 1));
4eae4efa 4779 hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
4eae4efa
PX
4780 SetHPageMigratable(new_page);
4781}
4782
63551ae0 4783int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
bc70fbf2
PX
4784 struct vm_area_struct *dst_vma,
4785 struct vm_area_struct *src_vma)
63551ae0 4786{
3aa4ed80 4787 pte_t *src_pte, *dst_pte, entry;
63551ae0 4788 struct page *ptepage;
1c59827d 4789 unsigned long addr;
bc70fbf2
PX
4790 bool cow = is_cow_mapping(src_vma->vm_flags);
4791 struct hstate *h = hstate_vma(src_vma);
a5516438 4792 unsigned long sz = huge_page_size(h);
4eae4efa 4793 unsigned long npages = pages_per_huge_page(h);
ac46d4f3 4794 struct mmu_notifier_range range;
e95a9851 4795 unsigned long last_addr_mask;
e8569dd2 4796 int ret = 0;
1e8f889b 4797
ac46d4f3 4798 if (cow) {
bc70fbf2
PX
4799 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src_vma, src,
4800 src_vma->vm_start,
4801 src_vma->vm_end);
ac46d4f3 4802 mmu_notifier_invalidate_range_start(&range);
623a1ddf
DH
4803 mmap_assert_write_locked(src);
4804 raw_write_seqcount_begin(&src->write_protect_seq);
40549ba8
MK
4805 } else {
4806 /*
4807 * For shared mappings the vma lock must be held before
4808 * calling huge_pte_offset in the src vma. Otherwise, the
4809 * returned ptep could go away if part of a shared pmd and
4810 * another thread calls huge_pmd_unshare.
4811 */
4812 hugetlb_vma_lock_read(src_vma);
ac46d4f3 4813 }
e8569dd2 4814
e95a9851 4815 last_addr_mask = hugetlb_mask_last_page(h);
bc70fbf2 4816 for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) {
cb900f41 4817 spinlock_t *src_ptl, *dst_ptl;
7868a208 4818 src_pte = huge_pte_offset(src, addr, sz);
e95a9851
MK
4819 if (!src_pte) {
4820 addr |= last_addr_mask;
c74df32c 4821 continue;
e95a9851 4822 }
bc70fbf2 4823 dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz);
e8569dd2
AS
4824 if (!dst_pte) {
4825 ret = -ENOMEM;
4826 break;
4827 }
c5c99429 4828
5e41540c
MK
4829 /*
4830 * If the pagetables are shared don't copy or take references.
5e41540c 4831 *
3aa4ed80 4832 * dst_pte == src_pte is the common case of src/dest sharing.
5e41540c 4833 * However, src could have 'unshared' and dst shares with
3aa4ed80
ML
4834 * another vma. So page_count of ptep page is checked instead
4835 * to reliably determine whether pte is shared.
5e41540c 4836 */
3aa4ed80 4837 if (page_count(virt_to_page(dst_pte)) > 1) {
e95a9851 4838 addr |= last_addr_mask;
c5c99429 4839 continue;
e95a9851 4840 }
c5c99429 4841
cb900f41
KS
4842 dst_ptl = huge_pte_lock(h, dst, dst_pte);
4843 src_ptl = huge_pte_lockptr(h, src, src_pte);
4844 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4a705fef 4845 entry = huge_ptep_get(src_pte);
4eae4efa 4846again:
3aa4ed80 4847 if (huge_pte_none(entry)) {
5e41540c 4848 /*
3aa4ed80 4849 * Skip if src entry none.
5e41540c 4850 */
4a705fef 4851 ;
c2cb0dcc
NH
4852 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) {
4853 bool uffd_wp = huge_pte_uffd_wp(entry);
4854
4855 if (!userfaultfd_wp(dst_vma) && uffd_wp)
4856 entry = huge_pte_clear_uffd_wp(entry);
4857 set_huge_pte_at(dst, addr, dst_pte, entry);
4858 } else if (unlikely(is_hugetlb_entry_migration(entry))) {
4a705fef 4859 swp_entry_t swp_entry = pte_to_swp_entry(entry);
bc70fbf2 4860 bool uffd_wp = huge_pte_uffd_wp(entry);
4a705fef 4861
6c287605 4862 if (!is_readable_migration_entry(swp_entry) && cow) {
4a705fef
NH
4863 /*
4864 * COW mappings require pages in both
4865 * parent and child to be set to read.
4866 */
4dd845b5
AP
4867 swp_entry = make_readable_migration_entry(
4868 swp_offset(swp_entry));
4a705fef 4869 entry = swp_entry_to_pte(swp_entry);
bc70fbf2
PX
4870 if (userfaultfd_wp(src_vma) && uffd_wp)
4871 entry = huge_pte_mkuffd_wp(entry);
18f39629 4872 set_huge_pte_at(src, addr, src_pte, entry);
4a705fef 4873 }
bc70fbf2
PX
4874 if (!userfaultfd_wp(dst_vma) && uffd_wp)
4875 entry = huge_pte_clear_uffd_wp(entry);
18f39629 4876 set_huge_pte_at(dst, addr, dst_pte, entry);
bc70fbf2
PX
4877 } else if (unlikely(is_pte_marker(entry))) {
4878 /*
4879 * We copy the pte marker only if the dst vma has
4880 * uffd-wp enabled.
4881 */
4882 if (userfaultfd_wp(dst_vma))
4883 set_huge_pte_at(dst, addr, dst_pte, entry);
4a705fef 4884 } else {
4eae4efa
PX
4885 entry = huge_ptep_get(src_pte);
4886 ptepage = pte_page(entry);
4887 get_page(ptepage);
4888
4889 /*
fb3d824d
DH
4890 * Failing to duplicate the anon rmap is a rare case
4891 * where we see pinned hugetlb pages while they're
4892 * prone to COW. We need to do the COW earlier during
4893 * fork.
4eae4efa
PX
4894 *
4895 * When pre-allocating the page or copying data, we
4896 * need to be without the pgtable locks since we could
4897 * sleep during the process.
4898 */
fb3d824d
DH
4899 if (!PageAnon(ptepage)) {
4900 page_dup_file_rmap(ptepage, true);
bc70fbf2
PX
4901 } else if (page_try_dup_anon_rmap(ptepage, true,
4902 src_vma)) {
4eae4efa
PX
4903 pte_t src_pte_old = entry;
4904 struct page *new;
4905
4906 spin_unlock(src_ptl);
4907 spin_unlock(dst_ptl);
4908 /* Do not use reserve as it's private owned */
bc70fbf2 4909 new = alloc_huge_page(dst_vma, addr, 1);
4eae4efa
PX
4910 if (IS_ERR(new)) {
4911 put_page(ptepage);
4912 ret = PTR_ERR(new);
4913 break;
4914 }
bc70fbf2 4915 copy_user_huge_page(new, ptepage, addr, dst_vma,
4eae4efa
PX
4916 npages);
4917 put_page(ptepage);
4918
4919 /* Install the new huge page if src pte stable */
4920 dst_ptl = huge_pte_lock(h, dst, dst_pte);
4921 src_ptl = huge_pte_lockptr(h, src, src_pte);
4922 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4923 entry = huge_ptep_get(src_pte);
4924 if (!pte_same(src_pte_old, entry)) {
bc70fbf2 4925 restore_reserve_on_error(h, dst_vma, addr,
846be085 4926 new);
4eae4efa 4927 put_page(new);
3aa4ed80 4928 /* huge_ptep of dst_pte won't change as in child */
4eae4efa
PX
4929 goto again;
4930 }
bc70fbf2 4931 hugetlb_install_page(dst_vma, dst_pte, addr, new);
4eae4efa
PX
4932 spin_unlock(src_ptl);
4933 spin_unlock(dst_ptl);
4934 continue;
4935 }
4936
34ee645e 4937 if (cow) {
0f10851e
JG
4938 /*
4939 * No need to notify as we are downgrading page
4940 * table protection not changing it to point
4941 * to a new page.
4942 *
ee65728e 4943 * See Documentation/mm/mmu_notifier.rst
0f10851e 4944 */
7f2e9525 4945 huge_ptep_set_wrprotect(src, addr, src_pte);
84894e1c 4946 entry = huge_pte_wrprotect(entry);
34ee645e 4947 }
4eae4efa 4948
1c59827d 4949 set_huge_pte_at(dst, addr, dst_pte, entry);
4eae4efa 4950 hugetlb_count_add(npages, dst);
1c59827d 4951 }
cb900f41
KS
4952 spin_unlock(src_ptl);
4953 spin_unlock(dst_ptl);
63551ae0 4954 }
63551ae0 4955
623a1ddf
DH
4956 if (cow) {
4957 raw_write_seqcount_end(&src->write_protect_seq);
ac46d4f3 4958 mmu_notifier_invalidate_range_end(&range);
40549ba8
MK
4959 } else {
4960 hugetlb_vma_unlock_read(src_vma);
623a1ddf 4961 }
e8569dd2
AS
4962
4963 return ret;
63551ae0
DG
4964}
4965
550a7d60 4966static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr,
db110a99 4967 unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte)
550a7d60
MA
4968{
4969 struct hstate *h = hstate_vma(vma);
4970 struct mm_struct *mm = vma->vm_mm;
550a7d60 4971 spinlock_t *src_ptl, *dst_ptl;
db110a99 4972 pte_t pte;
550a7d60 4973
550a7d60
MA
4974 dst_ptl = huge_pte_lock(h, mm, dst_pte);
4975 src_ptl = huge_pte_lockptr(h, mm, src_pte);
4976
4977 /*
4978 * We don't have to worry about the ordering of src and dst ptlocks
4979 * because exclusive mmap_sem (or the i_mmap_lock) prevents deadlock.
4980 */
4981 if (src_ptl != dst_ptl)
4982 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4983
4984 pte = huge_ptep_get_and_clear(mm, old_addr, src_pte);
4985 set_huge_pte_at(mm, new_addr, dst_pte, pte);
4986
4987 if (src_ptl != dst_ptl)
4988 spin_unlock(src_ptl);
4989 spin_unlock(dst_ptl);
4990}
4991
4992int move_hugetlb_page_tables(struct vm_area_struct *vma,
4993 struct vm_area_struct *new_vma,
4994 unsigned long old_addr, unsigned long new_addr,
4995 unsigned long len)
4996{
4997 struct hstate *h = hstate_vma(vma);
4998 struct address_space *mapping = vma->vm_file->f_mapping;
4999 unsigned long sz = huge_page_size(h);
5000 struct mm_struct *mm = vma->vm_mm;
5001 unsigned long old_end = old_addr + len;
e95a9851 5002 unsigned long last_addr_mask;
550a7d60
MA
5003 pte_t *src_pte, *dst_pte;
5004 struct mmu_notifier_range range;
3d0b95cd 5005 bool shared_pmd = false;
550a7d60
MA
5006
5007 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, old_addr,
5008 old_end);
5009 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
3d0b95cd
BW
5010 /*
5011 * In case of shared PMDs, we should cover the maximum possible
5012 * range.
5013 */
5014 flush_cache_range(vma, range.start, range.end);
5015
550a7d60 5016 mmu_notifier_invalidate_range_start(&range);
e95a9851 5017 last_addr_mask = hugetlb_mask_last_page(h);
550a7d60 5018 /* Prevent race with file truncation */
40549ba8 5019 hugetlb_vma_lock_write(vma);
550a7d60
MA
5020 i_mmap_lock_write(mapping);
5021 for (; old_addr < old_end; old_addr += sz, new_addr += sz) {
5022 src_pte = huge_pte_offset(mm, old_addr, sz);
e95a9851
MK
5023 if (!src_pte) {
5024 old_addr |= last_addr_mask;
5025 new_addr |= last_addr_mask;
550a7d60 5026 continue;
e95a9851 5027 }
550a7d60
MA
5028 if (huge_pte_none(huge_ptep_get(src_pte)))
5029 continue;
5030
4ddb4d91 5031 if (huge_pmd_unshare(mm, vma, old_addr, src_pte)) {
3d0b95cd 5032 shared_pmd = true;
4ddb4d91
MK
5033 old_addr |= last_addr_mask;
5034 new_addr |= last_addr_mask;
550a7d60 5035 continue;
3d0b95cd 5036 }
550a7d60
MA
5037
5038 dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz);
5039 if (!dst_pte)
5040 break;
5041
db110a99 5042 move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte);
550a7d60 5043 }
3d0b95cd
BW
5044
5045 if (shared_pmd)
5046 flush_tlb_range(vma, range.start, range.end);
5047 else
5048 flush_tlb_range(vma, old_end - len, old_end);
550a7d60 5049 mmu_notifier_invalidate_range_end(&range);
13e4ad2c 5050 i_mmap_unlock_write(mapping);
40549ba8 5051 hugetlb_vma_unlock_write(vma);
550a7d60
MA
5052
5053 return len + old_addr - old_end;
5054}
5055
73c54763
PX
5056static void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
5057 unsigned long start, unsigned long end,
05e90bd0 5058 struct page *ref_page, zap_flags_t zap_flags)
63551ae0
DG
5059{
5060 struct mm_struct *mm = vma->vm_mm;
5061 unsigned long address;
c7546f8f 5062 pte_t *ptep;
63551ae0 5063 pte_t pte;
cb900f41 5064 spinlock_t *ptl;
63551ae0 5065 struct page *page;
a5516438
AK
5066 struct hstate *h = hstate_vma(vma);
5067 unsigned long sz = huge_page_size(h);
ac46d4f3 5068 struct mmu_notifier_range range;
e95a9851 5069 unsigned long last_addr_mask;
a4a118f2 5070 bool force_flush = false;
a5516438 5071
63551ae0 5072 WARN_ON(!is_vm_hugetlb_page(vma));
a5516438
AK
5073 BUG_ON(start & ~huge_page_mask(h));
5074 BUG_ON(end & ~huge_page_mask(h));
63551ae0 5075
07e32661
AK
5076 /*
5077 * This is a hugetlb vma, all the pte entries should point
5078 * to huge page.
5079 */
ed6a7935 5080 tlb_change_page_size(tlb, sz);
24669e58 5081 tlb_start_vma(tlb, vma);
dff11abe
MK
5082
5083 /*
5084 * If sharing possible, alert mmu notifiers of worst case.
5085 */
6f4f13e8
JG
5086 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
5087 end);
ac46d4f3
JG
5088 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5089 mmu_notifier_invalidate_range_start(&range);
e95a9851 5090 last_addr_mask = hugetlb_mask_last_page(h);
569f48b8 5091 address = start;
569f48b8 5092 for (; address < end; address += sz) {
7868a208 5093 ptep = huge_pte_offset(mm, address, sz);
e95a9851
MK
5094 if (!ptep) {
5095 address |= last_addr_mask;
c7546f8f 5096 continue;
e95a9851 5097 }
c7546f8f 5098
cb900f41 5099 ptl = huge_pte_lock(h, mm, ptep);
4ddb4d91 5100 if (huge_pmd_unshare(mm, vma, address, ptep)) {
31d49da5 5101 spin_unlock(ptl);
a4a118f2
NA
5102 tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE);
5103 force_flush = true;
4ddb4d91 5104 address |= last_addr_mask;
31d49da5
AK
5105 continue;
5106 }
39dde65c 5107
6629326b 5108 pte = huge_ptep_get(ptep);
31d49da5
AK
5109 if (huge_pte_none(pte)) {
5110 spin_unlock(ptl);
5111 continue;
5112 }
6629326b
HD
5113
5114 /*
9fbc1f63
NH
5115 * Migrating hugepage or HWPoisoned hugepage is already
5116 * unmapped and its refcount is dropped, so just clear pte here.
6629326b 5117 */
9fbc1f63 5118 if (unlikely(!pte_present(pte))) {
05e90bd0
PX
5119 /*
5120 * If the pte was wr-protected by uffd-wp in any of the
5121 * swap forms, meanwhile the caller does not want to
5122 * drop the uffd-wp bit in this zap, then replace the
5123 * pte with a marker.
5124 */
5125 if (pte_swp_uffd_wp_any(pte) &&
5126 !(zap_flags & ZAP_FLAG_DROP_MARKER))
5127 set_huge_pte_at(mm, address, ptep,
5128 make_pte_marker(PTE_MARKER_UFFD_WP));
5129 else
5130 huge_pte_clear(mm, address, ptep, sz);
31d49da5
AK
5131 spin_unlock(ptl);
5132 continue;
8c4894c6 5133 }
6629326b
HD
5134
5135 page = pte_page(pte);
04f2cbe3
MG
5136 /*
5137 * If a reference page is supplied, it is because a specific
5138 * page is being unmapped, not a range. Ensure the page we
5139 * are about to unmap is the actual page of interest.
5140 */
5141 if (ref_page) {
31d49da5
AK
5142 if (page != ref_page) {
5143 spin_unlock(ptl);
5144 continue;
5145 }
04f2cbe3
MG
5146 /*
5147 * Mark the VMA as having unmapped its page so that
5148 * future faults in this VMA will fail rather than
5149 * looking like data was lost
5150 */
5151 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
5152 }
5153
c7546f8f 5154 pte = huge_ptep_get_and_clear(mm, address, ptep);
b528e4b6 5155 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
106c992a 5156 if (huge_pte_dirty(pte))
6649a386 5157 set_page_dirty(page);
05e90bd0
PX
5158 /* Leave a uffd-wp pte marker if needed */
5159 if (huge_pte_uffd_wp(pte) &&
5160 !(zap_flags & ZAP_FLAG_DROP_MARKER))
5161 set_huge_pte_at(mm, address, ptep,
5162 make_pte_marker(PTE_MARKER_UFFD_WP));
5d317b2b 5163 hugetlb_count_sub(pages_per_huge_page(h), mm);
cea86fe2 5164 page_remove_rmap(page, vma, true);
31d49da5 5165
cb900f41 5166 spin_unlock(ptl);
e77b0852 5167 tlb_remove_page_size(tlb, page, huge_page_size(h));
31d49da5
AK
5168 /*
5169 * Bail out after unmapping reference page if supplied
5170 */
5171 if (ref_page)
5172 break;
fe1668ae 5173 }
ac46d4f3 5174 mmu_notifier_invalidate_range_end(&range);
24669e58 5175 tlb_end_vma(tlb, vma);
a4a118f2
NA
5176
5177 /*
5178 * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We
5179 * could defer the flush until now, since by holding i_mmap_rwsem we
5180 * guaranteed that the last refernece would not be dropped. But we must
5181 * do the flushing before we return, as otherwise i_mmap_rwsem will be
5182 * dropped and the last reference to the shared PMDs page might be
5183 * dropped as well.
5184 *
5185 * In theory we could defer the freeing of the PMD pages as well, but
5186 * huge_pmd_unshare() relies on the exact page_count for the PMD page to
5187 * detect sharing, so we cannot defer the release of the page either.
5188 * Instead, do flush now.
5189 */
5190 if (force_flush)
5191 tlb_flush_mmu_tlbonly(tlb);
1da177e4 5192}
63551ae0 5193
d833352a
MG
5194void __unmap_hugepage_range_final(struct mmu_gather *tlb,
5195 struct vm_area_struct *vma, unsigned long start,
05e90bd0
PX
5196 unsigned long end, struct page *ref_page,
5197 zap_flags_t zap_flags)
d833352a 5198{
131a79b4
MK
5199 hugetlb_vma_lock_write(vma);
5200 i_mmap_lock_write(vma->vm_file->f_mapping);
5201
05e90bd0 5202 __unmap_hugepage_range(tlb, vma, start, end, ref_page, zap_flags);
d833352a 5203
04ada095
MK
5204 if (zap_flags & ZAP_FLAG_UNMAP) { /* final unmap */
5205 /*
5206 * Unlock and free the vma lock before releasing i_mmap_rwsem.
5207 * When the vma_lock is freed, this makes the vma ineligible
5208 * for pmd sharing. And, i_mmap_rwsem is required to set up
5209 * pmd sharing. This is important as page tables for this
5210 * unmapped range will be asynchrously deleted. If the page
5211 * tables are shared, there will be issues when accessed by
5212 * someone else.
5213 */
5214 __hugetlb_vma_unlock_write_free(vma);
5215 i_mmap_unlock_write(vma->vm_file->f_mapping);
5216 } else {
5217 i_mmap_unlock_write(vma->vm_file->f_mapping);
5218 hugetlb_vma_unlock_write(vma);
5219 }
d833352a
MG
5220}
5221
502717f4 5222void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
05e90bd0
PX
5223 unsigned long end, struct page *ref_page,
5224 zap_flags_t zap_flags)
502717f4 5225{
24669e58 5226 struct mmu_gather tlb;
dff11abe 5227
a72afd87 5228 tlb_gather_mmu(&tlb, vma->vm_mm);
05e90bd0 5229 __unmap_hugepage_range(&tlb, vma, start, end, ref_page, zap_flags);
ae8eba8b 5230 tlb_finish_mmu(&tlb);
502717f4
CK
5231}
5232
04f2cbe3
MG
5233/*
5234 * This is called when the original mapper is failing to COW a MAP_PRIVATE
578b7725 5235 * mapping it owns the reserve page for. The intention is to unmap the page
04f2cbe3
MG
5236 * from other VMAs and let the children be SIGKILLed if they are faulting the
5237 * same region.
5238 */
2f4612af
DB
5239static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
5240 struct page *page, unsigned long address)
04f2cbe3 5241{
7526674d 5242 struct hstate *h = hstate_vma(vma);
04f2cbe3
MG
5243 struct vm_area_struct *iter_vma;
5244 struct address_space *mapping;
04f2cbe3
MG
5245 pgoff_t pgoff;
5246
5247 /*
5248 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
5249 * from page cache lookup which is in HPAGE_SIZE units.
5250 */
7526674d 5251 address = address & huge_page_mask(h);
36e4f20a
MH
5252 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
5253 vma->vm_pgoff;
93c76a3d 5254 mapping = vma->vm_file->f_mapping;
04f2cbe3 5255
4eb2b1dc
MG
5256 /*
5257 * Take the mapping lock for the duration of the table walk. As
5258 * this mapping should be shared between all the VMAs,
5259 * __unmap_hugepage_range() is called as the lock is already held
5260 */
83cde9e8 5261 i_mmap_lock_write(mapping);
6b2dbba8 5262 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
04f2cbe3
MG
5263 /* Do not unmap the current VMA */
5264 if (iter_vma == vma)
5265 continue;
5266
2f84a899
MG
5267 /*
5268 * Shared VMAs have their own reserves and do not affect
5269 * MAP_PRIVATE accounting but it is possible that a shared
5270 * VMA is using the same page so check and skip such VMAs.
5271 */
5272 if (iter_vma->vm_flags & VM_MAYSHARE)
5273 continue;
5274
04f2cbe3
MG
5275 /*
5276 * Unmap the page from other VMAs without their own reserves.
5277 * They get marked to be SIGKILLed if they fault in these
5278 * areas. This is because a future no-page fault on this VMA
5279 * could insert a zeroed page instead of the data existing
5280 * from the time of fork. This would look like data corruption
5281 */
5282 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
24669e58 5283 unmap_hugepage_range(iter_vma, address,
05e90bd0 5284 address + huge_page_size(h), page, 0);
04f2cbe3 5285 }
83cde9e8 5286 i_mmap_unlock_write(mapping);
04f2cbe3
MG
5287}
5288
0fe6e20b 5289/*
c89357e2 5290 * hugetlb_wp() should be called with page lock of the original hugepage held.
aa6d2e8c 5291 * Called with hugetlb_fault_mutex_table held and pte_page locked so we
ef009b25
MH
5292 * cannot race with other handlers or page migration.
5293 * Keep the pte_same checks anyway to make transition from the mutex easier.
0fe6e20b 5294 */
c89357e2
DH
5295static vm_fault_t hugetlb_wp(struct mm_struct *mm, struct vm_area_struct *vma,
5296 unsigned long address, pte_t *ptep, unsigned int flags,
3999f52e 5297 struct page *pagecache_page, spinlock_t *ptl)
1e8f889b 5298{
c89357e2 5299 const bool unshare = flags & FAULT_FLAG_UNSHARE;
3999f52e 5300 pte_t pte;
a5516438 5301 struct hstate *h = hstate_vma(vma);
1e8f889b 5302 struct page *old_page, *new_page;
2b740303
SJ
5303 int outside_reserve = 0;
5304 vm_fault_t ret = 0;
974e6d66 5305 unsigned long haddr = address & huge_page_mask(h);
ac46d4f3 5306 struct mmu_notifier_range range;
1e8f889b 5307
c89357e2
DH
5308 VM_BUG_ON(unshare && (flags & FOLL_WRITE));
5309 VM_BUG_ON(!unshare && !(flags & FOLL_WRITE));
5310
1d8d1464
DH
5311 /*
5312 * hugetlb does not support FOLL_FORCE-style write faults that keep the
5313 * PTE mapped R/O such as maybe_mkwrite() would do.
5314 */
5315 if (WARN_ON_ONCE(!unshare && !(vma->vm_flags & VM_WRITE)))
5316 return VM_FAULT_SIGSEGV;
5317
5318 /* Let's take out MAP_SHARED mappings first. */
5319 if (vma->vm_flags & VM_MAYSHARE) {
5320 if (unlikely(unshare))
5321 return 0;
5322 set_huge_ptep_writable(vma, haddr, ptep);
5323 return 0;
5324 }
5325
3999f52e 5326 pte = huge_ptep_get(ptep);
1e8f889b
DG
5327 old_page = pte_page(pte);
5328
662ce1dc
YY
5329 delayacct_wpcopy_start();
5330
04f2cbe3 5331retry_avoidcopy:
c89357e2
DH
5332 /*
5333 * If no-one else is actually using this page, we're the exclusive
5334 * owner and can reuse this page.
5335 */
37a2140d 5336 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
c89357e2
DH
5337 if (!PageAnonExclusive(old_page))
5338 page_move_anon_rmap(old_page, vma);
5339 if (likely(!unshare))
5340 set_huge_ptep_writable(vma, haddr, ptep);
662ce1dc
YY
5341
5342 delayacct_wpcopy_end();
83c54070 5343 return 0;
1e8f889b 5344 }
6c287605
DH
5345 VM_BUG_ON_PAGE(PageAnon(old_page) && PageAnonExclusive(old_page),
5346 old_page);
1e8f889b 5347
04f2cbe3
MG
5348 /*
5349 * If the process that created a MAP_PRIVATE mapping is about to
5350 * perform a COW due to a shared page count, attempt to satisfy
5351 * the allocation without using the existing reserves. The pagecache
5352 * page is used to determine if the reserve at this address was
5353 * consumed or not. If reserves were used, a partial faulted mapping
5354 * at the time of fork() could consume its reserves on COW instead
5355 * of the full address range.
5356 */
5944d011 5357 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
04f2cbe3
MG
5358 old_page != pagecache_page)
5359 outside_reserve = 1;
5360
09cbfeaf 5361 get_page(old_page);
b76c8cfb 5362
ad4404a2
DB
5363 /*
5364 * Drop page table lock as buddy allocator may be called. It will
5365 * be acquired again before returning to the caller, as expected.
5366 */
cb900f41 5367 spin_unlock(ptl);
5b7a1d40 5368 new_page = alloc_huge_page(vma, haddr, outside_reserve);
1e8f889b 5369
2fc39cec 5370 if (IS_ERR(new_page)) {
04f2cbe3
MG
5371 /*
5372 * If a process owning a MAP_PRIVATE mapping fails to COW,
5373 * it is due to references held by a child and an insufficient
5374 * huge page pool. To guarantee the original mappers
5375 * reliability, unmap the page from child processes. The child
5376 * may get SIGKILLed if it later faults.
5377 */
5378 if (outside_reserve) {
40549ba8
MK
5379 struct address_space *mapping = vma->vm_file->f_mapping;
5380 pgoff_t idx;
5381 u32 hash;
5382
09cbfeaf 5383 put_page(old_page);
40549ba8
MK
5384 /*
5385 * Drop hugetlb_fault_mutex and vma_lock before
5386 * unmapping. unmapping needs to hold vma_lock
5387 * in write mode. Dropping vma_lock in read mode
5388 * here is OK as COW mappings do not interact with
5389 * PMD sharing.
5390 *
5391 * Reacquire both after unmap operation.
5392 */
5393 idx = vma_hugecache_offset(h, vma, haddr);
5394 hash = hugetlb_fault_mutex_hash(mapping, idx);
5395 hugetlb_vma_unlock_read(vma);
5396 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5397
5b7a1d40 5398 unmap_ref_private(mm, vma, old_page, haddr);
40549ba8
MK
5399
5400 mutex_lock(&hugetlb_fault_mutex_table[hash]);
5401 hugetlb_vma_lock_read(vma);
2f4612af 5402 spin_lock(ptl);
5b7a1d40 5403 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
2f4612af
DB
5404 if (likely(ptep &&
5405 pte_same(huge_ptep_get(ptep), pte)))
5406 goto retry_avoidcopy;
5407 /*
5408 * race occurs while re-acquiring page table
5409 * lock, and our job is done.
5410 */
662ce1dc 5411 delayacct_wpcopy_end();
2f4612af 5412 return 0;
04f2cbe3
MG
5413 }
5414
2b740303 5415 ret = vmf_error(PTR_ERR(new_page));
ad4404a2 5416 goto out_release_old;
1e8f889b
DG
5417 }
5418
0fe6e20b
NH
5419 /*
5420 * When the original hugepage is shared one, it does not have
5421 * anon_vma prepared.
5422 */
44e2aa93 5423 if (unlikely(anon_vma_prepare(vma))) {
ad4404a2
DB
5424 ret = VM_FAULT_OOM;
5425 goto out_release_all;
44e2aa93 5426 }
0fe6e20b 5427
974e6d66 5428 copy_user_huge_page(new_page, old_page, address, vma,
47ad8475 5429 pages_per_huge_page(h));
0ed361de 5430 __SetPageUptodate(new_page);
1e8f889b 5431
7269f999 5432 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
6f4f13e8 5433 haddr + huge_page_size(h));
ac46d4f3 5434 mmu_notifier_invalidate_range_start(&range);
ad4404a2 5435
b76c8cfb 5436 /*
cb900f41 5437 * Retake the page table lock to check for racing updates
b76c8cfb
LW
5438 * before the page tables are altered
5439 */
cb900f41 5440 spin_lock(ptl);
5b7a1d40 5441 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
a9af0c5d 5442 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
c89357e2 5443 /* Break COW or unshare */
5b7a1d40 5444 huge_ptep_clear_flush(vma, haddr, ptep);
ac46d4f3 5445 mmu_notifier_invalidate_range(mm, range.start, range.end);
cea86fe2 5446 page_remove_rmap(old_page, vma, true);
5b7a1d40 5447 hugepage_add_new_anon_rmap(new_page, vma, haddr);
1eba86c0 5448 set_huge_pte_at(mm, haddr, ptep,
c89357e2 5449 make_huge_pte(vma, new_page, !unshare));
8f251a3d 5450 SetHPageMigratable(new_page);
1e8f889b
DG
5451 /* Make the old page be freed below */
5452 new_page = old_page;
5453 }
cb900f41 5454 spin_unlock(ptl);
ac46d4f3 5455 mmu_notifier_invalidate_range_end(&range);
ad4404a2 5456out_release_all:
c89357e2
DH
5457 /*
5458 * No restore in case of successful pagetable update (Break COW or
5459 * unshare)
5460 */
c7b1850d
MK
5461 if (new_page != old_page)
5462 restore_reserve_on_error(h, vma, haddr, new_page);
09cbfeaf 5463 put_page(new_page);
ad4404a2 5464out_release_old:
09cbfeaf 5465 put_page(old_page);
8312034f 5466
ad4404a2 5467 spin_lock(ptl); /* Caller expects lock to be held */
662ce1dc
YY
5468
5469 delayacct_wpcopy_end();
ad4404a2 5470 return ret;
1e8f889b
DG
5471}
5472
3ae77f43
HD
5473/*
5474 * Return whether there is a pagecache page to back given address within VMA.
5475 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
5476 */
5477static bool hugetlbfs_pagecache_present(struct hstate *h,
2a15efc9
HD
5478 struct vm_area_struct *vma, unsigned long address)
5479{
5480 struct address_space *mapping;
5481 pgoff_t idx;
5482 struct page *page;
5483
5484 mapping = vma->vm_file->f_mapping;
5485 idx = vma_hugecache_offset(h, vma, address);
5486
5487 page = find_get_page(mapping, idx);
5488 if (page)
5489 put_page(page);
5490 return page != NULL;
5491}
5492
7e1813d4 5493int hugetlb_add_to_page_cache(struct page *page, struct address_space *mapping,
ab76ad54
MK
5494 pgoff_t idx)
5495{
d9ef44de 5496 struct folio *folio = page_folio(page);
ab76ad54
MK
5497 struct inode *inode = mapping->host;
5498 struct hstate *h = hstate_inode(inode);
d9ef44de 5499 int err;
ab76ad54 5500
d9ef44de
MWO
5501 __folio_set_locked(folio);
5502 err = __filemap_add_folio(mapping, folio, idx, GFP_KERNEL, NULL);
5503
5504 if (unlikely(err)) {
5505 __folio_clear_locked(folio);
ab76ad54 5506 return err;
d9ef44de 5507 }
d6995da3 5508 ClearHPageRestoreReserve(page);
ab76ad54 5509
22146c3c 5510 /*
d9ef44de 5511 * mark folio dirty so that it will not be removed from cache/file
22146c3c
MK
5512 * by non-hugetlbfs specific code paths.
5513 */
d9ef44de 5514 folio_mark_dirty(folio);
22146c3c 5515
ab76ad54
MK
5516 spin_lock(&inode->i_lock);
5517 inode->i_blocks += blocks_per_huge_page(h);
5518 spin_unlock(&inode->i_lock);
5519 return 0;
5520}
5521
7677f7fd
AR
5522static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma,
5523 struct address_space *mapping,
5524 pgoff_t idx,
5525 unsigned int flags,
5526 unsigned long haddr,
824ddc60 5527 unsigned long addr,
7677f7fd
AR
5528 unsigned long reason)
5529{
7677f7fd
AR
5530 u32 hash;
5531 struct vm_fault vmf = {
5532 .vma = vma,
5533 .address = haddr,
824ddc60 5534 .real_address = addr,
7677f7fd
AR
5535 .flags = flags,
5536
5537 /*
5538 * Hard to debug if it ends up being
5539 * used by a callee that assumes
5540 * something about the other
5541 * uninitialized fields... same as in
5542 * memory.c
5543 */
5544 };
5545
5546 /*
958f32ce
LS
5547 * vma_lock and hugetlb_fault_mutex must be dropped before handling
5548 * userfault. Also mmap_lock could be dropped due to handling
5549 * userfault, any vma operation should be careful from here.
7677f7fd 5550 */
40549ba8 5551 hugetlb_vma_unlock_read(vma);
7677f7fd
AR
5552 hash = hugetlb_fault_mutex_hash(mapping, idx);
5553 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
958f32ce 5554 return handle_userfault(&vmf, reason);
7677f7fd
AR
5555}
5556
2ea7ff1e
PX
5557/*
5558 * Recheck pte with pgtable lock. Returns true if pte didn't change, or
5559 * false if pte changed or is changing.
5560 */
5561static bool hugetlb_pte_stable(struct hstate *h, struct mm_struct *mm,
5562 pte_t *ptep, pte_t old_pte)
5563{
5564 spinlock_t *ptl;
5565 bool same;
5566
5567 ptl = huge_pte_lock(h, mm, ptep);
5568 same = pte_same(huge_ptep_get(ptep), old_pte);
5569 spin_unlock(ptl);
5570
5571 return same;
5572}
5573
2b740303
SJ
5574static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
5575 struct vm_area_struct *vma,
5576 struct address_space *mapping, pgoff_t idx,
c64e912c
PX
5577 unsigned long address, pte_t *ptep,
5578 pte_t old_pte, unsigned int flags)
ac9b9c66 5579{
a5516438 5580 struct hstate *h = hstate_vma(vma);
2b740303 5581 vm_fault_t ret = VM_FAULT_SIGBUS;
409eb8c2 5582 int anon_rmap = 0;
4c887265 5583 unsigned long size;
4c887265 5584 struct page *page;
1e8f889b 5585 pte_t new_pte;
cb900f41 5586 spinlock_t *ptl;
285b8dca 5587 unsigned long haddr = address & huge_page_mask(h);
c7b1850d 5588 bool new_page, new_pagecache_page = false;
958f32ce 5589 u32 hash = hugetlb_fault_mutex_hash(mapping, idx);
4c887265 5590
04f2cbe3
MG
5591 /*
5592 * Currently, we are forced to kill the process in the event the
5593 * original mapper has unmapped pages from the child due to a failed
c89357e2
DH
5594 * COW/unsharing. Warn that such a situation has occurred as it may not
5595 * be obvious.
04f2cbe3
MG
5596 */
5597 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
910154d5 5598 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
ffb22af5 5599 current->pid);
958f32ce 5600 goto out;
04f2cbe3
MG
5601 }
5602
4c887265 5603 /*
188a3972
MK
5604 * Use page lock to guard against racing truncation
5605 * before we get page_table_lock.
4c887265 5606 */
c7b1850d 5607 new_page = false;
6bda666a
CL
5608 page = find_lock_page(mapping, idx);
5609 if (!page) {
188a3972
MK
5610 size = i_size_read(mapping->host) >> huge_page_shift(h);
5611 if (idx >= size)
5612 goto out;
7677f7fd 5613 /* Check for page in userfault range */
2ea7ff1e
PX
5614 if (userfaultfd_missing(vma)) {
5615 /*
5616 * Since hugetlb_no_page() was examining pte
5617 * without pgtable lock, we need to re-test under
5618 * lock because the pte may not be stable and could
5619 * have changed from under us. Try to detect
5620 * either changed or during-changing ptes and retry
5621 * properly when needed.
5622 *
5623 * Note that userfaultfd is actually fine with
5624 * false positives (e.g. caused by pte changed),
5625 * but not wrong logical events (e.g. caused by
5626 * reading a pte during changing). The latter can
5627 * confuse the userspace, so the strictness is very
5628 * much preferred. E.g., MISSING event should
5629 * never happen on the page after UFFDIO_COPY has
5630 * correctly installed the page and returned.
5631 */
5632 if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
5633 ret = 0;
5634 goto out;
5635 }
5636
5637 return hugetlb_handle_userfault(vma, mapping, idx, flags,
5638 haddr, address,
5639 VM_UFFD_MISSING);
5640 }
1a1aad8a 5641
285b8dca 5642 page = alloc_huge_page(vma, haddr, 0);
2fc39cec 5643 if (IS_ERR(page)) {
4643d67e
MK
5644 /*
5645 * Returning error will result in faulting task being
5646 * sent SIGBUS. The hugetlb fault mutex prevents two
5647 * tasks from racing to fault in the same page which
5648 * could result in false unable to allocate errors.
5649 * Page migration does not take the fault mutex, but
5650 * does a clear then write of pte's under page table
5651 * lock. Page fault code could race with migration,
5652 * notice the clear pte and try to allocate a page
5653 * here. Before returning error, get ptl and make
5654 * sure there really is no pte entry.
5655 */
f9bf6c03 5656 if (hugetlb_pte_stable(h, mm, ptep, old_pte))
d83e6c8a 5657 ret = vmf_error(PTR_ERR(page));
f9bf6c03
PX
5658 else
5659 ret = 0;
6bda666a
CL
5660 goto out;
5661 }
47ad8475 5662 clear_huge_page(page, address, pages_per_huge_page(h));
0ed361de 5663 __SetPageUptodate(page);
cb6acd01 5664 new_page = true;
ac9b9c66 5665
f83a275d 5666 if (vma->vm_flags & VM_MAYSHARE) {
7e1813d4 5667 int err = hugetlb_add_to_page_cache(page, mapping, idx);
6bda666a 5668 if (err) {
3a5497a2
ML
5669 /*
5670 * err can't be -EEXIST which implies someone
5671 * else consumed the reservation since hugetlb
5672 * fault mutex is held when add a hugetlb page
5673 * to the page cache. So it's safe to call
5674 * restore_reserve_on_error() here.
5675 */
5676 restore_reserve_on_error(h, vma, haddr, page);
6bda666a 5677 put_page(page);
6bda666a
CL
5678 goto out;
5679 }
c7b1850d 5680 new_pagecache_page = true;
23be7468 5681 } else {
6bda666a 5682 lock_page(page);
0fe6e20b
NH
5683 if (unlikely(anon_vma_prepare(vma))) {
5684 ret = VM_FAULT_OOM;
5685 goto backout_unlocked;
5686 }
409eb8c2 5687 anon_rmap = 1;
23be7468 5688 }
0fe6e20b 5689 } else {
998b4382
NH
5690 /*
5691 * If memory error occurs between mmap() and fault, some process
5692 * don't have hwpoisoned swap entry for errored virtual address.
5693 * So we need to block hugepage fault by PG_hwpoison bit check.
5694 */
5695 if (unlikely(PageHWPoison(page))) {
0eb98f15 5696 ret = VM_FAULT_HWPOISON_LARGE |
972dc4de 5697 VM_FAULT_SET_HINDEX(hstate_index(h));
998b4382
NH
5698 goto backout_unlocked;
5699 }
7677f7fd
AR
5700
5701 /* Check for page in userfault range. */
5702 if (userfaultfd_minor(vma)) {
5703 unlock_page(page);
5704 put_page(page);
2ea7ff1e
PX
5705 /* See comment in userfaultfd_missing() block above */
5706 if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
5707 ret = 0;
5708 goto out;
5709 }
5710 return hugetlb_handle_userfault(vma, mapping, idx, flags,
5711 haddr, address,
5712 VM_UFFD_MINOR);
7677f7fd 5713 }
6bda666a 5714 }
1e8f889b 5715
57303d80
AW
5716 /*
5717 * If we are going to COW a private mapping later, we examine the
5718 * pending reservations for this page now. This will ensure that
5719 * any allocations necessary to record that reservation occur outside
5720 * the spinlock.
5721 */
5e911373 5722 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
285b8dca 5723 if (vma_needs_reservation(h, vma, haddr) < 0) {
2b26736c
AW
5724 ret = VM_FAULT_OOM;
5725 goto backout_unlocked;
5726 }
5e911373 5727 /* Just decrements count, does not deallocate */
285b8dca 5728 vma_end_reservation(h, vma, haddr);
5e911373 5729 }
57303d80 5730
8bea8052 5731 ptl = huge_pte_lock(h, mm, ptep);
83c54070 5732 ret = 0;
c64e912c
PX
5733 /* If pte changed from under us, retry */
5734 if (!pte_same(huge_ptep_get(ptep), old_pte))
4c887265
AL
5735 goto backout;
5736
4781593d 5737 if (anon_rmap)
285b8dca 5738 hugepage_add_new_anon_rmap(page, vma, haddr);
4781593d 5739 else
fb3d824d 5740 page_dup_file_rmap(page, true);
1e8f889b
DG
5741 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
5742 && (vma->vm_flags & VM_SHARED)));
c64e912c
PX
5743 /*
5744 * If this pte was previously wr-protected, keep it wr-protected even
5745 * if populated.
5746 */
5747 if (unlikely(pte_marker_uffd_wp(old_pte)))
5748 new_pte = huge_pte_wrprotect(huge_pte_mkuffd_wp(new_pte));
285b8dca 5749 set_huge_pte_at(mm, haddr, ptep, new_pte);
1e8f889b 5750
5d317b2b 5751 hugetlb_count_add(pages_per_huge_page(h), mm);
788c7df4 5752 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
1e8f889b 5753 /* Optimization, do the COW without a second fault */
c89357e2 5754 ret = hugetlb_wp(mm, vma, address, ptep, flags, page, ptl);
1e8f889b
DG
5755 }
5756
cb900f41 5757 spin_unlock(ptl);
cb6acd01
MK
5758
5759 /*
8f251a3d
MK
5760 * Only set HPageMigratable in newly allocated pages. Existing pages
5761 * found in the pagecache may not have HPageMigratableset if they have
5762 * been isolated for migration.
cb6acd01
MK
5763 */
5764 if (new_page)
8f251a3d 5765 SetHPageMigratable(page);
cb6acd01 5766
4c887265
AL
5767 unlock_page(page);
5768out:
958f32ce
LS
5769 hugetlb_vma_unlock_read(vma);
5770 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
ac9b9c66 5771 return ret;
4c887265
AL
5772
5773backout:
cb900f41 5774 spin_unlock(ptl);
2b26736c 5775backout_unlocked:
c7b1850d
MK
5776 if (new_page && !new_pagecache_page)
5777 restore_reserve_on_error(h, vma, haddr, page);
fa27759a
MK
5778
5779 unlock_page(page);
4c887265
AL
5780 put_page(page);
5781 goto out;
ac9b9c66
HD
5782}
5783
8382d914 5784#ifdef CONFIG_SMP
188b04a7 5785u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
8382d914
DB
5786{
5787 unsigned long key[2];
5788 u32 hash;
5789
1b426bac
MK
5790 key[0] = (unsigned long) mapping;
5791 key[1] = idx;
8382d914 5792
55254636 5793 hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
8382d914
DB
5794
5795 return hash & (num_fault_mutexes - 1);
5796}
5797#else
5798/*
6c26d310 5799 * For uniprocessor systems we always use a single mutex, so just
8382d914
DB
5800 * return 0 and avoid the hashing overhead.
5801 */
188b04a7 5802u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
8382d914
DB
5803{
5804 return 0;
5805}
5806#endif
5807
2b740303 5808vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
788c7df4 5809 unsigned long address, unsigned int flags)
86e5216f 5810{
8382d914 5811 pte_t *ptep, entry;
cb900f41 5812 spinlock_t *ptl;
2b740303 5813 vm_fault_t ret;
8382d914
DB
5814 u32 hash;
5815 pgoff_t idx;
0fe6e20b 5816 struct page *page = NULL;
57303d80 5817 struct page *pagecache_page = NULL;
a5516438 5818 struct hstate *h = hstate_vma(vma);
8382d914 5819 struct address_space *mapping;
0f792cf9 5820 int need_wait_lock = 0;
285b8dca 5821 unsigned long haddr = address & huge_page_mask(h);
86e5216f 5822
285b8dca 5823 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
fd6a03ed 5824 if (ptep) {
40549ba8
MK
5825 /*
5826 * Since we hold no locks, ptep could be stale. That is
5827 * OK as we are only making decisions based on content and
5828 * not actually modifying content here.
5829 */
fd6a03ed 5830 entry = huge_ptep_get(ptep);
290408d4 5831 if (unlikely(is_hugetlb_entry_migration(entry))) {
ad1ac596 5832 migration_entry_wait_huge(vma, ptep);
290408d4
NH
5833 return 0;
5834 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
32f84528 5835 return VM_FAULT_HWPOISON_LARGE |
972dc4de 5836 VM_FAULT_SET_HINDEX(hstate_index(h));
fd6a03ed
NH
5837 }
5838
3935baa9
DG
5839 /*
5840 * Serialize hugepage allocation and instantiation, so that we don't
5841 * get spurious allocation failures if two CPUs race to instantiate
5842 * the same page in the page cache.
5843 */
40549ba8
MK
5844 mapping = vma->vm_file->f_mapping;
5845 idx = vma_hugecache_offset(h, vma, haddr);
188b04a7 5846 hash = hugetlb_fault_mutex_hash(mapping, idx);
c672c7f2 5847 mutex_lock(&hugetlb_fault_mutex_table[hash]);
8382d914 5848
40549ba8
MK
5849 /*
5850 * Acquire vma lock before calling huge_pte_alloc and hold
5851 * until finished with ptep. This prevents huge_pmd_unshare from
5852 * being called elsewhere and making the ptep no longer valid.
5853 *
5854 * ptep could have already be assigned via huge_pte_offset. That
5855 * is OK, as huge_pte_alloc will return the same value unless
5856 * something has changed.
5857 */
5858 hugetlb_vma_lock_read(vma);
5859 ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h));
5860 if (!ptep) {
5861 hugetlb_vma_unlock_read(vma);
5862 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5863 return VM_FAULT_OOM;
5864 }
5865
7f2e9525 5866 entry = huge_ptep_get(ptep);
c64e912c 5867 /* PTE markers should be handled the same way as none pte */
958f32ce
LS
5868 if (huge_pte_none_mostly(entry))
5869 /*
5870 * hugetlb_no_page will drop vma lock and hugetlb fault
5871 * mutex internally, which make us return immediately.
5872 */
5873 return hugetlb_no_page(mm, vma, mapping, idx, address, ptep,
c64e912c 5874 entry, flags);
86e5216f 5875
83c54070 5876 ret = 0;
1e8f889b 5877
0f792cf9
NH
5878 /*
5879 * entry could be a migration/hwpoison entry at this point, so this
5880 * check prevents the kernel from going below assuming that we have
7c8de358
EP
5881 * an active hugepage in pagecache. This goto expects the 2nd page
5882 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
5883 * properly handle it.
0f792cf9
NH
5884 */
5885 if (!pte_present(entry))
5886 goto out_mutex;
5887
57303d80 5888 /*
c89357e2
DH
5889 * If we are going to COW/unshare the mapping later, we examine the
5890 * pending reservations for this page now. This will ensure that any
57303d80 5891 * allocations necessary to record that reservation occur outside the
1d8d1464
DH
5892 * spinlock. Also lookup the pagecache page now as it is used to
5893 * determine if a reservation has been consumed.
57303d80 5894 */
c89357e2 5895 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
1d8d1464 5896 !(vma->vm_flags & VM_MAYSHARE) && !huge_pte_write(entry)) {
285b8dca 5897 if (vma_needs_reservation(h, vma, haddr) < 0) {
2b26736c 5898 ret = VM_FAULT_OOM;
b4d1d99f 5899 goto out_mutex;
2b26736c 5900 }
5e911373 5901 /* Just decrements count, does not deallocate */
285b8dca 5902 vma_end_reservation(h, vma, haddr);
57303d80 5903
29be8426 5904 pagecache_page = find_lock_page(mapping, idx);
57303d80
AW
5905 }
5906
0f792cf9
NH
5907 ptl = huge_pte_lock(h, mm, ptep);
5908
c89357e2 5909 /* Check for a racing update before calling hugetlb_wp() */
0f792cf9
NH
5910 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
5911 goto out_ptl;
5912
166f3ecc
PX
5913 /* Handle userfault-wp first, before trying to lock more pages */
5914 if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(ptep)) &&
5915 (flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
5916 struct vm_fault vmf = {
5917 .vma = vma,
5918 .address = haddr,
5919 .real_address = address,
5920 .flags = flags,
5921 };
5922
5923 spin_unlock(ptl);
5924 if (pagecache_page) {
5925 unlock_page(pagecache_page);
5926 put_page(pagecache_page);
5927 }
40549ba8 5928 hugetlb_vma_unlock_read(vma);
166f3ecc 5929 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
166f3ecc
PX
5930 return handle_userfault(&vmf, VM_UFFD_WP);
5931 }
5932
56c9cfb1 5933 /*
c89357e2 5934 * hugetlb_wp() requires page locks of pte_page(entry) and
56c9cfb1
NH
5935 * pagecache_page, so here we need take the former one
5936 * when page != pagecache_page or !pagecache_page.
56c9cfb1
NH
5937 */
5938 page = pte_page(entry);
5939 if (page != pagecache_page)
0f792cf9
NH
5940 if (!trylock_page(page)) {
5941 need_wait_lock = 1;
5942 goto out_ptl;
5943 }
b4d1d99f 5944
0f792cf9 5945 get_page(page);
b4d1d99f 5946
c89357e2 5947 if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
106c992a 5948 if (!huge_pte_write(entry)) {
c89357e2
DH
5949 ret = hugetlb_wp(mm, vma, address, ptep, flags,
5950 pagecache_page, ptl);
0f792cf9 5951 goto out_put_page;
c89357e2
DH
5952 } else if (likely(flags & FAULT_FLAG_WRITE)) {
5953 entry = huge_pte_mkdirty(entry);
b4d1d99f 5954 }
b4d1d99f
DG
5955 }
5956 entry = pte_mkyoung(entry);
285b8dca 5957 if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
788c7df4 5958 flags & FAULT_FLAG_WRITE))
285b8dca 5959 update_mmu_cache(vma, haddr, ptep);
0f792cf9
NH
5960out_put_page:
5961 if (page != pagecache_page)
5962 unlock_page(page);
5963 put_page(page);
cb900f41
KS
5964out_ptl:
5965 spin_unlock(ptl);
57303d80
AW
5966
5967 if (pagecache_page) {
5968 unlock_page(pagecache_page);
5969 put_page(pagecache_page);
5970 }
b4d1d99f 5971out_mutex:
40549ba8 5972 hugetlb_vma_unlock_read(vma);
c672c7f2 5973 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
0f792cf9
NH
5974 /*
5975 * Generally it's safe to hold refcount during waiting page lock. But
5976 * here we just wait to defer the next page fault to avoid busy loop and
5977 * the page is not used after unlocked before returning from the current
5978 * page fault. So we are safe from accessing freed page, even if we wait
5979 * here without taking refcount.
5980 */
5981 if (need_wait_lock)
5982 wait_on_page_locked(page);
1e8f889b 5983 return ret;
86e5216f
AL
5984}
5985
714c1891 5986#ifdef CONFIG_USERFAULTFD
8fb5debc
MK
5987/*
5988 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with
5989 * modifications for huge pages.
5990 */
5991int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
5992 pte_t *dst_pte,
5993 struct vm_area_struct *dst_vma,
5994 unsigned long dst_addr,
5995 unsigned long src_addr,
f6191471 5996 enum mcopy_atomic_mode mode,
6041c691
PX
5997 struct page **pagep,
5998 bool wp_copy)
8fb5debc 5999{
f6191471 6000 bool is_continue = (mode == MCOPY_ATOMIC_CONTINUE);
8cc5fcbb
MA
6001 struct hstate *h = hstate_vma(dst_vma);
6002 struct address_space *mapping = dst_vma->vm_file->f_mapping;
6003 pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
1e392147 6004 unsigned long size;
1c9e8def 6005 int vm_shared = dst_vma->vm_flags & VM_SHARED;
8fb5debc
MK
6006 pte_t _dst_pte;
6007 spinlock_t *ptl;
8cc5fcbb 6008 int ret = -ENOMEM;
8fb5debc 6009 struct page *page;
f6191471 6010 int writable;
cc30042d 6011 bool page_in_pagecache = false;
8fb5debc 6012
f6191471
AR
6013 if (is_continue) {
6014 ret = -EFAULT;
6015 page = find_lock_page(mapping, idx);
6016 if (!page)
6017 goto out;
cc30042d 6018 page_in_pagecache = true;
f6191471 6019 } else if (!*pagep) {
d84cf06e
MA
6020 /* If a page already exists, then it's UFFDIO_COPY for
6021 * a non-missing case. Return -EEXIST.
6022 */
6023 if (vm_shared &&
6024 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6025 ret = -EEXIST;
6026 goto out;
6027 }
6028
8fb5debc 6029 page = alloc_huge_page(dst_vma, dst_addr, 0);
d84cf06e
MA
6030 if (IS_ERR(page)) {
6031 ret = -ENOMEM;
8fb5debc 6032 goto out;
d84cf06e 6033 }
8fb5debc
MK
6034
6035 ret = copy_huge_page_from_user(page,
6036 (const void __user *) src_addr,
810a56b9 6037 pages_per_huge_page(h), false);
8fb5debc 6038
c1e8d7c6 6039 /* fallback to copy_from_user outside mmap_lock */
8fb5debc 6040 if (unlikely(ret)) {
9e368259 6041 ret = -ENOENT;
8cc5fcbb
MA
6042 /* Free the allocated page which may have
6043 * consumed a reservation.
6044 */
6045 restore_reserve_on_error(h, dst_vma, dst_addr, page);
6046 put_page(page);
6047
6048 /* Allocate a temporary page to hold the copied
6049 * contents.
6050 */
6051 page = alloc_huge_page_vma(h, dst_vma, dst_addr);
6052 if (!page) {
6053 ret = -ENOMEM;
6054 goto out;
6055 }
8fb5debc 6056 *pagep = page;
8cc5fcbb
MA
6057 /* Set the outparam pagep and return to the caller to
6058 * copy the contents outside the lock. Don't free the
6059 * page.
6060 */
8fb5debc
MK
6061 goto out;
6062 }
6063 } else {
8cc5fcbb
MA
6064 if (vm_shared &&
6065 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6066 put_page(*pagep);
6067 ret = -EEXIST;
6068 *pagep = NULL;
6069 goto out;
6070 }
6071
6072 page = alloc_huge_page(dst_vma, dst_addr, 0);
6073 if (IS_ERR(page)) {
da9a298f 6074 put_page(*pagep);
8cc5fcbb
MA
6075 ret = -ENOMEM;
6076 *pagep = NULL;
6077 goto out;
6078 }
34892366
MS
6079 copy_user_huge_page(page, *pagep, dst_addr, dst_vma,
6080 pages_per_huge_page(h));
8cc5fcbb 6081 put_page(*pagep);
8fb5debc
MK
6082 *pagep = NULL;
6083 }
6084
6085 /*
6086 * The memory barrier inside __SetPageUptodate makes sure that
6087 * preceding stores to the page contents become visible before
6088 * the set_pte_at() write.
6089 */
6090 __SetPageUptodate(page);
8fb5debc 6091
f6191471
AR
6092 /* Add shared, newly allocated pages to the page cache. */
6093 if (vm_shared && !is_continue) {
1e392147
AA
6094 size = i_size_read(mapping->host) >> huge_page_shift(h);
6095 ret = -EFAULT;
6096 if (idx >= size)
6097 goto out_release_nounlock;
1c9e8def 6098
1e392147
AA
6099 /*
6100 * Serialization between remove_inode_hugepages() and
7e1813d4 6101 * hugetlb_add_to_page_cache() below happens through the
1e392147
AA
6102 * hugetlb_fault_mutex_table that here must be hold by
6103 * the caller.
6104 */
7e1813d4 6105 ret = hugetlb_add_to_page_cache(page, mapping, idx);
1c9e8def
MK
6106 if (ret)
6107 goto out_release_nounlock;
cc30042d 6108 page_in_pagecache = true;
1c9e8def
MK
6109 }
6110
bcc66543 6111 ptl = huge_pte_lock(h, dst_mm, dst_pte);
8fb5debc 6112
8625147c
JH
6113 ret = -EIO;
6114 if (PageHWPoison(page))
6115 goto out_release_unlock;
6116
6041c691
PX
6117 /*
6118 * We allow to overwrite a pte marker: consider when both MISSING|WP
6119 * registered, we firstly wr-protect a none pte which has no page cache
6120 * page backing it, then access the page.
6121 */
fa27759a 6122 ret = -EEXIST;
6041c691 6123 if (!huge_pte_none_mostly(huge_ptep_get(dst_pte)))
8fb5debc
MK
6124 goto out_release_unlock;
6125
4781593d 6126 if (page_in_pagecache)
fb3d824d 6127 page_dup_file_rmap(page, true);
4781593d 6128 else
1c9e8def 6129 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
8fb5debc 6130
6041c691
PX
6131 /*
6132 * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY
6133 * with wp flag set, don't set pte write bit.
6134 */
6135 if (wp_copy || (is_continue && !vm_shared))
f6191471
AR
6136 writable = 0;
6137 else
6138 writable = dst_vma->vm_flags & VM_WRITE;
6139
6140 _dst_pte = make_huge_pte(dst_vma, page, writable);
6041c691
PX
6141 /*
6142 * Always mark UFFDIO_COPY page dirty; note that this may not be
6143 * extremely important for hugetlbfs for now since swapping is not
6144 * supported, but we should still be clear in that this page cannot be
6145 * thrown away at will, even if write bit not set.
6146 */
6147 _dst_pte = huge_pte_mkdirty(_dst_pte);
8fb5debc
MK
6148 _dst_pte = pte_mkyoung(_dst_pte);
6149
6041c691
PX
6150 if (wp_copy)
6151 _dst_pte = huge_pte_mkuffd_wp(_dst_pte);
6152
8fb5debc
MK
6153 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
6154
8fb5debc
MK
6155 hugetlb_count_add(pages_per_huge_page(h), dst_mm);
6156
6157 /* No need to invalidate - it was non-present before */
6158 update_mmu_cache(dst_vma, dst_addr, dst_pte);
6159
6160 spin_unlock(ptl);
f6191471
AR
6161 if (!is_continue)
6162 SetHPageMigratable(page);
6163 if (vm_shared || is_continue)
1c9e8def 6164 unlock_page(page);
8fb5debc
MK
6165 ret = 0;
6166out:
6167 return ret;
6168out_release_unlock:
6169 spin_unlock(ptl);
f6191471 6170 if (vm_shared || is_continue)
1c9e8def 6171 unlock_page(page);
5af10dfd 6172out_release_nounlock:
cc30042d 6173 if (!page_in_pagecache)
c7b1850d 6174 restore_reserve_on_error(h, dst_vma, dst_addr, page);
8fb5debc
MK
6175 put_page(page);
6176 goto out;
6177}
714c1891 6178#endif /* CONFIG_USERFAULTFD */
8fb5debc 6179
82e5d378
JM
6180static void record_subpages_vmas(struct page *page, struct vm_area_struct *vma,
6181 int refs, struct page **pages,
6182 struct vm_area_struct **vmas)
6183{
6184 int nr;
6185
6186 for (nr = 0; nr < refs; nr++) {
6187 if (likely(pages))
14455eab 6188 pages[nr] = nth_page(page, nr);
82e5d378
JM
6189 if (vmas)
6190 vmas[nr] = vma;
6191 }
6192}
6193
a7f22660
DH
6194static inline bool __follow_hugetlb_must_fault(unsigned int flags, pte_t *pte,
6195 bool *unshare)
6196{
6197 pte_t pteval = huge_ptep_get(pte);
6198
6199 *unshare = false;
6200 if (is_swap_pte(pteval))
6201 return true;
6202 if (huge_pte_write(pteval))
6203 return false;
6204 if (flags & FOLL_WRITE)
6205 return true;
6206 if (gup_must_unshare(flags, pte_page(pteval))) {
6207 *unshare = true;
6208 return true;
6209 }
6210 return false;
6211}
6212
57a196a5
MK
6213struct page *hugetlb_follow_page_mask(struct vm_area_struct *vma,
6214 unsigned long address, unsigned int flags)
6215{
6216 struct hstate *h = hstate_vma(vma);
6217 struct mm_struct *mm = vma->vm_mm;
6218 unsigned long haddr = address & huge_page_mask(h);
6219 struct page *page = NULL;
6220 spinlock_t *ptl;
6221 pte_t *pte, entry;
6222
6223 /*
6224 * FOLL_PIN is not supported for follow_page(). Ordinary GUP goes via
6225 * follow_hugetlb_page().
6226 */
6227 if (WARN_ON_ONCE(flags & FOLL_PIN))
6228 return NULL;
6229
6230retry:
6231 pte = huge_pte_offset(mm, haddr, huge_page_size(h));
6232 if (!pte)
6233 return NULL;
6234
6235 ptl = huge_pte_lock(h, mm, pte);
6236 entry = huge_ptep_get(pte);
6237 if (pte_present(entry)) {
6238 page = pte_page(entry) +
6239 ((address & ~huge_page_mask(h)) >> PAGE_SHIFT);
6240 /*
6241 * Note that page may be a sub-page, and with vmemmap
6242 * optimizations the page struct may be read only.
6243 * try_grab_page() will increase the ref count on the
6244 * head page, so this will be OK.
6245 *
6246 * try_grab_page() should always succeed here, because we hold
6247 * the ptl lock and have verified pte_present().
6248 */
6249 if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
6250 page = NULL;
6251 goto out;
6252 }
6253 } else {
6254 if (is_hugetlb_entry_migration(entry)) {
6255 spin_unlock(ptl);
6256 __migration_entry_wait_huge(pte, ptl);
6257 goto retry;
6258 }
6259 /*
6260 * hwpoisoned entry is treated as no_page_table in
6261 * follow_page_mask().
6262 */
6263 }
6264out:
6265 spin_unlock(ptl);
6266 return page;
6267}
6268
28a35716
ML
6269long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
6270 struct page **pages, struct vm_area_struct **vmas,
6271 unsigned long *position, unsigned long *nr_pages,
4f6da934 6272 long i, unsigned int flags, int *locked)
63551ae0 6273{
d5d4b0aa
CK
6274 unsigned long pfn_offset;
6275 unsigned long vaddr = *position;
28a35716 6276 unsigned long remainder = *nr_pages;
a5516438 6277 struct hstate *h = hstate_vma(vma);
0fa5bc40 6278 int err = -EFAULT, refs;
63551ae0 6279
63551ae0 6280 while (vaddr < vma->vm_end && remainder) {
4c887265 6281 pte_t *pte;
cb900f41 6282 spinlock_t *ptl = NULL;
a7f22660 6283 bool unshare = false;
2a15efc9 6284 int absent;
4c887265 6285 struct page *page;
63551ae0 6286
02057967
DR
6287 /*
6288 * If we have a pending SIGKILL, don't keep faulting pages and
6289 * potentially allocating memory.
6290 */
fa45f116 6291 if (fatal_signal_pending(current)) {
02057967
DR
6292 remainder = 0;
6293 break;
6294 }
6295
4c887265
AL
6296 /*
6297 * Some archs (sparc64, sh*) have multiple pte_ts to
2a15efc9 6298 * each hugepage. We have to make sure we get the
4c887265 6299 * first, for the page indexing below to work.
cb900f41
KS
6300 *
6301 * Note that page table lock is not held when pte is null.
4c887265 6302 */
7868a208
PA
6303 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
6304 huge_page_size(h));
cb900f41
KS
6305 if (pte)
6306 ptl = huge_pte_lock(h, mm, pte);
2a15efc9
HD
6307 absent = !pte || huge_pte_none(huge_ptep_get(pte));
6308
6309 /*
6310 * When coredumping, it suits get_dump_page if we just return
3ae77f43
HD
6311 * an error where there's an empty slot with no huge pagecache
6312 * to back it. This way, we avoid allocating a hugepage, and
6313 * the sparse dumpfile avoids allocating disk blocks, but its
6314 * huge holes still show up with zeroes where they need to be.
2a15efc9 6315 */
3ae77f43
HD
6316 if (absent && (flags & FOLL_DUMP) &&
6317 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
cb900f41
KS
6318 if (pte)
6319 spin_unlock(ptl);
2a15efc9
HD
6320 remainder = 0;
6321 break;
6322 }
63551ae0 6323
9cc3a5bd
NH
6324 /*
6325 * We need call hugetlb_fault for both hugepages under migration
6326 * (in which case hugetlb_fault waits for the migration,) and
6327 * hwpoisoned hugepages (in which case we need to prevent the
6328 * caller from accessing to them.) In order to do this, we use
6329 * here is_swap_pte instead of is_hugetlb_entry_migration and
6330 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
6331 * both cases, and because we can't follow correct pages
6332 * directly from any kind of swap entries.
6333 */
a7f22660
DH
6334 if (absent ||
6335 __follow_hugetlb_must_fault(flags, pte, &unshare)) {
2b740303 6336 vm_fault_t ret;
87ffc118 6337 unsigned int fault_flags = 0;
63551ae0 6338
cb900f41
KS
6339 if (pte)
6340 spin_unlock(ptl);
87ffc118
AA
6341 if (flags & FOLL_WRITE)
6342 fault_flags |= FAULT_FLAG_WRITE;
a7f22660
DH
6343 else if (unshare)
6344 fault_flags |= FAULT_FLAG_UNSHARE;
4f6da934 6345 if (locked)
71335f37
PX
6346 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
6347 FAULT_FLAG_KILLABLE;
87ffc118
AA
6348 if (flags & FOLL_NOWAIT)
6349 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
6350 FAULT_FLAG_RETRY_NOWAIT;
6351 if (flags & FOLL_TRIED) {
4426e945
PX
6352 /*
6353 * Note: FAULT_FLAG_ALLOW_RETRY and
6354 * FAULT_FLAG_TRIED can co-exist
6355 */
87ffc118
AA
6356 fault_flags |= FAULT_FLAG_TRIED;
6357 }
6358 ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
6359 if (ret & VM_FAULT_ERROR) {
2be7cfed 6360 err = vm_fault_to_errno(ret, flags);
87ffc118
AA
6361 remainder = 0;
6362 break;
6363 }
6364 if (ret & VM_FAULT_RETRY) {
4f6da934 6365 if (locked &&
1ac25013 6366 !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
4f6da934 6367 *locked = 0;
87ffc118
AA
6368 *nr_pages = 0;
6369 /*
6370 * VM_FAULT_RETRY must not return an
6371 * error, it will return zero
6372 * instead.
6373 *
6374 * No need to update "position" as the
6375 * caller will not check it after
6376 * *nr_pages is set to 0.
6377 */
6378 return i;
6379 }
6380 continue;
4c887265
AL
6381 }
6382
a5516438 6383 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
7f2e9525 6384 page = pte_page(huge_ptep_get(pte));
8fde12ca 6385
b6a2619c
DH
6386 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
6387 !PageAnonExclusive(page), page);
6388
acbfb087
ZL
6389 /*
6390 * If subpage information not requested, update counters
6391 * and skip the same_page loop below.
6392 */
6393 if (!pages && !vmas && !pfn_offset &&
6394 (vaddr + huge_page_size(h) < vma->vm_end) &&
6395 (remainder >= pages_per_huge_page(h))) {
6396 vaddr += huge_page_size(h);
6397 remainder -= pages_per_huge_page(h);
6398 i += pages_per_huge_page(h);
6399 spin_unlock(ptl);
6400 continue;
6401 }
6402
d08af0a5
JM
6403 /* vaddr may not be aligned to PAGE_SIZE */
6404 refs = min3(pages_per_huge_page(h) - pfn_offset, remainder,
6405 (vma->vm_end - ALIGN_DOWN(vaddr, PAGE_SIZE)) >> PAGE_SHIFT);
0fa5bc40 6406
82e5d378 6407 if (pages || vmas)
14455eab 6408 record_subpages_vmas(nth_page(page, pfn_offset),
82e5d378
JM
6409 vma, refs,
6410 likely(pages) ? pages + i : NULL,
6411 vmas ? vmas + i : NULL);
63551ae0 6412
82e5d378 6413 if (pages) {
0fa5bc40 6414 /*
822951d8 6415 * try_grab_folio() should always succeed here,
0fa5bc40
JM
6416 * because: a) we hold the ptl lock, and b) we've just
6417 * checked that the huge page is present in the page
6418 * tables. If the huge page is present, then the tail
6419 * pages must also be present. The ptl prevents the
6420 * head page and tail pages from being rearranged in
6421 * any way. So this page must be available at this
6422 * point, unless the page refcount overflowed:
6423 */
822951d8
MWO
6424 if (WARN_ON_ONCE(!try_grab_folio(pages[i], refs,
6425 flags))) {
0fa5bc40
JM
6426 spin_unlock(ptl);
6427 remainder = 0;
6428 err = -ENOMEM;
6429 break;
6430 }
d5d4b0aa 6431 }
82e5d378
JM
6432
6433 vaddr += (refs << PAGE_SHIFT);
6434 remainder -= refs;
6435 i += refs;
6436
cb900f41 6437 spin_unlock(ptl);
63551ae0 6438 }
28a35716 6439 *nr_pages = remainder;
87ffc118
AA
6440 /*
6441 * setting position is actually required only if remainder is
6442 * not zero but it's faster not to add a "if (remainder)"
6443 * branch.
6444 */
63551ae0
DG
6445 *position = vaddr;
6446
2be7cfed 6447 return i ? i : err;
63551ae0 6448}
8f860591 6449
7da4d641 6450unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
5a90d5a1
PX
6451 unsigned long address, unsigned long end,
6452 pgprot_t newprot, unsigned long cp_flags)
8f860591
ZY
6453{
6454 struct mm_struct *mm = vma->vm_mm;
6455 unsigned long start = address;
6456 pte_t *ptep;
6457 pte_t pte;
a5516438 6458 struct hstate *h = hstate_vma(vma);
60dfaad6 6459 unsigned long pages = 0, psize = huge_page_size(h);
dff11abe 6460 bool shared_pmd = false;
ac46d4f3 6461 struct mmu_notifier_range range;
e95a9851 6462 unsigned long last_addr_mask;
5a90d5a1
PX
6463 bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
6464 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
dff11abe
MK
6465
6466 /*
6467 * In the case of shared PMDs, the area to flush could be beyond
ac46d4f3 6468 * start/end. Set range.start/range.end to cover the maximum possible
dff11abe
MK
6469 * range if PMD sharing is possible.
6470 */
7269f999
JG
6471 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
6472 0, vma, mm, start, end);
ac46d4f3 6473 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
8f860591
ZY
6474
6475 BUG_ON(address >= end);
ac46d4f3 6476 flush_cache_range(vma, range.start, range.end);
8f860591 6477
ac46d4f3 6478 mmu_notifier_invalidate_range_start(&range);
40549ba8 6479 hugetlb_vma_lock_write(vma);
83cde9e8 6480 i_mmap_lock_write(vma->vm_file->f_mapping);
40549ba8 6481 last_addr_mask = hugetlb_mask_last_page(h);
60dfaad6 6482 for (; address < end; address += psize) {
cb900f41 6483 spinlock_t *ptl;
60dfaad6 6484 ptep = huge_pte_offset(mm, address, psize);
e95a9851
MK
6485 if (!ptep) {
6486 address |= last_addr_mask;
8f860591 6487 continue;
e95a9851 6488 }
cb900f41 6489 ptl = huge_pte_lock(h, mm, ptep);
4ddb4d91 6490 if (huge_pmd_unshare(mm, vma, address, ptep)) {
60dfaad6
PX
6491 /*
6492 * When uffd-wp is enabled on the vma, unshare
6493 * shouldn't happen at all. Warn about it if it
6494 * happened due to some reason.
6495 */
6496 WARN_ON_ONCE(uffd_wp || uffd_wp_resolve);
7da4d641 6497 pages++;
cb900f41 6498 spin_unlock(ptl);
dff11abe 6499 shared_pmd = true;
4ddb4d91 6500 address |= last_addr_mask;
39dde65c 6501 continue;
7da4d641 6502 }
a8bda28d
NH
6503 pte = huge_ptep_get(ptep);
6504 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
6505 spin_unlock(ptl);
6506 continue;
6507 }
6508 if (unlikely(is_hugetlb_entry_migration(pte))) {
6509 swp_entry_t entry = pte_to_swp_entry(pte);
6c287605 6510 struct page *page = pfn_swap_entry_to_page(entry);
a8bda28d 6511
6c287605 6512 if (!is_readable_migration_entry(entry)) {
a8bda28d
NH
6513 pte_t newpte;
6514
6c287605
DH
6515 if (PageAnon(page))
6516 entry = make_readable_exclusive_migration_entry(
6517 swp_offset(entry));
6518 else
6519 entry = make_readable_migration_entry(
6520 swp_offset(entry));
a8bda28d 6521 newpte = swp_entry_to_pte(entry);
5a90d5a1
PX
6522 if (uffd_wp)
6523 newpte = pte_swp_mkuffd_wp(newpte);
6524 else if (uffd_wp_resolve)
6525 newpte = pte_swp_clear_uffd_wp(newpte);
18f39629 6526 set_huge_pte_at(mm, address, ptep, newpte);
a8bda28d
NH
6527 pages++;
6528 }
6529 spin_unlock(ptl);
6530 continue;
6531 }
60dfaad6
PX
6532 if (unlikely(pte_marker_uffd_wp(pte))) {
6533 /*
6534 * This is changing a non-present pte into a none pte,
6535 * no need for huge_ptep_modify_prot_start/commit().
6536 */
6537 if (uffd_wp_resolve)
6538 huge_pte_clear(mm, address, ptep, psize);
6539 }
a8bda28d 6540 if (!huge_pte_none(pte)) {
023bdd00 6541 pte_t old_pte;
79c1c594 6542 unsigned int shift = huge_page_shift(hstate_vma(vma));
023bdd00
AK
6543
6544 old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
16785bd7 6545 pte = huge_pte_modify(old_pte, newprot);
79c1c594 6546 pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
5a90d5a1
PX
6547 if (uffd_wp)
6548 pte = huge_pte_mkuffd_wp(huge_pte_wrprotect(pte));
6549 else if (uffd_wp_resolve)
6550 pte = huge_pte_clear_uffd_wp(pte);
023bdd00 6551 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
7da4d641 6552 pages++;
60dfaad6
PX
6553 } else {
6554 /* None pte */
6555 if (unlikely(uffd_wp))
6556 /* Safe to modify directly (none->non-present). */
6557 set_huge_pte_at(mm, address, ptep,
6558 make_pte_marker(PTE_MARKER_UFFD_WP));
8f860591 6559 }
cb900f41 6560 spin_unlock(ptl);
8f860591 6561 }
d833352a 6562 /*
c8c06efa 6563 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
d833352a 6564 * may have cleared our pud entry and done put_page on the page table:
c8c06efa 6565 * once we release i_mmap_rwsem, another task can do the final put_page
dff11abe
MK
6566 * and that page table be reused and filled with junk. If we actually
6567 * did unshare a page of pmds, flush the range corresponding to the pud.
d833352a 6568 */
dff11abe 6569 if (shared_pmd)
ac46d4f3 6570 flush_hugetlb_tlb_range(vma, range.start, range.end);
dff11abe
MK
6571 else
6572 flush_hugetlb_tlb_range(vma, start, end);
0f10851e
JG
6573 /*
6574 * No need to call mmu_notifier_invalidate_range() we are downgrading
6575 * page table protection not changing it to point to a new page.
6576 *
ee65728e 6577 * See Documentation/mm/mmu_notifier.rst
0f10851e 6578 */
83cde9e8 6579 i_mmap_unlock_write(vma->vm_file->f_mapping);
40549ba8 6580 hugetlb_vma_unlock_write(vma);
ac46d4f3 6581 mmu_notifier_invalidate_range_end(&range);
7da4d641
PZ
6582
6583 return pages << h->order;
8f860591
ZY
6584}
6585
33b8f84a
MK
6586/* Return true if reservation was successful, false otherwise. */
6587bool hugetlb_reserve_pages(struct inode *inode,
a1e78772 6588 long from, long to,
5a6fe125 6589 struct vm_area_struct *vma,
ca16d140 6590 vm_flags_t vm_flags)
e4e574b7 6591{
33b8f84a 6592 long chg, add = -1;
a5516438 6593 struct hstate *h = hstate_inode(inode);
90481622 6594 struct hugepage_subpool *spool = subpool_inode(inode);
9119a41e 6595 struct resv_map *resv_map;
075a61d0 6596 struct hugetlb_cgroup *h_cg = NULL;
0db9d74e 6597 long gbl_reserve, regions_needed = 0;
e4e574b7 6598
63489f8e
MK
6599 /* This should never happen */
6600 if (from > to) {
6601 VM_WARN(1, "%s called with a negative range\n", __func__);
33b8f84a 6602 return false;
63489f8e
MK
6603 }
6604
8d9bfb26
MK
6605 /*
6606 * vma specific semaphore used for pmd sharing synchronization
6607 */
6608 hugetlb_vma_lock_alloc(vma);
6609
17c9d12e
MG
6610 /*
6611 * Only apply hugepage reservation if asked. At fault time, an
6612 * attempt will be made for VM_NORESERVE to allocate a page
90481622 6613 * without using reserves
17c9d12e 6614 */
ca16d140 6615 if (vm_flags & VM_NORESERVE)
33b8f84a 6616 return true;
17c9d12e 6617
a1e78772
MG
6618 /*
6619 * Shared mappings base their reservation on the number of pages that
6620 * are already allocated on behalf of the file. Private mappings need
6621 * to reserve the full area even if read-only as mprotect() may be
6622 * called to make the mapping read-write. Assume !vma is a shm mapping
6623 */
9119a41e 6624 if (!vma || vma->vm_flags & VM_MAYSHARE) {
f27a5136
MK
6625 /*
6626 * resv_map can not be NULL as hugetlb_reserve_pages is only
6627 * called for inodes for which resv_maps were created (see
6628 * hugetlbfs_get_inode).
6629 */
4e35f483 6630 resv_map = inode_resv_map(inode);
9119a41e 6631
0db9d74e 6632 chg = region_chg(resv_map, from, to, &regions_needed);
9119a41e 6633 } else {
e9fe92ae 6634 /* Private mapping. */
9119a41e 6635 resv_map = resv_map_alloc();
17c9d12e 6636 if (!resv_map)
8d9bfb26 6637 goto out_err;
17c9d12e 6638
a1e78772 6639 chg = to - from;
84afd99b 6640
17c9d12e
MG
6641 set_vma_resv_map(vma, resv_map);
6642 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
6643 }
6644
33b8f84a 6645 if (chg < 0)
c50ac050 6646 goto out_err;
8a630112 6647
33b8f84a
MK
6648 if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
6649 chg * pages_per_huge_page(h), &h_cg) < 0)
075a61d0 6650 goto out_err;
075a61d0
MA
6651
6652 if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
6653 /* For private mappings, the hugetlb_cgroup uncharge info hangs
6654 * of the resv_map.
6655 */
6656 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
6657 }
6658
1c5ecae3
MK
6659 /*
6660 * There must be enough pages in the subpool for the mapping. If
6661 * the subpool has a minimum size, there may be some global
6662 * reservations already in place (gbl_reserve).
6663 */
6664 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
33b8f84a 6665 if (gbl_reserve < 0)
075a61d0 6666 goto out_uncharge_cgroup;
5a6fe125
MG
6667
6668 /*
17c9d12e 6669 * Check enough hugepages are available for the reservation.
90481622 6670 * Hand the pages back to the subpool if there are not
5a6fe125 6671 */
33b8f84a 6672 if (hugetlb_acct_memory(h, gbl_reserve) < 0)
075a61d0 6673 goto out_put_pages;
17c9d12e
MG
6674
6675 /*
6676 * Account for the reservations made. Shared mappings record regions
6677 * that have reservations as they are shared by multiple VMAs.
6678 * When the last VMA disappears, the region map says how much
6679 * the reservation was and the page cache tells how much of
6680 * the reservation was consumed. Private mappings are per-VMA and
6681 * only the consumed reservations are tracked. When the VMA
6682 * disappears, the original reservation is the VMA size and the
6683 * consumed reservations are stored in the map. Hence, nothing
6684 * else has to be done for private mappings here
6685 */
33039678 6686 if (!vma || vma->vm_flags & VM_MAYSHARE) {
075a61d0 6687 add = region_add(resv_map, from, to, regions_needed, h, h_cg);
0db9d74e
MA
6688
6689 if (unlikely(add < 0)) {
6690 hugetlb_acct_memory(h, -gbl_reserve);
075a61d0 6691 goto out_put_pages;
0db9d74e 6692 } else if (unlikely(chg > add)) {
33039678
MK
6693 /*
6694 * pages in this range were added to the reserve
6695 * map between region_chg and region_add. This
6696 * indicates a race with alloc_huge_page. Adjust
6697 * the subpool and reserve counts modified above
6698 * based on the difference.
6699 */
6700 long rsv_adjust;
6701
d85aecf2
ML
6702 /*
6703 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
6704 * reference to h_cg->css. See comment below for detail.
6705 */
075a61d0
MA
6706 hugetlb_cgroup_uncharge_cgroup_rsvd(
6707 hstate_index(h),
6708 (chg - add) * pages_per_huge_page(h), h_cg);
6709
33039678
MK
6710 rsv_adjust = hugepage_subpool_put_pages(spool,
6711 chg - add);
6712 hugetlb_acct_memory(h, -rsv_adjust);
d85aecf2
ML
6713 } else if (h_cg) {
6714 /*
6715 * The file_regions will hold their own reference to
6716 * h_cg->css. So we should release the reference held
6717 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
6718 * done.
6719 */
6720 hugetlb_cgroup_put_rsvd_cgroup(h_cg);
33039678
MK
6721 }
6722 }
33b8f84a
MK
6723 return true;
6724
075a61d0
MA
6725out_put_pages:
6726 /* put back original number of pages, chg */
6727 (void)hugepage_subpool_put_pages(spool, chg);
6728out_uncharge_cgroup:
6729 hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
6730 chg * pages_per_huge_page(h), h_cg);
c50ac050 6731out_err:
8d9bfb26 6732 hugetlb_vma_lock_free(vma);
5e911373 6733 if (!vma || vma->vm_flags & VM_MAYSHARE)
0db9d74e
MA
6734 /* Only call region_abort if the region_chg succeeded but the
6735 * region_add failed or didn't run.
6736 */
6737 if (chg >= 0 && add < 0)
6738 region_abort(resv_map, from, to, regions_needed);
f031dd27
JK
6739 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
6740 kref_put(&resv_map->refs, resv_map_release);
33b8f84a 6741 return false;
a43a8c39
CK
6742}
6743
b5cec28d
MK
6744long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
6745 long freed)
a43a8c39 6746{
a5516438 6747 struct hstate *h = hstate_inode(inode);
4e35f483 6748 struct resv_map *resv_map = inode_resv_map(inode);
9119a41e 6749 long chg = 0;
90481622 6750 struct hugepage_subpool *spool = subpool_inode(inode);
1c5ecae3 6751 long gbl_reserve;
45c682a6 6752
f27a5136
MK
6753 /*
6754 * Since this routine can be called in the evict inode path for all
6755 * hugetlbfs inodes, resv_map could be NULL.
6756 */
b5cec28d
MK
6757 if (resv_map) {
6758 chg = region_del(resv_map, start, end);
6759 /*
6760 * region_del() can fail in the rare case where a region
6761 * must be split and another region descriptor can not be
6762 * allocated. If end == LONG_MAX, it will not fail.
6763 */
6764 if (chg < 0)
6765 return chg;
6766 }
6767
45c682a6 6768 spin_lock(&inode->i_lock);
e4c6f8be 6769 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
45c682a6
KC
6770 spin_unlock(&inode->i_lock);
6771
1c5ecae3
MK
6772 /*
6773 * If the subpool has a minimum size, the number of global
6774 * reservations to be released may be adjusted.
dddf31a4
ML
6775 *
6776 * Note that !resv_map implies freed == 0. So (chg - freed)
6777 * won't go negative.
1c5ecae3
MK
6778 */
6779 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
6780 hugetlb_acct_memory(h, -gbl_reserve);
b5cec28d
MK
6781
6782 return 0;
a43a8c39 6783}
93f70f90 6784
3212b535
SC
6785#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
6786static unsigned long page_table_shareable(struct vm_area_struct *svma,
6787 struct vm_area_struct *vma,
6788 unsigned long addr, pgoff_t idx)
6789{
6790 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
6791 svma->vm_start;
6792 unsigned long sbase = saddr & PUD_MASK;
6793 unsigned long s_end = sbase + PUD_SIZE;
6794
6795 /* Allow segments to share if only one is marked locked */
de60f5f1
EM
6796 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
6797 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
3212b535
SC
6798
6799 /*
6800 * match the virtual addresses, permission and the alignment of the
6801 * page table page.
131a79b4
MK
6802 *
6803 * Also, vma_lock (vm_private_data) is required for sharing.
3212b535
SC
6804 */
6805 if (pmd_index(addr) != pmd_index(saddr) ||
6806 vm_flags != svm_flags ||
131a79b4
MK
6807 !range_in_vma(svma, sbase, s_end) ||
6808 !svma->vm_private_data)
3212b535
SC
6809 return 0;
6810
6811 return saddr;
6812}
6813
bbff39cc 6814bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
3212b535 6815{
bbff39cc
MK
6816 unsigned long start = addr & PUD_MASK;
6817 unsigned long end = start + PUD_SIZE;
6818
8d9bfb26
MK
6819#ifdef CONFIG_USERFAULTFD
6820 if (uffd_disable_huge_pmd_share(vma))
6821 return false;
6822#endif
3212b535
SC
6823 /*
6824 * check on proper vm_flags and page table alignment
6825 */
8d9bfb26
MK
6826 if (!(vma->vm_flags & VM_MAYSHARE))
6827 return false;
bbff39cc 6828 if (!vma->vm_private_data) /* vma lock required for sharing */
8d9bfb26
MK
6829 return false;
6830 if (!range_in_vma(vma, start, end))
6831 return false;
6832 return true;
6833}
6834
017b1660
MK
6835/*
6836 * Determine if start,end range within vma could be mapped by shared pmd.
6837 * If yes, adjust start and end to cover range associated with possible
6838 * shared pmd mappings.
6839 */
6840void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
6841 unsigned long *start, unsigned long *end)
6842{
a1ba9da8
LX
6843 unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
6844 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
017b1660 6845
a1ba9da8 6846 /*
f0953a1b
IM
6847 * vma needs to span at least one aligned PUD size, and the range
6848 * must be at least partially within in.
a1ba9da8
LX
6849 */
6850 if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
6851 (*end <= v_start) || (*start >= v_end))
017b1660
MK
6852 return;
6853
75802ca6 6854 /* Extend the range to be PUD aligned for a worst case scenario */
a1ba9da8
LX
6855 if (*start > v_start)
6856 *start = ALIGN_DOWN(*start, PUD_SIZE);
017b1660 6857
a1ba9da8
LX
6858 if (*end < v_end)
6859 *end = ALIGN(*end, PUD_SIZE);
017b1660
MK
6860}
6861
8d9bfb26
MK
6862static bool __vma_shareable_flags_pmd(struct vm_area_struct *vma)
6863{
6864 return vma->vm_flags & (VM_MAYSHARE | VM_SHARED) &&
6865 vma->vm_private_data;
6866}
6867
6868void hugetlb_vma_lock_read(struct vm_area_struct *vma)
6869{
6870 if (__vma_shareable_flags_pmd(vma)) {
6871 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
6872
6873 down_read(&vma_lock->rw_sema);
6874 }
6875}
6876
6877void hugetlb_vma_unlock_read(struct vm_area_struct *vma)
6878{
6879 if (__vma_shareable_flags_pmd(vma)) {
6880 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
6881
6882 up_read(&vma_lock->rw_sema);
6883 }
6884}
6885
6886void hugetlb_vma_lock_write(struct vm_area_struct *vma)
6887{
6888 if (__vma_shareable_flags_pmd(vma)) {
6889 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
6890
6891 down_write(&vma_lock->rw_sema);
6892 }
6893}
6894
6895void hugetlb_vma_unlock_write(struct vm_area_struct *vma)
6896{
6897 if (__vma_shareable_flags_pmd(vma)) {
6898 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
6899
6900 up_write(&vma_lock->rw_sema);
6901 }
6902}
6903
6904int hugetlb_vma_trylock_write(struct vm_area_struct *vma)
6905{
6906 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
6907
6908 if (!__vma_shareable_flags_pmd(vma))
6909 return 1;
6910
6911 return down_write_trylock(&vma_lock->rw_sema);
6912}
6913
6914void hugetlb_vma_assert_locked(struct vm_area_struct *vma)
6915{
6916 if (__vma_shareable_flags_pmd(vma)) {
6917 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
6918
6919 lockdep_assert_held(&vma_lock->rw_sema);
6920 }
6921}
6922
6923void hugetlb_vma_lock_release(struct kref *kref)
6924{
6925 struct hugetlb_vma_lock *vma_lock = container_of(kref,
6926 struct hugetlb_vma_lock, refs);
6927
6928 kfree(vma_lock);
6929}
6930
acfac378 6931static void __hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock *vma_lock)
ecfbd733
MK
6932{
6933 struct vm_area_struct *vma = vma_lock->vma;
6934
6935 /*
6936 * vma_lock structure may or not be released as a result of put,
6937 * it certainly will no longer be attached to vma so clear pointer.
6938 * Semaphore synchronizes access to vma_lock->vma field.
6939 */
6940 vma_lock->vma = NULL;
6941 vma->vm_private_data = NULL;
6942 up_write(&vma_lock->rw_sema);
6943 kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
6944}
6945
6946static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma)
6947{
6948 if (__vma_shareable_flags_pmd(vma)) {
6949 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
6950
6951 __hugetlb_vma_unlock_write_put(vma_lock);
6952 }
6953}
6954
8d9bfb26
MK
6955static void hugetlb_vma_lock_free(struct vm_area_struct *vma)
6956{
6957 /*
131a79b4 6958 * Only present in sharable vmas.
8d9bfb26 6959 */
131a79b4 6960 if (!vma || !__vma_shareable_flags_pmd(vma))
8d9bfb26
MK
6961 return;
6962
6963 if (vma->vm_private_data) {
6964 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
6965
ecfbd733
MK
6966 down_write(&vma_lock->rw_sema);
6967 __hugetlb_vma_unlock_write_put(vma_lock);
8d9bfb26
MK
6968 }
6969}
6970
6971static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma)
6972{
6973 struct hugetlb_vma_lock *vma_lock;
6974
6975 /* Only establish in (flags) sharable vmas */
6976 if (!vma || !(vma->vm_flags & VM_MAYSHARE))
6977 return;
6978
6979 /* Should never get here with non-NULL vm_private_data */
6980 if (vma->vm_private_data)
6981 return;
6982
8d9bfb26 6983 vma_lock = kmalloc(sizeof(*vma_lock), GFP_KERNEL);
bbff39cc 6984 if (!vma_lock) {
8d9bfb26
MK
6985 /*
6986 * If we can not allocate structure, then vma can not
bbff39cc
MK
6987 * participate in pmd sharing. This is only a possible
6988 * performance enhancement and memory saving issue.
6989 * However, the lock is also used to synchronize page
6990 * faults with truncation. If the lock is not present,
6991 * unlikely races could leave pages in a file past i_size
6992 * until the file is removed. Warn in the unlikely case of
6993 * allocation failure.
8d9bfb26 6994 */
bbff39cc 6995 pr_warn_once("HugeTLB: unable to allocate vma specific lock\n");
8d9bfb26 6996 return;
bbff39cc 6997 }
8d9bfb26
MK
6998
6999 kref_init(&vma_lock->refs);
7000 init_rwsem(&vma_lock->rw_sema);
7001 vma_lock->vma = vma;
7002 vma->vm_private_data = vma_lock;
7003}
7004
3212b535
SC
7005/*
7006 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
7007 * and returns the corresponding pte. While this is not necessary for the
7008 * !shared pmd case because we can allocate the pmd later as well, it makes the
3a47c54f
MK
7009 * code much cleaner. pmd allocation is essential for the shared case because
7010 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
7011 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
7012 * bad pmd for sharing.
3212b535 7013 */
aec44e0f
PX
7014pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7015 unsigned long addr, pud_t *pud)
3212b535 7016{
3212b535
SC
7017 struct address_space *mapping = vma->vm_file->f_mapping;
7018 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
7019 vma->vm_pgoff;
7020 struct vm_area_struct *svma;
7021 unsigned long saddr;
7022 pte_t *spte = NULL;
7023 pte_t *pte;
cb900f41 7024 spinlock_t *ptl;
3212b535 7025
3a47c54f 7026 i_mmap_lock_read(mapping);
3212b535
SC
7027 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
7028 if (svma == vma)
7029 continue;
7030
7031 saddr = page_table_shareable(svma, vma, addr, idx);
7032 if (saddr) {
7868a208
PA
7033 spte = huge_pte_offset(svma->vm_mm, saddr,
7034 vma_mmu_pagesize(svma));
3212b535
SC
7035 if (spte) {
7036 get_page(virt_to_page(spte));
7037 break;
7038 }
7039 }
7040 }
7041
7042 if (!spte)
7043 goto out;
7044
8bea8052 7045 ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
dc6c9a35 7046 if (pud_none(*pud)) {
3212b535
SC
7047 pud_populate(mm, pud,
7048 (pmd_t *)((unsigned long)spte & PAGE_MASK));
c17b1f42 7049 mm_inc_nr_pmds(mm);
dc6c9a35 7050 } else {
3212b535 7051 put_page(virt_to_page(spte));
dc6c9a35 7052 }
cb900f41 7053 spin_unlock(ptl);
3212b535
SC
7054out:
7055 pte = (pte_t *)pmd_alloc(mm, pud, addr);
3a47c54f 7056 i_mmap_unlock_read(mapping);
3212b535
SC
7057 return pte;
7058}
7059
7060/*
7061 * unmap huge page backed by shared pte.
7062 *
7063 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
7064 * indicated by page_count > 1, unmap is achieved by clearing pud and
7065 * decrementing the ref count. If count == 1, the pte page is not shared.
7066 *
3a47c54f 7067 * Called with page table lock held.
3212b535
SC
7068 *
7069 * returns: 1 successfully unmapped a shared pte page
7070 * 0 the underlying pte page is not shared, or it is the last user
7071 */
34ae204f 7072int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
4ddb4d91 7073 unsigned long addr, pte_t *ptep)
3212b535 7074{
4ddb4d91
MK
7075 pgd_t *pgd = pgd_offset(mm, addr);
7076 p4d_t *p4d = p4d_offset(pgd, addr);
7077 pud_t *pud = pud_offset(p4d, addr);
3212b535 7078
34ae204f 7079 i_mmap_assert_write_locked(vma->vm_file->f_mapping);
40549ba8 7080 hugetlb_vma_assert_locked(vma);
3212b535
SC
7081 BUG_ON(page_count(virt_to_page(ptep)) == 0);
7082 if (page_count(virt_to_page(ptep)) == 1)
7083 return 0;
7084
7085 pud_clear(pud);
7086 put_page(virt_to_page(ptep));
dc6c9a35 7087 mm_dec_nr_pmds(mm);
3212b535
SC
7088 return 1;
7089}
c1991e07 7090
9e5fc74c 7091#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
8d9bfb26 7092
40549ba8
MK
7093void hugetlb_vma_lock_read(struct vm_area_struct *vma)
7094{
7095}
7096
7097void hugetlb_vma_unlock_read(struct vm_area_struct *vma)
7098{
7099}
7100
7101void hugetlb_vma_lock_write(struct vm_area_struct *vma)
7102{
7103}
7104
7105void hugetlb_vma_unlock_write(struct vm_area_struct *vma)
7106{
7107}
7108
7109int hugetlb_vma_trylock_write(struct vm_area_struct *vma)
7110{
7111 return 1;
7112}
7113
7114void hugetlb_vma_assert_locked(struct vm_area_struct *vma)
7115{
7116}
7117
8d9bfb26
MK
7118void hugetlb_vma_lock_release(struct kref *kref)
7119{
7120}
7121
ecfbd733
MK
7122static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma)
7123{
7124}
7125
8d9bfb26
MK
7126static void hugetlb_vma_lock_free(struct vm_area_struct *vma)
7127{
7128}
7129
7130static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma)
7131{
7132}
7133
aec44e0f
PX
7134pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7135 unsigned long addr, pud_t *pud)
9e5fc74c
SC
7136{
7137 return NULL;
7138}
e81f2d22 7139
34ae204f 7140int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
4ddb4d91 7141 unsigned long addr, pte_t *ptep)
e81f2d22
ZZ
7142{
7143 return 0;
7144}
017b1660
MK
7145
7146void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7147 unsigned long *start, unsigned long *end)
7148{
7149}
c1991e07
PX
7150
7151bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
7152{
7153 return false;
7154}
3212b535
SC
7155#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7156
9e5fc74c 7157#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
aec44e0f 7158pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
9e5fc74c
SC
7159 unsigned long addr, unsigned long sz)
7160{
7161 pgd_t *pgd;
c2febafc 7162 p4d_t *p4d;
9e5fc74c
SC
7163 pud_t *pud;
7164 pte_t *pte = NULL;
7165
7166 pgd = pgd_offset(mm, addr);
f4f0a3d8
KS
7167 p4d = p4d_alloc(mm, pgd, addr);
7168 if (!p4d)
7169 return NULL;
c2febafc 7170 pud = pud_alloc(mm, p4d, addr);
9e5fc74c
SC
7171 if (pud) {
7172 if (sz == PUD_SIZE) {
7173 pte = (pte_t *)pud;
7174 } else {
7175 BUG_ON(sz != PMD_SIZE);
c1991e07 7176 if (want_pmd_share(vma, addr) && pud_none(*pud))
aec44e0f 7177 pte = huge_pmd_share(mm, vma, addr, pud);
9e5fc74c
SC
7178 else
7179 pte = (pte_t *)pmd_alloc(mm, pud, addr);
7180 }
7181 }
4e666314 7182 BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
9e5fc74c
SC
7183
7184 return pte;
7185}
7186
9b19df29
PA
7187/*
7188 * huge_pte_offset() - Walk the page table to resolve the hugepage
7189 * entry at address @addr
7190 *
8ac0b81a
LX
7191 * Return: Pointer to page table entry (PUD or PMD) for
7192 * address @addr, or NULL if a !p*d_present() entry is encountered and the
9b19df29
PA
7193 * size @sz doesn't match the hugepage size at this level of the page
7194 * table.
7195 */
7868a208
PA
7196pte_t *huge_pte_offset(struct mm_struct *mm,
7197 unsigned long addr, unsigned long sz)
9e5fc74c
SC
7198{
7199 pgd_t *pgd;
c2febafc 7200 p4d_t *p4d;
8ac0b81a
LX
7201 pud_t *pud;
7202 pmd_t *pmd;
9e5fc74c
SC
7203
7204 pgd = pgd_offset(mm, addr);
c2febafc
KS
7205 if (!pgd_present(*pgd))
7206 return NULL;
7207 p4d = p4d_offset(pgd, addr);
7208 if (!p4d_present(*p4d))
7209 return NULL;
9b19df29 7210
c2febafc 7211 pud = pud_offset(p4d, addr);
8ac0b81a
LX
7212 if (sz == PUD_SIZE)
7213 /* must be pud huge, non-present or none */
c2febafc 7214 return (pte_t *)pud;
8ac0b81a 7215 if (!pud_present(*pud))
9b19df29 7216 return NULL;
8ac0b81a 7217 /* must have a valid entry and size to go further */
9b19df29 7218
8ac0b81a
LX
7219 pmd = pmd_offset(pud, addr);
7220 /* must be pmd huge, non-present or none */
7221 return (pte_t *)pmd;
9e5fc74c
SC
7222}
7223
e95a9851
MK
7224/*
7225 * Return a mask that can be used to update an address to the last huge
7226 * page in a page table page mapping size. Used to skip non-present
7227 * page table entries when linearly scanning address ranges. Architectures
7228 * with unique huge page to page table relationships can define their own
7229 * version of this routine.
7230 */
7231unsigned long hugetlb_mask_last_page(struct hstate *h)
7232{
7233 unsigned long hp_size = huge_page_size(h);
7234
7235 if (hp_size == PUD_SIZE)
7236 return P4D_SIZE - PUD_SIZE;
7237 else if (hp_size == PMD_SIZE)
7238 return PUD_SIZE - PMD_SIZE;
7239 else
7240 return 0UL;
7241}
7242
7243#else
7244
7245/* See description above. Architectures can provide their own version. */
7246__weak unsigned long hugetlb_mask_last_page(struct hstate *h)
7247{
4ddb4d91
MK
7248#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
7249 if (huge_page_size(h) == PMD_SIZE)
7250 return PUD_SIZE - PMD_SIZE;
7251#endif
e95a9851
MK
7252 return 0UL;
7253}
7254
61f77eda
NH
7255#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
7256
7257/*
7258 * These functions are overwritable if your architecture needs its own
7259 * behavior.
7260 */
7ce82f4c 7261int isolate_hugetlb(struct page *page, struct list_head *list)
31caf665 7262{
7ce82f4c 7263 int ret = 0;
bcc54222 7264
db71ef79 7265 spin_lock_irq(&hugetlb_lock);
8f251a3d
MK
7266 if (!PageHeadHuge(page) ||
7267 !HPageMigratable(page) ||
0eb2df2b 7268 !get_page_unless_zero(page)) {
7ce82f4c 7269 ret = -EBUSY;
bcc54222
NH
7270 goto unlock;
7271 }
8f251a3d 7272 ClearHPageMigratable(page);
31caf665 7273 list_move_tail(&page->lru, list);
bcc54222 7274unlock:
db71ef79 7275 spin_unlock_irq(&hugetlb_lock);
bcc54222 7276 return ret;
31caf665
NH
7277}
7278
e591ef7d 7279int get_hwpoison_huge_page(struct page *page, bool *hugetlb, bool unpoison)
25182f05
NH
7280{
7281 int ret = 0;
7282
7283 *hugetlb = false;
7284 spin_lock_irq(&hugetlb_lock);
7285 if (PageHeadHuge(page)) {
7286 *hugetlb = true;
b283d983
NH
7287 if (HPageFreed(page))
7288 ret = 0;
e591ef7d 7289 else if (HPageMigratable(page) || unpoison)
25182f05 7290 ret = get_page_unless_zero(page);
0ed950d1
NH
7291 else
7292 ret = -EBUSY;
25182f05
NH
7293 }
7294 spin_unlock_irq(&hugetlb_lock);
7295 return ret;
7296}
7297
e591ef7d
NH
7298int get_huge_page_for_hwpoison(unsigned long pfn, int flags,
7299 bool *migratable_cleared)
405ce051
NH
7300{
7301 int ret;
7302
7303 spin_lock_irq(&hugetlb_lock);
e591ef7d 7304 ret = __get_huge_page_for_hwpoison(pfn, flags, migratable_cleared);
405ce051
NH
7305 spin_unlock_irq(&hugetlb_lock);
7306 return ret;
7307}
7308
31caf665
NH
7309void putback_active_hugepage(struct page *page)
7310{
db71ef79 7311 spin_lock_irq(&hugetlb_lock);
8f251a3d 7312 SetHPageMigratable(page);
31caf665 7313 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
db71ef79 7314 spin_unlock_irq(&hugetlb_lock);
31caf665
NH
7315 put_page(page);
7316}
ab5ac90a
MH
7317
7318void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
7319{
7320 struct hstate *h = page_hstate(oldpage);
7321
7322 hugetlb_cgroup_migrate(oldpage, newpage);
7323 set_page_owner_migrate_reason(newpage, reason);
7324
7325 /*
7326 * transfer temporary state of the new huge page. This is
7327 * reverse to other transitions because the newpage is going to
7328 * be final while the old one will be freed so it takes over
7329 * the temporary status.
7330 *
7331 * Also note that we have to transfer the per-node surplus state
7332 * here as well otherwise the global surplus count will not match
7333 * the per-node's.
7334 */
9157c311 7335 if (HPageTemporary(newpage)) {
ab5ac90a
MH
7336 int old_nid = page_to_nid(oldpage);
7337 int new_nid = page_to_nid(newpage);
7338
9157c311
MK
7339 SetHPageTemporary(oldpage);
7340 ClearHPageTemporary(newpage);
ab5ac90a 7341
5af1ab1d
ML
7342 /*
7343 * There is no need to transfer the per-node surplus state
7344 * when we do not cross the node.
7345 */
7346 if (new_nid == old_nid)
7347 return;
db71ef79 7348 spin_lock_irq(&hugetlb_lock);
ab5ac90a
MH
7349 if (h->surplus_huge_pages_node[old_nid]) {
7350 h->surplus_huge_pages_node[old_nid]--;
7351 h->surplus_huge_pages_node[new_nid]++;
7352 }
db71ef79 7353 spin_unlock_irq(&hugetlb_lock);
ab5ac90a
MH
7354 }
7355}
cf11e85f 7356
6dfeaff9
PX
7357/*
7358 * This function will unconditionally remove all the shared pmd pgtable entries
7359 * within the specific vma for a hugetlbfs memory range.
7360 */
7361void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
7362{
7363 struct hstate *h = hstate_vma(vma);
7364 unsigned long sz = huge_page_size(h);
7365 struct mm_struct *mm = vma->vm_mm;
7366 struct mmu_notifier_range range;
7367 unsigned long address, start, end;
7368 spinlock_t *ptl;
7369 pte_t *ptep;
7370
7371 if (!(vma->vm_flags & VM_MAYSHARE))
7372 return;
7373
7374 start = ALIGN(vma->vm_start, PUD_SIZE);
7375 end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
7376
7377 if (start >= end)
7378 return;
7379
9c8bbfac 7380 flush_cache_range(vma, start, end);
6dfeaff9
PX
7381 /*
7382 * No need to call adjust_range_if_pmd_sharing_possible(), because
7383 * we have already done the PUD_SIZE alignment.
7384 */
7385 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
7386 start, end);
7387 mmu_notifier_invalidate_range_start(&range);
40549ba8 7388 hugetlb_vma_lock_write(vma);
6dfeaff9
PX
7389 i_mmap_lock_write(vma->vm_file->f_mapping);
7390 for (address = start; address < end; address += PUD_SIZE) {
6dfeaff9
PX
7391 ptep = huge_pte_offset(mm, address, sz);
7392 if (!ptep)
7393 continue;
7394 ptl = huge_pte_lock(h, mm, ptep);
4ddb4d91 7395 huge_pmd_unshare(mm, vma, address, ptep);
6dfeaff9
PX
7396 spin_unlock(ptl);
7397 }
7398 flush_hugetlb_tlb_range(vma, start, end);
7399 i_mmap_unlock_write(vma->vm_file->f_mapping);
40549ba8 7400 hugetlb_vma_unlock_write(vma);
6dfeaff9
PX
7401 /*
7402 * No need to call mmu_notifier_invalidate_range(), see
ee65728e 7403 * Documentation/mm/mmu_notifier.rst.
6dfeaff9
PX
7404 */
7405 mmu_notifier_invalidate_range_end(&range);
7406}
7407
cf11e85f 7408#ifdef CONFIG_CMA
cf11e85f
RG
7409static bool cma_reserve_called __initdata;
7410
7411static int __init cmdline_parse_hugetlb_cma(char *p)
7412{
38e719ab
BW
7413 int nid, count = 0;
7414 unsigned long tmp;
7415 char *s = p;
7416
7417 while (*s) {
7418 if (sscanf(s, "%lu%n", &tmp, &count) != 1)
7419 break;
7420
7421 if (s[count] == ':') {
f9317f77 7422 if (tmp >= MAX_NUMNODES)
38e719ab 7423 break;
f9317f77 7424 nid = array_index_nospec(tmp, MAX_NUMNODES);
38e719ab
BW
7425
7426 s += count + 1;
7427 tmp = memparse(s, &s);
7428 hugetlb_cma_size_in_node[nid] = tmp;
7429 hugetlb_cma_size += tmp;
7430
7431 /*
7432 * Skip the separator if have one, otherwise
7433 * break the parsing.
7434 */
7435 if (*s == ',')
7436 s++;
7437 else
7438 break;
7439 } else {
7440 hugetlb_cma_size = memparse(p, &p);
7441 break;
7442 }
7443 }
7444
cf11e85f
RG
7445 return 0;
7446}
7447
7448early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
7449
7450void __init hugetlb_cma_reserve(int order)
7451{
7452 unsigned long size, reserved, per_node;
38e719ab 7453 bool node_specific_cma_alloc = false;
cf11e85f
RG
7454 int nid;
7455
7456 cma_reserve_called = true;
7457
38e719ab
BW
7458 if (!hugetlb_cma_size)
7459 return;
7460
7461 for (nid = 0; nid < MAX_NUMNODES; nid++) {
7462 if (hugetlb_cma_size_in_node[nid] == 0)
7463 continue;
7464
30a51400 7465 if (!node_online(nid)) {
38e719ab
BW
7466 pr_warn("hugetlb_cma: invalid node %d specified\n", nid);
7467 hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7468 hugetlb_cma_size_in_node[nid] = 0;
7469 continue;
7470 }
7471
7472 if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) {
7473 pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n",
7474 nid, (PAGE_SIZE << order) / SZ_1M);
7475 hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7476 hugetlb_cma_size_in_node[nid] = 0;
7477 } else {
7478 node_specific_cma_alloc = true;
7479 }
7480 }
7481
7482 /* Validate the CMA size again in case some invalid nodes specified. */
cf11e85f
RG
7483 if (!hugetlb_cma_size)
7484 return;
7485
7486 if (hugetlb_cma_size < (PAGE_SIZE << order)) {
7487 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
7488 (PAGE_SIZE << order) / SZ_1M);
a01f4390 7489 hugetlb_cma_size = 0;
cf11e85f
RG
7490 return;
7491 }
7492
38e719ab
BW
7493 if (!node_specific_cma_alloc) {
7494 /*
7495 * If 3 GB area is requested on a machine with 4 numa nodes,
7496 * let's allocate 1 GB on first three nodes and ignore the last one.
7497 */
7498 per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
7499 pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
7500 hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
7501 }
cf11e85f
RG
7502
7503 reserved = 0;
30a51400 7504 for_each_online_node(nid) {
cf11e85f 7505 int res;
2281f797 7506 char name[CMA_MAX_NAME];
cf11e85f 7507
38e719ab
BW
7508 if (node_specific_cma_alloc) {
7509 if (hugetlb_cma_size_in_node[nid] == 0)
7510 continue;
7511
7512 size = hugetlb_cma_size_in_node[nid];
7513 } else {
7514 size = min(per_node, hugetlb_cma_size - reserved);
7515 }
7516
cf11e85f
RG
7517 size = round_up(size, PAGE_SIZE << order);
7518
2281f797 7519 snprintf(name, sizeof(name), "hugetlb%d", nid);
a01f4390
MK
7520 /*
7521 * Note that 'order per bit' is based on smallest size that
7522 * may be returned to CMA allocator in the case of
7523 * huge page demotion.
7524 */
7525 res = cma_declare_contiguous_nid(0, size, 0,
7526 PAGE_SIZE << HUGETLB_PAGE_ORDER,
29d0f41d 7527 0, false, name,
cf11e85f
RG
7528 &hugetlb_cma[nid], nid);
7529 if (res) {
7530 pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
7531 res, nid);
7532 continue;
7533 }
7534
7535 reserved += size;
7536 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
7537 size / SZ_1M, nid);
7538
7539 if (reserved >= hugetlb_cma_size)
7540 break;
7541 }
a01f4390
MK
7542
7543 if (!reserved)
7544 /*
7545 * hugetlb_cma_size is used to determine if allocations from
7546 * cma are possible. Set to zero if no cma regions are set up.
7547 */
7548 hugetlb_cma_size = 0;
cf11e85f
RG
7549}
7550
263b8998 7551static void __init hugetlb_cma_check(void)
cf11e85f
RG
7552{
7553 if (!hugetlb_cma_size || cma_reserve_called)
7554 return;
7555
7556 pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
7557}
7558
7559#endif /* CONFIG_CMA */