mm, memory_hotplug: simplify empty node mask handling in new_node_page
[linux-2.6-block.git] / mm / hugetlb.c
CommitLineData
1da177e4
LT
1/*
2 * Generic hugetlb support.
6d49e352 3 * (C) Nadia Yvette Chambers, April 2004
1da177e4 4 */
1da177e4
LT
5#include <linux/list.h>
6#include <linux/init.h>
1da177e4 7#include <linux/mm.h>
e1759c21 8#include <linux/seq_file.h>
1da177e4
LT
9#include <linux/sysctl.h>
10#include <linux/highmem.h>
cddb8a5c 11#include <linux/mmu_notifier.h>
1da177e4 12#include <linux/nodemask.h>
63551ae0 13#include <linux/pagemap.h>
5da7ca86 14#include <linux/mempolicy.h>
3b32123d 15#include <linux/compiler.h>
aea47ff3 16#include <linux/cpuset.h>
3935baa9 17#include <linux/mutex.h>
aa888a74 18#include <linux/bootmem.h>
a3437870 19#include <linux/sysfs.h>
5a0e3ad6 20#include <linux/slab.h>
174cd4b1 21#include <linux/sched/signal.h>
0fe6e20b 22#include <linux/rmap.h>
fd6a03ed
NH
23#include <linux/swap.h>
24#include <linux/swapops.h>
8382d914 25#include <linux/jhash.h>
d6606683 26
63551ae0
DG
27#include <asm/page.h>
28#include <asm/pgtable.h>
24669e58 29#include <asm/tlb.h>
63551ae0 30
24669e58 31#include <linux/io.h>
63551ae0 32#include <linux/hugetlb.h>
9dd540e2 33#include <linux/hugetlb_cgroup.h>
9a305230 34#include <linux/node.h>
1a1aad8a 35#include <linux/userfaultfd_k.h>
7835e98b 36#include "internal.h"
1da177e4 37
753162cd 38int hugepages_treat_as_movable;
a5516438 39
c3f38a38 40int hugetlb_max_hstate __read_mostly;
e5ff2159
AK
41unsigned int default_hstate_idx;
42struct hstate hstates[HUGE_MAX_HSTATE];
641844f5
NH
43/*
44 * Minimum page order among possible hugepage sizes, set to a proper value
45 * at boot time.
46 */
47static unsigned int minimum_order __read_mostly = UINT_MAX;
e5ff2159 48
53ba51d2
JT
49__initdata LIST_HEAD(huge_boot_pages);
50
e5ff2159
AK
51/* for command line parsing */
52static struct hstate * __initdata parsed_hstate;
53static unsigned long __initdata default_hstate_max_huge_pages;
e11bfbfc 54static unsigned long __initdata default_hstate_size;
9fee021d 55static bool __initdata parsed_valid_hugepagesz = true;
e5ff2159 56
3935baa9 57/*
31caf665
NH
58 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
59 * free_huge_pages, and surplus_huge_pages.
3935baa9 60 */
c3f38a38 61DEFINE_SPINLOCK(hugetlb_lock);
0bd0f9fb 62
8382d914
DB
63/*
64 * Serializes faults on the same logical page. This is used to
65 * prevent spurious OOMs when the hugepage pool is fully utilized.
66 */
67static int num_fault_mutexes;
c672c7f2 68struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
8382d914 69
7ca02d0a
MK
70/* Forward declaration */
71static int hugetlb_acct_memory(struct hstate *h, long delta);
72
d715cf80
LH
73static char * __init memfmt(char *buf, unsigned long n)
74{
75 if (n >= (1UL << 30))
76 sprintf(buf, "%lu GB", n >> 30);
77 else if (n >= (1UL << 20))
78 sprintf(buf, "%lu MB", n >> 20);
79 else
80 sprintf(buf, "%lu KB", n >> 10);
81 return buf;
82}
83
90481622
DG
84static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
85{
86 bool free = (spool->count == 0) && (spool->used_hpages == 0);
87
88 spin_unlock(&spool->lock);
89
90 /* If no pages are used, and no other handles to the subpool
7ca02d0a
MK
91 * remain, give up any reservations mased on minimum size and
92 * free the subpool */
93 if (free) {
94 if (spool->min_hpages != -1)
95 hugetlb_acct_memory(spool->hstate,
96 -spool->min_hpages);
90481622 97 kfree(spool);
7ca02d0a 98 }
90481622
DG
99}
100
7ca02d0a
MK
101struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
102 long min_hpages)
90481622
DG
103{
104 struct hugepage_subpool *spool;
105
c6a91820 106 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
90481622
DG
107 if (!spool)
108 return NULL;
109
110 spin_lock_init(&spool->lock);
111 spool->count = 1;
7ca02d0a
MK
112 spool->max_hpages = max_hpages;
113 spool->hstate = h;
114 spool->min_hpages = min_hpages;
115
116 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
117 kfree(spool);
118 return NULL;
119 }
120 spool->rsv_hpages = min_hpages;
90481622
DG
121
122 return spool;
123}
124
125void hugepage_put_subpool(struct hugepage_subpool *spool)
126{
127 spin_lock(&spool->lock);
128 BUG_ON(!spool->count);
129 spool->count--;
130 unlock_or_release_subpool(spool);
131}
132
1c5ecae3
MK
133/*
134 * Subpool accounting for allocating and reserving pages.
135 * Return -ENOMEM if there are not enough resources to satisfy the
136 * the request. Otherwise, return the number of pages by which the
137 * global pools must be adjusted (upward). The returned value may
138 * only be different than the passed value (delta) in the case where
139 * a subpool minimum size must be manitained.
140 */
141static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
90481622
DG
142 long delta)
143{
1c5ecae3 144 long ret = delta;
90481622
DG
145
146 if (!spool)
1c5ecae3 147 return ret;
90481622
DG
148
149 spin_lock(&spool->lock);
1c5ecae3
MK
150
151 if (spool->max_hpages != -1) { /* maximum size accounting */
152 if ((spool->used_hpages + delta) <= spool->max_hpages)
153 spool->used_hpages += delta;
154 else {
155 ret = -ENOMEM;
156 goto unlock_ret;
157 }
90481622 158 }
90481622 159
09a95e29
MK
160 /* minimum size accounting */
161 if (spool->min_hpages != -1 && spool->rsv_hpages) {
1c5ecae3
MK
162 if (delta > spool->rsv_hpages) {
163 /*
164 * Asking for more reserves than those already taken on
165 * behalf of subpool. Return difference.
166 */
167 ret = delta - spool->rsv_hpages;
168 spool->rsv_hpages = 0;
169 } else {
170 ret = 0; /* reserves already accounted for */
171 spool->rsv_hpages -= delta;
172 }
173 }
174
175unlock_ret:
176 spin_unlock(&spool->lock);
90481622
DG
177 return ret;
178}
179
1c5ecae3
MK
180/*
181 * Subpool accounting for freeing and unreserving pages.
182 * Return the number of global page reservations that must be dropped.
183 * The return value may only be different than the passed value (delta)
184 * in the case where a subpool minimum size must be maintained.
185 */
186static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
90481622
DG
187 long delta)
188{
1c5ecae3
MK
189 long ret = delta;
190
90481622 191 if (!spool)
1c5ecae3 192 return delta;
90481622
DG
193
194 spin_lock(&spool->lock);
1c5ecae3
MK
195
196 if (spool->max_hpages != -1) /* maximum size accounting */
197 spool->used_hpages -= delta;
198
09a95e29
MK
199 /* minimum size accounting */
200 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
1c5ecae3
MK
201 if (spool->rsv_hpages + delta <= spool->min_hpages)
202 ret = 0;
203 else
204 ret = spool->rsv_hpages + delta - spool->min_hpages;
205
206 spool->rsv_hpages += delta;
207 if (spool->rsv_hpages > spool->min_hpages)
208 spool->rsv_hpages = spool->min_hpages;
209 }
210
211 /*
212 * If hugetlbfs_put_super couldn't free spool due to an outstanding
213 * quota reference, free it now.
214 */
90481622 215 unlock_or_release_subpool(spool);
1c5ecae3
MK
216
217 return ret;
90481622
DG
218}
219
220static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
221{
222 return HUGETLBFS_SB(inode->i_sb)->spool;
223}
224
225static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
226{
496ad9aa 227 return subpool_inode(file_inode(vma->vm_file));
90481622
DG
228}
229
96822904
AW
230/*
231 * Region tracking -- allows tracking of reservations and instantiated pages
232 * across the pages in a mapping.
84afd99b 233 *
1dd308a7
MK
234 * The region data structures are embedded into a resv_map and protected
235 * by a resv_map's lock. The set of regions within the resv_map represent
236 * reservations for huge pages, or huge pages that have already been
237 * instantiated within the map. The from and to elements are huge page
238 * indicies into the associated mapping. from indicates the starting index
239 * of the region. to represents the first index past the end of the region.
240 *
241 * For example, a file region structure with from == 0 and to == 4 represents
242 * four huge pages in a mapping. It is important to note that the to element
243 * represents the first element past the end of the region. This is used in
244 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
245 *
246 * Interval notation of the form [from, to) will be used to indicate that
247 * the endpoint from is inclusive and to is exclusive.
96822904
AW
248 */
249struct file_region {
250 struct list_head link;
251 long from;
252 long to;
253};
254
1dd308a7
MK
255/*
256 * Add the huge page range represented by [f, t) to the reserve
5e911373
MK
257 * map. In the normal case, existing regions will be expanded
258 * to accommodate the specified range. Sufficient regions should
259 * exist for expansion due to the previous call to region_chg
260 * with the same range. However, it is possible that region_del
261 * could have been called after region_chg and modifed the map
262 * in such a way that no region exists to be expanded. In this
263 * case, pull a region descriptor from the cache associated with
264 * the map and use that for the new range.
cf3ad20b
MK
265 *
266 * Return the number of new huge pages added to the map. This
267 * number is greater than or equal to zero.
1dd308a7 268 */
1406ec9b 269static long region_add(struct resv_map *resv, long f, long t)
96822904 270{
1406ec9b 271 struct list_head *head = &resv->regions;
96822904 272 struct file_region *rg, *nrg, *trg;
cf3ad20b 273 long add = 0;
96822904 274
7b24d861 275 spin_lock(&resv->lock);
96822904
AW
276 /* Locate the region we are either in or before. */
277 list_for_each_entry(rg, head, link)
278 if (f <= rg->to)
279 break;
280
5e911373
MK
281 /*
282 * If no region exists which can be expanded to include the
283 * specified range, the list must have been modified by an
284 * interleving call to region_del(). Pull a region descriptor
285 * from the cache and use it for this range.
286 */
287 if (&rg->link == head || t < rg->from) {
288 VM_BUG_ON(resv->region_cache_count <= 0);
289
290 resv->region_cache_count--;
291 nrg = list_first_entry(&resv->region_cache, struct file_region,
292 link);
293 list_del(&nrg->link);
294
295 nrg->from = f;
296 nrg->to = t;
297 list_add(&nrg->link, rg->link.prev);
298
299 add += t - f;
300 goto out_locked;
301 }
302
96822904
AW
303 /* Round our left edge to the current segment if it encloses us. */
304 if (f > rg->from)
305 f = rg->from;
306
307 /* Check for and consume any regions we now overlap with. */
308 nrg = rg;
309 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
310 if (&rg->link == head)
311 break;
312 if (rg->from > t)
313 break;
314
315 /* If this area reaches higher then extend our area to
316 * include it completely. If this is not the first area
317 * which we intend to reuse, free it. */
318 if (rg->to > t)
319 t = rg->to;
320 if (rg != nrg) {
cf3ad20b
MK
321 /* Decrement return value by the deleted range.
322 * Another range will span this area so that by
323 * end of routine add will be >= zero
324 */
325 add -= (rg->to - rg->from);
96822904
AW
326 list_del(&rg->link);
327 kfree(rg);
328 }
329 }
cf3ad20b
MK
330
331 add += (nrg->from - f); /* Added to beginning of region */
96822904 332 nrg->from = f;
cf3ad20b 333 add += t - nrg->to; /* Added to end of region */
96822904 334 nrg->to = t;
cf3ad20b 335
5e911373
MK
336out_locked:
337 resv->adds_in_progress--;
7b24d861 338 spin_unlock(&resv->lock);
cf3ad20b
MK
339 VM_BUG_ON(add < 0);
340 return add;
96822904
AW
341}
342
1dd308a7
MK
343/*
344 * Examine the existing reserve map and determine how many
345 * huge pages in the specified range [f, t) are NOT currently
346 * represented. This routine is called before a subsequent
347 * call to region_add that will actually modify the reserve
348 * map to add the specified range [f, t). region_chg does
349 * not change the number of huge pages represented by the
350 * map. However, if the existing regions in the map can not
351 * be expanded to represent the new range, a new file_region
352 * structure is added to the map as a placeholder. This is
353 * so that the subsequent region_add call will have all the
354 * regions it needs and will not fail.
355 *
5e911373
MK
356 * Upon entry, region_chg will also examine the cache of region descriptors
357 * associated with the map. If there are not enough descriptors cached, one
358 * will be allocated for the in progress add operation.
359 *
360 * Returns the number of huge pages that need to be added to the existing
361 * reservation map for the range [f, t). This number is greater or equal to
362 * zero. -ENOMEM is returned if a new file_region structure or cache entry
363 * is needed and can not be allocated.
1dd308a7 364 */
1406ec9b 365static long region_chg(struct resv_map *resv, long f, long t)
96822904 366{
1406ec9b 367 struct list_head *head = &resv->regions;
7b24d861 368 struct file_region *rg, *nrg = NULL;
96822904
AW
369 long chg = 0;
370
7b24d861
DB
371retry:
372 spin_lock(&resv->lock);
5e911373
MK
373retry_locked:
374 resv->adds_in_progress++;
375
376 /*
377 * Check for sufficient descriptors in the cache to accommodate
378 * the number of in progress add operations.
379 */
380 if (resv->adds_in_progress > resv->region_cache_count) {
381 struct file_region *trg;
382
383 VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
384 /* Must drop lock to allocate a new descriptor. */
385 resv->adds_in_progress--;
386 spin_unlock(&resv->lock);
387
388 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
dbe409e4
MK
389 if (!trg) {
390 kfree(nrg);
5e911373 391 return -ENOMEM;
dbe409e4 392 }
5e911373
MK
393
394 spin_lock(&resv->lock);
395 list_add(&trg->link, &resv->region_cache);
396 resv->region_cache_count++;
397 goto retry_locked;
398 }
399
96822904
AW
400 /* Locate the region we are before or in. */
401 list_for_each_entry(rg, head, link)
402 if (f <= rg->to)
403 break;
404
405 /* If we are below the current region then a new region is required.
406 * Subtle, allocate a new region at the position but make it zero
407 * size such that we can guarantee to record the reservation. */
408 if (&rg->link == head || t < rg->from) {
7b24d861 409 if (!nrg) {
5e911373 410 resv->adds_in_progress--;
7b24d861
DB
411 spin_unlock(&resv->lock);
412 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
413 if (!nrg)
414 return -ENOMEM;
415
416 nrg->from = f;
417 nrg->to = f;
418 INIT_LIST_HEAD(&nrg->link);
419 goto retry;
420 }
96822904 421
7b24d861
DB
422 list_add(&nrg->link, rg->link.prev);
423 chg = t - f;
424 goto out_nrg;
96822904
AW
425 }
426
427 /* Round our left edge to the current segment if it encloses us. */
428 if (f > rg->from)
429 f = rg->from;
430 chg = t - f;
431
432 /* Check for and consume any regions we now overlap with. */
433 list_for_each_entry(rg, rg->link.prev, link) {
434 if (&rg->link == head)
435 break;
436 if (rg->from > t)
7b24d861 437 goto out;
96822904 438
25985edc 439 /* We overlap with this area, if it extends further than
96822904
AW
440 * us then we must extend ourselves. Account for its
441 * existing reservation. */
442 if (rg->to > t) {
443 chg += rg->to - t;
444 t = rg->to;
445 }
446 chg -= rg->to - rg->from;
447 }
7b24d861
DB
448
449out:
450 spin_unlock(&resv->lock);
451 /* We already know we raced and no longer need the new region */
452 kfree(nrg);
453 return chg;
454out_nrg:
455 spin_unlock(&resv->lock);
96822904
AW
456 return chg;
457}
458
5e911373
MK
459/*
460 * Abort the in progress add operation. The adds_in_progress field
461 * of the resv_map keeps track of the operations in progress between
462 * calls to region_chg and region_add. Operations are sometimes
463 * aborted after the call to region_chg. In such cases, region_abort
464 * is called to decrement the adds_in_progress counter.
465 *
466 * NOTE: The range arguments [f, t) are not needed or used in this
467 * routine. They are kept to make reading the calling code easier as
468 * arguments will match the associated region_chg call.
469 */
470static void region_abort(struct resv_map *resv, long f, long t)
471{
472 spin_lock(&resv->lock);
473 VM_BUG_ON(!resv->region_cache_count);
474 resv->adds_in_progress--;
475 spin_unlock(&resv->lock);
476}
477
1dd308a7 478/*
feba16e2
MK
479 * Delete the specified range [f, t) from the reserve map. If the
480 * t parameter is LONG_MAX, this indicates that ALL regions after f
481 * should be deleted. Locate the regions which intersect [f, t)
482 * and either trim, delete or split the existing regions.
483 *
484 * Returns the number of huge pages deleted from the reserve map.
485 * In the normal case, the return value is zero or more. In the
486 * case where a region must be split, a new region descriptor must
487 * be allocated. If the allocation fails, -ENOMEM will be returned.
488 * NOTE: If the parameter t == LONG_MAX, then we will never split
489 * a region and possibly return -ENOMEM. Callers specifying
490 * t == LONG_MAX do not need to check for -ENOMEM error.
1dd308a7 491 */
feba16e2 492static long region_del(struct resv_map *resv, long f, long t)
96822904 493{
1406ec9b 494 struct list_head *head = &resv->regions;
96822904 495 struct file_region *rg, *trg;
feba16e2
MK
496 struct file_region *nrg = NULL;
497 long del = 0;
96822904 498
feba16e2 499retry:
7b24d861 500 spin_lock(&resv->lock);
feba16e2 501 list_for_each_entry_safe(rg, trg, head, link) {
dbe409e4
MK
502 /*
503 * Skip regions before the range to be deleted. file_region
504 * ranges are normally of the form [from, to). However, there
505 * may be a "placeholder" entry in the map which is of the form
506 * (from, to) with from == to. Check for placeholder entries
507 * at the beginning of the range to be deleted.
508 */
509 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
feba16e2 510 continue;
dbe409e4 511
feba16e2 512 if (rg->from >= t)
96822904 513 break;
96822904 514
feba16e2
MK
515 if (f > rg->from && t < rg->to) { /* Must split region */
516 /*
517 * Check for an entry in the cache before dropping
518 * lock and attempting allocation.
519 */
520 if (!nrg &&
521 resv->region_cache_count > resv->adds_in_progress) {
522 nrg = list_first_entry(&resv->region_cache,
523 struct file_region,
524 link);
525 list_del(&nrg->link);
526 resv->region_cache_count--;
527 }
96822904 528
feba16e2
MK
529 if (!nrg) {
530 spin_unlock(&resv->lock);
531 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
532 if (!nrg)
533 return -ENOMEM;
534 goto retry;
535 }
536
537 del += t - f;
538
539 /* New entry for end of split region */
540 nrg->from = t;
541 nrg->to = rg->to;
542 INIT_LIST_HEAD(&nrg->link);
543
544 /* Original entry is trimmed */
545 rg->to = f;
546
547 list_add(&nrg->link, &rg->link);
548 nrg = NULL;
96822904 549 break;
feba16e2
MK
550 }
551
552 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
553 del += rg->to - rg->from;
554 list_del(&rg->link);
555 kfree(rg);
556 continue;
557 }
558
559 if (f <= rg->from) { /* Trim beginning of region */
560 del += t - rg->from;
561 rg->from = t;
562 } else { /* Trim end of region */
563 del += rg->to - f;
564 rg->to = f;
565 }
96822904 566 }
7b24d861 567
7b24d861 568 spin_unlock(&resv->lock);
feba16e2
MK
569 kfree(nrg);
570 return del;
96822904
AW
571}
572
b5cec28d
MK
573/*
574 * A rare out of memory error was encountered which prevented removal of
575 * the reserve map region for a page. The huge page itself was free'ed
576 * and removed from the page cache. This routine will adjust the subpool
577 * usage count, and the global reserve count if needed. By incrementing
578 * these counts, the reserve map entry which could not be deleted will
579 * appear as a "reserved" entry instead of simply dangling with incorrect
580 * counts.
581 */
72e2936c 582void hugetlb_fix_reserve_counts(struct inode *inode)
b5cec28d
MK
583{
584 struct hugepage_subpool *spool = subpool_inode(inode);
585 long rsv_adjust;
586
587 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
72e2936c 588 if (rsv_adjust) {
b5cec28d
MK
589 struct hstate *h = hstate_inode(inode);
590
591 hugetlb_acct_memory(h, 1);
592 }
593}
594
1dd308a7
MK
595/*
596 * Count and return the number of huge pages in the reserve map
597 * that intersect with the range [f, t).
598 */
1406ec9b 599static long region_count(struct resv_map *resv, long f, long t)
84afd99b 600{
1406ec9b 601 struct list_head *head = &resv->regions;
84afd99b
AW
602 struct file_region *rg;
603 long chg = 0;
604
7b24d861 605 spin_lock(&resv->lock);
84afd99b
AW
606 /* Locate each segment we overlap with, and count that overlap. */
607 list_for_each_entry(rg, head, link) {
f2135a4a
WSH
608 long seg_from;
609 long seg_to;
84afd99b
AW
610
611 if (rg->to <= f)
612 continue;
613 if (rg->from >= t)
614 break;
615
616 seg_from = max(rg->from, f);
617 seg_to = min(rg->to, t);
618
619 chg += seg_to - seg_from;
620 }
7b24d861 621 spin_unlock(&resv->lock);
84afd99b
AW
622
623 return chg;
624}
625
e7c4b0bf
AW
626/*
627 * Convert the address within this vma to the page offset within
628 * the mapping, in pagecache page units; huge pages here.
629 */
a5516438
AK
630static pgoff_t vma_hugecache_offset(struct hstate *h,
631 struct vm_area_struct *vma, unsigned long address)
e7c4b0bf 632{
a5516438
AK
633 return ((address - vma->vm_start) >> huge_page_shift(h)) +
634 (vma->vm_pgoff >> huge_page_order(h));
e7c4b0bf
AW
635}
636
0fe6e20b
NH
637pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
638 unsigned long address)
639{
640 return vma_hugecache_offset(hstate_vma(vma), vma, address);
641}
dee41079 642EXPORT_SYMBOL_GPL(linear_hugepage_index);
0fe6e20b 643
08fba699
MG
644/*
645 * Return the size of the pages allocated when backing a VMA. In the majority
646 * cases this will be same size as used by the page table entries.
647 */
648unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
649{
650 struct hstate *hstate;
651
652 if (!is_vm_hugetlb_page(vma))
653 return PAGE_SIZE;
654
655 hstate = hstate_vma(vma);
656
2415cf12 657 return 1UL << huge_page_shift(hstate);
08fba699 658}
f340ca0f 659EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
08fba699 660
3340289d
MG
661/*
662 * Return the page size being used by the MMU to back a VMA. In the majority
663 * of cases, the page size used by the kernel matches the MMU size. On
664 * architectures where it differs, an architecture-specific version of this
665 * function is required.
666 */
667#ifndef vma_mmu_pagesize
668unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
669{
670 return vma_kernel_pagesize(vma);
671}
672#endif
673
84afd99b
AW
674/*
675 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
676 * bits of the reservation map pointer, which are always clear due to
677 * alignment.
678 */
679#define HPAGE_RESV_OWNER (1UL << 0)
680#define HPAGE_RESV_UNMAPPED (1UL << 1)
04f2cbe3 681#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
84afd99b 682
a1e78772
MG
683/*
684 * These helpers are used to track how many pages are reserved for
685 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
686 * is guaranteed to have their future faults succeed.
687 *
688 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
689 * the reserve counters are updated with the hugetlb_lock held. It is safe
690 * to reset the VMA at fork() time as it is not in use yet and there is no
691 * chance of the global counters getting corrupted as a result of the values.
84afd99b
AW
692 *
693 * The private mapping reservation is represented in a subtly different
694 * manner to a shared mapping. A shared mapping has a region map associated
695 * with the underlying file, this region map represents the backing file
696 * pages which have ever had a reservation assigned which this persists even
697 * after the page is instantiated. A private mapping has a region map
698 * associated with the original mmap which is attached to all VMAs which
699 * reference it, this region map represents those offsets which have consumed
700 * reservation ie. where pages have been instantiated.
a1e78772 701 */
e7c4b0bf
AW
702static unsigned long get_vma_private_data(struct vm_area_struct *vma)
703{
704 return (unsigned long)vma->vm_private_data;
705}
706
707static void set_vma_private_data(struct vm_area_struct *vma,
708 unsigned long value)
709{
710 vma->vm_private_data = (void *)value;
711}
712
9119a41e 713struct resv_map *resv_map_alloc(void)
84afd99b
AW
714{
715 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
5e911373
MK
716 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
717
718 if (!resv_map || !rg) {
719 kfree(resv_map);
720 kfree(rg);
84afd99b 721 return NULL;
5e911373 722 }
84afd99b
AW
723
724 kref_init(&resv_map->refs);
7b24d861 725 spin_lock_init(&resv_map->lock);
84afd99b
AW
726 INIT_LIST_HEAD(&resv_map->regions);
727
5e911373
MK
728 resv_map->adds_in_progress = 0;
729
730 INIT_LIST_HEAD(&resv_map->region_cache);
731 list_add(&rg->link, &resv_map->region_cache);
732 resv_map->region_cache_count = 1;
733
84afd99b
AW
734 return resv_map;
735}
736
9119a41e 737void resv_map_release(struct kref *ref)
84afd99b
AW
738{
739 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
5e911373
MK
740 struct list_head *head = &resv_map->region_cache;
741 struct file_region *rg, *trg;
84afd99b
AW
742
743 /* Clear out any active regions before we release the map. */
feba16e2 744 region_del(resv_map, 0, LONG_MAX);
5e911373
MK
745
746 /* ... and any entries left in the cache */
747 list_for_each_entry_safe(rg, trg, head, link) {
748 list_del(&rg->link);
749 kfree(rg);
750 }
751
752 VM_BUG_ON(resv_map->adds_in_progress);
753
84afd99b
AW
754 kfree(resv_map);
755}
756
4e35f483
JK
757static inline struct resv_map *inode_resv_map(struct inode *inode)
758{
759 return inode->i_mapping->private_data;
760}
761
84afd99b 762static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
a1e78772 763{
81d1b09c 764 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
4e35f483
JK
765 if (vma->vm_flags & VM_MAYSHARE) {
766 struct address_space *mapping = vma->vm_file->f_mapping;
767 struct inode *inode = mapping->host;
768
769 return inode_resv_map(inode);
770
771 } else {
84afd99b
AW
772 return (struct resv_map *)(get_vma_private_data(vma) &
773 ~HPAGE_RESV_MASK);
4e35f483 774 }
a1e78772
MG
775}
776
84afd99b 777static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
a1e78772 778{
81d1b09c
SL
779 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
780 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
a1e78772 781
84afd99b
AW
782 set_vma_private_data(vma, (get_vma_private_data(vma) &
783 HPAGE_RESV_MASK) | (unsigned long)map);
04f2cbe3
MG
784}
785
786static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
787{
81d1b09c
SL
788 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
789 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
e7c4b0bf
AW
790
791 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
04f2cbe3
MG
792}
793
794static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
795{
81d1b09c 796 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
e7c4b0bf
AW
797
798 return (get_vma_private_data(vma) & flag) != 0;
a1e78772
MG
799}
800
04f2cbe3 801/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
a1e78772
MG
802void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
803{
81d1b09c 804 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
f83a275d 805 if (!(vma->vm_flags & VM_MAYSHARE))
a1e78772
MG
806 vma->vm_private_data = (void *)0;
807}
808
809/* Returns true if the VMA has associated reserve pages */
559ec2f8 810static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
a1e78772 811{
af0ed73e
JK
812 if (vma->vm_flags & VM_NORESERVE) {
813 /*
814 * This address is already reserved by other process(chg == 0),
815 * so, we should decrement reserved count. Without decrementing,
816 * reserve count remains after releasing inode, because this
817 * allocated page will go into page cache and is regarded as
818 * coming from reserved pool in releasing step. Currently, we
819 * don't have any other solution to deal with this situation
820 * properly, so add work-around here.
821 */
822 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
559ec2f8 823 return true;
af0ed73e 824 else
559ec2f8 825 return false;
af0ed73e 826 }
a63884e9
JK
827
828 /* Shared mappings always use reserves */
1fb1b0e9
MK
829 if (vma->vm_flags & VM_MAYSHARE) {
830 /*
831 * We know VM_NORESERVE is not set. Therefore, there SHOULD
832 * be a region map for all pages. The only situation where
833 * there is no region map is if a hole was punched via
834 * fallocate. In this case, there really are no reverves to
835 * use. This situation is indicated if chg != 0.
836 */
837 if (chg)
838 return false;
839 else
840 return true;
841 }
a63884e9
JK
842
843 /*
844 * Only the process that called mmap() has reserves for
845 * private mappings.
846 */
67961f9d
MK
847 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
848 /*
849 * Like the shared case above, a hole punch or truncate
850 * could have been performed on the private mapping.
851 * Examine the value of chg to determine if reserves
852 * actually exist or were previously consumed.
853 * Very Subtle - The value of chg comes from a previous
854 * call to vma_needs_reserves(). The reserve map for
855 * private mappings has different (opposite) semantics
856 * than that of shared mappings. vma_needs_reserves()
857 * has already taken this difference in semantics into
858 * account. Therefore, the meaning of chg is the same
859 * as in the shared case above. Code could easily be
860 * combined, but keeping it separate draws attention to
861 * subtle differences.
862 */
863 if (chg)
864 return false;
865 else
866 return true;
867 }
a63884e9 868
559ec2f8 869 return false;
a1e78772
MG
870}
871
a5516438 872static void enqueue_huge_page(struct hstate *h, struct page *page)
1da177e4
LT
873{
874 int nid = page_to_nid(page);
0edaecfa 875 list_move(&page->lru, &h->hugepage_freelists[nid]);
a5516438
AK
876 h->free_huge_pages++;
877 h->free_huge_pages_node[nid]++;
1da177e4
LT
878}
879
94310cbc 880static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
bf50bab2
NH
881{
882 struct page *page;
883
c8721bbb 884 list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
243abd5b 885 if (!PageHWPoison(page))
c8721bbb
NH
886 break;
887 /*
888 * if 'non-isolated free hugepage' not found on the list,
889 * the allocation fails.
890 */
891 if (&h->hugepage_freelists[nid] == &page->lru)
bf50bab2 892 return NULL;
0edaecfa 893 list_move(&page->lru, &h->hugepage_activelist);
a9869b83 894 set_page_refcounted(page);
bf50bab2
NH
895 h->free_huge_pages--;
896 h->free_huge_pages_node[nid]--;
897 return page;
898}
899
94310cbc
AK
900static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
901{
902 struct page *page;
903 int node;
904
905 if (nid != NUMA_NO_NODE)
906 return dequeue_huge_page_node_exact(h, nid);
907
908 for_each_online_node(node) {
909 page = dequeue_huge_page_node_exact(h, node);
910 if (page)
911 return page;
912 }
913 return NULL;
914}
915
86cdb465
NH
916/* Movability of hugepages depends on migration support. */
917static inline gfp_t htlb_alloc_mask(struct hstate *h)
918{
100873d7 919 if (hugepages_treat_as_movable || hugepage_migration_supported(h))
86cdb465
NH
920 return GFP_HIGHUSER_MOVABLE;
921 else
922 return GFP_HIGHUSER;
923}
924
a5516438
AK
925static struct page *dequeue_huge_page_vma(struct hstate *h,
926 struct vm_area_struct *vma,
af0ed73e
JK
927 unsigned long address, int avoid_reserve,
928 long chg)
1da177e4 929{
b1c12cbc 930 struct page *page = NULL;
480eccf9 931 struct mempolicy *mpol;
19770b32 932 nodemask_t *nodemask;
04ec6264
VB
933 gfp_t gfp_mask;
934 int nid;
c0ff7453 935 struct zonelist *zonelist;
dd1a239f
MG
936 struct zone *zone;
937 struct zoneref *z;
cc9a6c87 938 unsigned int cpuset_mems_cookie;
1da177e4 939
a1e78772
MG
940 /*
941 * A child process with MAP_PRIVATE mappings created by their parent
942 * have no page reserves. This check ensures that reservations are
943 * not "stolen". The child may still get SIGKILLed
944 */
af0ed73e 945 if (!vma_has_reserves(vma, chg) &&
a5516438 946 h->free_huge_pages - h->resv_huge_pages == 0)
c0ff7453 947 goto err;
a1e78772 948
04f2cbe3 949 /* If reserves cannot be used, ensure enough pages are in the pool */
a5516438 950 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
6eab04a8 951 goto err;
04f2cbe3 952
9966c4bb 953retry_cpuset:
d26914d1 954 cpuset_mems_cookie = read_mems_allowed_begin();
04ec6264
VB
955 gfp_mask = htlb_alloc_mask(h);
956 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
957 zonelist = node_zonelist(nid, gfp_mask);
9966c4bb 958
19770b32
MG
959 for_each_zone_zonelist_nodemask(zone, z, zonelist,
960 MAX_NR_ZONES - 1, nodemask) {
04ec6264 961 if (cpuset_zone_allowed(zone, gfp_mask)) {
bf50bab2
NH
962 page = dequeue_huge_page_node(h, zone_to_nid(zone));
963 if (page) {
af0ed73e
JK
964 if (avoid_reserve)
965 break;
966 if (!vma_has_reserves(vma, chg))
967 break;
968
07443a85 969 SetPagePrivate(page);
af0ed73e 970 h->resv_huge_pages--;
bf50bab2
NH
971 break;
972 }
3abf7afd 973 }
1da177e4 974 }
cc9a6c87 975
52cd3b07 976 mpol_cond_put(mpol);
d26914d1 977 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
cc9a6c87 978 goto retry_cpuset;
1da177e4 979 return page;
cc9a6c87
MG
980
981err:
cc9a6c87 982 return NULL;
1da177e4
LT
983}
984
1cac6f2c
LC
985/*
986 * common helper functions for hstate_next_node_to_{alloc|free}.
987 * We may have allocated or freed a huge page based on a different
988 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
989 * be outside of *nodes_allowed. Ensure that we use an allowed
990 * node for alloc or free.
991 */
992static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
993{
0edaf86c 994 nid = next_node_in(nid, *nodes_allowed);
1cac6f2c
LC
995 VM_BUG_ON(nid >= MAX_NUMNODES);
996
997 return nid;
998}
999
1000static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1001{
1002 if (!node_isset(nid, *nodes_allowed))
1003 nid = next_node_allowed(nid, nodes_allowed);
1004 return nid;
1005}
1006
1007/*
1008 * returns the previously saved node ["this node"] from which to
1009 * allocate a persistent huge page for the pool and advance the
1010 * next node from which to allocate, handling wrap at end of node
1011 * mask.
1012 */
1013static int hstate_next_node_to_alloc(struct hstate *h,
1014 nodemask_t *nodes_allowed)
1015{
1016 int nid;
1017
1018 VM_BUG_ON(!nodes_allowed);
1019
1020 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1021 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1022
1023 return nid;
1024}
1025
1026/*
1027 * helper for free_pool_huge_page() - return the previously saved
1028 * node ["this node"] from which to free a huge page. Advance the
1029 * next node id whether or not we find a free huge page to free so
1030 * that the next attempt to free addresses the next node.
1031 */
1032static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1033{
1034 int nid;
1035
1036 VM_BUG_ON(!nodes_allowed);
1037
1038 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1039 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1040
1041 return nid;
1042}
1043
1044#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
1045 for (nr_nodes = nodes_weight(*mask); \
1046 nr_nodes > 0 && \
1047 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
1048 nr_nodes--)
1049
1050#define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1051 for (nr_nodes = nodes_weight(*mask); \
1052 nr_nodes > 0 && \
1053 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1054 nr_nodes--)
1055
e1073d1e 1056#ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
944d9fec 1057static void destroy_compound_gigantic_page(struct page *page,
d00181b9 1058 unsigned int order)
944d9fec
LC
1059{
1060 int i;
1061 int nr_pages = 1 << order;
1062 struct page *p = page + 1;
1063
c8cc708a 1064 atomic_set(compound_mapcount_ptr(page), 0);
944d9fec 1065 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1d798ca3 1066 clear_compound_head(p);
944d9fec 1067 set_page_refcounted(p);
944d9fec
LC
1068 }
1069
1070 set_compound_order(page, 0);
1071 __ClearPageHead(page);
1072}
1073
d00181b9 1074static void free_gigantic_page(struct page *page, unsigned int order)
944d9fec
LC
1075{
1076 free_contig_range(page_to_pfn(page), 1 << order);
1077}
1078
1079static int __alloc_gigantic_page(unsigned long start_pfn,
1080 unsigned long nr_pages)
1081{
1082 unsigned long end_pfn = start_pfn + nr_pages;
ca96b625
LS
1083 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
1084 GFP_KERNEL);
944d9fec
LC
1085}
1086
f44b2dda
JK
1087static bool pfn_range_valid_gigantic(struct zone *z,
1088 unsigned long start_pfn, unsigned long nr_pages)
944d9fec
LC
1089{
1090 unsigned long i, end_pfn = start_pfn + nr_pages;
1091 struct page *page;
1092
1093 for (i = start_pfn; i < end_pfn; i++) {
1094 if (!pfn_valid(i))
1095 return false;
1096
1097 page = pfn_to_page(i);
1098
f44b2dda
JK
1099 if (page_zone(page) != z)
1100 return false;
1101
944d9fec
LC
1102 if (PageReserved(page))
1103 return false;
1104
1105 if (page_count(page) > 0)
1106 return false;
1107
1108 if (PageHuge(page))
1109 return false;
1110 }
1111
1112 return true;
1113}
1114
1115static bool zone_spans_last_pfn(const struct zone *zone,
1116 unsigned long start_pfn, unsigned long nr_pages)
1117{
1118 unsigned long last_pfn = start_pfn + nr_pages - 1;
1119 return zone_spans_pfn(zone, last_pfn);
1120}
1121
d00181b9 1122static struct page *alloc_gigantic_page(int nid, unsigned int order)
944d9fec
LC
1123{
1124 unsigned long nr_pages = 1 << order;
1125 unsigned long ret, pfn, flags;
1126 struct zone *z;
1127
1128 z = NODE_DATA(nid)->node_zones;
1129 for (; z - NODE_DATA(nid)->node_zones < MAX_NR_ZONES; z++) {
1130 spin_lock_irqsave(&z->lock, flags);
1131
1132 pfn = ALIGN(z->zone_start_pfn, nr_pages);
1133 while (zone_spans_last_pfn(z, pfn, nr_pages)) {
f44b2dda 1134 if (pfn_range_valid_gigantic(z, pfn, nr_pages)) {
944d9fec
LC
1135 /*
1136 * We release the zone lock here because
1137 * alloc_contig_range() will also lock the zone
1138 * at some point. If there's an allocation
1139 * spinning on this lock, it may win the race
1140 * and cause alloc_contig_range() to fail...
1141 */
1142 spin_unlock_irqrestore(&z->lock, flags);
1143 ret = __alloc_gigantic_page(pfn, nr_pages);
1144 if (!ret)
1145 return pfn_to_page(pfn);
1146 spin_lock_irqsave(&z->lock, flags);
1147 }
1148 pfn += nr_pages;
1149 }
1150
1151 spin_unlock_irqrestore(&z->lock, flags);
1152 }
1153
1154 return NULL;
1155}
1156
1157static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
d00181b9 1158static void prep_compound_gigantic_page(struct page *page, unsigned int order);
944d9fec
LC
1159
1160static struct page *alloc_fresh_gigantic_page_node(struct hstate *h, int nid)
1161{
1162 struct page *page;
1163
1164 page = alloc_gigantic_page(nid, huge_page_order(h));
1165 if (page) {
1166 prep_compound_gigantic_page(page, huge_page_order(h));
1167 prep_new_huge_page(h, page, nid);
1168 }
1169
1170 return page;
1171}
1172
1173static int alloc_fresh_gigantic_page(struct hstate *h,
1174 nodemask_t *nodes_allowed)
1175{
1176 struct page *page = NULL;
1177 int nr_nodes, node;
1178
1179 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1180 page = alloc_fresh_gigantic_page_node(h, node);
1181 if (page)
1182 return 1;
1183 }
1184
1185 return 0;
1186}
1187
e1073d1e 1188#else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
944d9fec 1189static inline bool gigantic_page_supported(void) { return false; }
d00181b9 1190static inline void free_gigantic_page(struct page *page, unsigned int order) { }
944d9fec 1191static inline void destroy_compound_gigantic_page(struct page *page,
d00181b9 1192 unsigned int order) { }
944d9fec
LC
1193static inline int alloc_fresh_gigantic_page(struct hstate *h,
1194 nodemask_t *nodes_allowed) { return 0; }
1195#endif
1196
a5516438 1197static void update_and_free_page(struct hstate *h, struct page *page)
6af2acb6
AL
1198{
1199 int i;
a5516438 1200
944d9fec
LC
1201 if (hstate_is_gigantic(h) && !gigantic_page_supported())
1202 return;
18229df5 1203
a5516438
AK
1204 h->nr_huge_pages--;
1205 h->nr_huge_pages_node[page_to_nid(page)]--;
1206 for (i = 0; i < pages_per_huge_page(h); i++) {
32f84528
CF
1207 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1208 1 << PG_referenced | 1 << PG_dirty |
a7407a27
LC
1209 1 << PG_active | 1 << PG_private |
1210 1 << PG_writeback);
6af2acb6 1211 }
309381fe 1212 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
f1e61557 1213 set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
6af2acb6 1214 set_page_refcounted(page);
944d9fec
LC
1215 if (hstate_is_gigantic(h)) {
1216 destroy_compound_gigantic_page(page, huge_page_order(h));
1217 free_gigantic_page(page, huge_page_order(h));
1218 } else {
944d9fec
LC
1219 __free_pages(page, huge_page_order(h));
1220 }
6af2acb6
AL
1221}
1222
e5ff2159
AK
1223struct hstate *size_to_hstate(unsigned long size)
1224{
1225 struct hstate *h;
1226
1227 for_each_hstate(h) {
1228 if (huge_page_size(h) == size)
1229 return h;
1230 }
1231 return NULL;
1232}
1233
bcc54222
NH
1234/*
1235 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1236 * to hstate->hugepage_activelist.)
1237 *
1238 * This function can be called for tail pages, but never returns true for them.
1239 */
1240bool page_huge_active(struct page *page)
1241{
1242 VM_BUG_ON_PAGE(!PageHuge(page), page);
1243 return PageHead(page) && PagePrivate(&page[1]);
1244}
1245
1246/* never called for tail page */
1247static void set_page_huge_active(struct page *page)
1248{
1249 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1250 SetPagePrivate(&page[1]);
1251}
1252
1253static void clear_page_huge_active(struct page *page)
1254{
1255 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1256 ClearPagePrivate(&page[1]);
1257}
1258
8f1d26d0 1259void free_huge_page(struct page *page)
27a85ef1 1260{
a5516438
AK
1261 /*
1262 * Can't pass hstate in here because it is called from the
1263 * compound page destructor.
1264 */
e5ff2159 1265 struct hstate *h = page_hstate(page);
7893d1d5 1266 int nid = page_to_nid(page);
90481622
DG
1267 struct hugepage_subpool *spool =
1268 (struct hugepage_subpool *)page_private(page);
07443a85 1269 bool restore_reserve;
27a85ef1 1270
e5df70ab 1271 set_page_private(page, 0);
23be7468 1272 page->mapping = NULL;
b4330afb
MK
1273 VM_BUG_ON_PAGE(page_count(page), page);
1274 VM_BUG_ON_PAGE(page_mapcount(page), page);
07443a85 1275 restore_reserve = PagePrivate(page);
16c794b4 1276 ClearPagePrivate(page);
27a85ef1 1277
1c5ecae3
MK
1278 /*
1279 * A return code of zero implies that the subpool will be under its
1280 * minimum size if the reservation is not restored after page is free.
1281 * Therefore, force restore_reserve operation.
1282 */
1283 if (hugepage_subpool_put_pages(spool, 1) == 0)
1284 restore_reserve = true;
1285
27a85ef1 1286 spin_lock(&hugetlb_lock);
bcc54222 1287 clear_page_huge_active(page);
6d76dcf4
AK
1288 hugetlb_cgroup_uncharge_page(hstate_index(h),
1289 pages_per_huge_page(h), page);
07443a85
JK
1290 if (restore_reserve)
1291 h->resv_huge_pages++;
1292
944d9fec 1293 if (h->surplus_huge_pages_node[nid]) {
0edaecfa
AK
1294 /* remove the page from active list */
1295 list_del(&page->lru);
a5516438
AK
1296 update_and_free_page(h, page);
1297 h->surplus_huge_pages--;
1298 h->surplus_huge_pages_node[nid]--;
7893d1d5 1299 } else {
5d3a551c 1300 arch_clear_hugepage_flags(page);
a5516438 1301 enqueue_huge_page(h, page);
7893d1d5 1302 }
27a85ef1
DG
1303 spin_unlock(&hugetlb_lock);
1304}
1305
a5516438 1306static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
b7ba30c6 1307{
0edaecfa 1308 INIT_LIST_HEAD(&page->lru);
f1e61557 1309 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
b7ba30c6 1310 spin_lock(&hugetlb_lock);
9dd540e2 1311 set_hugetlb_cgroup(page, NULL);
a5516438
AK
1312 h->nr_huge_pages++;
1313 h->nr_huge_pages_node[nid]++;
b7ba30c6
AK
1314 spin_unlock(&hugetlb_lock);
1315 put_page(page); /* free it into the hugepage allocator */
1316}
1317
d00181b9 1318static void prep_compound_gigantic_page(struct page *page, unsigned int order)
20a0307c
WF
1319{
1320 int i;
1321 int nr_pages = 1 << order;
1322 struct page *p = page + 1;
1323
1324 /* we rely on prep_new_huge_page to set the destructor */
1325 set_compound_order(page, order);
ef5a22be 1326 __ClearPageReserved(page);
de09d31d 1327 __SetPageHead(page);
20a0307c 1328 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
ef5a22be
AA
1329 /*
1330 * For gigantic hugepages allocated through bootmem at
1331 * boot, it's safer to be consistent with the not-gigantic
1332 * hugepages and clear the PG_reserved bit from all tail pages
1333 * too. Otherwse drivers using get_user_pages() to access tail
1334 * pages may get the reference counting wrong if they see
1335 * PG_reserved set on a tail page (despite the head page not
1336 * having PG_reserved set). Enforcing this consistency between
1337 * head and tail pages allows drivers to optimize away a check
1338 * on the head page when they need know if put_page() is needed
1339 * after get_user_pages().
1340 */
1341 __ClearPageReserved(p);
58a84aa9 1342 set_page_count(p, 0);
1d798ca3 1343 set_compound_head(p, page);
20a0307c 1344 }
b4330afb 1345 atomic_set(compound_mapcount_ptr(page), -1);
20a0307c
WF
1346}
1347
7795912c
AM
1348/*
1349 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1350 * transparent huge pages. See the PageTransHuge() documentation for more
1351 * details.
1352 */
20a0307c
WF
1353int PageHuge(struct page *page)
1354{
20a0307c
WF
1355 if (!PageCompound(page))
1356 return 0;
1357
1358 page = compound_head(page);
f1e61557 1359 return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
20a0307c 1360}
43131e14
NH
1361EXPORT_SYMBOL_GPL(PageHuge);
1362
27c73ae7
AA
1363/*
1364 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1365 * normal or transparent huge pages.
1366 */
1367int PageHeadHuge(struct page *page_head)
1368{
27c73ae7
AA
1369 if (!PageHead(page_head))
1370 return 0;
1371
758f66a2 1372 return get_compound_page_dtor(page_head) == free_huge_page;
27c73ae7 1373}
27c73ae7 1374
13d60f4b
ZY
1375pgoff_t __basepage_index(struct page *page)
1376{
1377 struct page *page_head = compound_head(page);
1378 pgoff_t index = page_index(page_head);
1379 unsigned long compound_idx;
1380
1381 if (!PageHuge(page_head))
1382 return page_index(page);
1383
1384 if (compound_order(page_head) >= MAX_ORDER)
1385 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1386 else
1387 compound_idx = page - page_head;
1388
1389 return (index << compound_order(page_head)) + compound_idx;
1390}
1391
a5516438 1392static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
1da177e4 1393{
1da177e4 1394 struct page *page;
f96efd58 1395
96db800f 1396 page = __alloc_pages_node(nid,
86cdb465 1397 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
551883ae 1398 __GFP_REPEAT|__GFP_NOWARN,
a5516438 1399 huge_page_order(h));
1da177e4 1400 if (page) {
a5516438 1401 prep_new_huge_page(h, page, nid);
1da177e4 1402 }
63b4613c
NA
1403
1404 return page;
1405}
1406
b2261026
JK
1407static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
1408{
1409 struct page *page;
1410 int nr_nodes, node;
1411 int ret = 0;
1412
1413 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1414 page = alloc_fresh_huge_page_node(h, node);
1415 if (page) {
1416 ret = 1;
1417 break;
1418 }
1419 }
1420
1421 if (ret)
1422 count_vm_event(HTLB_BUDDY_PGALLOC);
1423 else
1424 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1425
1426 return ret;
1427}
1428
e8c5c824
LS
1429/*
1430 * Free huge page from pool from next node to free.
1431 * Attempt to keep persistent huge pages more or less
1432 * balanced over allowed nodes.
1433 * Called with hugetlb_lock locked.
1434 */
6ae11b27
LS
1435static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1436 bool acct_surplus)
e8c5c824 1437{
b2261026 1438 int nr_nodes, node;
e8c5c824
LS
1439 int ret = 0;
1440
b2261026 1441 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
685f3457
LS
1442 /*
1443 * If we're returning unused surplus pages, only examine
1444 * nodes with surplus pages.
1445 */
b2261026
JK
1446 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1447 !list_empty(&h->hugepage_freelists[node])) {
e8c5c824 1448 struct page *page =
b2261026 1449 list_entry(h->hugepage_freelists[node].next,
e8c5c824
LS
1450 struct page, lru);
1451 list_del(&page->lru);
1452 h->free_huge_pages--;
b2261026 1453 h->free_huge_pages_node[node]--;
685f3457
LS
1454 if (acct_surplus) {
1455 h->surplus_huge_pages--;
b2261026 1456 h->surplus_huge_pages_node[node]--;
685f3457 1457 }
e8c5c824
LS
1458 update_and_free_page(h, page);
1459 ret = 1;
9a76db09 1460 break;
e8c5c824 1461 }
b2261026 1462 }
e8c5c824
LS
1463
1464 return ret;
1465}
1466
c8721bbb
NH
1467/*
1468 * Dissolve a given free hugepage into free buddy pages. This function does
082d5b6b
GS
1469 * nothing for in-use (including surplus) hugepages. Returns -EBUSY if the
1470 * number of free hugepages would be reduced below the number of reserved
1471 * hugepages.
c8721bbb 1472 */
c3114a84 1473int dissolve_free_huge_page(struct page *page)
c8721bbb 1474{
082d5b6b
GS
1475 int rc = 0;
1476
c8721bbb
NH
1477 spin_lock(&hugetlb_lock);
1478 if (PageHuge(page) && !page_count(page)) {
2247bb33
GS
1479 struct page *head = compound_head(page);
1480 struct hstate *h = page_hstate(head);
1481 int nid = page_to_nid(head);
082d5b6b
GS
1482 if (h->free_huge_pages - h->resv_huge_pages == 0) {
1483 rc = -EBUSY;
1484 goto out;
1485 }
c3114a84
AK
1486 /*
1487 * Move PageHWPoison flag from head page to the raw error page,
1488 * which makes any subpages rather than the error page reusable.
1489 */
1490 if (PageHWPoison(head) && page != head) {
1491 SetPageHWPoison(page);
1492 ClearPageHWPoison(head);
1493 }
2247bb33 1494 list_del(&head->lru);
c8721bbb
NH
1495 h->free_huge_pages--;
1496 h->free_huge_pages_node[nid]--;
c1470b33 1497 h->max_huge_pages--;
2247bb33 1498 update_and_free_page(h, head);
c8721bbb 1499 }
082d5b6b 1500out:
c8721bbb 1501 spin_unlock(&hugetlb_lock);
082d5b6b 1502 return rc;
c8721bbb
NH
1503}
1504
1505/*
1506 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1507 * make specified memory blocks removable from the system.
2247bb33
GS
1508 * Note that this will dissolve a free gigantic hugepage completely, if any
1509 * part of it lies within the given range.
082d5b6b
GS
1510 * Also note that if dissolve_free_huge_page() returns with an error, all
1511 * free hugepages that were dissolved before that error are lost.
c8721bbb 1512 */
082d5b6b 1513int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
c8721bbb 1514{
c8721bbb 1515 unsigned long pfn;
eb03aa00 1516 struct page *page;
082d5b6b 1517 int rc = 0;
c8721bbb 1518
d0177639 1519 if (!hugepages_supported())
082d5b6b 1520 return rc;
d0177639 1521
eb03aa00
GS
1522 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1523 page = pfn_to_page(pfn);
1524 if (PageHuge(page) && !page_count(page)) {
1525 rc = dissolve_free_huge_page(page);
1526 if (rc)
1527 break;
1528 }
1529 }
082d5b6b
GS
1530
1531 return rc;
c8721bbb
NH
1532}
1533
099730d6
DH
1534/*
1535 * There are 3 ways this can get called:
1536 * 1. With vma+addr: we use the VMA's memory policy
1537 * 2. With !vma, but nid=NUMA_NO_NODE: We try to allocate a huge
1538 * page from any node, and let the buddy allocator itself figure
1539 * it out.
1540 * 3. With !vma, but nid!=NUMA_NO_NODE. We allocate a huge page
1541 * strictly from 'nid'
1542 */
1543static struct page *__hugetlb_alloc_buddy_huge_page(struct hstate *h,
1544 struct vm_area_struct *vma, unsigned long addr, int nid)
1545{
1546 int order = huge_page_order(h);
1547 gfp_t gfp = htlb_alloc_mask(h)|__GFP_COMP|__GFP_REPEAT|__GFP_NOWARN;
1548 unsigned int cpuset_mems_cookie;
1549
1550 /*
1551 * We need a VMA to get a memory policy. If we do not
e0ec90ee
DH
1552 * have one, we use the 'nid' argument.
1553 *
1554 * The mempolicy stuff below has some non-inlined bits
1555 * and calls ->vm_ops. That makes it hard to optimize at
1556 * compile-time, even when NUMA is off and it does
1557 * nothing. This helps the compiler optimize it out.
099730d6 1558 */
e0ec90ee 1559 if (!IS_ENABLED(CONFIG_NUMA) || !vma) {
099730d6
DH
1560 /*
1561 * If a specific node is requested, make sure to
1562 * get memory from there, but only when a node
1563 * is explicitly specified.
1564 */
1565 if (nid != NUMA_NO_NODE)
1566 gfp |= __GFP_THISNODE;
1567 /*
1568 * Make sure to call something that can handle
1569 * nid=NUMA_NO_NODE
1570 */
1571 return alloc_pages_node(nid, gfp, order);
1572 }
1573
1574 /*
1575 * OK, so we have a VMA. Fetch the mempolicy and try to
e0ec90ee
DH
1576 * allocate a huge page with it. We will only reach this
1577 * when CONFIG_NUMA=y.
099730d6
DH
1578 */
1579 do {
1580 struct page *page;
1581 struct mempolicy *mpol;
04ec6264 1582 int nid;
099730d6
DH
1583 nodemask_t *nodemask;
1584
1585 cpuset_mems_cookie = read_mems_allowed_begin();
04ec6264 1586 nid = huge_node(vma, addr, gfp, &mpol, &nodemask);
099730d6 1587 mpol_cond_put(mpol);
04ec6264 1588 page = __alloc_pages_nodemask(gfp, order, nid, nodemask);
099730d6
DH
1589 if (page)
1590 return page;
1591 } while (read_mems_allowed_retry(cpuset_mems_cookie));
1592
1593 return NULL;
1594}
1595
1596/*
1597 * There are two ways to allocate a huge page:
1598 * 1. When you have a VMA and an address (like a fault)
1599 * 2. When you have no VMA (like when setting /proc/.../nr_hugepages)
1600 *
1601 * 'vma' and 'addr' are only for (1). 'nid' is always NUMA_NO_NODE in
1602 * this case which signifies that the allocation should be done with
1603 * respect for the VMA's memory policy.
1604 *
1605 * For (2), we ignore 'vma' and 'addr' and use 'nid' exclusively. This
1606 * implies that memory policies will not be taken in to account.
1607 */
1608static struct page *__alloc_buddy_huge_page(struct hstate *h,
1609 struct vm_area_struct *vma, unsigned long addr, int nid)
7893d1d5
AL
1610{
1611 struct page *page;
bf50bab2 1612 unsigned int r_nid;
7893d1d5 1613
bae7f4ae 1614 if (hstate_is_gigantic(h))
aa888a74
AK
1615 return NULL;
1616
099730d6
DH
1617 /*
1618 * Make sure that anyone specifying 'nid' is not also specifying a VMA.
1619 * This makes sure the caller is picking _one_ of the modes with which
1620 * we can call this function, not both.
1621 */
1622 if (vma || (addr != -1)) {
e0ec90ee
DH
1623 VM_WARN_ON_ONCE(addr == -1);
1624 VM_WARN_ON_ONCE(nid != NUMA_NO_NODE);
099730d6 1625 }
d1c3fb1f
NA
1626 /*
1627 * Assume we will successfully allocate the surplus page to
1628 * prevent racing processes from causing the surplus to exceed
1629 * overcommit
1630 *
1631 * This however introduces a different race, where a process B
1632 * tries to grow the static hugepage pool while alloc_pages() is
1633 * called by process A. B will only examine the per-node
1634 * counters in determining if surplus huge pages can be
1635 * converted to normal huge pages in adjust_pool_surplus(). A
1636 * won't be able to increment the per-node counter, until the
1637 * lock is dropped by B, but B doesn't drop hugetlb_lock until
1638 * no more huge pages can be converted from surplus to normal
1639 * state (and doesn't try to convert again). Thus, we have a
1640 * case where a surplus huge page exists, the pool is grown, and
1641 * the surplus huge page still exists after, even though it
1642 * should just have been converted to a normal huge page. This
1643 * does not leak memory, though, as the hugepage will be freed
1644 * once it is out of use. It also does not allow the counters to
1645 * go out of whack in adjust_pool_surplus() as we don't modify
1646 * the node values until we've gotten the hugepage and only the
1647 * per-node value is checked there.
1648 */
1649 spin_lock(&hugetlb_lock);
a5516438 1650 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
d1c3fb1f
NA
1651 spin_unlock(&hugetlb_lock);
1652 return NULL;
1653 } else {
a5516438
AK
1654 h->nr_huge_pages++;
1655 h->surplus_huge_pages++;
d1c3fb1f
NA
1656 }
1657 spin_unlock(&hugetlb_lock);
1658
099730d6 1659 page = __hugetlb_alloc_buddy_huge_page(h, vma, addr, nid);
d1c3fb1f
NA
1660
1661 spin_lock(&hugetlb_lock);
7893d1d5 1662 if (page) {
0edaecfa 1663 INIT_LIST_HEAD(&page->lru);
bf50bab2 1664 r_nid = page_to_nid(page);
f1e61557 1665 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
9dd540e2 1666 set_hugetlb_cgroup(page, NULL);
d1c3fb1f
NA
1667 /*
1668 * We incremented the global counters already
1669 */
bf50bab2
NH
1670 h->nr_huge_pages_node[r_nid]++;
1671 h->surplus_huge_pages_node[r_nid]++;
3b116300 1672 __count_vm_event(HTLB_BUDDY_PGALLOC);
d1c3fb1f 1673 } else {
a5516438
AK
1674 h->nr_huge_pages--;
1675 h->surplus_huge_pages--;
3b116300 1676 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
7893d1d5 1677 }
d1c3fb1f 1678 spin_unlock(&hugetlb_lock);
7893d1d5
AL
1679
1680 return page;
1681}
1682
099730d6
DH
1683/*
1684 * Allocate a huge page from 'nid'. Note, 'nid' may be
1685 * NUMA_NO_NODE, which means that it may be allocated
1686 * anywhere.
1687 */
e0ec90ee 1688static
099730d6
DH
1689struct page *__alloc_buddy_huge_page_no_mpol(struct hstate *h, int nid)
1690{
1691 unsigned long addr = -1;
1692
1693 return __alloc_buddy_huge_page(h, NULL, addr, nid);
1694}
1695
1696/*
1697 * Use the VMA's mpolicy to allocate a huge page from the buddy.
1698 */
e0ec90ee 1699static
099730d6
DH
1700struct page *__alloc_buddy_huge_page_with_mpol(struct hstate *h,
1701 struct vm_area_struct *vma, unsigned long addr)
1702{
1703 return __alloc_buddy_huge_page(h, vma, addr, NUMA_NO_NODE);
1704}
1705
bf50bab2
NH
1706/*
1707 * This allocation function is useful in the context where vma is irrelevant.
1708 * E.g. soft-offlining uses this function because it only cares physical
1709 * address of error page.
1710 */
1711struct page *alloc_huge_page_node(struct hstate *h, int nid)
1712{
4ef91848 1713 struct page *page = NULL;
bf50bab2
NH
1714
1715 spin_lock(&hugetlb_lock);
4ef91848
JK
1716 if (h->free_huge_pages - h->resv_huge_pages > 0)
1717 page = dequeue_huge_page_node(h, nid);
bf50bab2
NH
1718 spin_unlock(&hugetlb_lock);
1719
94ae8ba7 1720 if (!page)
099730d6 1721 page = __alloc_buddy_huge_page_no_mpol(h, nid);
bf50bab2
NH
1722
1723 return page;
1724}
1725
e4e574b7 1726/*
25985edc 1727 * Increase the hugetlb pool such that it can accommodate a reservation
e4e574b7
AL
1728 * of size 'delta'.
1729 */
a5516438 1730static int gather_surplus_pages(struct hstate *h, int delta)
e4e574b7
AL
1731{
1732 struct list_head surplus_list;
1733 struct page *page, *tmp;
1734 int ret, i;
1735 int needed, allocated;
28073b02 1736 bool alloc_ok = true;
e4e574b7 1737
a5516438 1738 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
ac09b3a1 1739 if (needed <= 0) {
a5516438 1740 h->resv_huge_pages += delta;
e4e574b7 1741 return 0;
ac09b3a1 1742 }
e4e574b7
AL
1743
1744 allocated = 0;
1745 INIT_LIST_HEAD(&surplus_list);
1746
1747 ret = -ENOMEM;
1748retry:
1749 spin_unlock(&hugetlb_lock);
1750 for (i = 0; i < needed; i++) {
099730d6 1751 page = __alloc_buddy_huge_page_no_mpol(h, NUMA_NO_NODE);
28073b02
HD
1752 if (!page) {
1753 alloc_ok = false;
1754 break;
1755 }
e4e574b7
AL
1756 list_add(&page->lru, &surplus_list);
1757 }
28073b02 1758 allocated += i;
e4e574b7
AL
1759
1760 /*
1761 * After retaking hugetlb_lock, we need to recalculate 'needed'
1762 * because either resv_huge_pages or free_huge_pages may have changed.
1763 */
1764 spin_lock(&hugetlb_lock);
a5516438
AK
1765 needed = (h->resv_huge_pages + delta) -
1766 (h->free_huge_pages + allocated);
28073b02
HD
1767 if (needed > 0) {
1768 if (alloc_ok)
1769 goto retry;
1770 /*
1771 * We were not able to allocate enough pages to
1772 * satisfy the entire reservation so we free what
1773 * we've allocated so far.
1774 */
1775 goto free;
1776 }
e4e574b7
AL
1777 /*
1778 * The surplus_list now contains _at_least_ the number of extra pages
25985edc 1779 * needed to accommodate the reservation. Add the appropriate number
e4e574b7 1780 * of pages to the hugetlb pool and free the extras back to the buddy
ac09b3a1
AL
1781 * allocator. Commit the entire reservation here to prevent another
1782 * process from stealing the pages as they are added to the pool but
1783 * before they are reserved.
e4e574b7
AL
1784 */
1785 needed += allocated;
a5516438 1786 h->resv_huge_pages += delta;
e4e574b7 1787 ret = 0;
a9869b83 1788
19fc3f0a 1789 /* Free the needed pages to the hugetlb pool */
e4e574b7 1790 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
19fc3f0a
AL
1791 if ((--needed) < 0)
1792 break;
a9869b83
NH
1793 /*
1794 * This page is now managed by the hugetlb allocator and has
1795 * no users -- drop the buddy allocator's reference.
1796 */
1797 put_page_testzero(page);
309381fe 1798 VM_BUG_ON_PAGE(page_count(page), page);
a5516438 1799 enqueue_huge_page(h, page);
19fc3f0a 1800 }
28073b02 1801free:
b0365c8d 1802 spin_unlock(&hugetlb_lock);
19fc3f0a
AL
1803
1804 /* Free unnecessary surplus pages to the buddy allocator */
c0d934ba
JK
1805 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1806 put_page(page);
a9869b83 1807 spin_lock(&hugetlb_lock);
e4e574b7
AL
1808
1809 return ret;
1810}
1811
1812/*
e5bbc8a6
MK
1813 * This routine has two main purposes:
1814 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
1815 * in unused_resv_pages. This corresponds to the prior adjustments made
1816 * to the associated reservation map.
1817 * 2) Free any unused surplus pages that may have been allocated to satisfy
1818 * the reservation. As many as unused_resv_pages may be freed.
1819 *
1820 * Called with hugetlb_lock held. However, the lock could be dropped (and
1821 * reacquired) during calls to cond_resched_lock. Whenever dropping the lock,
1822 * we must make sure nobody else can claim pages we are in the process of
1823 * freeing. Do this by ensuring resv_huge_page always is greater than the
1824 * number of huge pages we plan to free when dropping the lock.
e4e574b7 1825 */
a5516438
AK
1826static void return_unused_surplus_pages(struct hstate *h,
1827 unsigned long unused_resv_pages)
e4e574b7 1828{
e4e574b7
AL
1829 unsigned long nr_pages;
1830
aa888a74 1831 /* Cannot return gigantic pages currently */
bae7f4ae 1832 if (hstate_is_gigantic(h))
e5bbc8a6 1833 goto out;
aa888a74 1834
e5bbc8a6
MK
1835 /*
1836 * Part (or even all) of the reservation could have been backed
1837 * by pre-allocated pages. Only free surplus pages.
1838 */
a5516438 1839 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
e4e574b7 1840
685f3457
LS
1841 /*
1842 * We want to release as many surplus pages as possible, spread
9b5e5d0f
LS
1843 * evenly across all nodes with memory. Iterate across these nodes
1844 * until we can no longer free unreserved surplus pages. This occurs
1845 * when the nodes with surplus pages have no free pages.
1846 * free_pool_huge_page() will balance the the freed pages across the
1847 * on-line nodes with memory and will handle the hstate accounting.
e5bbc8a6
MK
1848 *
1849 * Note that we decrement resv_huge_pages as we free the pages. If
1850 * we drop the lock, resv_huge_pages will still be sufficiently large
1851 * to cover subsequent pages we may free.
685f3457
LS
1852 */
1853 while (nr_pages--) {
e5bbc8a6
MK
1854 h->resv_huge_pages--;
1855 unused_resv_pages--;
8cebfcd0 1856 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
e5bbc8a6 1857 goto out;
7848a4bf 1858 cond_resched_lock(&hugetlb_lock);
e4e574b7 1859 }
e5bbc8a6
MK
1860
1861out:
1862 /* Fully uncommit the reservation */
1863 h->resv_huge_pages -= unused_resv_pages;
e4e574b7
AL
1864}
1865
5e911373 1866
c37f9fb1 1867/*
feba16e2 1868 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
5e911373 1869 * are used by the huge page allocation routines to manage reservations.
cf3ad20b
MK
1870 *
1871 * vma_needs_reservation is called to determine if the huge page at addr
1872 * within the vma has an associated reservation. If a reservation is
1873 * needed, the value 1 is returned. The caller is then responsible for
1874 * managing the global reservation and subpool usage counts. After
1875 * the huge page has been allocated, vma_commit_reservation is called
feba16e2
MK
1876 * to add the page to the reservation map. If the page allocation fails,
1877 * the reservation must be ended instead of committed. vma_end_reservation
1878 * is called in such cases.
cf3ad20b
MK
1879 *
1880 * In the normal case, vma_commit_reservation returns the same value
1881 * as the preceding vma_needs_reservation call. The only time this
1882 * is not the case is if a reserve map was changed between calls. It
1883 * is the responsibility of the caller to notice the difference and
1884 * take appropriate action.
96b96a96
MK
1885 *
1886 * vma_add_reservation is used in error paths where a reservation must
1887 * be restored when a newly allocated huge page must be freed. It is
1888 * to be called after calling vma_needs_reservation to determine if a
1889 * reservation exists.
c37f9fb1 1890 */
5e911373
MK
1891enum vma_resv_mode {
1892 VMA_NEEDS_RESV,
1893 VMA_COMMIT_RESV,
feba16e2 1894 VMA_END_RESV,
96b96a96 1895 VMA_ADD_RESV,
5e911373 1896};
cf3ad20b
MK
1897static long __vma_reservation_common(struct hstate *h,
1898 struct vm_area_struct *vma, unsigned long addr,
5e911373 1899 enum vma_resv_mode mode)
c37f9fb1 1900{
4e35f483
JK
1901 struct resv_map *resv;
1902 pgoff_t idx;
cf3ad20b 1903 long ret;
c37f9fb1 1904
4e35f483
JK
1905 resv = vma_resv_map(vma);
1906 if (!resv)
84afd99b 1907 return 1;
c37f9fb1 1908
4e35f483 1909 idx = vma_hugecache_offset(h, vma, addr);
5e911373
MK
1910 switch (mode) {
1911 case VMA_NEEDS_RESV:
cf3ad20b 1912 ret = region_chg(resv, idx, idx + 1);
5e911373
MK
1913 break;
1914 case VMA_COMMIT_RESV:
1915 ret = region_add(resv, idx, idx + 1);
1916 break;
feba16e2 1917 case VMA_END_RESV:
5e911373
MK
1918 region_abort(resv, idx, idx + 1);
1919 ret = 0;
1920 break;
96b96a96
MK
1921 case VMA_ADD_RESV:
1922 if (vma->vm_flags & VM_MAYSHARE)
1923 ret = region_add(resv, idx, idx + 1);
1924 else {
1925 region_abort(resv, idx, idx + 1);
1926 ret = region_del(resv, idx, idx + 1);
1927 }
1928 break;
5e911373
MK
1929 default:
1930 BUG();
1931 }
84afd99b 1932
4e35f483 1933 if (vma->vm_flags & VM_MAYSHARE)
cf3ad20b 1934 return ret;
67961f9d
MK
1935 else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
1936 /*
1937 * In most cases, reserves always exist for private mappings.
1938 * However, a file associated with mapping could have been
1939 * hole punched or truncated after reserves were consumed.
1940 * As subsequent fault on such a range will not use reserves.
1941 * Subtle - The reserve map for private mappings has the
1942 * opposite meaning than that of shared mappings. If NO
1943 * entry is in the reserve map, it means a reservation exists.
1944 * If an entry exists in the reserve map, it means the
1945 * reservation has already been consumed. As a result, the
1946 * return value of this routine is the opposite of the
1947 * value returned from reserve map manipulation routines above.
1948 */
1949 if (ret)
1950 return 0;
1951 else
1952 return 1;
1953 }
4e35f483 1954 else
cf3ad20b 1955 return ret < 0 ? ret : 0;
c37f9fb1 1956}
cf3ad20b
MK
1957
1958static long vma_needs_reservation(struct hstate *h,
a5516438 1959 struct vm_area_struct *vma, unsigned long addr)
c37f9fb1 1960{
5e911373 1961 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
cf3ad20b 1962}
84afd99b 1963
cf3ad20b
MK
1964static long vma_commit_reservation(struct hstate *h,
1965 struct vm_area_struct *vma, unsigned long addr)
1966{
5e911373
MK
1967 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
1968}
1969
feba16e2 1970static void vma_end_reservation(struct hstate *h,
5e911373
MK
1971 struct vm_area_struct *vma, unsigned long addr)
1972{
feba16e2 1973 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
c37f9fb1
AW
1974}
1975
96b96a96
MK
1976static long vma_add_reservation(struct hstate *h,
1977 struct vm_area_struct *vma, unsigned long addr)
1978{
1979 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
1980}
1981
1982/*
1983 * This routine is called to restore a reservation on error paths. In the
1984 * specific error paths, a huge page was allocated (via alloc_huge_page)
1985 * and is about to be freed. If a reservation for the page existed,
1986 * alloc_huge_page would have consumed the reservation and set PagePrivate
1987 * in the newly allocated page. When the page is freed via free_huge_page,
1988 * the global reservation count will be incremented if PagePrivate is set.
1989 * However, free_huge_page can not adjust the reserve map. Adjust the
1990 * reserve map here to be consistent with global reserve count adjustments
1991 * to be made by free_huge_page.
1992 */
1993static void restore_reserve_on_error(struct hstate *h,
1994 struct vm_area_struct *vma, unsigned long address,
1995 struct page *page)
1996{
1997 if (unlikely(PagePrivate(page))) {
1998 long rc = vma_needs_reservation(h, vma, address);
1999
2000 if (unlikely(rc < 0)) {
2001 /*
2002 * Rare out of memory condition in reserve map
2003 * manipulation. Clear PagePrivate so that
2004 * global reserve count will not be incremented
2005 * by free_huge_page. This will make it appear
2006 * as though the reservation for this page was
2007 * consumed. This may prevent the task from
2008 * faulting in the page at a later time. This
2009 * is better than inconsistent global huge page
2010 * accounting of reserve counts.
2011 */
2012 ClearPagePrivate(page);
2013 } else if (rc) {
2014 rc = vma_add_reservation(h, vma, address);
2015 if (unlikely(rc < 0))
2016 /*
2017 * See above comment about rare out of
2018 * memory condition.
2019 */
2020 ClearPagePrivate(page);
2021 } else
2022 vma_end_reservation(h, vma, address);
2023 }
2024}
2025
70c3547e 2026struct page *alloc_huge_page(struct vm_area_struct *vma,
04f2cbe3 2027 unsigned long addr, int avoid_reserve)
1da177e4 2028{
90481622 2029 struct hugepage_subpool *spool = subpool_vma(vma);
a5516438 2030 struct hstate *h = hstate_vma(vma);
348ea204 2031 struct page *page;
d85f69b0
MK
2032 long map_chg, map_commit;
2033 long gbl_chg;
6d76dcf4
AK
2034 int ret, idx;
2035 struct hugetlb_cgroup *h_cg;
a1e78772 2036
6d76dcf4 2037 idx = hstate_index(h);
a1e78772 2038 /*
d85f69b0
MK
2039 * Examine the region/reserve map to determine if the process
2040 * has a reservation for the page to be allocated. A return
2041 * code of zero indicates a reservation exists (no change).
a1e78772 2042 */
d85f69b0
MK
2043 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2044 if (map_chg < 0)
76dcee75 2045 return ERR_PTR(-ENOMEM);
d85f69b0
MK
2046
2047 /*
2048 * Processes that did not create the mapping will have no
2049 * reserves as indicated by the region/reserve map. Check
2050 * that the allocation will not exceed the subpool limit.
2051 * Allocations for MAP_NORESERVE mappings also need to be
2052 * checked against any subpool limit.
2053 */
2054 if (map_chg || avoid_reserve) {
2055 gbl_chg = hugepage_subpool_get_pages(spool, 1);
2056 if (gbl_chg < 0) {
feba16e2 2057 vma_end_reservation(h, vma, addr);
76dcee75 2058 return ERR_PTR(-ENOSPC);
5e911373 2059 }
1da177e4 2060
d85f69b0
MK
2061 /*
2062 * Even though there was no reservation in the region/reserve
2063 * map, there could be reservations associated with the
2064 * subpool that can be used. This would be indicated if the
2065 * return value of hugepage_subpool_get_pages() is zero.
2066 * However, if avoid_reserve is specified we still avoid even
2067 * the subpool reservations.
2068 */
2069 if (avoid_reserve)
2070 gbl_chg = 1;
2071 }
2072
6d76dcf4 2073 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
8f34af6f
JZ
2074 if (ret)
2075 goto out_subpool_put;
2076
1da177e4 2077 spin_lock(&hugetlb_lock);
d85f69b0
MK
2078 /*
2079 * glb_chg is passed to indicate whether or not a page must be taken
2080 * from the global free pool (global change). gbl_chg == 0 indicates
2081 * a reservation exists for the allocation.
2082 */
2083 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
81a6fcae 2084 if (!page) {
94ae8ba7 2085 spin_unlock(&hugetlb_lock);
099730d6 2086 page = __alloc_buddy_huge_page_with_mpol(h, vma, addr);
8f34af6f
JZ
2087 if (!page)
2088 goto out_uncharge_cgroup;
a88c7695
NH
2089 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2090 SetPagePrivate(page);
2091 h->resv_huge_pages--;
2092 }
79dbb236
AK
2093 spin_lock(&hugetlb_lock);
2094 list_move(&page->lru, &h->hugepage_activelist);
81a6fcae 2095 /* Fall through */
68842c9b 2096 }
81a6fcae
JK
2097 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2098 spin_unlock(&hugetlb_lock);
348ea204 2099
90481622 2100 set_page_private(page, (unsigned long)spool);
90d8b7e6 2101
d85f69b0
MK
2102 map_commit = vma_commit_reservation(h, vma, addr);
2103 if (unlikely(map_chg > map_commit)) {
33039678
MK
2104 /*
2105 * The page was added to the reservation map between
2106 * vma_needs_reservation and vma_commit_reservation.
2107 * This indicates a race with hugetlb_reserve_pages.
2108 * Adjust for the subpool count incremented above AND
2109 * in hugetlb_reserve_pages for the same page. Also,
2110 * the reservation count added in hugetlb_reserve_pages
2111 * no longer applies.
2112 */
2113 long rsv_adjust;
2114
2115 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2116 hugetlb_acct_memory(h, -rsv_adjust);
2117 }
90d8b7e6 2118 return page;
8f34af6f
JZ
2119
2120out_uncharge_cgroup:
2121 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2122out_subpool_put:
d85f69b0 2123 if (map_chg || avoid_reserve)
8f34af6f 2124 hugepage_subpool_put_pages(spool, 1);
feba16e2 2125 vma_end_reservation(h, vma, addr);
8f34af6f 2126 return ERR_PTR(-ENOSPC);
b45b5bd6
DG
2127}
2128
74060e4d
NH
2129/*
2130 * alloc_huge_page()'s wrapper which simply returns the page if allocation
2131 * succeeds, otherwise NULL. This function is called from new_vma_page(),
2132 * where no ERR_VALUE is expected to be returned.
2133 */
2134struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
2135 unsigned long addr, int avoid_reserve)
2136{
2137 struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
2138 if (IS_ERR(page))
2139 page = NULL;
2140 return page;
2141}
2142
91f47662 2143int __weak alloc_bootmem_huge_page(struct hstate *h)
aa888a74
AK
2144{
2145 struct huge_bootmem_page *m;
b2261026 2146 int nr_nodes, node;
aa888a74 2147
b2261026 2148 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
aa888a74
AK
2149 void *addr;
2150
8b89a116
GS
2151 addr = memblock_virt_alloc_try_nid_nopanic(
2152 huge_page_size(h), huge_page_size(h),
2153 0, BOOTMEM_ALLOC_ACCESSIBLE, node);
aa888a74
AK
2154 if (addr) {
2155 /*
2156 * Use the beginning of the huge page to store the
2157 * huge_bootmem_page struct (until gather_bootmem
2158 * puts them into the mem_map).
2159 */
2160 m = addr;
91f47662 2161 goto found;
aa888a74 2162 }
aa888a74
AK
2163 }
2164 return 0;
2165
2166found:
df994ead 2167 BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
aa888a74
AK
2168 /* Put them into a private list first because mem_map is not up yet */
2169 list_add(&m->list, &huge_boot_pages);
2170 m->hstate = h;
2171 return 1;
2172}
2173
d00181b9
KS
2174static void __init prep_compound_huge_page(struct page *page,
2175 unsigned int order)
18229df5
AW
2176{
2177 if (unlikely(order > (MAX_ORDER - 1)))
2178 prep_compound_gigantic_page(page, order);
2179 else
2180 prep_compound_page(page, order);
2181}
2182
aa888a74
AK
2183/* Put bootmem huge pages into the standard lists after mem_map is up */
2184static void __init gather_bootmem_prealloc(void)
2185{
2186 struct huge_bootmem_page *m;
2187
2188 list_for_each_entry(m, &huge_boot_pages, list) {
aa888a74 2189 struct hstate *h = m->hstate;
ee8f248d
BB
2190 struct page *page;
2191
2192#ifdef CONFIG_HIGHMEM
2193 page = pfn_to_page(m->phys >> PAGE_SHIFT);
8b89a116
GS
2194 memblock_free_late(__pa(m),
2195 sizeof(struct huge_bootmem_page));
ee8f248d
BB
2196#else
2197 page = virt_to_page(m);
2198#endif
aa888a74 2199 WARN_ON(page_count(page) != 1);
18229df5 2200 prep_compound_huge_page(page, h->order);
ef5a22be 2201 WARN_ON(PageReserved(page));
aa888a74 2202 prep_new_huge_page(h, page, page_to_nid(page));
b0320c7b
RA
2203 /*
2204 * If we had gigantic hugepages allocated at boot time, we need
2205 * to restore the 'stolen' pages to totalram_pages in order to
2206 * fix confusing memory reports from free(1) and another
2207 * side-effects, like CommitLimit going negative.
2208 */
bae7f4ae 2209 if (hstate_is_gigantic(h))
3dcc0571 2210 adjust_managed_page_count(page, 1 << h->order);
aa888a74
AK
2211 }
2212}
2213
8faa8b07 2214static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1da177e4
LT
2215{
2216 unsigned long i;
a5516438 2217
e5ff2159 2218 for (i = 0; i < h->max_huge_pages; ++i) {
bae7f4ae 2219 if (hstate_is_gigantic(h)) {
aa888a74
AK
2220 if (!alloc_bootmem_huge_page(h))
2221 break;
9b5e5d0f 2222 } else if (!alloc_fresh_huge_page(h,
8cebfcd0 2223 &node_states[N_MEMORY]))
1da177e4 2224 break;
1da177e4 2225 }
d715cf80
LH
2226 if (i < h->max_huge_pages) {
2227 char buf[32];
2228
2229 memfmt(buf, huge_page_size(h)),
2230 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n",
2231 h->max_huge_pages, buf, i);
2232 h->max_huge_pages = i;
2233 }
e5ff2159
AK
2234}
2235
2236static void __init hugetlb_init_hstates(void)
2237{
2238 struct hstate *h;
2239
2240 for_each_hstate(h) {
641844f5
NH
2241 if (minimum_order > huge_page_order(h))
2242 minimum_order = huge_page_order(h);
2243
8faa8b07 2244 /* oversize hugepages were init'ed in early boot */
bae7f4ae 2245 if (!hstate_is_gigantic(h))
8faa8b07 2246 hugetlb_hstate_alloc_pages(h);
e5ff2159 2247 }
641844f5 2248 VM_BUG_ON(minimum_order == UINT_MAX);
e5ff2159
AK
2249}
2250
2251static void __init report_hugepages(void)
2252{
2253 struct hstate *h;
2254
2255 for_each_hstate(h) {
4abd32db 2256 char buf[32];
ffb22af5 2257 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
4abd32db
AK
2258 memfmt(buf, huge_page_size(h)),
2259 h->free_huge_pages);
e5ff2159
AK
2260 }
2261}
2262
1da177e4 2263#ifdef CONFIG_HIGHMEM
6ae11b27
LS
2264static void try_to_free_low(struct hstate *h, unsigned long count,
2265 nodemask_t *nodes_allowed)
1da177e4 2266{
4415cc8d
CL
2267 int i;
2268
bae7f4ae 2269 if (hstate_is_gigantic(h))
aa888a74
AK
2270 return;
2271
6ae11b27 2272 for_each_node_mask(i, *nodes_allowed) {
1da177e4 2273 struct page *page, *next;
a5516438
AK
2274 struct list_head *freel = &h->hugepage_freelists[i];
2275 list_for_each_entry_safe(page, next, freel, lru) {
2276 if (count >= h->nr_huge_pages)
6b0c880d 2277 return;
1da177e4
LT
2278 if (PageHighMem(page))
2279 continue;
2280 list_del(&page->lru);
e5ff2159 2281 update_and_free_page(h, page);
a5516438
AK
2282 h->free_huge_pages--;
2283 h->free_huge_pages_node[page_to_nid(page)]--;
1da177e4
LT
2284 }
2285 }
2286}
2287#else
6ae11b27
LS
2288static inline void try_to_free_low(struct hstate *h, unsigned long count,
2289 nodemask_t *nodes_allowed)
1da177e4
LT
2290{
2291}
2292#endif
2293
20a0307c
WF
2294/*
2295 * Increment or decrement surplus_huge_pages. Keep node-specific counters
2296 * balanced by operating on them in a round-robin fashion.
2297 * Returns 1 if an adjustment was made.
2298 */
6ae11b27
LS
2299static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2300 int delta)
20a0307c 2301{
b2261026 2302 int nr_nodes, node;
20a0307c
WF
2303
2304 VM_BUG_ON(delta != -1 && delta != 1);
20a0307c 2305
b2261026
JK
2306 if (delta < 0) {
2307 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2308 if (h->surplus_huge_pages_node[node])
2309 goto found;
e8c5c824 2310 }
b2261026
JK
2311 } else {
2312 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2313 if (h->surplus_huge_pages_node[node] <
2314 h->nr_huge_pages_node[node])
2315 goto found;
e8c5c824 2316 }
b2261026
JK
2317 }
2318 return 0;
20a0307c 2319
b2261026
JK
2320found:
2321 h->surplus_huge_pages += delta;
2322 h->surplus_huge_pages_node[node] += delta;
2323 return 1;
20a0307c
WF
2324}
2325
a5516438 2326#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
6ae11b27
LS
2327static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
2328 nodemask_t *nodes_allowed)
1da177e4 2329{
7893d1d5 2330 unsigned long min_count, ret;
1da177e4 2331
944d9fec 2332 if (hstate_is_gigantic(h) && !gigantic_page_supported())
aa888a74
AK
2333 return h->max_huge_pages;
2334
7893d1d5
AL
2335 /*
2336 * Increase the pool size
2337 * First take pages out of surplus state. Then make up the
2338 * remaining difference by allocating fresh huge pages.
d1c3fb1f 2339 *
d15c7c09 2340 * We might race with __alloc_buddy_huge_page() here and be unable
d1c3fb1f
NA
2341 * to convert a surplus huge page to a normal huge page. That is
2342 * not critical, though, it just means the overall size of the
2343 * pool might be one hugepage larger than it needs to be, but
2344 * within all the constraints specified by the sysctls.
7893d1d5 2345 */
1da177e4 2346 spin_lock(&hugetlb_lock);
a5516438 2347 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
6ae11b27 2348 if (!adjust_pool_surplus(h, nodes_allowed, -1))
7893d1d5
AL
2349 break;
2350 }
2351
a5516438 2352 while (count > persistent_huge_pages(h)) {
7893d1d5
AL
2353 /*
2354 * If this allocation races such that we no longer need the
2355 * page, free_huge_page will handle it by freeing the page
2356 * and reducing the surplus.
2357 */
2358 spin_unlock(&hugetlb_lock);
649920c6
JH
2359
2360 /* yield cpu to avoid soft lockup */
2361 cond_resched();
2362
944d9fec
LC
2363 if (hstate_is_gigantic(h))
2364 ret = alloc_fresh_gigantic_page(h, nodes_allowed);
2365 else
2366 ret = alloc_fresh_huge_page(h, nodes_allowed);
7893d1d5
AL
2367 spin_lock(&hugetlb_lock);
2368 if (!ret)
2369 goto out;
2370
536240f2
MG
2371 /* Bail for signals. Probably ctrl-c from user */
2372 if (signal_pending(current))
2373 goto out;
7893d1d5 2374 }
7893d1d5
AL
2375
2376 /*
2377 * Decrease the pool size
2378 * First return free pages to the buddy allocator (being careful
2379 * to keep enough around to satisfy reservations). Then place
2380 * pages into surplus state as needed so the pool will shrink
2381 * to the desired size as pages become free.
d1c3fb1f
NA
2382 *
2383 * By placing pages into the surplus state independent of the
2384 * overcommit value, we are allowing the surplus pool size to
2385 * exceed overcommit. There are few sane options here. Since
d15c7c09 2386 * __alloc_buddy_huge_page() is checking the global counter,
d1c3fb1f
NA
2387 * though, we'll note that we're not allowed to exceed surplus
2388 * and won't grow the pool anywhere else. Not until one of the
2389 * sysctls are changed, or the surplus pages go out of use.
7893d1d5 2390 */
a5516438 2391 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
6b0c880d 2392 min_count = max(count, min_count);
6ae11b27 2393 try_to_free_low(h, min_count, nodes_allowed);
a5516438 2394 while (min_count < persistent_huge_pages(h)) {
6ae11b27 2395 if (!free_pool_huge_page(h, nodes_allowed, 0))
1da177e4 2396 break;
55f67141 2397 cond_resched_lock(&hugetlb_lock);
1da177e4 2398 }
a5516438 2399 while (count < persistent_huge_pages(h)) {
6ae11b27 2400 if (!adjust_pool_surplus(h, nodes_allowed, 1))
7893d1d5
AL
2401 break;
2402 }
2403out:
a5516438 2404 ret = persistent_huge_pages(h);
1da177e4 2405 spin_unlock(&hugetlb_lock);
7893d1d5 2406 return ret;
1da177e4
LT
2407}
2408
a3437870
NA
2409#define HSTATE_ATTR_RO(_name) \
2410 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2411
2412#define HSTATE_ATTR(_name) \
2413 static struct kobj_attribute _name##_attr = \
2414 __ATTR(_name, 0644, _name##_show, _name##_store)
2415
2416static struct kobject *hugepages_kobj;
2417static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2418
9a305230
LS
2419static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2420
2421static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
a3437870
NA
2422{
2423 int i;
9a305230 2424
a3437870 2425 for (i = 0; i < HUGE_MAX_HSTATE; i++)
9a305230
LS
2426 if (hstate_kobjs[i] == kobj) {
2427 if (nidp)
2428 *nidp = NUMA_NO_NODE;
a3437870 2429 return &hstates[i];
9a305230
LS
2430 }
2431
2432 return kobj_to_node_hstate(kobj, nidp);
a3437870
NA
2433}
2434
06808b08 2435static ssize_t nr_hugepages_show_common(struct kobject *kobj,
a3437870
NA
2436 struct kobj_attribute *attr, char *buf)
2437{
9a305230
LS
2438 struct hstate *h;
2439 unsigned long nr_huge_pages;
2440 int nid;
2441
2442 h = kobj_to_hstate(kobj, &nid);
2443 if (nid == NUMA_NO_NODE)
2444 nr_huge_pages = h->nr_huge_pages;
2445 else
2446 nr_huge_pages = h->nr_huge_pages_node[nid];
2447
2448 return sprintf(buf, "%lu\n", nr_huge_pages);
a3437870 2449}
adbe8726 2450
238d3c13
DR
2451static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2452 struct hstate *h, int nid,
2453 unsigned long count, size_t len)
a3437870
NA
2454{
2455 int err;
bad44b5b 2456 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
a3437870 2457
944d9fec 2458 if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
adbe8726
EM
2459 err = -EINVAL;
2460 goto out;
2461 }
2462
9a305230
LS
2463 if (nid == NUMA_NO_NODE) {
2464 /*
2465 * global hstate attribute
2466 */
2467 if (!(obey_mempolicy &&
2468 init_nodemask_of_mempolicy(nodes_allowed))) {
2469 NODEMASK_FREE(nodes_allowed);
8cebfcd0 2470 nodes_allowed = &node_states[N_MEMORY];
9a305230
LS
2471 }
2472 } else if (nodes_allowed) {
2473 /*
2474 * per node hstate attribute: adjust count to global,
2475 * but restrict alloc/free to the specified node.
2476 */
2477 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2478 init_nodemask_of_node(nodes_allowed, nid);
2479 } else
8cebfcd0 2480 nodes_allowed = &node_states[N_MEMORY];
9a305230 2481
06808b08 2482 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
a3437870 2483
8cebfcd0 2484 if (nodes_allowed != &node_states[N_MEMORY])
06808b08
LS
2485 NODEMASK_FREE(nodes_allowed);
2486
2487 return len;
adbe8726
EM
2488out:
2489 NODEMASK_FREE(nodes_allowed);
2490 return err;
06808b08
LS
2491}
2492
238d3c13
DR
2493static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2494 struct kobject *kobj, const char *buf,
2495 size_t len)
2496{
2497 struct hstate *h;
2498 unsigned long count;
2499 int nid;
2500 int err;
2501
2502 err = kstrtoul(buf, 10, &count);
2503 if (err)
2504 return err;
2505
2506 h = kobj_to_hstate(kobj, &nid);
2507 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2508}
2509
06808b08
LS
2510static ssize_t nr_hugepages_show(struct kobject *kobj,
2511 struct kobj_attribute *attr, char *buf)
2512{
2513 return nr_hugepages_show_common(kobj, attr, buf);
2514}
2515
2516static ssize_t nr_hugepages_store(struct kobject *kobj,
2517 struct kobj_attribute *attr, const char *buf, size_t len)
2518{
238d3c13 2519 return nr_hugepages_store_common(false, kobj, buf, len);
a3437870
NA
2520}
2521HSTATE_ATTR(nr_hugepages);
2522
06808b08
LS
2523#ifdef CONFIG_NUMA
2524
2525/*
2526 * hstate attribute for optionally mempolicy-based constraint on persistent
2527 * huge page alloc/free.
2528 */
2529static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2530 struct kobj_attribute *attr, char *buf)
2531{
2532 return nr_hugepages_show_common(kobj, attr, buf);
2533}
2534
2535static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2536 struct kobj_attribute *attr, const char *buf, size_t len)
2537{
238d3c13 2538 return nr_hugepages_store_common(true, kobj, buf, len);
06808b08
LS
2539}
2540HSTATE_ATTR(nr_hugepages_mempolicy);
2541#endif
2542
2543
a3437870
NA
2544static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2545 struct kobj_attribute *attr, char *buf)
2546{
9a305230 2547 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870
NA
2548 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2549}
adbe8726 2550
a3437870
NA
2551static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2552 struct kobj_attribute *attr, const char *buf, size_t count)
2553{
2554 int err;
2555 unsigned long input;
9a305230 2556 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870 2557
bae7f4ae 2558 if (hstate_is_gigantic(h))
adbe8726
EM
2559 return -EINVAL;
2560
3dbb95f7 2561 err = kstrtoul(buf, 10, &input);
a3437870 2562 if (err)
73ae31e5 2563 return err;
a3437870
NA
2564
2565 spin_lock(&hugetlb_lock);
2566 h->nr_overcommit_huge_pages = input;
2567 spin_unlock(&hugetlb_lock);
2568
2569 return count;
2570}
2571HSTATE_ATTR(nr_overcommit_hugepages);
2572
2573static ssize_t free_hugepages_show(struct kobject *kobj,
2574 struct kobj_attribute *attr, char *buf)
2575{
9a305230
LS
2576 struct hstate *h;
2577 unsigned long free_huge_pages;
2578 int nid;
2579
2580 h = kobj_to_hstate(kobj, &nid);
2581 if (nid == NUMA_NO_NODE)
2582 free_huge_pages = h->free_huge_pages;
2583 else
2584 free_huge_pages = h->free_huge_pages_node[nid];
2585
2586 return sprintf(buf, "%lu\n", free_huge_pages);
a3437870
NA
2587}
2588HSTATE_ATTR_RO(free_hugepages);
2589
2590static ssize_t resv_hugepages_show(struct kobject *kobj,
2591 struct kobj_attribute *attr, char *buf)
2592{
9a305230 2593 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870
NA
2594 return sprintf(buf, "%lu\n", h->resv_huge_pages);
2595}
2596HSTATE_ATTR_RO(resv_hugepages);
2597
2598static ssize_t surplus_hugepages_show(struct kobject *kobj,
2599 struct kobj_attribute *attr, char *buf)
2600{
9a305230
LS
2601 struct hstate *h;
2602 unsigned long surplus_huge_pages;
2603 int nid;
2604
2605 h = kobj_to_hstate(kobj, &nid);
2606 if (nid == NUMA_NO_NODE)
2607 surplus_huge_pages = h->surplus_huge_pages;
2608 else
2609 surplus_huge_pages = h->surplus_huge_pages_node[nid];
2610
2611 return sprintf(buf, "%lu\n", surplus_huge_pages);
a3437870
NA
2612}
2613HSTATE_ATTR_RO(surplus_hugepages);
2614
2615static struct attribute *hstate_attrs[] = {
2616 &nr_hugepages_attr.attr,
2617 &nr_overcommit_hugepages_attr.attr,
2618 &free_hugepages_attr.attr,
2619 &resv_hugepages_attr.attr,
2620 &surplus_hugepages_attr.attr,
06808b08
LS
2621#ifdef CONFIG_NUMA
2622 &nr_hugepages_mempolicy_attr.attr,
2623#endif
a3437870
NA
2624 NULL,
2625};
2626
2627static struct attribute_group hstate_attr_group = {
2628 .attrs = hstate_attrs,
2629};
2630
094e9539
JM
2631static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2632 struct kobject **hstate_kobjs,
2633 struct attribute_group *hstate_attr_group)
a3437870
NA
2634{
2635 int retval;
972dc4de 2636 int hi = hstate_index(h);
a3437870 2637
9a305230
LS
2638 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2639 if (!hstate_kobjs[hi])
a3437870
NA
2640 return -ENOMEM;
2641
9a305230 2642 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
a3437870 2643 if (retval)
9a305230 2644 kobject_put(hstate_kobjs[hi]);
a3437870
NA
2645
2646 return retval;
2647}
2648
2649static void __init hugetlb_sysfs_init(void)
2650{
2651 struct hstate *h;
2652 int err;
2653
2654 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2655 if (!hugepages_kobj)
2656 return;
2657
2658 for_each_hstate(h) {
9a305230
LS
2659 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2660 hstate_kobjs, &hstate_attr_group);
a3437870 2661 if (err)
ffb22af5 2662 pr_err("Hugetlb: Unable to add hstate %s", h->name);
a3437870
NA
2663 }
2664}
2665
9a305230
LS
2666#ifdef CONFIG_NUMA
2667
2668/*
2669 * node_hstate/s - associate per node hstate attributes, via their kobjects,
10fbcf4c
KS
2670 * with node devices in node_devices[] using a parallel array. The array
2671 * index of a node device or _hstate == node id.
2672 * This is here to avoid any static dependency of the node device driver, in
9a305230
LS
2673 * the base kernel, on the hugetlb module.
2674 */
2675struct node_hstate {
2676 struct kobject *hugepages_kobj;
2677 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2678};
b4e289a6 2679static struct node_hstate node_hstates[MAX_NUMNODES];
9a305230
LS
2680
2681/*
10fbcf4c 2682 * A subset of global hstate attributes for node devices
9a305230
LS
2683 */
2684static struct attribute *per_node_hstate_attrs[] = {
2685 &nr_hugepages_attr.attr,
2686 &free_hugepages_attr.attr,
2687 &surplus_hugepages_attr.attr,
2688 NULL,
2689};
2690
2691static struct attribute_group per_node_hstate_attr_group = {
2692 .attrs = per_node_hstate_attrs,
2693};
2694
2695/*
10fbcf4c 2696 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
9a305230
LS
2697 * Returns node id via non-NULL nidp.
2698 */
2699static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2700{
2701 int nid;
2702
2703 for (nid = 0; nid < nr_node_ids; nid++) {
2704 struct node_hstate *nhs = &node_hstates[nid];
2705 int i;
2706 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2707 if (nhs->hstate_kobjs[i] == kobj) {
2708 if (nidp)
2709 *nidp = nid;
2710 return &hstates[i];
2711 }
2712 }
2713
2714 BUG();
2715 return NULL;
2716}
2717
2718/*
10fbcf4c 2719 * Unregister hstate attributes from a single node device.
9a305230
LS
2720 * No-op if no hstate attributes attached.
2721 */
3cd8b44f 2722static void hugetlb_unregister_node(struct node *node)
9a305230
LS
2723{
2724 struct hstate *h;
10fbcf4c 2725 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
2726
2727 if (!nhs->hugepages_kobj)
9b5e5d0f 2728 return; /* no hstate attributes */
9a305230 2729
972dc4de
AK
2730 for_each_hstate(h) {
2731 int idx = hstate_index(h);
2732 if (nhs->hstate_kobjs[idx]) {
2733 kobject_put(nhs->hstate_kobjs[idx]);
2734 nhs->hstate_kobjs[idx] = NULL;
9a305230 2735 }
972dc4de 2736 }
9a305230
LS
2737
2738 kobject_put(nhs->hugepages_kobj);
2739 nhs->hugepages_kobj = NULL;
2740}
2741
9a305230
LS
2742
2743/*
10fbcf4c 2744 * Register hstate attributes for a single node device.
9a305230
LS
2745 * No-op if attributes already registered.
2746 */
3cd8b44f 2747static void hugetlb_register_node(struct node *node)
9a305230
LS
2748{
2749 struct hstate *h;
10fbcf4c 2750 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
2751 int err;
2752
2753 if (nhs->hugepages_kobj)
2754 return; /* already allocated */
2755
2756 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
10fbcf4c 2757 &node->dev.kobj);
9a305230
LS
2758 if (!nhs->hugepages_kobj)
2759 return;
2760
2761 for_each_hstate(h) {
2762 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2763 nhs->hstate_kobjs,
2764 &per_node_hstate_attr_group);
2765 if (err) {
ffb22af5
AM
2766 pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2767 h->name, node->dev.id);
9a305230
LS
2768 hugetlb_unregister_node(node);
2769 break;
2770 }
2771 }
2772}
2773
2774/*
9b5e5d0f 2775 * hugetlb init time: register hstate attributes for all registered node
10fbcf4c
KS
2776 * devices of nodes that have memory. All on-line nodes should have
2777 * registered their associated device by this time.
9a305230 2778 */
7d9ca000 2779static void __init hugetlb_register_all_nodes(void)
9a305230
LS
2780{
2781 int nid;
2782
8cebfcd0 2783 for_each_node_state(nid, N_MEMORY) {
8732794b 2784 struct node *node = node_devices[nid];
10fbcf4c 2785 if (node->dev.id == nid)
9a305230
LS
2786 hugetlb_register_node(node);
2787 }
2788
2789 /*
10fbcf4c 2790 * Let the node device driver know we're here so it can
9a305230
LS
2791 * [un]register hstate attributes on node hotplug.
2792 */
2793 register_hugetlbfs_with_node(hugetlb_register_node,
2794 hugetlb_unregister_node);
2795}
2796#else /* !CONFIG_NUMA */
2797
2798static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2799{
2800 BUG();
2801 if (nidp)
2802 *nidp = -1;
2803 return NULL;
2804}
2805
9a305230
LS
2806static void hugetlb_register_all_nodes(void) { }
2807
2808#endif
2809
a3437870
NA
2810static int __init hugetlb_init(void)
2811{
8382d914
DB
2812 int i;
2813
457c1b27 2814 if (!hugepages_supported())
0ef89d25 2815 return 0;
a3437870 2816
e11bfbfc 2817 if (!size_to_hstate(default_hstate_size)) {
d715cf80
LH
2818 if (default_hstate_size != 0) {
2819 pr_err("HugeTLB: unsupported default_hugepagesz %lu. Reverting to %lu\n",
2820 default_hstate_size, HPAGE_SIZE);
2821 }
2822
e11bfbfc
NP
2823 default_hstate_size = HPAGE_SIZE;
2824 if (!size_to_hstate(default_hstate_size))
2825 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
a3437870 2826 }
972dc4de 2827 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
f8b74815
VT
2828 if (default_hstate_max_huge_pages) {
2829 if (!default_hstate.max_huge_pages)
2830 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2831 }
a3437870
NA
2832
2833 hugetlb_init_hstates();
aa888a74 2834 gather_bootmem_prealloc();
a3437870
NA
2835 report_hugepages();
2836
2837 hugetlb_sysfs_init();
9a305230 2838 hugetlb_register_all_nodes();
7179e7bf 2839 hugetlb_cgroup_file_init();
9a305230 2840
8382d914
DB
2841#ifdef CONFIG_SMP
2842 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2843#else
2844 num_fault_mutexes = 1;
2845#endif
c672c7f2 2846 hugetlb_fault_mutex_table =
8382d914 2847 kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
c672c7f2 2848 BUG_ON(!hugetlb_fault_mutex_table);
8382d914
DB
2849
2850 for (i = 0; i < num_fault_mutexes; i++)
c672c7f2 2851 mutex_init(&hugetlb_fault_mutex_table[i]);
a3437870
NA
2852 return 0;
2853}
3e89e1c5 2854subsys_initcall(hugetlb_init);
a3437870
NA
2855
2856/* Should be called on processing a hugepagesz=... option */
9fee021d
VT
2857void __init hugetlb_bad_size(void)
2858{
2859 parsed_valid_hugepagesz = false;
2860}
2861
d00181b9 2862void __init hugetlb_add_hstate(unsigned int order)
a3437870
NA
2863{
2864 struct hstate *h;
8faa8b07
AK
2865 unsigned long i;
2866
a3437870 2867 if (size_to_hstate(PAGE_SIZE << order)) {
598d8091 2868 pr_warn("hugepagesz= specified twice, ignoring\n");
a3437870
NA
2869 return;
2870 }
47d38344 2871 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
a3437870 2872 BUG_ON(order == 0);
47d38344 2873 h = &hstates[hugetlb_max_hstate++];
a3437870
NA
2874 h->order = order;
2875 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
8faa8b07
AK
2876 h->nr_huge_pages = 0;
2877 h->free_huge_pages = 0;
2878 for (i = 0; i < MAX_NUMNODES; ++i)
2879 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
0edaecfa 2880 INIT_LIST_HEAD(&h->hugepage_activelist);
54f18d35
AM
2881 h->next_nid_to_alloc = first_memory_node;
2882 h->next_nid_to_free = first_memory_node;
a3437870
NA
2883 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2884 huge_page_size(h)/1024);
8faa8b07 2885
a3437870
NA
2886 parsed_hstate = h;
2887}
2888
e11bfbfc 2889static int __init hugetlb_nrpages_setup(char *s)
a3437870
NA
2890{
2891 unsigned long *mhp;
8faa8b07 2892 static unsigned long *last_mhp;
a3437870 2893
9fee021d
VT
2894 if (!parsed_valid_hugepagesz) {
2895 pr_warn("hugepages = %s preceded by "
2896 "an unsupported hugepagesz, ignoring\n", s);
2897 parsed_valid_hugepagesz = true;
2898 return 1;
2899 }
a3437870 2900 /*
47d38344 2901 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
a3437870
NA
2902 * so this hugepages= parameter goes to the "default hstate".
2903 */
9fee021d 2904 else if (!hugetlb_max_hstate)
a3437870
NA
2905 mhp = &default_hstate_max_huge_pages;
2906 else
2907 mhp = &parsed_hstate->max_huge_pages;
2908
8faa8b07 2909 if (mhp == last_mhp) {
598d8091 2910 pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
8faa8b07
AK
2911 return 1;
2912 }
2913
a3437870
NA
2914 if (sscanf(s, "%lu", mhp) <= 0)
2915 *mhp = 0;
2916
8faa8b07
AK
2917 /*
2918 * Global state is always initialized later in hugetlb_init.
2919 * But we need to allocate >= MAX_ORDER hstates here early to still
2920 * use the bootmem allocator.
2921 */
47d38344 2922 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
8faa8b07
AK
2923 hugetlb_hstate_alloc_pages(parsed_hstate);
2924
2925 last_mhp = mhp;
2926
a3437870
NA
2927 return 1;
2928}
e11bfbfc
NP
2929__setup("hugepages=", hugetlb_nrpages_setup);
2930
2931static int __init hugetlb_default_setup(char *s)
2932{
2933 default_hstate_size = memparse(s, &s);
2934 return 1;
2935}
2936__setup("default_hugepagesz=", hugetlb_default_setup);
a3437870 2937
8a213460
NA
2938static unsigned int cpuset_mems_nr(unsigned int *array)
2939{
2940 int node;
2941 unsigned int nr = 0;
2942
2943 for_each_node_mask(node, cpuset_current_mems_allowed)
2944 nr += array[node];
2945
2946 return nr;
2947}
2948
2949#ifdef CONFIG_SYSCTL
06808b08
LS
2950static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2951 struct ctl_table *table, int write,
2952 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 2953{
e5ff2159 2954 struct hstate *h = &default_hstate;
238d3c13 2955 unsigned long tmp = h->max_huge_pages;
08d4a246 2956 int ret;
e5ff2159 2957
457c1b27 2958 if (!hugepages_supported())
86613628 2959 return -EOPNOTSUPP;
457c1b27 2960
e5ff2159
AK
2961 table->data = &tmp;
2962 table->maxlen = sizeof(unsigned long);
08d4a246
MH
2963 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2964 if (ret)
2965 goto out;
e5ff2159 2966
238d3c13
DR
2967 if (write)
2968 ret = __nr_hugepages_store_common(obey_mempolicy, h,
2969 NUMA_NO_NODE, tmp, *length);
08d4a246
MH
2970out:
2971 return ret;
1da177e4 2972}
396faf03 2973
06808b08
LS
2974int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2975 void __user *buffer, size_t *length, loff_t *ppos)
2976{
2977
2978 return hugetlb_sysctl_handler_common(false, table, write,
2979 buffer, length, ppos);
2980}
2981
2982#ifdef CONFIG_NUMA
2983int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2984 void __user *buffer, size_t *length, loff_t *ppos)
2985{
2986 return hugetlb_sysctl_handler_common(true, table, write,
2987 buffer, length, ppos);
2988}
2989#endif /* CONFIG_NUMA */
2990
a3d0c6aa 2991int hugetlb_overcommit_handler(struct ctl_table *table, int write,
8d65af78 2992 void __user *buffer,
a3d0c6aa
NA
2993 size_t *length, loff_t *ppos)
2994{
a5516438 2995 struct hstate *h = &default_hstate;
e5ff2159 2996 unsigned long tmp;
08d4a246 2997 int ret;
e5ff2159 2998
457c1b27 2999 if (!hugepages_supported())
86613628 3000 return -EOPNOTSUPP;
457c1b27 3001
c033a93c 3002 tmp = h->nr_overcommit_huge_pages;
e5ff2159 3003
bae7f4ae 3004 if (write && hstate_is_gigantic(h))
adbe8726
EM
3005 return -EINVAL;
3006
e5ff2159
AK
3007 table->data = &tmp;
3008 table->maxlen = sizeof(unsigned long);
08d4a246
MH
3009 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
3010 if (ret)
3011 goto out;
e5ff2159
AK
3012
3013 if (write) {
3014 spin_lock(&hugetlb_lock);
3015 h->nr_overcommit_huge_pages = tmp;
3016 spin_unlock(&hugetlb_lock);
3017 }
08d4a246
MH
3018out:
3019 return ret;
a3d0c6aa
NA
3020}
3021
1da177e4
LT
3022#endif /* CONFIG_SYSCTL */
3023
e1759c21 3024void hugetlb_report_meminfo(struct seq_file *m)
1da177e4 3025{
a5516438 3026 struct hstate *h = &default_hstate;
457c1b27
NA
3027 if (!hugepages_supported())
3028 return;
e1759c21 3029 seq_printf(m,
4f98a2fe
RR
3030 "HugePages_Total: %5lu\n"
3031 "HugePages_Free: %5lu\n"
3032 "HugePages_Rsvd: %5lu\n"
3033 "HugePages_Surp: %5lu\n"
3034 "Hugepagesize: %8lu kB\n",
a5516438
AK
3035 h->nr_huge_pages,
3036 h->free_huge_pages,
3037 h->resv_huge_pages,
3038 h->surplus_huge_pages,
3039 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
1da177e4
LT
3040}
3041
3042int hugetlb_report_node_meminfo(int nid, char *buf)
3043{
a5516438 3044 struct hstate *h = &default_hstate;
457c1b27
NA
3045 if (!hugepages_supported())
3046 return 0;
1da177e4
LT
3047 return sprintf(buf,
3048 "Node %d HugePages_Total: %5u\n"
a1de0919
NA
3049 "Node %d HugePages_Free: %5u\n"
3050 "Node %d HugePages_Surp: %5u\n",
a5516438
AK
3051 nid, h->nr_huge_pages_node[nid],
3052 nid, h->free_huge_pages_node[nid],
3053 nid, h->surplus_huge_pages_node[nid]);
1da177e4
LT
3054}
3055
949f7ec5
DR
3056void hugetlb_show_meminfo(void)
3057{
3058 struct hstate *h;
3059 int nid;
3060
457c1b27
NA
3061 if (!hugepages_supported())
3062 return;
3063
949f7ec5
DR
3064 for_each_node_state(nid, N_MEMORY)
3065 for_each_hstate(h)
3066 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3067 nid,
3068 h->nr_huge_pages_node[nid],
3069 h->free_huge_pages_node[nid],
3070 h->surplus_huge_pages_node[nid],
3071 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3072}
3073
5d317b2b
NH
3074void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3075{
3076 seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3077 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3078}
3079
1da177e4
LT
3080/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3081unsigned long hugetlb_total_pages(void)
3082{
d0028588
WL
3083 struct hstate *h;
3084 unsigned long nr_total_pages = 0;
3085
3086 for_each_hstate(h)
3087 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3088 return nr_total_pages;
1da177e4 3089}
1da177e4 3090
a5516438 3091static int hugetlb_acct_memory(struct hstate *h, long delta)
fc1b8a73
MG
3092{
3093 int ret = -ENOMEM;
3094
3095 spin_lock(&hugetlb_lock);
3096 /*
3097 * When cpuset is configured, it breaks the strict hugetlb page
3098 * reservation as the accounting is done on a global variable. Such
3099 * reservation is completely rubbish in the presence of cpuset because
3100 * the reservation is not checked against page availability for the
3101 * current cpuset. Application can still potentially OOM'ed by kernel
3102 * with lack of free htlb page in cpuset that the task is in.
3103 * Attempt to enforce strict accounting with cpuset is almost
3104 * impossible (or too ugly) because cpuset is too fluid that
3105 * task or memory node can be dynamically moved between cpusets.
3106 *
3107 * The change of semantics for shared hugetlb mapping with cpuset is
3108 * undesirable. However, in order to preserve some of the semantics,
3109 * we fall back to check against current free page availability as
3110 * a best attempt and hopefully to minimize the impact of changing
3111 * semantics that cpuset has.
3112 */
3113 if (delta > 0) {
a5516438 3114 if (gather_surplus_pages(h, delta) < 0)
fc1b8a73
MG
3115 goto out;
3116
a5516438
AK
3117 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
3118 return_unused_surplus_pages(h, delta);
fc1b8a73
MG
3119 goto out;
3120 }
3121 }
3122
3123 ret = 0;
3124 if (delta < 0)
a5516438 3125 return_unused_surplus_pages(h, (unsigned long) -delta);
fc1b8a73
MG
3126
3127out:
3128 spin_unlock(&hugetlb_lock);
3129 return ret;
3130}
3131
84afd99b
AW
3132static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3133{
f522c3ac 3134 struct resv_map *resv = vma_resv_map(vma);
84afd99b
AW
3135
3136 /*
3137 * This new VMA should share its siblings reservation map if present.
3138 * The VMA will only ever have a valid reservation map pointer where
3139 * it is being copied for another still existing VMA. As that VMA
25985edc 3140 * has a reference to the reservation map it cannot disappear until
84afd99b
AW
3141 * after this open call completes. It is therefore safe to take a
3142 * new reference here without additional locking.
3143 */
4e35f483 3144 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
f522c3ac 3145 kref_get(&resv->refs);
84afd99b
AW
3146}
3147
a1e78772
MG
3148static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3149{
a5516438 3150 struct hstate *h = hstate_vma(vma);
f522c3ac 3151 struct resv_map *resv = vma_resv_map(vma);
90481622 3152 struct hugepage_subpool *spool = subpool_vma(vma);
4e35f483 3153 unsigned long reserve, start, end;
1c5ecae3 3154 long gbl_reserve;
84afd99b 3155
4e35f483
JK
3156 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3157 return;
84afd99b 3158
4e35f483
JK
3159 start = vma_hugecache_offset(h, vma, vma->vm_start);
3160 end = vma_hugecache_offset(h, vma, vma->vm_end);
84afd99b 3161
4e35f483 3162 reserve = (end - start) - region_count(resv, start, end);
84afd99b 3163
4e35f483
JK
3164 kref_put(&resv->refs, resv_map_release);
3165
3166 if (reserve) {
1c5ecae3
MK
3167 /*
3168 * Decrement reserve counts. The global reserve count may be
3169 * adjusted if the subpool has a minimum size.
3170 */
3171 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3172 hugetlb_acct_memory(h, -gbl_reserve);
84afd99b 3173 }
a1e78772
MG
3174}
3175
1da177e4
LT
3176/*
3177 * We cannot handle pagefaults against hugetlb pages at all. They cause
3178 * handle_mm_fault() to try to instantiate regular-sized pages in the
3179 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
3180 * this far.
3181 */
11bac800 3182static int hugetlb_vm_op_fault(struct vm_fault *vmf)
1da177e4
LT
3183{
3184 BUG();
d0217ac0 3185 return 0;
1da177e4
LT
3186}
3187
f0f37e2f 3188const struct vm_operations_struct hugetlb_vm_ops = {
d0217ac0 3189 .fault = hugetlb_vm_op_fault,
84afd99b 3190 .open = hugetlb_vm_op_open,
a1e78772 3191 .close = hugetlb_vm_op_close,
1da177e4
LT
3192};
3193
1e8f889b
DG
3194static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3195 int writable)
63551ae0
DG
3196{
3197 pte_t entry;
3198
1e8f889b 3199 if (writable) {
106c992a
GS
3200 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3201 vma->vm_page_prot)));
63551ae0 3202 } else {
106c992a
GS
3203 entry = huge_pte_wrprotect(mk_huge_pte(page,
3204 vma->vm_page_prot));
63551ae0
DG
3205 }
3206 entry = pte_mkyoung(entry);
3207 entry = pte_mkhuge(entry);
d9ed9faa 3208 entry = arch_make_huge_pte(entry, vma, page, writable);
63551ae0
DG
3209
3210 return entry;
3211}
3212
1e8f889b
DG
3213static void set_huge_ptep_writable(struct vm_area_struct *vma,
3214 unsigned long address, pte_t *ptep)
3215{
3216 pte_t entry;
3217
106c992a 3218 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
32f84528 3219 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4b3073e1 3220 update_mmu_cache(vma, address, ptep);
1e8f889b
DG
3221}
3222
d5ed7444 3223bool is_hugetlb_entry_migration(pte_t pte)
4a705fef
NH
3224{
3225 swp_entry_t swp;
3226
3227 if (huge_pte_none(pte) || pte_present(pte))
d5ed7444 3228 return false;
4a705fef
NH
3229 swp = pte_to_swp_entry(pte);
3230 if (non_swap_entry(swp) && is_migration_entry(swp))
d5ed7444 3231 return true;
4a705fef 3232 else
d5ed7444 3233 return false;
4a705fef
NH
3234}
3235
3236static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3237{
3238 swp_entry_t swp;
3239
3240 if (huge_pte_none(pte) || pte_present(pte))
3241 return 0;
3242 swp = pte_to_swp_entry(pte);
3243 if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3244 return 1;
3245 else
3246 return 0;
3247}
1e8f889b 3248
63551ae0
DG
3249int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3250 struct vm_area_struct *vma)
3251{
3252 pte_t *src_pte, *dst_pte, entry;
3253 struct page *ptepage;
1c59827d 3254 unsigned long addr;
1e8f889b 3255 int cow;
a5516438
AK
3256 struct hstate *h = hstate_vma(vma);
3257 unsigned long sz = huge_page_size(h);
e8569dd2
AS
3258 unsigned long mmun_start; /* For mmu_notifiers */
3259 unsigned long mmun_end; /* For mmu_notifiers */
3260 int ret = 0;
1e8f889b
DG
3261
3262 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
63551ae0 3263
e8569dd2
AS
3264 mmun_start = vma->vm_start;
3265 mmun_end = vma->vm_end;
3266 if (cow)
3267 mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
3268
a5516438 3269 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
cb900f41 3270 spinlock_t *src_ptl, *dst_ptl;
7868a208 3271 src_pte = huge_pte_offset(src, addr, sz);
c74df32c
HD
3272 if (!src_pte)
3273 continue;
a5516438 3274 dst_pte = huge_pte_alloc(dst, addr, sz);
e8569dd2
AS
3275 if (!dst_pte) {
3276 ret = -ENOMEM;
3277 break;
3278 }
c5c99429
LW
3279
3280 /* If the pagetables are shared don't copy or take references */
3281 if (dst_pte == src_pte)
3282 continue;
3283
cb900f41
KS
3284 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3285 src_ptl = huge_pte_lockptr(h, src, src_pte);
3286 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4a705fef
NH
3287 entry = huge_ptep_get(src_pte);
3288 if (huge_pte_none(entry)) { /* skip none entry */
3289 ;
3290 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3291 is_hugetlb_entry_hwpoisoned(entry))) {
3292 swp_entry_t swp_entry = pte_to_swp_entry(entry);
3293
3294 if (is_write_migration_entry(swp_entry) && cow) {
3295 /*
3296 * COW mappings require pages in both
3297 * parent and child to be set to read.
3298 */
3299 make_migration_entry_read(&swp_entry);
3300 entry = swp_entry_to_pte(swp_entry);
e5251fd4
PA
3301 set_huge_swap_pte_at(src, addr, src_pte,
3302 entry, sz);
4a705fef 3303 }
e5251fd4 3304 set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
4a705fef 3305 } else {
34ee645e 3306 if (cow) {
7f2e9525 3307 huge_ptep_set_wrprotect(src, addr, src_pte);
34ee645e
JR
3308 mmu_notifier_invalidate_range(src, mmun_start,
3309 mmun_end);
3310 }
0253d634 3311 entry = huge_ptep_get(src_pte);
1c59827d
HD
3312 ptepage = pte_page(entry);
3313 get_page(ptepage);
53f9263b 3314 page_dup_rmap(ptepage, true);
1c59827d 3315 set_huge_pte_at(dst, addr, dst_pte, entry);
5d317b2b 3316 hugetlb_count_add(pages_per_huge_page(h), dst);
1c59827d 3317 }
cb900f41
KS
3318 spin_unlock(src_ptl);
3319 spin_unlock(dst_ptl);
63551ae0 3320 }
63551ae0 3321
e8569dd2
AS
3322 if (cow)
3323 mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
3324
3325 return ret;
63551ae0
DG
3326}
3327
24669e58
AK
3328void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3329 unsigned long start, unsigned long end,
3330 struct page *ref_page)
63551ae0
DG
3331{
3332 struct mm_struct *mm = vma->vm_mm;
3333 unsigned long address;
c7546f8f 3334 pte_t *ptep;
63551ae0 3335 pte_t pte;
cb900f41 3336 spinlock_t *ptl;
63551ae0 3337 struct page *page;
a5516438
AK
3338 struct hstate *h = hstate_vma(vma);
3339 unsigned long sz = huge_page_size(h);
2ec74c3e
SG
3340 const unsigned long mmun_start = start; /* For mmu_notifiers */
3341 const unsigned long mmun_end = end; /* For mmu_notifiers */
a5516438 3342
63551ae0 3343 WARN_ON(!is_vm_hugetlb_page(vma));
a5516438
AK
3344 BUG_ON(start & ~huge_page_mask(h));
3345 BUG_ON(end & ~huge_page_mask(h));
63551ae0 3346
07e32661
AK
3347 /*
3348 * This is a hugetlb vma, all the pte entries should point
3349 * to huge page.
3350 */
3351 tlb_remove_check_page_size_change(tlb, sz);
24669e58 3352 tlb_start_vma(tlb, vma);
2ec74c3e 3353 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
569f48b8 3354 address = start;
569f48b8 3355 for (; address < end; address += sz) {
7868a208 3356 ptep = huge_pte_offset(mm, address, sz);
4c887265 3357 if (!ptep)
c7546f8f
DG
3358 continue;
3359
cb900f41 3360 ptl = huge_pte_lock(h, mm, ptep);
31d49da5
AK
3361 if (huge_pmd_unshare(mm, &address, ptep)) {
3362 spin_unlock(ptl);
3363 continue;
3364 }
39dde65c 3365
6629326b 3366 pte = huge_ptep_get(ptep);
31d49da5
AK
3367 if (huge_pte_none(pte)) {
3368 spin_unlock(ptl);
3369 continue;
3370 }
6629326b
HD
3371
3372 /*
9fbc1f63
NH
3373 * Migrating hugepage or HWPoisoned hugepage is already
3374 * unmapped and its refcount is dropped, so just clear pte here.
6629326b 3375 */
9fbc1f63 3376 if (unlikely(!pte_present(pte))) {
9386fac3 3377 huge_pte_clear(mm, address, ptep, sz);
31d49da5
AK
3378 spin_unlock(ptl);
3379 continue;
8c4894c6 3380 }
6629326b
HD
3381
3382 page = pte_page(pte);
04f2cbe3
MG
3383 /*
3384 * If a reference page is supplied, it is because a specific
3385 * page is being unmapped, not a range. Ensure the page we
3386 * are about to unmap is the actual page of interest.
3387 */
3388 if (ref_page) {
31d49da5
AK
3389 if (page != ref_page) {
3390 spin_unlock(ptl);
3391 continue;
3392 }
04f2cbe3
MG
3393 /*
3394 * Mark the VMA as having unmapped its page so that
3395 * future faults in this VMA will fail rather than
3396 * looking like data was lost
3397 */
3398 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3399 }
3400
c7546f8f 3401 pte = huge_ptep_get_and_clear(mm, address, ptep);
b528e4b6 3402 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
106c992a 3403 if (huge_pte_dirty(pte))
6649a386 3404 set_page_dirty(page);
9e81130b 3405
5d317b2b 3406 hugetlb_count_sub(pages_per_huge_page(h), mm);
d281ee61 3407 page_remove_rmap(page, true);
31d49da5 3408
cb900f41 3409 spin_unlock(ptl);
e77b0852 3410 tlb_remove_page_size(tlb, page, huge_page_size(h));
31d49da5
AK
3411 /*
3412 * Bail out after unmapping reference page if supplied
3413 */
3414 if (ref_page)
3415 break;
fe1668ae 3416 }
2ec74c3e 3417 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
24669e58 3418 tlb_end_vma(tlb, vma);
1da177e4 3419}
63551ae0 3420
d833352a
MG
3421void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3422 struct vm_area_struct *vma, unsigned long start,
3423 unsigned long end, struct page *ref_page)
3424{
3425 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
3426
3427 /*
3428 * Clear this flag so that x86's huge_pmd_share page_table_shareable
3429 * test will fail on a vma being torn down, and not grab a page table
3430 * on its way out. We're lucky that the flag has such an appropriate
3431 * name, and can in fact be safely cleared here. We could clear it
3432 * before the __unmap_hugepage_range above, but all that's necessary
c8c06efa 3433 * is to clear it before releasing the i_mmap_rwsem. This works
d833352a 3434 * because in the context this is called, the VMA is about to be
c8c06efa 3435 * destroyed and the i_mmap_rwsem is held.
d833352a
MG
3436 */
3437 vma->vm_flags &= ~VM_MAYSHARE;
3438}
3439
502717f4 3440void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
04f2cbe3 3441 unsigned long end, struct page *ref_page)
502717f4 3442{
24669e58
AK
3443 struct mm_struct *mm;
3444 struct mmu_gather tlb;
3445
3446 mm = vma->vm_mm;
3447
2b047252 3448 tlb_gather_mmu(&tlb, mm, start, end);
24669e58
AK
3449 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
3450 tlb_finish_mmu(&tlb, start, end);
502717f4
CK
3451}
3452
04f2cbe3
MG
3453/*
3454 * This is called when the original mapper is failing to COW a MAP_PRIVATE
3455 * mappping it owns the reserve page for. The intention is to unmap the page
3456 * from other VMAs and let the children be SIGKILLed if they are faulting the
3457 * same region.
3458 */
2f4612af
DB
3459static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3460 struct page *page, unsigned long address)
04f2cbe3 3461{
7526674d 3462 struct hstate *h = hstate_vma(vma);
04f2cbe3
MG
3463 struct vm_area_struct *iter_vma;
3464 struct address_space *mapping;
04f2cbe3
MG
3465 pgoff_t pgoff;
3466
3467 /*
3468 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3469 * from page cache lookup which is in HPAGE_SIZE units.
3470 */
7526674d 3471 address = address & huge_page_mask(h);
36e4f20a
MH
3472 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3473 vma->vm_pgoff;
93c76a3d 3474 mapping = vma->vm_file->f_mapping;
04f2cbe3 3475
4eb2b1dc
MG
3476 /*
3477 * Take the mapping lock for the duration of the table walk. As
3478 * this mapping should be shared between all the VMAs,
3479 * __unmap_hugepage_range() is called as the lock is already held
3480 */
83cde9e8 3481 i_mmap_lock_write(mapping);
6b2dbba8 3482 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
04f2cbe3
MG
3483 /* Do not unmap the current VMA */
3484 if (iter_vma == vma)
3485 continue;
3486
2f84a899
MG
3487 /*
3488 * Shared VMAs have their own reserves and do not affect
3489 * MAP_PRIVATE accounting but it is possible that a shared
3490 * VMA is using the same page so check and skip such VMAs.
3491 */
3492 if (iter_vma->vm_flags & VM_MAYSHARE)
3493 continue;
3494
04f2cbe3
MG
3495 /*
3496 * Unmap the page from other VMAs without their own reserves.
3497 * They get marked to be SIGKILLed if they fault in these
3498 * areas. This is because a future no-page fault on this VMA
3499 * could insert a zeroed page instead of the data existing
3500 * from the time of fork. This would look like data corruption
3501 */
3502 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
24669e58
AK
3503 unmap_hugepage_range(iter_vma, address,
3504 address + huge_page_size(h), page);
04f2cbe3 3505 }
83cde9e8 3506 i_mmap_unlock_write(mapping);
04f2cbe3
MG
3507}
3508
0fe6e20b
NH
3509/*
3510 * Hugetlb_cow() should be called with page lock of the original hugepage held.
ef009b25
MH
3511 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3512 * cannot race with other handlers or page migration.
3513 * Keep the pte_same checks anyway to make transition from the mutex easier.
0fe6e20b 3514 */
1e8f889b 3515static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
3999f52e
AK
3516 unsigned long address, pte_t *ptep,
3517 struct page *pagecache_page, spinlock_t *ptl)
1e8f889b 3518{
3999f52e 3519 pte_t pte;
a5516438 3520 struct hstate *h = hstate_vma(vma);
1e8f889b 3521 struct page *old_page, *new_page;
ad4404a2 3522 int ret = 0, outside_reserve = 0;
2ec74c3e
SG
3523 unsigned long mmun_start; /* For mmu_notifiers */
3524 unsigned long mmun_end; /* For mmu_notifiers */
1e8f889b 3525
3999f52e 3526 pte = huge_ptep_get(ptep);
1e8f889b
DG
3527 old_page = pte_page(pte);
3528
04f2cbe3 3529retry_avoidcopy:
1e8f889b
DG
3530 /* If no-one else is actually using this page, avoid the copy
3531 * and just make the page writable */
37a2140d 3532 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
5a49973d 3533 page_move_anon_rmap(old_page, vma);
1e8f889b 3534 set_huge_ptep_writable(vma, address, ptep);
83c54070 3535 return 0;
1e8f889b
DG
3536 }
3537
04f2cbe3
MG
3538 /*
3539 * If the process that created a MAP_PRIVATE mapping is about to
3540 * perform a COW due to a shared page count, attempt to satisfy
3541 * the allocation without using the existing reserves. The pagecache
3542 * page is used to determine if the reserve at this address was
3543 * consumed or not. If reserves were used, a partial faulted mapping
3544 * at the time of fork() could consume its reserves on COW instead
3545 * of the full address range.
3546 */
5944d011 3547 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
04f2cbe3
MG
3548 old_page != pagecache_page)
3549 outside_reserve = 1;
3550
09cbfeaf 3551 get_page(old_page);
b76c8cfb 3552
ad4404a2
DB
3553 /*
3554 * Drop page table lock as buddy allocator may be called. It will
3555 * be acquired again before returning to the caller, as expected.
3556 */
cb900f41 3557 spin_unlock(ptl);
04f2cbe3 3558 new_page = alloc_huge_page(vma, address, outside_reserve);
1e8f889b 3559
2fc39cec 3560 if (IS_ERR(new_page)) {
04f2cbe3
MG
3561 /*
3562 * If a process owning a MAP_PRIVATE mapping fails to COW,
3563 * it is due to references held by a child and an insufficient
3564 * huge page pool. To guarantee the original mappers
3565 * reliability, unmap the page from child processes. The child
3566 * may get SIGKILLed if it later faults.
3567 */
3568 if (outside_reserve) {
09cbfeaf 3569 put_page(old_page);
04f2cbe3 3570 BUG_ON(huge_pte_none(pte));
2f4612af
DB
3571 unmap_ref_private(mm, vma, old_page, address);
3572 BUG_ON(huge_pte_none(pte));
3573 spin_lock(ptl);
7868a208
PA
3574 ptep = huge_pte_offset(mm, address & huge_page_mask(h),
3575 huge_page_size(h));
2f4612af
DB
3576 if (likely(ptep &&
3577 pte_same(huge_ptep_get(ptep), pte)))
3578 goto retry_avoidcopy;
3579 /*
3580 * race occurs while re-acquiring page table
3581 * lock, and our job is done.
3582 */
3583 return 0;
04f2cbe3
MG
3584 }
3585
ad4404a2
DB
3586 ret = (PTR_ERR(new_page) == -ENOMEM) ?
3587 VM_FAULT_OOM : VM_FAULT_SIGBUS;
3588 goto out_release_old;
1e8f889b
DG
3589 }
3590
0fe6e20b
NH
3591 /*
3592 * When the original hugepage is shared one, it does not have
3593 * anon_vma prepared.
3594 */
44e2aa93 3595 if (unlikely(anon_vma_prepare(vma))) {
ad4404a2
DB
3596 ret = VM_FAULT_OOM;
3597 goto out_release_all;
44e2aa93 3598 }
0fe6e20b 3599
47ad8475
AA
3600 copy_user_huge_page(new_page, old_page, address, vma,
3601 pages_per_huge_page(h));
0ed361de 3602 __SetPageUptodate(new_page);
bcc54222 3603 set_page_huge_active(new_page);
1e8f889b 3604
2ec74c3e
SG
3605 mmun_start = address & huge_page_mask(h);
3606 mmun_end = mmun_start + huge_page_size(h);
3607 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
ad4404a2 3608
b76c8cfb 3609 /*
cb900f41 3610 * Retake the page table lock to check for racing updates
b76c8cfb
LW
3611 * before the page tables are altered
3612 */
cb900f41 3613 spin_lock(ptl);
7868a208
PA
3614 ptep = huge_pte_offset(mm, address & huge_page_mask(h),
3615 huge_page_size(h));
a9af0c5d 3616 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
07443a85
JK
3617 ClearPagePrivate(new_page);
3618
1e8f889b 3619 /* Break COW */
8fe627ec 3620 huge_ptep_clear_flush(vma, address, ptep);
34ee645e 3621 mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
1e8f889b
DG
3622 set_huge_pte_at(mm, address, ptep,
3623 make_huge_pte(vma, new_page, 1));
d281ee61 3624 page_remove_rmap(old_page, true);
cd67f0d2 3625 hugepage_add_new_anon_rmap(new_page, vma, address);
1e8f889b
DG
3626 /* Make the old page be freed below */
3627 new_page = old_page;
3628 }
cb900f41 3629 spin_unlock(ptl);
2ec74c3e 3630 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
ad4404a2 3631out_release_all:
96b96a96 3632 restore_reserve_on_error(h, vma, address, new_page);
09cbfeaf 3633 put_page(new_page);
ad4404a2 3634out_release_old:
09cbfeaf 3635 put_page(old_page);
8312034f 3636
ad4404a2
DB
3637 spin_lock(ptl); /* Caller expects lock to be held */
3638 return ret;
1e8f889b
DG
3639}
3640
04f2cbe3 3641/* Return the pagecache page at a given address within a VMA */
a5516438
AK
3642static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3643 struct vm_area_struct *vma, unsigned long address)
04f2cbe3
MG
3644{
3645 struct address_space *mapping;
e7c4b0bf 3646 pgoff_t idx;
04f2cbe3
MG
3647
3648 mapping = vma->vm_file->f_mapping;
a5516438 3649 idx = vma_hugecache_offset(h, vma, address);
04f2cbe3
MG
3650
3651 return find_lock_page(mapping, idx);
3652}
3653
3ae77f43
HD
3654/*
3655 * Return whether there is a pagecache page to back given address within VMA.
3656 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3657 */
3658static bool hugetlbfs_pagecache_present(struct hstate *h,
2a15efc9
HD
3659 struct vm_area_struct *vma, unsigned long address)
3660{
3661 struct address_space *mapping;
3662 pgoff_t idx;
3663 struct page *page;
3664
3665 mapping = vma->vm_file->f_mapping;
3666 idx = vma_hugecache_offset(h, vma, address);
3667
3668 page = find_get_page(mapping, idx);
3669 if (page)
3670 put_page(page);
3671 return page != NULL;
3672}
3673
ab76ad54
MK
3674int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
3675 pgoff_t idx)
3676{
3677 struct inode *inode = mapping->host;
3678 struct hstate *h = hstate_inode(inode);
3679 int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3680
3681 if (err)
3682 return err;
3683 ClearPagePrivate(page);
3684
3685 spin_lock(&inode->i_lock);
3686 inode->i_blocks += blocks_per_huge_page(h);
3687 spin_unlock(&inode->i_lock);
3688 return 0;
3689}
3690
a1ed3dda 3691static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
8382d914
DB
3692 struct address_space *mapping, pgoff_t idx,
3693 unsigned long address, pte_t *ptep, unsigned int flags)
ac9b9c66 3694{
a5516438 3695 struct hstate *h = hstate_vma(vma);
ac9b9c66 3696 int ret = VM_FAULT_SIGBUS;
409eb8c2 3697 int anon_rmap = 0;
4c887265 3698 unsigned long size;
4c887265 3699 struct page *page;
1e8f889b 3700 pte_t new_pte;
cb900f41 3701 spinlock_t *ptl;
4c887265 3702
04f2cbe3
MG
3703 /*
3704 * Currently, we are forced to kill the process in the event the
3705 * original mapper has unmapped pages from the child due to a failed
25985edc 3706 * COW. Warn that such a situation has occurred as it may not be obvious
04f2cbe3
MG
3707 */
3708 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
910154d5 3709 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
ffb22af5 3710 current->pid);
04f2cbe3
MG
3711 return ret;
3712 }
3713
4c887265
AL
3714 /*
3715 * Use page lock to guard against racing truncation
3716 * before we get page_table_lock.
3717 */
6bda666a
CL
3718retry:
3719 page = find_lock_page(mapping, idx);
3720 if (!page) {
a5516438 3721 size = i_size_read(mapping->host) >> huge_page_shift(h);
ebed4bfc
HD
3722 if (idx >= size)
3723 goto out;
1a1aad8a
MK
3724
3725 /*
3726 * Check for page in userfault range
3727 */
3728 if (userfaultfd_missing(vma)) {
3729 u32 hash;
3730 struct vm_fault vmf = {
3731 .vma = vma,
3732 .address = address,
3733 .flags = flags,
3734 /*
3735 * Hard to debug if it ends up being
3736 * used by a callee that assumes
3737 * something about the other
3738 * uninitialized fields... same as in
3739 * memory.c
3740 */
3741 };
3742
3743 /*
3744 * hugetlb_fault_mutex must be dropped before
3745 * handling userfault. Reacquire after handling
3746 * fault to make calling code simpler.
3747 */
3748 hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping,
3749 idx, address);
3750 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3751 ret = handle_userfault(&vmf, VM_UFFD_MISSING);
3752 mutex_lock(&hugetlb_fault_mutex_table[hash]);
3753 goto out;
3754 }
3755
04f2cbe3 3756 page = alloc_huge_page(vma, address, 0);
2fc39cec 3757 if (IS_ERR(page)) {
76dcee75
AK
3758 ret = PTR_ERR(page);
3759 if (ret == -ENOMEM)
3760 ret = VM_FAULT_OOM;
3761 else
3762 ret = VM_FAULT_SIGBUS;
6bda666a
CL
3763 goto out;
3764 }
47ad8475 3765 clear_huge_page(page, address, pages_per_huge_page(h));
0ed361de 3766 __SetPageUptodate(page);
bcc54222 3767 set_page_huge_active(page);
ac9b9c66 3768
f83a275d 3769 if (vma->vm_flags & VM_MAYSHARE) {
ab76ad54 3770 int err = huge_add_to_page_cache(page, mapping, idx);
6bda666a
CL
3771 if (err) {
3772 put_page(page);
6bda666a
CL
3773 if (err == -EEXIST)
3774 goto retry;
3775 goto out;
3776 }
23be7468 3777 } else {
6bda666a 3778 lock_page(page);
0fe6e20b
NH
3779 if (unlikely(anon_vma_prepare(vma))) {
3780 ret = VM_FAULT_OOM;
3781 goto backout_unlocked;
3782 }
409eb8c2 3783 anon_rmap = 1;
23be7468 3784 }
0fe6e20b 3785 } else {
998b4382
NH
3786 /*
3787 * If memory error occurs between mmap() and fault, some process
3788 * don't have hwpoisoned swap entry for errored virtual address.
3789 * So we need to block hugepage fault by PG_hwpoison bit check.
3790 */
3791 if (unlikely(PageHWPoison(page))) {
32f84528 3792 ret = VM_FAULT_HWPOISON |
972dc4de 3793 VM_FAULT_SET_HINDEX(hstate_index(h));
998b4382
NH
3794 goto backout_unlocked;
3795 }
6bda666a 3796 }
1e8f889b 3797
57303d80
AW
3798 /*
3799 * If we are going to COW a private mapping later, we examine the
3800 * pending reservations for this page now. This will ensure that
3801 * any allocations necessary to record that reservation occur outside
3802 * the spinlock.
3803 */
5e911373 3804 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2b26736c
AW
3805 if (vma_needs_reservation(h, vma, address) < 0) {
3806 ret = VM_FAULT_OOM;
3807 goto backout_unlocked;
3808 }
5e911373 3809 /* Just decrements count, does not deallocate */
feba16e2 3810 vma_end_reservation(h, vma, address);
5e911373 3811 }
57303d80 3812
8bea8052 3813 ptl = huge_pte_lock(h, mm, ptep);
a5516438 3814 size = i_size_read(mapping->host) >> huge_page_shift(h);
4c887265
AL
3815 if (idx >= size)
3816 goto backout;
3817
83c54070 3818 ret = 0;
7f2e9525 3819 if (!huge_pte_none(huge_ptep_get(ptep)))
4c887265
AL
3820 goto backout;
3821
07443a85
JK
3822 if (anon_rmap) {
3823 ClearPagePrivate(page);
409eb8c2 3824 hugepage_add_new_anon_rmap(page, vma, address);
ac714904 3825 } else
53f9263b 3826 page_dup_rmap(page, true);
1e8f889b
DG
3827 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3828 && (vma->vm_flags & VM_SHARED)));
3829 set_huge_pte_at(mm, address, ptep, new_pte);
3830
5d317b2b 3831 hugetlb_count_add(pages_per_huge_page(h), mm);
788c7df4 3832 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
1e8f889b 3833 /* Optimization, do the COW without a second fault */
3999f52e 3834 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
1e8f889b
DG
3835 }
3836
cb900f41 3837 spin_unlock(ptl);
4c887265
AL
3838 unlock_page(page);
3839out:
ac9b9c66 3840 return ret;
4c887265
AL
3841
3842backout:
cb900f41 3843 spin_unlock(ptl);
2b26736c 3844backout_unlocked:
4c887265 3845 unlock_page(page);
96b96a96 3846 restore_reserve_on_error(h, vma, address, page);
4c887265
AL
3847 put_page(page);
3848 goto out;
ac9b9c66
HD
3849}
3850
8382d914 3851#ifdef CONFIG_SMP
c672c7f2 3852u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
8382d914
DB
3853 struct vm_area_struct *vma,
3854 struct address_space *mapping,
3855 pgoff_t idx, unsigned long address)
3856{
3857 unsigned long key[2];
3858 u32 hash;
3859
3860 if (vma->vm_flags & VM_SHARED) {
3861 key[0] = (unsigned long) mapping;
3862 key[1] = idx;
3863 } else {
3864 key[0] = (unsigned long) mm;
3865 key[1] = address >> huge_page_shift(h);
3866 }
3867
3868 hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
3869
3870 return hash & (num_fault_mutexes - 1);
3871}
3872#else
3873/*
3874 * For uniprocesor systems we always use a single mutex, so just
3875 * return 0 and avoid the hashing overhead.
3876 */
c672c7f2 3877u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
8382d914
DB
3878 struct vm_area_struct *vma,
3879 struct address_space *mapping,
3880 pgoff_t idx, unsigned long address)
3881{
3882 return 0;
3883}
3884#endif
3885
86e5216f 3886int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
788c7df4 3887 unsigned long address, unsigned int flags)
86e5216f 3888{
8382d914 3889 pte_t *ptep, entry;
cb900f41 3890 spinlock_t *ptl;
1e8f889b 3891 int ret;
8382d914
DB
3892 u32 hash;
3893 pgoff_t idx;
0fe6e20b 3894 struct page *page = NULL;
57303d80 3895 struct page *pagecache_page = NULL;
a5516438 3896 struct hstate *h = hstate_vma(vma);
8382d914 3897 struct address_space *mapping;
0f792cf9 3898 int need_wait_lock = 0;
86e5216f 3899
1e16a539
KH
3900 address &= huge_page_mask(h);
3901
7868a208 3902 ptep = huge_pte_offset(mm, address, huge_page_size(h));
fd6a03ed
NH
3903 if (ptep) {
3904 entry = huge_ptep_get(ptep);
290408d4 3905 if (unlikely(is_hugetlb_entry_migration(entry))) {
cb900f41 3906 migration_entry_wait_huge(vma, mm, ptep);
290408d4
NH
3907 return 0;
3908 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
32f84528 3909 return VM_FAULT_HWPOISON_LARGE |
972dc4de 3910 VM_FAULT_SET_HINDEX(hstate_index(h));
0d777df5
NH
3911 } else {
3912 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
3913 if (!ptep)
3914 return VM_FAULT_OOM;
fd6a03ed
NH
3915 }
3916
8382d914
DB
3917 mapping = vma->vm_file->f_mapping;
3918 idx = vma_hugecache_offset(h, vma, address);
3919
3935baa9
DG
3920 /*
3921 * Serialize hugepage allocation and instantiation, so that we don't
3922 * get spurious allocation failures if two CPUs race to instantiate
3923 * the same page in the page cache.
3924 */
c672c7f2
MK
3925 hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, idx, address);
3926 mutex_lock(&hugetlb_fault_mutex_table[hash]);
8382d914 3927
7f2e9525
GS
3928 entry = huge_ptep_get(ptep);
3929 if (huge_pte_none(entry)) {
8382d914 3930 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
b4d1d99f 3931 goto out_mutex;
3935baa9 3932 }
86e5216f 3933
83c54070 3934 ret = 0;
1e8f889b 3935
0f792cf9
NH
3936 /*
3937 * entry could be a migration/hwpoison entry at this point, so this
3938 * check prevents the kernel from going below assuming that we have
3939 * a active hugepage in pagecache. This goto expects the 2nd page fault,
3940 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
3941 * handle it.
3942 */
3943 if (!pte_present(entry))
3944 goto out_mutex;
3945
57303d80
AW
3946 /*
3947 * If we are going to COW the mapping later, we examine the pending
3948 * reservations for this page now. This will ensure that any
3949 * allocations necessary to record that reservation occur outside the
3950 * spinlock. For private mappings, we also lookup the pagecache
3951 * page now as it is used to determine if a reservation has been
3952 * consumed.
3953 */
106c992a 3954 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
2b26736c
AW
3955 if (vma_needs_reservation(h, vma, address) < 0) {
3956 ret = VM_FAULT_OOM;
b4d1d99f 3957 goto out_mutex;
2b26736c 3958 }
5e911373 3959 /* Just decrements count, does not deallocate */
feba16e2 3960 vma_end_reservation(h, vma, address);
57303d80 3961
f83a275d 3962 if (!(vma->vm_flags & VM_MAYSHARE))
57303d80
AW
3963 pagecache_page = hugetlbfs_pagecache_page(h,
3964 vma, address);
3965 }
3966
0f792cf9
NH
3967 ptl = huge_pte_lock(h, mm, ptep);
3968
3969 /* Check for a racing update before calling hugetlb_cow */
3970 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
3971 goto out_ptl;
3972
56c9cfb1
NH
3973 /*
3974 * hugetlb_cow() requires page locks of pte_page(entry) and
3975 * pagecache_page, so here we need take the former one
3976 * when page != pagecache_page or !pagecache_page.
56c9cfb1
NH
3977 */
3978 page = pte_page(entry);
3979 if (page != pagecache_page)
0f792cf9
NH
3980 if (!trylock_page(page)) {
3981 need_wait_lock = 1;
3982 goto out_ptl;
3983 }
b4d1d99f 3984
0f792cf9 3985 get_page(page);
b4d1d99f 3986
788c7df4 3987 if (flags & FAULT_FLAG_WRITE) {
106c992a 3988 if (!huge_pte_write(entry)) {
3999f52e
AK
3989 ret = hugetlb_cow(mm, vma, address, ptep,
3990 pagecache_page, ptl);
0f792cf9 3991 goto out_put_page;
b4d1d99f 3992 }
106c992a 3993 entry = huge_pte_mkdirty(entry);
b4d1d99f
DG
3994 }
3995 entry = pte_mkyoung(entry);
788c7df4
HD
3996 if (huge_ptep_set_access_flags(vma, address, ptep, entry,
3997 flags & FAULT_FLAG_WRITE))
4b3073e1 3998 update_mmu_cache(vma, address, ptep);
0f792cf9
NH
3999out_put_page:
4000 if (page != pagecache_page)
4001 unlock_page(page);
4002 put_page(page);
cb900f41
KS
4003out_ptl:
4004 spin_unlock(ptl);
57303d80
AW
4005
4006 if (pagecache_page) {
4007 unlock_page(pagecache_page);
4008 put_page(pagecache_page);
4009 }
b4d1d99f 4010out_mutex:
c672c7f2 4011 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
0f792cf9
NH
4012 /*
4013 * Generally it's safe to hold refcount during waiting page lock. But
4014 * here we just wait to defer the next page fault to avoid busy loop and
4015 * the page is not used after unlocked before returning from the current
4016 * page fault. So we are safe from accessing freed page, even if we wait
4017 * here without taking refcount.
4018 */
4019 if (need_wait_lock)
4020 wait_on_page_locked(page);
1e8f889b 4021 return ret;
86e5216f
AL
4022}
4023
8fb5debc
MK
4024/*
4025 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with
4026 * modifications for huge pages.
4027 */
4028int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
4029 pte_t *dst_pte,
4030 struct vm_area_struct *dst_vma,
4031 unsigned long dst_addr,
4032 unsigned long src_addr,
4033 struct page **pagep)
4034{
1c9e8def 4035 int vm_shared = dst_vma->vm_flags & VM_SHARED;
8fb5debc
MK
4036 struct hstate *h = hstate_vma(dst_vma);
4037 pte_t _dst_pte;
4038 spinlock_t *ptl;
4039 int ret;
4040 struct page *page;
4041
4042 if (!*pagep) {
4043 ret = -ENOMEM;
4044 page = alloc_huge_page(dst_vma, dst_addr, 0);
4045 if (IS_ERR(page))
4046 goto out;
4047
4048 ret = copy_huge_page_from_user(page,
4049 (const void __user *) src_addr,
810a56b9 4050 pages_per_huge_page(h), false);
8fb5debc
MK
4051
4052 /* fallback to copy_from_user outside mmap_sem */
4053 if (unlikely(ret)) {
4054 ret = -EFAULT;
4055 *pagep = page;
4056 /* don't free the page */
4057 goto out;
4058 }
4059 } else {
4060 page = *pagep;
4061 *pagep = NULL;
4062 }
4063
4064 /*
4065 * The memory barrier inside __SetPageUptodate makes sure that
4066 * preceding stores to the page contents become visible before
4067 * the set_pte_at() write.
4068 */
4069 __SetPageUptodate(page);
4070 set_page_huge_active(page);
4071
1c9e8def
MK
4072 /*
4073 * If shared, add to page cache
4074 */
4075 if (vm_shared) {
4076 struct address_space *mapping = dst_vma->vm_file->f_mapping;
4077 pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4078
4079 ret = huge_add_to_page_cache(page, mapping, idx);
4080 if (ret)
4081 goto out_release_nounlock;
4082 }
4083
8fb5debc
MK
4084 ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4085 spin_lock(ptl);
4086
4087 ret = -EEXIST;
4088 if (!huge_pte_none(huge_ptep_get(dst_pte)))
4089 goto out_release_unlock;
4090
1c9e8def
MK
4091 if (vm_shared) {
4092 page_dup_rmap(page, true);
4093 } else {
4094 ClearPagePrivate(page);
4095 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4096 }
8fb5debc
MK
4097
4098 _dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4099 if (dst_vma->vm_flags & VM_WRITE)
4100 _dst_pte = huge_pte_mkdirty(_dst_pte);
4101 _dst_pte = pte_mkyoung(_dst_pte);
4102
4103 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4104
4105 (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4106 dst_vma->vm_flags & VM_WRITE);
4107 hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4108
4109 /* No need to invalidate - it was non-present before */
4110 update_mmu_cache(dst_vma, dst_addr, dst_pte);
4111
4112 spin_unlock(ptl);
1c9e8def
MK
4113 if (vm_shared)
4114 unlock_page(page);
8fb5debc
MK
4115 ret = 0;
4116out:
4117 return ret;
4118out_release_unlock:
4119 spin_unlock(ptl);
1c9e8def
MK
4120out_release_nounlock:
4121 if (vm_shared)
4122 unlock_page(page);
8fb5debc
MK
4123 put_page(page);
4124 goto out;
4125}
4126
28a35716
ML
4127long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4128 struct page **pages, struct vm_area_struct **vmas,
4129 unsigned long *position, unsigned long *nr_pages,
87ffc118 4130 long i, unsigned int flags, int *nonblocking)
63551ae0 4131{
d5d4b0aa
CK
4132 unsigned long pfn_offset;
4133 unsigned long vaddr = *position;
28a35716 4134 unsigned long remainder = *nr_pages;
a5516438 4135 struct hstate *h = hstate_vma(vma);
63551ae0 4136
63551ae0 4137 while (vaddr < vma->vm_end && remainder) {
4c887265 4138 pte_t *pte;
cb900f41 4139 spinlock_t *ptl = NULL;
2a15efc9 4140 int absent;
4c887265 4141 struct page *page;
63551ae0 4142
02057967
DR
4143 /*
4144 * If we have a pending SIGKILL, don't keep faulting pages and
4145 * potentially allocating memory.
4146 */
4147 if (unlikely(fatal_signal_pending(current))) {
4148 remainder = 0;
4149 break;
4150 }
4151
4c887265
AL
4152 /*
4153 * Some archs (sparc64, sh*) have multiple pte_ts to
2a15efc9 4154 * each hugepage. We have to make sure we get the
4c887265 4155 * first, for the page indexing below to work.
cb900f41
KS
4156 *
4157 * Note that page table lock is not held when pte is null.
4c887265 4158 */
7868a208
PA
4159 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
4160 huge_page_size(h));
cb900f41
KS
4161 if (pte)
4162 ptl = huge_pte_lock(h, mm, pte);
2a15efc9
HD
4163 absent = !pte || huge_pte_none(huge_ptep_get(pte));
4164
4165 /*
4166 * When coredumping, it suits get_dump_page if we just return
3ae77f43
HD
4167 * an error where there's an empty slot with no huge pagecache
4168 * to back it. This way, we avoid allocating a hugepage, and
4169 * the sparse dumpfile avoids allocating disk blocks, but its
4170 * huge holes still show up with zeroes where they need to be.
2a15efc9 4171 */
3ae77f43
HD
4172 if (absent && (flags & FOLL_DUMP) &&
4173 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
cb900f41
KS
4174 if (pte)
4175 spin_unlock(ptl);
2a15efc9
HD
4176 remainder = 0;
4177 break;
4178 }
63551ae0 4179
9cc3a5bd
NH
4180 /*
4181 * We need call hugetlb_fault for both hugepages under migration
4182 * (in which case hugetlb_fault waits for the migration,) and
4183 * hwpoisoned hugepages (in which case we need to prevent the
4184 * caller from accessing to them.) In order to do this, we use
4185 * here is_swap_pte instead of is_hugetlb_entry_migration and
4186 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4187 * both cases, and because we can't follow correct pages
4188 * directly from any kind of swap entries.
4189 */
4190 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
106c992a
GS
4191 ((flags & FOLL_WRITE) &&
4192 !huge_pte_write(huge_ptep_get(pte)))) {
4c887265 4193 int ret;
87ffc118 4194 unsigned int fault_flags = 0;
63551ae0 4195
cb900f41
KS
4196 if (pte)
4197 spin_unlock(ptl);
87ffc118
AA
4198 if (flags & FOLL_WRITE)
4199 fault_flags |= FAULT_FLAG_WRITE;
4200 if (nonblocking)
4201 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
4202 if (flags & FOLL_NOWAIT)
4203 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4204 FAULT_FLAG_RETRY_NOWAIT;
4205 if (flags & FOLL_TRIED) {
4206 VM_WARN_ON_ONCE(fault_flags &
4207 FAULT_FLAG_ALLOW_RETRY);
4208 fault_flags |= FAULT_FLAG_TRIED;
4209 }
4210 ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4211 if (ret & VM_FAULT_ERROR) {
9a291a7c
JM
4212 int err = vm_fault_to_errno(ret, flags);
4213
4214 if (err)
4215 return err;
4216
87ffc118
AA
4217 remainder = 0;
4218 break;
4219 }
4220 if (ret & VM_FAULT_RETRY) {
4221 if (nonblocking)
4222 *nonblocking = 0;
4223 *nr_pages = 0;
4224 /*
4225 * VM_FAULT_RETRY must not return an
4226 * error, it will return zero
4227 * instead.
4228 *
4229 * No need to update "position" as the
4230 * caller will not check it after
4231 * *nr_pages is set to 0.
4232 */
4233 return i;
4234 }
4235 continue;
4c887265
AL
4236 }
4237
a5516438 4238 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
7f2e9525 4239 page = pte_page(huge_ptep_get(pte));
d5d4b0aa 4240same_page:
d6692183 4241 if (pages) {
2a15efc9 4242 pages[i] = mem_map_offset(page, pfn_offset);
ddc58f27 4243 get_page(pages[i]);
d6692183 4244 }
63551ae0
DG
4245
4246 if (vmas)
4247 vmas[i] = vma;
4248
4249 vaddr += PAGE_SIZE;
d5d4b0aa 4250 ++pfn_offset;
63551ae0
DG
4251 --remainder;
4252 ++i;
d5d4b0aa 4253 if (vaddr < vma->vm_end && remainder &&
a5516438 4254 pfn_offset < pages_per_huge_page(h)) {
d5d4b0aa
CK
4255 /*
4256 * We use pfn_offset to avoid touching the pageframes
4257 * of this compound page.
4258 */
4259 goto same_page;
4260 }
cb900f41 4261 spin_unlock(ptl);
63551ae0 4262 }
28a35716 4263 *nr_pages = remainder;
87ffc118
AA
4264 /*
4265 * setting position is actually required only if remainder is
4266 * not zero but it's faster not to add a "if (remainder)"
4267 * branch.
4268 */
63551ae0
DG
4269 *position = vaddr;
4270
2a15efc9 4271 return i ? i : -EFAULT;
63551ae0 4272}
8f860591 4273
5491ae7b
AK
4274#ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4275/*
4276 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4277 * implement this.
4278 */
4279#define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
4280#endif
4281
7da4d641 4282unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
8f860591
ZY
4283 unsigned long address, unsigned long end, pgprot_t newprot)
4284{
4285 struct mm_struct *mm = vma->vm_mm;
4286 unsigned long start = address;
4287 pte_t *ptep;
4288 pte_t pte;
a5516438 4289 struct hstate *h = hstate_vma(vma);
7da4d641 4290 unsigned long pages = 0;
8f860591
ZY
4291
4292 BUG_ON(address >= end);
4293 flush_cache_range(vma, address, end);
4294
a5338093 4295 mmu_notifier_invalidate_range_start(mm, start, end);
83cde9e8 4296 i_mmap_lock_write(vma->vm_file->f_mapping);
a5516438 4297 for (; address < end; address += huge_page_size(h)) {
cb900f41 4298 spinlock_t *ptl;
7868a208 4299 ptep = huge_pte_offset(mm, address, huge_page_size(h));
8f860591
ZY
4300 if (!ptep)
4301 continue;
cb900f41 4302 ptl = huge_pte_lock(h, mm, ptep);
7da4d641
PZ
4303 if (huge_pmd_unshare(mm, &address, ptep)) {
4304 pages++;
cb900f41 4305 spin_unlock(ptl);
39dde65c 4306 continue;
7da4d641 4307 }
a8bda28d
NH
4308 pte = huge_ptep_get(ptep);
4309 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
4310 spin_unlock(ptl);
4311 continue;
4312 }
4313 if (unlikely(is_hugetlb_entry_migration(pte))) {
4314 swp_entry_t entry = pte_to_swp_entry(pte);
4315
4316 if (is_write_migration_entry(entry)) {
4317 pte_t newpte;
4318
4319 make_migration_entry_read(&entry);
4320 newpte = swp_entry_to_pte(entry);
e5251fd4
PA
4321 set_huge_swap_pte_at(mm, address, ptep,
4322 newpte, huge_page_size(h));
a8bda28d
NH
4323 pages++;
4324 }
4325 spin_unlock(ptl);
4326 continue;
4327 }
4328 if (!huge_pte_none(pte)) {
8f860591 4329 pte = huge_ptep_get_and_clear(mm, address, ptep);
106c992a 4330 pte = pte_mkhuge(huge_pte_modify(pte, newprot));
be7517d6 4331 pte = arch_make_huge_pte(pte, vma, NULL, 0);
8f860591 4332 set_huge_pte_at(mm, address, ptep, pte);
7da4d641 4333 pages++;
8f860591 4334 }
cb900f41 4335 spin_unlock(ptl);
8f860591 4336 }
d833352a 4337 /*
c8c06efa 4338 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
d833352a 4339 * may have cleared our pud entry and done put_page on the page table:
c8c06efa 4340 * once we release i_mmap_rwsem, another task can do the final put_page
d833352a
MG
4341 * and that page table be reused and filled with junk.
4342 */
5491ae7b 4343 flush_hugetlb_tlb_range(vma, start, end);
34ee645e 4344 mmu_notifier_invalidate_range(mm, start, end);
83cde9e8 4345 i_mmap_unlock_write(vma->vm_file->f_mapping);
a5338093 4346 mmu_notifier_invalidate_range_end(mm, start, end);
7da4d641
PZ
4347
4348 return pages << h->order;
8f860591
ZY
4349}
4350
a1e78772
MG
4351int hugetlb_reserve_pages(struct inode *inode,
4352 long from, long to,
5a6fe125 4353 struct vm_area_struct *vma,
ca16d140 4354 vm_flags_t vm_flags)
e4e574b7 4355{
17c9d12e 4356 long ret, chg;
a5516438 4357 struct hstate *h = hstate_inode(inode);
90481622 4358 struct hugepage_subpool *spool = subpool_inode(inode);
9119a41e 4359 struct resv_map *resv_map;
1c5ecae3 4360 long gbl_reserve;
e4e574b7 4361
17c9d12e
MG
4362 /*
4363 * Only apply hugepage reservation if asked. At fault time, an
4364 * attempt will be made for VM_NORESERVE to allocate a page
90481622 4365 * without using reserves
17c9d12e 4366 */
ca16d140 4367 if (vm_flags & VM_NORESERVE)
17c9d12e
MG
4368 return 0;
4369
a1e78772
MG
4370 /*
4371 * Shared mappings base their reservation on the number of pages that
4372 * are already allocated on behalf of the file. Private mappings need
4373 * to reserve the full area even if read-only as mprotect() may be
4374 * called to make the mapping read-write. Assume !vma is a shm mapping
4375 */
9119a41e 4376 if (!vma || vma->vm_flags & VM_MAYSHARE) {
4e35f483 4377 resv_map = inode_resv_map(inode);
9119a41e 4378
1406ec9b 4379 chg = region_chg(resv_map, from, to);
9119a41e
JK
4380
4381 } else {
4382 resv_map = resv_map_alloc();
17c9d12e
MG
4383 if (!resv_map)
4384 return -ENOMEM;
4385
a1e78772 4386 chg = to - from;
84afd99b 4387
17c9d12e
MG
4388 set_vma_resv_map(vma, resv_map);
4389 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
4390 }
4391
c50ac050
DH
4392 if (chg < 0) {
4393 ret = chg;
4394 goto out_err;
4395 }
8a630112 4396
1c5ecae3
MK
4397 /*
4398 * There must be enough pages in the subpool for the mapping. If
4399 * the subpool has a minimum size, there may be some global
4400 * reservations already in place (gbl_reserve).
4401 */
4402 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
4403 if (gbl_reserve < 0) {
c50ac050
DH
4404 ret = -ENOSPC;
4405 goto out_err;
4406 }
5a6fe125
MG
4407
4408 /*
17c9d12e 4409 * Check enough hugepages are available for the reservation.
90481622 4410 * Hand the pages back to the subpool if there are not
5a6fe125 4411 */
1c5ecae3 4412 ret = hugetlb_acct_memory(h, gbl_reserve);
68842c9b 4413 if (ret < 0) {
1c5ecae3
MK
4414 /* put back original number of pages, chg */
4415 (void)hugepage_subpool_put_pages(spool, chg);
c50ac050 4416 goto out_err;
68842c9b 4417 }
17c9d12e
MG
4418
4419 /*
4420 * Account for the reservations made. Shared mappings record regions
4421 * that have reservations as they are shared by multiple VMAs.
4422 * When the last VMA disappears, the region map says how much
4423 * the reservation was and the page cache tells how much of
4424 * the reservation was consumed. Private mappings are per-VMA and
4425 * only the consumed reservations are tracked. When the VMA
4426 * disappears, the original reservation is the VMA size and the
4427 * consumed reservations are stored in the map. Hence, nothing
4428 * else has to be done for private mappings here
4429 */
33039678
MK
4430 if (!vma || vma->vm_flags & VM_MAYSHARE) {
4431 long add = region_add(resv_map, from, to);
4432
4433 if (unlikely(chg > add)) {
4434 /*
4435 * pages in this range were added to the reserve
4436 * map between region_chg and region_add. This
4437 * indicates a race with alloc_huge_page. Adjust
4438 * the subpool and reserve counts modified above
4439 * based on the difference.
4440 */
4441 long rsv_adjust;
4442
4443 rsv_adjust = hugepage_subpool_put_pages(spool,
4444 chg - add);
4445 hugetlb_acct_memory(h, -rsv_adjust);
4446 }
4447 }
a43a8c39 4448 return 0;
c50ac050 4449out_err:
5e911373 4450 if (!vma || vma->vm_flags & VM_MAYSHARE)
ff8c0c53
MK
4451 /* Don't call region_abort if region_chg failed */
4452 if (chg >= 0)
4453 region_abort(resv_map, from, to);
f031dd27
JK
4454 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4455 kref_put(&resv_map->refs, resv_map_release);
c50ac050 4456 return ret;
a43a8c39
CK
4457}
4458
b5cec28d
MK
4459long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
4460 long freed)
a43a8c39 4461{
a5516438 4462 struct hstate *h = hstate_inode(inode);
4e35f483 4463 struct resv_map *resv_map = inode_resv_map(inode);
9119a41e 4464 long chg = 0;
90481622 4465 struct hugepage_subpool *spool = subpool_inode(inode);
1c5ecae3 4466 long gbl_reserve;
45c682a6 4467
b5cec28d
MK
4468 if (resv_map) {
4469 chg = region_del(resv_map, start, end);
4470 /*
4471 * region_del() can fail in the rare case where a region
4472 * must be split and another region descriptor can not be
4473 * allocated. If end == LONG_MAX, it will not fail.
4474 */
4475 if (chg < 0)
4476 return chg;
4477 }
4478
45c682a6 4479 spin_lock(&inode->i_lock);
e4c6f8be 4480 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
45c682a6
KC
4481 spin_unlock(&inode->i_lock);
4482
1c5ecae3
MK
4483 /*
4484 * If the subpool has a minimum size, the number of global
4485 * reservations to be released may be adjusted.
4486 */
4487 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
4488 hugetlb_acct_memory(h, -gbl_reserve);
b5cec28d
MK
4489
4490 return 0;
a43a8c39 4491}
93f70f90 4492
3212b535
SC
4493#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
4494static unsigned long page_table_shareable(struct vm_area_struct *svma,
4495 struct vm_area_struct *vma,
4496 unsigned long addr, pgoff_t idx)
4497{
4498 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
4499 svma->vm_start;
4500 unsigned long sbase = saddr & PUD_MASK;
4501 unsigned long s_end = sbase + PUD_SIZE;
4502
4503 /* Allow segments to share if only one is marked locked */
de60f5f1
EM
4504 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
4505 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
3212b535
SC
4506
4507 /*
4508 * match the virtual addresses, permission and the alignment of the
4509 * page table page.
4510 */
4511 if (pmd_index(addr) != pmd_index(saddr) ||
4512 vm_flags != svm_flags ||
4513 sbase < svma->vm_start || svma->vm_end < s_end)
4514 return 0;
4515
4516 return saddr;
4517}
4518
31aafb45 4519static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
3212b535
SC
4520{
4521 unsigned long base = addr & PUD_MASK;
4522 unsigned long end = base + PUD_SIZE;
4523
4524 /*
4525 * check on proper vm_flags and page table alignment
4526 */
4527 if (vma->vm_flags & VM_MAYSHARE &&
4528 vma->vm_start <= base && end <= vma->vm_end)
31aafb45
NK
4529 return true;
4530 return false;
3212b535
SC
4531}
4532
4533/*
4534 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4535 * and returns the corresponding pte. While this is not necessary for the
4536 * !shared pmd case because we can allocate the pmd later as well, it makes the
4537 * code much cleaner. pmd allocation is essential for the shared case because
c8c06efa 4538 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
3212b535
SC
4539 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4540 * bad pmd for sharing.
4541 */
4542pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4543{
4544 struct vm_area_struct *vma = find_vma(mm, addr);
4545 struct address_space *mapping = vma->vm_file->f_mapping;
4546 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
4547 vma->vm_pgoff;
4548 struct vm_area_struct *svma;
4549 unsigned long saddr;
4550 pte_t *spte = NULL;
4551 pte_t *pte;
cb900f41 4552 spinlock_t *ptl;
3212b535
SC
4553
4554 if (!vma_shareable(vma, addr))
4555 return (pte_t *)pmd_alloc(mm, pud, addr);
4556
83cde9e8 4557 i_mmap_lock_write(mapping);
3212b535
SC
4558 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
4559 if (svma == vma)
4560 continue;
4561
4562 saddr = page_table_shareable(svma, vma, addr, idx);
4563 if (saddr) {
7868a208
PA
4564 spte = huge_pte_offset(svma->vm_mm, saddr,
4565 vma_mmu_pagesize(svma));
3212b535
SC
4566 if (spte) {
4567 get_page(virt_to_page(spte));
4568 break;
4569 }
4570 }
4571 }
4572
4573 if (!spte)
4574 goto out;
4575
8bea8052 4576 ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
dc6c9a35 4577 if (pud_none(*pud)) {
3212b535
SC
4578 pud_populate(mm, pud,
4579 (pmd_t *)((unsigned long)spte & PAGE_MASK));
c17b1f42 4580 mm_inc_nr_pmds(mm);
dc6c9a35 4581 } else {
3212b535 4582 put_page(virt_to_page(spte));
dc6c9a35 4583 }
cb900f41 4584 spin_unlock(ptl);
3212b535
SC
4585out:
4586 pte = (pte_t *)pmd_alloc(mm, pud, addr);
83cde9e8 4587 i_mmap_unlock_write(mapping);
3212b535
SC
4588 return pte;
4589}
4590
4591/*
4592 * unmap huge page backed by shared pte.
4593 *
4594 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
4595 * indicated by page_count > 1, unmap is achieved by clearing pud and
4596 * decrementing the ref count. If count == 1, the pte page is not shared.
4597 *
cb900f41 4598 * called with page table lock held.
3212b535
SC
4599 *
4600 * returns: 1 successfully unmapped a shared pte page
4601 * 0 the underlying pte page is not shared, or it is the last user
4602 */
4603int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4604{
4605 pgd_t *pgd = pgd_offset(mm, *addr);
c2febafc
KS
4606 p4d_t *p4d = p4d_offset(pgd, *addr);
4607 pud_t *pud = pud_offset(p4d, *addr);
3212b535
SC
4608
4609 BUG_ON(page_count(virt_to_page(ptep)) == 0);
4610 if (page_count(virt_to_page(ptep)) == 1)
4611 return 0;
4612
4613 pud_clear(pud);
4614 put_page(virt_to_page(ptep));
dc6c9a35 4615 mm_dec_nr_pmds(mm);
3212b535
SC
4616 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
4617 return 1;
4618}
9e5fc74c
SC
4619#define want_pmd_share() (1)
4620#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4621pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4622{
4623 return NULL;
4624}
e81f2d22
ZZ
4625
4626int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4627{
4628 return 0;
4629}
9e5fc74c 4630#define want_pmd_share() (0)
3212b535
SC
4631#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4632
9e5fc74c
SC
4633#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
4634pte_t *huge_pte_alloc(struct mm_struct *mm,
4635 unsigned long addr, unsigned long sz)
4636{
4637 pgd_t *pgd;
c2febafc 4638 p4d_t *p4d;
9e5fc74c
SC
4639 pud_t *pud;
4640 pte_t *pte = NULL;
4641
4642 pgd = pgd_offset(mm, addr);
c2febafc
KS
4643 p4d = p4d_offset(pgd, addr);
4644 pud = pud_alloc(mm, p4d, addr);
9e5fc74c
SC
4645 if (pud) {
4646 if (sz == PUD_SIZE) {
4647 pte = (pte_t *)pud;
4648 } else {
4649 BUG_ON(sz != PMD_SIZE);
4650 if (want_pmd_share() && pud_none(*pud))
4651 pte = huge_pmd_share(mm, addr, pud);
4652 else
4653 pte = (pte_t *)pmd_alloc(mm, pud, addr);
4654 }
4655 }
4e666314 4656 BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
9e5fc74c
SC
4657
4658 return pte;
4659}
4660
7868a208
PA
4661pte_t *huge_pte_offset(struct mm_struct *mm,
4662 unsigned long addr, unsigned long sz)
9e5fc74c
SC
4663{
4664 pgd_t *pgd;
c2febafc 4665 p4d_t *p4d;
9e5fc74c 4666 pud_t *pud;
c2febafc 4667 pmd_t *pmd;
9e5fc74c
SC
4668
4669 pgd = pgd_offset(mm, addr);
c2febafc
KS
4670 if (!pgd_present(*pgd))
4671 return NULL;
4672 p4d = p4d_offset(pgd, addr);
4673 if (!p4d_present(*p4d))
4674 return NULL;
4675 pud = pud_offset(p4d, addr);
4676 if (!pud_present(*pud))
4677 return NULL;
4678 if (pud_huge(*pud))
4679 return (pte_t *)pud;
4680 pmd = pmd_offset(pud, addr);
9e5fc74c
SC
4681 return (pte_t *) pmd;
4682}
4683
61f77eda
NH
4684#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4685
4686/*
4687 * These functions are overwritable if your architecture needs its own
4688 * behavior.
4689 */
4690struct page * __weak
4691follow_huge_addr(struct mm_struct *mm, unsigned long address,
4692 int write)
4693{
4694 return ERR_PTR(-EINVAL);
4695}
4696
4dc71451
AK
4697struct page * __weak
4698follow_huge_pd(struct vm_area_struct *vma,
4699 unsigned long address, hugepd_t hpd, int flags, int pdshift)
4700{
4701 WARN(1, "hugepd follow called with no support for hugepage directory format\n");
4702 return NULL;
4703}
4704
61f77eda 4705struct page * __weak
9e5fc74c 4706follow_huge_pmd(struct mm_struct *mm, unsigned long address,
e66f17ff 4707 pmd_t *pmd, int flags)
9e5fc74c 4708{
e66f17ff
NH
4709 struct page *page = NULL;
4710 spinlock_t *ptl;
c9d398fa 4711 pte_t pte;
e66f17ff
NH
4712retry:
4713 ptl = pmd_lockptr(mm, pmd);
4714 spin_lock(ptl);
4715 /*
4716 * make sure that the address range covered by this pmd is not
4717 * unmapped from other threads.
4718 */
4719 if (!pmd_huge(*pmd))
4720 goto out;
c9d398fa
NH
4721 pte = huge_ptep_get((pte_t *)pmd);
4722 if (pte_present(pte)) {
97534127 4723 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
e66f17ff
NH
4724 if (flags & FOLL_GET)
4725 get_page(page);
4726 } else {
c9d398fa 4727 if (is_hugetlb_entry_migration(pte)) {
e66f17ff
NH
4728 spin_unlock(ptl);
4729 __migration_entry_wait(mm, (pte_t *)pmd, ptl);
4730 goto retry;
4731 }
4732 /*
4733 * hwpoisoned entry is treated as no_page_table in
4734 * follow_page_mask().
4735 */
4736 }
4737out:
4738 spin_unlock(ptl);
9e5fc74c
SC
4739 return page;
4740}
4741
61f77eda 4742struct page * __weak
9e5fc74c 4743follow_huge_pud(struct mm_struct *mm, unsigned long address,
e66f17ff 4744 pud_t *pud, int flags)
9e5fc74c 4745{
e66f17ff
NH
4746 if (flags & FOLL_GET)
4747 return NULL;
9e5fc74c 4748
e66f17ff 4749 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
9e5fc74c
SC
4750}
4751
faaa5b62
AK
4752struct page * __weak
4753follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
4754{
4755 if (flags & FOLL_GET)
4756 return NULL;
4757
4758 return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
4759}
4760
31caf665
NH
4761bool isolate_huge_page(struct page *page, struct list_head *list)
4762{
bcc54222
NH
4763 bool ret = true;
4764
309381fe 4765 VM_BUG_ON_PAGE(!PageHead(page), page);
31caf665 4766 spin_lock(&hugetlb_lock);
bcc54222
NH
4767 if (!page_huge_active(page) || !get_page_unless_zero(page)) {
4768 ret = false;
4769 goto unlock;
4770 }
4771 clear_page_huge_active(page);
31caf665 4772 list_move_tail(&page->lru, list);
bcc54222 4773unlock:
31caf665 4774 spin_unlock(&hugetlb_lock);
bcc54222 4775 return ret;
31caf665
NH
4776}
4777
4778void putback_active_hugepage(struct page *page)
4779{
309381fe 4780 VM_BUG_ON_PAGE(!PageHead(page), page);
31caf665 4781 spin_lock(&hugetlb_lock);
bcc54222 4782 set_page_huge_active(page);
31caf665
NH
4783 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
4784 spin_unlock(&hugetlb_lock);
4785 put_page(page);
4786}