mm, oom: remove sleep from under oom_lock
[linux-2.6-block.git] / mm / hugetlb.c
CommitLineData
1da177e4
LT
1/*
2 * Generic hugetlb support.
6d49e352 3 * (C) Nadia Yvette Chambers, April 2004
1da177e4 4 */
1da177e4
LT
5#include <linux/list.h>
6#include <linux/init.h>
1da177e4 7#include <linux/mm.h>
e1759c21 8#include <linux/seq_file.h>
1da177e4
LT
9#include <linux/sysctl.h>
10#include <linux/highmem.h>
cddb8a5c 11#include <linux/mmu_notifier.h>
1da177e4 12#include <linux/nodemask.h>
63551ae0 13#include <linux/pagemap.h>
5da7ca86 14#include <linux/mempolicy.h>
3b32123d 15#include <linux/compiler.h>
aea47ff3 16#include <linux/cpuset.h>
3935baa9 17#include <linux/mutex.h>
aa888a74 18#include <linux/bootmem.h>
a3437870 19#include <linux/sysfs.h>
5a0e3ad6 20#include <linux/slab.h>
63489f8e 21#include <linux/mmdebug.h>
174cd4b1 22#include <linux/sched/signal.h>
0fe6e20b 23#include <linux/rmap.h>
c6247f72 24#include <linux/string_helpers.h>
fd6a03ed
NH
25#include <linux/swap.h>
26#include <linux/swapops.h>
8382d914 27#include <linux/jhash.h>
d6606683 28
63551ae0
DG
29#include <asm/page.h>
30#include <asm/pgtable.h>
24669e58 31#include <asm/tlb.h>
63551ae0 32
24669e58 33#include <linux/io.h>
63551ae0 34#include <linux/hugetlb.h>
9dd540e2 35#include <linux/hugetlb_cgroup.h>
9a305230 36#include <linux/node.h>
1a1aad8a 37#include <linux/userfaultfd_k.h>
ab5ac90a 38#include <linux/page_owner.h>
7835e98b 39#include "internal.h"
1da177e4 40
c3f38a38 41int hugetlb_max_hstate __read_mostly;
e5ff2159
AK
42unsigned int default_hstate_idx;
43struct hstate hstates[HUGE_MAX_HSTATE];
641844f5
NH
44/*
45 * Minimum page order among possible hugepage sizes, set to a proper value
46 * at boot time.
47 */
48static unsigned int minimum_order __read_mostly = UINT_MAX;
e5ff2159 49
53ba51d2
JT
50__initdata LIST_HEAD(huge_boot_pages);
51
e5ff2159
AK
52/* for command line parsing */
53static struct hstate * __initdata parsed_hstate;
54static unsigned long __initdata default_hstate_max_huge_pages;
e11bfbfc 55static unsigned long __initdata default_hstate_size;
9fee021d 56static bool __initdata parsed_valid_hugepagesz = true;
e5ff2159 57
3935baa9 58/*
31caf665
NH
59 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
60 * free_huge_pages, and surplus_huge_pages.
3935baa9 61 */
c3f38a38 62DEFINE_SPINLOCK(hugetlb_lock);
0bd0f9fb 63
8382d914
DB
64/*
65 * Serializes faults on the same logical page. This is used to
66 * prevent spurious OOMs when the hugepage pool is fully utilized.
67 */
68static int num_fault_mutexes;
c672c7f2 69struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
8382d914 70
7ca02d0a
MK
71/* Forward declaration */
72static int hugetlb_acct_memory(struct hstate *h, long delta);
73
90481622
DG
74static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
75{
76 bool free = (spool->count == 0) && (spool->used_hpages == 0);
77
78 spin_unlock(&spool->lock);
79
80 /* If no pages are used, and no other handles to the subpool
7ca02d0a
MK
81 * remain, give up any reservations mased on minimum size and
82 * free the subpool */
83 if (free) {
84 if (spool->min_hpages != -1)
85 hugetlb_acct_memory(spool->hstate,
86 -spool->min_hpages);
90481622 87 kfree(spool);
7ca02d0a 88 }
90481622
DG
89}
90
7ca02d0a
MK
91struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
92 long min_hpages)
90481622
DG
93{
94 struct hugepage_subpool *spool;
95
c6a91820 96 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
90481622
DG
97 if (!spool)
98 return NULL;
99
100 spin_lock_init(&spool->lock);
101 spool->count = 1;
7ca02d0a
MK
102 spool->max_hpages = max_hpages;
103 spool->hstate = h;
104 spool->min_hpages = min_hpages;
105
106 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
107 kfree(spool);
108 return NULL;
109 }
110 spool->rsv_hpages = min_hpages;
90481622
DG
111
112 return spool;
113}
114
115void hugepage_put_subpool(struct hugepage_subpool *spool)
116{
117 spin_lock(&spool->lock);
118 BUG_ON(!spool->count);
119 spool->count--;
120 unlock_or_release_subpool(spool);
121}
122
1c5ecae3
MK
123/*
124 * Subpool accounting for allocating and reserving pages.
125 * Return -ENOMEM if there are not enough resources to satisfy the
126 * the request. Otherwise, return the number of pages by which the
127 * global pools must be adjusted (upward). The returned value may
128 * only be different than the passed value (delta) in the case where
129 * a subpool minimum size must be manitained.
130 */
131static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
90481622
DG
132 long delta)
133{
1c5ecae3 134 long ret = delta;
90481622
DG
135
136 if (!spool)
1c5ecae3 137 return ret;
90481622
DG
138
139 spin_lock(&spool->lock);
1c5ecae3
MK
140
141 if (spool->max_hpages != -1) { /* maximum size accounting */
142 if ((spool->used_hpages + delta) <= spool->max_hpages)
143 spool->used_hpages += delta;
144 else {
145 ret = -ENOMEM;
146 goto unlock_ret;
147 }
90481622 148 }
90481622 149
09a95e29
MK
150 /* minimum size accounting */
151 if (spool->min_hpages != -1 && spool->rsv_hpages) {
1c5ecae3
MK
152 if (delta > spool->rsv_hpages) {
153 /*
154 * Asking for more reserves than those already taken on
155 * behalf of subpool. Return difference.
156 */
157 ret = delta - spool->rsv_hpages;
158 spool->rsv_hpages = 0;
159 } else {
160 ret = 0; /* reserves already accounted for */
161 spool->rsv_hpages -= delta;
162 }
163 }
164
165unlock_ret:
166 spin_unlock(&spool->lock);
90481622
DG
167 return ret;
168}
169
1c5ecae3
MK
170/*
171 * Subpool accounting for freeing and unreserving pages.
172 * Return the number of global page reservations that must be dropped.
173 * The return value may only be different than the passed value (delta)
174 * in the case where a subpool minimum size must be maintained.
175 */
176static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
90481622
DG
177 long delta)
178{
1c5ecae3
MK
179 long ret = delta;
180
90481622 181 if (!spool)
1c5ecae3 182 return delta;
90481622
DG
183
184 spin_lock(&spool->lock);
1c5ecae3
MK
185
186 if (spool->max_hpages != -1) /* maximum size accounting */
187 spool->used_hpages -= delta;
188
09a95e29
MK
189 /* minimum size accounting */
190 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
1c5ecae3
MK
191 if (spool->rsv_hpages + delta <= spool->min_hpages)
192 ret = 0;
193 else
194 ret = spool->rsv_hpages + delta - spool->min_hpages;
195
196 spool->rsv_hpages += delta;
197 if (spool->rsv_hpages > spool->min_hpages)
198 spool->rsv_hpages = spool->min_hpages;
199 }
200
201 /*
202 * If hugetlbfs_put_super couldn't free spool due to an outstanding
203 * quota reference, free it now.
204 */
90481622 205 unlock_or_release_subpool(spool);
1c5ecae3
MK
206
207 return ret;
90481622
DG
208}
209
210static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
211{
212 return HUGETLBFS_SB(inode->i_sb)->spool;
213}
214
215static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
216{
496ad9aa 217 return subpool_inode(file_inode(vma->vm_file));
90481622
DG
218}
219
96822904
AW
220/*
221 * Region tracking -- allows tracking of reservations and instantiated pages
222 * across the pages in a mapping.
84afd99b 223 *
1dd308a7
MK
224 * The region data structures are embedded into a resv_map and protected
225 * by a resv_map's lock. The set of regions within the resv_map represent
226 * reservations for huge pages, or huge pages that have already been
227 * instantiated within the map. The from and to elements are huge page
228 * indicies into the associated mapping. from indicates the starting index
229 * of the region. to represents the first index past the end of the region.
230 *
231 * For example, a file region structure with from == 0 and to == 4 represents
232 * four huge pages in a mapping. It is important to note that the to element
233 * represents the first element past the end of the region. This is used in
234 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
235 *
236 * Interval notation of the form [from, to) will be used to indicate that
237 * the endpoint from is inclusive and to is exclusive.
96822904
AW
238 */
239struct file_region {
240 struct list_head link;
241 long from;
242 long to;
243};
244
1dd308a7
MK
245/*
246 * Add the huge page range represented by [f, t) to the reserve
5e911373
MK
247 * map. In the normal case, existing regions will be expanded
248 * to accommodate the specified range. Sufficient regions should
249 * exist for expansion due to the previous call to region_chg
250 * with the same range. However, it is possible that region_del
251 * could have been called after region_chg and modifed the map
252 * in such a way that no region exists to be expanded. In this
253 * case, pull a region descriptor from the cache associated with
254 * the map and use that for the new range.
cf3ad20b
MK
255 *
256 * Return the number of new huge pages added to the map. This
257 * number is greater than or equal to zero.
1dd308a7 258 */
1406ec9b 259static long region_add(struct resv_map *resv, long f, long t)
96822904 260{
1406ec9b 261 struct list_head *head = &resv->regions;
96822904 262 struct file_region *rg, *nrg, *trg;
cf3ad20b 263 long add = 0;
96822904 264
7b24d861 265 spin_lock(&resv->lock);
96822904
AW
266 /* Locate the region we are either in or before. */
267 list_for_each_entry(rg, head, link)
268 if (f <= rg->to)
269 break;
270
5e911373
MK
271 /*
272 * If no region exists which can be expanded to include the
273 * specified range, the list must have been modified by an
274 * interleving call to region_del(). Pull a region descriptor
275 * from the cache and use it for this range.
276 */
277 if (&rg->link == head || t < rg->from) {
278 VM_BUG_ON(resv->region_cache_count <= 0);
279
280 resv->region_cache_count--;
281 nrg = list_first_entry(&resv->region_cache, struct file_region,
282 link);
283 list_del(&nrg->link);
284
285 nrg->from = f;
286 nrg->to = t;
287 list_add(&nrg->link, rg->link.prev);
288
289 add += t - f;
290 goto out_locked;
291 }
292
96822904
AW
293 /* Round our left edge to the current segment if it encloses us. */
294 if (f > rg->from)
295 f = rg->from;
296
297 /* Check for and consume any regions we now overlap with. */
298 nrg = rg;
299 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
300 if (&rg->link == head)
301 break;
302 if (rg->from > t)
303 break;
304
305 /* If this area reaches higher then extend our area to
306 * include it completely. If this is not the first area
307 * which we intend to reuse, free it. */
308 if (rg->to > t)
309 t = rg->to;
310 if (rg != nrg) {
cf3ad20b
MK
311 /* Decrement return value by the deleted range.
312 * Another range will span this area so that by
313 * end of routine add will be >= zero
314 */
315 add -= (rg->to - rg->from);
96822904
AW
316 list_del(&rg->link);
317 kfree(rg);
318 }
319 }
cf3ad20b
MK
320
321 add += (nrg->from - f); /* Added to beginning of region */
96822904 322 nrg->from = f;
cf3ad20b 323 add += t - nrg->to; /* Added to end of region */
96822904 324 nrg->to = t;
cf3ad20b 325
5e911373
MK
326out_locked:
327 resv->adds_in_progress--;
7b24d861 328 spin_unlock(&resv->lock);
cf3ad20b
MK
329 VM_BUG_ON(add < 0);
330 return add;
96822904
AW
331}
332
1dd308a7
MK
333/*
334 * Examine the existing reserve map and determine how many
335 * huge pages in the specified range [f, t) are NOT currently
336 * represented. This routine is called before a subsequent
337 * call to region_add that will actually modify the reserve
338 * map to add the specified range [f, t). region_chg does
339 * not change the number of huge pages represented by the
340 * map. However, if the existing regions in the map can not
341 * be expanded to represent the new range, a new file_region
342 * structure is added to the map as a placeholder. This is
343 * so that the subsequent region_add call will have all the
344 * regions it needs and will not fail.
345 *
5e911373
MK
346 * Upon entry, region_chg will also examine the cache of region descriptors
347 * associated with the map. If there are not enough descriptors cached, one
348 * will be allocated for the in progress add operation.
349 *
350 * Returns the number of huge pages that need to be added to the existing
351 * reservation map for the range [f, t). This number is greater or equal to
352 * zero. -ENOMEM is returned if a new file_region structure or cache entry
353 * is needed and can not be allocated.
1dd308a7 354 */
1406ec9b 355static long region_chg(struct resv_map *resv, long f, long t)
96822904 356{
1406ec9b 357 struct list_head *head = &resv->regions;
7b24d861 358 struct file_region *rg, *nrg = NULL;
96822904
AW
359 long chg = 0;
360
7b24d861
DB
361retry:
362 spin_lock(&resv->lock);
5e911373
MK
363retry_locked:
364 resv->adds_in_progress++;
365
366 /*
367 * Check for sufficient descriptors in the cache to accommodate
368 * the number of in progress add operations.
369 */
370 if (resv->adds_in_progress > resv->region_cache_count) {
371 struct file_region *trg;
372
373 VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
374 /* Must drop lock to allocate a new descriptor. */
375 resv->adds_in_progress--;
376 spin_unlock(&resv->lock);
377
378 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
dbe409e4
MK
379 if (!trg) {
380 kfree(nrg);
5e911373 381 return -ENOMEM;
dbe409e4 382 }
5e911373
MK
383
384 spin_lock(&resv->lock);
385 list_add(&trg->link, &resv->region_cache);
386 resv->region_cache_count++;
387 goto retry_locked;
388 }
389
96822904
AW
390 /* Locate the region we are before or in. */
391 list_for_each_entry(rg, head, link)
392 if (f <= rg->to)
393 break;
394
395 /* If we are below the current region then a new region is required.
396 * Subtle, allocate a new region at the position but make it zero
397 * size such that we can guarantee to record the reservation. */
398 if (&rg->link == head || t < rg->from) {
7b24d861 399 if (!nrg) {
5e911373 400 resv->adds_in_progress--;
7b24d861
DB
401 spin_unlock(&resv->lock);
402 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
403 if (!nrg)
404 return -ENOMEM;
405
406 nrg->from = f;
407 nrg->to = f;
408 INIT_LIST_HEAD(&nrg->link);
409 goto retry;
410 }
96822904 411
7b24d861
DB
412 list_add(&nrg->link, rg->link.prev);
413 chg = t - f;
414 goto out_nrg;
96822904
AW
415 }
416
417 /* Round our left edge to the current segment if it encloses us. */
418 if (f > rg->from)
419 f = rg->from;
420 chg = t - f;
421
422 /* Check for and consume any regions we now overlap with. */
423 list_for_each_entry(rg, rg->link.prev, link) {
424 if (&rg->link == head)
425 break;
426 if (rg->from > t)
7b24d861 427 goto out;
96822904 428
25985edc 429 /* We overlap with this area, if it extends further than
96822904
AW
430 * us then we must extend ourselves. Account for its
431 * existing reservation. */
432 if (rg->to > t) {
433 chg += rg->to - t;
434 t = rg->to;
435 }
436 chg -= rg->to - rg->from;
437 }
7b24d861
DB
438
439out:
440 spin_unlock(&resv->lock);
441 /* We already know we raced and no longer need the new region */
442 kfree(nrg);
443 return chg;
444out_nrg:
445 spin_unlock(&resv->lock);
96822904
AW
446 return chg;
447}
448
5e911373
MK
449/*
450 * Abort the in progress add operation. The adds_in_progress field
451 * of the resv_map keeps track of the operations in progress between
452 * calls to region_chg and region_add. Operations are sometimes
453 * aborted after the call to region_chg. In such cases, region_abort
454 * is called to decrement the adds_in_progress counter.
455 *
456 * NOTE: The range arguments [f, t) are not needed or used in this
457 * routine. They are kept to make reading the calling code easier as
458 * arguments will match the associated region_chg call.
459 */
460static void region_abort(struct resv_map *resv, long f, long t)
461{
462 spin_lock(&resv->lock);
463 VM_BUG_ON(!resv->region_cache_count);
464 resv->adds_in_progress--;
465 spin_unlock(&resv->lock);
466}
467
1dd308a7 468/*
feba16e2
MK
469 * Delete the specified range [f, t) from the reserve map. If the
470 * t parameter is LONG_MAX, this indicates that ALL regions after f
471 * should be deleted. Locate the regions which intersect [f, t)
472 * and either trim, delete or split the existing regions.
473 *
474 * Returns the number of huge pages deleted from the reserve map.
475 * In the normal case, the return value is zero or more. In the
476 * case where a region must be split, a new region descriptor must
477 * be allocated. If the allocation fails, -ENOMEM will be returned.
478 * NOTE: If the parameter t == LONG_MAX, then we will never split
479 * a region and possibly return -ENOMEM. Callers specifying
480 * t == LONG_MAX do not need to check for -ENOMEM error.
1dd308a7 481 */
feba16e2 482static long region_del(struct resv_map *resv, long f, long t)
96822904 483{
1406ec9b 484 struct list_head *head = &resv->regions;
96822904 485 struct file_region *rg, *trg;
feba16e2
MK
486 struct file_region *nrg = NULL;
487 long del = 0;
96822904 488
feba16e2 489retry:
7b24d861 490 spin_lock(&resv->lock);
feba16e2 491 list_for_each_entry_safe(rg, trg, head, link) {
dbe409e4
MK
492 /*
493 * Skip regions before the range to be deleted. file_region
494 * ranges are normally of the form [from, to). However, there
495 * may be a "placeholder" entry in the map which is of the form
496 * (from, to) with from == to. Check for placeholder entries
497 * at the beginning of the range to be deleted.
498 */
499 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
feba16e2 500 continue;
dbe409e4 501
feba16e2 502 if (rg->from >= t)
96822904 503 break;
96822904 504
feba16e2
MK
505 if (f > rg->from && t < rg->to) { /* Must split region */
506 /*
507 * Check for an entry in the cache before dropping
508 * lock and attempting allocation.
509 */
510 if (!nrg &&
511 resv->region_cache_count > resv->adds_in_progress) {
512 nrg = list_first_entry(&resv->region_cache,
513 struct file_region,
514 link);
515 list_del(&nrg->link);
516 resv->region_cache_count--;
517 }
96822904 518
feba16e2
MK
519 if (!nrg) {
520 spin_unlock(&resv->lock);
521 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
522 if (!nrg)
523 return -ENOMEM;
524 goto retry;
525 }
526
527 del += t - f;
528
529 /* New entry for end of split region */
530 nrg->from = t;
531 nrg->to = rg->to;
532 INIT_LIST_HEAD(&nrg->link);
533
534 /* Original entry is trimmed */
535 rg->to = f;
536
537 list_add(&nrg->link, &rg->link);
538 nrg = NULL;
96822904 539 break;
feba16e2
MK
540 }
541
542 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
543 del += rg->to - rg->from;
544 list_del(&rg->link);
545 kfree(rg);
546 continue;
547 }
548
549 if (f <= rg->from) { /* Trim beginning of region */
550 del += t - rg->from;
551 rg->from = t;
552 } else { /* Trim end of region */
553 del += rg->to - f;
554 rg->to = f;
555 }
96822904 556 }
7b24d861 557
7b24d861 558 spin_unlock(&resv->lock);
feba16e2
MK
559 kfree(nrg);
560 return del;
96822904
AW
561}
562
b5cec28d
MK
563/*
564 * A rare out of memory error was encountered which prevented removal of
565 * the reserve map region for a page. The huge page itself was free'ed
566 * and removed from the page cache. This routine will adjust the subpool
567 * usage count, and the global reserve count if needed. By incrementing
568 * these counts, the reserve map entry which could not be deleted will
569 * appear as a "reserved" entry instead of simply dangling with incorrect
570 * counts.
571 */
72e2936c 572void hugetlb_fix_reserve_counts(struct inode *inode)
b5cec28d
MK
573{
574 struct hugepage_subpool *spool = subpool_inode(inode);
575 long rsv_adjust;
576
577 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
72e2936c 578 if (rsv_adjust) {
b5cec28d
MK
579 struct hstate *h = hstate_inode(inode);
580
581 hugetlb_acct_memory(h, 1);
582 }
583}
584
1dd308a7
MK
585/*
586 * Count and return the number of huge pages in the reserve map
587 * that intersect with the range [f, t).
588 */
1406ec9b 589static long region_count(struct resv_map *resv, long f, long t)
84afd99b 590{
1406ec9b 591 struct list_head *head = &resv->regions;
84afd99b
AW
592 struct file_region *rg;
593 long chg = 0;
594
7b24d861 595 spin_lock(&resv->lock);
84afd99b
AW
596 /* Locate each segment we overlap with, and count that overlap. */
597 list_for_each_entry(rg, head, link) {
f2135a4a
WSH
598 long seg_from;
599 long seg_to;
84afd99b
AW
600
601 if (rg->to <= f)
602 continue;
603 if (rg->from >= t)
604 break;
605
606 seg_from = max(rg->from, f);
607 seg_to = min(rg->to, t);
608
609 chg += seg_to - seg_from;
610 }
7b24d861 611 spin_unlock(&resv->lock);
84afd99b
AW
612
613 return chg;
614}
615
e7c4b0bf
AW
616/*
617 * Convert the address within this vma to the page offset within
618 * the mapping, in pagecache page units; huge pages here.
619 */
a5516438
AK
620static pgoff_t vma_hugecache_offset(struct hstate *h,
621 struct vm_area_struct *vma, unsigned long address)
e7c4b0bf 622{
a5516438
AK
623 return ((address - vma->vm_start) >> huge_page_shift(h)) +
624 (vma->vm_pgoff >> huge_page_order(h));
e7c4b0bf
AW
625}
626
0fe6e20b
NH
627pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
628 unsigned long address)
629{
630 return vma_hugecache_offset(hstate_vma(vma), vma, address);
631}
dee41079 632EXPORT_SYMBOL_GPL(linear_hugepage_index);
0fe6e20b 633
08fba699
MG
634/*
635 * Return the size of the pages allocated when backing a VMA. In the majority
636 * cases this will be same size as used by the page table entries.
637 */
638unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
639{
05ea8860
DW
640 if (vma->vm_ops && vma->vm_ops->pagesize)
641 return vma->vm_ops->pagesize(vma);
642 return PAGE_SIZE;
08fba699 643}
f340ca0f 644EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
08fba699 645
3340289d
MG
646/*
647 * Return the page size being used by the MMU to back a VMA. In the majority
648 * of cases, the page size used by the kernel matches the MMU size. On
09135cc5
DW
649 * architectures where it differs, an architecture-specific 'strong'
650 * version of this symbol is required.
3340289d 651 */
09135cc5 652__weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
3340289d
MG
653{
654 return vma_kernel_pagesize(vma);
655}
3340289d 656
84afd99b
AW
657/*
658 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
659 * bits of the reservation map pointer, which are always clear due to
660 * alignment.
661 */
662#define HPAGE_RESV_OWNER (1UL << 0)
663#define HPAGE_RESV_UNMAPPED (1UL << 1)
04f2cbe3 664#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
84afd99b 665
a1e78772
MG
666/*
667 * These helpers are used to track how many pages are reserved for
668 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
669 * is guaranteed to have their future faults succeed.
670 *
671 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
672 * the reserve counters are updated with the hugetlb_lock held. It is safe
673 * to reset the VMA at fork() time as it is not in use yet and there is no
674 * chance of the global counters getting corrupted as a result of the values.
84afd99b
AW
675 *
676 * The private mapping reservation is represented in a subtly different
677 * manner to a shared mapping. A shared mapping has a region map associated
678 * with the underlying file, this region map represents the backing file
679 * pages which have ever had a reservation assigned which this persists even
680 * after the page is instantiated. A private mapping has a region map
681 * associated with the original mmap which is attached to all VMAs which
682 * reference it, this region map represents those offsets which have consumed
683 * reservation ie. where pages have been instantiated.
a1e78772 684 */
e7c4b0bf
AW
685static unsigned long get_vma_private_data(struct vm_area_struct *vma)
686{
687 return (unsigned long)vma->vm_private_data;
688}
689
690static void set_vma_private_data(struct vm_area_struct *vma,
691 unsigned long value)
692{
693 vma->vm_private_data = (void *)value;
694}
695
9119a41e 696struct resv_map *resv_map_alloc(void)
84afd99b
AW
697{
698 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
5e911373
MK
699 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
700
701 if (!resv_map || !rg) {
702 kfree(resv_map);
703 kfree(rg);
84afd99b 704 return NULL;
5e911373 705 }
84afd99b
AW
706
707 kref_init(&resv_map->refs);
7b24d861 708 spin_lock_init(&resv_map->lock);
84afd99b
AW
709 INIT_LIST_HEAD(&resv_map->regions);
710
5e911373
MK
711 resv_map->adds_in_progress = 0;
712
713 INIT_LIST_HEAD(&resv_map->region_cache);
714 list_add(&rg->link, &resv_map->region_cache);
715 resv_map->region_cache_count = 1;
716
84afd99b
AW
717 return resv_map;
718}
719
9119a41e 720void resv_map_release(struct kref *ref)
84afd99b
AW
721{
722 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
5e911373
MK
723 struct list_head *head = &resv_map->region_cache;
724 struct file_region *rg, *trg;
84afd99b
AW
725
726 /* Clear out any active regions before we release the map. */
feba16e2 727 region_del(resv_map, 0, LONG_MAX);
5e911373
MK
728
729 /* ... and any entries left in the cache */
730 list_for_each_entry_safe(rg, trg, head, link) {
731 list_del(&rg->link);
732 kfree(rg);
733 }
734
735 VM_BUG_ON(resv_map->adds_in_progress);
736
84afd99b
AW
737 kfree(resv_map);
738}
739
4e35f483
JK
740static inline struct resv_map *inode_resv_map(struct inode *inode)
741{
742 return inode->i_mapping->private_data;
743}
744
84afd99b 745static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
a1e78772 746{
81d1b09c 747 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
4e35f483
JK
748 if (vma->vm_flags & VM_MAYSHARE) {
749 struct address_space *mapping = vma->vm_file->f_mapping;
750 struct inode *inode = mapping->host;
751
752 return inode_resv_map(inode);
753
754 } else {
84afd99b
AW
755 return (struct resv_map *)(get_vma_private_data(vma) &
756 ~HPAGE_RESV_MASK);
4e35f483 757 }
a1e78772
MG
758}
759
84afd99b 760static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
a1e78772 761{
81d1b09c
SL
762 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
763 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
a1e78772 764
84afd99b
AW
765 set_vma_private_data(vma, (get_vma_private_data(vma) &
766 HPAGE_RESV_MASK) | (unsigned long)map);
04f2cbe3
MG
767}
768
769static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
770{
81d1b09c
SL
771 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
772 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
e7c4b0bf
AW
773
774 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
04f2cbe3
MG
775}
776
777static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
778{
81d1b09c 779 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
e7c4b0bf
AW
780
781 return (get_vma_private_data(vma) & flag) != 0;
a1e78772
MG
782}
783
04f2cbe3 784/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
a1e78772
MG
785void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
786{
81d1b09c 787 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
f83a275d 788 if (!(vma->vm_flags & VM_MAYSHARE))
a1e78772
MG
789 vma->vm_private_data = (void *)0;
790}
791
792/* Returns true if the VMA has associated reserve pages */
559ec2f8 793static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
a1e78772 794{
af0ed73e
JK
795 if (vma->vm_flags & VM_NORESERVE) {
796 /*
797 * This address is already reserved by other process(chg == 0),
798 * so, we should decrement reserved count. Without decrementing,
799 * reserve count remains after releasing inode, because this
800 * allocated page will go into page cache and is regarded as
801 * coming from reserved pool in releasing step. Currently, we
802 * don't have any other solution to deal with this situation
803 * properly, so add work-around here.
804 */
805 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
559ec2f8 806 return true;
af0ed73e 807 else
559ec2f8 808 return false;
af0ed73e 809 }
a63884e9
JK
810
811 /* Shared mappings always use reserves */
1fb1b0e9
MK
812 if (vma->vm_flags & VM_MAYSHARE) {
813 /*
814 * We know VM_NORESERVE is not set. Therefore, there SHOULD
815 * be a region map for all pages. The only situation where
816 * there is no region map is if a hole was punched via
817 * fallocate. In this case, there really are no reverves to
818 * use. This situation is indicated if chg != 0.
819 */
820 if (chg)
821 return false;
822 else
823 return true;
824 }
a63884e9
JK
825
826 /*
827 * Only the process that called mmap() has reserves for
828 * private mappings.
829 */
67961f9d
MK
830 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
831 /*
832 * Like the shared case above, a hole punch or truncate
833 * could have been performed on the private mapping.
834 * Examine the value of chg to determine if reserves
835 * actually exist or were previously consumed.
836 * Very Subtle - The value of chg comes from a previous
837 * call to vma_needs_reserves(). The reserve map for
838 * private mappings has different (opposite) semantics
839 * than that of shared mappings. vma_needs_reserves()
840 * has already taken this difference in semantics into
841 * account. Therefore, the meaning of chg is the same
842 * as in the shared case above. Code could easily be
843 * combined, but keeping it separate draws attention to
844 * subtle differences.
845 */
846 if (chg)
847 return false;
848 else
849 return true;
850 }
a63884e9 851
559ec2f8 852 return false;
a1e78772
MG
853}
854
a5516438 855static void enqueue_huge_page(struct hstate *h, struct page *page)
1da177e4
LT
856{
857 int nid = page_to_nid(page);
0edaecfa 858 list_move(&page->lru, &h->hugepage_freelists[nid]);
a5516438
AK
859 h->free_huge_pages++;
860 h->free_huge_pages_node[nid]++;
1da177e4
LT
861}
862
94310cbc 863static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
bf50bab2
NH
864{
865 struct page *page;
866
c8721bbb 867 list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
243abd5b 868 if (!PageHWPoison(page))
c8721bbb
NH
869 break;
870 /*
871 * if 'non-isolated free hugepage' not found on the list,
872 * the allocation fails.
873 */
874 if (&h->hugepage_freelists[nid] == &page->lru)
bf50bab2 875 return NULL;
0edaecfa 876 list_move(&page->lru, &h->hugepage_activelist);
a9869b83 877 set_page_refcounted(page);
bf50bab2
NH
878 h->free_huge_pages--;
879 h->free_huge_pages_node[nid]--;
880 return page;
881}
882
3e59fcb0
MH
883static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
884 nodemask_t *nmask)
94310cbc 885{
3e59fcb0
MH
886 unsigned int cpuset_mems_cookie;
887 struct zonelist *zonelist;
888 struct zone *zone;
889 struct zoneref *z;
890 int node = -1;
94310cbc 891
3e59fcb0
MH
892 zonelist = node_zonelist(nid, gfp_mask);
893
894retry_cpuset:
895 cpuset_mems_cookie = read_mems_allowed_begin();
896 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
897 struct page *page;
898
899 if (!cpuset_zone_allowed(zone, gfp_mask))
900 continue;
901 /*
902 * no need to ask again on the same node. Pool is node rather than
903 * zone aware
904 */
905 if (zone_to_nid(zone) == node)
906 continue;
907 node = zone_to_nid(zone);
94310cbc 908
94310cbc
AK
909 page = dequeue_huge_page_node_exact(h, node);
910 if (page)
911 return page;
912 }
3e59fcb0
MH
913 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
914 goto retry_cpuset;
915
94310cbc
AK
916 return NULL;
917}
918
86cdb465
NH
919/* Movability of hugepages depends on migration support. */
920static inline gfp_t htlb_alloc_mask(struct hstate *h)
921{
d6cb41cc 922 if (hugepage_migration_supported(h))
86cdb465
NH
923 return GFP_HIGHUSER_MOVABLE;
924 else
925 return GFP_HIGHUSER;
926}
927
a5516438
AK
928static struct page *dequeue_huge_page_vma(struct hstate *h,
929 struct vm_area_struct *vma,
af0ed73e
JK
930 unsigned long address, int avoid_reserve,
931 long chg)
1da177e4 932{
3e59fcb0 933 struct page *page;
480eccf9 934 struct mempolicy *mpol;
04ec6264 935 gfp_t gfp_mask;
3e59fcb0 936 nodemask_t *nodemask;
04ec6264 937 int nid;
1da177e4 938
a1e78772
MG
939 /*
940 * A child process with MAP_PRIVATE mappings created by their parent
941 * have no page reserves. This check ensures that reservations are
942 * not "stolen". The child may still get SIGKILLed
943 */
af0ed73e 944 if (!vma_has_reserves(vma, chg) &&
a5516438 945 h->free_huge_pages - h->resv_huge_pages == 0)
c0ff7453 946 goto err;
a1e78772 947
04f2cbe3 948 /* If reserves cannot be used, ensure enough pages are in the pool */
a5516438 949 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
6eab04a8 950 goto err;
04f2cbe3 951
04ec6264
VB
952 gfp_mask = htlb_alloc_mask(h);
953 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
3e59fcb0
MH
954 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
955 if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
956 SetPagePrivate(page);
957 h->resv_huge_pages--;
1da177e4 958 }
cc9a6c87 959
52cd3b07 960 mpol_cond_put(mpol);
1da177e4 961 return page;
cc9a6c87
MG
962
963err:
cc9a6c87 964 return NULL;
1da177e4
LT
965}
966
1cac6f2c
LC
967/*
968 * common helper functions for hstate_next_node_to_{alloc|free}.
969 * We may have allocated or freed a huge page based on a different
970 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
971 * be outside of *nodes_allowed. Ensure that we use an allowed
972 * node for alloc or free.
973 */
974static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
975{
0edaf86c 976 nid = next_node_in(nid, *nodes_allowed);
1cac6f2c
LC
977 VM_BUG_ON(nid >= MAX_NUMNODES);
978
979 return nid;
980}
981
982static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
983{
984 if (!node_isset(nid, *nodes_allowed))
985 nid = next_node_allowed(nid, nodes_allowed);
986 return nid;
987}
988
989/*
990 * returns the previously saved node ["this node"] from which to
991 * allocate a persistent huge page for the pool and advance the
992 * next node from which to allocate, handling wrap at end of node
993 * mask.
994 */
995static int hstate_next_node_to_alloc(struct hstate *h,
996 nodemask_t *nodes_allowed)
997{
998 int nid;
999
1000 VM_BUG_ON(!nodes_allowed);
1001
1002 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1003 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1004
1005 return nid;
1006}
1007
1008/*
1009 * helper for free_pool_huge_page() - return the previously saved
1010 * node ["this node"] from which to free a huge page. Advance the
1011 * next node id whether or not we find a free huge page to free so
1012 * that the next attempt to free addresses the next node.
1013 */
1014static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1015{
1016 int nid;
1017
1018 VM_BUG_ON(!nodes_allowed);
1019
1020 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1021 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1022
1023 return nid;
1024}
1025
1026#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
1027 for (nr_nodes = nodes_weight(*mask); \
1028 nr_nodes > 0 && \
1029 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
1030 nr_nodes--)
1031
1032#define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1033 for (nr_nodes = nodes_weight(*mask); \
1034 nr_nodes > 0 && \
1035 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1036 nr_nodes--)
1037
e1073d1e 1038#ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
944d9fec 1039static void destroy_compound_gigantic_page(struct page *page,
d00181b9 1040 unsigned int order)
944d9fec
LC
1041{
1042 int i;
1043 int nr_pages = 1 << order;
1044 struct page *p = page + 1;
1045
c8cc708a 1046 atomic_set(compound_mapcount_ptr(page), 0);
944d9fec 1047 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1d798ca3 1048 clear_compound_head(p);
944d9fec 1049 set_page_refcounted(p);
944d9fec
LC
1050 }
1051
1052 set_compound_order(page, 0);
1053 __ClearPageHead(page);
1054}
1055
d00181b9 1056static void free_gigantic_page(struct page *page, unsigned int order)
944d9fec
LC
1057{
1058 free_contig_range(page_to_pfn(page), 1 << order);
1059}
1060
1061static int __alloc_gigantic_page(unsigned long start_pfn,
79b63f12 1062 unsigned long nr_pages, gfp_t gfp_mask)
944d9fec
LC
1063{
1064 unsigned long end_pfn = start_pfn + nr_pages;
ca96b625 1065 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
79b63f12 1066 gfp_mask);
944d9fec
LC
1067}
1068
f44b2dda
JK
1069static bool pfn_range_valid_gigantic(struct zone *z,
1070 unsigned long start_pfn, unsigned long nr_pages)
944d9fec
LC
1071{
1072 unsigned long i, end_pfn = start_pfn + nr_pages;
1073 struct page *page;
1074
1075 for (i = start_pfn; i < end_pfn; i++) {
1076 if (!pfn_valid(i))
1077 return false;
1078
1079 page = pfn_to_page(i);
1080
f44b2dda
JK
1081 if (page_zone(page) != z)
1082 return false;
1083
944d9fec
LC
1084 if (PageReserved(page))
1085 return false;
1086
1087 if (page_count(page) > 0)
1088 return false;
1089
1090 if (PageHuge(page))
1091 return false;
1092 }
1093
1094 return true;
1095}
1096
1097static bool zone_spans_last_pfn(const struct zone *zone,
1098 unsigned long start_pfn, unsigned long nr_pages)
1099{
1100 unsigned long last_pfn = start_pfn + nr_pages - 1;
1101 return zone_spans_pfn(zone, last_pfn);
1102}
1103
d9cc948f
MH
1104static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1105 int nid, nodemask_t *nodemask)
944d9fec 1106{
79b63f12 1107 unsigned int order = huge_page_order(h);
944d9fec
LC
1108 unsigned long nr_pages = 1 << order;
1109 unsigned long ret, pfn, flags;
79b63f12
MH
1110 struct zonelist *zonelist;
1111 struct zone *zone;
1112 struct zoneref *z;
944d9fec 1113
79b63f12 1114 zonelist = node_zonelist(nid, gfp_mask);
d9cc948f 1115 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nodemask) {
79b63f12 1116 spin_lock_irqsave(&zone->lock, flags);
944d9fec 1117
79b63f12
MH
1118 pfn = ALIGN(zone->zone_start_pfn, nr_pages);
1119 while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
1120 if (pfn_range_valid_gigantic(zone, pfn, nr_pages)) {
944d9fec
LC
1121 /*
1122 * We release the zone lock here because
1123 * alloc_contig_range() will also lock the zone
1124 * at some point. If there's an allocation
1125 * spinning on this lock, it may win the race
1126 * and cause alloc_contig_range() to fail...
1127 */
79b63f12
MH
1128 spin_unlock_irqrestore(&zone->lock, flags);
1129 ret = __alloc_gigantic_page(pfn, nr_pages, gfp_mask);
944d9fec
LC
1130 if (!ret)
1131 return pfn_to_page(pfn);
79b63f12 1132 spin_lock_irqsave(&zone->lock, flags);
944d9fec
LC
1133 }
1134 pfn += nr_pages;
1135 }
1136
79b63f12 1137 spin_unlock_irqrestore(&zone->lock, flags);
944d9fec
LC
1138 }
1139
1140 return NULL;
1141}
1142
1143static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
d00181b9 1144static void prep_compound_gigantic_page(struct page *page, unsigned int order);
944d9fec 1145
e1073d1e 1146#else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
944d9fec 1147static inline bool gigantic_page_supported(void) { return false; }
d9cc948f
MH
1148static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1149 int nid, nodemask_t *nodemask) { return NULL; }
d00181b9 1150static inline void free_gigantic_page(struct page *page, unsigned int order) { }
944d9fec 1151static inline void destroy_compound_gigantic_page(struct page *page,
d00181b9 1152 unsigned int order) { }
944d9fec
LC
1153#endif
1154
a5516438 1155static void update_and_free_page(struct hstate *h, struct page *page)
6af2acb6
AL
1156{
1157 int i;
a5516438 1158
944d9fec
LC
1159 if (hstate_is_gigantic(h) && !gigantic_page_supported())
1160 return;
18229df5 1161
a5516438
AK
1162 h->nr_huge_pages--;
1163 h->nr_huge_pages_node[page_to_nid(page)]--;
1164 for (i = 0; i < pages_per_huge_page(h); i++) {
32f84528
CF
1165 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1166 1 << PG_referenced | 1 << PG_dirty |
a7407a27
LC
1167 1 << PG_active | 1 << PG_private |
1168 1 << PG_writeback);
6af2acb6 1169 }
309381fe 1170 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
f1e61557 1171 set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
6af2acb6 1172 set_page_refcounted(page);
944d9fec
LC
1173 if (hstate_is_gigantic(h)) {
1174 destroy_compound_gigantic_page(page, huge_page_order(h));
1175 free_gigantic_page(page, huge_page_order(h));
1176 } else {
944d9fec
LC
1177 __free_pages(page, huge_page_order(h));
1178 }
6af2acb6
AL
1179}
1180
e5ff2159
AK
1181struct hstate *size_to_hstate(unsigned long size)
1182{
1183 struct hstate *h;
1184
1185 for_each_hstate(h) {
1186 if (huge_page_size(h) == size)
1187 return h;
1188 }
1189 return NULL;
1190}
1191
bcc54222
NH
1192/*
1193 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1194 * to hstate->hugepage_activelist.)
1195 *
1196 * This function can be called for tail pages, but never returns true for them.
1197 */
1198bool page_huge_active(struct page *page)
1199{
1200 VM_BUG_ON_PAGE(!PageHuge(page), page);
1201 return PageHead(page) && PagePrivate(&page[1]);
1202}
1203
1204/* never called for tail page */
1205static void set_page_huge_active(struct page *page)
1206{
1207 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1208 SetPagePrivate(&page[1]);
1209}
1210
1211static void clear_page_huge_active(struct page *page)
1212{
1213 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1214 ClearPagePrivate(&page[1]);
1215}
1216
ab5ac90a
MH
1217/*
1218 * Internal hugetlb specific page flag. Do not use outside of the hugetlb
1219 * code
1220 */
1221static inline bool PageHugeTemporary(struct page *page)
1222{
1223 if (!PageHuge(page))
1224 return false;
1225
1226 return (unsigned long)page[2].mapping == -1U;
1227}
1228
1229static inline void SetPageHugeTemporary(struct page *page)
1230{
1231 page[2].mapping = (void *)-1U;
1232}
1233
1234static inline void ClearPageHugeTemporary(struct page *page)
1235{
1236 page[2].mapping = NULL;
1237}
1238
8f1d26d0 1239void free_huge_page(struct page *page)
27a85ef1 1240{
a5516438
AK
1241 /*
1242 * Can't pass hstate in here because it is called from the
1243 * compound page destructor.
1244 */
e5ff2159 1245 struct hstate *h = page_hstate(page);
7893d1d5 1246 int nid = page_to_nid(page);
90481622
DG
1247 struct hugepage_subpool *spool =
1248 (struct hugepage_subpool *)page_private(page);
07443a85 1249 bool restore_reserve;
27a85ef1 1250
e5df70ab 1251 set_page_private(page, 0);
23be7468 1252 page->mapping = NULL;
b4330afb
MK
1253 VM_BUG_ON_PAGE(page_count(page), page);
1254 VM_BUG_ON_PAGE(page_mapcount(page), page);
07443a85 1255 restore_reserve = PagePrivate(page);
16c794b4 1256 ClearPagePrivate(page);
27a85ef1 1257
1c5ecae3
MK
1258 /*
1259 * A return code of zero implies that the subpool will be under its
1260 * minimum size if the reservation is not restored after page is free.
1261 * Therefore, force restore_reserve operation.
1262 */
1263 if (hugepage_subpool_put_pages(spool, 1) == 0)
1264 restore_reserve = true;
1265
27a85ef1 1266 spin_lock(&hugetlb_lock);
bcc54222 1267 clear_page_huge_active(page);
6d76dcf4
AK
1268 hugetlb_cgroup_uncharge_page(hstate_index(h),
1269 pages_per_huge_page(h), page);
07443a85
JK
1270 if (restore_reserve)
1271 h->resv_huge_pages++;
1272
ab5ac90a
MH
1273 if (PageHugeTemporary(page)) {
1274 list_del(&page->lru);
1275 ClearPageHugeTemporary(page);
1276 update_and_free_page(h, page);
1277 } else if (h->surplus_huge_pages_node[nid]) {
0edaecfa
AK
1278 /* remove the page from active list */
1279 list_del(&page->lru);
a5516438
AK
1280 update_and_free_page(h, page);
1281 h->surplus_huge_pages--;
1282 h->surplus_huge_pages_node[nid]--;
7893d1d5 1283 } else {
5d3a551c 1284 arch_clear_hugepage_flags(page);
a5516438 1285 enqueue_huge_page(h, page);
7893d1d5 1286 }
27a85ef1
DG
1287 spin_unlock(&hugetlb_lock);
1288}
1289
a5516438 1290static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
b7ba30c6 1291{
0edaecfa 1292 INIT_LIST_HEAD(&page->lru);
f1e61557 1293 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
b7ba30c6 1294 spin_lock(&hugetlb_lock);
9dd540e2 1295 set_hugetlb_cgroup(page, NULL);
a5516438
AK
1296 h->nr_huge_pages++;
1297 h->nr_huge_pages_node[nid]++;
b7ba30c6 1298 spin_unlock(&hugetlb_lock);
b7ba30c6
AK
1299}
1300
d00181b9 1301static void prep_compound_gigantic_page(struct page *page, unsigned int order)
20a0307c
WF
1302{
1303 int i;
1304 int nr_pages = 1 << order;
1305 struct page *p = page + 1;
1306
1307 /* we rely on prep_new_huge_page to set the destructor */
1308 set_compound_order(page, order);
ef5a22be 1309 __ClearPageReserved(page);
de09d31d 1310 __SetPageHead(page);
20a0307c 1311 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
ef5a22be
AA
1312 /*
1313 * For gigantic hugepages allocated through bootmem at
1314 * boot, it's safer to be consistent with the not-gigantic
1315 * hugepages and clear the PG_reserved bit from all tail pages
1316 * too. Otherwse drivers using get_user_pages() to access tail
1317 * pages may get the reference counting wrong if they see
1318 * PG_reserved set on a tail page (despite the head page not
1319 * having PG_reserved set). Enforcing this consistency between
1320 * head and tail pages allows drivers to optimize away a check
1321 * on the head page when they need know if put_page() is needed
1322 * after get_user_pages().
1323 */
1324 __ClearPageReserved(p);
58a84aa9 1325 set_page_count(p, 0);
1d798ca3 1326 set_compound_head(p, page);
20a0307c 1327 }
b4330afb 1328 atomic_set(compound_mapcount_ptr(page), -1);
20a0307c
WF
1329}
1330
7795912c
AM
1331/*
1332 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1333 * transparent huge pages. See the PageTransHuge() documentation for more
1334 * details.
1335 */
20a0307c
WF
1336int PageHuge(struct page *page)
1337{
20a0307c
WF
1338 if (!PageCompound(page))
1339 return 0;
1340
1341 page = compound_head(page);
f1e61557 1342 return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
20a0307c 1343}
43131e14
NH
1344EXPORT_SYMBOL_GPL(PageHuge);
1345
27c73ae7
AA
1346/*
1347 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1348 * normal or transparent huge pages.
1349 */
1350int PageHeadHuge(struct page *page_head)
1351{
27c73ae7
AA
1352 if (!PageHead(page_head))
1353 return 0;
1354
758f66a2 1355 return get_compound_page_dtor(page_head) == free_huge_page;
27c73ae7 1356}
27c73ae7 1357
13d60f4b
ZY
1358pgoff_t __basepage_index(struct page *page)
1359{
1360 struct page *page_head = compound_head(page);
1361 pgoff_t index = page_index(page_head);
1362 unsigned long compound_idx;
1363
1364 if (!PageHuge(page_head))
1365 return page_index(page);
1366
1367 if (compound_order(page_head) >= MAX_ORDER)
1368 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1369 else
1370 compound_idx = page - page_head;
1371
1372 return (index << compound_order(page_head)) + compound_idx;
1373}
1374
0c397dae 1375static struct page *alloc_buddy_huge_page(struct hstate *h,
af0fb9df 1376 gfp_t gfp_mask, int nid, nodemask_t *nmask)
1da177e4 1377{
af0fb9df 1378 int order = huge_page_order(h);
1da177e4 1379 struct page *page;
f96efd58 1380
af0fb9df
MH
1381 gfp_mask |= __GFP_COMP|__GFP_RETRY_MAYFAIL|__GFP_NOWARN;
1382 if (nid == NUMA_NO_NODE)
1383 nid = numa_mem_id();
1384 page = __alloc_pages_nodemask(gfp_mask, order, nid, nmask);
1385 if (page)
1386 __count_vm_event(HTLB_BUDDY_PGALLOC);
1387 else
1388 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
63b4613c
NA
1389
1390 return page;
1391}
1392
0c397dae
MH
1393/*
1394 * Common helper to allocate a fresh hugetlb page. All specific allocators
1395 * should use this function to get new hugetlb pages
1396 */
1397static struct page *alloc_fresh_huge_page(struct hstate *h,
1398 gfp_t gfp_mask, int nid, nodemask_t *nmask)
1399{
1400 struct page *page;
1401
1402 if (hstate_is_gigantic(h))
1403 page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1404 else
1405 page = alloc_buddy_huge_page(h, gfp_mask,
1406 nid, nmask);
1407 if (!page)
1408 return NULL;
1409
1410 if (hstate_is_gigantic(h))
1411 prep_compound_gigantic_page(page, huge_page_order(h));
1412 prep_new_huge_page(h, page, page_to_nid(page));
1413
1414 return page;
1415}
1416
af0fb9df
MH
1417/*
1418 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1419 * manner.
1420 */
0c397dae 1421static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
b2261026
JK
1422{
1423 struct page *page;
1424 int nr_nodes, node;
af0fb9df 1425 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
b2261026
JK
1426
1427 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
0c397dae 1428 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed);
af0fb9df 1429 if (page)
b2261026 1430 break;
b2261026
JK
1431 }
1432
af0fb9df
MH
1433 if (!page)
1434 return 0;
b2261026 1435
af0fb9df
MH
1436 put_page(page); /* free it into the hugepage allocator */
1437
1438 return 1;
b2261026
JK
1439}
1440
e8c5c824
LS
1441/*
1442 * Free huge page from pool from next node to free.
1443 * Attempt to keep persistent huge pages more or less
1444 * balanced over allowed nodes.
1445 * Called with hugetlb_lock locked.
1446 */
6ae11b27
LS
1447static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1448 bool acct_surplus)
e8c5c824 1449{
b2261026 1450 int nr_nodes, node;
e8c5c824
LS
1451 int ret = 0;
1452
b2261026 1453 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
685f3457
LS
1454 /*
1455 * If we're returning unused surplus pages, only examine
1456 * nodes with surplus pages.
1457 */
b2261026
JK
1458 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1459 !list_empty(&h->hugepage_freelists[node])) {
e8c5c824 1460 struct page *page =
b2261026 1461 list_entry(h->hugepage_freelists[node].next,
e8c5c824
LS
1462 struct page, lru);
1463 list_del(&page->lru);
1464 h->free_huge_pages--;
b2261026 1465 h->free_huge_pages_node[node]--;
685f3457
LS
1466 if (acct_surplus) {
1467 h->surplus_huge_pages--;
b2261026 1468 h->surplus_huge_pages_node[node]--;
685f3457 1469 }
e8c5c824
LS
1470 update_and_free_page(h, page);
1471 ret = 1;
9a76db09 1472 break;
e8c5c824 1473 }
b2261026 1474 }
e8c5c824
LS
1475
1476 return ret;
1477}
1478
c8721bbb
NH
1479/*
1480 * Dissolve a given free hugepage into free buddy pages. This function does
082d5b6b
GS
1481 * nothing for in-use (including surplus) hugepages. Returns -EBUSY if the
1482 * number of free hugepages would be reduced below the number of reserved
1483 * hugepages.
c8721bbb 1484 */
c3114a84 1485int dissolve_free_huge_page(struct page *page)
c8721bbb 1486{
082d5b6b
GS
1487 int rc = 0;
1488
c8721bbb
NH
1489 spin_lock(&hugetlb_lock);
1490 if (PageHuge(page) && !page_count(page)) {
2247bb33
GS
1491 struct page *head = compound_head(page);
1492 struct hstate *h = page_hstate(head);
1493 int nid = page_to_nid(head);
082d5b6b
GS
1494 if (h->free_huge_pages - h->resv_huge_pages == 0) {
1495 rc = -EBUSY;
1496 goto out;
1497 }
c3114a84
AK
1498 /*
1499 * Move PageHWPoison flag from head page to the raw error page,
1500 * which makes any subpages rather than the error page reusable.
1501 */
1502 if (PageHWPoison(head) && page != head) {
1503 SetPageHWPoison(page);
1504 ClearPageHWPoison(head);
1505 }
2247bb33 1506 list_del(&head->lru);
c8721bbb
NH
1507 h->free_huge_pages--;
1508 h->free_huge_pages_node[nid]--;
c1470b33 1509 h->max_huge_pages--;
2247bb33 1510 update_and_free_page(h, head);
c8721bbb 1511 }
082d5b6b 1512out:
c8721bbb 1513 spin_unlock(&hugetlb_lock);
082d5b6b 1514 return rc;
c8721bbb
NH
1515}
1516
1517/*
1518 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1519 * make specified memory blocks removable from the system.
2247bb33
GS
1520 * Note that this will dissolve a free gigantic hugepage completely, if any
1521 * part of it lies within the given range.
082d5b6b
GS
1522 * Also note that if dissolve_free_huge_page() returns with an error, all
1523 * free hugepages that were dissolved before that error are lost.
c8721bbb 1524 */
082d5b6b 1525int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
c8721bbb 1526{
c8721bbb 1527 unsigned long pfn;
eb03aa00 1528 struct page *page;
082d5b6b 1529 int rc = 0;
c8721bbb 1530
d0177639 1531 if (!hugepages_supported())
082d5b6b 1532 return rc;
d0177639 1533
eb03aa00
GS
1534 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1535 page = pfn_to_page(pfn);
1536 if (PageHuge(page) && !page_count(page)) {
1537 rc = dissolve_free_huge_page(page);
1538 if (rc)
1539 break;
1540 }
1541 }
082d5b6b
GS
1542
1543 return rc;
c8721bbb
NH
1544}
1545
ab5ac90a
MH
1546/*
1547 * Allocates a fresh surplus page from the page allocator.
1548 */
0c397dae 1549static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
aaf14e40 1550 int nid, nodemask_t *nmask)
7893d1d5 1551{
9980d744 1552 struct page *page = NULL;
7893d1d5 1553
bae7f4ae 1554 if (hstate_is_gigantic(h))
aa888a74
AK
1555 return NULL;
1556
d1c3fb1f 1557 spin_lock(&hugetlb_lock);
9980d744
MH
1558 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
1559 goto out_unlock;
d1c3fb1f
NA
1560 spin_unlock(&hugetlb_lock);
1561
0c397dae 1562 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask);
9980d744 1563 if (!page)
0c397dae 1564 return NULL;
d1c3fb1f
NA
1565
1566 spin_lock(&hugetlb_lock);
9980d744
MH
1567 /*
1568 * We could have raced with the pool size change.
1569 * Double check that and simply deallocate the new page
1570 * if we would end up overcommiting the surpluses. Abuse
1571 * temporary page to workaround the nasty free_huge_page
1572 * codeflow
1573 */
1574 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1575 SetPageHugeTemporary(page);
1576 put_page(page);
1577 page = NULL;
1578 } else {
9980d744 1579 h->surplus_huge_pages++;
4704dea3 1580 h->surplus_huge_pages_node[page_to_nid(page)]++;
7893d1d5 1581 }
9980d744
MH
1582
1583out_unlock:
d1c3fb1f 1584 spin_unlock(&hugetlb_lock);
7893d1d5
AL
1585
1586 return page;
1587}
1588
0c397dae 1589static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
ab5ac90a
MH
1590 int nid, nodemask_t *nmask)
1591{
1592 struct page *page;
1593
1594 if (hstate_is_gigantic(h))
1595 return NULL;
1596
0c397dae 1597 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask);
ab5ac90a
MH
1598 if (!page)
1599 return NULL;
1600
1601 /*
1602 * We do not account these pages as surplus because they are only
1603 * temporary and will be released properly on the last reference
1604 */
ab5ac90a
MH
1605 SetPageHugeTemporary(page);
1606
1607 return page;
1608}
1609
099730d6
DH
1610/*
1611 * Use the VMA's mpolicy to allocate a huge page from the buddy.
1612 */
e0ec90ee 1613static
0c397dae 1614struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
099730d6
DH
1615 struct vm_area_struct *vma, unsigned long addr)
1616{
aaf14e40
MH
1617 struct page *page;
1618 struct mempolicy *mpol;
1619 gfp_t gfp_mask = htlb_alloc_mask(h);
1620 int nid;
1621 nodemask_t *nodemask;
1622
1623 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
0c397dae 1624 page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
aaf14e40
MH
1625 mpol_cond_put(mpol);
1626
1627 return page;
099730d6
DH
1628}
1629
ab5ac90a 1630/* page migration callback function */
bf50bab2
NH
1631struct page *alloc_huge_page_node(struct hstate *h, int nid)
1632{
aaf14e40 1633 gfp_t gfp_mask = htlb_alloc_mask(h);
4ef91848 1634 struct page *page = NULL;
bf50bab2 1635
aaf14e40
MH
1636 if (nid != NUMA_NO_NODE)
1637 gfp_mask |= __GFP_THISNODE;
1638
bf50bab2 1639 spin_lock(&hugetlb_lock);
4ef91848 1640 if (h->free_huge_pages - h->resv_huge_pages > 0)
3e59fcb0 1641 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, NULL);
bf50bab2
NH
1642 spin_unlock(&hugetlb_lock);
1643
94ae8ba7 1644 if (!page)
0c397dae 1645 page = alloc_migrate_huge_page(h, gfp_mask, nid, NULL);
bf50bab2
NH
1646
1647 return page;
1648}
1649
ab5ac90a 1650/* page migration callback function */
3e59fcb0
MH
1651struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
1652 nodemask_t *nmask)
4db9b2ef 1653{
aaf14e40 1654 gfp_t gfp_mask = htlb_alloc_mask(h);
4db9b2ef
MH
1655
1656 spin_lock(&hugetlb_lock);
1657 if (h->free_huge_pages - h->resv_huge_pages > 0) {
3e59fcb0
MH
1658 struct page *page;
1659
1660 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
1661 if (page) {
1662 spin_unlock(&hugetlb_lock);
1663 return page;
4db9b2ef
MH
1664 }
1665 }
1666 spin_unlock(&hugetlb_lock);
4db9b2ef 1667
0c397dae 1668 return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
4db9b2ef
MH
1669}
1670
ebd63723 1671/* mempolicy aware migration callback */
389c8178
MH
1672struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
1673 unsigned long address)
ebd63723
MH
1674{
1675 struct mempolicy *mpol;
1676 nodemask_t *nodemask;
1677 struct page *page;
ebd63723
MH
1678 gfp_t gfp_mask;
1679 int node;
1680
ebd63723
MH
1681 gfp_mask = htlb_alloc_mask(h);
1682 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1683 page = alloc_huge_page_nodemask(h, node, nodemask);
1684 mpol_cond_put(mpol);
1685
1686 return page;
1687}
1688
e4e574b7 1689/*
25985edc 1690 * Increase the hugetlb pool such that it can accommodate a reservation
e4e574b7
AL
1691 * of size 'delta'.
1692 */
a5516438 1693static int gather_surplus_pages(struct hstate *h, int delta)
e4e574b7
AL
1694{
1695 struct list_head surplus_list;
1696 struct page *page, *tmp;
1697 int ret, i;
1698 int needed, allocated;
28073b02 1699 bool alloc_ok = true;
e4e574b7 1700
a5516438 1701 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
ac09b3a1 1702 if (needed <= 0) {
a5516438 1703 h->resv_huge_pages += delta;
e4e574b7 1704 return 0;
ac09b3a1 1705 }
e4e574b7
AL
1706
1707 allocated = 0;
1708 INIT_LIST_HEAD(&surplus_list);
1709
1710 ret = -ENOMEM;
1711retry:
1712 spin_unlock(&hugetlb_lock);
1713 for (i = 0; i < needed; i++) {
0c397dae 1714 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
aaf14e40 1715 NUMA_NO_NODE, NULL);
28073b02
HD
1716 if (!page) {
1717 alloc_ok = false;
1718 break;
1719 }
e4e574b7 1720 list_add(&page->lru, &surplus_list);
69ed779a 1721 cond_resched();
e4e574b7 1722 }
28073b02 1723 allocated += i;
e4e574b7
AL
1724
1725 /*
1726 * After retaking hugetlb_lock, we need to recalculate 'needed'
1727 * because either resv_huge_pages or free_huge_pages may have changed.
1728 */
1729 spin_lock(&hugetlb_lock);
a5516438
AK
1730 needed = (h->resv_huge_pages + delta) -
1731 (h->free_huge_pages + allocated);
28073b02
HD
1732 if (needed > 0) {
1733 if (alloc_ok)
1734 goto retry;
1735 /*
1736 * We were not able to allocate enough pages to
1737 * satisfy the entire reservation so we free what
1738 * we've allocated so far.
1739 */
1740 goto free;
1741 }
e4e574b7
AL
1742 /*
1743 * The surplus_list now contains _at_least_ the number of extra pages
25985edc 1744 * needed to accommodate the reservation. Add the appropriate number
e4e574b7 1745 * of pages to the hugetlb pool and free the extras back to the buddy
ac09b3a1
AL
1746 * allocator. Commit the entire reservation here to prevent another
1747 * process from stealing the pages as they are added to the pool but
1748 * before they are reserved.
e4e574b7
AL
1749 */
1750 needed += allocated;
a5516438 1751 h->resv_huge_pages += delta;
e4e574b7 1752 ret = 0;
a9869b83 1753
19fc3f0a 1754 /* Free the needed pages to the hugetlb pool */
e4e574b7 1755 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
19fc3f0a
AL
1756 if ((--needed) < 0)
1757 break;
a9869b83
NH
1758 /*
1759 * This page is now managed by the hugetlb allocator and has
1760 * no users -- drop the buddy allocator's reference.
1761 */
1762 put_page_testzero(page);
309381fe 1763 VM_BUG_ON_PAGE(page_count(page), page);
a5516438 1764 enqueue_huge_page(h, page);
19fc3f0a 1765 }
28073b02 1766free:
b0365c8d 1767 spin_unlock(&hugetlb_lock);
19fc3f0a
AL
1768
1769 /* Free unnecessary surplus pages to the buddy allocator */
c0d934ba
JK
1770 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1771 put_page(page);
a9869b83 1772 spin_lock(&hugetlb_lock);
e4e574b7
AL
1773
1774 return ret;
1775}
1776
1777/*
e5bbc8a6
MK
1778 * This routine has two main purposes:
1779 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
1780 * in unused_resv_pages. This corresponds to the prior adjustments made
1781 * to the associated reservation map.
1782 * 2) Free any unused surplus pages that may have been allocated to satisfy
1783 * the reservation. As many as unused_resv_pages may be freed.
1784 *
1785 * Called with hugetlb_lock held. However, the lock could be dropped (and
1786 * reacquired) during calls to cond_resched_lock. Whenever dropping the lock,
1787 * we must make sure nobody else can claim pages we are in the process of
1788 * freeing. Do this by ensuring resv_huge_page always is greater than the
1789 * number of huge pages we plan to free when dropping the lock.
e4e574b7 1790 */
a5516438
AK
1791static void return_unused_surplus_pages(struct hstate *h,
1792 unsigned long unused_resv_pages)
e4e574b7 1793{
e4e574b7
AL
1794 unsigned long nr_pages;
1795
aa888a74 1796 /* Cannot return gigantic pages currently */
bae7f4ae 1797 if (hstate_is_gigantic(h))
e5bbc8a6 1798 goto out;
aa888a74 1799
e5bbc8a6
MK
1800 /*
1801 * Part (or even all) of the reservation could have been backed
1802 * by pre-allocated pages. Only free surplus pages.
1803 */
a5516438 1804 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
e4e574b7 1805
685f3457
LS
1806 /*
1807 * We want to release as many surplus pages as possible, spread
9b5e5d0f
LS
1808 * evenly across all nodes with memory. Iterate across these nodes
1809 * until we can no longer free unreserved surplus pages. This occurs
1810 * when the nodes with surplus pages have no free pages.
1811 * free_pool_huge_page() will balance the the freed pages across the
1812 * on-line nodes with memory and will handle the hstate accounting.
e5bbc8a6
MK
1813 *
1814 * Note that we decrement resv_huge_pages as we free the pages. If
1815 * we drop the lock, resv_huge_pages will still be sufficiently large
1816 * to cover subsequent pages we may free.
685f3457
LS
1817 */
1818 while (nr_pages--) {
e5bbc8a6
MK
1819 h->resv_huge_pages--;
1820 unused_resv_pages--;
8cebfcd0 1821 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
e5bbc8a6 1822 goto out;
7848a4bf 1823 cond_resched_lock(&hugetlb_lock);
e4e574b7 1824 }
e5bbc8a6
MK
1825
1826out:
1827 /* Fully uncommit the reservation */
1828 h->resv_huge_pages -= unused_resv_pages;
e4e574b7
AL
1829}
1830
5e911373 1831
c37f9fb1 1832/*
feba16e2 1833 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
5e911373 1834 * are used by the huge page allocation routines to manage reservations.
cf3ad20b
MK
1835 *
1836 * vma_needs_reservation is called to determine if the huge page at addr
1837 * within the vma has an associated reservation. If a reservation is
1838 * needed, the value 1 is returned. The caller is then responsible for
1839 * managing the global reservation and subpool usage counts. After
1840 * the huge page has been allocated, vma_commit_reservation is called
feba16e2
MK
1841 * to add the page to the reservation map. If the page allocation fails,
1842 * the reservation must be ended instead of committed. vma_end_reservation
1843 * is called in such cases.
cf3ad20b
MK
1844 *
1845 * In the normal case, vma_commit_reservation returns the same value
1846 * as the preceding vma_needs_reservation call. The only time this
1847 * is not the case is if a reserve map was changed between calls. It
1848 * is the responsibility of the caller to notice the difference and
1849 * take appropriate action.
96b96a96
MK
1850 *
1851 * vma_add_reservation is used in error paths where a reservation must
1852 * be restored when a newly allocated huge page must be freed. It is
1853 * to be called after calling vma_needs_reservation to determine if a
1854 * reservation exists.
c37f9fb1 1855 */
5e911373
MK
1856enum vma_resv_mode {
1857 VMA_NEEDS_RESV,
1858 VMA_COMMIT_RESV,
feba16e2 1859 VMA_END_RESV,
96b96a96 1860 VMA_ADD_RESV,
5e911373 1861};
cf3ad20b
MK
1862static long __vma_reservation_common(struct hstate *h,
1863 struct vm_area_struct *vma, unsigned long addr,
5e911373 1864 enum vma_resv_mode mode)
c37f9fb1 1865{
4e35f483
JK
1866 struct resv_map *resv;
1867 pgoff_t idx;
cf3ad20b 1868 long ret;
c37f9fb1 1869
4e35f483
JK
1870 resv = vma_resv_map(vma);
1871 if (!resv)
84afd99b 1872 return 1;
c37f9fb1 1873
4e35f483 1874 idx = vma_hugecache_offset(h, vma, addr);
5e911373
MK
1875 switch (mode) {
1876 case VMA_NEEDS_RESV:
cf3ad20b 1877 ret = region_chg(resv, idx, idx + 1);
5e911373
MK
1878 break;
1879 case VMA_COMMIT_RESV:
1880 ret = region_add(resv, idx, idx + 1);
1881 break;
feba16e2 1882 case VMA_END_RESV:
5e911373
MK
1883 region_abort(resv, idx, idx + 1);
1884 ret = 0;
1885 break;
96b96a96
MK
1886 case VMA_ADD_RESV:
1887 if (vma->vm_flags & VM_MAYSHARE)
1888 ret = region_add(resv, idx, idx + 1);
1889 else {
1890 region_abort(resv, idx, idx + 1);
1891 ret = region_del(resv, idx, idx + 1);
1892 }
1893 break;
5e911373
MK
1894 default:
1895 BUG();
1896 }
84afd99b 1897
4e35f483 1898 if (vma->vm_flags & VM_MAYSHARE)
cf3ad20b 1899 return ret;
67961f9d
MK
1900 else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
1901 /*
1902 * In most cases, reserves always exist for private mappings.
1903 * However, a file associated with mapping could have been
1904 * hole punched or truncated after reserves were consumed.
1905 * As subsequent fault on such a range will not use reserves.
1906 * Subtle - The reserve map for private mappings has the
1907 * opposite meaning than that of shared mappings. If NO
1908 * entry is in the reserve map, it means a reservation exists.
1909 * If an entry exists in the reserve map, it means the
1910 * reservation has already been consumed. As a result, the
1911 * return value of this routine is the opposite of the
1912 * value returned from reserve map manipulation routines above.
1913 */
1914 if (ret)
1915 return 0;
1916 else
1917 return 1;
1918 }
4e35f483 1919 else
cf3ad20b 1920 return ret < 0 ? ret : 0;
c37f9fb1 1921}
cf3ad20b
MK
1922
1923static long vma_needs_reservation(struct hstate *h,
a5516438 1924 struct vm_area_struct *vma, unsigned long addr)
c37f9fb1 1925{
5e911373 1926 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
cf3ad20b 1927}
84afd99b 1928
cf3ad20b
MK
1929static long vma_commit_reservation(struct hstate *h,
1930 struct vm_area_struct *vma, unsigned long addr)
1931{
5e911373
MK
1932 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
1933}
1934
feba16e2 1935static void vma_end_reservation(struct hstate *h,
5e911373
MK
1936 struct vm_area_struct *vma, unsigned long addr)
1937{
feba16e2 1938 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
c37f9fb1
AW
1939}
1940
96b96a96
MK
1941static long vma_add_reservation(struct hstate *h,
1942 struct vm_area_struct *vma, unsigned long addr)
1943{
1944 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
1945}
1946
1947/*
1948 * This routine is called to restore a reservation on error paths. In the
1949 * specific error paths, a huge page was allocated (via alloc_huge_page)
1950 * and is about to be freed. If a reservation for the page existed,
1951 * alloc_huge_page would have consumed the reservation and set PagePrivate
1952 * in the newly allocated page. When the page is freed via free_huge_page,
1953 * the global reservation count will be incremented if PagePrivate is set.
1954 * However, free_huge_page can not adjust the reserve map. Adjust the
1955 * reserve map here to be consistent with global reserve count adjustments
1956 * to be made by free_huge_page.
1957 */
1958static void restore_reserve_on_error(struct hstate *h,
1959 struct vm_area_struct *vma, unsigned long address,
1960 struct page *page)
1961{
1962 if (unlikely(PagePrivate(page))) {
1963 long rc = vma_needs_reservation(h, vma, address);
1964
1965 if (unlikely(rc < 0)) {
1966 /*
1967 * Rare out of memory condition in reserve map
1968 * manipulation. Clear PagePrivate so that
1969 * global reserve count will not be incremented
1970 * by free_huge_page. This will make it appear
1971 * as though the reservation for this page was
1972 * consumed. This may prevent the task from
1973 * faulting in the page at a later time. This
1974 * is better than inconsistent global huge page
1975 * accounting of reserve counts.
1976 */
1977 ClearPagePrivate(page);
1978 } else if (rc) {
1979 rc = vma_add_reservation(h, vma, address);
1980 if (unlikely(rc < 0))
1981 /*
1982 * See above comment about rare out of
1983 * memory condition.
1984 */
1985 ClearPagePrivate(page);
1986 } else
1987 vma_end_reservation(h, vma, address);
1988 }
1989}
1990
70c3547e 1991struct page *alloc_huge_page(struct vm_area_struct *vma,
04f2cbe3 1992 unsigned long addr, int avoid_reserve)
1da177e4 1993{
90481622 1994 struct hugepage_subpool *spool = subpool_vma(vma);
a5516438 1995 struct hstate *h = hstate_vma(vma);
348ea204 1996 struct page *page;
d85f69b0
MK
1997 long map_chg, map_commit;
1998 long gbl_chg;
6d76dcf4
AK
1999 int ret, idx;
2000 struct hugetlb_cgroup *h_cg;
a1e78772 2001
6d76dcf4 2002 idx = hstate_index(h);
a1e78772 2003 /*
d85f69b0
MK
2004 * Examine the region/reserve map to determine if the process
2005 * has a reservation for the page to be allocated. A return
2006 * code of zero indicates a reservation exists (no change).
a1e78772 2007 */
d85f69b0
MK
2008 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2009 if (map_chg < 0)
76dcee75 2010 return ERR_PTR(-ENOMEM);
d85f69b0
MK
2011
2012 /*
2013 * Processes that did not create the mapping will have no
2014 * reserves as indicated by the region/reserve map. Check
2015 * that the allocation will not exceed the subpool limit.
2016 * Allocations for MAP_NORESERVE mappings also need to be
2017 * checked against any subpool limit.
2018 */
2019 if (map_chg || avoid_reserve) {
2020 gbl_chg = hugepage_subpool_get_pages(spool, 1);
2021 if (gbl_chg < 0) {
feba16e2 2022 vma_end_reservation(h, vma, addr);
76dcee75 2023 return ERR_PTR(-ENOSPC);
5e911373 2024 }
1da177e4 2025
d85f69b0
MK
2026 /*
2027 * Even though there was no reservation in the region/reserve
2028 * map, there could be reservations associated with the
2029 * subpool that can be used. This would be indicated if the
2030 * return value of hugepage_subpool_get_pages() is zero.
2031 * However, if avoid_reserve is specified we still avoid even
2032 * the subpool reservations.
2033 */
2034 if (avoid_reserve)
2035 gbl_chg = 1;
2036 }
2037
6d76dcf4 2038 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
8f34af6f
JZ
2039 if (ret)
2040 goto out_subpool_put;
2041
1da177e4 2042 spin_lock(&hugetlb_lock);
d85f69b0
MK
2043 /*
2044 * glb_chg is passed to indicate whether or not a page must be taken
2045 * from the global free pool (global change). gbl_chg == 0 indicates
2046 * a reservation exists for the allocation.
2047 */
2048 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
81a6fcae 2049 if (!page) {
94ae8ba7 2050 spin_unlock(&hugetlb_lock);
0c397dae 2051 page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
8f34af6f
JZ
2052 if (!page)
2053 goto out_uncharge_cgroup;
a88c7695
NH
2054 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2055 SetPagePrivate(page);
2056 h->resv_huge_pages--;
2057 }
79dbb236
AK
2058 spin_lock(&hugetlb_lock);
2059 list_move(&page->lru, &h->hugepage_activelist);
81a6fcae 2060 /* Fall through */
68842c9b 2061 }
81a6fcae
JK
2062 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2063 spin_unlock(&hugetlb_lock);
348ea204 2064
90481622 2065 set_page_private(page, (unsigned long)spool);
90d8b7e6 2066
d85f69b0
MK
2067 map_commit = vma_commit_reservation(h, vma, addr);
2068 if (unlikely(map_chg > map_commit)) {
33039678
MK
2069 /*
2070 * The page was added to the reservation map between
2071 * vma_needs_reservation and vma_commit_reservation.
2072 * This indicates a race with hugetlb_reserve_pages.
2073 * Adjust for the subpool count incremented above AND
2074 * in hugetlb_reserve_pages for the same page. Also,
2075 * the reservation count added in hugetlb_reserve_pages
2076 * no longer applies.
2077 */
2078 long rsv_adjust;
2079
2080 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2081 hugetlb_acct_memory(h, -rsv_adjust);
2082 }
90d8b7e6 2083 return page;
8f34af6f
JZ
2084
2085out_uncharge_cgroup:
2086 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2087out_subpool_put:
d85f69b0 2088 if (map_chg || avoid_reserve)
8f34af6f 2089 hugepage_subpool_put_pages(spool, 1);
feba16e2 2090 vma_end_reservation(h, vma, addr);
8f34af6f 2091 return ERR_PTR(-ENOSPC);
b45b5bd6
DG
2092}
2093
e24a1307
AK
2094int alloc_bootmem_huge_page(struct hstate *h)
2095 __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2096int __alloc_bootmem_huge_page(struct hstate *h)
aa888a74
AK
2097{
2098 struct huge_bootmem_page *m;
b2261026 2099 int nr_nodes, node;
aa888a74 2100
b2261026 2101 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
aa888a74
AK
2102 void *addr;
2103
8b89a116
GS
2104 addr = memblock_virt_alloc_try_nid_nopanic(
2105 huge_page_size(h), huge_page_size(h),
2106 0, BOOTMEM_ALLOC_ACCESSIBLE, node);
aa888a74
AK
2107 if (addr) {
2108 /*
2109 * Use the beginning of the huge page to store the
2110 * huge_bootmem_page struct (until gather_bootmem
2111 * puts them into the mem_map).
2112 */
2113 m = addr;
91f47662 2114 goto found;
aa888a74 2115 }
aa888a74
AK
2116 }
2117 return 0;
2118
2119found:
df994ead 2120 BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
aa888a74
AK
2121 /* Put them into a private list first because mem_map is not up yet */
2122 list_add(&m->list, &huge_boot_pages);
2123 m->hstate = h;
2124 return 1;
2125}
2126
d00181b9
KS
2127static void __init prep_compound_huge_page(struct page *page,
2128 unsigned int order)
18229df5
AW
2129{
2130 if (unlikely(order > (MAX_ORDER - 1)))
2131 prep_compound_gigantic_page(page, order);
2132 else
2133 prep_compound_page(page, order);
2134}
2135
aa888a74
AK
2136/* Put bootmem huge pages into the standard lists after mem_map is up */
2137static void __init gather_bootmem_prealloc(void)
2138{
2139 struct huge_bootmem_page *m;
2140
2141 list_for_each_entry(m, &huge_boot_pages, list) {
aa888a74 2142 struct hstate *h = m->hstate;
ee8f248d
BB
2143 struct page *page;
2144
2145#ifdef CONFIG_HIGHMEM
2146 page = pfn_to_page(m->phys >> PAGE_SHIFT);
8b89a116
GS
2147 memblock_free_late(__pa(m),
2148 sizeof(struct huge_bootmem_page));
ee8f248d
BB
2149#else
2150 page = virt_to_page(m);
2151#endif
aa888a74 2152 WARN_ON(page_count(page) != 1);
18229df5 2153 prep_compound_huge_page(page, h->order);
ef5a22be 2154 WARN_ON(PageReserved(page));
aa888a74 2155 prep_new_huge_page(h, page, page_to_nid(page));
af0fb9df
MH
2156 put_page(page); /* free it into the hugepage allocator */
2157
b0320c7b
RA
2158 /*
2159 * If we had gigantic hugepages allocated at boot time, we need
2160 * to restore the 'stolen' pages to totalram_pages in order to
2161 * fix confusing memory reports from free(1) and another
2162 * side-effects, like CommitLimit going negative.
2163 */
bae7f4ae 2164 if (hstate_is_gigantic(h))
3dcc0571 2165 adjust_managed_page_count(page, 1 << h->order);
520495fe 2166 cond_resched();
aa888a74
AK
2167 }
2168}
2169
8faa8b07 2170static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1da177e4
LT
2171{
2172 unsigned long i;
a5516438 2173
e5ff2159 2174 for (i = 0; i < h->max_huge_pages; ++i) {
bae7f4ae 2175 if (hstate_is_gigantic(h)) {
aa888a74
AK
2176 if (!alloc_bootmem_huge_page(h))
2177 break;
0c397dae 2178 } else if (!alloc_pool_huge_page(h,
8cebfcd0 2179 &node_states[N_MEMORY]))
1da177e4 2180 break;
69ed779a 2181 cond_resched();
1da177e4 2182 }
d715cf80
LH
2183 if (i < h->max_huge_pages) {
2184 char buf[32];
2185
c6247f72 2186 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
d715cf80
LH
2187 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n",
2188 h->max_huge_pages, buf, i);
2189 h->max_huge_pages = i;
2190 }
e5ff2159
AK
2191}
2192
2193static void __init hugetlb_init_hstates(void)
2194{
2195 struct hstate *h;
2196
2197 for_each_hstate(h) {
641844f5
NH
2198 if (minimum_order > huge_page_order(h))
2199 minimum_order = huge_page_order(h);
2200
8faa8b07 2201 /* oversize hugepages were init'ed in early boot */
bae7f4ae 2202 if (!hstate_is_gigantic(h))
8faa8b07 2203 hugetlb_hstate_alloc_pages(h);
e5ff2159 2204 }
641844f5 2205 VM_BUG_ON(minimum_order == UINT_MAX);
e5ff2159
AK
2206}
2207
2208static void __init report_hugepages(void)
2209{
2210 struct hstate *h;
2211
2212 for_each_hstate(h) {
4abd32db 2213 char buf[32];
c6247f72
MW
2214
2215 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
ffb22af5 2216 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
c6247f72 2217 buf, h->free_huge_pages);
e5ff2159
AK
2218 }
2219}
2220
1da177e4 2221#ifdef CONFIG_HIGHMEM
6ae11b27
LS
2222static void try_to_free_low(struct hstate *h, unsigned long count,
2223 nodemask_t *nodes_allowed)
1da177e4 2224{
4415cc8d
CL
2225 int i;
2226
bae7f4ae 2227 if (hstate_is_gigantic(h))
aa888a74
AK
2228 return;
2229
6ae11b27 2230 for_each_node_mask(i, *nodes_allowed) {
1da177e4 2231 struct page *page, *next;
a5516438
AK
2232 struct list_head *freel = &h->hugepage_freelists[i];
2233 list_for_each_entry_safe(page, next, freel, lru) {
2234 if (count >= h->nr_huge_pages)
6b0c880d 2235 return;
1da177e4
LT
2236 if (PageHighMem(page))
2237 continue;
2238 list_del(&page->lru);
e5ff2159 2239 update_and_free_page(h, page);
a5516438
AK
2240 h->free_huge_pages--;
2241 h->free_huge_pages_node[page_to_nid(page)]--;
1da177e4
LT
2242 }
2243 }
2244}
2245#else
6ae11b27
LS
2246static inline void try_to_free_low(struct hstate *h, unsigned long count,
2247 nodemask_t *nodes_allowed)
1da177e4
LT
2248{
2249}
2250#endif
2251
20a0307c
WF
2252/*
2253 * Increment or decrement surplus_huge_pages. Keep node-specific counters
2254 * balanced by operating on them in a round-robin fashion.
2255 * Returns 1 if an adjustment was made.
2256 */
6ae11b27
LS
2257static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2258 int delta)
20a0307c 2259{
b2261026 2260 int nr_nodes, node;
20a0307c
WF
2261
2262 VM_BUG_ON(delta != -1 && delta != 1);
20a0307c 2263
b2261026
JK
2264 if (delta < 0) {
2265 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2266 if (h->surplus_huge_pages_node[node])
2267 goto found;
e8c5c824 2268 }
b2261026
JK
2269 } else {
2270 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2271 if (h->surplus_huge_pages_node[node] <
2272 h->nr_huge_pages_node[node])
2273 goto found;
e8c5c824 2274 }
b2261026
JK
2275 }
2276 return 0;
20a0307c 2277
b2261026
JK
2278found:
2279 h->surplus_huge_pages += delta;
2280 h->surplus_huge_pages_node[node] += delta;
2281 return 1;
20a0307c
WF
2282}
2283
a5516438 2284#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
6ae11b27
LS
2285static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
2286 nodemask_t *nodes_allowed)
1da177e4 2287{
7893d1d5 2288 unsigned long min_count, ret;
1da177e4 2289
944d9fec 2290 if (hstate_is_gigantic(h) && !gigantic_page_supported())
aa888a74
AK
2291 return h->max_huge_pages;
2292
7893d1d5
AL
2293 /*
2294 * Increase the pool size
2295 * First take pages out of surplus state. Then make up the
2296 * remaining difference by allocating fresh huge pages.
d1c3fb1f 2297 *
0c397dae 2298 * We might race with alloc_surplus_huge_page() here and be unable
d1c3fb1f
NA
2299 * to convert a surplus huge page to a normal huge page. That is
2300 * not critical, though, it just means the overall size of the
2301 * pool might be one hugepage larger than it needs to be, but
2302 * within all the constraints specified by the sysctls.
7893d1d5 2303 */
1da177e4 2304 spin_lock(&hugetlb_lock);
a5516438 2305 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
6ae11b27 2306 if (!adjust_pool_surplus(h, nodes_allowed, -1))
7893d1d5
AL
2307 break;
2308 }
2309
a5516438 2310 while (count > persistent_huge_pages(h)) {
7893d1d5
AL
2311 /*
2312 * If this allocation races such that we no longer need the
2313 * page, free_huge_page will handle it by freeing the page
2314 * and reducing the surplus.
2315 */
2316 spin_unlock(&hugetlb_lock);
649920c6
JH
2317
2318 /* yield cpu to avoid soft lockup */
2319 cond_resched();
2320
0c397dae 2321 ret = alloc_pool_huge_page(h, nodes_allowed);
7893d1d5
AL
2322 spin_lock(&hugetlb_lock);
2323 if (!ret)
2324 goto out;
2325
536240f2
MG
2326 /* Bail for signals. Probably ctrl-c from user */
2327 if (signal_pending(current))
2328 goto out;
7893d1d5 2329 }
7893d1d5
AL
2330
2331 /*
2332 * Decrease the pool size
2333 * First return free pages to the buddy allocator (being careful
2334 * to keep enough around to satisfy reservations). Then place
2335 * pages into surplus state as needed so the pool will shrink
2336 * to the desired size as pages become free.
d1c3fb1f
NA
2337 *
2338 * By placing pages into the surplus state independent of the
2339 * overcommit value, we are allowing the surplus pool size to
2340 * exceed overcommit. There are few sane options here. Since
0c397dae 2341 * alloc_surplus_huge_page() is checking the global counter,
d1c3fb1f
NA
2342 * though, we'll note that we're not allowed to exceed surplus
2343 * and won't grow the pool anywhere else. Not until one of the
2344 * sysctls are changed, or the surplus pages go out of use.
7893d1d5 2345 */
a5516438 2346 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
6b0c880d 2347 min_count = max(count, min_count);
6ae11b27 2348 try_to_free_low(h, min_count, nodes_allowed);
a5516438 2349 while (min_count < persistent_huge_pages(h)) {
6ae11b27 2350 if (!free_pool_huge_page(h, nodes_allowed, 0))
1da177e4 2351 break;
55f67141 2352 cond_resched_lock(&hugetlb_lock);
1da177e4 2353 }
a5516438 2354 while (count < persistent_huge_pages(h)) {
6ae11b27 2355 if (!adjust_pool_surplus(h, nodes_allowed, 1))
7893d1d5
AL
2356 break;
2357 }
2358out:
a5516438 2359 ret = persistent_huge_pages(h);
1da177e4 2360 spin_unlock(&hugetlb_lock);
7893d1d5 2361 return ret;
1da177e4
LT
2362}
2363
a3437870
NA
2364#define HSTATE_ATTR_RO(_name) \
2365 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2366
2367#define HSTATE_ATTR(_name) \
2368 static struct kobj_attribute _name##_attr = \
2369 __ATTR(_name, 0644, _name##_show, _name##_store)
2370
2371static struct kobject *hugepages_kobj;
2372static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2373
9a305230
LS
2374static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2375
2376static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
a3437870
NA
2377{
2378 int i;
9a305230 2379
a3437870 2380 for (i = 0; i < HUGE_MAX_HSTATE; i++)
9a305230
LS
2381 if (hstate_kobjs[i] == kobj) {
2382 if (nidp)
2383 *nidp = NUMA_NO_NODE;
a3437870 2384 return &hstates[i];
9a305230
LS
2385 }
2386
2387 return kobj_to_node_hstate(kobj, nidp);
a3437870
NA
2388}
2389
06808b08 2390static ssize_t nr_hugepages_show_common(struct kobject *kobj,
a3437870
NA
2391 struct kobj_attribute *attr, char *buf)
2392{
9a305230
LS
2393 struct hstate *h;
2394 unsigned long nr_huge_pages;
2395 int nid;
2396
2397 h = kobj_to_hstate(kobj, &nid);
2398 if (nid == NUMA_NO_NODE)
2399 nr_huge_pages = h->nr_huge_pages;
2400 else
2401 nr_huge_pages = h->nr_huge_pages_node[nid];
2402
2403 return sprintf(buf, "%lu\n", nr_huge_pages);
a3437870 2404}
adbe8726 2405
238d3c13
DR
2406static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2407 struct hstate *h, int nid,
2408 unsigned long count, size_t len)
a3437870
NA
2409{
2410 int err;
bad44b5b 2411 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
a3437870 2412
944d9fec 2413 if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
adbe8726
EM
2414 err = -EINVAL;
2415 goto out;
2416 }
2417
9a305230
LS
2418 if (nid == NUMA_NO_NODE) {
2419 /*
2420 * global hstate attribute
2421 */
2422 if (!(obey_mempolicy &&
2423 init_nodemask_of_mempolicy(nodes_allowed))) {
2424 NODEMASK_FREE(nodes_allowed);
8cebfcd0 2425 nodes_allowed = &node_states[N_MEMORY];
9a305230
LS
2426 }
2427 } else if (nodes_allowed) {
2428 /*
2429 * per node hstate attribute: adjust count to global,
2430 * but restrict alloc/free to the specified node.
2431 */
2432 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2433 init_nodemask_of_node(nodes_allowed, nid);
2434 } else
8cebfcd0 2435 nodes_allowed = &node_states[N_MEMORY];
9a305230 2436
06808b08 2437 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
a3437870 2438
8cebfcd0 2439 if (nodes_allowed != &node_states[N_MEMORY])
06808b08
LS
2440 NODEMASK_FREE(nodes_allowed);
2441
2442 return len;
adbe8726
EM
2443out:
2444 NODEMASK_FREE(nodes_allowed);
2445 return err;
06808b08
LS
2446}
2447
238d3c13
DR
2448static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2449 struct kobject *kobj, const char *buf,
2450 size_t len)
2451{
2452 struct hstate *h;
2453 unsigned long count;
2454 int nid;
2455 int err;
2456
2457 err = kstrtoul(buf, 10, &count);
2458 if (err)
2459 return err;
2460
2461 h = kobj_to_hstate(kobj, &nid);
2462 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2463}
2464
06808b08
LS
2465static ssize_t nr_hugepages_show(struct kobject *kobj,
2466 struct kobj_attribute *attr, char *buf)
2467{
2468 return nr_hugepages_show_common(kobj, attr, buf);
2469}
2470
2471static ssize_t nr_hugepages_store(struct kobject *kobj,
2472 struct kobj_attribute *attr, const char *buf, size_t len)
2473{
238d3c13 2474 return nr_hugepages_store_common(false, kobj, buf, len);
a3437870
NA
2475}
2476HSTATE_ATTR(nr_hugepages);
2477
06808b08
LS
2478#ifdef CONFIG_NUMA
2479
2480/*
2481 * hstate attribute for optionally mempolicy-based constraint on persistent
2482 * huge page alloc/free.
2483 */
2484static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2485 struct kobj_attribute *attr, char *buf)
2486{
2487 return nr_hugepages_show_common(kobj, attr, buf);
2488}
2489
2490static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2491 struct kobj_attribute *attr, const char *buf, size_t len)
2492{
238d3c13 2493 return nr_hugepages_store_common(true, kobj, buf, len);
06808b08
LS
2494}
2495HSTATE_ATTR(nr_hugepages_mempolicy);
2496#endif
2497
2498
a3437870
NA
2499static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2500 struct kobj_attribute *attr, char *buf)
2501{
9a305230 2502 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870
NA
2503 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2504}
adbe8726 2505
a3437870
NA
2506static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2507 struct kobj_attribute *attr, const char *buf, size_t count)
2508{
2509 int err;
2510 unsigned long input;
9a305230 2511 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870 2512
bae7f4ae 2513 if (hstate_is_gigantic(h))
adbe8726
EM
2514 return -EINVAL;
2515
3dbb95f7 2516 err = kstrtoul(buf, 10, &input);
a3437870 2517 if (err)
73ae31e5 2518 return err;
a3437870
NA
2519
2520 spin_lock(&hugetlb_lock);
2521 h->nr_overcommit_huge_pages = input;
2522 spin_unlock(&hugetlb_lock);
2523
2524 return count;
2525}
2526HSTATE_ATTR(nr_overcommit_hugepages);
2527
2528static ssize_t free_hugepages_show(struct kobject *kobj,
2529 struct kobj_attribute *attr, char *buf)
2530{
9a305230
LS
2531 struct hstate *h;
2532 unsigned long free_huge_pages;
2533 int nid;
2534
2535 h = kobj_to_hstate(kobj, &nid);
2536 if (nid == NUMA_NO_NODE)
2537 free_huge_pages = h->free_huge_pages;
2538 else
2539 free_huge_pages = h->free_huge_pages_node[nid];
2540
2541 return sprintf(buf, "%lu\n", free_huge_pages);
a3437870
NA
2542}
2543HSTATE_ATTR_RO(free_hugepages);
2544
2545static ssize_t resv_hugepages_show(struct kobject *kobj,
2546 struct kobj_attribute *attr, char *buf)
2547{
9a305230 2548 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870
NA
2549 return sprintf(buf, "%lu\n", h->resv_huge_pages);
2550}
2551HSTATE_ATTR_RO(resv_hugepages);
2552
2553static ssize_t surplus_hugepages_show(struct kobject *kobj,
2554 struct kobj_attribute *attr, char *buf)
2555{
9a305230
LS
2556 struct hstate *h;
2557 unsigned long surplus_huge_pages;
2558 int nid;
2559
2560 h = kobj_to_hstate(kobj, &nid);
2561 if (nid == NUMA_NO_NODE)
2562 surplus_huge_pages = h->surplus_huge_pages;
2563 else
2564 surplus_huge_pages = h->surplus_huge_pages_node[nid];
2565
2566 return sprintf(buf, "%lu\n", surplus_huge_pages);
a3437870
NA
2567}
2568HSTATE_ATTR_RO(surplus_hugepages);
2569
2570static struct attribute *hstate_attrs[] = {
2571 &nr_hugepages_attr.attr,
2572 &nr_overcommit_hugepages_attr.attr,
2573 &free_hugepages_attr.attr,
2574 &resv_hugepages_attr.attr,
2575 &surplus_hugepages_attr.attr,
06808b08
LS
2576#ifdef CONFIG_NUMA
2577 &nr_hugepages_mempolicy_attr.attr,
2578#endif
a3437870
NA
2579 NULL,
2580};
2581
67e5ed96 2582static const struct attribute_group hstate_attr_group = {
a3437870
NA
2583 .attrs = hstate_attrs,
2584};
2585
094e9539
JM
2586static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2587 struct kobject **hstate_kobjs,
67e5ed96 2588 const struct attribute_group *hstate_attr_group)
a3437870
NA
2589{
2590 int retval;
972dc4de 2591 int hi = hstate_index(h);
a3437870 2592
9a305230
LS
2593 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2594 if (!hstate_kobjs[hi])
a3437870
NA
2595 return -ENOMEM;
2596
9a305230 2597 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
a3437870 2598 if (retval)
9a305230 2599 kobject_put(hstate_kobjs[hi]);
a3437870
NA
2600
2601 return retval;
2602}
2603
2604static void __init hugetlb_sysfs_init(void)
2605{
2606 struct hstate *h;
2607 int err;
2608
2609 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2610 if (!hugepages_kobj)
2611 return;
2612
2613 for_each_hstate(h) {
9a305230
LS
2614 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2615 hstate_kobjs, &hstate_attr_group);
a3437870 2616 if (err)
ffb22af5 2617 pr_err("Hugetlb: Unable to add hstate %s", h->name);
a3437870
NA
2618 }
2619}
2620
9a305230
LS
2621#ifdef CONFIG_NUMA
2622
2623/*
2624 * node_hstate/s - associate per node hstate attributes, via their kobjects,
10fbcf4c
KS
2625 * with node devices in node_devices[] using a parallel array. The array
2626 * index of a node device or _hstate == node id.
2627 * This is here to avoid any static dependency of the node device driver, in
9a305230
LS
2628 * the base kernel, on the hugetlb module.
2629 */
2630struct node_hstate {
2631 struct kobject *hugepages_kobj;
2632 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2633};
b4e289a6 2634static struct node_hstate node_hstates[MAX_NUMNODES];
9a305230
LS
2635
2636/*
10fbcf4c 2637 * A subset of global hstate attributes for node devices
9a305230
LS
2638 */
2639static struct attribute *per_node_hstate_attrs[] = {
2640 &nr_hugepages_attr.attr,
2641 &free_hugepages_attr.attr,
2642 &surplus_hugepages_attr.attr,
2643 NULL,
2644};
2645
67e5ed96 2646static const struct attribute_group per_node_hstate_attr_group = {
9a305230
LS
2647 .attrs = per_node_hstate_attrs,
2648};
2649
2650/*
10fbcf4c 2651 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
9a305230
LS
2652 * Returns node id via non-NULL nidp.
2653 */
2654static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2655{
2656 int nid;
2657
2658 for (nid = 0; nid < nr_node_ids; nid++) {
2659 struct node_hstate *nhs = &node_hstates[nid];
2660 int i;
2661 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2662 if (nhs->hstate_kobjs[i] == kobj) {
2663 if (nidp)
2664 *nidp = nid;
2665 return &hstates[i];
2666 }
2667 }
2668
2669 BUG();
2670 return NULL;
2671}
2672
2673/*
10fbcf4c 2674 * Unregister hstate attributes from a single node device.
9a305230
LS
2675 * No-op if no hstate attributes attached.
2676 */
3cd8b44f 2677static void hugetlb_unregister_node(struct node *node)
9a305230
LS
2678{
2679 struct hstate *h;
10fbcf4c 2680 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
2681
2682 if (!nhs->hugepages_kobj)
9b5e5d0f 2683 return; /* no hstate attributes */
9a305230 2684
972dc4de
AK
2685 for_each_hstate(h) {
2686 int idx = hstate_index(h);
2687 if (nhs->hstate_kobjs[idx]) {
2688 kobject_put(nhs->hstate_kobjs[idx]);
2689 nhs->hstate_kobjs[idx] = NULL;
9a305230 2690 }
972dc4de 2691 }
9a305230
LS
2692
2693 kobject_put(nhs->hugepages_kobj);
2694 nhs->hugepages_kobj = NULL;
2695}
2696
9a305230
LS
2697
2698/*
10fbcf4c 2699 * Register hstate attributes for a single node device.
9a305230
LS
2700 * No-op if attributes already registered.
2701 */
3cd8b44f 2702static void hugetlb_register_node(struct node *node)
9a305230
LS
2703{
2704 struct hstate *h;
10fbcf4c 2705 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
2706 int err;
2707
2708 if (nhs->hugepages_kobj)
2709 return; /* already allocated */
2710
2711 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
10fbcf4c 2712 &node->dev.kobj);
9a305230
LS
2713 if (!nhs->hugepages_kobj)
2714 return;
2715
2716 for_each_hstate(h) {
2717 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2718 nhs->hstate_kobjs,
2719 &per_node_hstate_attr_group);
2720 if (err) {
ffb22af5
AM
2721 pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2722 h->name, node->dev.id);
9a305230
LS
2723 hugetlb_unregister_node(node);
2724 break;
2725 }
2726 }
2727}
2728
2729/*
9b5e5d0f 2730 * hugetlb init time: register hstate attributes for all registered node
10fbcf4c
KS
2731 * devices of nodes that have memory. All on-line nodes should have
2732 * registered their associated device by this time.
9a305230 2733 */
7d9ca000 2734static void __init hugetlb_register_all_nodes(void)
9a305230
LS
2735{
2736 int nid;
2737
8cebfcd0 2738 for_each_node_state(nid, N_MEMORY) {
8732794b 2739 struct node *node = node_devices[nid];
10fbcf4c 2740 if (node->dev.id == nid)
9a305230
LS
2741 hugetlb_register_node(node);
2742 }
2743
2744 /*
10fbcf4c 2745 * Let the node device driver know we're here so it can
9a305230
LS
2746 * [un]register hstate attributes on node hotplug.
2747 */
2748 register_hugetlbfs_with_node(hugetlb_register_node,
2749 hugetlb_unregister_node);
2750}
2751#else /* !CONFIG_NUMA */
2752
2753static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2754{
2755 BUG();
2756 if (nidp)
2757 *nidp = -1;
2758 return NULL;
2759}
2760
9a305230
LS
2761static void hugetlb_register_all_nodes(void) { }
2762
2763#endif
2764
a3437870
NA
2765static int __init hugetlb_init(void)
2766{
8382d914
DB
2767 int i;
2768
457c1b27 2769 if (!hugepages_supported())
0ef89d25 2770 return 0;
a3437870 2771
e11bfbfc 2772 if (!size_to_hstate(default_hstate_size)) {
d715cf80
LH
2773 if (default_hstate_size != 0) {
2774 pr_err("HugeTLB: unsupported default_hugepagesz %lu. Reverting to %lu\n",
2775 default_hstate_size, HPAGE_SIZE);
2776 }
2777
e11bfbfc
NP
2778 default_hstate_size = HPAGE_SIZE;
2779 if (!size_to_hstate(default_hstate_size))
2780 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
a3437870 2781 }
972dc4de 2782 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
f8b74815
VT
2783 if (default_hstate_max_huge_pages) {
2784 if (!default_hstate.max_huge_pages)
2785 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2786 }
a3437870
NA
2787
2788 hugetlb_init_hstates();
aa888a74 2789 gather_bootmem_prealloc();
a3437870
NA
2790 report_hugepages();
2791
2792 hugetlb_sysfs_init();
9a305230 2793 hugetlb_register_all_nodes();
7179e7bf 2794 hugetlb_cgroup_file_init();
9a305230 2795
8382d914
DB
2796#ifdef CONFIG_SMP
2797 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2798#else
2799 num_fault_mutexes = 1;
2800#endif
c672c7f2 2801 hugetlb_fault_mutex_table =
6da2ec56
KC
2802 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
2803 GFP_KERNEL);
c672c7f2 2804 BUG_ON(!hugetlb_fault_mutex_table);
8382d914
DB
2805
2806 for (i = 0; i < num_fault_mutexes; i++)
c672c7f2 2807 mutex_init(&hugetlb_fault_mutex_table[i]);
a3437870
NA
2808 return 0;
2809}
3e89e1c5 2810subsys_initcall(hugetlb_init);
a3437870
NA
2811
2812/* Should be called on processing a hugepagesz=... option */
9fee021d
VT
2813void __init hugetlb_bad_size(void)
2814{
2815 parsed_valid_hugepagesz = false;
2816}
2817
d00181b9 2818void __init hugetlb_add_hstate(unsigned int order)
a3437870
NA
2819{
2820 struct hstate *h;
8faa8b07
AK
2821 unsigned long i;
2822
a3437870 2823 if (size_to_hstate(PAGE_SIZE << order)) {
598d8091 2824 pr_warn("hugepagesz= specified twice, ignoring\n");
a3437870
NA
2825 return;
2826 }
47d38344 2827 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
a3437870 2828 BUG_ON(order == 0);
47d38344 2829 h = &hstates[hugetlb_max_hstate++];
a3437870
NA
2830 h->order = order;
2831 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
8faa8b07
AK
2832 h->nr_huge_pages = 0;
2833 h->free_huge_pages = 0;
2834 for (i = 0; i < MAX_NUMNODES; ++i)
2835 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
0edaecfa 2836 INIT_LIST_HEAD(&h->hugepage_activelist);
54f18d35
AM
2837 h->next_nid_to_alloc = first_memory_node;
2838 h->next_nid_to_free = first_memory_node;
a3437870
NA
2839 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2840 huge_page_size(h)/1024);
8faa8b07 2841
a3437870
NA
2842 parsed_hstate = h;
2843}
2844
e11bfbfc 2845static int __init hugetlb_nrpages_setup(char *s)
a3437870
NA
2846{
2847 unsigned long *mhp;
8faa8b07 2848 static unsigned long *last_mhp;
a3437870 2849
9fee021d
VT
2850 if (!parsed_valid_hugepagesz) {
2851 pr_warn("hugepages = %s preceded by "
2852 "an unsupported hugepagesz, ignoring\n", s);
2853 parsed_valid_hugepagesz = true;
2854 return 1;
2855 }
a3437870 2856 /*
47d38344 2857 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
a3437870
NA
2858 * so this hugepages= parameter goes to the "default hstate".
2859 */
9fee021d 2860 else if (!hugetlb_max_hstate)
a3437870
NA
2861 mhp = &default_hstate_max_huge_pages;
2862 else
2863 mhp = &parsed_hstate->max_huge_pages;
2864
8faa8b07 2865 if (mhp == last_mhp) {
598d8091 2866 pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
8faa8b07
AK
2867 return 1;
2868 }
2869
a3437870
NA
2870 if (sscanf(s, "%lu", mhp) <= 0)
2871 *mhp = 0;
2872
8faa8b07
AK
2873 /*
2874 * Global state is always initialized later in hugetlb_init.
2875 * But we need to allocate >= MAX_ORDER hstates here early to still
2876 * use the bootmem allocator.
2877 */
47d38344 2878 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
8faa8b07
AK
2879 hugetlb_hstate_alloc_pages(parsed_hstate);
2880
2881 last_mhp = mhp;
2882
a3437870
NA
2883 return 1;
2884}
e11bfbfc
NP
2885__setup("hugepages=", hugetlb_nrpages_setup);
2886
2887static int __init hugetlb_default_setup(char *s)
2888{
2889 default_hstate_size = memparse(s, &s);
2890 return 1;
2891}
2892__setup("default_hugepagesz=", hugetlb_default_setup);
a3437870 2893
8a213460
NA
2894static unsigned int cpuset_mems_nr(unsigned int *array)
2895{
2896 int node;
2897 unsigned int nr = 0;
2898
2899 for_each_node_mask(node, cpuset_current_mems_allowed)
2900 nr += array[node];
2901
2902 return nr;
2903}
2904
2905#ifdef CONFIG_SYSCTL
06808b08
LS
2906static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2907 struct ctl_table *table, int write,
2908 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 2909{
e5ff2159 2910 struct hstate *h = &default_hstate;
238d3c13 2911 unsigned long tmp = h->max_huge_pages;
08d4a246 2912 int ret;
e5ff2159 2913
457c1b27 2914 if (!hugepages_supported())
86613628 2915 return -EOPNOTSUPP;
457c1b27 2916
e5ff2159
AK
2917 table->data = &tmp;
2918 table->maxlen = sizeof(unsigned long);
08d4a246
MH
2919 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2920 if (ret)
2921 goto out;
e5ff2159 2922
238d3c13
DR
2923 if (write)
2924 ret = __nr_hugepages_store_common(obey_mempolicy, h,
2925 NUMA_NO_NODE, tmp, *length);
08d4a246
MH
2926out:
2927 return ret;
1da177e4 2928}
396faf03 2929
06808b08
LS
2930int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2931 void __user *buffer, size_t *length, loff_t *ppos)
2932{
2933
2934 return hugetlb_sysctl_handler_common(false, table, write,
2935 buffer, length, ppos);
2936}
2937
2938#ifdef CONFIG_NUMA
2939int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2940 void __user *buffer, size_t *length, loff_t *ppos)
2941{
2942 return hugetlb_sysctl_handler_common(true, table, write,
2943 buffer, length, ppos);
2944}
2945#endif /* CONFIG_NUMA */
2946
a3d0c6aa 2947int hugetlb_overcommit_handler(struct ctl_table *table, int write,
8d65af78 2948 void __user *buffer,
a3d0c6aa
NA
2949 size_t *length, loff_t *ppos)
2950{
a5516438 2951 struct hstate *h = &default_hstate;
e5ff2159 2952 unsigned long tmp;
08d4a246 2953 int ret;
e5ff2159 2954
457c1b27 2955 if (!hugepages_supported())
86613628 2956 return -EOPNOTSUPP;
457c1b27 2957
c033a93c 2958 tmp = h->nr_overcommit_huge_pages;
e5ff2159 2959
bae7f4ae 2960 if (write && hstate_is_gigantic(h))
adbe8726
EM
2961 return -EINVAL;
2962
e5ff2159
AK
2963 table->data = &tmp;
2964 table->maxlen = sizeof(unsigned long);
08d4a246
MH
2965 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2966 if (ret)
2967 goto out;
e5ff2159
AK
2968
2969 if (write) {
2970 spin_lock(&hugetlb_lock);
2971 h->nr_overcommit_huge_pages = tmp;
2972 spin_unlock(&hugetlb_lock);
2973 }
08d4a246
MH
2974out:
2975 return ret;
a3d0c6aa
NA
2976}
2977
1da177e4
LT
2978#endif /* CONFIG_SYSCTL */
2979
e1759c21 2980void hugetlb_report_meminfo(struct seq_file *m)
1da177e4 2981{
fcb2b0c5
RG
2982 struct hstate *h;
2983 unsigned long total = 0;
2984
457c1b27
NA
2985 if (!hugepages_supported())
2986 return;
fcb2b0c5
RG
2987
2988 for_each_hstate(h) {
2989 unsigned long count = h->nr_huge_pages;
2990
2991 total += (PAGE_SIZE << huge_page_order(h)) * count;
2992
2993 if (h == &default_hstate)
2994 seq_printf(m,
2995 "HugePages_Total: %5lu\n"
2996 "HugePages_Free: %5lu\n"
2997 "HugePages_Rsvd: %5lu\n"
2998 "HugePages_Surp: %5lu\n"
2999 "Hugepagesize: %8lu kB\n",
3000 count,
3001 h->free_huge_pages,
3002 h->resv_huge_pages,
3003 h->surplus_huge_pages,
3004 (PAGE_SIZE << huge_page_order(h)) / 1024);
3005 }
3006
3007 seq_printf(m, "Hugetlb: %8lu kB\n", total / 1024);
1da177e4
LT
3008}
3009
3010int hugetlb_report_node_meminfo(int nid, char *buf)
3011{
a5516438 3012 struct hstate *h = &default_hstate;
457c1b27
NA
3013 if (!hugepages_supported())
3014 return 0;
1da177e4
LT
3015 return sprintf(buf,
3016 "Node %d HugePages_Total: %5u\n"
a1de0919
NA
3017 "Node %d HugePages_Free: %5u\n"
3018 "Node %d HugePages_Surp: %5u\n",
a5516438
AK
3019 nid, h->nr_huge_pages_node[nid],
3020 nid, h->free_huge_pages_node[nid],
3021 nid, h->surplus_huge_pages_node[nid]);
1da177e4
LT
3022}
3023
949f7ec5
DR
3024void hugetlb_show_meminfo(void)
3025{
3026 struct hstate *h;
3027 int nid;
3028
457c1b27
NA
3029 if (!hugepages_supported())
3030 return;
3031
949f7ec5
DR
3032 for_each_node_state(nid, N_MEMORY)
3033 for_each_hstate(h)
3034 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3035 nid,
3036 h->nr_huge_pages_node[nid],
3037 h->free_huge_pages_node[nid],
3038 h->surplus_huge_pages_node[nid],
3039 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3040}
3041
5d317b2b
NH
3042void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3043{
3044 seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3045 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3046}
3047
1da177e4
LT
3048/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3049unsigned long hugetlb_total_pages(void)
3050{
d0028588
WL
3051 struct hstate *h;
3052 unsigned long nr_total_pages = 0;
3053
3054 for_each_hstate(h)
3055 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3056 return nr_total_pages;
1da177e4 3057}
1da177e4 3058
a5516438 3059static int hugetlb_acct_memory(struct hstate *h, long delta)
fc1b8a73
MG
3060{
3061 int ret = -ENOMEM;
3062
3063 spin_lock(&hugetlb_lock);
3064 /*
3065 * When cpuset is configured, it breaks the strict hugetlb page
3066 * reservation as the accounting is done on a global variable. Such
3067 * reservation is completely rubbish in the presence of cpuset because
3068 * the reservation is not checked against page availability for the
3069 * current cpuset. Application can still potentially OOM'ed by kernel
3070 * with lack of free htlb page in cpuset that the task is in.
3071 * Attempt to enforce strict accounting with cpuset is almost
3072 * impossible (or too ugly) because cpuset is too fluid that
3073 * task or memory node can be dynamically moved between cpusets.
3074 *
3075 * The change of semantics for shared hugetlb mapping with cpuset is
3076 * undesirable. However, in order to preserve some of the semantics,
3077 * we fall back to check against current free page availability as
3078 * a best attempt and hopefully to minimize the impact of changing
3079 * semantics that cpuset has.
3080 */
3081 if (delta > 0) {
a5516438 3082 if (gather_surplus_pages(h, delta) < 0)
fc1b8a73
MG
3083 goto out;
3084
a5516438
AK
3085 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
3086 return_unused_surplus_pages(h, delta);
fc1b8a73
MG
3087 goto out;
3088 }
3089 }
3090
3091 ret = 0;
3092 if (delta < 0)
a5516438 3093 return_unused_surplus_pages(h, (unsigned long) -delta);
fc1b8a73
MG
3094
3095out:
3096 spin_unlock(&hugetlb_lock);
3097 return ret;
3098}
3099
84afd99b
AW
3100static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3101{
f522c3ac 3102 struct resv_map *resv = vma_resv_map(vma);
84afd99b
AW
3103
3104 /*
3105 * This new VMA should share its siblings reservation map if present.
3106 * The VMA will only ever have a valid reservation map pointer where
3107 * it is being copied for another still existing VMA. As that VMA
25985edc 3108 * has a reference to the reservation map it cannot disappear until
84afd99b
AW
3109 * after this open call completes. It is therefore safe to take a
3110 * new reference here without additional locking.
3111 */
4e35f483 3112 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
f522c3ac 3113 kref_get(&resv->refs);
84afd99b
AW
3114}
3115
a1e78772
MG
3116static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3117{
a5516438 3118 struct hstate *h = hstate_vma(vma);
f522c3ac 3119 struct resv_map *resv = vma_resv_map(vma);
90481622 3120 struct hugepage_subpool *spool = subpool_vma(vma);
4e35f483 3121 unsigned long reserve, start, end;
1c5ecae3 3122 long gbl_reserve;
84afd99b 3123
4e35f483
JK
3124 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3125 return;
84afd99b 3126
4e35f483
JK
3127 start = vma_hugecache_offset(h, vma, vma->vm_start);
3128 end = vma_hugecache_offset(h, vma, vma->vm_end);
84afd99b 3129
4e35f483 3130 reserve = (end - start) - region_count(resv, start, end);
84afd99b 3131
4e35f483
JK
3132 kref_put(&resv->refs, resv_map_release);
3133
3134 if (reserve) {
1c5ecae3
MK
3135 /*
3136 * Decrement reserve counts. The global reserve count may be
3137 * adjusted if the subpool has a minimum size.
3138 */
3139 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3140 hugetlb_acct_memory(h, -gbl_reserve);
84afd99b 3141 }
a1e78772
MG
3142}
3143
31383c68
DW
3144static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
3145{
3146 if (addr & ~(huge_page_mask(hstate_vma(vma))))
3147 return -EINVAL;
3148 return 0;
3149}
3150
05ea8860
DW
3151static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
3152{
3153 struct hstate *hstate = hstate_vma(vma);
3154
3155 return 1UL << huge_page_shift(hstate);
3156}
3157
1da177e4
LT
3158/*
3159 * We cannot handle pagefaults against hugetlb pages at all. They cause
3160 * handle_mm_fault() to try to instantiate regular-sized pages in the
3161 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
3162 * this far.
3163 */
b3ec9f33 3164static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
1da177e4
LT
3165{
3166 BUG();
d0217ac0 3167 return 0;
1da177e4
LT
3168}
3169
eec3636a
JC
3170/*
3171 * When a new function is introduced to vm_operations_struct and added
3172 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
3173 * This is because under System V memory model, mappings created via
3174 * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
3175 * their original vm_ops are overwritten with shm_vm_ops.
3176 */
f0f37e2f 3177const struct vm_operations_struct hugetlb_vm_ops = {
d0217ac0 3178 .fault = hugetlb_vm_op_fault,
84afd99b 3179 .open = hugetlb_vm_op_open,
a1e78772 3180 .close = hugetlb_vm_op_close,
31383c68 3181 .split = hugetlb_vm_op_split,
05ea8860 3182 .pagesize = hugetlb_vm_op_pagesize,
1da177e4
LT
3183};
3184
1e8f889b
DG
3185static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3186 int writable)
63551ae0
DG
3187{
3188 pte_t entry;
3189
1e8f889b 3190 if (writable) {
106c992a
GS
3191 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3192 vma->vm_page_prot)));
63551ae0 3193 } else {
106c992a
GS
3194 entry = huge_pte_wrprotect(mk_huge_pte(page,
3195 vma->vm_page_prot));
63551ae0
DG
3196 }
3197 entry = pte_mkyoung(entry);
3198 entry = pte_mkhuge(entry);
d9ed9faa 3199 entry = arch_make_huge_pte(entry, vma, page, writable);
63551ae0
DG
3200
3201 return entry;
3202}
3203
1e8f889b
DG
3204static void set_huge_ptep_writable(struct vm_area_struct *vma,
3205 unsigned long address, pte_t *ptep)
3206{
3207 pte_t entry;
3208
106c992a 3209 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
32f84528 3210 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4b3073e1 3211 update_mmu_cache(vma, address, ptep);
1e8f889b
DG
3212}
3213
d5ed7444 3214bool is_hugetlb_entry_migration(pte_t pte)
4a705fef
NH
3215{
3216 swp_entry_t swp;
3217
3218 if (huge_pte_none(pte) || pte_present(pte))
d5ed7444 3219 return false;
4a705fef
NH
3220 swp = pte_to_swp_entry(pte);
3221 if (non_swap_entry(swp) && is_migration_entry(swp))
d5ed7444 3222 return true;
4a705fef 3223 else
d5ed7444 3224 return false;
4a705fef
NH
3225}
3226
3227static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3228{
3229 swp_entry_t swp;
3230
3231 if (huge_pte_none(pte) || pte_present(pte))
3232 return 0;
3233 swp = pte_to_swp_entry(pte);
3234 if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3235 return 1;
3236 else
3237 return 0;
3238}
1e8f889b 3239
63551ae0
DG
3240int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3241 struct vm_area_struct *vma)
3242{
3243 pte_t *src_pte, *dst_pte, entry;
3244 struct page *ptepage;
1c59827d 3245 unsigned long addr;
1e8f889b 3246 int cow;
a5516438
AK
3247 struct hstate *h = hstate_vma(vma);
3248 unsigned long sz = huge_page_size(h);
e8569dd2
AS
3249 unsigned long mmun_start; /* For mmu_notifiers */
3250 unsigned long mmun_end; /* For mmu_notifiers */
3251 int ret = 0;
1e8f889b
DG
3252
3253 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
63551ae0 3254
e8569dd2
AS
3255 mmun_start = vma->vm_start;
3256 mmun_end = vma->vm_end;
3257 if (cow)
3258 mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
3259
a5516438 3260 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
cb900f41 3261 spinlock_t *src_ptl, *dst_ptl;
7868a208 3262 src_pte = huge_pte_offset(src, addr, sz);
c74df32c
HD
3263 if (!src_pte)
3264 continue;
a5516438 3265 dst_pte = huge_pte_alloc(dst, addr, sz);
e8569dd2
AS
3266 if (!dst_pte) {
3267 ret = -ENOMEM;
3268 break;
3269 }
c5c99429
LW
3270
3271 /* If the pagetables are shared don't copy or take references */
3272 if (dst_pte == src_pte)
3273 continue;
3274
cb900f41
KS
3275 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3276 src_ptl = huge_pte_lockptr(h, src, src_pte);
3277 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4a705fef
NH
3278 entry = huge_ptep_get(src_pte);
3279 if (huge_pte_none(entry)) { /* skip none entry */
3280 ;
3281 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3282 is_hugetlb_entry_hwpoisoned(entry))) {
3283 swp_entry_t swp_entry = pte_to_swp_entry(entry);
3284
3285 if (is_write_migration_entry(swp_entry) && cow) {
3286 /*
3287 * COW mappings require pages in both
3288 * parent and child to be set to read.
3289 */
3290 make_migration_entry_read(&swp_entry);
3291 entry = swp_entry_to_pte(swp_entry);
e5251fd4
PA
3292 set_huge_swap_pte_at(src, addr, src_pte,
3293 entry, sz);
4a705fef 3294 }
e5251fd4 3295 set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
4a705fef 3296 } else {
34ee645e 3297 if (cow) {
0f10851e
JG
3298 /*
3299 * No need to notify as we are downgrading page
3300 * table protection not changing it to point
3301 * to a new page.
3302 *
ad56b738 3303 * See Documentation/vm/mmu_notifier.rst
0f10851e 3304 */
7f2e9525 3305 huge_ptep_set_wrprotect(src, addr, src_pte);
34ee645e 3306 }
0253d634 3307 entry = huge_ptep_get(src_pte);
1c59827d
HD
3308 ptepage = pte_page(entry);
3309 get_page(ptepage);
53f9263b 3310 page_dup_rmap(ptepage, true);
1c59827d 3311 set_huge_pte_at(dst, addr, dst_pte, entry);
5d317b2b 3312 hugetlb_count_add(pages_per_huge_page(h), dst);
1c59827d 3313 }
cb900f41
KS
3314 spin_unlock(src_ptl);
3315 spin_unlock(dst_ptl);
63551ae0 3316 }
63551ae0 3317
e8569dd2
AS
3318 if (cow)
3319 mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
3320
3321 return ret;
63551ae0
DG
3322}
3323
24669e58
AK
3324void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3325 unsigned long start, unsigned long end,
3326 struct page *ref_page)
63551ae0
DG
3327{
3328 struct mm_struct *mm = vma->vm_mm;
3329 unsigned long address;
c7546f8f 3330 pte_t *ptep;
63551ae0 3331 pte_t pte;
cb900f41 3332 spinlock_t *ptl;
63551ae0 3333 struct page *page;
a5516438
AK
3334 struct hstate *h = hstate_vma(vma);
3335 unsigned long sz = huge_page_size(h);
2ec74c3e
SG
3336 const unsigned long mmun_start = start; /* For mmu_notifiers */
3337 const unsigned long mmun_end = end; /* For mmu_notifiers */
a5516438 3338
63551ae0 3339 WARN_ON(!is_vm_hugetlb_page(vma));
a5516438
AK
3340 BUG_ON(start & ~huge_page_mask(h));
3341 BUG_ON(end & ~huge_page_mask(h));
63551ae0 3342
07e32661
AK
3343 /*
3344 * This is a hugetlb vma, all the pte entries should point
3345 * to huge page.
3346 */
3347 tlb_remove_check_page_size_change(tlb, sz);
24669e58 3348 tlb_start_vma(tlb, vma);
2ec74c3e 3349 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
569f48b8 3350 address = start;
569f48b8 3351 for (; address < end; address += sz) {
7868a208 3352 ptep = huge_pte_offset(mm, address, sz);
4c887265 3353 if (!ptep)
c7546f8f
DG
3354 continue;
3355
cb900f41 3356 ptl = huge_pte_lock(h, mm, ptep);
31d49da5
AK
3357 if (huge_pmd_unshare(mm, &address, ptep)) {
3358 spin_unlock(ptl);
3359 continue;
3360 }
39dde65c 3361
6629326b 3362 pte = huge_ptep_get(ptep);
31d49da5
AK
3363 if (huge_pte_none(pte)) {
3364 spin_unlock(ptl);
3365 continue;
3366 }
6629326b
HD
3367
3368 /*
9fbc1f63
NH
3369 * Migrating hugepage or HWPoisoned hugepage is already
3370 * unmapped and its refcount is dropped, so just clear pte here.
6629326b 3371 */
9fbc1f63 3372 if (unlikely(!pte_present(pte))) {
9386fac3 3373 huge_pte_clear(mm, address, ptep, sz);
31d49da5
AK
3374 spin_unlock(ptl);
3375 continue;
8c4894c6 3376 }
6629326b
HD
3377
3378 page = pte_page(pte);
04f2cbe3
MG
3379 /*
3380 * If a reference page is supplied, it is because a specific
3381 * page is being unmapped, not a range. Ensure the page we
3382 * are about to unmap is the actual page of interest.
3383 */
3384 if (ref_page) {
31d49da5
AK
3385 if (page != ref_page) {
3386 spin_unlock(ptl);
3387 continue;
3388 }
04f2cbe3
MG
3389 /*
3390 * Mark the VMA as having unmapped its page so that
3391 * future faults in this VMA will fail rather than
3392 * looking like data was lost
3393 */
3394 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3395 }
3396
c7546f8f 3397 pte = huge_ptep_get_and_clear(mm, address, ptep);
b528e4b6 3398 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
106c992a 3399 if (huge_pte_dirty(pte))
6649a386 3400 set_page_dirty(page);
9e81130b 3401
5d317b2b 3402 hugetlb_count_sub(pages_per_huge_page(h), mm);
d281ee61 3403 page_remove_rmap(page, true);
31d49da5 3404
cb900f41 3405 spin_unlock(ptl);
e77b0852 3406 tlb_remove_page_size(tlb, page, huge_page_size(h));
31d49da5
AK
3407 /*
3408 * Bail out after unmapping reference page if supplied
3409 */
3410 if (ref_page)
3411 break;
fe1668ae 3412 }
2ec74c3e 3413 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
24669e58 3414 tlb_end_vma(tlb, vma);
1da177e4 3415}
63551ae0 3416
d833352a
MG
3417void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3418 struct vm_area_struct *vma, unsigned long start,
3419 unsigned long end, struct page *ref_page)
3420{
3421 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
3422
3423 /*
3424 * Clear this flag so that x86's huge_pmd_share page_table_shareable
3425 * test will fail on a vma being torn down, and not grab a page table
3426 * on its way out. We're lucky that the flag has such an appropriate
3427 * name, and can in fact be safely cleared here. We could clear it
3428 * before the __unmap_hugepage_range above, but all that's necessary
c8c06efa 3429 * is to clear it before releasing the i_mmap_rwsem. This works
d833352a 3430 * because in the context this is called, the VMA is about to be
c8c06efa 3431 * destroyed and the i_mmap_rwsem is held.
d833352a
MG
3432 */
3433 vma->vm_flags &= ~VM_MAYSHARE;
3434}
3435
502717f4 3436void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
04f2cbe3 3437 unsigned long end, struct page *ref_page)
502717f4 3438{
24669e58
AK
3439 struct mm_struct *mm;
3440 struct mmu_gather tlb;
3441
3442 mm = vma->vm_mm;
3443
2b047252 3444 tlb_gather_mmu(&tlb, mm, start, end);
24669e58
AK
3445 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
3446 tlb_finish_mmu(&tlb, start, end);
502717f4
CK
3447}
3448
04f2cbe3
MG
3449/*
3450 * This is called when the original mapper is failing to COW a MAP_PRIVATE
3451 * mappping it owns the reserve page for. The intention is to unmap the page
3452 * from other VMAs and let the children be SIGKILLed if they are faulting the
3453 * same region.
3454 */
2f4612af
DB
3455static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3456 struct page *page, unsigned long address)
04f2cbe3 3457{
7526674d 3458 struct hstate *h = hstate_vma(vma);
04f2cbe3
MG
3459 struct vm_area_struct *iter_vma;
3460 struct address_space *mapping;
04f2cbe3
MG
3461 pgoff_t pgoff;
3462
3463 /*
3464 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3465 * from page cache lookup which is in HPAGE_SIZE units.
3466 */
7526674d 3467 address = address & huge_page_mask(h);
36e4f20a
MH
3468 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3469 vma->vm_pgoff;
93c76a3d 3470 mapping = vma->vm_file->f_mapping;
04f2cbe3 3471
4eb2b1dc
MG
3472 /*
3473 * Take the mapping lock for the duration of the table walk. As
3474 * this mapping should be shared between all the VMAs,
3475 * __unmap_hugepage_range() is called as the lock is already held
3476 */
83cde9e8 3477 i_mmap_lock_write(mapping);
6b2dbba8 3478 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
04f2cbe3
MG
3479 /* Do not unmap the current VMA */
3480 if (iter_vma == vma)
3481 continue;
3482
2f84a899
MG
3483 /*
3484 * Shared VMAs have their own reserves and do not affect
3485 * MAP_PRIVATE accounting but it is possible that a shared
3486 * VMA is using the same page so check and skip such VMAs.
3487 */
3488 if (iter_vma->vm_flags & VM_MAYSHARE)
3489 continue;
3490
04f2cbe3
MG
3491 /*
3492 * Unmap the page from other VMAs without their own reserves.
3493 * They get marked to be SIGKILLed if they fault in these
3494 * areas. This is because a future no-page fault on this VMA
3495 * could insert a zeroed page instead of the data existing
3496 * from the time of fork. This would look like data corruption
3497 */
3498 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
24669e58
AK
3499 unmap_hugepage_range(iter_vma, address,
3500 address + huge_page_size(h), page);
04f2cbe3 3501 }
83cde9e8 3502 i_mmap_unlock_write(mapping);
04f2cbe3
MG
3503}
3504
0fe6e20b
NH
3505/*
3506 * Hugetlb_cow() should be called with page lock of the original hugepage held.
ef009b25
MH
3507 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3508 * cannot race with other handlers or page migration.
3509 * Keep the pte_same checks anyway to make transition from the mutex easier.
0fe6e20b 3510 */
1e8f889b 3511static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
974e6d66 3512 unsigned long address, pte_t *ptep,
3999f52e 3513 struct page *pagecache_page, spinlock_t *ptl)
1e8f889b 3514{
3999f52e 3515 pte_t pte;
a5516438 3516 struct hstate *h = hstate_vma(vma);
1e8f889b 3517 struct page *old_page, *new_page;
ad4404a2 3518 int ret = 0, outside_reserve = 0;
2ec74c3e
SG
3519 unsigned long mmun_start; /* For mmu_notifiers */
3520 unsigned long mmun_end; /* For mmu_notifiers */
974e6d66 3521 unsigned long haddr = address & huge_page_mask(h);
1e8f889b 3522
3999f52e 3523 pte = huge_ptep_get(ptep);
1e8f889b
DG
3524 old_page = pte_page(pte);
3525
04f2cbe3 3526retry_avoidcopy:
1e8f889b
DG
3527 /* If no-one else is actually using this page, avoid the copy
3528 * and just make the page writable */
37a2140d 3529 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
5a49973d 3530 page_move_anon_rmap(old_page, vma);
5b7a1d40 3531 set_huge_ptep_writable(vma, haddr, ptep);
83c54070 3532 return 0;
1e8f889b
DG
3533 }
3534
04f2cbe3
MG
3535 /*
3536 * If the process that created a MAP_PRIVATE mapping is about to
3537 * perform a COW due to a shared page count, attempt to satisfy
3538 * the allocation without using the existing reserves. The pagecache
3539 * page is used to determine if the reserve at this address was
3540 * consumed or not. If reserves were used, a partial faulted mapping
3541 * at the time of fork() could consume its reserves on COW instead
3542 * of the full address range.
3543 */
5944d011 3544 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
04f2cbe3
MG
3545 old_page != pagecache_page)
3546 outside_reserve = 1;
3547
09cbfeaf 3548 get_page(old_page);
b76c8cfb 3549
ad4404a2
DB
3550 /*
3551 * Drop page table lock as buddy allocator may be called. It will
3552 * be acquired again before returning to the caller, as expected.
3553 */
cb900f41 3554 spin_unlock(ptl);
5b7a1d40 3555 new_page = alloc_huge_page(vma, haddr, outside_reserve);
1e8f889b 3556
2fc39cec 3557 if (IS_ERR(new_page)) {
04f2cbe3
MG
3558 /*
3559 * If a process owning a MAP_PRIVATE mapping fails to COW,
3560 * it is due to references held by a child and an insufficient
3561 * huge page pool. To guarantee the original mappers
3562 * reliability, unmap the page from child processes. The child
3563 * may get SIGKILLed if it later faults.
3564 */
3565 if (outside_reserve) {
09cbfeaf 3566 put_page(old_page);
04f2cbe3 3567 BUG_ON(huge_pte_none(pte));
5b7a1d40 3568 unmap_ref_private(mm, vma, old_page, haddr);
2f4612af
DB
3569 BUG_ON(huge_pte_none(pte));
3570 spin_lock(ptl);
5b7a1d40 3571 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
2f4612af
DB
3572 if (likely(ptep &&
3573 pte_same(huge_ptep_get(ptep), pte)))
3574 goto retry_avoidcopy;
3575 /*
3576 * race occurs while re-acquiring page table
3577 * lock, and our job is done.
3578 */
3579 return 0;
04f2cbe3
MG
3580 }
3581
ad4404a2
DB
3582 ret = (PTR_ERR(new_page) == -ENOMEM) ?
3583 VM_FAULT_OOM : VM_FAULT_SIGBUS;
3584 goto out_release_old;
1e8f889b
DG
3585 }
3586
0fe6e20b
NH
3587 /*
3588 * When the original hugepage is shared one, it does not have
3589 * anon_vma prepared.
3590 */
44e2aa93 3591 if (unlikely(anon_vma_prepare(vma))) {
ad4404a2
DB
3592 ret = VM_FAULT_OOM;
3593 goto out_release_all;
44e2aa93 3594 }
0fe6e20b 3595
974e6d66 3596 copy_user_huge_page(new_page, old_page, address, vma,
47ad8475 3597 pages_per_huge_page(h));
0ed361de 3598 __SetPageUptodate(new_page);
bcc54222 3599 set_page_huge_active(new_page);
1e8f889b 3600
5b7a1d40 3601 mmun_start = haddr;
2ec74c3e
SG
3602 mmun_end = mmun_start + huge_page_size(h);
3603 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
ad4404a2 3604
b76c8cfb 3605 /*
cb900f41 3606 * Retake the page table lock to check for racing updates
b76c8cfb
LW
3607 * before the page tables are altered
3608 */
cb900f41 3609 spin_lock(ptl);
5b7a1d40 3610 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
a9af0c5d 3611 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
07443a85
JK
3612 ClearPagePrivate(new_page);
3613
1e8f889b 3614 /* Break COW */
5b7a1d40 3615 huge_ptep_clear_flush(vma, haddr, ptep);
34ee645e 3616 mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
5b7a1d40 3617 set_huge_pte_at(mm, haddr, ptep,
1e8f889b 3618 make_huge_pte(vma, new_page, 1));
d281ee61 3619 page_remove_rmap(old_page, true);
5b7a1d40 3620 hugepage_add_new_anon_rmap(new_page, vma, haddr);
1e8f889b
DG
3621 /* Make the old page be freed below */
3622 new_page = old_page;
3623 }
cb900f41 3624 spin_unlock(ptl);
2ec74c3e 3625 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
ad4404a2 3626out_release_all:
5b7a1d40 3627 restore_reserve_on_error(h, vma, haddr, new_page);
09cbfeaf 3628 put_page(new_page);
ad4404a2 3629out_release_old:
09cbfeaf 3630 put_page(old_page);
8312034f 3631
ad4404a2
DB
3632 spin_lock(ptl); /* Caller expects lock to be held */
3633 return ret;
1e8f889b
DG
3634}
3635
04f2cbe3 3636/* Return the pagecache page at a given address within a VMA */
a5516438
AK
3637static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3638 struct vm_area_struct *vma, unsigned long address)
04f2cbe3
MG
3639{
3640 struct address_space *mapping;
e7c4b0bf 3641 pgoff_t idx;
04f2cbe3
MG
3642
3643 mapping = vma->vm_file->f_mapping;
a5516438 3644 idx = vma_hugecache_offset(h, vma, address);
04f2cbe3
MG
3645
3646 return find_lock_page(mapping, idx);
3647}
3648
3ae77f43
HD
3649/*
3650 * Return whether there is a pagecache page to back given address within VMA.
3651 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3652 */
3653static bool hugetlbfs_pagecache_present(struct hstate *h,
2a15efc9
HD
3654 struct vm_area_struct *vma, unsigned long address)
3655{
3656 struct address_space *mapping;
3657 pgoff_t idx;
3658 struct page *page;
3659
3660 mapping = vma->vm_file->f_mapping;
3661 idx = vma_hugecache_offset(h, vma, address);
3662
3663 page = find_get_page(mapping, idx);
3664 if (page)
3665 put_page(page);
3666 return page != NULL;
3667}
3668
ab76ad54
MK
3669int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
3670 pgoff_t idx)
3671{
3672 struct inode *inode = mapping->host;
3673 struct hstate *h = hstate_inode(inode);
3674 int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3675
3676 if (err)
3677 return err;
3678 ClearPagePrivate(page);
3679
3680 spin_lock(&inode->i_lock);
3681 inode->i_blocks += blocks_per_huge_page(h);
3682 spin_unlock(&inode->i_lock);
3683 return 0;
3684}
3685
a1ed3dda 3686static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
8382d914
DB
3687 struct address_space *mapping, pgoff_t idx,
3688 unsigned long address, pte_t *ptep, unsigned int flags)
ac9b9c66 3689{
a5516438 3690 struct hstate *h = hstate_vma(vma);
ac9b9c66 3691 int ret = VM_FAULT_SIGBUS;
409eb8c2 3692 int anon_rmap = 0;
4c887265 3693 unsigned long size;
4c887265 3694 struct page *page;
1e8f889b 3695 pte_t new_pte;
cb900f41 3696 spinlock_t *ptl;
285b8dca 3697 unsigned long haddr = address & huge_page_mask(h);
4c887265 3698
04f2cbe3
MG
3699 /*
3700 * Currently, we are forced to kill the process in the event the
3701 * original mapper has unmapped pages from the child due to a failed
25985edc 3702 * COW. Warn that such a situation has occurred as it may not be obvious
04f2cbe3
MG
3703 */
3704 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
910154d5 3705 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
ffb22af5 3706 current->pid);
04f2cbe3
MG
3707 return ret;
3708 }
3709
4c887265
AL
3710 /*
3711 * Use page lock to guard against racing truncation
3712 * before we get page_table_lock.
3713 */
6bda666a
CL
3714retry:
3715 page = find_lock_page(mapping, idx);
3716 if (!page) {
a5516438 3717 size = i_size_read(mapping->host) >> huge_page_shift(h);
ebed4bfc
HD
3718 if (idx >= size)
3719 goto out;
1a1aad8a
MK
3720
3721 /*
3722 * Check for page in userfault range
3723 */
3724 if (userfaultfd_missing(vma)) {
3725 u32 hash;
3726 struct vm_fault vmf = {
3727 .vma = vma,
285b8dca 3728 .address = haddr,
1a1aad8a
MK
3729 .flags = flags,
3730 /*
3731 * Hard to debug if it ends up being
3732 * used by a callee that assumes
3733 * something about the other
3734 * uninitialized fields... same as in
3735 * memory.c
3736 */
3737 };
3738
3739 /*
3740 * hugetlb_fault_mutex must be dropped before
3741 * handling userfault. Reacquire after handling
3742 * fault to make calling code simpler.
3743 */
3744 hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping,
285b8dca 3745 idx, haddr);
1a1aad8a
MK
3746 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3747 ret = handle_userfault(&vmf, VM_UFFD_MISSING);
3748 mutex_lock(&hugetlb_fault_mutex_table[hash]);
3749 goto out;
3750 }
3751
285b8dca 3752 page = alloc_huge_page(vma, haddr, 0);
2fc39cec 3753 if (IS_ERR(page)) {
76dcee75
AK
3754 ret = PTR_ERR(page);
3755 if (ret == -ENOMEM)
3756 ret = VM_FAULT_OOM;
3757 else
3758 ret = VM_FAULT_SIGBUS;
6bda666a
CL
3759 goto out;
3760 }
47ad8475 3761 clear_huge_page(page, address, pages_per_huge_page(h));
0ed361de 3762 __SetPageUptodate(page);
bcc54222 3763 set_page_huge_active(page);
ac9b9c66 3764
f83a275d 3765 if (vma->vm_flags & VM_MAYSHARE) {
ab76ad54 3766 int err = huge_add_to_page_cache(page, mapping, idx);
6bda666a
CL
3767 if (err) {
3768 put_page(page);
6bda666a
CL
3769 if (err == -EEXIST)
3770 goto retry;
3771 goto out;
3772 }
23be7468 3773 } else {
6bda666a 3774 lock_page(page);
0fe6e20b
NH
3775 if (unlikely(anon_vma_prepare(vma))) {
3776 ret = VM_FAULT_OOM;
3777 goto backout_unlocked;
3778 }
409eb8c2 3779 anon_rmap = 1;
23be7468 3780 }
0fe6e20b 3781 } else {
998b4382
NH
3782 /*
3783 * If memory error occurs between mmap() and fault, some process
3784 * don't have hwpoisoned swap entry for errored virtual address.
3785 * So we need to block hugepage fault by PG_hwpoison bit check.
3786 */
3787 if (unlikely(PageHWPoison(page))) {
32f84528 3788 ret = VM_FAULT_HWPOISON |
972dc4de 3789 VM_FAULT_SET_HINDEX(hstate_index(h));
998b4382
NH
3790 goto backout_unlocked;
3791 }
6bda666a 3792 }
1e8f889b 3793
57303d80
AW
3794 /*
3795 * If we are going to COW a private mapping later, we examine the
3796 * pending reservations for this page now. This will ensure that
3797 * any allocations necessary to record that reservation occur outside
3798 * the spinlock.
3799 */
5e911373 3800 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
285b8dca 3801 if (vma_needs_reservation(h, vma, haddr) < 0) {
2b26736c
AW
3802 ret = VM_FAULT_OOM;
3803 goto backout_unlocked;
3804 }
5e911373 3805 /* Just decrements count, does not deallocate */
285b8dca 3806 vma_end_reservation(h, vma, haddr);
5e911373 3807 }
57303d80 3808
8bea8052 3809 ptl = huge_pte_lock(h, mm, ptep);
a5516438 3810 size = i_size_read(mapping->host) >> huge_page_shift(h);
4c887265
AL
3811 if (idx >= size)
3812 goto backout;
3813
83c54070 3814 ret = 0;
7f2e9525 3815 if (!huge_pte_none(huge_ptep_get(ptep)))
4c887265
AL
3816 goto backout;
3817
07443a85
JK
3818 if (anon_rmap) {
3819 ClearPagePrivate(page);
285b8dca 3820 hugepage_add_new_anon_rmap(page, vma, haddr);
ac714904 3821 } else
53f9263b 3822 page_dup_rmap(page, true);
1e8f889b
DG
3823 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3824 && (vma->vm_flags & VM_SHARED)));
285b8dca 3825 set_huge_pte_at(mm, haddr, ptep, new_pte);
1e8f889b 3826
5d317b2b 3827 hugetlb_count_add(pages_per_huge_page(h), mm);
788c7df4 3828 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
1e8f889b 3829 /* Optimization, do the COW without a second fault */
974e6d66 3830 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
1e8f889b
DG
3831 }
3832
cb900f41 3833 spin_unlock(ptl);
4c887265
AL
3834 unlock_page(page);
3835out:
ac9b9c66 3836 return ret;
4c887265
AL
3837
3838backout:
cb900f41 3839 spin_unlock(ptl);
2b26736c 3840backout_unlocked:
4c887265 3841 unlock_page(page);
285b8dca 3842 restore_reserve_on_error(h, vma, haddr, page);
4c887265
AL
3843 put_page(page);
3844 goto out;
ac9b9c66
HD
3845}
3846
8382d914 3847#ifdef CONFIG_SMP
c672c7f2 3848u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
8382d914
DB
3849 struct vm_area_struct *vma,
3850 struct address_space *mapping,
3851 pgoff_t idx, unsigned long address)
3852{
3853 unsigned long key[2];
3854 u32 hash;
3855
3856 if (vma->vm_flags & VM_SHARED) {
3857 key[0] = (unsigned long) mapping;
3858 key[1] = idx;
3859 } else {
3860 key[0] = (unsigned long) mm;
3861 key[1] = address >> huge_page_shift(h);
3862 }
3863
3864 hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
3865
3866 return hash & (num_fault_mutexes - 1);
3867}
3868#else
3869/*
3870 * For uniprocesor systems we always use a single mutex, so just
3871 * return 0 and avoid the hashing overhead.
3872 */
c672c7f2 3873u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
8382d914
DB
3874 struct vm_area_struct *vma,
3875 struct address_space *mapping,
3876 pgoff_t idx, unsigned long address)
3877{
3878 return 0;
3879}
3880#endif
3881
86e5216f 3882int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
788c7df4 3883 unsigned long address, unsigned int flags)
86e5216f 3884{
8382d914 3885 pte_t *ptep, entry;
cb900f41 3886 spinlock_t *ptl;
1e8f889b 3887 int ret;
8382d914
DB
3888 u32 hash;
3889 pgoff_t idx;
0fe6e20b 3890 struct page *page = NULL;
57303d80 3891 struct page *pagecache_page = NULL;
a5516438 3892 struct hstate *h = hstate_vma(vma);
8382d914 3893 struct address_space *mapping;
0f792cf9 3894 int need_wait_lock = 0;
285b8dca 3895 unsigned long haddr = address & huge_page_mask(h);
86e5216f 3896
285b8dca 3897 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
fd6a03ed
NH
3898 if (ptep) {
3899 entry = huge_ptep_get(ptep);
290408d4 3900 if (unlikely(is_hugetlb_entry_migration(entry))) {
cb900f41 3901 migration_entry_wait_huge(vma, mm, ptep);
290408d4
NH
3902 return 0;
3903 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
32f84528 3904 return VM_FAULT_HWPOISON_LARGE |
972dc4de 3905 VM_FAULT_SET_HINDEX(hstate_index(h));
0d777df5 3906 } else {
285b8dca 3907 ptep = huge_pte_alloc(mm, haddr, huge_page_size(h));
0d777df5
NH
3908 if (!ptep)
3909 return VM_FAULT_OOM;
fd6a03ed
NH
3910 }
3911
8382d914 3912 mapping = vma->vm_file->f_mapping;
285b8dca 3913 idx = vma_hugecache_offset(h, vma, haddr);
8382d914 3914
3935baa9
DG
3915 /*
3916 * Serialize hugepage allocation and instantiation, so that we don't
3917 * get spurious allocation failures if two CPUs race to instantiate
3918 * the same page in the page cache.
3919 */
285b8dca 3920 hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, idx, haddr);
c672c7f2 3921 mutex_lock(&hugetlb_fault_mutex_table[hash]);
8382d914 3922
7f2e9525
GS
3923 entry = huge_ptep_get(ptep);
3924 if (huge_pte_none(entry)) {
8382d914 3925 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
b4d1d99f 3926 goto out_mutex;
3935baa9 3927 }
86e5216f 3928
83c54070 3929 ret = 0;
1e8f889b 3930
0f792cf9
NH
3931 /*
3932 * entry could be a migration/hwpoison entry at this point, so this
3933 * check prevents the kernel from going below assuming that we have
3934 * a active hugepage in pagecache. This goto expects the 2nd page fault,
3935 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
3936 * handle it.
3937 */
3938 if (!pte_present(entry))
3939 goto out_mutex;
3940
57303d80
AW
3941 /*
3942 * If we are going to COW the mapping later, we examine the pending
3943 * reservations for this page now. This will ensure that any
3944 * allocations necessary to record that reservation occur outside the
3945 * spinlock. For private mappings, we also lookup the pagecache
3946 * page now as it is used to determine if a reservation has been
3947 * consumed.
3948 */
106c992a 3949 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
285b8dca 3950 if (vma_needs_reservation(h, vma, haddr) < 0) {
2b26736c 3951 ret = VM_FAULT_OOM;
b4d1d99f 3952 goto out_mutex;
2b26736c 3953 }
5e911373 3954 /* Just decrements count, does not deallocate */
285b8dca 3955 vma_end_reservation(h, vma, haddr);
57303d80 3956
f83a275d 3957 if (!(vma->vm_flags & VM_MAYSHARE))
57303d80 3958 pagecache_page = hugetlbfs_pagecache_page(h,
285b8dca 3959 vma, haddr);
57303d80
AW
3960 }
3961
0f792cf9
NH
3962 ptl = huge_pte_lock(h, mm, ptep);
3963
3964 /* Check for a racing update before calling hugetlb_cow */
3965 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
3966 goto out_ptl;
3967
56c9cfb1
NH
3968 /*
3969 * hugetlb_cow() requires page locks of pte_page(entry) and
3970 * pagecache_page, so here we need take the former one
3971 * when page != pagecache_page or !pagecache_page.
56c9cfb1
NH
3972 */
3973 page = pte_page(entry);
3974 if (page != pagecache_page)
0f792cf9
NH
3975 if (!trylock_page(page)) {
3976 need_wait_lock = 1;
3977 goto out_ptl;
3978 }
b4d1d99f 3979
0f792cf9 3980 get_page(page);
b4d1d99f 3981
788c7df4 3982 if (flags & FAULT_FLAG_WRITE) {
106c992a 3983 if (!huge_pte_write(entry)) {
974e6d66 3984 ret = hugetlb_cow(mm, vma, address, ptep,
3999f52e 3985 pagecache_page, ptl);
0f792cf9 3986 goto out_put_page;
b4d1d99f 3987 }
106c992a 3988 entry = huge_pte_mkdirty(entry);
b4d1d99f
DG
3989 }
3990 entry = pte_mkyoung(entry);
285b8dca 3991 if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
788c7df4 3992 flags & FAULT_FLAG_WRITE))
285b8dca 3993 update_mmu_cache(vma, haddr, ptep);
0f792cf9
NH
3994out_put_page:
3995 if (page != pagecache_page)
3996 unlock_page(page);
3997 put_page(page);
cb900f41
KS
3998out_ptl:
3999 spin_unlock(ptl);
57303d80
AW
4000
4001 if (pagecache_page) {
4002 unlock_page(pagecache_page);
4003 put_page(pagecache_page);
4004 }
b4d1d99f 4005out_mutex:
c672c7f2 4006 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
0f792cf9
NH
4007 /*
4008 * Generally it's safe to hold refcount during waiting page lock. But
4009 * here we just wait to defer the next page fault to avoid busy loop and
4010 * the page is not used after unlocked before returning from the current
4011 * page fault. So we are safe from accessing freed page, even if we wait
4012 * here without taking refcount.
4013 */
4014 if (need_wait_lock)
4015 wait_on_page_locked(page);
1e8f889b 4016 return ret;
86e5216f
AL
4017}
4018
8fb5debc
MK
4019/*
4020 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with
4021 * modifications for huge pages.
4022 */
4023int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
4024 pte_t *dst_pte,
4025 struct vm_area_struct *dst_vma,
4026 unsigned long dst_addr,
4027 unsigned long src_addr,
4028 struct page **pagep)
4029{
1e392147
AA
4030 struct address_space *mapping;
4031 pgoff_t idx;
4032 unsigned long size;
1c9e8def 4033 int vm_shared = dst_vma->vm_flags & VM_SHARED;
8fb5debc
MK
4034 struct hstate *h = hstate_vma(dst_vma);
4035 pte_t _dst_pte;
4036 spinlock_t *ptl;
4037 int ret;
4038 struct page *page;
4039
4040 if (!*pagep) {
4041 ret = -ENOMEM;
4042 page = alloc_huge_page(dst_vma, dst_addr, 0);
4043 if (IS_ERR(page))
4044 goto out;
4045
4046 ret = copy_huge_page_from_user(page,
4047 (const void __user *) src_addr,
810a56b9 4048 pages_per_huge_page(h), false);
8fb5debc
MK
4049
4050 /* fallback to copy_from_user outside mmap_sem */
4051 if (unlikely(ret)) {
4052 ret = -EFAULT;
4053 *pagep = page;
4054 /* don't free the page */
4055 goto out;
4056 }
4057 } else {
4058 page = *pagep;
4059 *pagep = NULL;
4060 }
4061
4062 /*
4063 * The memory barrier inside __SetPageUptodate makes sure that
4064 * preceding stores to the page contents become visible before
4065 * the set_pte_at() write.
4066 */
4067 __SetPageUptodate(page);
4068 set_page_huge_active(page);
4069
1e392147
AA
4070 mapping = dst_vma->vm_file->f_mapping;
4071 idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4072
1c9e8def
MK
4073 /*
4074 * If shared, add to page cache
4075 */
4076 if (vm_shared) {
1e392147
AA
4077 size = i_size_read(mapping->host) >> huge_page_shift(h);
4078 ret = -EFAULT;
4079 if (idx >= size)
4080 goto out_release_nounlock;
1c9e8def 4081
1e392147
AA
4082 /*
4083 * Serialization between remove_inode_hugepages() and
4084 * huge_add_to_page_cache() below happens through the
4085 * hugetlb_fault_mutex_table that here must be hold by
4086 * the caller.
4087 */
1c9e8def
MK
4088 ret = huge_add_to_page_cache(page, mapping, idx);
4089 if (ret)
4090 goto out_release_nounlock;
4091 }
4092
8fb5debc
MK
4093 ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4094 spin_lock(ptl);
4095
1e392147
AA
4096 /*
4097 * Recheck the i_size after holding PT lock to make sure not
4098 * to leave any page mapped (as page_mapped()) beyond the end
4099 * of the i_size (remove_inode_hugepages() is strict about
4100 * enforcing that). If we bail out here, we'll also leave a
4101 * page in the radix tree in the vm_shared case beyond the end
4102 * of the i_size, but remove_inode_hugepages() will take care
4103 * of it as soon as we drop the hugetlb_fault_mutex_table.
4104 */
4105 size = i_size_read(mapping->host) >> huge_page_shift(h);
4106 ret = -EFAULT;
4107 if (idx >= size)
4108 goto out_release_unlock;
4109
8fb5debc
MK
4110 ret = -EEXIST;
4111 if (!huge_pte_none(huge_ptep_get(dst_pte)))
4112 goto out_release_unlock;
4113
1c9e8def
MK
4114 if (vm_shared) {
4115 page_dup_rmap(page, true);
4116 } else {
4117 ClearPagePrivate(page);
4118 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4119 }
8fb5debc
MK
4120
4121 _dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4122 if (dst_vma->vm_flags & VM_WRITE)
4123 _dst_pte = huge_pte_mkdirty(_dst_pte);
4124 _dst_pte = pte_mkyoung(_dst_pte);
4125
4126 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4127
4128 (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4129 dst_vma->vm_flags & VM_WRITE);
4130 hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4131
4132 /* No need to invalidate - it was non-present before */
4133 update_mmu_cache(dst_vma, dst_addr, dst_pte);
4134
4135 spin_unlock(ptl);
1c9e8def
MK
4136 if (vm_shared)
4137 unlock_page(page);
8fb5debc
MK
4138 ret = 0;
4139out:
4140 return ret;
4141out_release_unlock:
4142 spin_unlock(ptl);
1c9e8def
MK
4143 if (vm_shared)
4144 unlock_page(page);
5af10dfd 4145out_release_nounlock:
8fb5debc
MK
4146 put_page(page);
4147 goto out;
4148}
4149
28a35716
ML
4150long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4151 struct page **pages, struct vm_area_struct **vmas,
4152 unsigned long *position, unsigned long *nr_pages,
87ffc118 4153 long i, unsigned int flags, int *nonblocking)
63551ae0 4154{
d5d4b0aa
CK
4155 unsigned long pfn_offset;
4156 unsigned long vaddr = *position;
28a35716 4157 unsigned long remainder = *nr_pages;
a5516438 4158 struct hstate *h = hstate_vma(vma);
2be7cfed 4159 int err = -EFAULT;
63551ae0 4160
63551ae0 4161 while (vaddr < vma->vm_end && remainder) {
4c887265 4162 pte_t *pte;
cb900f41 4163 spinlock_t *ptl = NULL;
2a15efc9 4164 int absent;
4c887265 4165 struct page *page;
63551ae0 4166
02057967
DR
4167 /*
4168 * If we have a pending SIGKILL, don't keep faulting pages and
4169 * potentially allocating memory.
4170 */
4171 if (unlikely(fatal_signal_pending(current))) {
4172 remainder = 0;
4173 break;
4174 }
4175
4c887265
AL
4176 /*
4177 * Some archs (sparc64, sh*) have multiple pte_ts to
2a15efc9 4178 * each hugepage. We have to make sure we get the
4c887265 4179 * first, for the page indexing below to work.
cb900f41
KS
4180 *
4181 * Note that page table lock is not held when pte is null.
4c887265 4182 */
7868a208
PA
4183 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
4184 huge_page_size(h));
cb900f41
KS
4185 if (pte)
4186 ptl = huge_pte_lock(h, mm, pte);
2a15efc9
HD
4187 absent = !pte || huge_pte_none(huge_ptep_get(pte));
4188
4189 /*
4190 * When coredumping, it suits get_dump_page if we just return
3ae77f43
HD
4191 * an error where there's an empty slot with no huge pagecache
4192 * to back it. This way, we avoid allocating a hugepage, and
4193 * the sparse dumpfile avoids allocating disk blocks, but its
4194 * huge holes still show up with zeroes where they need to be.
2a15efc9 4195 */
3ae77f43
HD
4196 if (absent && (flags & FOLL_DUMP) &&
4197 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
cb900f41
KS
4198 if (pte)
4199 spin_unlock(ptl);
2a15efc9
HD
4200 remainder = 0;
4201 break;
4202 }
63551ae0 4203
9cc3a5bd
NH
4204 /*
4205 * We need call hugetlb_fault for both hugepages under migration
4206 * (in which case hugetlb_fault waits for the migration,) and
4207 * hwpoisoned hugepages (in which case we need to prevent the
4208 * caller from accessing to them.) In order to do this, we use
4209 * here is_swap_pte instead of is_hugetlb_entry_migration and
4210 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4211 * both cases, and because we can't follow correct pages
4212 * directly from any kind of swap entries.
4213 */
4214 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
106c992a
GS
4215 ((flags & FOLL_WRITE) &&
4216 !huge_pte_write(huge_ptep_get(pte)))) {
4c887265 4217 int ret;
87ffc118 4218 unsigned int fault_flags = 0;
63551ae0 4219
cb900f41
KS
4220 if (pte)
4221 spin_unlock(ptl);
87ffc118
AA
4222 if (flags & FOLL_WRITE)
4223 fault_flags |= FAULT_FLAG_WRITE;
4224 if (nonblocking)
4225 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
4226 if (flags & FOLL_NOWAIT)
4227 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4228 FAULT_FLAG_RETRY_NOWAIT;
4229 if (flags & FOLL_TRIED) {
4230 VM_WARN_ON_ONCE(fault_flags &
4231 FAULT_FLAG_ALLOW_RETRY);
4232 fault_flags |= FAULT_FLAG_TRIED;
4233 }
4234 ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4235 if (ret & VM_FAULT_ERROR) {
2be7cfed 4236 err = vm_fault_to_errno(ret, flags);
87ffc118
AA
4237 remainder = 0;
4238 break;
4239 }
4240 if (ret & VM_FAULT_RETRY) {
4241 if (nonblocking)
4242 *nonblocking = 0;
4243 *nr_pages = 0;
4244 /*
4245 * VM_FAULT_RETRY must not return an
4246 * error, it will return zero
4247 * instead.
4248 *
4249 * No need to update "position" as the
4250 * caller will not check it after
4251 * *nr_pages is set to 0.
4252 */
4253 return i;
4254 }
4255 continue;
4c887265
AL
4256 }
4257
a5516438 4258 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
7f2e9525 4259 page = pte_page(huge_ptep_get(pte));
d5d4b0aa 4260same_page:
d6692183 4261 if (pages) {
2a15efc9 4262 pages[i] = mem_map_offset(page, pfn_offset);
ddc58f27 4263 get_page(pages[i]);
d6692183 4264 }
63551ae0
DG
4265
4266 if (vmas)
4267 vmas[i] = vma;
4268
4269 vaddr += PAGE_SIZE;
d5d4b0aa 4270 ++pfn_offset;
63551ae0
DG
4271 --remainder;
4272 ++i;
d5d4b0aa 4273 if (vaddr < vma->vm_end && remainder &&
a5516438 4274 pfn_offset < pages_per_huge_page(h)) {
d5d4b0aa
CK
4275 /*
4276 * We use pfn_offset to avoid touching the pageframes
4277 * of this compound page.
4278 */
4279 goto same_page;
4280 }
cb900f41 4281 spin_unlock(ptl);
63551ae0 4282 }
28a35716 4283 *nr_pages = remainder;
87ffc118
AA
4284 /*
4285 * setting position is actually required only if remainder is
4286 * not zero but it's faster not to add a "if (remainder)"
4287 * branch.
4288 */
63551ae0
DG
4289 *position = vaddr;
4290
2be7cfed 4291 return i ? i : err;
63551ae0 4292}
8f860591 4293
5491ae7b
AK
4294#ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4295/*
4296 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4297 * implement this.
4298 */
4299#define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
4300#endif
4301
7da4d641 4302unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
8f860591
ZY
4303 unsigned long address, unsigned long end, pgprot_t newprot)
4304{
4305 struct mm_struct *mm = vma->vm_mm;
4306 unsigned long start = address;
4307 pte_t *ptep;
4308 pte_t pte;
a5516438 4309 struct hstate *h = hstate_vma(vma);
7da4d641 4310 unsigned long pages = 0;
8f860591
ZY
4311
4312 BUG_ON(address >= end);
4313 flush_cache_range(vma, address, end);
4314
a5338093 4315 mmu_notifier_invalidate_range_start(mm, start, end);
83cde9e8 4316 i_mmap_lock_write(vma->vm_file->f_mapping);
a5516438 4317 for (; address < end; address += huge_page_size(h)) {
cb900f41 4318 spinlock_t *ptl;
7868a208 4319 ptep = huge_pte_offset(mm, address, huge_page_size(h));
8f860591
ZY
4320 if (!ptep)
4321 continue;
cb900f41 4322 ptl = huge_pte_lock(h, mm, ptep);
7da4d641
PZ
4323 if (huge_pmd_unshare(mm, &address, ptep)) {
4324 pages++;
cb900f41 4325 spin_unlock(ptl);
39dde65c 4326 continue;
7da4d641 4327 }
a8bda28d
NH
4328 pte = huge_ptep_get(ptep);
4329 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
4330 spin_unlock(ptl);
4331 continue;
4332 }
4333 if (unlikely(is_hugetlb_entry_migration(pte))) {
4334 swp_entry_t entry = pte_to_swp_entry(pte);
4335
4336 if (is_write_migration_entry(entry)) {
4337 pte_t newpte;
4338
4339 make_migration_entry_read(&entry);
4340 newpte = swp_entry_to_pte(entry);
e5251fd4
PA
4341 set_huge_swap_pte_at(mm, address, ptep,
4342 newpte, huge_page_size(h));
a8bda28d
NH
4343 pages++;
4344 }
4345 spin_unlock(ptl);
4346 continue;
4347 }
4348 if (!huge_pte_none(pte)) {
8f860591 4349 pte = huge_ptep_get_and_clear(mm, address, ptep);
106c992a 4350 pte = pte_mkhuge(huge_pte_modify(pte, newprot));
be7517d6 4351 pte = arch_make_huge_pte(pte, vma, NULL, 0);
8f860591 4352 set_huge_pte_at(mm, address, ptep, pte);
7da4d641 4353 pages++;
8f860591 4354 }
cb900f41 4355 spin_unlock(ptl);
8f860591 4356 }
d833352a 4357 /*
c8c06efa 4358 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
d833352a 4359 * may have cleared our pud entry and done put_page on the page table:
c8c06efa 4360 * once we release i_mmap_rwsem, another task can do the final put_page
d833352a
MG
4361 * and that page table be reused and filled with junk.
4362 */
5491ae7b 4363 flush_hugetlb_tlb_range(vma, start, end);
0f10851e
JG
4364 /*
4365 * No need to call mmu_notifier_invalidate_range() we are downgrading
4366 * page table protection not changing it to point to a new page.
4367 *
ad56b738 4368 * See Documentation/vm/mmu_notifier.rst
0f10851e 4369 */
83cde9e8 4370 i_mmap_unlock_write(vma->vm_file->f_mapping);
a5338093 4371 mmu_notifier_invalidate_range_end(mm, start, end);
7da4d641
PZ
4372
4373 return pages << h->order;
8f860591
ZY
4374}
4375
a1e78772
MG
4376int hugetlb_reserve_pages(struct inode *inode,
4377 long from, long to,
5a6fe125 4378 struct vm_area_struct *vma,
ca16d140 4379 vm_flags_t vm_flags)
e4e574b7 4380{
17c9d12e 4381 long ret, chg;
a5516438 4382 struct hstate *h = hstate_inode(inode);
90481622 4383 struct hugepage_subpool *spool = subpool_inode(inode);
9119a41e 4384 struct resv_map *resv_map;
1c5ecae3 4385 long gbl_reserve;
e4e574b7 4386
63489f8e
MK
4387 /* This should never happen */
4388 if (from > to) {
4389 VM_WARN(1, "%s called with a negative range\n", __func__);
4390 return -EINVAL;
4391 }
4392
17c9d12e
MG
4393 /*
4394 * Only apply hugepage reservation if asked. At fault time, an
4395 * attempt will be made for VM_NORESERVE to allocate a page
90481622 4396 * without using reserves
17c9d12e 4397 */
ca16d140 4398 if (vm_flags & VM_NORESERVE)
17c9d12e
MG
4399 return 0;
4400
a1e78772
MG
4401 /*
4402 * Shared mappings base their reservation on the number of pages that
4403 * are already allocated on behalf of the file. Private mappings need
4404 * to reserve the full area even if read-only as mprotect() may be
4405 * called to make the mapping read-write. Assume !vma is a shm mapping
4406 */
9119a41e 4407 if (!vma || vma->vm_flags & VM_MAYSHARE) {
4e35f483 4408 resv_map = inode_resv_map(inode);
9119a41e 4409
1406ec9b 4410 chg = region_chg(resv_map, from, to);
9119a41e
JK
4411
4412 } else {
4413 resv_map = resv_map_alloc();
17c9d12e
MG
4414 if (!resv_map)
4415 return -ENOMEM;
4416
a1e78772 4417 chg = to - from;
84afd99b 4418
17c9d12e
MG
4419 set_vma_resv_map(vma, resv_map);
4420 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
4421 }
4422
c50ac050
DH
4423 if (chg < 0) {
4424 ret = chg;
4425 goto out_err;
4426 }
8a630112 4427
1c5ecae3
MK
4428 /*
4429 * There must be enough pages in the subpool for the mapping. If
4430 * the subpool has a minimum size, there may be some global
4431 * reservations already in place (gbl_reserve).
4432 */
4433 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
4434 if (gbl_reserve < 0) {
c50ac050
DH
4435 ret = -ENOSPC;
4436 goto out_err;
4437 }
5a6fe125
MG
4438
4439 /*
17c9d12e 4440 * Check enough hugepages are available for the reservation.
90481622 4441 * Hand the pages back to the subpool if there are not
5a6fe125 4442 */
1c5ecae3 4443 ret = hugetlb_acct_memory(h, gbl_reserve);
68842c9b 4444 if (ret < 0) {
1c5ecae3
MK
4445 /* put back original number of pages, chg */
4446 (void)hugepage_subpool_put_pages(spool, chg);
c50ac050 4447 goto out_err;
68842c9b 4448 }
17c9d12e
MG
4449
4450 /*
4451 * Account for the reservations made. Shared mappings record regions
4452 * that have reservations as they are shared by multiple VMAs.
4453 * When the last VMA disappears, the region map says how much
4454 * the reservation was and the page cache tells how much of
4455 * the reservation was consumed. Private mappings are per-VMA and
4456 * only the consumed reservations are tracked. When the VMA
4457 * disappears, the original reservation is the VMA size and the
4458 * consumed reservations are stored in the map. Hence, nothing
4459 * else has to be done for private mappings here
4460 */
33039678
MK
4461 if (!vma || vma->vm_flags & VM_MAYSHARE) {
4462 long add = region_add(resv_map, from, to);
4463
4464 if (unlikely(chg > add)) {
4465 /*
4466 * pages in this range were added to the reserve
4467 * map between region_chg and region_add. This
4468 * indicates a race with alloc_huge_page. Adjust
4469 * the subpool and reserve counts modified above
4470 * based on the difference.
4471 */
4472 long rsv_adjust;
4473
4474 rsv_adjust = hugepage_subpool_put_pages(spool,
4475 chg - add);
4476 hugetlb_acct_memory(h, -rsv_adjust);
4477 }
4478 }
a43a8c39 4479 return 0;
c50ac050 4480out_err:
5e911373 4481 if (!vma || vma->vm_flags & VM_MAYSHARE)
ff8c0c53
MK
4482 /* Don't call region_abort if region_chg failed */
4483 if (chg >= 0)
4484 region_abort(resv_map, from, to);
f031dd27
JK
4485 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4486 kref_put(&resv_map->refs, resv_map_release);
c50ac050 4487 return ret;
a43a8c39
CK
4488}
4489
b5cec28d
MK
4490long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
4491 long freed)
a43a8c39 4492{
a5516438 4493 struct hstate *h = hstate_inode(inode);
4e35f483 4494 struct resv_map *resv_map = inode_resv_map(inode);
9119a41e 4495 long chg = 0;
90481622 4496 struct hugepage_subpool *spool = subpool_inode(inode);
1c5ecae3 4497 long gbl_reserve;
45c682a6 4498
b5cec28d
MK
4499 if (resv_map) {
4500 chg = region_del(resv_map, start, end);
4501 /*
4502 * region_del() can fail in the rare case where a region
4503 * must be split and another region descriptor can not be
4504 * allocated. If end == LONG_MAX, it will not fail.
4505 */
4506 if (chg < 0)
4507 return chg;
4508 }
4509
45c682a6 4510 spin_lock(&inode->i_lock);
e4c6f8be 4511 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
45c682a6
KC
4512 spin_unlock(&inode->i_lock);
4513
1c5ecae3
MK
4514 /*
4515 * If the subpool has a minimum size, the number of global
4516 * reservations to be released may be adjusted.
4517 */
4518 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
4519 hugetlb_acct_memory(h, -gbl_reserve);
b5cec28d
MK
4520
4521 return 0;
a43a8c39 4522}
93f70f90 4523
3212b535
SC
4524#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
4525static unsigned long page_table_shareable(struct vm_area_struct *svma,
4526 struct vm_area_struct *vma,
4527 unsigned long addr, pgoff_t idx)
4528{
4529 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
4530 svma->vm_start;
4531 unsigned long sbase = saddr & PUD_MASK;
4532 unsigned long s_end = sbase + PUD_SIZE;
4533
4534 /* Allow segments to share if only one is marked locked */
de60f5f1
EM
4535 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
4536 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
3212b535
SC
4537
4538 /*
4539 * match the virtual addresses, permission and the alignment of the
4540 * page table page.
4541 */
4542 if (pmd_index(addr) != pmd_index(saddr) ||
4543 vm_flags != svm_flags ||
4544 sbase < svma->vm_start || svma->vm_end < s_end)
4545 return 0;
4546
4547 return saddr;
4548}
4549
31aafb45 4550static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
3212b535
SC
4551{
4552 unsigned long base = addr & PUD_MASK;
4553 unsigned long end = base + PUD_SIZE;
4554
4555 /*
4556 * check on proper vm_flags and page table alignment
4557 */
4558 if (vma->vm_flags & VM_MAYSHARE &&
4559 vma->vm_start <= base && end <= vma->vm_end)
31aafb45
NK
4560 return true;
4561 return false;
3212b535
SC
4562}
4563
4564/*
4565 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4566 * and returns the corresponding pte. While this is not necessary for the
4567 * !shared pmd case because we can allocate the pmd later as well, it makes the
4568 * code much cleaner. pmd allocation is essential for the shared case because
c8c06efa 4569 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
3212b535
SC
4570 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4571 * bad pmd for sharing.
4572 */
4573pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4574{
4575 struct vm_area_struct *vma = find_vma(mm, addr);
4576 struct address_space *mapping = vma->vm_file->f_mapping;
4577 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
4578 vma->vm_pgoff;
4579 struct vm_area_struct *svma;
4580 unsigned long saddr;
4581 pte_t *spte = NULL;
4582 pte_t *pte;
cb900f41 4583 spinlock_t *ptl;
3212b535
SC
4584
4585 if (!vma_shareable(vma, addr))
4586 return (pte_t *)pmd_alloc(mm, pud, addr);
4587
83cde9e8 4588 i_mmap_lock_write(mapping);
3212b535
SC
4589 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
4590 if (svma == vma)
4591 continue;
4592
4593 saddr = page_table_shareable(svma, vma, addr, idx);
4594 if (saddr) {
7868a208
PA
4595 spte = huge_pte_offset(svma->vm_mm, saddr,
4596 vma_mmu_pagesize(svma));
3212b535
SC
4597 if (spte) {
4598 get_page(virt_to_page(spte));
4599 break;
4600 }
4601 }
4602 }
4603
4604 if (!spte)
4605 goto out;
4606
8bea8052 4607 ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
dc6c9a35 4608 if (pud_none(*pud)) {
3212b535
SC
4609 pud_populate(mm, pud,
4610 (pmd_t *)((unsigned long)spte & PAGE_MASK));
c17b1f42 4611 mm_inc_nr_pmds(mm);
dc6c9a35 4612 } else {
3212b535 4613 put_page(virt_to_page(spte));
dc6c9a35 4614 }
cb900f41 4615 spin_unlock(ptl);
3212b535
SC
4616out:
4617 pte = (pte_t *)pmd_alloc(mm, pud, addr);
83cde9e8 4618 i_mmap_unlock_write(mapping);
3212b535
SC
4619 return pte;
4620}
4621
4622/*
4623 * unmap huge page backed by shared pte.
4624 *
4625 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
4626 * indicated by page_count > 1, unmap is achieved by clearing pud and
4627 * decrementing the ref count. If count == 1, the pte page is not shared.
4628 *
cb900f41 4629 * called with page table lock held.
3212b535
SC
4630 *
4631 * returns: 1 successfully unmapped a shared pte page
4632 * 0 the underlying pte page is not shared, or it is the last user
4633 */
4634int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4635{
4636 pgd_t *pgd = pgd_offset(mm, *addr);
c2febafc
KS
4637 p4d_t *p4d = p4d_offset(pgd, *addr);
4638 pud_t *pud = pud_offset(p4d, *addr);
3212b535
SC
4639
4640 BUG_ON(page_count(virt_to_page(ptep)) == 0);
4641 if (page_count(virt_to_page(ptep)) == 1)
4642 return 0;
4643
4644 pud_clear(pud);
4645 put_page(virt_to_page(ptep));
dc6c9a35 4646 mm_dec_nr_pmds(mm);
3212b535
SC
4647 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
4648 return 1;
4649}
9e5fc74c
SC
4650#define want_pmd_share() (1)
4651#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4652pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4653{
4654 return NULL;
4655}
e81f2d22
ZZ
4656
4657int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4658{
4659 return 0;
4660}
9e5fc74c 4661#define want_pmd_share() (0)
3212b535
SC
4662#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4663
9e5fc74c
SC
4664#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
4665pte_t *huge_pte_alloc(struct mm_struct *mm,
4666 unsigned long addr, unsigned long sz)
4667{
4668 pgd_t *pgd;
c2febafc 4669 p4d_t *p4d;
9e5fc74c
SC
4670 pud_t *pud;
4671 pte_t *pte = NULL;
4672
4673 pgd = pgd_offset(mm, addr);
f4f0a3d8
KS
4674 p4d = p4d_alloc(mm, pgd, addr);
4675 if (!p4d)
4676 return NULL;
c2febafc 4677 pud = pud_alloc(mm, p4d, addr);
9e5fc74c
SC
4678 if (pud) {
4679 if (sz == PUD_SIZE) {
4680 pte = (pte_t *)pud;
4681 } else {
4682 BUG_ON(sz != PMD_SIZE);
4683 if (want_pmd_share() && pud_none(*pud))
4684 pte = huge_pmd_share(mm, addr, pud);
4685 else
4686 pte = (pte_t *)pmd_alloc(mm, pud, addr);
4687 }
4688 }
4e666314 4689 BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
9e5fc74c
SC
4690
4691 return pte;
4692}
4693
9b19df29
PA
4694/*
4695 * huge_pte_offset() - Walk the page table to resolve the hugepage
4696 * entry at address @addr
4697 *
4698 * Return: Pointer to page table or swap entry (PUD or PMD) for
4699 * address @addr, or NULL if a p*d_none() entry is encountered and the
4700 * size @sz doesn't match the hugepage size at this level of the page
4701 * table.
4702 */
7868a208
PA
4703pte_t *huge_pte_offset(struct mm_struct *mm,
4704 unsigned long addr, unsigned long sz)
9e5fc74c
SC
4705{
4706 pgd_t *pgd;
c2febafc 4707 p4d_t *p4d;
9e5fc74c 4708 pud_t *pud;
c2febafc 4709 pmd_t *pmd;
9e5fc74c
SC
4710
4711 pgd = pgd_offset(mm, addr);
c2febafc
KS
4712 if (!pgd_present(*pgd))
4713 return NULL;
4714 p4d = p4d_offset(pgd, addr);
4715 if (!p4d_present(*p4d))
4716 return NULL;
9b19df29 4717
c2febafc 4718 pud = pud_offset(p4d, addr);
9b19df29 4719 if (sz != PUD_SIZE && pud_none(*pud))
c2febafc 4720 return NULL;
9b19df29
PA
4721 /* hugepage or swap? */
4722 if (pud_huge(*pud) || !pud_present(*pud))
c2febafc 4723 return (pte_t *)pud;
9b19df29 4724
c2febafc 4725 pmd = pmd_offset(pud, addr);
9b19df29
PA
4726 if (sz != PMD_SIZE && pmd_none(*pmd))
4727 return NULL;
4728 /* hugepage or swap? */
4729 if (pmd_huge(*pmd) || !pmd_present(*pmd))
4730 return (pte_t *)pmd;
4731
4732 return NULL;
9e5fc74c
SC
4733}
4734
61f77eda
NH
4735#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4736
4737/*
4738 * These functions are overwritable if your architecture needs its own
4739 * behavior.
4740 */
4741struct page * __weak
4742follow_huge_addr(struct mm_struct *mm, unsigned long address,
4743 int write)
4744{
4745 return ERR_PTR(-EINVAL);
4746}
4747
4dc71451
AK
4748struct page * __weak
4749follow_huge_pd(struct vm_area_struct *vma,
4750 unsigned long address, hugepd_t hpd, int flags, int pdshift)
4751{
4752 WARN(1, "hugepd follow called with no support for hugepage directory format\n");
4753 return NULL;
4754}
4755
61f77eda 4756struct page * __weak
9e5fc74c 4757follow_huge_pmd(struct mm_struct *mm, unsigned long address,
e66f17ff 4758 pmd_t *pmd, int flags)
9e5fc74c 4759{
e66f17ff
NH
4760 struct page *page = NULL;
4761 spinlock_t *ptl;
c9d398fa 4762 pte_t pte;
e66f17ff
NH
4763retry:
4764 ptl = pmd_lockptr(mm, pmd);
4765 spin_lock(ptl);
4766 /*
4767 * make sure that the address range covered by this pmd is not
4768 * unmapped from other threads.
4769 */
4770 if (!pmd_huge(*pmd))
4771 goto out;
c9d398fa
NH
4772 pte = huge_ptep_get((pte_t *)pmd);
4773 if (pte_present(pte)) {
97534127 4774 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
e66f17ff
NH
4775 if (flags & FOLL_GET)
4776 get_page(page);
4777 } else {
c9d398fa 4778 if (is_hugetlb_entry_migration(pte)) {
e66f17ff
NH
4779 spin_unlock(ptl);
4780 __migration_entry_wait(mm, (pte_t *)pmd, ptl);
4781 goto retry;
4782 }
4783 /*
4784 * hwpoisoned entry is treated as no_page_table in
4785 * follow_page_mask().
4786 */
4787 }
4788out:
4789 spin_unlock(ptl);
9e5fc74c
SC
4790 return page;
4791}
4792
61f77eda 4793struct page * __weak
9e5fc74c 4794follow_huge_pud(struct mm_struct *mm, unsigned long address,
e66f17ff 4795 pud_t *pud, int flags)
9e5fc74c 4796{
e66f17ff
NH
4797 if (flags & FOLL_GET)
4798 return NULL;
9e5fc74c 4799
e66f17ff 4800 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
9e5fc74c
SC
4801}
4802
faaa5b62
AK
4803struct page * __weak
4804follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
4805{
4806 if (flags & FOLL_GET)
4807 return NULL;
4808
4809 return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
4810}
4811
31caf665
NH
4812bool isolate_huge_page(struct page *page, struct list_head *list)
4813{
bcc54222
NH
4814 bool ret = true;
4815
309381fe 4816 VM_BUG_ON_PAGE(!PageHead(page), page);
31caf665 4817 spin_lock(&hugetlb_lock);
bcc54222
NH
4818 if (!page_huge_active(page) || !get_page_unless_zero(page)) {
4819 ret = false;
4820 goto unlock;
4821 }
4822 clear_page_huge_active(page);
31caf665 4823 list_move_tail(&page->lru, list);
bcc54222 4824unlock:
31caf665 4825 spin_unlock(&hugetlb_lock);
bcc54222 4826 return ret;
31caf665
NH
4827}
4828
4829void putback_active_hugepage(struct page *page)
4830{
309381fe 4831 VM_BUG_ON_PAGE(!PageHead(page), page);
31caf665 4832 spin_lock(&hugetlb_lock);
bcc54222 4833 set_page_huge_active(page);
31caf665
NH
4834 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
4835 spin_unlock(&hugetlb_lock);
4836 put_page(page);
4837}
ab5ac90a
MH
4838
4839void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
4840{
4841 struct hstate *h = page_hstate(oldpage);
4842
4843 hugetlb_cgroup_migrate(oldpage, newpage);
4844 set_page_owner_migrate_reason(newpage, reason);
4845
4846 /*
4847 * transfer temporary state of the new huge page. This is
4848 * reverse to other transitions because the newpage is going to
4849 * be final while the old one will be freed so it takes over
4850 * the temporary status.
4851 *
4852 * Also note that we have to transfer the per-node surplus state
4853 * here as well otherwise the global surplus count will not match
4854 * the per-node's.
4855 */
4856 if (PageHugeTemporary(newpage)) {
4857 int old_nid = page_to_nid(oldpage);
4858 int new_nid = page_to_nid(newpage);
4859
4860 SetPageHugeTemporary(oldpage);
4861 ClearPageHugeTemporary(newpage);
4862
4863 spin_lock(&hugetlb_lock);
4864 if (h->surplus_huge_pages_node[old_nid]) {
4865 h->surplus_huge_pages_node[old_nid]--;
4866 h->surplus_huge_pages_node[new_nid]++;
4867 }
4868 spin_unlock(&hugetlb_lock);
4869 }
4870}