hugetlb_cgroup: use helper pages_per_huge_page() in hugetlb_cgroup
[linux-block.git] / mm / hugetlb.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * Generic hugetlb support.
6d49e352 4 * (C) Nadia Yvette Chambers, April 2004
1da177e4 5 */
1da177e4
LT
6#include <linux/list.h>
7#include <linux/init.h>
1da177e4 8#include <linux/mm.h>
e1759c21 9#include <linux/seq_file.h>
1da177e4
LT
10#include <linux/sysctl.h>
11#include <linux/highmem.h>
cddb8a5c 12#include <linux/mmu_notifier.h>
1da177e4 13#include <linux/nodemask.h>
63551ae0 14#include <linux/pagemap.h>
5da7ca86 15#include <linux/mempolicy.h>
3b32123d 16#include <linux/compiler.h>
aea47ff3 17#include <linux/cpuset.h>
3935baa9 18#include <linux/mutex.h>
97ad1087 19#include <linux/memblock.h>
a3437870 20#include <linux/sysfs.h>
5a0e3ad6 21#include <linux/slab.h>
bbe88753 22#include <linux/sched/mm.h>
63489f8e 23#include <linux/mmdebug.h>
174cd4b1 24#include <linux/sched/signal.h>
0fe6e20b 25#include <linux/rmap.h>
c6247f72 26#include <linux/string_helpers.h>
fd6a03ed
NH
27#include <linux/swap.h>
28#include <linux/swapops.h>
8382d914 29#include <linux/jhash.h>
98fa15f3 30#include <linux/numa.h>
c77c0a8a 31#include <linux/llist.h>
cf11e85f 32#include <linux/cma.h>
d6606683 33
63551ae0 34#include <asm/page.h>
ca15ca40 35#include <asm/pgalloc.h>
24669e58 36#include <asm/tlb.h>
63551ae0 37
24669e58 38#include <linux/io.h>
63551ae0 39#include <linux/hugetlb.h>
9dd540e2 40#include <linux/hugetlb_cgroup.h>
9a305230 41#include <linux/node.h>
1a1aad8a 42#include <linux/userfaultfd_k.h>
ab5ac90a 43#include <linux/page_owner.h>
7835e98b 44#include "internal.h"
1da177e4 45
c3f38a38 46int hugetlb_max_hstate __read_mostly;
e5ff2159
AK
47unsigned int default_hstate_idx;
48struct hstate hstates[HUGE_MAX_HSTATE];
cf11e85f 49
dbda8fea 50#ifdef CONFIG_CMA
cf11e85f 51static struct cma *hugetlb_cma[MAX_NUMNODES];
dbda8fea
BS
52#endif
53static unsigned long hugetlb_cma_size __initdata;
cf11e85f 54
641844f5
NH
55/*
56 * Minimum page order among possible hugepage sizes, set to a proper value
57 * at boot time.
58 */
59static unsigned int minimum_order __read_mostly = UINT_MAX;
e5ff2159 60
53ba51d2
JT
61__initdata LIST_HEAD(huge_boot_pages);
62
e5ff2159
AK
63/* for command line parsing */
64static struct hstate * __initdata parsed_hstate;
65static unsigned long __initdata default_hstate_max_huge_pages;
9fee021d 66static bool __initdata parsed_valid_hugepagesz = true;
282f4214 67static bool __initdata parsed_default_hugepagesz;
e5ff2159 68
3935baa9 69/*
31caf665
NH
70 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
71 * free_huge_pages, and surplus_huge_pages.
3935baa9 72 */
c3f38a38 73DEFINE_SPINLOCK(hugetlb_lock);
0bd0f9fb 74
8382d914
DB
75/*
76 * Serializes faults on the same logical page. This is used to
77 * prevent spurious OOMs when the hugepage pool is fully utilized.
78 */
79static int num_fault_mutexes;
c672c7f2 80struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
8382d914 81
7ffddd49
MS
82static inline bool PageHugeFreed(struct page *head)
83{
84 return page_private(head + 4) == -1UL;
85}
86
87static inline void SetPageHugeFreed(struct page *head)
88{
89 set_page_private(head + 4, -1UL);
90}
91
92static inline void ClearPageHugeFreed(struct page *head)
93{
94 set_page_private(head + 4, 0);
95}
96
7ca02d0a
MK
97/* Forward declaration */
98static int hugetlb_acct_memory(struct hstate *h, long delta);
99
1d88433b 100static inline bool subpool_is_free(struct hugepage_subpool *spool)
90481622 101{
1d88433b
ML
102 if (spool->count)
103 return false;
104 if (spool->max_hpages != -1)
105 return spool->used_hpages == 0;
106 if (spool->min_hpages != -1)
107 return spool->rsv_hpages == spool->min_hpages;
108
109 return true;
110}
90481622 111
1d88433b
ML
112static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
113{
90481622
DG
114 spin_unlock(&spool->lock);
115
116 /* If no pages are used, and no other handles to the subpool
7c8de358 117 * remain, give up any reservations based on minimum size and
7ca02d0a 118 * free the subpool */
1d88433b 119 if (subpool_is_free(spool)) {
7ca02d0a
MK
120 if (spool->min_hpages != -1)
121 hugetlb_acct_memory(spool->hstate,
122 -spool->min_hpages);
90481622 123 kfree(spool);
7ca02d0a 124 }
90481622
DG
125}
126
7ca02d0a
MK
127struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
128 long min_hpages)
90481622
DG
129{
130 struct hugepage_subpool *spool;
131
c6a91820 132 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
90481622
DG
133 if (!spool)
134 return NULL;
135
136 spin_lock_init(&spool->lock);
137 spool->count = 1;
7ca02d0a
MK
138 spool->max_hpages = max_hpages;
139 spool->hstate = h;
140 spool->min_hpages = min_hpages;
141
142 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
143 kfree(spool);
144 return NULL;
145 }
146 spool->rsv_hpages = min_hpages;
90481622
DG
147
148 return spool;
149}
150
151void hugepage_put_subpool(struct hugepage_subpool *spool)
152{
153 spin_lock(&spool->lock);
154 BUG_ON(!spool->count);
155 spool->count--;
156 unlock_or_release_subpool(spool);
157}
158
1c5ecae3
MK
159/*
160 * Subpool accounting for allocating and reserving pages.
161 * Return -ENOMEM if there are not enough resources to satisfy the
9e7ee400 162 * request. Otherwise, return the number of pages by which the
1c5ecae3
MK
163 * global pools must be adjusted (upward). The returned value may
164 * only be different than the passed value (delta) in the case where
7c8de358 165 * a subpool minimum size must be maintained.
1c5ecae3
MK
166 */
167static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
90481622
DG
168 long delta)
169{
1c5ecae3 170 long ret = delta;
90481622
DG
171
172 if (!spool)
1c5ecae3 173 return ret;
90481622
DG
174
175 spin_lock(&spool->lock);
1c5ecae3
MK
176
177 if (spool->max_hpages != -1) { /* maximum size accounting */
178 if ((spool->used_hpages + delta) <= spool->max_hpages)
179 spool->used_hpages += delta;
180 else {
181 ret = -ENOMEM;
182 goto unlock_ret;
183 }
90481622 184 }
90481622 185
09a95e29
MK
186 /* minimum size accounting */
187 if (spool->min_hpages != -1 && spool->rsv_hpages) {
1c5ecae3
MK
188 if (delta > spool->rsv_hpages) {
189 /*
190 * Asking for more reserves than those already taken on
191 * behalf of subpool. Return difference.
192 */
193 ret = delta - spool->rsv_hpages;
194 spool->rsv_hpages = 0;
195 } else {
196 ret = 0; /* reserves already accounted for */
197 spool->rsv_hpages -= delta;
198 }
199 }
200
201unlock_ret:
202 spin_unlock(&spool->lock);
90481622
DG
203 return ret;
204}
205
1c5ecae3
MK
206/*
207 * Subpool accounting for freeing and unreserving pages.
208 * Return the number of global page reservations that must be dropped.
209 * The return value may only be different than the passed value (delta)
210 * in the case where a subpool minimum size must be maintained.
211 */
212static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
90481622
DG
213 long delta)
214{
1c5ecae3
MK
215 long ret = delta;
216
90481622 217 if (!spool)
1c5ecae3 218 return delta;
90481622
DG
219
220 spin_lock(&spool->lock);
1c5ecae3
MK
221
222 if (spool->max_hpages != -1) /* maximum size accounting */
223 spool->used_hpages -= delta;
224
09a95e29
MK
225 /* minimum size accounting */
226 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
1c5ecae3
MK
227 if (spool->rsv_hpages + delta <= spool->min_hpages)
228 ret = 0;
229 else
230 ret = spool->rsv_hpages + delta - spool->min_hpages;
231
232 spool->rsv_hpages += delta;
233 if (spool->rsv_hpages > spool->min_hpages)
234 spool->rsv_hpages = spool->min_hpages;
235 }
236
237 /*
238 * If hugetlbfs_put_super couldn't free spool due to an outstanding
239 * quota reference, free it now.
240 */
90481622 241 unlock_or_release_subpool(spool);
1c5ecae3
MK
242
243 return ret;
90481622
DG
244}
245
246static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
247{
248 return HUGETLBFS_SB(inode->i_sb)->spool;
249}
250
251static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
252{
496ad9aa 253 return subpool_inode(file_inode(vma->vm_file));
90481622
DG
254}
255
0db9d74e
MA
256/* Helper that removes a struct file_region from the resv_map cache and returns
257 * it for use.
258 */
259static struct file_region *
260get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
261{
262 struct file_region *nrg = NULL;
263
264 VM_BUG_ON(resv->region_cache_count <= 0);
265
266 resv->region_cache_count--;
267 nrg = list_first_entry(&resv->region_cache, struct file_region, link);
0db9d74e
MA
268 list_del(&nrg->link);
269
270 nrg->from = from;
271 nrg->to = to;
272
273 return nrg;
274}
275
075a61d0
MA
276static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
277 struct file_region *rg)
278{
279#ifdef CONFIG_CGROUP_HUGETLB
280 nrg->reservation_counter = rg->reservation_counter;
281 nrg->css = rg->css;
282 if (rg->css)
283 css_get(rg->css);
284#endif
285}
286
287/* Helper that records hugetlb_cgroup uncharge info. */
288static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
289 struct hstate *h,
290 struct resv_map *resv,
291 struct file_region *nrg)
292{
293#ifdef CONFIG_CGROUP_HUGETLB
294 if (h_cg) {
295 nrg->reservation_counter =
296 &h_cg->rsvd_hugepage[hstate_index(h)];
297 nrg->css = &h_cg->css;
298 if (!resv->pages_per_hpage)
299 resv->pages_per_hpage = pages_per_huge_page(h);
300 /* pages_per_hpage should be the same for all entries in
301 * a resv_map.
302 */
303 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
304 } else {
305 nrg->reservation_counter = NULL;
306 nrg->css = NULL;
307 }
308#endif
309}
310
a9b3f867
MA
311static bool has_same_uncharge_info(struct file_region *rg,
312 struct file_region *org)
313{
314#ifdef CONFIG_CGROUP_HUGETLB
315 return rg && org &&
316 rg->reservation_counter == org->reservation_counter &&
317 rg->css == org->css;
318
319#else
320 return true;
321#endif
322}
323
324static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
325{
326 struct file_region *nrg = NULL, *prg = NULL;
327
328 prg = list_prev_entry(rg, link);
329 if (&prg->link != &resv->regions && prg->to == rg->from &&
330 has_same_uncharge_info(prg, rg)) {
331 prg->to = rg->to;
332
333 list_del(&rg->link);
334 kfree(rg);
335
7db5e7b6 336 rg = prg;
a9b3f867
MA
337 }
338
339 nrg = list_next_entry(rg, link);
340 if (&nrg->link != &resv->regions && nrg->from == rg->to &&
341 has_same_uncharge_info(nrg, rg)) {
342 nrg->from = rg->from;
343
344 list_del(&rg->link);
345 kfree(rg);
a9b3f867
MA
346 }
347}
348
972a3da3
WY
349/*
350 * Must be called with resv->lock held.
351 *
352 * Calling this with regions_needed != NULL will count the number of pages
353 * to be added but will not modify the linked list. And regions_needed will
354 * indicate the number of file_regions needed in the cache to carry out to add
355 * the regions for this range.
d75c6af9
MA
356 */
357static long add_reservation_in_range(struct resv_map *resv, long f, long t,
075a61d0 358 struct hugetlb_cgroup *h_cg,
972a3da3 359 struct hstate *h, long *regions_needed)
d75c6af9 360{
0db9d74e 361 long add = 0;
d75c6af9 362 struct list_head *head = &resv->regions;
0db9d74e 363 long last_accounted_offset = f;
d75c6af9
MA
364 struct file_region *rg = NULL, *trg = NULL, *nrg = NULL;
365
0db9d74e
MA
366 if (regions_needed)
367 *regions_needed = 0;
d75c6af9 368
0db9d74e
MA
369 /* In this loop, we essentially handle an entry for the range
370 * [last_accounted_offset, rg->from), at every iteration, with some
371 * bounds checking.
372 */
373 list_for_each_entry_safe(rg, trg, head, link) {
374 /* Skip irrelevant regions that start before our range. */
375 if (rg->from < f) {
376 /* If this region ends after the last accounted offset,
377 * then we need to update last_accounted_offset.
378 */
379 if (rg->to > last_accounted_offset)
380 last_accounted_offset = rg->to;
381 continue;
382 }
d75c6af9 383
0db9d74e
MA
384 /* When we find a region that starts beyond our range, we've
385 * finished.
386 */
d75c6af9
MA
387 if (rg->from > t)
388 break;
389
0db9d74e
MA
390 /* Add an entry for last_accounted_offset -> rg->from, and
391 * update last_accounted_offset.
392 */
393 if (rg->from > last_accounted_offset) {
394 add += rg->from - last_accounted_offset;
972a3da3 395 if (!regions_needed) {
0db9d74e
MA
396 nrg = get_file_region_entry_from_cache(
397 resv, last_accounted_offset, rg->from);
075a61d0
MA
398 record_hugetlb_cgroup_uncharge_info(h_cg, h,
399 resv, nrg);
0db9d74e 400 list_add(&nrg->link, rg->link.prev);
a9b3f867 401 coalesce_file_region(resv, nrg);
972a3da3 402 } else
0db9d74e
MA
403 *regions_needed += 1;
404 }
405
406 last_accounted_offset = rg->to;
407 }
408
409 /* Handle the case where our range extends beyond
410 * last_accounted_offset.
411 */
412 if (last_accounted_offset < t) {
413 add += t - last_accounted_offset;
972a3da3 414 if (!regions_needed) {
0db9d74e
MA
415 nrg = get_file_region_entry_from_cache(
416 resv, last_accounted_offset, t);
075a61d0 417 record_hugetlb_cgroup_uncharge_info(h_cg, h, resv, nrg);
0db9d74e 418 list_add(&nrg->link, rg->link.prev);
a9b3f867 419 coalesce_file_region(resv, nrg);
972a3da3 420 } else
0db9d74e
MA
421 *regions_needed += 1;
422 }
423
424 VM_BUG_ON(add < 0);
425 return add;
426}
427
428/* Must be called with resv->lock acquired. Will drop lock to allocate entries.
429 */
430static int allocate_file_region_entries(struct resv_map *resv,
431 int regions_needed)
432 __must_hold(&resv->lock)
433{
434 struct list_head allocated_regions;
435 int to_allocate = 0, i = 0;
436 struct file_region *trg = NULL, *rg = NULL;
437
438 VM_BUG_ON(regions_needed < 0);
439
440 INIT_LIST_HEAD(&allocated_regions);
441
442 /*
443 * Check for sufficient descriptors in the cache to accommodate
444 * the number of in progress add operations plus regions_needed.
445 *
446 * This is a while loop because when we drop the lock, some other call
447 * to region_add or region_del may have consumed some region_entries,
448 * so we keep looping here until we finally have enough entries for
449 * (adds_in_progress + regions_needed).
450 */
451 while (resv->region_cache_count <
452 (resv->adds_in_progress + regions_needed)) {
453 to_allocate = resv->adds_in_progress + regions_needed -
454 resv->region_cache_count;
455
456 /* At this point, we should have enough entries in the cache
457 * for all the existings adds_in_progress. We should only be
458 * needing to allocate for regions_needed.
d75c6af9 459 */
0db9d74e
MA
460 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
461
462 spin_unlock(&resv->lock);
463 for (i = 0; i < to_allocate; i++) {
464 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
465 if (!trg)
466 goto out_of_memory;
467 list_add(&trg->link, &allocated_regions);
d75c6af9 468 }
d75c6af9 469
0db9d74e
MA
470 spin_lock(&resv->lock);
471
d3ec7b6e
WY
472 list_splice(&allocated_regions, &resv->region_cache);
473 resv->region_cache_count += to_allocate;
d75c6af9
MA
474 }
475
0db9d74e 476 return 0;
d75c6af9 477
0db9d74e
MA
478out_of_memory:
479 list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
480 list_del(&rg->link);
481 kfree(rg);
482 }
483 return -ENOMEM;
d75c6af9
MA
484}
485
1dd308a7
MK
486/*
487 * Add the huge page range represented by [f, t) to the reserve
0db9d74e
MA
488 * map. Regions will be taken from the cache to fill in this range.
489 * Sufficient regions should exist in the cache due to the previous
490 * call to region_chg with the same range, but in some cases the cache will not
491 * have sufficient entries due to races with other code doing region_add or
492 * region_del. The extra needed entries will be allocated.
cf3ad20b 493 *
0db9d74e
MA
494 * regions_needed is the out value provided by a previous call to region_chg.
495 *
496 * Return the number of new huge pages added to the map. This number is greater
497 * than or equal to zero. If file_region entries needed to be allocated for
7c8de358 498 * this operation and we were not able to allocate, it returns -ENOMEM.
0db9d74e
MA
499 * region_add of regions of length 1 never allocate file_regions and cannot
500 * fail; region_chg will always allocate at least 1 entry and a region_add for
501 * 1 page will only require at most 1 entry.
1dd308a7 502 */
0db9d74e 503static long region_add(struct resv_map *resv, long f, long t,
075a61d0
MA
504 long in_regions_needed, struct hstate *h,
505 struct hugetlb_cgroup *h_cg)
96822904 506{
0db9d74e 507 long add = 0, actual_regions_needed = 0;
96822904 508
7b24d861 509 spin_lock(&resv->lock);
0db9d74e
MA
510retry:
511
512 /* Count how many regions are actually needed to execute this add. */
972a3da3
WY
513 add_reservation_in_range(resv, f, t, NULL, NULL,
514 &actual_regions_needed);
96822904 515
5e911373 516 /*
0db9d74e
MA
517 * Check for sufficient descriptors in the cache to accommodate
518 * this add operation. Note that actual_regions_needed may be greater
519 * than in_regions_needed, as the resv_map may have been modified since
520 * the region_chg call. In this case, we need to make sure that we
521 * allocate extra entries, such that we have enough for all the
522 * existing adds_in_progress, plus the excess needed for this
523 * operation.
5e911373 524 */
0db9d74e
MA
525 if (actual_regions_needed > in_regions_needed &&
526 resv->region_cache_count <
527 resv->adds_in_progress +
528 (actual_regions_needed - in_regions_needed)) {
529 /* region_add operation of range 1 should never need to
530 * allocate file_region entries.
531 */
532 VM_BUG_ON(t - f <= 1);
5e911373 533
0db9d74e
MA
534 if (allocate_file_region_entries(
535 resv, actual_regions_needed - in_regions_needed)) {
536 return -ENOMEM;
537 }
5e911373 538
0db9d74e 539 goto retry;
5e911373
MK
540 }
541
972a3da3 542 add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
0db9d74e
MA
543
544 resv->adds_in_progress -= in_regions_needed;
cf3ad20b 545
7b24d861 546 spin_unlock(&resv->lock);
cf3ad20b
MK
547 VM_BUG_ON(add < 0);
548 return add;
96822904
AW
549}
550
1dd308a7
MK
551/*
552 * Examine the existing reserve map and determine how many
553 * huge pages in the specified range [f, t) are NOT currently
554 * represented. This routine is called before a subsequent
555 * call to region_add that will actually modify the reserve
556 * map to add the specified range [f, t). region_chg does
557 * not change the number of huge pages represented by the
0db9d74e
MA
558 * map. A number of new file_region structures is added to the cache as a
559 * placeholder, for the subsequent region_add call to use. At least 1
560 * file_region structure is added.
561 *
562 * out_regions_needed is the number of regions added to the
563 * resv->adds_in_progress. This value needs to be provided to a follow up call
564 * to region_add or region_abort for proper accounting.
5e911373
MK
565 *
566 * Returns the number of huge pages that need to be added to the existing
567 * reservation map for the range [f, t). This number is greater or equal to
568 * zero. -ENOMEM is returned if a new file_region structure or cache entry
569 * is needed and can not be allocated.
1dd308a7 570 */
0db9d74e
MA
571static long region_chg(struct resv_map *resv, long f, long t,
572 long *out_regions_needed)
96822904 573{
96822904
AW
574 long chg = 0;
575
7b24d861 576 spin_lock(&resv->lock);
5e911373 577
972a3da3 578 /* Count how many hugepages in this range are NOT represented. */
075a61d0 579 chg = add_reservation_in_range(resv, f, t, NULL, NULL,
972a3da3 580 out_regions_needed);
5e911373 581
0db9d74e
MA
582 if (*out_regions_needed == 0)
583 *out_regions_needed = 1;
5e911373 584
0db9d74e
MA
585 if (allocate_file_region_entries(resv, *out_regions_needed))
586 return -ENOMEM;
5e911373 587
0db9d74e 588 resv->adds_in_progress += *out_regions_needed;
7b24d861 589
7b24d861 590 spin_unlock(&resv->lock);
96822904
AW
591 return chg;
592}
593
5e911373
MK
594/*
595 * Abort the in progress add operation. The adds_in_progress field
596 * of the resv_map keeps track of the operations in progress between
597 * calls to region_chg and region_add. Operations are sometimes
598 * aborted after the call to region_chg. In such cases, region_abort
0db9d74e
MA
599 * is called to decrement the adds_in_progress counter. regions_needed
600 * is the value returned by the region_chg call, it is used to decrement
601 * the adds_in_progress counter.
5e911373
MK
602 *
603 * NOTE: The range arguments [f, t) are not needed or used in this
604 * routine. They are kept to make reading the calling code easier as
605 * arguments will match the associated region_chg call.
606 */
0db9d74e
MA
607static void region_abort(struct resv_map *resv, long f, long t,
608 long regions_needed)
5e911373
MK
609{
610 spin_lock(&resv->lock);
611 VM_BUG_ON(!resv->region_cache_count);
0db9d74e 612 resv->adds_in_progress -= regions_needed;
5e911373
MK
613 spin_unlock(&resv->lock);
614}
615
1dd308a7 616/*
feba16e2
MK
617 * Delete the specified range [f, t) from the reserve map. If the
618 * t parameter is LONG_MAX, this indicates that ALL regions after f
619 * should be deleted. Locate the regions which intersect [f, t)
620 * and either trim, delete or split the existing regions.
621 *
622 * Returns the number of huge pages deleted from the reserve map.
623 * In the normal case, the return value is zero or more. In the
624 * case where a region must be split, a new region descriptor must
625 * be allocated. If the allocation fails, -ENOMEM will be returned.
626 * NOTE: If the parameter t == LONG_MAX, then we will never split
627 * a region and possibly return -ENOMEM. Callers specifying
628 * t == LONG_MAX do not need to check for -ENOMEM error.
1dd308a7 629 */
feba16e2 630static long region_del(struct resv_map *resv, long f, long t)
96822904 631{
1406ec9b 632 struct list_head *head = &resv->regions;
96822904 633 struct file_region *rg, *trg;
feba16e2
MK
634 struct file_region *nrg = NULL;
635 long del = 0;
96822904 636
feba16e2 637retry:
7b24d861 638 spin_lock(&resv->lock);
feba16e2 639 list_for_each_entry_safe(rg, trg, head, link) {
dbe409e4
MK
640 /*
641 * Skip regions before the range to be deleted. file_region
642 * ranges are normally of the form [from, to). However, there
643 * may be a "placeholder" entry in the map which is of the form
644 * (from, to) with from == to. Check for placeholder entries
645 * at the beginning of the range to be deleted.
646 */
647 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
feba16e2 648 continue;
dbe409e4 649
feba16e2 650 if (rg->from >= t)
96822904 651 break;
96822904 652
feba16e2
MK
653 if (f > rg->from && t < rg->to) { /* Must split region */
654 /*
655 * Check for an entry in the cache before dropping
656 * lock and attempting allocation.
657 */
658 if (!nrg &&
659 resv->region_cache_count > resv->adds_in_progress) {
660 nrg = list_first_entry(&resv->region_cache,
661 struct file_region,
662 link);
663 list_del(&nrg->link);
664 resv->region_cache_count--;
665 }
96822904 666
feba16e2
MK
667 if (!nrg) {
668 spin_unlock(&resv->lock);
669 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
670 if (!nrg)
671 return -ENOMEM;
672 goto retry;
673 }
674
675 del += t - f;
79aa925b
MK
676 hugetlb_cgroup_uncharge_file_region(
677 resv, rg, t - f);
feba16e2
MK
678
679 /* New entry for end of split region */
680 nrg->from = t;
681 nrg->to = rg->to;
075a61d0
MA
682
683 copy_hugetlb_cgroup_uncharge_info(nrg, rg);
684
feba16e2
MK
685 INIT_LIST_HEAD(&nrg->link);
686
687 /* Original entry is trimmed */
688 rg->to = f;
689
690 list_add(&nrg->link, &rg->link);
691 nrg = NULL;
96822904 692 break;
feba16e2
MK
693 }
694
695 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
696 del += rg->to - rg->from;
075a61d0
MA
697 hugetlb_cgroup_uncharge_file_region(resv, rg,
698 rg->to - rg->from);
feba16e2
MK
699 list_del(&rg->link);
700 kfree(rg);
701 continue;
702 }
703
704 if (f <= rg->from) { /* Trim beginning of region */
075a61d0
MA
705 hugetlb_cgroup_uncharge_file_region(resv, rg,
706 t - rg->from);
075a61d0 707
79aa925b
MK
708 del += t - rg->from;
709 rg->from = t;
710 } else { /* Trim end of region */
075a61d0
MA
711 hugetlb_cgroup_uncharge_file_region(resv, rg,
712 rg->to - f);
79aa925b
MK
713
714 del += rg->to - f;
715 rg->to = f;
feba16e2 716 }
96822904 717 }
7b24d861 718
7b24d861 719 spin_unlock(&resv->lock);
feba16e2
MK
720 kfree(nrg);
721 return del;
96822904
AW
722}
723
b5cec28d
MK
724/*
725 * A rare out of memory error was encountered which prevented removal of
726 * the reserve map region for a page. The huge page itself was free'ed
727 * and removed from the page cache. This routine will adjust the subpool
728 * usage count, and the global reserve count if needed. By incrementing
729 * these counts, the reserve map entry which could not be deleted will
730 * appear as a "reserved" entry instead of simply dangling with incorrect
731 * counts.
732 */
72e2936c 733void hugetlb_fix_reserve_counts(struct inode *inode)
b5cec28d
MK
734{
735 struct hugepage_subpool *spool = subpool_inode(inode);
736 long rsv_adjust;
737
738 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
72e2936c 739 if (rsv_adjust) {
b5cec28d
MK
740 struct hstate *h = hstate_inode(inode);
741
742 hugetlb_acct_memory(h, 1);
743 }
744}
745
1dd308a7
MK
746/*
747 * Count and return the number of huge pages in the reserve map
748 * that intersect with the range [f, t).
749 */
1406ec9b 750static long region_count(struct resv_map *resv, long f, long t)
84afd99b 751{
1406ec9b 752 struct list_head *head = &resv->regions;
84afd99b
AW
753 struct file_region *rg;
754 long chg = 0;
755
7b24d861 756 spin_lock(&resv->lock);
84afd99b
AW
757 /* Locate each segment we overlap with, and count that overlap. */
758 list_for_each_entry(rg, head, link) {
f2135a4a
WSH
759 long seg_from;
760 long seg_to;
84afd99b
AW
761
762 if (rg->to <= f)
763 continue;
764 if (rg->from >= t)
765 break;
766
767 seg_from = max(rg->from, f);
768 seg_to = min(rg->to, t);
769
770 chg += seg_to - seg_from;
771 }
7b24d861 772 spin_unlock(&resv->lock);
84afd99b
AW
773
774 return chg;
775}
776
e7c4b0bf
AW
777/*
778 * Convert the address within this vma to the page offset within
779 * the mapping, in pagecache page units; huge pages here.
780 */
a5516438
AK
781static pgoff_t vma_hugecache_offset(struct hstate *h,
782 struct vm_area_struct *vma, unsigned long address)
e7c4b0bf 783{
a5516438
AK
784 return ((address - vma->vm_start) >> huge_page_shift(h)) +
785 (vma->vm_pgoff >> huge_page_order(h));
e7c4b0bf
AW
786}
787
0fe6e20b
NH
788pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
789 unsigned long address)
790{
791 return vma_hugecache_offset(hstate_vma(vma), vma, address);
792}
dee41079 793EXPORT_SYMBOL_GPL(linear_hugepage_index);
0fe6e20b 794
08fba699
MG
795/*
796 * Return the size of the pages allocated when backing a VMA. In the majority
797 * cases this will be same size as used by the page table entries.
798 */
799unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
800{
05ea8860
DW
801 if (vma->vm_ops && vma->vm_ops->pagesize)
802 return vma->vm_ops->pagesize(vma);
803 return PAGE_SIZE;
08fba699 804}
f340ca0f 805EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
08fba699 806
3340289d
MG
807/*
808 * Return the page size being used by the MMU to back a VMA. In the majority
809 * of cases, the page size used by the kernel matches the MMU size. On
09135cc5
DW
810 * architectures where it differs, an architecture-specific 'strong'
811 * version of this symbol is required.
3340289d 812 */
09135cc5 813__weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
3340289d
MG
814{
815 return vma_kernel_pagesize(vma);
816}
3340289d 817
84afd99b
AW
818/*
819 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
820 * bits of the reservation map pointer, which are always clear due to
821 * alignment.
822 */
823#define HPAGE_RESV_OWNER (1UL << 0)
824#define HPAGE_RESV_UNMAPPED (1UL << 1)
04f2cbe3 825#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
84afd99b 826
a1e78772
MG
827/*
828 * These helpers are used to track how many pages are reserved for
829 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
830 * is guaranteed to have their future faults succeed.
831 *
832 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
833 * the reserve counters are updated with the hugetlb_lock held. It is safe
834 * to reset the VMA at fork() time as it is not in use yet and there is no
835 * chance of the global counters getting corrupted as a result of the values.
84afd99b
AW
836 *
837 * The private mapping reservation is represented in a subtly different
838 * manner to a shared mapping. A shared mapping has a region map associated
839 * with the underlying file, this region map represents the backing file
840 * pages which have ever had a reservation assigned which this persists even
841 * after the page is instantiated. A private mapping has a region map
842 * associated with the original mmap which is attached to all VMAs which
843 * reference it, this region map represents those offsets which have consumed
844 * reservation ie. where pages have been instantiated.
a1e78772 845 */
e7c4b0bf
AW
846static unsigned long get_vma_private_data(struct vm_area_struct *vma)
847{
848 return (unsigned long)vma->vm_private_data;
849}
850
851static void set_vma_private_data(struct vm_area_struct *vma,
852 unsigned long value)
853{
854 vma->vm_private_data = (void *)value;
855}
856
e9fe92ae
MA
857static void
858resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
859 struct hugetlb_cgroup *h_cg,
860 struct hstate *h)
861{
862#ifdef CONFIG_CGROUP_HUGETLB
863 if (!h_cg || !h) {
864 resv_map->reservation_counter = NULL;
865 resv_map->pages_per_hpage = 0;
866 resv_map->css = NULL;
867 } else {
868 resv_map->reservation_counter =
869 &h_cg->rsvd_hugepage[hstate_index(h)];
870 resv_map->pages_per_hpage = pages_per_huge_page(h);
871 resv_map->css = &h_cg->css;
872 }
873#endif
874}
875
9119a41e 876struct resv_map *resv_map_alloc(void)
84afd99b
AW
877{
878 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
5e911373
MK
879 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
880
881 if (!resv_map || !rg) {
882 kfree(resv_map);
883 kfree(rg);
84afd99b 884 return NULL;
5e911373 885 }
84afd99b
AW
886
887 kref_init(&resv_map->refs);
7b24d861 888 spin_lock_init(&resv_map->lock);
84afd99b
AW
889 INIT_LIST_HEAD(&resv_map->regions);
890
5e911373 891 resv_map->adds_in_progress = 0;
e9fe92ae
MA
892 /*
893 * Initialize these to 0. On shared mappings, 0's here indicate these
894 * fields don't do cgroup accounting. On private mappings, these will be
895 * re-initialized to the proper values, to indicate that hugetlb cgroup
896 * reservations are to be un-charged from here.
897 */
898 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
5e911373
MK
899
900 INIT_LIST_HEAD(&resv_map->region_cache);
901 list_add(&rg->link, &resv_map->region_cache);
902 resv_map->region_cache_count = 1;
903
84afd99b
AW
904 return resv_map;
905}
906
9119a41e 907void resv_map_release(struct kref *ref)
84afd99b
AW
908{
909 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
5e911373
MK
910 struct list_head *head = &resv_map->region_cache;
911 struct file_region *rg, *trg;
84afd99b
AW
912
913 /* Clear out any active regions before we release the map. */
feba16e2 914 region_del(resv_map, 0, LONG_MAX);
5e911373
MK
915
916 /* ... and any entries left in the cache */
917 list_for_each_entry_safe(rg, trg, head, link) {
918 list_del(&rg->link);
919 kfree(rg);
920 }
921
922 VM_BUG_ON(resv_map->adds_in_progress);
923
84afd99b
AW
924 kfree(resv_map);
925}
926
4e35f483
JK
927static inline struct resv_map *inode_resv_map(struct inode *inode)
928{
f27a5136
MK
929 /*
930 * At inode evict time, i_mapping may not point to the original
931 * address space within the inode. This original address space
932 * contains the pointer to the resv_map. So, always use the
933 * address space embedded within the inode.
934 * The VERY common case is inode->mapping == &inode->i_data but,
935 * this may not be true for device special inodes.
936 */
937 return (struct resv_map *)(&inode->i_data)->private_data;
4e35f483
JK
938}
939
84afd99b 940static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
a1e78772 941{
81d1b09c 942 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
4e35f483
JK
943 if (vma->vm_flags & VM_MAYSHARE) {
944 struct address_space *mapping = vma->vm_file->f_mapping;
945 struct inode *inode = mapping->host;
946
947 return inode_resv_map(inode);
948
949 } else {
84afd99b
AW
950 return (struct resv_map *)(get_vma_private_data(vma) &
951 ~HPAGE_RESV_MASK);
4e35f483 952 }
a1e78772
MG
953}
954
84afd99b 955static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
a1e78772 956{
81d1b09c
SL
957 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
958 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
a1e78772 959
84afd99b
AW
960 set_vma_private_data(vma, (get_vma_private_data(vma) &
961 HPAGE_RESV_MASK) | (unsigned long)map);
04f2cbe3
MG
962}
963
964static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
965{
81d1b09c
SL
966 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
967 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
e7c4b0bf
AW
968
969 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
04f2cbe3
MG
970}
971
972static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
973{
81d1b09c 974 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
e7c4b0bf
AW
975
976 return (get_vma_private_data(vma) & flag) != 0;
a1e78772
MG
977}
978
04f2cbe3 979/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
a1e78772
MG
980void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
981{
81d1b09c 982 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
f83a275d 983 if (!(vma->vm_flags & VM_MAYSHARE))
a1e78772
MG
984 vma->vm_private_data = (void *)0;
985}
986
987/* Returns true if the VMA has associated reserve pages */
559ec2f8 988static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
a1e78772 989{
af0ed73e
JK
990 if (vma->vm_flags & VM_NORESERVE) {
991 /*
992 * This address is already reserved by other process(chg == 0),
993 * so, we should decrement reserved count. Without decrementing,
994 * reserve count remains after releasing inode, because this
995 * allocated page will go into page cache and is regarded as
996 * coming from reserved pool in releasing step. Currently, we
997 * don't have any other solution to deal with this situation
998 * properly, so add work-around here.
999 */
1000 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
559ec2f8 1001 return true;
af0ed73e 1002 else
559ec2f8 1003 return false;
af0ed73e 1004 }
a63884e9
JK
1005
1006 /* Shared mappings always use reserves */
1fb1b0e9
MK
1007 if (vma->vm_flags & VM_MAYSHARE) {
1008 /*
1009 * We know VM_NORESERVE is not set. Therefore, there SHOULD
1010 * be a region map for all pages. The only situation where
1011 * there is no region map is if a hole was punched via
7c8de358 1012 * fallocate. In this case, there really are no reserves to
1fb1b0e9
MK
1013 * use. This situation is indicated if chg != 0.
1014 */
1015 if (chg)
1016 return false;
1017 else
1018 return true;
1019 }
a63884e9
JK
1020
1021 /*
1022 * Only the process that called mmap() has reserves for
1023 * private mappings.
1024 */
67961f9d
MK
1025 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1026 /*
1027 * Like the shared case above, a hole punch or truncate
1028 * could have been performed on the private mapping.
1029 * Examine the value of chg to determine if reserves
1030 * actually exist or were previously consumed.
1031 * Very Subtle - The value of chg comes from a previous
1032 * call to vma_needs_reserves(). The reserve map for
1033 * private mappings has different (opposite) semantics
1034 * than that of shared mappings. vma_needs_reserves()
1035 * has already taken this difference in semantics into
1036 * account. Therefore, the meaning of chg is the same
1037 * as in the shared case above. Code could easily be
1038 * combined, but keeping it separate draws attention to
1039 * subtle differences.
1040 */
1041 if (chg)
1042 return false;
1043 else
1044 return true;
1045 }
a63884e9 1046
559ec2f8 1047 return false;
a1e78772
MG
1048}
1049
a5516438 1050static void enqueue_huge_page(struct hstate *h, struct page *page)
1da177e4
LT
1051{
1052 int nid = page_to_nid(page);
0edaecfa 1053 list_move(&page->lru, &h->hugepage_freelists[nid]);
a5516438
AK
1054 h->free_huge_pages++;
1055 h->free_huge_pages_node[nid]++;
7ffddd49 1056 SetPageHugeFreed(page);
1da177e4
LT
1057}
1058
94310cbc 1059static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
bf50bab2
NH
1060{
1061 struct page *page;
bbe88753
JK
1062 bool nocma = !!(current->flags & PF_MEMALLOC_NOCMA);
1063
1064 list_for_each_entry(page, &h->hugepage_freelists[nid], lru) {
1065 if (nocma && is_migrate_cma_page(page))
1066 continue;
bf50bab2 1067
6664bfc8
WY
1068 if (PageHWPoison(page))
1069 continue;
1070
1071 list_move(&page->lru, &h->hugepage_activelist);
1072 set_page_refcounted(page);
7ffddd49 1073 ClearPageHugeFreed(page);
6664bfc8
WY
1074 h->free_huge_pages--;
1075 h->free_huge_pages_node[nid]--;
1076 return page;
bbe88753
JK
1077 }
1078
6664bfc8 1079 return NULL;
bf50bab2
NH
1080}
1081
3e59fcb0
MH
1082static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
1083 nodemask_t *nmask)
94310cbc 1084{
3e59fcb0
MH
1085 unsigned int cpuset_mems_cookie;
1086 struct zonelist *zonelist;
1087 struct zone *zone;
1088 struct zoneref *z;
98fa15f3 1089 int node = NUMA_NO_NODE;
94310cbc 1090
3e59fcb0
MH
1091 zonelist = node_zonelist(nid, gfp_mask);
1092
1093retry_cpuset:
1094 cpuset_mems_cookie = read_mems_allowed_begin();
1095 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1096 struct page *page;
1097
1098 if (!cpuset_zone_allowed(zone, gfp_mask))
1099 continue;
1100 /*
1101 * no need to ask again on the same node. Pool is node rather than
1102 * zone aware
1103 */
1104 if (zone_to_nid(zone) == node)
1105 continue;
1106 node = zone_to_nid(zone);
94310cbc 1107
94310cbc
AK
1108 page = dequeue_huge_page_node_exact(h, node);
1109 if (page)
1110 return page;
1111 }
3e59fcb0
MH
1112 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1113 goto retry_cpuset;
1114
94310cbc
AK
1115 return NULL;
1116}
1117
a5516438
AK
1118static struct page *dequeue_huge_page_vma(struct hstate *h,
1119 struct vm_area_struct *vma,
af0ed73e
JK
1120 unsigned long address, int avoid_reserve,
1121 long chg)
1da177e4 1122{
3e59fcb0 1123 struct page *page;
480eccf9 1124 struct mempolicy *mpol;
04ec6264 1125 gfp_t gfp_mask;
3e59fcb0 1126 nodemask_t *nodemask;
04ec6264 1127 int nid;
1da177e4 1128
a1e78772
MG
1129 /*
1130 * A child process with MAP_PRIVATE mappings created by their parent
1131 * have no page reserves. This check ensures that reservations are
1132 * not "stolen". The child may still get SIGKILLed
1133 */
af0ed73e 1134 if (!vma_has_reserves(vma, chg) &&
a5516438 1135 h->free_huge_pages - h->resv_huge_pages == 0)
c0ff7453 1136 goto err;
a1e78772 1137
04f2cbe3 1138 /* If reserves cannot be used, ensure enough pages are in the pool */
a5516438 1139 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
6eab04a8 1140 goto err;
04f2cbe3 1141
04ec6264
VB
1142 gfp_mask = htlb_alloc_mask(h);
1143 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
3e59fcb0
MH
1144 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1145 if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
1146 SetPagePrivate(page);
1147 h->resv_huge_pages--;
1da177e4 1148 }
cc9a6c87 1149
52cd3b07 1150 mpol_cond_put(mpol);
1da177e4 1151 return page;
cc9a6c87
MG
1152
1153err:
cc9a6c87 1154 return NULL;
1da177e4
LT
1155}
1156
1cac6f2c
LC
1157/*
1158 * common helper functions for hstate_next_node_to_{alloc|free}.
1159 * We may have allocated or freed a huge page based on a different
1160 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1161 * be outside of *nodes_allowed. Ensure that we use an allowed
1162 * node for alloc or free.
1163 */
1164static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1165{
0edaf86c 1166 nid = next_node_in(nid, *nodes_allowed);
1cac6f2c
LC
1167 VM_BUG_ON(nid >= MAX_NUMNODES);
1168
1169 return nid;
1170}
1171
1172static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1173{
1174 if (!node_isset(nid, *nodes_allowed))
1175 nid = next_node_allowed(nid, nodes_allowed);
1176 return nid;
1177}
1178
1179/*
1180 * returns the previously saved node ["this node"] from which to
1181 * allocate a persistent huge page for the pool and advance the
1182 * next node from which to allocate, handling wrap at end of node
1183 * mask.
1184 */
1185static int hstate_next_node_to_alloc(struct hstate *h,
1186 nodemask_t *nodes_allowed)
1187{
1188 int nid;
1189
1190 VM_BUG_ON(!nodes_allowed);
1191
1192 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1193 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1194
1195 return nid;
1196}
1197
1198/*
1199 * helper for free_pool_huge_page() - return the previously saved
1200 * node ["this node"] from which to free a huge page. Advance the
1201 * next node id whether or not we find a free huge page to free so
1202 * that the next attempt to free addresses the next node.
1203 */
1204static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1205{
1206 int nid;
1207
1208 VM_BUG_ON(!nodes_allowed);
1209
1210 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1211 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1212
1213 return nid;
1214}
1215
1216#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
1217 for (nr_nodes = nodes_weight(*mask); \
1218 nr_nodes > 0 && \
1219 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
1220 nr_nodes--)
1221
1222#define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1223 for (nr_nodes = nodes_weight(*mask); \
1224 nr_nodes > 0 && \
1225 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1226 nr_nodes--)
1227
e1073d1e 1228#ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
944d9fec 1229static void destroy_compound_gigantic_page(struct page *page,
d00181b9 1230 unsigned int order)
944d9fec
LC
1231{
1232 int i;
1233 int nr_pages = 1 << order;
1234 struct page *p = page + 1;
1235
c8cc708a 1236 atomic_set(compound_mapcount_ptr(page), 0);
5291c09b 1237 atomic_set(compound_pincount_ptr(page), 0);
47e29d32 1238
944d9fec 1239 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1d798ca3 1240 clear_compound_head(p);
944d9fec 1241 set_page_refcounted(p);
944d9fec
LC
1242 }
1243
1244 set_compound_order(page, 0);
ba9c1201 1245 page[1].compound_nr = 0;
944d9fec
LC
1246 __ClearPageHead(page);
1247}
1248
d00181b9 1249static void free_gigantic_page(struct page *page, unsigned int order)
944d9fec 1250{
cf11e85f
RG
1251 /*
1252 * If the page isn't allocated using the cma allocator,
1253 * cma_release() returns false.
1254 */
dbda8fea
BS
1255#ifdef CONFIG_CMA
1256 if (cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order))
cf11e85f 1257 return;
dbda8fea 1258#endif
cf11e85f 1259
944d9fec
LC
1260 free_contig_range(page_to_pfn(page), 1 << order);
1261}
1262
4eb0716e 1263#ifdef CONFIG_CONTIG_ALLOC
d9cc948f
MH
1264static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1265 int nid, nodemask_t *nodemask)
944d9fec 1266{
5e27a2df 1267 unsigned long nr_pages = 1UL << huge_page_order(h);
953f064a
LX
1268 if (nid == NUMA_NO_NODE)
1269 nid = numa_mem_id();
944d9fec 1270
dbda8fea
BS
1271#ifdef CONFIG_CMA
1272 {
cf11e85f
RG
1273 struct page *page;
1274 int node;
1275
953f064a
LX
1276 if (hugetlb_cma[nid]) {
1277 page = cma_alloc(hugetlb_cma[nid], nr_pages,
1278 huge_page_order(h), true);
cf11e85f
RG
1279 if (page)
1280 return page;
1281 }
953f064a
LX
1282
1283 if (!(gfp_mask & __GFP_THISNODE)) {
1284 for_each_node_mask(node, *nodemask) {
1285 if (node == nid || !hugetlb_cma[node])
1286 continue;
1287
1288 page = cma_alloc(hugetlb_cma[node], nr_pages,
1289 huge_page_order(h), true);
1290 if (page)
1291 return page;
1292 }
1293 }
cf11e85f 1294 }
dbda8fea 1295#endif
cf11e85f 1296
5e27a2df 1297 return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
944d9fec
LC
1298}
1299
1300static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
d00181b9 1301static void prep_compound_gigantic_page(struct page *page, unsigned int order);
4eb0716e
AG
1302#else /* !CONFIG_CONTIG_ALLOC */
1303static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1304 int nid, nodemask_t *nodemask)
1305{
1306 return NULL;
1307}
1308#endif /* CONFIG_CONTIG_ALLOC */
944d9fec 1309
e1073d1e 1310#else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
d9cc948f 1311static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
4eb0716e
AG
1312 int nid, nodemask_t *nodemask)
1313{
1314 return NULL;
1315}
d00181b9 1316static inline void free_gigantic_page(struct page *page, unsigned int order) { }
944d9fec 1317static inline void destroy_compound_gigantic_page(struct page *page,
d00181b9 1318 unsigned int order) { }
944d9fec
LC
1319#endif
1320
a5516438 1321static void update_and_free_page(struct hstate *h, struct page *page)
6af2acb6
AL
1322{
1323 int i;
a5516438 1324
4eb0716e 1325 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
944d9fec 1326 return;
18229df5 1327
a5516438
AK
1328 h->nr_huge_pages--;
1329 h->nr_huge_pages_node[page_to_nid(page)]--;
1330 for (i = 0; i < pages_per_huge_page(h); i++) {
32f84528
CF
1331 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1332 1 << PG_referenced | 1 << PG_dirty |
a7407a27
LC
1333 1 << PG_active | 1 << PG_private |
1334 1 << PG_writeback);
6af2acb6 1335 }
309381fe 1336 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1adc4d41 1337 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page);
f1e61557 1338 set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
6af2acb6 1339 set_page_refcounted(page);
944d9fec 1340 if (hstate_is_gigantic(h)) {
cf11e85f
RG
1341 /*
1342 * Temporarily drop the hugetlb_lock, because
1343 * we might block in free_gigantic_page().
1344 */
1345 spin_unlock(&hugetlb_lock);
944d9fec
LC
1346 destroy_compound_gigantic_page(page, huge_page_order(h));
1347 free_gigantic_page(page, huge_page_order(h));
cf11e85f 1348 spin_lock(&hugetlb_lock);
944d9fec 1349 } else {
944d9fec
LC
1350 __free_pages(page, huge_page_order(h));
1351 }
6af2acb6
AL
1352}
1353
e5ff2159
AK
1354struct hstate *size_to_hstate(unsigned long size)
1355{
1356 struct hstate *h;
1357
1358 for_each_hstate(h) {
1359 if (huge_page_size(h) == size)
1360 return h;
1361 }
1362 return NULL;
1363}
1364
bcc54222
NH
1365/*
1366 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1367 * to hstate->hugepage_activelist.)
1368 *
1369 * This function can be called for tail pages, but never returns true for them.
1370 */
1371bool page_huge_active(struct page *page)
1372{
ecbf4724 1373 return PageHeadHuge(page) && PagePrivate(&page[1]);
bcc54222
NH
1374}
1375
1376/* never called for tail page */
585fc0d2 1377void set_page_huge_active(struct page *page)
bcc54222
NH
1378{
1379 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1380 SetPagePrivate(&page[1]);
1381}
1382
1383static void clear_page_huge_active(struct page *page)
1384{
1385 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1386 ClearPagePrivate(&page[1]);
1387}
1388
ab5ac90a
MH
1389/*
1390 * Internal hugetlb specific page flag. Do not use outside of the hugetlb
1391 * code
1392 */
1393static inline bool PageHugeTemporary(struct page *page)
1394{
1395 if (!PageHuge(page))
1396 return false;
1397
1398 return (unsigned long)page[2].mapping == -1U;
1399}
1400
1401static inline void SetPageHugeTemporary(struct page *page)
1402{
1403 page[2].mapping = (void *)-1U;
1404}
1405
1406static inline void ClearPageHugeTemporary(struct page *page)
1407{
1408 page[2].mapping = NULL;
1409}
1410
c77c0a8a 1411static void __free_huge_page(struct page *page)
27a85ef1 1412{
a5516438
AK
1413 /*
1414 * Can't pass hstate in here because it is called from the
1415 * compound page destructor.
1416 */
e5ff2159 1417 struct hstate *h = page_hstate(page);
7893d1d5 1418 int nid = page_to_nid(page);
90481622
DG
1419 struct hugepage_subpool *spool =
1420 (struct hugepage_subpool *)page_private(page);
07443a85 1421 bool restore_reserve;
27a85ef1 1422
b4330afb
MK
1423 VM_BUG_ON_PAGE(page_count(page), page);
1424 VM_BUG_ON_PAGE(page_mapcount(page), page);
8ace22bc
YW
1425
1426 set_page_private(page, 0);
1427 page->mapping = NULL;
07443a85 1428 restore_reserve = PagePrivate(page);
16c794b4 1429 ClearPagePrivate(page);
27a85ef1 1430
1c5ecae3 1431 /*
0919e1b6
MK
1432 * If PagePrivate() was set on page, page allocation consumed a
1433 * reservation. If the page was associated with a subpool, there
1434 * would have been a page reserved in the subpool before allocation
1435 * via hugepage_subpool_get_pages(). Since we are 'restoring' the
6c26d310 1436 * reservation, do not call hugepage_subpool_put_pages() as this will
0919e1b6 1437 * remove the reserved page from the subpool.
1c5ecae3 1438 */
0919e1b6
MK
1439 if (!restore_reserve) {
1440 /*
1441 * A return code of zero implies that the subpool will be
1442 * under its minimum size if the reservation is not restored
1443 * after page is free. Therefore, force restore_reserve
1444 * operation.
1445 */
1446 if (hugepage_subpool_put_pages(spool, 1) == 0)
1447 restore_reserve = true;
1448 }
1c5ecae3 1449
27a85ef1 1450 spin_lock(&hugetlb_lock);
bcc54222 1451 clear_page_huge_active(page);
6d76dcf4
AK
1452 hugetlb_cgroup_uncharge_page(hstate_index(h),
1453 pages_per_huge_page(h), page);
08cf9faf
MA
1454 hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
1455 pages_per_huge_page(h), page);
07443a85
JK
1456 if (restore_reserve)
1457 h->resv_huge_pages++;
1458
ab5ac90a
MH
1459 if (PageHugeTemporary(page)) {
1460 list_del(&page->lru);
1461 ClearPageHugeTemporary(page);
1462 update_and_free_page(h, page);
1463 } else if (h->surplus_huge_pages_node[nid]) {
0edaecfa
AK
1464 /* remove the page from active list */
1465 list_del(&page->lru);
a5516438
AK
1466 update_and_free_page(h, page);
1467 h->surplus_huge_pages--;
1468 h->surplus_huge_pages_node[nid]--;
7893d1d5 1469 } else {
5d3a551c 1470 arch_clear_hugepage_flags(page);
a5516438 1471 enqueue_huge_page(h, page);
7893d1d5 1472 }
27a85ef1
DG
1473 spin_unlock(&hugetlb_lock);
1474}
1475
c77c0a8a
WL
1476/*
1477 * As free_huge_page() can be called from a non-task context, we have
1478 * to defer the actual freeing in a workqueue to prevent potential
1479 * hugetlb_lock deadlock.
1480 *
1481 * free_hpage_workfn() locklessly retrieves the linked list of pages to
1482 * be freed and frees them one-by-one. As the page->mapping pointer is
1483 * going to be cleared in __free_huge_page() anyway, it is reused as the
1484 * llist_node structure of a lockless linked list of huge pages to be freed.
1485 */
1486static LLIST_HEAD(hpage_freelist);
1487
1488static void free_hpage_workfn(struct work_struct *work)
1489{
1490 struct llist_node *node;
1491 struct page *page;
1492
1493 node = llist_del_all(&hpage_freelist);
1494
1495 while (node) {
1496 page = container_of((struct address_space **)node,
1497 struct page, mapping);
1498 node = node->next;
1499 __free_huge_page(page);
1500 }
1501}
1502static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1503
1504void free_huge_page(struct page *page)
1505{
1506 /*
1507 * Defer freeing if in non-task context to avoid hugetlb_lock deadlock.
1508 */
1509 if (!in_task()) {
1510 /*
1511 * Only call schedule_work() if hpage_freelist is previously
1512 * empty. Otherwise, schedule_work() had been called but the
1513 * workfn hasn't retrieved the list yet.
1514 */
1515 if (llist_add((struct llist_node *)&page->mapping,
1516 &hpage_freelist))
1517 schedule_work(&free_hpage_work);
1518 return;
1519 }
1520
1521 __free_huge_page(page);
1522}
1523
a5516438 1524static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
b7ba30c6 1525{
0edaecfa 1526 INIT_LIST_HEAD(&page->lru);
f1e61557 1527 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
9dd540e2 1528 set_hugetlb_cgroup(page, NULL);
1adc4d41 1529 set_hugetlb_cgroup_rsvd(page, NULL);
2f37511c 1530 spin_lock(&hugetlb_lock);
a5516438
AK
1531 h->nr_huge_pages++;
1532 h->nr_huge_pages_node[nid]++;
7ffddd49 1533 ClearPageHugeFreed(page);
b7ba30c6 1534 spin_unlock(&hugetlb_lock);
b7ba30c6
AK
1535}
1536
d00181b9 1537static void prep_compound_gigantic_page(struct page *page, unsigned int order)
20a0307c
WF
1538{
1539 int i;
1540 int nr_pages = 1 << order;
1541 struct page *p = page + 1;
1542
1543 /* we rely on prep_new_huge_page to set the destructor */
1544 set_compound_order(page, order);
ef5a22be 1545 __ClearPageReserved(page);
de09d31d 1546 __SetPageHead(page);
20a0307c 1547 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
ef5a22be
AA
1548 /*
1549 * For gigantic hugepages allocated through bootmem at
1550 * boot, it's safer to be consistent with the not-gigantic
1551 * hugepages and clear the PG_reserved bit from all tail pages
7c8de358 1552 * too. Otherwise drivers using get_user_pages() to access tail
ef5a22be
AA
1553 * pages may get the reference counting wrong if they see
1554 * PG_reserved set on a tail page (despite the head page not
1555 * having PG_reserved set). Enforcing this consistency between
1556 * head and tail pages allows drivers to optimize away a check
1557 * on the head page when they need know if put_page() is needed
1558 * after get_user_pages().
1559 */
1560 __ClearPageReserved(p);
58a84aa9 1561 set_page_count(p, 0);
1d798ca3 1562 set_compound_head(p, page);
20a0307c 1563 }
b4330afb 1564 atomic_set(compound_mapcount_ptr(page), -1);
5291c09b 1565 atomic_set(compound_pincount_ptr(page), 0);
20a0307c
WF
1566}
1567
7795912c
AM
1568/*
1569 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1570 * transparent huge pages. See the PageTransHuge() documentation for more
1571 * details.
1572 */
20a0307c
WF
1573int PageHuge(struct page *page)
1574{
20a0307c
WF
1575 if (!PageCompound(page))
1576 return 0;
1577
1578 page = compound_head(page);
f1e61557 1579 return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
20a0307c 1580}
43131e14
NH
1581EXPORT_SYMBOL_GPL(PageHuge);
1582
27c73ae7
AA
1583/*
1584 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1585 * normal or transparent huge pages.
1586 */
1587int PageHeadHuge(struct page *page_head)
1588{
27c73ae7
AA
1589 if (!PageHead(page_head))
1590 return 0;
1591
d4af73e3 1592 return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR;
27c73ae7 1593}
27c73ae7 1594
c0d0381a
MK
1595/*
1596 * Find and lock address space (mapping) in write mode.
1597 *
336bf30e
MK
1598 * Upon entry, the page is locked which means that page_mapping() is
1599 * stable. Due to locking order, we can only trylock_write. If we can
1600 * not get the lock, simply return NULL to caller.
c0d0381a
MK
1601 */
1602struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
1603{
336bf30e 1604 struct address_space *mapping = page_mapping(hpage);
c0d0381a 1605
c0d0381a
MK
1606 if (!mapping)
1607 return mapping;
1608
c0d0381a
MK
1609 if (i_mmap_trylock_write(mapping))
1610 return mapping;
1611
336bf30e 1612 return NULL;
c0d0381a
MK
1613}
1614
13d60f4b
ZY
1615pgoff_t __basepage_index(struct page *page)
1616{
1617 struct page *page_head = compound_head(page);
1618 pgoff_t index = page_index(page_head);
1619 unsigned long compound_idx;
1620
1621 if (!PageHuge(page_head))
1622 return page_index(page);
1623
1624 if (compound_order(page_head) >= MAX_ORDER)
1625 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1626 else
1627 compound_idx = page - page_head;
1628
1629 return (index << compound_order(page_head)) + compound_idx;
1630}
1631
0c397dae 1632static struct page *alloc_buddy_huge_page(struct hstate *h,
f60858f9
MK
1633 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1634 nodemask_t *node_alloc_noretry)
1da177e4 1635{
af0fb9df 1636 int order = huge_page_order(h);
1da177e4 1637 struct page *page;
f60858f9 1638 bool alloc_try_hard = true;
f96efd58 1639
f60858f9
MK
1640 /*
1641 * By default we always try hard to allocate the page with
1642 * __GFP_RETRY_MAYFAIL flag. However, if we are allocating pages in
1643 * a loop (to adjust global huge page counts) and previous allocation
1644 * failed, do not continue to try hard on the same node. Use the
1645 * node_alloc_noretry bitmap to manage this state information.
1646 */
1647 if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1648 alloc_try_hard = false;
1649 gfp_mask |= __GFP_COMP|__GFP_NOWARN;
1650 if (alloc_try_hard)
1651 gfp_mask |= __GFP_RETRY_MAYFAIL;
af0fb9df
MH
1652 if (nid == NUMA_NO_NODE)
1653 nid = numa_mem_id();
1654 page = __alloc_pages_nodemask(gfp_mask, order, nid, nmask);
1655 if (page)
1656 __count_vm_event(HTLB_BUDDY_PGALLOC);
1657 else
1658 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
63b4613c 1659
f60858f9
MK
1660 /*
1661 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
1662 * indicates an overall state change. Clear bit so that we resume
1663 * normal 'try hard' allocations.
1664 */
1665 if (node_alloc_noretry && page && !alloc_try_hard)
1666 node_clear(nid, *node_alloc_noretry);
1667
1668 /*
1669 * If we tried hard to get a page but failed, set bit so that
1670 * subsequent attempts will not try as hard until there is an
1671 * overall state change.
1672 */
1673 if (node_alloc_noretry && !page && alloc_try_hard)
1674 node_set(nid, *node_alloc_noretry);
1675
63b4613c
NA
1676 return page;
1677}
1678
0c397dae
MH
1679/*
1680 * Common helper to allocate a fresh hugetlb page. All specific allocators
1681 * should use this function to get new hugetlb pages
1682 */
1683static struct page *alloc_fresh_huge_page(struct hstate *h,
f60858f9
MK
1684 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1685 nodemask_t *node_alloc_noretry)
0c397dae
MH
1686{
1687 struct page *page;
1688
1689 if (hstate_is_gigantic(h))
1690 page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1691 else
1692 page = alloc_buddy_huge_page(h, gfp_mask,
f60858f9 1693 nid, nmask, node_alloc_noretry);
0c397dae
MH
1694 if (!page)
1695 return NULL;
1696
1697 if (hstate_is_gigantic(h))
1698 prep_compound_gigantic_page(page, huge_page_order(h));
1699 prep_new_huge_page(h, page, page_to_nid(page));
1700
1701 return page;
1702}
1703
af0fb9df
MH
1704/*
1705 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1706 * manner.
1707 */
f60858f9
MK
1708static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1709 nodemask_t *node_alloc_noretry)
b2261026
JK
1710{
1711 struct page *page;
1712 int nr_nodes, node;
af0fb9df 1713 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
b2261026
JK
1714
1715 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
f60858f9
MK
1716 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
1717 node_alloc_noretry);
af0fb9df 1718 if (page)
b2261026 1719 break;
b2261026
JK
1720 }
1721
af0fb9df
MH
1722 if (!page)
1723 return 0;
b2261026 1724
af0fb9df
MH
1725 put_page(page); /* free it into the hugepage allocator */
1726
1727 return 1;
b2261026
JK
1728}
1729
e8c5c824
LS
1730/*
1731 * Free huge page from pool from next node to free.
1732 * Attempt to keep persistent huge pages more or less
1733 * balanced over allowed nodes.
1734 * Called with hugetlb_lock locked.
1735 */
6ae11b27
LS
1736static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1737 bool acct_surplus)
e8c5c824 1738{
b2261026 1739 int nr_nodes, node;
e8c5c824
LS
1740 int ret = 0;
1741
b2261026 1742 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
685f3457
LS
1743 /*
1744 * If we're returning unused surplus pages, only examine
1745 * nodes with surplus pages.
1746 */
b2261026
JK
1747 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1748 !list_empty(&h->hugepage_freelists[node])) {
e8c5c824 1749 struct page *page =
b2261026 1750 list_entry(h->hugepage_freelists[node].next,
e8c5c824
LS
1751 struct page, lru);
1752 list_del(&page->lru);
1753 h->free_huge_pages--;
b2261026 1754 h->free_huge_pages_node[node]--;
685f3457
LS
1755 if (acct_surplus) {
1756 h->surplus_huge_pages--;
b2261026 1757 h->surplus_huge_pages_node[node]--;
685f3457 1758 }
e8c5c824
LS
1759 update_and_free_page(h, page);
1760 ret = 1;
9a76db09 1761 break;
e8c5c824 1762 }
b2261026 1763 }
e8c5c824
LS
1764
1765 return ret;
1766}
1767
c8721bbb
NH
1768/*
1769 * Dissolve a given free hugepage into free buddy pages. This function does
faf53def
NH
1770 * nothing for in-use hugepages and non-hugepages.
1771 * This function returns values like below:
1772 *
1773 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
1774 * (allocated or reserved.)
1775 * 0: successfully dissolved free hugepages or the page is not a
1776 * hugepage (considered as already dissolved)
c8721bbb 1777 */
c3114a84 1778int dissolve_free_huge_page(struct page *page)
c8721bbb 1779{
6bc9b564 1780 int rc = -EBUSY;
082d5b6b 1781
7ffddd49 1782retry:
faf53def
NH
1783 /* Not to disrupt normal path by vainly holding hugetlb_lock */
1784 if (!PageHuge(page))
1785 return 0;
1786
c8721bbb 1787 spin_lock(&hugetlb_lock);
faf53def
NH
1788 if (!PageHuge(page)) {
1789 rc = 0;
1790 goto out;
1791 }
1792
1793 if (!page_count(page)) {
2247bb33
GS
1794 struct page *head = compound_head(page);
1795 struct hstate *h = page_hstate(head);
1796 int nid = page_to_nid(head);
6bc9b564 1797 if (h->free_huge_pages - h->resv_huge_pages == 0)
082d5b6b 1798 goto out;
7ffddd49
MS
1799
1800 /*
1801 * We should make sure that the page is already on the free list
1802 * when it is dissolved.
1803 */
1804 if (unlikely(!PageHugeFreed(head))) {
1805 spin_unlock(&hugetlb_lock);
1806 cond_resched();
1807
1808 /*
1809 * Theoretically, we should return -EBUSY when we
1810 * encounter this race. In fact, we have a chance
1811 * to successfully dissolve the page if we do a
1812 * retry. Because the race window is quite small.
1813 * If we seize this opportunity, it is an optimization
1814 * for increasing the success rate of dissolving page.
1815 */
1816 goto retry;
1817 }
1818
c3114a84
AK
1819 /*
1820 * Move PageHWPoison flag from head page to the raw error page,
1821 * which makes any subpages rather than the error page reusable.
1822 */
1823 if (PageHWPoison(head) && page != head) {
1824 SetPageHWPoison(page);
1825 ClearPageHWPoison(head);
1826 }
2247bb33 1827 list_del(&head->lru);
c8721bbb
NH
1828 h->free_huge_pages--;
1829 h->free_huge_pages_node[nid]--;
c1470b33 1830 h->max_huge_pages--;
2247bb33 1831 update_and_free_page(h, head);
6bc9b564 1832 rc = 0;
c8721bbb 1833 }
082d5b6b 1834out:
c8721bbb 1835 spin_unlock(&hugetlb_lock);
082d5b6b 1836 return rc;
c8721bbb
NH
1837}
1838
1839/*
1840 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1841 * make specified memory blocks removable from the system.
2247bb33
GS
1842 * Note that this will dissolve a free gigantic hugepage completely, if any
1843 * part of it lies within the given range.
082d5b6b
GS
1844 * Also note that if dissolve_free_huge_page() returns with an error, all
1845 * free hugepages that were dissolved before that error are lost.
c8721bbb 1846 */
082d5b6b 1847int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
c8721bbb 1848{
c8721bbb 1849 unsigned long pfn;
eb03aa00 1850 struct page *page;
082d5b6b 1851 int rc = 0;
c8721bbb 1852
d0177639 1853 if (!hugepages_supported())
082d5b6b 1854 return rc;
d0177639 1855
eb03aa00
GS
1856 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1857 page = pfn_to_page(pfn);
faf53def
NH
1858 rc = dissolve_free_huge_page(page);
1859 if (rc)
1860 break;
eb03aa00 1861 }
082d5b6b
GS
1862
1863 return rc;
c8721bbb
NH
1864}
1865
ab5ac90a
MH
1866/*
1867 * Allocates a fresh surplus page from the page allocator.
1868 */
0c397dae 1869static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
aaf14e40 1870 int nid, nodemask_t *nmask)
7893d1d5 1871{
9980d744 1872 struct page *page = NULL;
7893d1d5 1873
bae7f4ae 1874 if (hstate_is_gigantic(h))
aa888a74
AK
1875 return NULL;
1876
d1c3fb1f 1877 spin_lock(&hugetlb_lock);
9980d744
MH
1878 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
1879 goto out_unlock;
d1c3fb1f
NA
1880 spin_unlock(&hugetlb_lock);
1881
f60858f9 1882 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
9980d744 1883 if (!page)
0c397dae 1884 return NULL;
d1c3fb1f
NA
1885
1886 spin_lock(&hugetlb_lock);
9980d744
MH
1887 /*
1888 * We could have raced with the pool size change.
1889 * Double check that and simply deallocate the new page
1890 * if we would end up overcommiting the surpluses. Abuse
1891 * temporary page to workaround the nasty free_huge_page
1892 * codeflow
1893 */
1894 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1895 SetPageHugeTemporary(page);
2bf753e6 1896 spin_unlock(&hugetlb_lock);
9980d744 1897 put_page(page);
2bf753e6 1898 return NULL;
9980d744 1899 } else {
9980d744 1900 h->surplus_huge_pages++;
4704dea3 1901 h->surplus_huge_pages_node[page_to_nid(page)]++;
7893d1d5 1902 }
9980d744
MH
1903
1904out_unlock:
d1c3fb1f 1905 spin_unlock(&hugetlb_lock);
7893d1d5
AL
1906
1907 return page;
1908}
1909
bbe88753 1910static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
9a4e9f3b 1911 int nid, nodemask_t *nmask)
ab5ac90a
MH
1912{
1913 struct page *page;
1914
1915 if (hstate_is_gigantic(h))
1916 return NULL;
1917
f60858f9 1918 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
ab5ac90a
MH
1919 if (!page)
1920 return NULL;
1921
1922 /*
1923 * We do not account these pages as surplus because they are only
1924 * temporary and will be released properly on the last reference
1925 */
ab5ac90a
MH
1926 SetPageHugeTemporary(page);
1927
1928 return page;
1929}
1930
099730d6
DH
1931/*
1932 * Use the VMA's mpolicy to allocate a huge page from the buddy.
1933 */
e0ec90ee 1934static
0c397dae 1935struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
099730d6
DH
1936 struct vm_area_struct *vma, unsigned long addr)
1937{
aaf14e40
MH
1938 struct page *page;
1939 struct mempolicy *mpol;
1940 gfp_t gfp_mask = htlb_alloc_mask(h);
1941 int nid;
1942 nodemask_t *nodemask;
1943
1944 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
0c397dae 1945 page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
aaf14e40
MH
1946 mpol_cond_put(mpol);
1947
1948 return page;
099730d6
DH
1949}
1950
ab5ac90a 1951/* page migration callback function */
3e59fcb0 1952struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
d92bbc27 1953 nodemask_t *nmask, gfp_t gfp_mask)
4db9b2ef 1954{
4db9b2ef
MH
1955 spin_lock(&hugetlb_lock);
1956 if (h->free_huge_pages - h->resv_huge_pages > 0) {
3e59fcb0
MH
1957 struct page *page;
1958
1959 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
1960 if (page) {
1961 spin_unlock(&hugetlb_lock);
1962 return page;
4db9b2ef
MH
1963 }
1964 }
1965 spin_unlock(&hugetlb_lock);
4db9b2ef 1966
0c397dae 1967 return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
4db9b2ef
MH
1968}
1969
ebd63723 1970/* mempolicy aware migration callback */
389c8178
MH
1971struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
1972 unsigned long address)
ebd63723
MH
1973{
1974 struct mempolicy *mpol;
1975 nodemask_t *nodemask;
1976 struct page *page;
ebd63723
MH
1977 gfp_t gfp_mask;
1978 int node;
1979
ebd63723
MH
1980 gfp_mask = htlb_alloc_mask(h);
1981 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
d92bbc27 1982 page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask);
ebd63723
MH
1983 mpol_cond_put(mpol);
1984
1985 return page;
1986}
1987
e4e574b7 1988/*
25985edc 1989 * Increase the hugetlb pool such that it can accommodate a reservation
e4e574b7
AL
1990 * of size 'delta'.
1991 */
0a4f3d1b 1992static int gather_surplus_pages(struct hstate *h, long delta)
1b2a1e7b 1993 __must_hold(&hugetlb_lock)
e4e574b7
AL
1994{
1995 struct list_head surplus_list;
1996 struct page *page, *tmp;
0a4f3d1b
LX
1997 int ret;
1998 long i;
1999 long needed, allocated;
28073b02 2000 bool alloc_ok = true;
e4e574b7 2001
a5516438 2002 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
ac09b3a1 2003 if (needed <= 0) {
a5516438 2004 h->resv_huge_pages += delta;
e4e574b7 2005 return 0;
ac09b3a1 2006 }
e4e574b7
AL
2007
2008 allocated = 0;
2009 INIT_LIST_HEAD(&surplus_list);
2010
2011 ret = -ENOMEM;
2012retry:
2013 spin_unlock(&hugetlb_lock);
2014 for (i = 0; i < needed; i++) {
0c397dae 2015 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
aaf14e40 2016 NUMA_NO_NODE, NULL);
28073b02
HD
2017 if (!page) {
2018 alloc_ok = false;
2019 break;
2020 }
e4e574b7 2021 list_add(&page->lru, &surplus_list);
69ed779a 2022 cond_resched();
e4e574b7 2023 }
28073b02 2024 allocated += i;
e4e574b7
AL
2025
2026 /*
2027 * After retaking hugetlb_lock, we need to recalculate 'needed'
2028 * because either resv_huge_pages or free_huge_pages may have changed.
2029 */
2030 spin_lock(&hugetlb_lock);
a5516438
AK
2031 needed = (h->resv_huge_pages + delta) -
2032 (h->free_huge_pages + allocated);
28073b02
HD
2033 if (needed > 0) {
2034 if (alloc_ok)
2035 goto retry;
2036 /*
2037 * We were not able to allocate enough pages to
2038 * satisfy the entire reservation so we free what
2039 * we've allocated so far.
2040 */
2041 goto free;
2042 }
e4e574b7
AL
2043 /*
2044 * The surplus_list now contains _at_least_ the number of extra pages
25985edc 2045 * needed to accommodate the reservation. Add the appropriate number
e4e574b7 2046 * of pages to the hugetlb pool and free the extras back to the buddy
ac09b3a1
AL
2047 * allocator. Commit the entire reservation here to prevent another
2048 * process from stealing the pages as they are added to the pool but
2049 * before they are reserved.
e4e574b7
AL
2050 */
2051 needed += allocated;
a5516438 2052 h->resv_huge_pages += delta;
e4e574b7 2053 ret = 0;
a9869b83 2054
19fc3f0a 2055 /* Free the needed pages to the hugetlb pool */
e4e574b7 2056 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
e558464b
MS
2057 int zeroed;
2058
19fc3f0a
AL
2059 if ((--needed) < 0)
2060 break;
a9869b83
NH
2061 /*
2062 * This page is now managed by the hugetlb allocator and has
2063 * no users -- drop the buddy allocator's reference.
2064 */
e558464b
MS
2065 zeroed = put_page_testzero(page);
2066 VM_BUG_ON_PAGE(!zeroed, page);
a5516438 2067 enqueue_huge_page(h, page);
19fc3f0a 2068 }
28073b02 2069free:
b0365c8d 2070 spin_unlock(&hugetlb_lock);
19fc3f0a
AL
2071
2072 /* Free unnecessary surplus pages to the buddy allocator */
c0d934ba
JK
2073 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
2074 put_page(page);
a9869b83 2075 spin_lock(&hugetlb_lock);
e4e574b7
AL
2076
2077 return ret;
2078}
2079
2080/*
e5bbc8a6
MK
2081 * This routine has two main purposes:
2082 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2083 * in unused_resv_pages. This corresponds to the prior adjustments made
2084 * to the associated reservation map.
2085 * 2) Free any unused surplus pages that may have been allocated to satisfy
2086 * the reservation. As many as unused_resv_pages may be freed.
2087 *
2088 * Called with hugetlb_lock held. However, the lock could be dropped (and
2089 * reacquired) during calls to cond_resched_lock. Whenever dropping the lock,
2090 * we must make sure nobody else can claim pages we are in the process of
2091 * freeing. Do this by ensuring resv_huge_page always is greater than the
2092 * number of huge pages we plan to free when dropping the lock.
e4e574b7 2093 */
a5516438
AK
2094static void return_unused_surplus_pages(struct hstate *h,
2095 unsigned long unused_resv_pages)
e4e574b7 2096{
e4e574b7
AL
2097 unsigned long nr_pages;
2098
aa888a74 2099 /* Cannot return gigantic pages currently */
bae7f4ae 2100 if (hstate_is_gigantic(h))
e5bbc8a6 2101 goto out;
aa888a74 2102
e5bbc8a6
MK
2103 /*
2104 * Part (or even all) of the reservation could have been backed
2105 * by pre-allocated pages. Only free surplus pages.
2106 */
a5516438 2107 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
e4e574b7 2108
685f3457
LS
2109 /*
2110 * We want to release as many surplus pages as possible, spread
9b5e5d0f
LS
2111 * evenly across all nodes with memory. Iterate across these nodes
2112 * until we can no longer free unreserved surplus pages. This occurs
2113 * when the nodes with surplus pages have no free pages.
9e7ee400 2114 * free_pool_huge_page() will balance the freed pages across the
9b5e5d0f 2115 * on-line nodes with memory and will handle the hstate accounting.
e5bbc8a6
MK
2116 *
2117 * Note that we decrement resv_huge_pages as we free the pages. If
2118 * we drop the lock, resv_huge_pages will still be sufficiently large
2119 * to cover subsequent pages we may free.
685f3457
LS
2120 */
2121 while (nr_pages--) {
e5bbc8a6
MK
2122 h->resv_huge_pages--;
2123 unused_resv_pages--;
8cebfcd0 2124 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
e5bbc8a6 2125 goto out;
7848a4bf 2126 cond_resched_lock(&hugetlb_lock);
e4e574b7 2127 }
e5bbc8a6
MK
2128
2129out:
2130 /* Fully uncommit the reservation */
2131 h->resv_huge_pages -= unused_resv_pages;
e4e574b7
AL
2132}
2133
5e911373 2134
c37f9fb1 2135/*
feba16e2 2136 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
5e911373 2137 * are used by the huge page allocation routines to manage reservations.
cf3ad20b
MK
2138 *
2139 * vma_needs_reservation is called to determine if the huge page at addr
2140 * within the vma has an associated reservation. If a reservation is
2141 * needed, the value 1 is returned. The caller is then responsible for
2142 * managing the global reservation and subpool usage counts. After
2143 * the huge page has been allocated, vma_commit_reservation is called
feba16e2
MK
2144 * to add the page to the reservation map. If the page allocation fails,
2145 * the reservation must be ended instead of committed. vma_end_reservation
2146 * is called in such cases.
cf3ad20b
MK
2147 *
2148 * In the normal case, vma_commit_reservation returns the same value
2149 * as the preceding vma_needs_reservation call. The only time this
2150 * is not the case is if a reserve map was changed between calls. It
2151 * is the responsibility of the caller to notice the difference and
2152 * take appropriate action.
96b96a96
MK
2153 *
2154 * vma_add_reservation is used in error paths where a reservation must
2155 * be restored when a newly allocated huge page must be freed. It is
2156 * to be called after calling vma_needs_reservation to determine if a
2157 * reservation exists.
c37f9fb1 2158 */
5e911373
MK
2159enum vma_resv_mode {
2160 VMA_NEEDS_RESV,
2161 VMA_COMMIT_RESV,
feba16e2 2162 VMA_END_RESV,
96b96a96 2163 VMA_ADD_RESV,
5e911373 2164};
cf3ad20b
MK
2165static long __vma_reservation_common(struct hstate *h,
2166 struct vm_area_struct *vma, unsigned long addr,
5e911373 2167 enum vma_resv_mode mode)
c37f9fb1 2168{
4e35f483
JK
2169 struct resv_map *resv;
2170 pgoff_t idx;
cf3ad20b 2171 long ret;
0db9d74e 2172 long dummy_out_regions_needed;
c37f9fb1 2173
4e35f483
JK
2174 resv = vma_resv_map(vma);
2175 if (!resv)
84afd99b 2176 return 1;
c37f9fb1 2177
4e35f483 2178 idx = vma_hugecache_offset(h, vma, addr);
5e911373
MK
2179 switch (mode) {
2180 case VMA_NEEDS_RESV:
0db9d74e
MA
2181 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2182 /* We assume that vma_reservation_* routines always operate on
2183 * 1 page, and that adding to resv map a 1 page entry can only
2184 * ever require 1 region.
2185 */
2186 VM_BUG_ON(dummy_out_regions_needed != 1);
5e911373
MK
2187 break;
2188 case VMA_COMMIT_RESV:
075a61d0 2189 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
0db9d74e
MA
2190 /* region_add calls of range 1 should never fail. */
2191 VM_BUG_ON(ret < 0);
5e911373 2192 break;
feba16e2 2193 case VMA_END_RESV:
0db9d74e 2194 region_abort(resv, idx, idx + 1, 1);
5e911373
MK
2195 ret = 0;
2196 break;
96b96a96 2197 case VMA_ADD_RESV:
0db9d74e 2198 if (vma->vm_flags & VM_MAYSHARE) {
075a61d0 2199 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
0db9d74e
MA
2200 /* region_add calls of range 1 should never fail. */
2201 VM_BUG_ON(ret < 0);
2202 } else {
2203 region_abort(resv, idx, idx + 1, 1);
96b96a96
MK
2204 ret = region_del(resv, idx, idx + 1);
2205 }
2206 break;
5e911373
MK
2207 default:
2208 BUG();
2209 }
84afd99b 2210
4e35f483 2211 if (vma->vm_flags & VM_MAYSHARE)
cf3ad20b 2212 return ret;
67961f9d
MK
2213 else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
2214 /*
2215 * In most cases, reserves always exist for private mappings.
2216 * However, a file associated with mapping could have been
2217 * hole punched or truncated after reserves were consumed.
2218 * As subsequent fault on such a range will not use reserves.
2219 * Subtle - The reserve map for private mappings has the
2220 * opposite meaning than that of shared mappings. If NO
2221 * entry is in the reserve map, it means a reservation exists.
2222 * If an entry exists in the reserve map, it means the
2223 * reservation has already been consumed. As a result, the
2224 * return value of this routine is the opposite of the
2225 * value returned from reserve map manipulation routines above.
2226 */
2227 if (ret)
2228 return 0;
2229 else
2230 return 1;
2231 }
4e35f483 2232 else
cf3ad20b 2233 return ret < 0 ? ret : 0;
c37f9fb1 2234}
cf3ad20b
MK
2235
2236static long vma_needs_reservation(struct hstate *h,
a5516438 2237 struct vm_area_struct *vma, unsigned long addr)
c37f9fb1 2238{
5e911373 2239 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
cf3ad20b 2240}
84afd99b 2241
cf3ad20b
MK
2242static long vma_commit_reservation(struct hstate *h,
2243 struct vm_area_struct *vma, unsigned long addr)
2244{
5e911373
MK
2245 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2246}
2247
feba16e2 2248static void vma_end_reservation(struct hstate *h,
5e911373
MK
2249 struct vm_area_struct *vma, unsigned long addr)
2250{
feba16e2 2251 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
c37f9fb1
AW
2252}
2253
96b96a96
MK
2254static long vma_add_reservation(struct hstate *h,
2255 struct vm_area_struct *vma, unsigned long addr)
2256{
2257 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2258}
2259
2260/*
2261 * This routine is called to restore a reservation on error paths. In the
2262 * specific error paths, a huge page was allocated (via alloc_huge_page)
2263 * and is about to be freed. If a reservation for the page existed,
2264 * alloc_huge_page would have consumed the reservation and set PagePrivate
2265 * in the newly allocated page. When the page is freed via free_huge_page,
2266 * the global reservation count will be incremented if PagePrivate is set.
2267 * However, free_huge_page can not adjust the reserve map. Adjust the
2268 * reserve map here to be consistent with global reserve count adjustments
2269 * to be made by free_huge_page.
2270 */
2271static void restore_reserve_on_error(struct hstate *h,
2272 struct vm_area_struct *vma, unsigned long address,
2273 struct page *page)
2274{
2275 if (unlikely(PagePrivate(page))) {
2276 long rc = vma_needs_reservation(h, vma, address);
2277
2278 if (unlikely(rc < 0)) {
2279 /*
2280 * Rare out of memory condition in reserve map
2281 * manipulation. Clear PagePrivate so that
2282 * global reserve count will not be incremented
2283 * by free_huge_page. This will make it appear
2284 * as though the reservation for this page was
2285 * consumed. This may prevent the task from
2286 * faulting in the page at a later time. This
2287 * is better than inconsistent global huge page
2288 * accounting of reserve counts.
2289 */
2290 ClearPagePrivate(page);
2291 } else if (rc) {
2292 rc = vma_add_reservation(h, vma, address);
2293 if (unlikely(rc < 0))
2294 /*
2295 * See above comment about rare out of
2296 * memory condition.
2297 */
2298 ClearPagePrivate(page);
2299 } else
2300 vma_end_reservation(h, vma, address);
2301 }
2302}
2303
70c3547e 2304struct page *alloc_huge_page(struct vm_area_struct *vma,
04f2cbe3 2305 unsigned long addr, int avoid_reserve)
1da177e4 2306{
90481622 2307 struct hugepage_subpool *spool = subpool_vma(vma);
a5516438 2308 struct hstate *h = hstate_vma(vma);
348ea204 2309 struct page *page;
d85f69b0
MK
2310 long map_chg, map_commit;
2311 long gbl_chg;
6d76dcf4
AK
2312 int ret, idx;
2313 struct hugetlb_cgroup *h_cg;
08cf9faf 2314 bool deferred_reserve;
a1e78772 2315
6d76dcf4 2316 idx = hstate_index(h);
a1e78772 2317 /*
d85f69b0
MK
2318 * Examine the region/reserve map to determine if the process
2319 * has a reservation for the page to be allocated. A return
2320 * code of zero indicates a reservation exists (no change).
a1e78772 2321 */
d85f69b0
MK
2322 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2323 if (map_chg < 0)
76dcee75 2324 return ERR_PTR(-ENOMEM);
d85f69b0
MK
2325
2326 /*
2327 * Processes that did not create the mapping will have no
2328 * reserves as indicated by the region/reserve map. Check
2329 * that the allocation will not exceed the subpool limit.
2330 * Allocations for MAP_NORESERVE mappings also need to be
2331 * checked against any subpool limit.
2332 */
2333 if (map_chg || avoid_reserve) {
2334 gbl_chg = hugepage_subpool_get_pages(spool, 1);
2335 if (gbl_chg < 0) {
feba16e2 2336 vma_end_reservation(h, vma, addr);
76dcee75 2337 return ERR_PTR(-ENOSPC);
5e911373 2338 }
1da177e4 2339
d85f69b0
MK
2340 /*
2341 * Even though there was no reservation in the region/reserve
2342 * map, there could be reservations associated with the
2343 * subpool that can be used. This would be indicated if the
2344 * return value of hugepage_subpool_get_pages() is zero.
2345 * However, if avoid_reserve is specified we still avoid even
2346 * the subpool reservations.
2347 */
2348 if (avoid_reserve)
2349 gbl_chg = 1;
2350 }
2351
08cf9faf
MA
2352 /* If this allocation is not consuming a reservation, charge it now.
2353 */
2354 deferred_reserve = map_chg || avoid_reserve || !vma_resv_map(vma);
2355 if (deferred_reserve) {
2356 ret = hugetlb_cgroup_charge_cgroup_rsvd(
2357 idx, pages_per_huge_page(h), &h_cg);
2358 if (ret)
2359 goto out_subpool_put;
2360 }
2361
6d76dcf4 2362 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
8f34af6f 2363 if (ret)
08cf9faf 2364 goto out_uncharge_cgroup_reservation;
8f34af6f 2365
1da177e4 2366 spin_lock(&hugetlb_lock);
d85f69b0
MK
2367 /*
2368 * glb_chg is passed to indicate whether or not a page must be taken
2369 * from the global free pool (global change). gbl_chg == 0 indicates
2370 * a reservation exists for the allocation.
2371 */
2372 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
81a6fcae 2373 if (!page) {
94ae8ba7 2374 spin_unlock(&hugetlb_lock);
0c397dae 2375 page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
8f34af6f
JZ
2376 if (!page)
2377 goto out_uncharge_cgroup;
a88c7695
NH
2378 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2379 SetPagePrivate(page);
2380 h->resv_huge_pages--;
2381 }
79dbb236 2382 spin_lock(&hugetlb_lock);
15a8d68e 2383 list_add(&page->lru, &h->hugepage_activelist);
81a6fcae 2384 /* Fall through */
68842c9b 2385 }
81a6fcae 2386 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
08cf9faf
MA
2387 /* If allocation is not consuming a reservation, also store the
2388 * hugetlb_cgroup pointer on the page.
2389 */
2390 if (deferred_reserve) {
2391 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
2392 h_cg, page);
2393 }
2394
81a6fcae 2395 spin_unlock(&hugetlb_lock);
348ea204 2396
90481622 2397 set_page_private(page, (unsigned long)spool);
90d8b7e6 2398
d85f69b0
MK
2399 map_commit = vma_commit_reservation(h, vma, addr);
2400 if (unlikely(map_chg > map_commit)) {
33039678
MK
2401 /*
2402 * The page was added to the reservation map between
2403 * vma_needs_reservation and vma_commit_reservation.
2404 * This indicates a race with hugetlb_reserve_pages.
2405 * Adjust for the subpool count incremented above AND
2406 * in hugetlb_reserve_pages for the same page. Also,
2407 * the reservation count added in hugetlb_reserve_pages
2408 * no longer applies.
2409 */
2410 long rsv_adjust;
2411
2412 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2413 hugetlb_acct_memory(h, -rsv_adjust);
79aa925b
MK
2414 if (deferred_reserve)
2415 hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
2416 pages_per_huge_page(h), page);
33039678 2417 }
90d8b7e6 2418 return page;
8f34af6f
JZ
2419
2420out_uncharge_cgroup:
2421 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
08cf9faf
MA
2422out_uncharge_cgroup_reservation:
2423 if (deferred_reserve)
2424 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
2425 h_cg);
8f34af6f 2426out_subpool_put:
d85f69b0 2427 if (map_chg || avoid_reserve)
8f34af6f 2428 hugepage_subpool_put_pages(spool, 1);
feba16e2 2429 vma_end_reservation(h, vma, addr);
8f34af6f 2430 return ERR_PTR(-ENOSPC);
b45b5bd6
DG
2431}
2432
e24a1307
AK
2433int alloc_bootmem_huge_page(struct hstate *h)
2434 __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2435int __alloc_bootmem_huge_page(struct hstate *h)
aa888a74
AK
2436{
2437 struct huge_bootmem_page *m;
b2261026 2438 int nr_nodes, node;
aa888a74 2439
b2261026 2440 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
aa888a74
AK
2441 void *addr;
2442
eb31d559 2443 addr = memblock_alloc_try_nid_raw(
8b89a116 2444 huge_page_size(h), huge_page_size(h),
97ad1087 2445 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
aa888a74
AK
2446 if (addr) {
2447 /*
2448 * Use the beginning of the huge page to store the
2449 * huge_bootmem_page struct (until gather_bootmem
2450 * puts them into the mem_map).
2451 */
2452 m = addr;
91f47662 2453 goto found;
aa888a74 2454 }
aa888a74
AK
2455 }
2456 return 0;
2457
2458found:
df994ead 2459 BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
aa888a74 2460 /* Put them into a private list first because mem_map is not up yet */
330d6e48 2461 INIT_LIST_HEAD(&m->list);
aa888a74
AK
2462 list_add(&m->list, &huge_boot_pages);
2463 m->hstate = h;
2464 return 1;
2465}
2466
d00181b9
KS
2467static void __init prep_compound_huge_page(struct page *page,
2468 unsigned int order)
18229df5
AW
2469{
2470 if (unlikely(order > (MAX_ORDER - 1)))
2471 prep_compound_gigantic_page(page, order);
2472 else
2473 prep_compound_page(page, order);
2474}
2475
aa888a74
AK
2476/* Put bootmem huge pages into the standard lists after mem_map is up */
2477static void __init gather_bootmem_prealloc(void)
2478{
2479 struct huge_bootmem_page *m;
2480
2481 list_for_each_entry(m, &huge_boot_pages, list) {
40d18ebf 2482 struct page *page = virt_to_page(m);
aa888a74 2483 struct hstate *h = m->hstate;
ee8f248d 2484
aa888a74 2485 WARN_ON(page_count(page) != 1);
c78a7f36 2486 prep_compound_huge_page(page, huge_page_order(h));
ef5a22be 2487 WARN_ON(PageReserved(page));
aa888a74 2488 prep_new_huge_page(h, page, page_to_nid(page));
af0fb9df
MH
2489 put_page(page); /* free it into the hugepage allocator */
2490
b0320c7b
RA
2491 /*
2492 * If we had gigantic hugepages allocated at boot time, we need
2493 * to restore the 'stolen' pages to totalram_pages in order to
2494 * fix confusing memory reports from free(1) and another
2495 * side-effects, like CommitLimit going negative.
2496 */
bae7f4ae 2497 if (hstate_is_gigantic(h))
c78a7f36 2498 adjust_managed_page_count(page, pages_per_huge_page(h));
520495fe 2499 cond_resched();
aa888a74
AK
2500 }
2501}
2502
8faa8b07 2503static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1da177e4
LT
2504{
2505 unsigned long i;
f60858f9
MK
2506 nodemask_t *node_alloc_noretry;
2507
2508 if (!hstate_is_gigantic(h)) {
2509 /*
2510 * Bit mask controlling how hard we retry per-node allocations.
2511 * Ignore errors as lower level routines can deal with
2512 * node_alloc_noretry == NULL. If this kmalloc fails at boot
2513 * time, we are likely in bigger trouble.
2514 */
2515 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
2516 GFP_KERNEL);
2517 } else {
2518 /* allocations done at boot time */
2519 node_alloc_noretry = NULL;
2520 }
2521
2522 /* bit mask controlling how hard we retry per-node allocations */
2523 if (node_alloc_noretry)
2524 nodes_clear(*node_alloc_noretry);
a5516438 2525
e5ff2159 2526 for (i = 0; i < h->max_huge_pages; ++i) {
bae7f4ae 2527 if (hstate_is_gigantic(h)) {
dbda8fea 2528 if (hugetlb_cma_size) {
cf11e85f
RG
2529 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
2530 break;
2531 }
aa888a74
AK
2532 if (!alloc_bootmem_huge_page(h))
2533 break;
0c397dae 2534 } else if (!alloc_pool_huge_page(h,
f60858f9
MK
2535 &node_states[N_MEMORY],
2536 node_alloc_noretry))
1da177e4 2537 break;
69ed779a 2538 cond_resched();
1da177e4 2539 }
d715cf80
LH
2540 if (i < h->max_huge_pages) {
2541 char buf[32];
2542
c6247f72 2543 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
d715cf80
LH
2544 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n",
2545 h->max_huge_pages, buf, i);
2546 h->max_huge_pages = i;
2547 }
f60858f9
MK
2548
2549 kfree(node_alloc_noretry);
e5ff2159
AK
2550}
2551
2552static void __init hugetlb_init_hstates(void)
2553{
2554 struct hstate *h;
2555
2556 for_each_hstate(h) {
641844f5
NH
2557 if (minimum_order > huge_page_order(h))
2558 minimum_order = huge_page_order(h);
2559
8faa8b07 2560 /* oversize hugepages were init'ed in early boot */
bae7f4ae 2561 if (!hstate_is_gigantic(h))
8faa8b07 2562 hugetlb_hstate_alloc_pages(h);
e5ff2159 2563 }
641844f5 2564 VM_BUG_ON(minimum_order == UINT_MAX);
e5ff2159
AK
2565}
2566
2567static void __init report_hugepages(void)
2568{
2569 struct hstate *h;
2570
2571 for_each_hstate(h) {
4abd32db 2572 char buf[32];
c6247f72
MW
2573
2574 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
ffb22af5 2575 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
c6247f72 2576 buf, h->free_huge_pages);
e5ff2159
AK
2577 }
2578}
2579
1da177e4 2580#ifdef CONFIG_HIGHMEM
6ae11b27
LS
2581static void try_to_free_low(struct hstate *h, unsigned long count,
2582 nodemask_t *nodes_allowed)
1da177e4 2583{
4415cc8d
CL
2584 int i;
2585
bae7f4ae 2586 if (hstate_is_gigantic(h))
aa888a74
AK
2587 return;
2588
6ae11b27 2589 for_each_node_mask(i, *nodes_allowed) {
1da177e4 2590 struct page *page, *next;
a5516438
AK
2591 struct list_head *freel = &h->hugepage_freelists[i];
2592 list_for_each_entry_safe(page, next, freel, lru) {
2593 if (count >= h->nr_huge_pages)
6b0c880d 2594 return;
1da177e4
LT
2595 if (PageHighMem(page))
2596 continue;
2597 list_del(&page->lru);
e5ff2159 2598 update_and_free_page(h, page);
a5516438
AK
2599 h->free_huge_pages--;
2600 h->free_huge_pages_node[page_to_nid(page)]--;
1da177e4
LT
2601 }
2602 }
2603}
2604#else
6ae11b27
LS
2605static inline void try_to_free_low(struct hstate *h, unsigned long count,
2606 nodemask_t *nodes_allowed)
1da177e4
LT
2607{
2608}
2609#endif
2610
20a0307c
WF
2611/*
2612 * Increment or decrement surplus_huge_pages. Keep node-specific counters
2613 * balanced by operating on them in a round-robin fashion.
2614 * Returns 1 if an adjustment was made.
2615 */
6ae11b27
LS
2616static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2617 int delta)
20a0307c 2618{
b2261026 2619 int nr_nodes, node;
20a0307c
WF
2620
2621 VM_BUG_ON(delta != -1 && delta != 1);
20a0307c 2622
b2261026
JK
2623 if (delta < 0) {
2624 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2625 if (h->surplus_huge_pages_node[node])
2626 goto found;
e8c5c824 2627 }
b2261026
JK
2628 } else {
2629 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2630 if (h->surplus_huge_pages_node[node] <
2631 h->nr_huge_pages_node[node])
2632 goto found;
e8c5c824 2633 }
b2261026
JK
2634 }
2635 return 0;
20a0307c 2636
b2261026
JK
2637found:
2638 h->surplus_huge_pages += delta;
2639 h->surplus_huge_pages_node[node] += delta;
2640 return 1;
20a0307c
WF
2641}
2642
a5516438 2643#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
fd875dca 2644static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
4eb0716e 2645 nodemask_t *nodes_allowed)
1da177e4 2646{
7893d1d5 2647 unsigned long min_count, ret;
f60858f9
MK
2648 NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
2649
2650 /*
2651 * Bit mask controlling how hard we retry per-node allocations.
2652 * If we can not allocate the bit mask, do not attempt to allocate
2653 * the requested huge pages.
2654 */
2655 if (node_alloc_noretry)
2656 nodes_clear(*node_alloc_noretry);
2657 else
2658 return -ENOMEM;
1da177e4 2659
4eb0716e
AG
2660 spin_lock(&hugetlb_lock);
2661
fd875dca
MK
2662 /*
2663 * Check for a node specific request.
2664 * Changing node specific huge page count may require a corresponding
2665 * change to the global count. In any case, the passed node mask
2666 * (nodes_allowed) will restrict alloc/free to the specified node.
2667 */
2668 if (nid != NUMA_NO_NODE) {
2669 unsigned long old_count = count;
2670
2671 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2672 /*
2673 * User may have specified a large count value which caused the
2674 * above calculation to overflow. In this case, they wanted
2675 * to allocate as many huge pages as possible. Set count to
2676 * largest possible value to align with their intention.
2677 */
2678 if (count < old_count)
2679 count = ULONG_MAX;
2680 }
2681
4eb0716e
AG
2682 /*
2683 * Gigantic pages runtime allocation depend on the capability for large
2684 * page range allocation.
2685 * If the system does not provide this feature, return an error when
2686 * the user tries to allocate gigantic pages but let the user free the
2687 * boottime allocated gigantic pages.
2688 */
2689 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
2690 if (count > persistent_huge_pages(h)) {
2691 spin_unlock(&hugetlb_lock);
f60858f9 2692 NODEMASK_FREE(node_alloc_noretry);
4eb0716e
AG
2693 return -EINVAL;
2694 }
2695 /* Fall through to decrease pool */
2696 }
aa888a74 2697
7893d1d5
AL
2698 /*
2699 * Increase the pool size
2700 * First take pages out of surplus state. Then make up the
2701 * remaining difference by allocating fresh huge pages.
d1c3fb1f 2702 *
0c397dae 2703 * We might race with alloc_surplus_huge_page() here and be unable
d1c3fb1f
NA
2704 * to convert a surplus huge page to a normal huge page. That is
2705 * not critical, though, it just means the overall size of the
2706 * pool might be one hugepage larger than it needs to be, but
2707 * within all the constraints specified by the sysctls.
7893d1d5 2708 */
a5516438 2709 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
6ae11b27 2710 if (!adjust_pool_surplus(h, nodes_allowed, -1))
7893d1d5
AL
2711 break;
2712 }
2713
a5516438 2714 while (count > persistent_huge_pages(h)) {
7893d1d5
AL
2715 /*
2716 * If this allocation races such that we no longer need the
2717 * page, free_huge_page will handle it by freeing the page
2718 * and reducing the surplus.
2719 */
2720 spin_unlock(&hugetlb_lock);
649920c6
JH
2721
2722 /* yield cpu to avoid soft lockup */
2723 cond_resched();
2724
f60858f9
MK
2725 ret = alloc_pool_huge_page(h, nodes_allowed,
2726 node_alloc_noretry);
7893d1d5
AL
2727 spin_lock(&hugetlb_lock);
2728 if (!ret)
2729 goto out;
2730
536240f2
MG
2731 /* Bail for signals. Probably ctrl-c from user */
2732 if (signal_pending(current))
2733 goto out;
7893d1d5 2734 }
7893d1d5
AL
2735
2736 /*
2737 * Decrease the pool size
2738 * First return free pages to the buddy allocator (being careful
2739 * to keep enough around to satisfy reservations). Then place
2740 * pages into surplus state as needed so the pool will shrink
2741 * to the desired size as pages become free.
d1c3fb1f
NA
2742 *
2743 * By placing pages into the surplus state independent of the
2744 * overcommit value, we are allowing the surplus pool size to
2745 * exceed overcommit. There are few sane options here. Since
0c397dae 2746 * alloc_surplus_huge_page() is checking the global counter,
d1c3fb1f
NA
2747 * though, we'll note that we're not allowed to exceed surplus
2748 * and won't grow the pool anywhere else. Not until one of the
2749 * sysctls are changed, or the surplus pages go out of use.
7893d1d5 2750 */
a5516438 2751 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
6b0c880d 2752 min_count = max(count, min_count);
6ae11b27 2753 try_to_free_low(h, min_count, nodes_allowed);
a5516438 2754 while (min_count < persistent_huge_pages(h)) {
6ae11b27 2755 if (!free_pool_huge_page(h, nodes_allowed, 0))
1da177e4 2756 break;
55f67141 2757 cond_resched_lock(&hugetlb_lock);
1da177e4 2758 }
a5516438 2759 while (count < persistent_huge_pages(h)) {
6ae11b27 2760 if (!adjust_pool_surplus(h, nodes_allowed, 1))
7893d1d5
AL
2761 break;
2762 }
2763out:
4eb0716e 2764 h->max_huge_pages = persistent_huge_pages(h);
1da177e4 2765 spin_unlock(&hugetlb_lock);
4eb0716e 2766
f60858f9
MK
2767 NODEMASK_FREE(node_alloc_noretry);
2768
4eb0716e 2769 return 0;
1da177e4
LT
2770}
2771
a3437870
NA
2772#define HSTATE_ATTR_RO(_name) \
2773 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2774
2775#define HSTATE_ATTR(_name) \
2776 static struct kobj_attribute _name##_attr = \
2777 __ATTR(_name, 0644, _name##_show, _name##_store)
2778
2779static struct kobject *hugepages_kobj;
2780static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2781
9a305230
LS
2782static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2783
2784static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
a3437870
NA
2785{
2786 int i;
9a305230 2787
a3437870 2788 for (i = 0; i < HUGE_MAX_HSTATE; i++)
9a305230
LS
2789 if (hstate_kobjs[i] == kobj) {
2790 if (nidp)
2791 *nidp = NUMA_NO_NODE;
a3437870 2792 return &hstates[i];
9a305230
LS
2793 }
2794
2795 return kobj_to_node_hstate(kobj, nidp);
a3437870
NA
2796}
2797
06808b08 2798static ssize_t nr_hugepages_show_common(struct kobject *kobj,
a3437870
NA
2799 struct kobj_attribute *attr, char *buf)
2800{
9a305230
LS
2801 struct hstate *h;
2802 unsigned long nr_huge_pages;
2803 int nid;
2804
2805 h = kobj_to_hstate(kobj, &nid);
2806 if (nid == NUMA_NO_NODE)
2807 nr_huge_pages = h->nr_huge_pages;
2808 else
2809 nr_huge_pages = h->nr_huge_pages_node[nid];
2810
ae7a927d 2811 return sysfs_emit(buf, "%lu\n", nr_huge_pages);
a3437870 2812}
adbe8726 2813
238d3c13
DR
2814static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2815 struct hstate *h, int nid,
2816 unsigned long count, size_t len)
a3437870
NA
2817{
2818 int err;
2d0adf7e 2819 nodemask_t nodes_allowed, *n_mask;
a3437870 2820
2d0adf7e
OS
2821 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2822 return -EINVAL;
adbe8726 2823
9a305230
LS
2824 if (nid == NUMA_NO_NODE) {
2825 /*
2826 * global hstate attribute
2827 */
2828 if (!(obey_mempolicy &&
2d0adf7e
OS
2829 init_nodemask_of_mempolicy(&nodes_allowed)))
2830 n_mask = &node_states[N_MEMORY];
2831 else
2832 n_mask = &nodes_allowed;
2833 } else {
9a305230 2834 /*
fd875dca
MK
2835 * Node specific request. count adjustment happens in
2836 * set_max_huge_pages() after acquiring hugetlb_lock.
9a305230 2837 */
2d0adf7e
OS
2838 init_nodemask_of_node(&nodes_allowed, nid);
2839 n_mask = &nodes_allowed;
fd875dca 2840 }
9a305230 2841
2d0adf7e 2842 err = set_max_huge_pages(h, count, nid, n_mask);
06808b08 2843
4eb0716e 2844 return err ? err : len;
06808b08
LS
2845}
2846
238d3c13
DR
2847static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2848 struct kobject *kobj, const char *buf,
2849 size_t len)
2850{
2851 struct hstate *h;
2852 unsigned long count;
2853 int nid;
2854 int err;
2855
2856 err = kstrtoul(buf, 10, &count);
2857 if (err)
2858 return err;
2859
2860 h = kobj_to_hstate(kobj, &nid);
2861 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2862}
2863
06808b08
LS
2864static ssize_t nr_hugepages_show(struct kobject *kobj,
2865 struct kobj_attribute *attr, char *buf)
2866{
2867 return nr_hugepages_show_common(kobj, attr, buf);
2868}
2869
2870static ssize_t nr_hugepages_store(struct kobject *kobj,
2871 struct kobj_attribute *attr, const char *buf, size_t len)
2872{
238d3c13 2873 return nr_hugepages_store_common(false, kobj, buf, len);
a3437870
NA
2874}
2875HSTATE_ATTR(nr_hugepages);
2876
06808b08
LS
2877#ifdef CONFIG_NUMA
2878
2879/*
2880 * hstate attribute for optionally mempolicy-based constraint on persistent
2881 * huge page alloc/free.
2882 */
2883static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
ae7a927d
JP
2884 struct kobj_attribute *attr,
2885 char *buf)
06808b08
LS
2886{
2887 return nr_hugepages_show_common(kobj, attr, buf);
2888}
2889
2890static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2891 struct kobj_attribute *attr, const char *buf, size_t len)
2892{
238d3c13 2893 return nr_hugepages_store_common(true, kobj, buf, len);
06808b08
LS
2894}
2895HSTATE_ATTR(nr_hugepages_mempolicy);
2896#endif
2897
2898
a3437870
NA
2899static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2900 struct kobj_attribute *attr, char *buf)
2901{
9a305230 2902 struct hstate *h = kobj_to_hstate(kobj, NULL);
ae7a927d 2903 return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
a3437870 2904}
adbe8726 2905
a3437870
NA
2906static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2907 struct kobj_attribute *attr, const char *buf, size_t count)
2908{
2909 int err;
2910 unsigned long input;
9a305230 2911 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870 2912
bae7f4ae 2913 if (hstate_is_gigantic(h))
adbe8726
EM
2914 return -EINVAL;
2915
3dbb95f7 2916 err = kstrtoul(buf, 10, &input);
a3437870 2917 if (err)
73ae31e5 2918 return err;
a3437870
NA
2919
2920 spin_lock(&hugetlb_lock);
2921 h->nr_overcommit_huge_pages = input;
2922 spin_unlock(&hugetlb_lock);
2923
2924 return count;
2925}
2926HSTATE_ATTR(nr_overcommit_hugepages);
2927
2928static ssize_t free_hugepages_show(struct kobject *kobj,
2929 struct kobj_attribute *attr, char *buf)
2930{
9a305230
LS
2931 struct hstate *h;
2932 unsigned long free_huge_pages;
2933 int nid;
2934
2935 h = kobj_to_hstate(kobj, &nid);
2936 if (nid == NUMA_NO_NODE)
2937 free_huge_pages = h->free_huge_pages;
2938 else
2939 free_huge_pages = h->free_huge_pages_node[nid];
2940
ae7a927d 2941 return sysfs_emit(buf, "%lu\n", free_huge_pages);
a3437870
NA
2942}
2943HSTATE_ATTR_RO(free_hugepages);
2944
2945static ssize_t resv_hugepages_show(struct kobject *kobj,
2946 struct kobj_attribute *attr, char *buf)
2947{
9a305230 2948 struct hstate *h = kobj_to_hstate(kobj, NULL);
ae7a927d 2949 return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
a3437870
NA
2950}
2951HSTATE_ATTR_RO(resv_hugepages);
2952
2953static ssize_t surplus_hugepages_show(struct kobject *kobj,
2954 struct kobj_attribute *attr, char *buf)
2955{
9a305230
LS
2956 struct hstate *h;
2957 unsigned long surplus_huge_pages;
2958 int nid;
2959
2960 h = kobj_to_hstate(kobj, &nid);
2961 if (nid == NUMA_NO_NODE)
2962 surplus_huge_pages = h->surplus_huge_pages;
2963 else
2964 surplus_huge_pages = h->surplus_huge_pages_node[nid];
2965
ae7a927d 2966 return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
a3437870
NA
2967}
2968HSTATE_ATTR_RO(surplus_hugepages);
2969
2970static struct attribute *hstate_attrs[] = {
2971 &nr_hugepages_attr.attr,
2972 &nr_overcommit_hugepages_attr.attr,
2973 &free_hugepages_attr.attr,
2974 &resv_hugepages_attr.attr,
2975 &surplus_hugepages_attr.attr,
06808b08
LS
2976#ifdef CONFIG_NUMA
2977 &nr_hugepages_mempolicy_attr.attr,
2978#endif
a3437870
NA
2979 NULL,
2980};
2981
67e5ed96 2982static const struct attribute_group hstate_attr_group = {
a3437870
NA
2983 .attrs = hstate_attrs,
2984};
2985
094e9539
JM
2986static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2987 struct kobject **hstate_kobjs,
67e5ed96 2988 const struct attribute_group *hstate_attr_group)
a3437870
NA
2989{
2990 int retval;
972dc4de 2991 int hi = hstate_index(h);
a3437870 2992
9a305230
LS
2993 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2994 if (!hstate_kobjs[hi])
a3437870
NA
2995 return -ENOMEM;
2996
9a305230 2997 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
cc2205a6 2998 if (retval) {
9a305230 2999 kobject_put(hstate_kobjs[hi]);
cc2205a6
ML
3000 hstate_kobjs[hi] = NULL;
3001 }
a3437870
NA
3002
3003 return retval;
3004}
3005
3006static void __init hugetlb_sysfs_init(void)
3007{
3008 struct hstate *h;
3009 int err;
3010
3011 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
3012 if (!hugepages_kobj)
3013 return;
3014
3015 for_each_hstate(h) {
9a305230
LS
3016 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
3017 hstate_kobjs, &hstate_attr_group);
a3437870 3018 if (err)
282f4214 3019 pr_err("HugeTLB: Unable to add hstate %s", h->name);
a3437870
NA
3020 }
3021}
3022
9a305230
LS
3023#ifdef CONFIG_NUMA
3024
3025/*
3026 * node_hstate/s - associate per node hstate attributes, via their kobjects,
10fbcf4c
KS
3027 * with node devices in node_devices[] using a parallel array. The array
3028 * index of a node device or _hstate == node id.
3029 * This is here to avoid any static dependency of the node device driver, in
9a305230
LS
3030 * the base kernel, on the hugetlb module.
3031 */
3032struct node_hstate {
3033 struct kobject *hugepages_kobj;
3034 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3035};
b4e289a6 3036static struct node_hstate node_hstates[MAX_NUMNODES];
9a305230
LS
3037
3038/*
10fbcf4c 3039 * A subset of global hstate attributes for node devices
9a305230
LS
3040 */
3041static struct attribute *per_node_hstate_attrs[] = {
3042 &nr_hugepages_attr.attr,
3043 &free_hugepages_attr.attr,
3044 &surplus_hugepages_attr.attr,
3045 NULL,
3046};
3047
67e5ed96 3048static const struct attribute_group per_node_hstate_attr_group = {
9a305230
LS
3049 .attrs = per_node_hstate_attrs,
3050};
3051
3052/*
10fbcf4c 3053 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
9a305230
LS
3054 * Returns node id via non-NULL nidp.
3055 */
3056static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3057{
3058 int nid;
3059
3060 for (nid = 0; nid < nr_node_ids; nid++) {
3061 struct node_hstate *nhs = &node_hstates[nid];
3062 int i;
3063 for (i = 0; i < HUGE_MAX_HSTATE; i++)
3064 if (nhs->hstate_kobjs[i] == kobj) {
3065 if (nidp)
3066 *nidp = nid;
3067 return &hstates[i];
3068 }
3069 }
3070
3071 BUG();
3072 return NULL;
3073}
3074
3075/*
10fbcf4c 3076 * Unregister hstate attributes from a single node device.
9a305230
LS
3077 * No-op if no hstate attributes attached.
3078 */
3cd8b44f 3079static void hugetlb_unregister_node(struct node *node)
9a305230
LS
3080{
3081 struct hstate *h;
10fbcf4c 3082 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
3083
3084 if (!nhs->hugepages_kobj)
9b5e5d0f 3085 return; /* no hstate attributes */
9a305230 3086
972dc4de
AK
3087 for_each_hstate(h) {
3088 int idx = hstate_index(h);
3089 if (nhs->hstate_kobjs[idx]) {
3090 kobject_put(nhs->hstate_kobjs[idx]);
3091 nhs->hstate_kobjs[idx] = NULL;
9a305230 3092 }
972dc4de 3093 }
9a305230
LS
3094
3095 kobject_put(nhs->hugepages_kobj);
3096 nhs->hugepages_kobj = NULL;
3097}
3098
9a305230
LS
3099
3100/*
10fbcf4c 3101 * Register hstate attributes for a single node device.
9a305230
LS
3102 * No-op if attributes already registered.
3103 */
3cd8b44f 3104static void hugetlb_register_node(struct node *node)
9a305230
LS
3105{
3106 struct hstate *h;
10fbcf4c 3107 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
3108 int err;
3109
3110 if (nhs->hugepages_kobj)
3111 return; /* already allocated */
3112
3113 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
10fbcf4c 3114 &node->dev.kobj);
9a305230
LS
3115 if (!nhs->hugepages_kobj)
3116 return;
3117
3118 for_each_hstate(h) {
3119 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
3120 nhs->hstate_kobjs,
3121 &per_node_hstate_attr_group);
3122 if (err) {
282f4214 3123 pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
ffb22af5 3124 h->name, node->dev.id);
9a305230
LS
3125 hugetlb_unregister_node(node);
3126 break;
3127 }
3128 }
3129}
3130
3131/*
9b5e5d0f 3132 * hugetlb init time: register hstate attributes for all registered node
10fbcf4c
KS
3133 * devices of nodes that have memory. All on-line nodes should have
3134 * registered their associated device by this time.
9a305230 3135 */
7d9ca000 3136static void __init hugetlb_register_all_nodes(void)
9a305230
LS
3137{
3138 int nid;
3139
8cebfcd0 3140 for_each_node_state(nid, N_MEMORY) {
8732794b 3141 struct node *node = node_devices[nid];
10fbcf4c 3142 if (node->dev.id == nid)
9a305230
LS
3143 hugetlb_register_node(node);
3144 }
3145
3146 /*
10fbcf4c 3147 * Let the node device driver know we're here so it can
9a305230
LS
3148 * [un]register hstate attributes on node hotplug.
3149 */
3150 register_hugetlbfs_with_node(hugetlb_register_node,
3151 hugetlb_unregister_node);
3152}
3153#else /* !CONFIG_NUMA */
3154
3155static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3156{
3157 BUG();
3158 if (nidp)
3159 *nidp = -1;
3160 return NULL;
3161}
3162
9a305230
LS
3163static void hugetlb_register_all_nodes(void) { }
3164
3165#endif
3166
a3437870
NA
3167static int __init hugetlb_init(void)
3168{
8382d914
DB
3169 int i;
3170
c2833a5b
MK
3171 if (!hugepages_supported()) {
3172 if (hugetlb_max_hstate || default_hstate_max_huge_pages)
3173 pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
0ef89d25 3174 return 0;
c2833a5b 3175 }
a3437870 3176
282f4214
MK
3177 /*
3178 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists. Some
3179 * architectures depend on setup being done here.
3180 */
3181 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
3182 if (!parsed_default_hugepagesz) {
3183 /*
3184 * If we did not parse a default huge page size, set
3185 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
3186 * number of huge pages for this default size was implicitly
3187 * specified, set that here as well.
3188 * Note that the implicit setting will overwrite an explicit
3189 * setting. A warning will be printed in this case.
3190 */
3191 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
3192 if (default_hstate_max_huge_pages) {
3193 if (default_hstate.max_huge_pages) {
3194 char buf[32];
3195
3196 string_get_size(huge_page_size(&default_hstate),
3197 1, STRING_UNITS_2, buf, 32);
3198 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
3199 default_hstate.max_huge_pages, buf);
3200 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
3201 default_hstate_max_huge_pages);
3202 }
3203 default_hstate.max_huge_pages =
3204 default_hstate_max_huge_pages;
d715cf80 3205 }
f8b74815 3206 }
a3437870 3207
cf11e85f 3208 hugetlb_cma_check();
a3437870 3209 hugetlb_init_hstates();
aa888a74 3210 gather_bootmem_prealloc();
a3437870
NA
3211 report_hugepages();
3212
3213 hugetlb_sysfs_init();
9a305230 3214 hugetlb_register_all_nodes();
7179e7bf 3215 hugetlb_cgroup_file_init();
9a305230 3216
8382d914
DB
3217#ifdef CONFIG_SMP
3218 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
3219#else
3220 num_fault_mutexes = 1;
3221#endif
c672c7f2 3222 hugetlb_fault_mutex_table =
6da2ec56
KC
3223 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
3224 GFP_KERNEL);
c672c7f2 3225 BUG_ON(!hugetlb_fault_mutex_table);
8382d914
DB
3226
3227 for (i = 0; i < num_fault_mutexes; i++)
c672c7f2 3228 mutex_init(&hugetlb_fault_mutex_table[i]);
a3437870
NA
3229 return 0;
3230}
3e89e1c5 3231subsys_initcall(hugetlb_init);
a3437870 3232
ae94da89
MK
3233/* Overwritten by architectures with more huge page sizes */
3234bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
9fee021d 3235{
ae94da89 3236 return size == HPAGE_SIZE;
9fee021d
VT
3237}
3238
d00181b9 3239void __init hugetlb_add_hstate(unsigned int order)
a3437870
NA
3240{
3241 struct hstate *h;
8faa8b07
AK
3242 unsigned long i;
3243
a3437870 3244 if (size_to_hstate(PAGE_SIZE << order)) {
a3437870
NA
3245 return;
3246 }
47d38344 3247 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
a3437870 3248 BUG_ON(order == 0);
47d38344 3249 h = &hstates[hugetlb_max_hstate++];
a3437870
NA
3250 h->order = order;
3251 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
8faa8b07
AK
3252 for (i = 0; i < MAX_NUMNODES; ++i)
3253 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
0edaecfa 3254 INIT_LIST_HEAD(&h->hugepage_activelist);
54f18d35
AM
3255 h->next_nid_to_alloc = first_memory_node;
3256 h->next_nid_to_free = first_memory_node;
a3437870
NA
3257 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
3258 huge_page_size(h)/1024);
8faa8b07 3259
a3437870
NA
3260 parsed_hstate = h;
3261}
3262
282f4214
MK
3263/*
3264 * hugepages command line processing
3265 * hugepages normally follows a valid hugepagsz or default_hugepagsz
3266 * specification. If not, ignore the hugepages value. hugepages can also
3267 * be the first huge page command line option in which case it implicitly
3268 * specifies the number of huge pages for the default size.
3269 */
3270static int __init hugepages_setup(char *s)
a3437870
NA
3271{
3272 unsigned long *mhp;
8faa8b07 3273 static unsigned long *last_mhp;
a3437870 3274
9fee021d 3275 if (!parsed_valid_hugepagesz) {
282f4214 3276 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
9fee021d 3277 parsed_valid_hugepagesz = true;
282f4214 3278 return 0;
9fee021d 3279 }
282f4214 3280
a3437870 3281 /*
282f4214
MK
3282 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
3283 * yet, so this hugepages= parameter goes to the "default hstate".
3284 * Otherwise, it goes with the previously parsed hugepagesz or
3285 * default_hugepagesz.
a3437870 3286 */
9fee021d 3287 else if (!hugetlb_max_hstate)
a3437870
NA
3288 mhp = &default_hstate_max_huge_pages;
3289 else
3290 mhp = &parsed_hstate->max_huge_pages;
3291
8faa8b07 3292 if (mhp == last_mhp) {
282f4214
MK
3293 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
3294 return 0;
8faa8b07
AK
3295 }
3296
a3437870
NA
3297 if (sscanf(s, "%lu", mhp) <= 0)
3298 *mhp = 0;
3299
8faa8b07
AK
3300 /*
3301 * Global state is always initialized later in hugetlb_init.
3302 * But we need to allocate >= MAX_ORDER hstates here early to still
3303 * use the bootmem allocator.
3304 */
47d38344 3305 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
8faa8b07
AK
3306 hugetlb_hstate_alloc_pages(parsed_hstate);
3307
3308 last_mhp = mhp;
3309
a3437870
NA
3310 return 1;
3311}
282f4214 3312__setup("hugepages=", hugepages_setup);
e11bfbfc 3313
282f4214
MK
3314/*
3315 * hugepagesz command line processing
3316 * A specific huge page size can only be specified once with hugepagesz.
3317 * hugepagesz is followed by hugepages on the command line. The global
3318 * variable 'parsed_valid_hugepagesz' is used to determine if prior
3319 * hugepagesz argument was valid.
3320 */
359f2544 3321static int __init hugepagesz_setup(char *s)
e11bfbfc 3322{
359f2544 3323 unsigned long size;
282f4214
MK
3324 struct hstate *h;
3325
3326 parsed_valid_hugepagesz = false;
359f2544
MK
3327 size = (unsigned long)memparse(s, NULL);
3328
3329 if (!arch_hugetlb_valid_size(size)) {
282f4214 3330 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
359f2544
MK
3331 return 0;
3332 }
3333
282f4214
MK
3334 h = size_to_hstate(size);
3335 if (h) {
3336 /*
3337 * hstate for this size already exists. This is normally
3338 * an error, but is allowed if the existing hstate is the
3339 * default hstate. More specifically, it is only allowed if
3340 * the number of huge pages for the default hstate was not
3341 * previously specified.
3342 */
3343 if (!parsed_default_hugepagesz || h != &default_hstate ||
3344 default_hstate.max_huge_pages) {
3345 pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
3346 return 0;
3347 }
3348
3349 /*
3350 * No need to call hugetlb_add_hstate() as hstate already
3351 * exists. But, do set parsed_hstate so that a following
3352 * hugepages= parameter will be applied to this hstate.
3353 */
3354 parsed_hstate = h;
3355 parsed_valid_hugepagesz = true;
3356 return 1;
38237830
MK
3357 }
3358
359f2544 3359 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
282f4214 3360 parsed_valid_hugepagesz = true;
e11bfbfc
NP
3361 return 1;
3362}
359f2544
MK
3363__setup("hugepagesz=", hugepagesz_setup);
3364
282f4214
MK
3365/*
3366 * default_hugepagesz command line input
3367 * Only one instance of default_hugepagesz allowed on command line.
3368 */
ae94da89 3369static int __init default_hugepagesz_setup(char *s)
e11bfbfc 3370{
ae94da89
MK
3371 unsigned long size;
3372
282f4214 3373 parsed_valid_hugepagesz = false;
282f4214
MK
3374 if (parsed_default_hugepagesz) {
3375 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
3376 return 0;
3377 }
3378
ae94da89
MK
3379 size = (unsigned long)memparse(s, NULL);
3380
3381 if (!arch_hugetlb_valid_size(size)) {
282f4214 3382 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
ae94da89
MK
3383 return 0;
3384 }
3385
282f4214
MK
3386 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3387 parsed_valid_hugepagesz = true;
3388 parsed_default_hugepagesz = true;
3389 default_hstate_idx = hstate_index(size_to_hstate(size));
3390
3391 /*
3392 * The number of default huge pages (for this size) could have been
3393 * specified as the first hugetlb parameter: hugepages=X. If so,
3394 * then default_hstate_max_huge_pages is set. If the default huge
3395 * page size is gigantic (>= MAX_ORDER), then the pages must be
3396 * allocated here from bootmem allocator.
3397 */
3398 if (default_hstate_max_huge_pages) {
3399 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
3400 if (hstate_is_gigantic(&default_hstate))
3401 hugetlb_hstate_alloc_pages(&default_hstate);
3402 default_hstate_max_huge_pages = 0;
3403 }
3404
e11bfbfc
NP
3405 return 1;
3406}
ae94da89 3407__setup("default_hugepagesz=", default_hugepagesz_setup);
a3437870 3408
8ca39e68 3409static unsigned int allowed_mems_nr(struct hstate *h)
8a213460
NA
3410{
3411 int node;
3412 unsigned int nr = 0;
8ca39e68
MS
3413 nodemask_t *mpol_allowed;
3414 unsigned int *array = h->free_huge_pages_node;
3415 gfp_t gfp_mask = htlb_alloc_mask(h);
3416
3417 mpol_allowed = policy_nodemask_current(gfp_mask);
8a213460 3418
8ca39e68 3419 for_each_node_mask(node, cpuset_current_mems_allowed) {
c93b0a99 3420 if (!mpol_allowed || node_isset(node, *mpol_allowed))
8ca39e68
MS
3421 nr += array[node];
3422 }
8a213460
NA
3423
3424 return nr;
3425}
3426
3427#ifdef CONFIG_SYSCTL
17743798
MS
3428static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
3429 void *buffer, size_t *length,
3430 loff_t *ppos, unsigned long *out)
3431{
3432 struct ctl_table dup_table;
3433
3434 /*
3435 * In order to avoid races with __do_proc_doulongvec_minmax(), we
3436 * can duplicate the @table and alter the duplicate of it.
3437 */
3438 dup_table = *table;
3439 dup_table.data = out;
3440
3441 return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
3442}
3443
06808b08
LS
3444static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
3445 struct ctl_table *table, int write,
32927393 3446 void *buffer, size_t *length, loff_t *ppos)
1da177e4 3447{
e5ff2159 3448 struct hstate *h = &default_hstate;
238d3c13 3449 unsigned long tmp = h->max_huge_pages;
08d4a246 3450 int ret;
e5ff2159 3451
457c1b27 3452 if (!hugepages_supported())
86613628 3453 return -EOPNOTSUPP;
457c1b27 3454
17743798
MS
3455 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3456 &tmp);
08d4a246
MH
3457 if (ret)
3458 goto out;
e5ff2159 3459
238d3c13
DR
3460 if (write)
3461 ret = __nr_hugepages_store_common(obey_mempolicy, h,
3462 NUMA_NO_NODE, tmp, *length);
08d4a246
MH
3463out:
3464 return ret;
1da177e4 3465}
396faf03 3466
06808b08 3467int hugetlb_sysctl_handler(struct ctl_table *table, int write,
32927393 3468 void *buffer, size_t *length, loff_t *ppos)
06808b08
LS
3469{
3470
3471 return hugetlb_sysctl_handler_common(false, table, write,
3472 buffer, length, ppos);
3473}
3474
3475#ifdef CONFIG_NUMA
3476int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
32927393 3477 void *buffer, size_t *length, loff_t *ppos)
06808b08
LS
3478{
3479 return hugetlb_sysctl_handler_common(true, table, write,
3480 buffer, length, ppos);
3481}
3482#endif /* CONFIG_NUMA */
3483
a3d0c6aa 3484int hugetlb_overcommit_handler(struct ctl_table *table, int write,
32927393 3485 void *buffer, size_t *length, loff_t *ppos)
a3d0c6aa 3486{
a5516438 3487 struct hstate *h = &default_hstate;
e5ff2159 3488 unsigned long tmp;
08d4a246 3489 int ret;
e5ff2159 3490
457c1b27 3491 if (!hugepages_supported())
86613628 3492 return -EOPNOTSUPP;
457c1b27 3493
c033a93c 3494 tmp = h->nr_overcommit_huge_pages;
e5ff2159 3495
bae7f4ae 3496 if (write && hstate_is_gigantic(h))
adbe8726
EM
3497 return -EINVAL;
3498
17743798
MS
3499 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3500 &tmp);
08d4a246
MH
3501 if (ret)
3502 goto out;
e5ff2159
AK
3503
3504 if (write) {
3505 spin_lock(&hugetlb_lock);
3506 h->nr_overcommit_huge_pages = tmp;
3507 spin_unlock(&hugetlb_lock);
3508 }
08d4a246
MH
3509out:
3510 return ret;
a3d0c6aa
NA
3511}
3512
1da177e4
LT
3513#endif /* CONFIG_SYSCTL */
3514
e1759c21 3515void hugetlb_report_meminfo(struct seq_file *m)
1da177e4 3516{
fcb2b0c5
RG
3517 struct hstate *h;
3518 unsigned long total = 0;
3519
457c1b27
NA
3520 if (!hugepages_supported())
3521 return;
fcb2b0c5
RG
3522
3523 for_each_hstate(h) {
3524 unsigned long count = h->nr_huge_pages;
3525
3526 total += (PAGE_SIZE << huge_page_order(h)) * count;
3527
3528 if (h == &default_hstate)
3529 seq_printf(m,
3530 "HugePages_Total: %5lu\n"
3531 "HugePages_Free: %5lu\n"
3532 "HugePages_Rsvd: %5lu\n"
3533 "HugePages_Surp: %5lu\n"
3534 "Hugepagesize: %8lu kB\n",
3535 count,
3536 h->free_huge_pages,
3537 h->resv_huge_pages,
3538 h->surplus_huge_pages,
3539 (PAGE_SIZE << huge_page_order(h)) / 1024);
3540 }
3541
3542 seq_printf(m, "Hugetlb: %8lu kB\n", total / 1024);
1da177e4
LT
3543}
3544
7981593b 3545int hugetlb_report_node_meminfo(char *buf, int len, int nid)
1da177e4 3546{
a5516438 3547 struct hstate *h = &default_hstate;
7981593b 3548
457c1b27
NA
3549 if (!hugepages_supported())
3550 return 0;
7981593b
JP
3551
3552 return sysfs_emit_at(buf, len,
3553 "Node %d HugePages_Total: %5u\n"
3554 "Node %d HugePages_Free: %5u\n"
3555 "Node %d HugePages_Surp: %5u\n",
3556 nid, h->nr_huge_pages_node[nid],
3557 nid, h->free_huge_pages_node[nid],
3558 nid, h->surplus_huge_pages_node[nid]);
1da177e4
LT
3559}
3560
949f7ec5
DR
3561void hugetlb_show_meminfo(void)
3562{
3563 struct hstate *h;
3564 int nid;
3565
457c1b27
NA
3566 if (!hugepages_supported())
3567 return;
3568
949f7ec5
DR
3569 for_each_node_state(nid, N_MEMORY)
3570 for_each_hstate(h)
3571 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3572 nid,
3573 h->nr_huge_pages_node[nid],
3574 h->free_huge_pages_node[nid],
3575 h->surplus_huge_pages_node[nid],
3576 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3577}
3578
5d317b2b
NH
3579void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3580{
3581 seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3582 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3583}
3584
1da177e4
LT
3585/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3586unsigned long hugetlb_total_pages(void)
3587{
d0028588
WL
3588 struct hstate *h;
3589 unsigned long nr_total_pages = 0;
3590
3591 for_each_hstate(h)
3592 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3593 return nr_total_pages;
1da177e4 3594}
1da177e4 3595
a5516438 3596static int hugetlb_acct_memory(struct hstate *h, long delta)
fc1b8a73
MG
3597{
3598 int ret = -ENOMEM;
3599
0aa7f354
ML
3600 if (!delta)
3601 return 0;
3602
fc1b8a73
MG
3603 spin_lock(&hugetlb_lock);
3604 /*
3605 * When cpuset is configured, it breaks the strict hugetlb page
3606 * reservation as the accounting is done on a global variable. Such
3607 * reservation is completely rubbish in the presence of cpuset because
3608 * the reservation is not checked against page availability for the
3609 * current cpuset. Application can still potentially OOM'ed by kernel
3610 * with lack of free htlb page in cpuset that the task is in.
3611 * Attempt to enforce strict accounting with cpuset is almost
3612 * impossible (or too ugly) because cpuset is too fluid that
3613 * task or memory node can be dynamically moved between cpusets.
3614 *
3615 * The change of semantics for shared hugetlb mapping with cpuset is
3616 * undesirable. However, in order to preserve some of the semantics,
3617 * we fall back to check against current free page availability as
3618 * a best attempt and hopefully to minimize the impact of changing
3619 * semantics that cpuset has.
8ca39e68
MS
3620 *
3621 * Apart from cpuset, we also have memory policy mechanism that
3622 * also determines from which node the kernel will allocate memory
3623 * in a NUMA system. So similar to cpuset, we also should consider
3624 * the memory policy of the current task. Similar to the description
3625 * above.
fc1b8a73
MG
3626 */
3627 if (delta > 0) {
a5516438 3628 if (gather_surplus_pages(h, delta) < 0)
fc1b8a73
MG
3629 goto out;
3630
8ca39e68 3631 if (delta > allowed_mems_nr(h)) {
a5516438 3632 return_unused_surplus_pages(h, delta);
fc1b8a73
MG
3633 goto out;
3634 }
3635 }
3636
3637 ret = 0;
3638 if (delta < 0)
a5516438 3639 return_unused_surplus_pages(h, (unsigned long) -delta);
fc1b8a73
MG
3640
3641out:
3642 spin_unlock(&hugetlb_lock);
3643 return ret;
3644}
3645
84afd99b
AW
3646static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3647{
f522c3ac 3648 struct resv_map *resv = vma_resv_map(vma);
84afd99b
AW
3649
3650 /*
3651 * This new VMA should share its siblings reservation map if present.
3652 * The VMA will only ever have a valid reservation map pointer where
3653 * it is being copied for another still existing VMA. As that VMA
25985edc 3654 * has a reference to the reservation map it cannot disappear until
84afd99b
AW
3655 * after this open call completes. It is therefore safe to take a
3656 * new reference here without additional locking.
3657 */
4e35f483 3658 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
f522c3ac 3659 kref_get(&resv->refs);
84afd99b
AW
3660}
3661
a1e78772
MG
3662static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3663{
a5516438 3664 struct hstate *h = hstate_vma(vma);
f522c3ac 3665 struct resv_map *resv = vma_resv_map(vma);
90481622 3666 struct hugepage_subpool *spool = subpool_vma(vma);
4e35f483 3667 unsigned long reserve, start, end;
1c5ecae3 3668 long gbl_reserve;
84afd99b 3669
4e35f483
JK
3670 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3671 return;
84afd99b 3672
4e35f483
JK
3673 start = vma_hugecache_offset(h, vma, vma->vm_start);
3674 end = vma_hugecache_offset(h, vma, vma->vm_end);
84afd99b 3675
4e35f483 3676 reserve = (end - start) - region_count(resv, start, end);
e9fe92ae 3677 hugetlb_cgroup_uncharge_counter(resv, start, end);
4e35f483 3678 if (reserve) {
1c5ecae3
MK
3679 /*
3680 * Decrement reserve counts. The global reserve count may be
3681 * adjusted if the subpool has a minimum size.
3682 */
3683 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3684 hugetlb_acct_memory(h, -gbl_reserve);
84afd99b 3685 }
e9fe92ae
MA
3686
3687 kref_put(&resv->refs, resv_map_release);
a1e78772
MG
3688}
3689
31383c68
DW
3690static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
3691{
3692 if (addr & ~(huge_page_mask(hstate_vma(vma))))
3693 return -EINVAL;
3694 return 0;
3695}
3696
05ea8860
DW
3697static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
3698{
3699 struct hstate *hstate = hstate_vma(vma);
3700
3701 return 1UL << huge_page_shift(hstate);
3702}
3703
1da177e4
LT
3704/*
3705 * We cannot handle pagefaults against hugetlb pages at all. They cause
3706 * handle_mm_fault() to try to instantiate regular-sized pages in the
6c26d310 3707 * hugepage VMA. do_page_fault() is supposed to trap this, so BUG is we get
1da177e4
LT
3708 * this far.
3709 */
b3ec9f33 3710static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
1da177e4
LT
3711{
3712 BUG();
d0217ac0 3713 return 0;
1da177e4
LT
3714}
3715
eec3636a
JC
3716/*
3717 * When a new function is introduced to vm_operations_struct and added
3718 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
3719 * This is because under System V memory model, mappings created via
3720 * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
3721 * their original vm_ops are overwritten with shm_vm_ops.
3722 */
f0f37e2f 3723const struct vm_operations_struct hugetlb_vm_ops = {
d0217ac0 3724 .fault = hugetlb_vm_op_fault,
84afd99b 3725 .open = hugetlb_vm_op_open,
a1e78772 3726 .close = hugetlb_vm_op_close,
dd3b614f 3727 .may_split = hugetlb_vm_op_split,
05ea8860 3728 .pagesize = hugetlb_vm_op_pagesize,
1da177e4
LT
3729};
3730
1e8f889b
DG
3731static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3732 int writable)
63551ae0
DG
3733{
3734 pte_t entry;
3735
1e8f889b 3736 if (writable) {
106c992a
GS
3737 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3738 vma->vm_page_prot)));
63551ae0 3739 } else {
106c992a
GS
3740 entry = huge_pte_wrprotect(mk_huge_pte(page,
3741 vma->vm_page_prot));
63551ae0
DG
3742 }
3743 entry = pte_mkyoung(entry);
3744 entry = pte_mkhuge(entry);
d9ed9faa 3745 entry = arch_make_huge_pte(entry, vma, page, writable);
63551ae0
DG
3746
3747 return entry;
3748}
3749
1e8f889b
DG
3750static void set_huge_ptep_writable(struct vm_area_struct *vma,
3751 unsigned long address, pte_t *ptep)
3752{
3753 pte_t entry;
3754
106c992a 3755 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
32f84528 3756 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4b3073e1 3757 update_mmu_cache(vma, address, ptep);
1e8f889b
DG
3758}
3759
d5ed7444 3760bool is_hugetlb_entry_migration(pte_t pte)
4a705fef
NH
3761{
3762 swp_entry_t swp;
3763
3764 if (huge_pte_none(pte) || pte_present(pte))
d5ed7444 3765 return false;
4a705fef 3766 swp = pte_to_swp_entry(pte);
d79d176a 3767 if (is_migration_entry(swp))
d5ed7444 3768 return true;
4a705fef 3769 else
d5ed7444 3770 return false;
4a705fef
NH
3771}
3772
3e5c3600 3773static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
4a705fef
NH
3774{
3775 swp_entry_t swp;
3776
3777 if (huge_pte_none(pte) || pte_present(pte))
3e5c3600 3778 return false;
4a705fef 3779 swp = pte_to_swp_entry(pte);
d79d176a 3780 if (is_hwpoison_entry(swp))
3e5c3600 3781 return true;
4a705fef 3782 else
3e5c3600 3783 return false;
4a705fef 3784}
1e8f889b 3785
63551ae0
DG
3786int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3787 struct vm_area_struct *vma)
3788{
5e41540c 3789 pte_t *src_pte, *dst_pte, entry, dst_entry;
63551ae0 3790 struct page *ptepage;
1c59827d 3791 unsigned long addr;
1e8f889b 3792 int cow;
a5516438
AK
3793 struct hstate *h = hstate_vma(vma);
3794 unsigned long sz = huge_page_size(h);
c0d0381a 3795 struct address_space *mapping = vma->vm_file->f_mapping;
ac46d4f3 3796 struct mmu_notifier_range range;
e8569dd2 3797 int ret = 0;
1e8f889b
DG
3798
3799 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
63551ae0 3800
ac46d4f3 3801 if (cow) {
7269f999 3802 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src,
6f4f13e8 3803 vma->vm_start,
ac46d4f3
JG
3804 vma->vm_end);
3805 mmu_notifier_invalidate_range_start(&range);
c0d0381a
MK
3806 } else {
3807 /*
3808 * For shared mappings i_mmap_rwsem must be held to call
3809 * huge_pte_alloc, otherwise the returned ptep could go
3810 * away if part of a shared pmd and another thread calls
3811 * huge_pmd_unshare.
3812 */
3813 i_mmap_lock_read(mapping);
ac46d4f3 3814 }
e8569dd2 3815
a5516438 3816 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
cb900f41 3817 spinlock_t *src_ptl, *dst_ptl;
7868a208 3818 src_pte = huge_pte_offset(src, addr, sz);
c74df32c
HD
3819 if (!src_pte)
3820 continue;
a5516438 3821 dst_pte = huge_pte_alloc(dst, addr, sz);
e8569dd2
AS
3822 if (!dst_pte) {
3823 ret = -ENOMEM;
3824 break;
3825 }
c5c99429 3826
5e41540c
MK
3827 /*
3828 * If the pagetables are shared don't copy or take references.
3829 * dst_pte == src_pte is the common case of src/dest sharing.
3830 *
3831 * However, src could have 'unshared' and dst shares with
3832 * another vma. If dst_pte !none, this implies sharing.
3833 * Check here before taking page table lock, and once again
3834 * after taking the lock below.
3835 */
3836 dst_entry = huge_ptep_get(dst_pte);
3837 if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
c5c99429
LW
3838 continue;
3839
cb900f41
KS
3840 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3841 src_ptl = huge_pte_lockptr(h, src, src_pte);
3842 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4a705fef 3843 entry = huge_ptep_get(src_pte);
5e41540c
MK
3844 dst_entry = huge_ptep_get(dst_pte);
3845 if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
3846 /*
3847 * Skip if src entry none. Also, skip in the
3848 * unlikely case dst entry !none as this implies
3849 * sharing with another vma.
3850 */
4a705fef
NH
3851 ;
3852 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3853 is_hugetlb_entry_hwpoisoned(entry))) {
3854 swp_entry_t swp_entry = pte_to_swp_entry(entry);
3855
3856 if (is_write_migration_entry(swp_entry) && cow) {
3857 /*
3858 * COW mappings require pages in both
3859 * parent and child to be set to read.
3860 */
3861 make_migration_entry_read(&swp_entry);
3862 entry = swp_entry_to_pte(swp_entry);
e5251fd4
PA
3863 set_huge_swap_pte_at(src, addr, src_pte,
3864 entry, sz);
4a705fef 3865 }
e5251fd4 3866 set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
4a705fef 3867 } else {
34ee645e 3868 if (cow) {
0f10851e
JG
3869 /*
3870 * No need to notify as we are downgrading page
3871 * table protection not changing it to point
3872 * to a new page.
3873 *
ad56b738 3874 * See Documentation/vm/mmu_notifier.rst
0f10851e 3875 */
7f2e9525 3876 huge_ptep_set_wrprotect(src, addr, src_pte);
34ee645e 3877 }
0253d634 3878 entry = huge_ptep_get(src_pte);
1c59827d
HD
3879 ptepage = pte_page(entry);
3880 get_page(ptepage);
53f9263b 3881 page_dup_rmap(ptepage, true);
1c59827d 3882 set_huge_pte_at(dst, addr, dst_pte, entry);
5d317b2b 3883 hugetlb_count_add(pages_per_huge_page(h), dst);
1c59827d 3884 }
cb900f41
KS
3885 spin_unlock(src_ptl);
3886 spin_unlock(dst_ptl);
63551ae0 3887 }
63551ae0 3888
e8569dd2 3889 if (cow)
ac46d4f3 3890 mmu_notifier_invalidate_range_end(&range);
c0d0381a
MK
3891 else
3892 i_mmap_unlock_read(mapping);
e8569dd2
AS
3893
3894 return ret;
63551ae0
DG
3895}
3896
24669e58
AK
3897void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3898 unsigned long start, unsigned long end,
3899 struct page *ref_page)
63551ae0
DG
3900{
3901 struct mm_struct *mm = vma->vm_mm;
3902 unsigned long address;
c7546f8f 3903 pte_t *ptep;
63551ae0 3904 pte_t pte;
cb900f41 3905 spinlock_t *ptl;
63551ae0 3906 struct page *page;
a5516438
AK
3907 struct hstate *h = hstate_vma(vma);
3908 unsigned long sz = huge_page_size(h);
ac46d4f3 3909 struct mmu_notifier_range range;
a5516438 3910
63551ae0 3911 WARN_ON(!is_vm_hugetlb_page(vma));
a5516438
AK
3912 BUG_ON(start & ~huge_page_mask(h));
3913 BUG_ON(end & ~huge_page_mask(h));
63551ae0 3914
07e32661
AK
3915 /*
3916 * This is a hugetlb vma, all the pte entries should point
3917 * to huge page.
3918 */
ed6a7935 3919 tlb_change_page_size(tlb, sz);
24669e58 3920 tlb_start_vma(tlb, vma);
dff11abe
MK
3921
3922 /*
3923 * If sharing possible, alert mmu notifiers of worst case.
3924 */
6f4f13e8
JG
3925 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
3926 end);
ac46d4f3
JG
3927 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
3928 mmu_notifier_invalidate_range_start(&range);
569f48b8 3929 address = start;
569f48b8 3930 for (; address < end; address += sz) {
7868a208 3931 ptep = huge_pte_offset(mm, address, sz);
4c887265 3932 if (!ptep)
c7546f8f
DG
3933 continue;
3934
cb900f41 3935 ptl = huge_pte_lock(h, mm, ptep);
34ae204f 3936 if (huge_pmd_unshare(mm, vma, &address, ptep)) {
31d49da5 3937 spin_unlock(ptl);
dff11abe
MK
3938 /*
3939 * We just unmapped a page of PMDs by clearing a PUD.
3940 * The caller's TLB flush range should cover this area.
3941 */
31d49da5
AK
3942 continue;
3943 }
39dde65c 3944
6629326b 3945 pte = huge_ptep_get(ptep);
31d49da5
AK
3946 if (huge_pte_none(pte)) {
3947 spin_unlock(ptl);
3948 continue;
3949 }
6629326b
HD
3950
3951 /*
9fbc1f63
NH
3952 * Migrating hugepage or HWPoisoned hugepage is already
3953 * unmapped and its refcount is dropped, so just clear pte here.
6629326b 3954 */
9fbc1f63 3955 if (unlikely(!pte_present(pte))) {
9386fac3 3956 huge_pte_clear(mm, address, ptep, sz);
31d49da5
AK
3957 spin_unlock(ptl);
3958 continue;
8c4894c6 3959 }
6629326b
HD
3960
3961 page = pte_page(pte);
04f2cbe3
MG
3962 /*
3963 * If a reference page is supplied, it is because a specific
3964 * page is being unmapped, not a range. Ensure the page we
3965 * are about to unmap is the actual page of interest.
3966 */
3967 if (ref_page) {
31d49da5
AK
3968 if (page != ref_page) {
3969 spin_unlock(ptl);
3970 continue;
3971 }
04f2cbe3
MG
3972 /*
3973 * Mark the VMA as having unmapped its page so that
3974 * future faults in this VMA will fail rather than
3975 * looking like data was lost
3976 */
3977 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3978 }
3979
c7546f8f 3980 pte = huge_ptep_get_and_clear(mm, address, ptep);
b528e4b6 3981 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
106c992a 3982 if (huge_pte_dirty(pte))
6649a386 3983 set_page_dirty(page);
9e81130b 3984
5d317b2b 3985 hugetlb_count_sub(pages_per_huge_page(h), mm);
d281ee61 3986 page_remove_rmap(page, true);
31d49da5 3987
cb900f41 3988 spin_unlock(ptl);
e77b0852 3989 tlb_remove_page_size(tlb, page, huge_page_size(h));
31d49da5
AK
3990 /*
3991 * Bail out after unmapping reference page if supplied
3992 */
3993 if (ref_page)
3994 break;
fe1668ae 3995 }
ac46d4f3 3996 mmu_notifier_invalidate_range_end(&range);
24669e58 3997 tlb_end_vma(tlb, vma);
1da177e4 3998}
63551ae0 3999
d833352a
MG
4000void __unmap_hugepage_range_final(struct mmu_gather *tlb,
4001 struct vm_area_struct *vma, unsigned long start,
4002 unsigned long end, struct page *ref_page)
4003{
4004 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
4005
4006 /*
4007 * Clear this flag so that x86's huge_pmd_share page_table_shareable
4008 * test will fail on a vma being torn down, and not grab a page table
4009 * on its way out. We're lucky that the flag has such an appropriate
4010 * name, and can in fact be safely cleared here. We could clear it
4011 * before the __unmap_hugepage_range above, but all that's necessary
c8c06efa 4012 * is to clear it before releasing the i_mmap_rwsem. This works
d833352a 4013 * because in the context this is called, the VMA is about to be
c8c06efa 4014 * destroyed and the i_mmap_rwsem is held.
d833352a
MG
4015 */
4016 vma->vm_flags &= ~VM_MAYSHARE;
4017}
4018
502717f4 4019void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
04f2cbe3 4020 unsigned long end, struct page *ref_page)
502717f4 4021{
24669e58 4022 struct mmu_gather tlb;
dff11abe 4023
a72afd87 4024 tlb_gather_mmu(&tlb, vma->vm_mm);
24669e58 4025 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
ae8eba8b 4026 tlb_finish_mmu(&tlb);
502717f4
CK
4027}
4028
04f2cbe3
MG
4029/*
4030 * This is called when the original mapper is failing to COW a MAP_PRIVATE
578b7725 4031 * mapping it owns the reserve page for. The intention is to unmap the page
04f2cbe3
MG
4032 * from other VMAs and let the children be SIGKILLed if they are faulting the
4033 * same region.
4034 */
2f4612af
DB
4035static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
4036 struct page *page, unsigned long address)
04f2cbe3 4037{
7526674d 4038 struct hstate *h = hstate_vma(vma);
04f2cbe3
MG
4039 struct vm_area_struct *iter_vma;
4040 struct address_space *mapping;
04f2cbe3
MG
4041 pgoff_t pgoff;
4042
4043 /*
4044 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
4045 * from page cache lookup which is in HPAGE_SIZE units.
4046 */
7526674d 4047 address = address & huge_page_mask(h);
36e4f20a
MH
4048 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
4049 vma->vm_pgoff;
93c76a3d 4050 mapping = vma->vm_file->f_mapping;
04f2cbe3 4051
4eb2b1dc
MG
4052 /*
4053 * Take the mapping lock for the duration of the table walk. As
4054 * this mapping should be shared between all the VMAs,
4055 * __unmap_hugepage_range() is called as the lock is already held
4056 */
83cde9e8 4057 i_mmap_lock_write(mapping);
6b2dbba8 4058 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
04f2cbe3
MG
4059 /* Do not unmap the current VMA */
4060 if (iter_vma == vma)
4061 continue;
4062
2f84a899
MG
4063 /*
4064 * Shared VMAs have their own reserves and do not affect
4065 * MAP_PRIVATE accounting but it is possible that a shared
4066 * VMA is using the same page so check and skip such VMAs.
4067 */
4068 if (iter_vma->vm_flags & VM_MAYSHARE)
4069 continue;
4070
04f2cbe3
MG
4071 /*
4072 * Unmap the page from other VMAs without their own reserves.
4073 * They get marked to be SIGKILLed if they fault in these
4074 * areas. This is because a future no-page fault on this VMA
4075 * could insert a zeroed page instead of the data existing
4076 * from the time of fork. This would look like data corruption
4077 */
4078 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
24669e58
AK
4079 unmap_hugepage_range(iter_vma, address,
4080 address + huge_page_size(h), page);
04f2cbe3 4081 }
83cde9e8 4082 i_mmap_unlock_write(mapping);
04f2cbe3
MG
4083}
4084
0fe6e20b
NH
4085/*
4086 * Hugetlb_cow() should be called with page lock of the original hugepage held.
ef009b25
MH
4087 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
4088 * cannot race with other handlers or page migration.
4089 * Keep the pte_same checks anyway to make transition from the mutex easier.
0fe6e20b 4090 */
2b740303 4091static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
974e6d66 4092 unsigned long address, pte_t *ptep,
3999f52e 4093 struct page *pagecache_page, spinlock_t *ptl)
1e8f889b 4094{
3999f52e 4095 pte_t pte;
a5516438 4096 struct hstate *h = hstate_vma(vma);
1e8f889b 4097 struct page *old_page, *new_page;
2b740303
SJ
4098 int outside_reserve = 0;
4099 vm_fault_t ret = 0;
974e6d66 4100 unsigned long haddr = address & huge_page_mask(h);
ac46d4f3 4101 struct mmu_notifier_range range;
1e8f889b 4102
3999f52e 4103 pte = huge_ptep_get(ptep);
1e8f889b
DG
4104 old_page = pte_page(pte);
4105
04f2cbe3 4106retry_avoidcopy:
1e8f889b
DG
4107 /* If no-one else is actually using this page, avoid the copy
4108 * and just make the page writable */
37a2140d 4109 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
5a49973d 4110 page_move_anon_rmap(old_page, vma);
5b7a1d40 4111 set_huge_ptep_writable(vma, haddr, ptep);
83c54070 4112 return 0;
1e8f889b
DG
4113 }
4114
04f2cbe3
MG
4115 /*
4116 * If the process that created a MAP_PRIVATE mapping is about to
4117 * perform a COW due to a shared page count, attempt to satisfy
4118 * the allocation without using the existing reserves. The pagecache
4119 * page is used to determine if the reserve at this address was
4120 * consumed or not. If reserves were used, a partial faulted mapping
4121 * at the time of fork() could consume its reserves on COW instead
4122 * of the full address range.
4123 */
5944d011 4124 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
04f2cbe3
MG
4125 old_page != pagecache_page)
4126 outside_reserve = 1;
4127
09cbfeaf 4128 get_page(old_page);
b76c8cfb 4129
ad4404a2
DB
4130 /*
4131 * Drop page table lock as buddy allocator may be called. It will
4132 * be acquired again before returning to the caller, as expected.
4133 */
cb900f41 4134 spin_unlock(ptl);
5b7a1d40 4135 new_page = alloc_huge_page(vma, haddr, outside_reserve);
1e8f889b 4136
2fc39cec 4137 if (IS_ERR(new_page)) {
04f2cbe3
MG
4138 /*
4139 * If a process owning a MAP_PRIVATE mapping fails to COW,
4140 * it is due to references held by a child and an insufficient
4141 * huge page pool. To guarantee the original mappers
4142 * reliability, unmap the page from child processes. The child
4143 * may get SIGKILLed if it later faults.
4144 */
4145 if (outside_reserve) {
e7dd91c4
MK
4146 struct address_space *mapping = vma->vm_file->f_mapping;
4147 pgoff_t idx;
4148 u32 hash;
4149
09cbfeaf 4150 put_page(old_page);
04f2cbe3 4151 BUG_ON(huge_pte_none(pte));
e7dd91c4
MK
4152 /*
4153 * Drop hugetlb_fault_mutex and i_mmap_rwsem before
4154 * unmapping. unmapping needs to hold i_mmap_rwsem
4155 * in write mode. Dropping i_mmap_rwsem in read mode
4156 * here is OK as COW mappings do not interact with
4157 * PMD sharing.
4158 *
4159 * Reacquire both after unmap operation.
4160 */
4161 idx = vma_hugecache_offset(h, vma, haddr);
4162 hash = hugetlb_fault_mutex_hash(mapping, idx);
4163 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4164 i_mmap_unlock_read(mapping);
4165
5b7a1d40 4166 unmap_ref_private(mm, vma, old_page, haddr);
e7dd91c4
MK
4167
4168 i_mmap_lock_read(mapping);
4169 mutex_lock(&hugetlb_fault_mutex_table[hash]);
2f4612af 4170 spin_lock(ptl);
5b7a1d40 4171 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
2f4612af
DB
4172 if (likely(ptep &&
4173 pte_same(huge_ptep_get(ptep), pte)))
4174 goto retry_avoidcopy;
4175 /*
4176 * race occurs while re-acquiring page table
4177 * lock, and our job is done.
4178 */
4179 return 0;
04f2cbe3
MG
4180 }
4181
2b740303 4182 ret = vmf_error(PTR_ERR(new_page));
ad4404a2 4183 goto out_release_old;
1e8f889b
DG
4184 }
4185
0fe6e20b
NH
4186 /*
4187 * When the original hugepage is shared one, it does not have
4188 * anon_vma prepared.
4189 */
44e2aa93 4190 if (unlikely(anon_vma_prepare(vma))) {
ad4404a2
DB
4191 ret = VM_FAULT_OOM;
4192 goto out_release_all;
44e2aa93 4193 }
0fe6e20b 4194
974e6d66 4195 copy_user_huge_page(new_page, old_page, address, vma,
47ad8475 4196 pages_per_huge_page(h));
0ed361de 4197 __SetPageUptodate(new_page);
1e8f889b 4198
7269f999 4199 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
6f4f13e8 4200 haddr + huge_page_size(h));
ac46d4f3 4201 mmu_notifier_invalidate_range_start(&range);
ad4404a2 4202
b76c8cfb 4203 /*
cb900f41 4204 * Retake the page table lock to check for racing updates
b76c8cfb
LW
4205 * before the page tables are altered
4206 */
cb900f41 4207 spin_lock(ptl);
5b7a1d40 4208 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
a9af0c5d 4209 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
07443a85
JK
4210 ClearPagePrivate(new_page);
4211
1e8f889b 4212 /* Break COW */
5b7a1d40 4213 huge_ptep_clear_flush(vma, haddr, ptep);
ac46d4f3 4214 mmu_notifier_invalidate_range(mm, range.start, range.end);
5b7a1d40 4215 set_huge_pte_at(mm, haddr, ptep,
1e8f889b 4216 make_huge_pte(vma, new_page, 1));
d281ee61 4217 page_remove_rmap(old_page, true);
5b7a1d40 4218 hugepage_add_new_anon_rmap(new_page, vma, haddr);
cb6acd01 4219 set_page_huge_active(new_page);
1e8f889b
DG
4220 /* Make the old page be freed below */
4221 new_page = old_page;
4222 }
cb900f41 4223 spin_unlock(ptl);
ac46d4f3 4224 mmu_notifier_invalidate_range_end(&range);
ad4404a2 4225out_release_all:
5b7a1d40 4226 restore_reserve_on_error(h, vma, haddr, new_page);
09cbfeaf 4227 put_page(new_page);
ad4404a2 4228out_release_old:
09cbfeaf 4229 put_page(old_page);
8312034f 4230
ad4404a2
DB
4231 spin_lock(ptl); /* Caller expects lock to be held */
4232 return ret;
1e8f889b
DG
4233}
4234
04f2cbe3 4235/* Return the pagecache page at a given address within a VMA */
a5516438
AK
4236static struct page *hugetlbfs_pagecache_page(struct hstate *h,
4237 struct vm_area_struct *vma, unsigned long address)
04f2cbe3
MG
4238{
4239 struct address_space *mapping;
e7c4b0bf 4240 pgoff_t idx;
04f2cbe3
MG
4241
4242 mapping = vma->vm_file->f_mapping;
a5516438 4243 idx = vma_hugecache_offset(h, vma, address);
04f2cbe3
MG
4244
4245 return find_lock_page(mapping, idx);
4246}
4247
3ae77f43
HD
4248/*
4249 * Return whether there is a pagecache page to back given address within VMA.
4250 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
4251 */
4252static bool hugetlbfs_pagecache_present(struct hstate *h,
2a15efc9
HD
4253 struct vm_area_struct *vma, unsigned long address)
4254{
4255 struct address_space *mapping;
4256 pgoff_t idx;
4257 struct page *page;
4258
4259 mapping = vma->vm_file->f_mapping;
4260 idx = vma_hugecache_offset(h, vma, address);
4261
4262 page = find_get_page(mapping, idx);
4263 if (page)
4264 put_page(page);
4265 return page != NULL;
4266}
4267
ab76ad54
MK
4268int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
4269 pgoff_t idx)
4270{
4271 struct inode *inode = mapping->host;
4272 struct hstate *h = hstate_inode(inode);
4273 int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
4274
4275 if (err)
4276 return err;
4277 ClearPagePrivate(page);
4278
22146c3c
MK
4279 /*
4280 * set page dirty so that it will not be removed from cache/file
4281 * by non-hugetlbfs specific code paths.
4282 */
4283 set_page_dirty(page);
4284
ab76ad54
MK
4285 spin_lock(&inode->i_lock);
4286 inode->i_blocks += blocks_per_huge_page(h);
4287 spin_unlock(&inode->i_lock);
4288 return 0;
4289}
4290
2b740303
SJ
4291static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
4292 struct vm_area_struct *vma,
4293 struct address_space *mapping, pgoff_t idx,
4294 unsigned long address, pte_t *ptep, unsigned int flags)
ac9b9c66 4295{
a5516438 4296 struct hstate *h = hstate_vma(vma);
2b740303 4297 vm_fault_t ret = VM_FAULT_SIGBUS;
409eb8c2 4298 int anon_rmap = 0;
4c887265 4299 unsigned long size;
4c887265 4300 struct page *page;
1e8f889b 4301 pte_t new_pte;
cb900f41 4302 spinlock_t *ptl;
285b8dca 4303 unsigned long haddr = address & huge_page_mask(h);
cb6acd01 4304 bool new_page = false;
4c887265 4305
04f2cbe3
MG
4306 /*
4307 * Currently, we are forced to kill the process in the event the
4308 * original mapper has unmapped pages from the child due to a failed
25985edc 4309 * COW. Warn that such a situation has occurred as it may not be obvious
04f2cbe3
MG
4310 */
4311 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
910154d5 4312 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
ffb22af5 4313 current->pid);
04f2cbe3
MG
4314 return ret;
4315 }
4316
4c887265 4317 /*
87bf91d3
MK
4318 * We can not race with truncation due to holding i_mmap_rwsem.
4319 * i_size is modified when holding i_mmap_rwsem, so check here
4320 * once for faults beyond end of file.
4c887265 4321 */
87bf91d3
MK
4322 size = i_size_read(mapping->host) >> huge_page_shift(h);
4323 if (idx >= size)
4324 goto out;
4325
6bda666a
CL
4326retry:
4327 page = find_lock_page(mapping, idx);
4328 if (!page) {
1a1aad8a
MK
4329 /*
4330 * Check for page in userfault range
4331 */
4332 if (userfaultfd_missing(vma)) {
4333 u32 hash;
4334 struct vm_fault vmf = {
4335 .vma = vma,
285b8dca 4336 .address = haddr,
1a1aad8a
MK
4337 .flags = flags,
4338 /*
4339 * Hard to debug if it ends up being
4340 * used by a callee that assumes
4341 * something about the other
4342 * uninitialized fields... same as in
4343 * memory.c
4344 */
4345 };
4346
4347 /*
c0d0381a
MK
4348 * hugetlb_fault_mutex and i_mmap_rwsem must be
4349 * dropped before handling userfault. Reacquire
4350 * after handling fault to make calling code simpler.
1a1aad8a 4351 */
188b04a7 4352 hash = hugetlb_fault_mutex_hash(mapping, idx);
1a1aad8a 4353 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
c0d0381a 4354 i_mmap_unlock_read(mapping);
1a1aad8a 4355 ret = handle_userfault(&vmf, VM_UFFD_MISSING);
c0d0381a 4356 i_mmap_lock_read(mapping);
1a1aad8a
MK
4357 mutex_lock(&hugetlb_fault_mutex_table[hash]);
4358 goto out;
4359 }
4360
285b8dca 4361 page = alloc_huge_page(vma, haddr, 0);
2fc39cec 4362 if (IS_ERR(page)) {
4643d67e
MK
4363 /*
4364 * Returning error will result in faulting task being
4365 * sent SIGBUS. The hugetlb fault mutex prevents two
4366 * tasks from racing to fault in the same page which
4367 * could result in false unable to allocate errors.
4368 * Page migration does not take the fault mutex, but
4369 * does a clear then write of pte's under page table
4370 * lock. Page fault code could race with migration,
4371 * notice the clear pte and try to allocate a page
4372 * here. Before returning error, get ptl and make
4373 * sure there really is no pte entry.
4374 */
4375 ptl = huge_pte_lock(h, mm, ptep);
4376 if (!huge_pte_none(huge_ptep_get(ptep))) {
4377 ret = 0;
4378 spin_unlock(ptl);
4379 goto out;
4380 }
4381 spin_unlock(ptl);
2b740303 4382 ret = vmf_error(PTR_ERR(page));
6bda666a
CL
4383 goto out;
4384 }
47ad8475 4385 clear_huge_page(page, address, pages_per_huge_page(h));
0ed361de 4386 __SetPageUptodate(page);
cb6acd01 4387 new_page = true;
ac9b9c66 4388
f83a275d 4389 if (vma->vm_flags & VM_MAYSHARE) {
ab76ad54 4390 int err = huge_add_to_page_cache(page, mapping, idx);
6bda666a
CL
4391 if (err) {
4392 put_page(page);
6bda666a
CL
4393 if (err == -EEXIST)
4394 goto retry;
4395 goto out;
4396 }
23be7468 4397 } else {
6bda666a 4398 lock_page(page);
0fe6e20b
NH
4399 if (unlikely(anon_vma_prepare(vma))) {
4400 ret = VM_FAULT_OOM;
4401 goto backout_unlocked;
4402 }
409eb8c2 4403 anon_rmap = 1;
23be7468 4404 }
0fe6e20b 4405 } else {
998b4382
NH
4406 /*
4407 * If memory error occurs between mmap() and fault, some process
4408 * don't have hwpoisoned swap entry for errored virtual address.
4409 * So we need to block hugepage fault by PG_hwpoison bit check.
4410 */
4411 if (unlikely(PageHWPoison(page))) {
0eb98f15 4412 ret = VM_FAULT_HWPOISON_LARGE |
972dc4de 4413 VM_FAULT_SET_HINDEX(hstate_index(h));
998b4382
NH
4414 goto backout_unlocked;
4415 }
6bda666a 4416 }
1e8f889b 4417
57303d80
AW
4418 /*
4419 * If we are going to COW a private mapping later, we examine the
4420 * pending reservations for this page now. This will ensure that
4421 * any allocations necessary to record that reservation occur outside
4422 * the spinlock.
4423 */
5e911373 4424 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
285b8dca 4425 if (vma_needs_reservation(h, vma, haddr) < 0) {
2b26736c
AW
4426 ret = VM_FAULT_OOM;
4427 goto backout_unlocked;
4428 }
5e911373 4429 /* Just decrements count, does not deallocate */
285b8dca 4430 vma_end_reservation(h, vma, haddr);
5e911373 4431 }
57303d80 4432
8bea8052 4433 ptl = huge_pte_lock(h, mm, ptep);
83c54070 4434 ret = 0;
7f2e9525 4435 if (!huge_pte_none(huge_ptep_get(ptep)))
4c887265
AL
4436 goto backout;
4437
07443a85
JK
4438 if (anon_rmap) {
4439 ClearPagePrivate(page);
285b8dca 4440 hugepage_add_new_anon_rmap(page, vma, haddr);
ac714904 4441 } else
53f9263b 4442 page_dup_rmap(page, true);
1e8f889b
DG
4443 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
4444 && (vma->vm_flags & VM_SHARED)));
285b8dca 4445 set_huge_pte_at(mm, haddr, ptep, new_pte);
1e8f889b 4446
5d317b2b 4447 hugetlb_count_add(pages_per_huge_page(h), mm);
788c7df4 4448 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
1e8f889b 4449 /* Optimization, do the COW without a second fault */
974e6d66 4450 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
1e8f889b
DG
4451 }
4452
cb900f41 4453 spin_unlock(ptl);
cb6acd01
MK
4454
4455 /*
4456 * Only make newly allocated pages active. Existing pages found
4457 * in the pagecache could be !page_huge_active() if they have been
4458 * isolated for migration.
4459 */
4460 if (new_page)
4461 set_page_huge_active(page);
4462
4c887265
AL
4463 unlock_page(page);
4464out:
ac9b9c66 4465 return ret;
4c887265
AL
4466
4467backout:
cb900f41 4468 spin_unlock(ptl);
2b26736c 4469backout_unlocked:
4c887265 4470 unlock_page(page);
285b8dca 4471 restore_reserve_on_error(h, vma, haddr, page);
4c887265
AL
4472 put_page(page);
4473 goto out;
ac9b9c66
HD
4474}
4475
8382d914 4476#ifdef CONFIG_SMP
188b04a7 4477u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
8382d914
DB
4478{
4479 unsigned long key[2];
4480 u32 hash;
4481
1b426bac
MK
4482 key[0] = (unsigned long) mapping;
4483 key[1] = idx;
8382d914 4484
55254636 4485 hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
8382d914
DB
4486
4487 return hash & (num_fault_mutexes - 1);
4488}
4489#else
4490/*
6c26d310 4491 * For uniprocessor systems we always use a single mutex, so just
8382d914
DB
4492 * return 0 and avoid the hashing overhead.
4493 */
188b04a7 4494u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
8382d914
DB
4495{
4496 return 0;
4497}
4498#endif
4499
2b740303 4500vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
788c7df4 4501 unsigned long address, unsigned int flags)
86e5216f 4502{
8382d914 4503 pte_t *ptep, entry;
cb900f41 4504 spinlock_t *ptl;
2b740303 4505 vm_fault_t ret;
8382d914
DB
4506 u32 hash;
4507 pgoff_t idx;
0fe6e20b 4508 struct page *page = NULL;
57303d80 4509 struct page *pagecache_page = NULL;
a5516438 4510 struct hstate *h = hstate_vma(vma);
8382d914 4511 struct address_space *mapping;
0f792cf9 4512 int need_wait_lock = 0;
285b8dca 4513 unsigned long haddr = address & huge_page_mask(h);
86e5216f 4514
285b8dca 4515 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
fd6a03ed 4516 if (ptep) {
c0d0381a
MK
4517 /*
4518 * Since we hold no locks, ptep could be stale. That is
4519 * OK as we are only making decisions based on content and
4520 * not actually modifying content here.
4521 */
fd6a03ed 4522 entry = huge_ptep_get(ptep);
290408d4 4523 if (unlikely(is_hugetlb_entry_migration(entry))) {
cb900f41 4524 migration_entry_wait_huge(vma, mm, ptep);
290408d4
NH
4525 return 0;
4526 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
32f84528 4527 return VM_FAULT_HWPOISON_LARGE |
972dc4de 4528 VM_FAULT_SET_HINDEX(hstate_index(h));
fd6a03ed
NH
4529 }
4530
c0d0381a
MK
4531 /*
4532 * Acquire i_mmap_rwsem before calling huge_pte_alloc and hold
87bf91d3
MK
4533 * until finished with ptep. This serves two purposes:
4534 * 1) It prevents huge_pmd_unshare from being called elsewhere
4535 * and making the ptep no longer valid.
4536 * 2) It synchronizes us with i_size modifications during truncation.
c0d0381a
MK
4537 *
4538 * ptep could have already be assigned via huge_pte_offset. That
4539 * is OK, as huge_pte_alloc will return the same value unless
4540 * something has changed.
4541 */
8382d914 4542 mapping = vma->vm_file->f_mapping;
c0d0381a
MK
4543 i_mmap_lock_read(mapping);
4544 ptep = huge_pte_alloc(mm, haddr, huge_page_size(h));
4545 if (!ptep) {
4546 i_mmap_unlock_read(mapping);
4547 return VM_FAULT_OOM;
4548 }
8382d914 4549
3935baa9
DG
4550 /*
4551 * Serialize hugepage allocation and instantiation, so that we don't
4552 * get spurious allocation failures if two CPUs race to instantiate
4553 * the same page in the page cache.
4554 */
c0d0381a 4555 idx = vma_hugecache_offset(h, vma, haddr);
188b04a7 4556 hash = hugetlb_fault_mutex_hash(mapping, idx);
c672c7f2 4557 mutex_lock(&hugetlb_fault_mutex_table[hash]);
8382d914 4558
7f2e9525
GS
4559 entry = huge_ptep_get(ptep);
4560 if (huge_pte_none(entry)) {
8382d914 4561 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
b4d1d99f 4562 goto out_mutex;
3935baa9 4563 }
86e5216f 4564
83c54070 4565 ret = 0;
1e8f889b 4566
0f792cf9
NH
4567 /*
4568 * entry could be a migration/hwpoison entry at this point, so this
4569 * check prevents the kernel from going below assuming that we have
7c8de358
EP
4570 * an active hugepage in pagecache. This goto expects the 2nd page
4571 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
4572 * properly handle it.
0f792cf9
NH
4573 */
4574 if (!pte_present(entry))
4575 goto out_mutex;
4576
57303d80
AW
4577 /*
4578 * If we are going to COW the mapping later, we examine the pending
4579 * reservations for this page now. This will ensure that any
4580 * allocations necessary to record that reservation occur outside the
4581 * spinlock. For private mappings, we also lookup the pagecache
4582 * page now as it is used to determine if a reservation has been
4583 * consumed.
4584 */
106c992a 4585 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
285b8dca 4586 if (vma_needs_reservation(h, vma, haddr) < 0) {
2b26736c 4587 ret = VM_FAULT_OOM;
b4d1d99f 4588 goto out_mutex;
2b26736c 4589 }
5e911373 4590 /* Just decrements count, does not deallocate */
285b8dca 4591 vma_end_reservation(h, vma, haddr);
57303d80 4592
f83a275d 4593 if (!(vma->vm_flags & VM_MAYSHARE))
57303d80 4594 pagecache_page = hugetlbfs_pagecache_page(h,
285b8dca 4595 vma, haddr);
57303d80
AW
4596 }
4597
0f792cf9
NH
4598 ptl = huge_pte_lock(h, mm, ptep);
4599
4600 /* Check for a racing update before calling hugetlb_cow */
4601 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
4602 goto out_ptl;
4603
56c9cfb1
NH
4604 /*
4605 * hugetlb_cow() requires page locks of pte_page(entry) and
4606 * pagecache_page, so here we need take the former one
4607 * when page != pagecache_page or !pagecache_page.
56c9cfb1
NH
4608 */
4609 page = pte_page(entry);
4610 if (page != pagecache_page)
0f792cf9
NH
4611 if (!trylock_page(page)) {
4612 need_wait_lock = 1;
4613 goto out_ptl;
4614 }
b4d1d99f 4615
0f792cf9 4616 get_page(page);
b4d1d99f 4617
788c7df4 4618 if (flags & FAULT_FLAG_WRITE) {
106c992a 4619 if (!huge_pte_write(entry)) {
974e6d66 4620 ret = hugetlb_cow(mm, vma, address, ptep,
3999f52e 4621 pagecache_page, ptl);
0f792cf9 4622 goto out_put_page;
b4d1d99f 4623 }
106c992a 4624 entry = huge_pte_mkdirty(entry);
b4d1d99f
DG
4625 }
4626 entry = pte_mkyoung(entry);
285b8dca 4627 if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
788c7df4 4628 flags & FAULT_FLAG_WRITE))
285b8dca 4629 update_mmu_cache(vma, haddr, ptep);
0f792cf9
NH
4630out_put_page:
4631 if (page != pagecache_page)
4632 unlock_page(page);
4633 put_page(page);
cb900f41
KS
4634out_ptl:
4635 spin_unlock(ptl);
57303d80
AW
4636
4637 if (pagecache_page) {
4638 unlock_page(pagecache_page);
4639 put_page(pagecache_page);
4640 }
b4d1d99f 4641out_mutex:
c672c7f2 4642 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
c0d0381a 4643 i_mmap_unlock_read(mapping);
0f792cf9
NH
4644 /*
4645 * Generally it's safe to hold refcount during waiting page lock. But
4646 * here we just wait to defer the next page fault to avoid busy loop and
4647 * the page is not used after unlocked before returning from the current
4648 * page fault. So we are safe from accessing freed page, even if we wait
4649 * here without taking refcount.
4650 */
4651 if (need_wait_lock)
4652 wait_on_page_locked(page);
1e8f889b 4653 return ret;
86e5216f
AL
4654}
4655
8fb5debc
MK
4656/*
4657 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with
4658 * modifications for huge pages.
4659 */
4660int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
4661 pte_t *dst_pte,
4662 struct vm_area_struct *dst_vma,
4663 unsigned long dst_addr,
4664 unsigned long src_addr,
4665 struct page **pagep)
4666{
1e392147
AA
4667 struct address_space *mapping;
4668 pgoff_t idx;
4669 unsigned long size;
1c9e8def 4670 int vm_shared = dst_vma->vm_flags & VM_SHARED;
8fb5debc
MK
4671 struct hstate *h = hstate_vma(dst_vma);
4672 pte_t _dst_pte;
4673 spinlock_t *ptl;
4674 int ret;
4675 struct page *page;
4676
4677 if (!*pagep) {
4678 ret = -ENOMEM;
4679 page = alloc_huge_page(dst_vma, dst_addr, 0);
4680 if (IS_ERR(page))
4681 goto out;
4682
4683 ret = copy_huge_page_from_user(page,
4684 (const void __user *) src_addr,
810a56b9 4685 pages_per_huge_page(h), false);
8fb5debc 4686
c1e8d7c6 4687 /* fallback to copy_from_user outside mmap_lock */
8fb5debc 4688 if (unlikely(ret)) {
9e368259 4689 ret = -ENOENT;
8fb5debc
MK
4690 *pagep = page;
4691 /* don't free the page */
4692 goto out;
4693 }
4694 } else {
4695 page = *pagep;
4696 *pagep = NULL;
4697 }
4698
4699 /*
4700 * The memory barrier inside __SetPageUptodate makes sure that
4701 * preceding stores to the page contents become visible before
4702 * the set_pte_at() write.
4703 */
4704 __SetPageUptodate(page);
8fb5debc 4705
1e392147
AA
4706 mapping = dst_vma->vm_file->f_mapping;
4707 idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4708
1c9e8def
MK
4709 /*
4710 * If shared, add to page cache
4711 */
4712 if (vm_shared) {
1e392147
AA
4713 size = i_size_read(mapping->host) >> huge_page_shift(h);
4714 ret = -EFAULT;
4715 if (idx >= size)
4716 goto out_release_nounlock;
1c9e8def 4717
1e392147
AA
4718 /*
4719 * Serialization between remove_inode_hugepages() and
4720 * huge_add_to_page_cache() below happens through the
4721 * hugetlb_fault_mutex_table that here must be hold by
4722 * the caller.
4723 */
1c9e8def
MK
4724 ret = huge_add_to_page_cache(page, mapping, idx);
4725 if (ret)
4726 goto out_release_nounlock;
4727 }
4728
8fb5debc
MK
4729 ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4730 spin_lock(ptl);
4731
1e392147
AA
4732 /*
4733 * Recheck the i_size after holding PT lock to make sure not
4734 * to leave any page mapped (as page_mapped()) beyond the end
4735 * of the i_size (remove_inode_hugepages() is strict about
4736 * enforcing that). If we bail out here, we'll also leave a
4737 * page in the radix tree in the vm_shared case beyond the end
4738 * of the i_size, but remove_inode_hugepages() will take care
4739 * of it as soon as we drop the hugetlb_fault_mutex_table.
4740 */
4741 size = i_size_read(mapping->host) >> huge_page_shift(h);
4742 ret = -EFAULT;
4743 if (idx >= size)
4744 goto out_release_unlock;
4745
8fb5debc
MK
4746 ret = -EEXIST;
4747 if (!huge_pte_none(huge_ptep_get(dst_pte)))
4748 goto out_release_unlock;
4749
1c9e8def
MK
4750 if (vm_shared) {
4751 page_dup_rmap(page, true);
4752 } else {
4753 ClearPagePrivate(page);
4754 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4755 }
8fb5debc
MK
4756
4757 _dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4758 if (dst_vma->vm_flags & VM_WRITE)
4759 _dst_pte = huge_pte_mkdirty(_dst_pte);
4760 _dst_pte = pte_mkyoung(_dst_pte);
4761
4762 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4763
4764 (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4765 dst_vma->vm_flags & VM_WRITE);
4766 hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4767
4768 /* No need to invalidate - it was non-present before */
4769 update_mmu_cache(dst_vma, dst_addr, dst_pte);
4770
4771 spin_unlock(ptl);
cb6acd01 4772 set_page_huge_active(page);
1c9e8def
MK
4773 if (vm_shared)
4774 unlock_page(page);
8fb5debc
MK
4775 ret = 0;
4776out:
4777 return ret;
4778out_release_unlock:
4779 spin_unlock(ptl);
1c9e8def
MK
4780 if (vm_shared)
4781 unlock_page(page);
5af10dfd 4782out_release_nounlock:
8fb5debc
MK
4783 put_page(page);
4784 goto out;
4785}
4786
82e5d378
JM
4787static void record_subpages_vmas(struct page *page, struct vm_area_struct *vma,
4788 int refs, struct page **pages,
4789 struct vm_area_struct **vmas)
4790{
4791 int nr;
4792
4793 for (nr = 0; nr < refs; nr++) {
4794 if (likely(pages))
4795 pages[nr] = mem_map_offset(page, nr);
4796 if (vmas)
4797 vmas[nr] = vma;
4798 }
4799}
4800
28a35716
ML
4801long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4802 struct page **pages, struct vm_area_struct **vmas,
4803 unsigned long *position, unsigned long *nr_pages,
4f6da934 4804 long i, unsigned int flags, int *locked)
63551ae0 4805{
d5d4b0aa
CK
4806 unsigned long pfn_offset;
4807 unsigned long vaddr = *position;
28a35716 4808 unsigned long remainder = *nr_pages;
a5516438 4809 struct hstate *h = hstate_vma(vma);
0fa5bc40 4810 int err = -EFAULT, refs;
63551ae0 4811
63551ae0 4812 while (vaddr < vma->vm_end && remainder) {
4c887265 4813 pte_t *pte;
cb900f41 4814 spinlock_t *ptl = NULL;
2a15efc9 4815 int absent;
4c887265 4816 struct page *page;
63551ae0 4817
02057967
DR
4818 /*
4819 * If we have a pending SIGKILL, don't keep faulting pages and
4820 * potentially allocating memory.
4821 */
fa45f116 4822 if (fatal_signal_pending(current)) {
02057967
DR
4823 remainder = 0;
4824 break;
4825 }
4826
4c887265
AL
4827 /*
4828 * Some archs (sparc64, sh*) have multiple pte_ts to
2a15efc9 4829 * each hugepage. We have to make sure we get the
4c887265 4830 * first, for the page indexing below to work.
cb900f41
KS
4831 *
4832 * Note that page table lock is not held when pte is null.
4c887265 4833 */
7868a208
PA
4834 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
4835 huge_page_size(h));
cb900f41
KS
4836 if (pte)
4837 ptl = huge_pte_lock(h, mm, pte);
2a15efc9
HD
4838 absent = !pte || huge_pte_none(huge_ptep_get(pte));
4839
4840 /*
4841 * When coredumping, it suits get_dump_page if we just return
3ae77f43
HD
4842 * an error where there's an empty slot with no huge pagecache
4843 * to back it. This way, we avoid allocating a hugepage, and
4844 * the sparse dumpfile avoids allocating disk blocks, but its
4845 * huge holes still show up with zeroes where they need to be.
2a15efc9 4846 */
3ae77f43
HD
4847 if (absent && (flags & FOLL_DUMP) &&
4848 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
cb900f41
KS
4849 if (pte)
4850 spin_unlock(ptl);
2a15efc9
HD
4851 remainder = 0;
4852 break;
4853 }
63551ae0 4854
9cc3a5bd
NH
4855 /*
4856 * We need call hugetlb_fault for both hugepages under migration
4857 * (in which case hugetlb_fault waits for the migration,) and
4858 * hwpoisoned hugepages (in which case we need to prevent the
4859 * caller from accessing to them.) In order to do this, we use
4860 * here is_swap_pte instead of is_hugetlb_entry_migration and
4861 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4862 * both cases, and because we can't follow correct pages
4863 * directly from any kind of swap entries.
4864 */
4865 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
106c992a
GS
4866 ((flags & FOLL_WRITE) &&
4867 !huge_pte_write(huge_ptep_get(pte)))) {
2b740303 4868 vm_fault_t ret;
87ffc118 4869 unsigned int fault_flags = 0;
63551ae0 4870
cb900f41
KS
4871 if (pte)
4872 spin_unlock(ptl);
87ffc118
AA
4873 if (flags & FOLL_WRITE)
4874 fault_flags |= FAULT_FLAG_WRITE;
4f6da934 4875 if (locked)
71335f37
PX
4876 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4877 FAULT_FLAG_KILLABLE;
87ffc118
AA
4878 if (flags & FOLL_NOWAIT)
4879 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4880 FAULT_FLAG_RETRY_NOWAIT;
4881 if (flags & FOLL_TRIED) {
4426e945
PX
4882 /*
4883 * Note: FAULT_FLAG_ALLOW_RETRY and
4884 * FAULT_FLAG_TRIED can co-exist
4885 */
87ffc118
AA
4886 fault_flags |= FAULT_FLAG_TRIED;
4887 }
4888 ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4889 if (ret & VM_FAULT_ERROR) {
2be7cfed 4890 err = vm_fault_to_errno(ret, flags);
87ffc118
AA
4891 remainder = 0;
4892 break;
4893 }
4894 if (ret & VM_FAULT_RETRY) {
4f6da934 4895 if (locked &&
1ac25013 4896 !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
4f6da934 4897 *locked = 0;
87ffc118
AA
4898 *nr_pages = 0;
4899 /*
4900 * VM_FAULT_RETRY must not return an
4901 * error, it will return zero
4902 * instead.
4903 *
4904 * No need to update "position" as the
4905 * caller will not check it after
4906 * *nr_pages is set to 0.
4907 */
4908 return i;
4909 }
4910 continue;
4c887265
AL
4911 }
4912
a5516438 4913 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
7f2e9525 4914 page = pte_page(huge_ptep_get(pte));
8fde12ca 4915
acbfb087
ZL
4916 /*
4917 * If subpage information not requested, update counters
4918 * and skip the same_page loop below.
4919 */
4920 if (!pages && !vmas && !pfn_offset &&
4921 (vaddr + huge_page_size(h) < vma->vm_end) &&
4922 (remainder >= pages_per_huge_page(h))) {
4923 vaddr += huge_page_size(h);
4924 remainder -= pages_per_huge_page(h);
4925 i += pages_per_huge_page(h);
4926 spin_unlock(ptl);
4927 continue;
4928 }
4929
82e5d378
JM
4930 refs = min3(pages_per_huge_page(h) - pfn_offset,
4931 (vma->vm_end - vaddr) >> PAGE_SHIFT, remainder);
0fa5bc40 4932
82e5d378
JM
4933 if (pages || vmas)
4934 record_subpages_vmas(mem_map_offset(page, pfn_offset),
4935 vma, refs,
4936 likely(pages) ? pages + i : NULL,
4937 vmas ? vmas + i : NULL);
63551ae0 4938
82e5d378 4939 if (pages) {
0fa5bc40
JM
4940 /*
4941 * try_grab_compound_head() should always succeed here,
4942 * because: a) we hold the ptl lock, and b) we've just
4943 * checked that the huge page is present in the page
4944 * tables. If the huge page is present, then the tail
4945 * pages must also be present. The ptl prevents the
4946 * head page and tail pages from being rearranged in
4947 * any way. So this page must be available at this
4948 * point, unless the page refcount overflowed:
4949 */
82e5d378 4950 if (WARN_ON_ONCE(!try_grab_compound_head(pages[i],
0fa5bc40
JM
4951 refs,
4952 flags))) {
4953 spin_unlock(ptl);
4954 remainder = 0;
4955 err = -ENOMEM;
4956 break;
4957 }
d5d4b0aa 4958 }
82e5d378
JM
4959
4960 vaddr += (refs << PAGE_SHIFT);
4961 remainder -= refs;
4962 i += refs;
4963
cb900f41 4964 spin_unlock(ptl);
63551ae0 4965 }
28a35716 4966 *nr_pages = remainder;
87ffc118
AA
4967 /*
4968 * setting position is actually required only if remainder is
4969 * not zero but it's faster not to add a "if (remainder)"
4970 * branch.
4971 */
63551ae0
DG
4972 *position = vaddr;
4973
2be7cfed 4974 return i ? i : err;
63551ae0 4975}
8f860591 4976
5491ae7b
AK
4977#ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4978/*
4979 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4980 * implement this.
4981 */
4982#define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
4983#endif
4984
7da4d641 4985unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
8f860591
ZY
4986 unsigned long address, unsigned long end, pgprot_t newprot)
4987{
4988 struct mm_struct *mm = vma->vm_mm;
4989 unsigned long start = address;
4990 pte_t *ptep;
4991 pte_t pte;
a5516438 4992 struct hstate *h = hstate_vma(vma);
7da4d641 4993 unsigned long pages = 0;
dff11abe 4994 bool shared_pmd = false;
ac46d4f3 4995 struct mmu_notifier_range range;
dff11abe
MK
4996
4997 /*
4998 * In the case of shared PMDs, the area to flush could be beyond
ac46d4f3 4999 * start/end. Set range.start/range.end to cover the maximum possible
dff11abe
MK
5000 * range if PMD sharing is possible.
5001 */
7269f999
JG
5002 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
5003 0, vma, mm, start, end);
ac46d4f3 5004 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
8f860591
ZY
5005
5006 BUG_ON(address >= end);
ac46d4f3 5007 flush_cache_range(vma, range.start, range.end);
8f860591 5008
ac46d4f3 5009 mmu_notifier_invalidate_range_start(&range);
83cde9e8 5010 i_mmap_lock_write(vma->vm_file->f_mapping);
a5516438 5011 for (; address < end; address += huge_page_size(h)) {
cb900f41 5012 spinlock_t *ptl;
7868a208 5013 ptep = huge_pte_offset(mm, address, huge_page_size(h));
8f860591
ZY
5014 if (!ptep)
5015 continue;
cb900f41 5016 ptl = huge_pte_lock(h, mm, ptep);
34ae204f 5017 if (huge_pmd_unshare(mm, vma, &address, ptep)) {
7da4d641 5018 pages++;
cb900f41 5019 spin_unlock(ptl);
dff11abe 5020 shared_pmd = true;
39dde65c 5021 continue;
7da4d641 5022 }
a8bda28d
NH
5023 pte = huge_ptep_get(ptep);
5024 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
5025 spin_unlock(ptl);
5026 continue;
5027 }
5028 if (unlikely(is_hugetlb_entry_migration(pte))) {
5029 swp_entry_t entry = pte_to_swp_entry(pte);
5030
5031 if (is_write_migration_entry(entry)) {
5032 pte_t newpte;
5033
5034 make_migration_entry_read(&entry);
5035 newpte = swp_entry_to_pte(entry);
e5251fd4
PA
5036 set_huge_swap_pte_at(mm, address, ptep,
5037 newpte, huge_page_size(h));
a8bda28d
NH
5038 pages++;
5039 }
5040 spin_unlock(ptl);
5041 continue;
5042 }
5043 if (!huge_pte_none(pte)) {
023bdd00
AK
5044 pte_t old_pte;
5045
5046 old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
5047 pte = pte_mkhuge(huge_pte_modify(old_pte, newprot));
be7517d6 5048 pte = arch_make_huge_pte(pte, vma, NULL, 0);
023bdd00 5049 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
7da4d641 5050 pages++;
8f860591 5051 }
cb900f41 5052 spin_unlock(ptl);
8f860591 5053 }
d833352a 5054 /*
c8c06efa 5055 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
d833352a 5056 * may have cleared our pud entry and done put_page on the page table:
c8c06efa 5057 * once we release i_mmap_rwsem, another task can do the final put_page
dff11abe
MK
5058 * and that page table be reused and filled with junk. If we actually
5059 * did unshare a page of pmds, flush the range corresponding to the pud.
d833352a 5060 */
dff11abe 5061 if (shared_pmd)
ac46d4f3 5062 flush_hugetlb_tlb_range(vma, range.start, range.end);
dff11abe
MK
5063 else
5064 flush_hugetlb_tlb_range(vma, start, end);
0f10851e
JG
5065 /*
5066 * No need to call mmu_notifier_invalidate_range() we are downgrading
5067 * page table protection not changing it to point to a new page.
5068 *
ad56b738 5069 * See Documentation/vm/mmu_notifier.rst
0f10851e 5070 */
83cde9e8 5071 i_mmap_unlock_write(vma->vm_file->f_mapping);
ac46d4f3 5072 mmu_notifier_invalidate_range_end(&range);
7da4d641
PZ
5073
5074 return pages << h->order;
8f860591
ZY
5075}
5076
a1e78772
MG
5077int hugetlb_reserve_pages(struct inode *inode,
5078 long from, long to,
5a6fe125 5079 struct vm_area_struct *vma,
ca16d140 5080 vm_flags_t vm_flags)
e4e574b7 5081{
0db9d74e 5082 long ret, chg, add = -1;
a5516438 5083 struct hstate *h = hstate_inode(inode);
90481622 5084 struct hugepage_subpool *spool = subpool_inode(inode);
9119a41e 5085 struct resv_map *resv_map;
075a61d0 5086 struct hugetlb_cgroup *h_cg = NULL;
0db9d74e 5087 long gbl_reserve, regions_needed = 0;
e4e574b7 5088
63489f8e
MK
5089 /* This should never happen */
5090 if (from > to) {
5091 VM_WARN(1, "%s called with a negative range\n", __func__);
5092 return -EINVAL;
5093 }
5094
17c9d12e
MG
5095 /*
5096 * Only apply hugepage reservation if asked. At fault time, an
5097 * attempt will be made for VM_NORESERVE to allocate a page
90481622 5098 * without using reserves
17c9d12e 5099 */
ca16d140 5100 if (vm_flags & VM_NORESERVE)
17c9d12e
MG
5101 return 0;
5102
a1e78772
MG
5103 /*
5104 * Shared mappings base their reservation on the number of pages that
5105 * are already allocated on behalf of the file. Private mappings need
5106 * to reserve the full area even if read-only as mprotect() may be
5107 * called to make the mapping read-write. Assume !vma is a shm mapping
5108 */
9119a41e 5109 if (!vma || vma->vm_flags & VM_MAYSHARE) {
f27a5136
MK
5110 /*
5111 * resv_map can not be NULL as hugetlb_reserve_pages is only
5112 * called for inodes for which resv_maps were created (see
5113 * hugetlbfs_get_inode).
5114 */
4e35f483 5115 resv_map = inode_resv_map(inode);
9119a41e 5116
0db9d74e 5117 chg = region_chg(resv_map, from, to, &regions_needed);
9119a41e
JK
5118
5119 } else {
e9fe92ae 5120 /* Private mapping. */
9119a41e 5121 resv_map = resv_map_alloc();
17c9d12e
MG
5122 if (!resv_map)
5123 return -ENOMEM;
5124
a1e78772 5125 chg = to - from;
84afd99b 5126
17c9d12e
MG
5127 set_vma_resv_map(vma, resv_map);
5128 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
5129 }
5130
c50ac050
DH
5131 if (chg < 0) {
5132 ret = chg;
5133 goto out_err;
5134 }
8a630112 5135
075a61d0
MA
5136 ret = hugetlb_cgroup_charge_cgroup_rsvd(
5137 hstate_index(h), chg * pages_per_huge_page(h), &h_cg);
5138
5139 if (ret < 0) {
5140 ret = -ENOMEM;
5141 goto out_err;
5142 }
5143
5144 if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
5145 /* For private mappings, the hugetlb_cgroup uncharge info hangs
5146 * of the resv_map.
5147 */
5148 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
5149 }
5150
1c5ecae3
MK
5151 /*
5152 * There must be enough pages in the subpool for the mapping. If
5153 * the subpool has a minimum size, there may be some global
5154 * reservations already in place (gbl_reserve).
5155 */
5156 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
5157 if (gbl_reserve < 0) {
c50ac050 5158 ret = -ENOSPC;
075a61d0 5159 goto out_uncharge_cgroup;
c50ac050 5160 }
5a6fe125
MG
5161
5162 /*
17c9d12e 5163 * Check enough hugepages are available for the reservation.
90481622 5164 * Hand the pages back to the subpool if there are not
5a6fe125 5165 */
1c5ecae3 5166 ret = hugetlb_acct_memory(h, gbl_reserve);
68842c9b 5167 if (ret < 0) {
075a61d0 5168 goto out_put_pages;
68842c9b 5169 }
17c9d12e
MG
5170
5171 /*
5172 * Account for the reservations made. Shared mappings record regions
5173 * that have reservations as they are shared by multiple VMAs.
5174 * When the last VMA disappears, the region map says how much
5175 * the reservation was and the page cache tells how much of
5176 * the reservation was consumed. Private mappings are per-VMA and
5177 * only the consumed reservations are tracked. When the VMA
5178 * disappears, the original reservation is the VMA size and the
5179 * consumed reservations are stored in the map. Hence, nothing
5180 * else has to be done for private mappings here
5181 */
33039678 5182 if (!vma || vma->vm_flags & VM_MAYSHARE) {
075a61d0 5183 add = region_add(resv_map, from, to, regions_needed, h, h_cg);
0db9d74e
MA
5184
5185 if (unlikely(add < 0)) {
5186 hugetlb_acct_memory(h, -gbl_reserve);
7fc2513a 5187 ret = add;
075a61d0 5188 goto out_put_pages;
0db9d74e 5189 } else if (unlikely(chg > add)) {
33039678
MK
5190 /*
5191 * pages in this range were added to the reserve
5192 * map between region_chg and region_add. This
5193 * indicates a race with alloc_huge_page. Adjust
5194 * the subpool and reserve counts modified above
5195 * based on the difference.
5196 */
5197 long rsv_adjust;
5198
075a61d0
MA
5199 hugetlb_cgroup_uncharge_cgroup_rsvd(
5200 hstate_index(h),
5201 (chg - add) * pages_per_huge_page(h), h_cg);
5202
33039678
MK
5203 rsv_adjust = hugepage_subpool_put_pages(spool,
5204 chg - add);
5205 hugetlb_acct_memory(h, -rsv_adjust);
5206 }
5207 }
a43a8c39 5208 return 0;
075a61d0
MA
5209out_put_pages:
5210 /* put back original number of pages, chg */
5211 (void)hugepage_subpool_put_pages(spool, chg);
5212out_uncharge_cgroup:
5213 hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
5214 chg * pages_per_huge_page(h), h_cg);
c50ac050 5215out_err:
5e911373 5216 if (!vma || vma->vm_flags & VM_MAYSHARE)
0db9d74e
MA
5217 /* Only call region_abort if the region_chg succeeded but the
5218 * region_add failed or didn't run.
5219 */
5220 if (chg >= 0 && add < 0)
5221 region_abort(resv_map, from, to, regions_needed);
f031dd27
JK
5222 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
5223 kref_put(&resv_map->refs, resv_map_release);
c50ac050 5224 return ret;
a43a8c39
CK
5225}
5226
b5cec28d
MK
5227long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
5228 long freed)
a43a8c39 5229{
a5516438 5230 struct hstate *h = hstate_inode(inode);
4e35f483 5231 struct resv_map *resv_map = inode_resv_map(inode);
9119a41e 5232 long chg = 0;
90481622 5233 struct hugepage_subpool *spool = subpool_inode(inode);
1c5ecae3 5234 long gbl_reserve;
45c682a6 5235
f27a5136
MK
5236 /*
5237 * Since this routine can be called in the evict inode path for all
5238 * hugetlbfs inodes, resv_map could be NULL.
5239 */
b5cec28d
MK
5240 if (resv_map) {
5241 chg = region_del(resv_map, start, end);
5242 /*
5243 * region_del() can fail in the rare case where a region
5244 * must be split and another region descriptor can not be
5245 * allocated. If end == LONG_MAX, it will not fail.
5246 */
5247 if (chg < 0)
5248 return chg;
5249 }
5250
45c682a6 5251 spin_lock(&inode->i_lock);
e4c6f8be 5252 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
45c682a6
KC
5253 spin_unlock(&inode->i_lock);
5254
1c5ecae3
MK
5255 /*
5256 * If the subpool has a minimum size, the number of global
5257 * reservations to be released may be adjusted.
5258 */
5259 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
5260 hugetlb_acct_memory(h, -gbl_reserve);
b5cec28d
MK
5261
5262 return 0;
a43a8c39 5263}
93f70f90 5264
3212b535
SC
5265#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
5266static unsigned long page_table_shareable(struct vm_area_struct *svma,
5267 struct vm_area_struct *vma,
5268 unsigned long addr, pgoff_t idx)
5269{
5270 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
5271 svma->vm_start;
5272 unsigned long sbase = saddr & PUD_MASK;
5273 unsigned long s_end = sbase + PUD_SIZE;
5274
5275 /* Allow segments to share if only one is marked locked */
de60f5f1
EM
5276 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
5277 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
3212b535
SC
5278
5279 /*
5280 * match the virtual addresses, permission and the alignment of the
5281 * page table page.
5282 */
5283 if (pmd_index(addr) != pmd_index(saddr) ||
5284 vm_flags != svm_flags ||
5285 sbase < svma->vm_start || svma->vm_end < s_end)
5286 return 0;
5287
5288 return saddr;
5289}
5290
31aafb45 5291static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
3212b535
SC
5292{
5293 unsigned long base = addr & PUD_MASK;
5294 unsigned long end = base + PUD_SIZE;
5295
5296 /*
5297 * check on proper vm_flags and page table alignment
5298 */
017b1660 5299 if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
31aafb45
NK
5300 return true;
5301 return false;
3212b535
SC
5302}
5303
017b1660
MK
5304/*
5305 * Determine if start,end range within vma could be mapped by shared pmd.
5306 * If yes, adjust start and end to cover range associated with possible
5307 * shared pmd mappings.
5308 */
5309void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5310 unsigned long *start, unsigned long *end)
5311{
a1ba9da8
LX
5312 unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
5313 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
017b1660 5314
a1ba9da8
LX
5315 /*
5316 * vma need span at least one aligned PUD size and the start,end range
5317 * must at least partialy within it.
5318 */
5319 if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
5320 (*end <= v_start) || (*start >= v_end))
017b1660
MK
5321 return;
5322
75802ca6 5323 /* Extend the range to be PUD aligned for a worst case scenario */
a1ba9da8
LX
5324 if (*start > v_start)
5325 *start = ALIGN_DOWN(*start, PUD_SIZE);
017b1660 5326
a1ba9da8
LX
5327 if (*end < v_end)
5328 *end = ALIGN(*end, PUD_SIZE);
017b1660
MK
5329}
5330
3212b535
SC
5331/*
5332 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
5333 * and returns the corresponding pte. While this is not necessary for the
5334 * !shared pmd case because we can allocate the pmd later as well, it makes the
c0d0381a
MK
5335 * code much cleaner.
5336 *
0bf7b64e
MK
5337 * This routine must be called with i_mmap_rwsem held in at least read mode if
5338 * sharing is possible. For hugetlbfs, this prevents removal of any page
5339 * table entries associated with the address space. This is important as we
5340 * are setting up sharing based on existing page table entries (mappings).
5341 *
5342 * NOTE: This routine is only called from huge_pte_alloc. Some callers of
5343 * huge_pte_alloc know that sharing is not possible and do not take
5344 * i_mmap_rwsem as a performance optimization. This is handled by the
5345 * if !vma_shareable check at the beginning of the routine. i_mmap_rwsem is
5346 * only required for subsequent processing.
3212b535
SC
5347 */
5348pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
5349{
5350 struct vm_area_struct *vma = find_vma(mm, addr);
5351 struct address_space *mapping = vma->vm_file->f_mapping;
5352 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
5353 vma->vm_pgoff;
5354 struct vm_area_struct *svma;
5355 unsigned long saddr;
5356 pte_t *spte = NULL;
5357 pte_t *pte;
cb900f41 5358 spinlock_t *ptl;
3212b535
SC
5359
5360 if (!vma_shareable(vma, addr))
5361 return (pte_t *)pmd_alloc(mm, pud, addr);
5362
0bf7b64e 5363 i_mmap_assert_locked(mapping);
3212b535
SC
5364 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
5365 if (svma == vma)
5366 continue;
5367
5368 saddr = page_table_shareable(svma, vma, addr, idx);
5369 if (saddr) {
7868a208
PA
5370 spte = huge_pte_offset(svma->vm_mm, saddr,
5371 vma_mmu_pagesize(svma));
3212b535
SC
5372 if (spte) {
5373 get_page(virt_to_page(spte));
5374 break;
5375 }
5376 }
5377 }
5378
5379 if (!spte)
5380 goto out;
5381
8bea8052 5382 ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
dc6c9a35 5383 if (pud_none(*pud)) {
3212b535
SC
5384 pud_populate(mm, pud,
5385 (pmd_t *)((unsigned long)spte & PAGE_MASK));
c17b1f42 5386 mm_inc_nr_pmds(mm);
dc6c9a35 5387 } else {
3212b535 5388 put_page(virt_to_page(spte));
dc6c9a35 5389 }
cb900f41 5390 spin_unlock(ptl);
3212b535
SC
5391out:
5392 pte = (pte_t *)pmd_alloc(mm, pud, addr);
3212b535
SC
5393 return pte;
5394}
5395
5396/*
5397 * unmap huge page backed by shared pte.
5398 *
5399 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
5400 * indicated by page_count > 1, unmap is achieved by clearing pud and
5401 * decrementing the ref count. If count == 1, the pte page is not shared.
5402 *
c0d0381a 5403 * Called with page table lock held and i_mmap_rwsem held in write mode.
3212b535
SC
5404 *
5405 * returns: 1 successfully unmapped a shared pte page
5406 * 0 the underlying pte page is not shared, or it is the last user
5407 */
34ae204f
MK
5408int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
5409 unsigned long *addr, pte_t *ptep)
3212b535
SC
5410{
5411 pgd_t *pgd = pgd_offset(mm, *addr);
c2febafc
KS
5412 p4d_t *p4d = p4d_offset(pgd, *addr);
5413 pud_t *pud = pud_offset(p4d, *addr);
3212b535 5414
34ae204f 5415 i_mmap_assert_write_locked(vma->vm_file->f_mapping);
3212b535
SC
5416 BUG_ON(page_count(virt_to_page(ptep)) == 0);
5417 if (page_count(virt_to_page(ptep)) == 1)
5418 return 0;
5419
5420 pud_clear(pud);
5421 put_page(virt_to_page(ptep));
dc6c9a35 5422 mm_dec_nr_pmds(mm);
3212b535
SC
5423 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
5424 return 1;
5425}
9e5fc74c
SC
5426#define want_pmd_share() (1)
5427#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5428pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
5429{
5430 return NULL;
5431}
e81f2d22 5432
34ae204f
MK
5433int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
5434 unsigned long *addr, pte_t *ptep)
e81f2d22
ZZ
5435{
5436 return 0;
5437}
017b1660
MK
5438
5439void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5440 unsigned long *start, unsigned long *end)
5441{
5442}
9e5fc74c 5443#define want_pmd_share() (0)
3212b535
SC
5444#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5445
9e5fc74c
SC
5446#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
5447pte_t *huge_pte_alloc(struct mm_struct *mm,
5448 unsigned long addr, unsigned long sz)
5449{
5450 pgd_t *pgd;
c2febafc 5451 p4d_t *p4d;
9e5fc74c
SC
5452 pud_t *pud;
5453 pte_t *pte = NULL;
5454
5455 pgd = pgd_offset(mm, addr);
f4f0a3d8
KS
5456 p4d = p4d_alloc(mm, pgd, addr);
5457 if (!p4d)
5458 return NULL;
c2febafc 5459 pud = pud_alloc(mm, p4d, addr);
9e5fc74c
SC
5460 if (pud) {
5461 if (sz == PUD_SIZE) {
5462 pte = (pte_t *)pud;
5463 } else {
5464 BUG_ON(sz != PMD_SIZE);
5465 if (want_pmd_share() && pud_none(*pud))
5466 pte = huge_pmd_share(mm, addr, pud);
5467 else
5468 pte = (pte_t *)pmd_alloc(mm, pud, addr);
5469 }
5470 }
4e666314 5471 BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
9e5fc74c
SC
5472
5473 return pte;
5474}
5475
9b19df29
PA
5476/*
5477 * huge_pte_offset() - Walk the page table to resolve the hugepage
5478 * entry at address @addr
5479 *
8ac0b81a
LX
5480 * Return: Pointer to page table entry (PUD or PMD) for
5481 * address @addr, or NULL if a !p*d_present() entry is encountered and the
9b19df29
PA
5482 * size @sz doesn't match the hugepage size at this level of the page
5483 * table.
5484 */
7868a208
PA
5485pte_t *huge_pte_offset(struct mm_struct *mm,
5486 unsigned long addr, unsigned long sz)
9e5fc74c
SC
5487{
5488 pgd_t *pgd;
c2febafc 5489 p4d_t *p4d;
8ac0b81a
LX
5490 pud_t *pud;
5491 pmd_t *pmd;
9e5fc74c
SC
5492
5493 pgd = pgd_offset(mm, addr);
c2febafc
KS
5494 if (!pgd_present(*pgd))
5495 return NULL;
5496 p4d = p4d_offset(pgd, addr);
5497 if (!p4d_present(*p4d))
5498 return NULL;
9b19df29 5499
c2febafc 5500 pud = pud_offset(p4d, addr);
8ac0b81a
LX
5501 if (sz == PUD_SIZE)
5502 /* must be pud huge, non-present or none */
c2febafc 5503 return (pte_t *)pud;
8ac0b81a 5504 if (!pud_present(*pud))
9b19df29 5505 return NULL;
8ac0b81a 5506 /* must have a valid entry and size to go further */
9b19df29 5507
8ac0b81a
LX
5508 pmd = pmd_offset(pud, addr);
5509 /* must be pmd huge, non-present or none */
5510 return (pte_t *)pmd;
9e5fc74c
SC
5511}
5512
61f77eda
NH
5513#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
5514
5515/*
5516 * These functions are overwritable if your architecture needs its own
5517 * behavior.
5518 */
5519struct page * __weak
5520follow_huge_addr(struct mm_struct *mm, unsigned long address,
5521 int write)
5522{
5523 return ERR_PTR(-EINVAL);
5524}
5525
4dc71451
AK
5526struct page * __weak
5527follow_huge_pd(struct vm_area_struct *vma,
5528 unsigned long address, hugepd_t hpd, int flags, int pdshift)
5529{
5530 WARN(1, "hugepd follow called with no support for hugepage directory format\n");
5531 return NULL;
5532}
5533
61f77eda 5534struct page * __weak
9e5fc74c 5535follow_huge_pmd(struct mm_struct *mm, unsigned long address,
e66f17ff 5536 pmd_t *pmd, int flags)
9e5fc74c 5537{
e66f17ff
NH
5538 struct page *page = NULL;
5539 spinlock_t *ptl;
c9d398fa 5540 pte_t pte;
3faa52c0
JH
5541
5542 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
5543 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
5544 (FOLL_PIN | FOLL_GET)))
5545 return NULL;
5546
e66f17ff
NH
5547retry:
5548 ptl = pmd_lockptr(mm, pmd);
5549 spin_lock(ptl);
5550 /*
5551 * make sure that the address range covered by this pmd is not
5552 * unmapped from other threads.
5553 */
5554 if (!pmd_huge(*pmd))
5555 goto out;
c9d398fa
NH
5556 pte = huge_ptep_get((pte_t *)pmd);
5557 if (pte_present(pte)) {
97534127 5558 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
3faa52c0
JH
5559 /*
5560 * try_grab_page() should always succeed here, because: a) we
5561 * hold the pmd (ptl) lock, and b) we've just checked that the
5562 * huge pmd (head) page is present in the page tables. The ptl
5563 * prevents the head page and tail pages from being rearranged
5564 * in any way. So this page must be available at this point,
5565 * unless the page refcount overflowed:
5566 */
5567 if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
5568 page = NULL;
5569 goto out;
5570 }
e66f17ff 5571 } else {
c9d398fa 5572 if (is_hugetlb_entry_migration(pte)) {
e66f17ff
NH
5573 spin_unlock(ptl);
5574 __migration_entry_wait(mm, (pte_t *)pmd, ptl);
5575 goto retry;
5576 }
5577 /*
5578 * hwpoisoned entry is treated as no_page_table in
5579 * follow_page_mask().
5580 */
5581 }
5582out:
5583 spin_unlock(ptl);
9e5fc74c
SC
5584 return page;
5585}
5586
61f77eda 5587struct page * __weak
9e5fc74c 5588follow_huge_pud(struct mm_struct *mm, unsigned long address,
e66f17ff 5589 pud_t *pud, int flags)
9e5fc74c 5590{
3faa52c0 5591 if (flags & (FOLL_GET | FOLL_PIN))
e66f17ff 5592 return NULL;
9e5fc74c 5593
e66f17ff 5594 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
9e5fc74c
SC
5595}
5596
faaa5b62
AK
5597struct page * __weak
5598follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
5599{
3faa52c0 5600 if (flags & (FOLL_GET | FOLL_PIN))
faaa5b62
AK
5601 return NULL;
5602
5603 return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
5604}
5605
31caf665
NH
5606bool isolate_huge_page(struct page *page, struct list_head *list)
5607{
bcc54222
NH
5608 bool ret = true;
5609
31caf665 5610 spin_lock(&hugetlb_lock);
0eb2df2b
MS
5611 if (!PageHeadHuge(page) || !page_huge_active(page) ||
5612 !get_page_unless_zero(page)) {
bcc54222
NH
5613 ret = false;
5614 goto unlock;
5615 }
5616 clear_page_huge_active(page);
31caf665 5617 list_move_tail(&page->lru, list);
bcc54222 5618unlock:
31caf665 5619 spin_unlock(&hugetlb_lock);
bcc54222 5620 return ret;
31caf665
NH
5621}
5622
5623void putback_active_hugepage(struct page *page)
5624{
309381fe 5625 VM_BUG_ON_PAGE(!PageHead(page), page);
31caf665 5626 spin_lock(&hugetlb_lock);
bcc54222 5627 set_page_huge_active(page);
31caf665
NH
5628 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
5629 spin_unlock(&hugetlb_lock);
5630 put_page(page);
5631}
ab5ac90a
MH
5632
5633void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
5634{
5635 struct hstate *h = page_hstate(oldpage);
5636
5637 hugetlb_cgroup_migrate(oldpage, newpage);
5638 set_page_owner_migrate_reason(newpage, reason);
5639
5640 /*
5641 * transfer temporary state of the new huge page. This is
5642 * reverse to other transitions because the newpage is going to
5643 * be final while the old one will be freed so it takes over
5644 * the temporary status.
5645 *
5646 * Also note that we have to transfer the per-node surplus state
5647 * here as well otherwise the global surplus count will not match
5648 * the per-node's.
5649 */
5650 if (PageHugeTemporary(newpage)) {
5651 int old_nid = page_to_nid(oldpage);
5652 int new_nid = page_to_nid(newpage);
5653
5654 SetPageHugeTemporary(oldpage);
5655 ClearPageHugeTemporary(newpage);
5656
5657 spin_lock(&hugetlb_lock);
5658 if (h->surplus_huge_pages_node[old_nid]) {
5659 h->surplus_huge_pages_node[old_nid]--;
5660 h->surplus_huge_pages_node[new_nid]++;
5661 }
5662 spin_unlock(&hugetlb_lock);
5663 }
5664}
cf11e85f
RG
5665
5666#ifdef CONFIG_CMA
cf11e85f
RG
5667static bool cma_reserve_called __initdata;
5668
5669static int __init cmdline_parse_hugetlb_cma(char *p)
5670{
5671 hugetlb_cma_size = memparse(p, &p);
5672 return 0;
5673}
5674
5675early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
5676
5677void __init hugetlb_cma_reserve(int order)
5678{
5679 unsigned long size, reserved, per_node;
5680 int nid;
5681
5682 cma_reserve_called = true;
5683
5684 if (!hugetlb_cma_size)
5685 return;
5686
5687 if (hugetlb_cma_size < (PAGE_SIZE << order)) {
5688 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
5689 (PAGE_SIZE << order) / SZ_1M);
5690 return;
5691 }
5692
5693 /*
5694 * If 3 GB area is requested on a machine with 4 numa nodes,
5695 * let's allocate 1 GB on first three nodes and ignore the last one.
5696 */
5697 per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
5698 pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
5699 hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
5700
5701 reserved = 0;
5702 for_each_node_state(nid, N_ONLINE) {
5703 int res;
2281f797 5704 char name[CMA_MAX_NAME];
cf11e85f
RG
5705
5706 size = min(per_node, hugetlb_cma_size - reserved);
5707 size = round_up(size, PAGE_SIZE << order);
5708
2281f797 5709 snprintf(name, sizeof(name), "hugetlb%d", nid);
cf11e85f 5710 res = cma_declare_contiguous_nid(0, size, 0, PAGE_SIZE << order,
29d0f41d 5711 0, false, name,
cf11e85f
RG
5712 &hugetlb_cma[nid], nid);
5713 if (res) {
5714 pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
5715 res, nid);
5716 continue;
5717 }
5718
5719 reserved += size;
5720 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
5721 size / SZ_1M, nid);
5722
5723 if (reserved >= hugetlb_cma_size)
5724 break;
5725 }
5726}
5727
5728void __init hugetlb_cma_check(void)
5729{
5730 if (!hugetlb_cma_size || cma_reserve_called)
5731 return;
5732
5733 pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
5734}
5735
5736#endif /* CONFIG_CMA */