mm, memcg: fix potential undefined behavior in mem_cgroup_event_ratelimit()
[linux-2.6-block.git] / mm / hugetlb.c
CommitLineData
1da177e4
LT
1/*
2 * Generic hugetlb support.
6d49e352 3 * (C) Nadia Yvette Chambers, April 2004
1da177e4 4 */
1da177e4
LT
5#include <linux/list.h>
6#include <linux/init.h>
1da177e4 7#include <linux/mm.h>
e1759c21 8#include <linux/seq_file.h>
1da177e4
LT
9#include <linux/sysctl.h>
10#include <linux/highmem.h>
cddb8a5c 11#include <linux/mmu_notifier.h>
1da177e4 12#include <linux/nodemask.h>
63551ae0 13#include <linux/pagemap.h>
5da7ca86 14#include <linux/mempolicy.h>
3b32123d 15#include <linux/compiler.h>
aea47ff3 16#include <linux/cpuset.h>
3935baa9 17#include <linux/mutex.h>
aa888a74 18#include <linux/bootmem.h>
a3437870 19#include <linux/sysfs.h>
5a0e3ad6 20#include <linux/slab.h>
174cd4b1 21#include <linux/sched/signal.h>
0fe6e20b 22#include <linux/rmap.h>
fd6a03ed
NH
23#include <linux/swap.h>
24#include <linux/swapops.h>
8382d914 25#include <linux/jhash.h>
d6606683 26
63551ae0
DG
27#include <asm/page.h>
28#include <asm/pgtable.h>
24669e58 29#include <asm/tlb.h>
63551ae0 30
24669e58 31#include <linux/io.h>
63551ae0 32#include <linux/hugetlb.h>
9dd540e2 33#include <linux/hugetlb_cgroup.h>
9a305230 34#include <linux/node.h>
1a1aad8a 35#include <linux/userfaultfd_k.h>
7835e98b 36#include "internal.h"
1da177e4 37
753162cd 38int hugepages_treat_as_movable;
a5516438 39
c3f38a38 40int hugetlb_max_hstate __read_mostly;
e5ff2159
AK
41unsigned int default_hstate_idx;
42struct hstate hstates[HUGE_MAX_HSTATE];
641844f5
NH
43/*
44 * Minimum page order among possible hugepage sizes, set to a proper value
45 * at boot time.
46 */
47static unsigned int minimum_order __read_mostly = UINT_MAX;
e5ff2159 48
53ba51d2
JT
49__initdata LIST_HEAD(huge_boot_pages);
50
e5ff2159
AK
51/* for command line parsing */
52static struct hstate * __initdata parsed_hstate;
53static unsigned long __initdata default_hstate_max_huge_pages;
e11bfbfc 54static unsigned long __initdata default_hstate_size;
9fee021d 55static bool __initdata parsed_valid_hugepagesz = true;
e5ff2159 56
3935baa9 57/*
31caf665
NH
58 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
59 * free_huge_pages, and surplus_huge_pages.
3935baa9 60 */
c3f38a38 61DEFINE_SPINLOCK(hugetlb_lock);
0bd0f9fb 62
8382d914
DB
63/*
64 * Serializes faults on the same logical page. This is used to
65 * prevent spurious OOMs when the hugepage pool is fully utilized.
66 */
67static int num_fault_mutexes;
c672c7f2 68struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
8382d914 69
7ca02d0a
MK
70/* Forward declaration */
71static int hugetlb_acct_memory(struct hstate *h, long delta);
72
d715cf80
LH
73static char * __init memfmt(char *buf, unsigned long n)
74{
75 if (n >= (1UL << 30))
76 sprintf(buf, "%lu GB", n >> 30);
77 else if (n >= (1UL << 20))
78 sprintf(buf, "%lu MB", n >> 20);
79 else
80 sprintf(buf, "%lu KB", n >> 10);
81 return buf;
82}
83
90481622
DG
84static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
85{
86 bool free = (spool->count == 0) && (spool->used_hpages == 0);
87
88 spin_unlock(&spool->lock);
89
90 /* If no pages are used, and no other handles to the subpool
7ca02d0a
MK
91 * remain, give up any reservations mased on minimum size and
92 * free the subpool */
93 if (free) {
94 if (spool->min_hpages != -1)
95 hugetlb_acct_memory(spool->hstate,
96 -spool->min_hpages);
90481622 97 kfree(spool);
7ca02d0a 98 }
90481622
DG
99}
100
7ca02d0a
MK
101struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
102 long min_hpages)
90481622
DG
103{
104 struct hugepage_subpool *spool;
105
c6a91820 106 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
90481622
DG
107 if (!spool)
108 return NULL;
109
110 spin_lock_init(&spool->lock);
111 spool->count = 1;
7ca02d0a
MK
112 spool->max_hpages = max_hpages;
113 spool->hstate = h;
114 spool->min_hpages = min_hpages;
115
116 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
117 kfree(spool);
118 return NULL;
119 }
120 spool->rsv_hpages = min_hpages;
90481622
DG
121
122 return spool;
123}
124
125void hugepage_put_subpool(struct hugepage_subpool *spool)
126{
127 spin_lock(&spool->lock);
128 BUG_ON(!spool->count);
129 spool->count--;
130 unlock_or_release_subpool(spool);
131}
132
1c5ecae3
MK
133/*
134 * Subpool accounting for allocating and reserving pages.
135 * Return -ENOMEM if there are not enough resources to satisfy the
136 * the request. Otherwise, return the number of pages by which the
137 * global pools must be adjusted (upward). The returned value may
138 * only be different than the passed value (delta) in the case where
139 * a subpool minimum size must be manitained.
140 */
141static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
90481622
DG
142 long delta)
143{
1c5ecae3 144 long ret = delta;
90481622
DG
145
146 if (!spool)
1c5ecae3 147 return ret;
90481622
DG
148
149 spin_lock(&spool->lock);
1c5ecae3
MK
150
151 if (spool->max_hpages != -1) { /* maximum size accounting */
152 if ((spool->used_hpages + delta) <= spool->max_hpages)
153 spool->used_hpages += delta;
154 else {
155 ret = -ENOMEM;
156 goto unlock_ret;
157 }
90481622 158 }
90481622 159
09a95e29
MK
160 /* minimum size accounting */
161 if (spool->min_hpages != -1 && spool->rsv_hpages) {
1c5ecae3
MK
162 if (delta > spool->rsv_hpages) {
163 /*
164 * Asking for more reserves than those already taken on
165 * behalf of subpool. Return difference.
166 */
167 ret = delta - spool->rsv_hpages;
168 spool->rsv_hpages = 0;
169 } else {
170 ret = 0; /* reserves already accounted for */
171 spool->rsv_hpages -= delta;
172 }
173 }
174
175unlock_ret:
176 spin_unlock(&spool->lock);
90481622
DG
177 return ret;
178}
179
1c5ecae3
MK
180/*
181 * Subpool accounting for freeing and unreserving pages.
182 * Return the number of global page reservations that must be dropped.
183 * The return value may only be different than the passed value (delta)
184 * in the case where a subpool minimum size must be maintained.
185 */
186static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
90481622
DG
187 long delta)
188{
1c5ecae3
MK
189 long ret = delta;
190
90481622 191 if (!spool)
1c5ecae3 192 return delta;
90481622
DG
193
194 spin_lock(&spool->lock);
1c5ecae3
MK
195
196 if (spool->max_hpages != -1) /* maximum size accounting */
197 spool->used_hpages -= delta;
198
09a95e29
MK
199 /* minimum size accounting */
200 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
1c5ecae3
MK
201 if (spool->rsv_hpages + delta <= spool->min_hpages)
202 ret = 0;
203 else
204 ret = spool->rsv_hpages + delta - spool->min_hpages;
205
206 spool->rsv_hpages += delta;
207 if (spool->rsv_hpages > spool->min_hpages)
208 spool->rsv_hpages = spool->min_hpages;
209 }
210
211 /*
212 * If hugetlbfs_put_super couldn't free spool due to an outstanding
213 * quota reference, free it now.
214 */
90481622 215 unlock_or_release_subpool(spool);
1c5ecae3
MK
216
217 return ret;
90481622
DG
218}
219
220static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
221{
222 return HUGETLBFS_SB(inode->i_sb)->spool;
223}
224
225static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
226{
496ad9aa 227 return subpool_inode(file_inode(vma->vm_file));
90481622
DG
228}
229
96822904
AW
230/*
231 * Region tracking -- allows tracking of reservations and instantiated pages
232 * across the pages in a mapping.
84afd99b 233 *
1dd308a7
MK
234 * The region data structures are embedded into a resv_map and protected
235 * by a resv_map's lock. The set of regions within the resv_map represent
236 * reservations for huge pages, or huge pages that have already been
237 * instantiated within the map. The from and to elements are huge page
238 * indicies into the associated mapping. from indicates the starting index
239 * of the region. to represents the first index past the end of the region.
240 *
241 * For example, a file region structure with from == 0 and to == 4 represents
242 * four huge pages in a mapping. It is important to note that the to element
243 * represents the first element past the end of the region. This is used in
244 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
245 *
246 * Interval notation of the form [from, to) will be used to indicate that
247 * the endpoint from is inclusive and to is exclusive.
96822904
AW
248 */
249struct file_region {
250 struct list_head link;
251 long from;
252 long to;
253};
254
1dd308a7
MK
255/*
256 * Add the huge page range represented by [f, t) to the reserve
5e911373
MK
257 * map. In the normal case, existing regions will be expanded
258 * to accommodate the specified range. Sufficient regions should
259 * exist for expansion due to the previous call to region_chg
260 * with the same range. However, it is possible that region_del
261 * could have been called after region_chg and modifed the map
262 * in such a way that no region exists to be expanded. In this
263 * case, pull a region descriptor from the cache associated with
264 * the map and use that for the new range.
cf3ad20b
MK
265 *
266 * Return the number of new huge pages added to the map. This
267 * number is greater than or equal to zero.
1dd308a7 268 */
1406ec9b 269static long region_add(struct resv_map *resv, long f, long t)
96822904 270{
1406ec9b 271 struct list_head *head = &resv->regions;
96822904 272 struct file_region *rg, *nrg, *trg;
cf3ad20b 273 long add = 0;
96822904 274
7b24d861 275 spin_lock(&resv->lock);
96822904
AW
276 /* Locate the region we are either in or before. */
277 list_for_each_entry(rg, head, link)
278 if (f <= rg->to)
279 break;
280
5e911373
MK
281 /*
282 * If no region exists which can be expanded to include the
283 * specified range, the list must have been modified by an
284 * interleving call to region_del(). Pull a region descriptor
285 * from the cache and use it for this range.
286 */
287 if (&rg->link == head || t < rg->from) {
288 VM_BUG_ON(resv->region_cache_count <= 0);
289
290 resv->region_cache_count--;
291 nrg = list_first_entry(&resv->region_cache, struct file_region,
292 link);
293 list_del(&nrg->link);
294
295 nrg->from = f;
296 nrg->to = t;
297 list_add(&nrg->link, rg->link.prev);
298
299 add += t - f;
300 goto out_locked;
301 }
302
96822904
AW
303 /* Round our left edge to the current segment if it encloses us. */
304 if (f > rg->from)
305 f = rg->from;
306
307 /* Check for and consume any regions we now overlap with. */
308 nrg = rg;
309 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
310 if (&rg->link == head)
311 break;
312 if (rg->from > t)
313 break;
314
315 /* If this area reaches higher then extend our area to
316 * include it completely. If this is not the first area
317 * which we intend to reuse, free it. */
318 if (rg->to > t)
319 t = rg->to;
320 if (rg != nrg) {
cf3ad20b
MK
321 /* Decrement return value by the deleted range.
322 * Another range will span this area so that by
323 * end of routine add will be >= zero
324 */
325 add -= (rg->to - rg->from);
96822904
AW
326 list_del(&rg->link);
327 kfree(rg);
328 }
329 }
cf3ad20b
MK
330
331 add += (nrg->from - f); /* Added to beginning of region */
96822904 332 nrg->from = f;
cf3ad20b 333 add += t - nrg->to; /* Added to end of region */
96822904 334 nrg->to = t;
cf3ad20b 335
5e911373
MK
336out_locked:
337 resv->adds_in_progress--;
7b24d861 338 spin_unlock(&resv->lock);
cf3ad20b
MK
339 VM_BUG_ON(add < 0);
340 return add;
96822904
AW
341}
342
1dd308a7
MK
343/*
344 * Examine the existing reserve map and determine how many
345 * huge pages in the specified range [f, t) are NOT currently
346 * represented. This routine is called before a subsequent
347 * call to region_add that will actually modify the reserve
348 * map to add the specified range [f, t). region_chg does
349 * not change the number of huge pages represented by the
350 * map. However, if the existing regions in the map can not
351 * be expanded to represent the new range, a new file_region
352 * structure is added to the map as a placeholder. This is
353 * so that the subsequent region_add call will have all the
354 * regions it needs and will not fail.
355 *
5e911373
MK
356 * Upon entry, region_chg will also examine the cache of region descriptors
357 * associated with the map. If there are not enough descriptors cached, one
358 * will be allocated for the in progress add operation.
359 *
360 * Returns the number of huge pages that need to be added to the existing
361 * reservation map for the range [f, t). This number is greater or equal to
362 * zero. -ENOMEM is returned if a new file_region structure or cache entry
363 * is needed and can not be allocated.
1dd308a7 364 */
1406ec9b 365static long region_chg(struct resv_map *resv, long f, long t)
96822904 366{
1406ec9b 367 struct list_head *head = &resv->regions;
7b24d861 368 struct file_region *rg, *nrg = NULL;
96822904
AW
369 long chg = 0;
370
7b24d861
DB
371retry:
372 spin_lock(&resv->lock);
5e911373
MK
373retry_locked:
374 resv->adds_in_progress++;
375
376 /*
377 * Check for sufficient descriptors in the cache to accommodate
378 * the number of in progress add operations.
379 */
380 if (resv->adds_in_progress > resv->region_cache_count) {
381 struct file_region *trg;
382
383 VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
384 /* Must drop lock to allocate a new descriptor. */
385 resv->adds_in_progress--;
386 spin_unlock(&resv->lock);
387
388 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
dbe409e4
MK
389 if (!trg) {
390 kfree(nrg);
5e911373 391 return -ENOMEM;
dbe409e4 392 }
5e911373
MK
393
394 spin_lock(&resv->lock);
395 list_add(&trg->link, &resv->region_cache);
396 resv->region_cache_count++;
397 goto retry_locked;
398 }
399
96822904
AW
400 /* Locate the region we are before or in. */
401 list_for_each_entry(rg, head, link)
402 if (f <= rg->to)
403 break;
404
405 /* If we are below the current region then a new region is required.
406 * Subtle, allocate a new region at the position but make it zero
407 * size such that we can guarantee to record the reservation. */
408 if (&rg->link == head || t < rg->from) {
7b24d861 409 if (!nrg) {
5e911373 410 resv->adds_in_progress--;
7b24d861
DB
411 spin_unlock(&resv->lock);
412 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
413 if (!nrg)
414 return -ENOMEM;
415
416 nrg->from = f;
417 nrg->to = f;
418 INIT_LIST_HEAD(&nrg->link);
419 goto retry;
420 }
96822904 421
7b24d861
DB
422 list_add(&nrg->link, rg->link.prev);
423 chg = t - f;
424 goto out_nrg;
96822904
AW
425 }
426
427 /* Round our left edge to the current segment if it encloses us. */
428 if (f > rg->from)
429 f = rg->from;
430 chg = t - f;
431
432 /* Check for and consume any regions we now overlap with. */
433 list_for_each_entry(rg, rg->link.prev, link) {
434 if (&rg->link == head)
435 break;
436 if (rg->from > t)
7b24d861 437 goto out;
96822904 438
25985edc 439 /* We overlap with this area, if it extends further than
96822904
AW
440 * us then we must extend ourselves. Account for its
441 * existing reservation. */
442 if (rg->to > t) {
443 chg += rg->to - t;
444 t = rg->to;
445 }
446 chg -= rg->to - rg->from;
447 }
7b24d861
DB
448
449out:
450 spin_unlock(&resv->lock);
451 /* We already know we raced and no longer need the new region */
452 kfree(nrg);
453 return chg;
454out_nrg:
455 spin_unlock(&resv->lock);
96822904
AW
456 return chg;
457}
458
5e911373
MK
459/*
460 * Abort the in progress add operation. The adds_in_progress field
461 * of the resv_map keeps track of the operations in progress between
462 * calls to region_chg and region_add. Operations are sometimes
463 * aborted after the call to region_chg. In such cases, region_abort
464 * is called to decrement the adds_in_progress counter.
465 *
466 * NOTE: The range arguments [f, t) are not needed or used in this
467 * routine. They are kept to make reading the calling code easier as
468 * arguments will match the associated region_chg call.
469 */
470static void region_abort(struct resv_map *resv, long f, long t)
471{
472 spin_lock(&resv->lock);
473 VM_BUG_ON(!resv->region_cache_count);
474 resv->adds_in_progress--;
475 spin_unlock(&resv->lock);
476}
477
1dd308a7 478/*
feba16e2
MK
479 * Delete the specified range [f, t) from the reserve map. If the
480 * t parameter is LONG_MAX, this indicates that ALL regions after f
481 * should be deleted. Locate the regions which intersect [f, t)
482 * and either trim, delete or split the existing regions.
483 *
484 * Returns the number of huge pages deleted from the reserve map.
485 * In the normal case, the return value is zero or more. In the
486 * case where a region must be split, a new region descriptor must
487 * be allocated. If the allocation fails, -ENOMEM will be returned.
488 * NOTE: If the parameter t == LONG_MAX, then we will never split
489 * a region and possibly return -ENOMEM. Callers specifying
490 * t == LONG_MAX do not need to check for -ENOMEM error.
1dd308a7 491 */
feba16e2 492static long region_del(struct resv_map *resv, long f, long t)
96822904 493{
1406ec9b 494 struct list_head *head = &resv->regions;
96822904 495 struct file_region *rg, *trg;
feba16e2
MK
496 struct file_region *nrg = NULL;
497 long del = 0;
96822904 498
feba16e2 499retry:
7b24d861 500 spin_lock(&resv->lock);
feba16e2 501 list_for_each_entry_safe(rg, trg, head, link) {
dbe409e4
MK
502 /*
503 * Skip regions before the range to be deleted. file_region
504 * ranges are normally of the form [from, to). However, there
505 * may be a "placeholder" entry in the map which is of the form
506 * (from, to) with from == to. Check for placeholder entries
507 * at the beginning of the range to be deleted.
508 */
509 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
feba16e2 510 continue;
dbe409e4 511
feba16e2 512 if (rg->from >= t)
96822904 513 break;
96822904 514
feba16e2
MK
515 if (f > rg->from && t < rg->to) { /* Must split region */
516 /*
517 * Check for an entry in the cache before dropping
518 * lock and attempting allocation.
519 */
520 if (!nrg &&
521 resv->region_cache_count > resv->adds_in_progress) {
522 nrg = list_first_entry(&resv->region_cache,
523 struct file_region,
524 link);
525 list_del(&nrg->link);
526 resv->region_cache_count--;
527 }
96822904 528
feba16e2
MK
529 if (!nrg) {
530 spin_unlock(&resv->lock);
531 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
532 if (!nrg)
533 return -ENOMEM;
534 goto retry;
535 }
536
537 del += t - f;
538
539 /* New entry for end of split region */
540 nrg->from = t;
541 nrg->to = rg->to;
542 INIT_LIST_HEAD(&nrg->link);
543
544 /* Original entry is trimmed */
545 rg->to = f;
546
547 list_add(&nrg->link, &rg->link);
548 nrg = NULL;
96822904 549 break;
feba16e2
MK
550 }
551
552 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
553 del += rg->to - rg->from;
554 list_del(&rg->link);
555 kfree(rg);
556 continue;
557 }
558
559 if (f <= rg->from) { /* Trim beginning of region */
560 del += t - rg->from;
561 rg->from = t;
562 } else { /* Trim end of region */
563 del += rg->to - f;
564 rg->to = f;
565 }
96822904 566 }
7b24d861 567
7b24d861 568 spin_unlock(&resv->lock);
feba16e2
MK
569 kfree(nrg);
570 return del;
96822904
AW
571}
572
b5cec28d
MK
573/*
574 * A rare out of memory error was encountered which prevented removal of
575 * the reserve map region for a page. The huge page itself was free'ed
576 * and removed from the page cache. This routine will adjust the subpool
577 * usage count, and the global reserve count if needed. By incrementing
578 * these counts, the reserve map entry which could not be deleted will
579 * appear as a "reserved" entry instead of simply dangling with incorrect
580 * counts.
581 */
72e2936c 582void hugetlb_fix_reserve_counts(struct inode *inode)
b5cec28d
MK
583{
584 struct hugepage_subpool *spool = subpool_inode(inode);
585 long rsv_adjust;
586
587 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
72e2936c 588 if (rsv_adjust) {
b5cec28d
MK
589 struct hstate *h = hstate_inode(inode);
590
591 hugetlb_acct_memory(h, 1);
592 }
593}
594
1dd308a7
MK
595/*
596 * Count and return the number of huge pages in the reserve map
597 * that intersect with the range [f, t).
598 */
1406ec9b 599static long region_count(struct resv_map *resv, long f, long t)
84afd99b 600{
1406ec9b 601 struct list_head *head = &resv->regions;
84afd99b
AW
602 struct file_region *rg;
603 long chg = 0;
604
7b24d861 605 spin_lock(&resv->lock);
84afd99b
AW
606 /* Locate each segment we overlap with, and count that overlap. */
607 list_for_each_entry(rg, head, link) {
f2135a4a
WSH
608 long seg_from;
609 long seg_to;
84afd99b
AW
610
611 if (rg->to <= f)
612 continue;
613 if (rg->from >= t)
614 break;
615
616 seg_from = max(rg->from, f);
617 seg_to = min(rg->to, t);
618
619 chg += seg_to - seg_from;
620 }
7b24d861 621 spin_unlock(&resv->lock);
84afd99b
AW
622
623 return chg;
624}
625
e7c4b0bf
AW
626/*
627 * Convert the address within this vma to the page offset within
628 * the mapping, in pagecache page units; huge pages here.
629 */
a5516438
AK
630static pgoff_t vma_hugecache_offset(struct hstate *h,
631 struct vm_area_struct *vma, unsigned long address)
e7c4b0bf 632{
a5516438
AK
633 return ((address - vma->vm_start) >> huge_page_shift(h)) +
634 (vma->vm_pgoff >> huge_page_order(h));
e7c4b0bf
AW
635}
636
0fe6e20b
NH
637pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
638 unsigned long address)
639{
640 return vma_hugecache_offset(hstate_vma(vma), vma, address);
641}
dee41079 642EXPORT_SYMBOL_GPL(linear_hugepage_index);
0fe6e20b 643
08fba699
MG
644/*
645 * Return the size of the pages allocated when backing a VMA. In the majority
646 * cases this will be same size as used by the page table entries.
647 */
648unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
649{
650 struct hstate *hstate;
651
652 if (!is_vm_hugetlb_page(vma))
653 return PAGE_SIZE;
654
655 hstate = hstate_vma(vma);
656
2415cf12 657 return 1UL << huge_page_shift(hstate);
08fba699 658}
f340ca0f 659EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
08fba699 660
3340289d
MG
661/*
662 * Return the page size being used by the MMU to back a VMA. In the majority
663 * of cases, the page size used by the kernel matches the MMU size. On
664 * architectures where it differs, an architecture-specific version of this
665 * function is required.
666 */
667#ifndef vma_mmu_pagesize
668unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
669{
670 return vma_kernel_pagesize(vma);
671}
672#endif
673
84afd99b
AW
674/*
675 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
676 * bits of the reservation map pointer, which are always clear due to
677 * alignment.
678 */
679#define HPAGE_RESV_OWNER (1UL << 0)
680#define HPAGE_RESV_UNMAPPED (1UL << 1)
04f2cbe3 681#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
84afd99b 682
a1e78772
MG
683/*
684 * These helpers are used to track how many pages are reserved for
685 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
686 * is guaranteed to have their future faults succeed.
687 *
688 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
689 * the reserve counters are updated with the hugetlb_lock held. It is safe
690 * to reset the VMA at fork() time as it is not in use yet and there is no
691 * chance of the global counters getting corrupted as a result of the values.
84afd99b
AW
692 *
693 * The private mapping reservation is represented in a subtly different
694 * manner to a shared mapping. A shared mapping has a region map associated
695 * with the underlying file, this region map represents the backing file
696 * pages which have ever had a reservation assigned which this persists even
697 * after the page is instantiated. A private mapping has a region map
698 * associated with the original mmap which is attached to all VMAs which
699 * reference it, this region map represents those offsets which have consumed
700 * reservation ie. where pages have been instantiated.
a1e78772 701 */
e7c4b0bf
AW
702static unsigned long get_vma_private_data(struct vm_area_struct *vma)
703{
704 return (unsigned long)vma->vm_private_data;
705}
706
707static void set_vma_private_data(struct vm_area_struct *vma,
708 unsigned long value)
709{
710 vma->vm_private_data = (void *)value;
711}
712
9119a41e 713struct resv_map *resv_map_alloc(void)
84afd99b
AW
714{
715 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
5e911373
MK
716 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
717
718 if (!resv_map || !rg) {
719 kfree(resv_map);
720 kfree(rg);
84afd99b 721 return NULL;
5e911373 722 }
84afd99b
AW
723
724 kref_init(&resv_map->refs);
7b24d861 725 spin_lock_init(&resv_map->lock);
84afd99b
AW
726 INIT_LIST_HEAD(&resv_map->regions);
727
5e911373
MK
728 resv_map->adds_in_progress = 0;
729
730 INIT_LIST_HEAD(&resv_map->region_cache);
731 list_add(&rg->link, &resv_map->region_cache);
732 resv_map->region_cache_count = 1;
733
84afd99b
AW
734 return resv_map;
735}
736
9119a41e 737void resv_map_release(struct kref *ref)
84afd99b
AW
738{
739 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
5e911373
MK
740 struct list_head *head = &resv_map->region_cache;
741 struct file_region *rg, *trg;
84afd99b
AW
742
743 /* Clear out any active regions before we release the map. */
feba16e2 744 region_del(resv_map, 0, LONG_MAX);
5e911373
MK
745
746 /* ... and any entries left in the cache */
747 list_for_each_entry_safe(rg, trg, head, link) {
748 list_del(&rg->link);
749 kfree(rg);
750 }
751
752 VM_BUG_ON(resv_map->adds_in_progress);
753
84afd99b
AW
754 kfree(resv_map);
755}
756
4e35f483
JK
757static inline struct resv_map *inode_resv_map(struct inode *inode)
758{
759 return inode->i_mapping->private_data;
760}
761
84afd99b 762static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
a1e78772 763{
81d1b09c 764 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
4e35f483
JK
765 if (vma->vm_flags & VM_MAYSHARE) {
766 struct address_space *mapping = vma->vm_file->f_mapping;
767 struct inode *inode = mapping->host;
768
769 return inode_resv_map(inode);
770
771 } else {
84afd99b
AW
772 return (struct resv_map *)(get_vma_private_data(vma) &
773 ~HPAGE_RESV_MASK);
4e35f483 774 }
a1e78772
MG
775}
776
84afd99b 777static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
a1e78772 778{
81d1b09c
SL
779 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
780 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
a1e78772 781
84afd99b
AW
782 set_vma_private_data(vma, (get_vma_private_data(vma) &
783 HPAGE_RESV_MASK) | (unsigned long)map);
04f2cbe3
MG
784}
785
786static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
787{
81d1b09c
SL
788 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
789 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
e7c4b0bf
AW
790
791 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
04f2cbe3
MG
792}
793
794static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
795{
81d1b09c 796 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
e7c4b0bf
AW
797
798 return (get_vma_private_data(vma) & flag) != 0;
a1e78772
MG
799}
800
04f2cbe3 801/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
a1e78772
MG
802void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
803{
81d1b09c 804 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
f83a275d 805 if (!(vma->vm_flags & VM_MAYSHARE))
a1e78772
MG
806 vma->vm_private_data = (void *)0;
807}
808
809/* Returns true if the VMA has associated reserve pages */
559ec2f8 810static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
a1e78772 811{
af0ed73e
JK
812 if (vma->vm_flags & VM_NORESERVE) {
813 /*
814 * This address is already reserved by other process(chg == 0),
815 * so, we should decrement reserved count. Without decrementing,
816 * reserve count remains after releasing inode, because this
817 * allocated page will go into page cache and is regarded as
818 * coming from reserved pool in releasing step. Currently, we
819 * don't have any other solution to deal with this situation
820 * properly, so add work-around here.
821 */
822 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
559ec2f8 823 return true;
af0ed73e 824 else
559ec2f8 825 return false;
af0ed73e 826 }
a63884e9
JK
827
828 /* Shared mappings always use reserves */
1fb1b0e9
MK
829 if (vma->vm_flags & VM_MAYSHARE) {
830 /*
831 * We know VM_NORESERVE is not set. Therefore, there SHOULD
832 * be a region map for all pages. The only situation where
833 * there is no region map is if a hole was punched via
834 * fallocate. In this case, there really are no reverves to
835 * use. This situation is indicated if chg != 0.
836 */
837 if (chg)
838 return false;
839 else
840 return true;
841 }
a63884e9
JK
842
843 /*
844 * Only the process that called mmap() has reserves for
845 * private mappings.
846 */
67961f9d
MK
847 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
848 /*
849 * Like the shared case above, a hole punch or truncate
850 * could have been performed on the private mapping.
851 * Examine the value of chg to determine if reserves
852 * actually exist or were previously consumed.
853 * Very Subtle - The value of chg comes from a previous
854 * call to vma_needs_reserves(). The reserve map for
855 * private mappings has different (opposite) semantics
856 * than that of shared mappings. vma_needs_reserves()
857 * has already taken this difference in semantics into
858 * account. Therefore, the meaning of chg is the same
859 * as in the shared case above. Code could easily be
860 * combined, but keeping it separate draws attention to
861 * subtle differences.
862 */
863 if (chg)
864 return false;
865 else
866 return true;
867 }
a63884e9 868
559ec2f8 869 return false;
a1e78772
MG
870}
871
a5516438 872static void enqueue_huge_page(struct hstate *h, struct page *page)
1da177e4
LT
873{
874 int nid = page_to_nid(page);
0edaecfa 875 list_move(&page->lru, &h->hugepage_freelists[nid]);
a5516438
AK
876 h->free_huge_pages++;
877 h->free_huge_pages_node[nid]++;
1da177e4
LT
878}
879
94310cbc 880static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
bf50bab2
NH
881{
882 struct page *page;
883
c8721bbb 884 list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
243abd5b 885 if (!PageHWPoison(page))
c8721bbb
NH
886 break;
887 /*
888 * if 'non-isolated free hugepage' not found on the list,
889 * the allocation fails.
890 */
891 if (&h->hugepage_freelists[nid] == &page->lru)
bf50bab2 892 return NULL;
0edaecfa 893 list_move(&page->lru, &h->hugepage_activelist);
a9869b83 894 set_page_refcounted(page);
bf50bab2
NH
895 h->free_huge_pages--;
896 h->free_huge_pages_node[nid]--;
897 return page;
898}
899
94310cbc
AK
900static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
901{
902 struct page *page;
903 int node;
904
905 if (nid != NUMA_NO_NODE)
906 return dequeue_huge_page_node_exact(h, nid);
907
908 for_each_online_node(node) {
909 page = dequeue_huge_page_node_exact(h, node);
910 if (page)
911 return page;
912 }
913 return NULL;
914}
915
86cdb465
NH
916/* Movability of hugepages depends on migration support. */
917static inline gfp_t htlb_alloc_mask(struct hstate *h)
918{
100873d7 919 if (hugepages_treat_as_movable || hugepage_migration_supported(h))
86cdb465
NH
920 return GFP_HIGHUSER_MOVABLE;
921 else
922 return GFP_HIGHUSER;
923}
924
a5516438
AK
925static struct page *dequeue_huge_page_vma(struct hstate *h,
926 struct vm_area_struct *vma,
af0ed73e
JK
927 unsigned long address, int avoid_reserve,
928 long chg)
1da177e4 929{
b1c12cbc 930 struct page *page = NULL;
480eccf9 931 struct mempolicy *mpol;
19770b32 932 nodemask_t *nodemask;
04ec6264
VB
933 gfp_t gfp_mask;
934 int nid;
c0ff7453 935 struct zonelist *zonelist;
dd1a239f
MG
936 struct zone *zone;
937 struct zoneref *z;
cc9a6c87 938 unsigned int cpuset_mems_cookie;
1da177e4 939
a1e78772
MG
940 /*
941 * A child process with MAP_PRIVATE mappings created by their parent
942 * have no page reserves. This check ensures that reservations are
943 * not "stolen". The child may still get SIGKILLed
944 */
af0ed73e 945 if (!vma_has_reserves(vma, chg) &&
a5516438 946 h->free_huge_pages - h->resv_huge_pages == 0)
c0ff7453 947 goto err;
a1e78772 948
04f2cbe3 949 /* If reserves cannot be used, ensure enough pages are in the pool */
a5516438 950 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
6eab04a8 951 goto err;
04f2cbe3 952
9966c4bb 953retry_cpuset:
d26914d1 954 cpuset_mems_cookie = read_mems_allowed_begin();
04ec6264
VB
955 gfp_mask = htlb_alloc_mask(h);
956 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
957 zonelist = node_zonelist(nid, gfp_mask);
9966c4bb 958
19770b32
MG
959 for_each_zone_zonelist_nodemask(zone, z, zonelist,
960 MAX_NR_ZONES - 1, nodemask) {
04ec6264 961 if (cpuset_zone_allowed(zone, gfp_mask)) {
bf50bab2
NH
962 page = dequeue_huge_page_node(h, zone_to_nid(zone));
963 if (page) {
af0ed73e
JK
964 if (avoid_reserve)
965 break;
966 if (!vma_has_reserves(vma, chg))
967 break;
968
07443a85 969 SetPagePrivate(page);
af0ed73e 970 h->resv_huge_pages--;
bf50bab2
NH
971 break;
972 }
3abf7afd 973 }
1da177e4 974 }
cc9a6c87 975
52cd3b07 976 mpol_cond_put(mpol);
d26914d1 977 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
cc9a6c87 978 goto retry_cpuset;
1da177e4 979 return page;
cc9a6c87
MG
980
981err:
cc9a6c87 982 return NULL;
1da177e4
LT
983}
984
1cac6f2c
LC
985/*
986 * common helper functions for hstate_next_node_to_{alloc|free}.
987 * We may have allocated or freed a huge page based on a different
988 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
989 * be outside of *nodes_allowed. Ensure that we use an allowed
990 * node for alloc or free.
991 */
992static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
993{
0edaf86c 994 nid = next_node_in(nid, *nodes_allowed);
1cac6f2c
LC
995 VM_BUG_ON(nid >= MAX_NUMNODES);
996
997 return nid;
998}
999
1000static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1001{
1002 if (!node_isset(nid, *nodes_allowed))
1003 nid = next_node_allowed(nid, nodes_allowed);
1004 return nid;
1005}
1006
1007/*
1008 * returns the previously saved node ["this node"] from which to
1009 * allocate a persistent huge page for the pool and advance the
1010 * next node from which to allocate, handling wrap at end of node
1011 * mask.
1012 */
1013static int hstate_next_node_to_alloc(struct hstate *h,
1014 nodemask_t *nodes_allowed)
1015{
1016 int nid;
1017
1018 VM_BUG_ON(!nodes_allowed);
1019
1020 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1021 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1022
1023 return nid;
1024}
1025
1026/*
1027 * helper for free_pool_huge_page() - return the previously saved
1028 * node ["this node"] from which to free a huge page. Advance the
1029 * next node id whether or not we find a free huge page to free so
1030 * that the next attempt to free addresses the next node.
1031 */
1032static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1033{
1034 int nid;
1035
1036 VM_BUG_ON(!nodes_allowed);
1037
1038 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1039 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1040
1041 return nid;
1042}
1043
1044#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
1045 for (nr_nodes = nodes_weight(*mask); \
1046 nr_nodes > 0 && \
1047 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
1048 nr_nodes--)
1049
1050#define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1051 for (nr_nodes = nodes_weight(*mask); \
1052 nr_nodes > 0 && \
1053 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1054 nr_nodes--)
1055
e1073d1e 1056#ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
944d9fec 1057static void destroy_compound_gigantic_page(struct page *page,
d00181b9 1058 unsigned int order)
944d9fec
LC
1059{
1060 int i;
1061 int nr_pages = 1 << order;
1062 struct page *p = page + 1;
1063
c8cc708a 1064 atomic_set(compound_mapcount_ptr(page), 0);
944d9fec 1065 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1d798ca3 1066 clear_compound_head(p);
944d9fec 1067 set_page_refcounted(p);
944d9fec
LC
1068 }
1069
1070 set_compound_order(page, 0);
1071 __ClearPageHead(page);
1072}
1073
d00181b9 1074static void free_gigantic_page(struct page *page, unsigned int order)
944d9fec
LC
1075{
1076 free_contig_range(page_to_pfn(page), 1 << order);
1077}
1078
1079static int __alloc_gigantic_page(unsigned long start_pfn,
1080 unsigned long nr_pages)
1081{
1082 unsigned long end_pfn = start_pfn + nr_pages;
ca96b625
LS
1083 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
1084 GFP_KERNEL);
944d9fec
LC
1085}
1086
f44b2dda
JK
1087static bool pfn_range_valid_gigantic(struct zone *z,
1088 unsigned long start_pfn, unsigned long nr_pages)
944d9fec
LC
1089{
1090 unsigned long i, end_pfn = start_pfn + nr_pages;
1091 struct page *page;
1092
1093 for (i = start_pfn; i < end_pfn; i++) {
1094 if (!pfn_valid(i))
1095 return false;
1096
1097 page = pfn_to_page(i);
1098
f44b2dda
JK
1099 if (page_zone(page) != z)
1100 return false;
1101
944d9fec
LC
1102 if (PageReserved(page))
1103 return false;
1104
1105 if (page_count(page) > 0)
1106 return false;
1107
1108 if (PageHuge(page))
1109 return false;
1110 }
1111
1112 return true;
1113}
1114
1115static bool zone_spans_last_pfn(const struct zone *zone,
1116 unsigned long start_pfn, unsigned long nr_pages)
1117{
1118 unsigned long last_pfn = start_pfn + nr_pages - 1;
1119 return zone_spans_pfn(zone, last_pfn);
1120}
1121
d00181b9 1122static struct page *alloc_gigantic_page(int nid, unsigned int order)
944d9fec
LC
1123{
1124 unsigned long nr_pages = 1 << order;
1125 unsigned long ret, pfn, flags;
1126 struct zone *z;
1127
1128 z = NODE_DATA(nid)->node_zones;
1129 for (; z - NODE_DATA(nid)->node_zones < MAX_NR_ZONES; z++) {
1130 spin_lock_irqsave(&z->lock, flags);
1131
1132 pfn = ALIGN(z->zone_start_pfn, nr_pages);
1133 while (zone_spans_last_pfn(z, pfn, nr_pages)) {
f44b2dda 1134 if (pfn_range_valid_gigantic(z, pfn, nr_pages)) {
944d9fec
LC
1135 /*
1136 * We release the zone lock here because
1137 * alloc_contig_range() will also lock the zone
1138 * at some point. If there's an allocation
1139 * spinning on this lock, it may win the race
1140 * and cause alloc_contig_range() to fail...
1141 */
1142 spin_unlock_irqrestore(&z->lock, flags);
1143 ret = __alloc_gigantic_page(pfn, nr_pages);
1144 if (!ret)
1145 return pfn_to_page(pfn);
1146 spin_lock_irqsave(&z->lock, flags);
1147 }
1148 pfn += nr_pages;
1149 }
1150
1151 spin_unlock_irqrestore(&z->lock, flags);
1152 }
1153
1154 return NULL;
1155}
1156
1157static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
d00181b9 1158static void prep_compound_gigantic_page(struct page *page, unsigned int order);
944d9fec
LC
1159
1160static struct page *alloc_fresh_gigantic_page_node(struct hstate *h, int nid)
1161{
1162 struct page *page;
1163
1164 page = alloc_gigantic_page(nid, huge_page_order(h));
1165 if (page) {
1166 prep_compound_gigantic_page(page, huge_page_order(h));
1167 prep_new_huge_page(h, page, nid);
1168 }
1169
1170 return page;
1171}
1172
1173static int alloc_fresh_gigantic_page(struct hstate *h,
1174 nodemask_t *nodes_allowed)
1175{
1176 struct page *page = NULL;
1177 int nr_nodes, node;
1178
1179 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1180 page = alloc_fresh_gigantic_page_node(h, node);
1181 if (page)
1182 return 1;
1183 }
1184
1185 return 0;
1186}
1187
e1073d1e 1188#else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
944d9fec 1189static inline bool gigantic_page_supported(void) { return false; }
d00181b9 1190static inline void free_gigantic_page(struct page *page, unsigned int order) { }
944d9fec 1191static inline void destroy_compound_gigantic_page(struct page *page,
d00181b9 1192 unsigned int order) { }
944d9fec
LC
1193static inline int alloc_fresh_gigantic_page(struct hstate *h,
1194 nodemask_t *nodes_allowed) { return 0; }
1195#endif
1196
a5516438 1197static void update_and_free_page(struct hstate *h, struct page *page)
6af2acb6
AL
1198{
1199 int i;
a5516438 1200
944d9fec
LC
1201 if (hstate_is_gigantic(h) && !gigantic_page_supported())
1202 return;
18229df5 1203
a5516438
AK
1204 h->nr_huge_pages--;
1205 h->nr_huge_pages_node[page_to_nid(page)]--;
1206 for (i = 0; i < pages_per_huge_page(h); i++) {
32f84528
CF
1207 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1208 1 << PG_referenced | 1 << PG_dirty |
a7407a27
LC
1209 1 << PG_active | 1 << PG_private |
1210 1 << PG_writeback);
6af2acb6 1211 }
309381fe 1212 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
f1e61557 1213 set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
6af2acb6 1214 set_page_refcounted(page);
944d9fec
LC
1215 if (hstate_is_gigantic(h)) {
1216 destroy_compound_gigantic_page(page, huge_page_order(h));
1217 free_gigantic_page(page, huge_page_order(h));
1218 } else {
944d9fec
LC
1219 __free_pages(page, huge_page_order(h));
1220 }
6af2acb6
AL
1221}
1222
e5ff2159
AK
1223struct hstate *size_to_hstate(unsigned long size)
1224{
1225 struct hstate *h;
1226
1227 for_each_hstate(h) {
1228 if (huge_page_size(h) == size)
1229 return h;
1230 }
1231 return NULL;
1232}
1233
bcc54222
NH
1234/*
1235 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1236 * to hstate->hugepage_activelist.)
1237 *
1238 * This function can be called for tail pages, but never returns true for them.
1239 */
1240bool page_huge_active(struct page *page)
1241{
1242 VM_BUG_ON_PAGE(!PageHuge(page), page);
1243 return PageHead(page) && PagePrivate(&page[1]);
1244}
1245
1246/* never called for tail page */
1247static void set_page_huge_active(struct page *page)
1248{
1249 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1250 SetPagePrivate(&page[1]);
1251}
1252
1253static void clear_page_huge_active(struct page *page)
1254{
1255 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1256 ClearPagePrivate(&page[1]);
1257}
1258
8f1d26d0 1259void free_huge_page(struct page *page)
27a85ef1 1260{
a5516438
AK
1261 /*
1262 * Can't pass hstate in here because it is called from the
1263 * compound page destructor.
1264 */
e5ff2159 1265 struct hstate *h = page_hstate(page);
7893d1d5 1266 int nid = page_to_nid(page);
90481622
DG
1267 struct hugepage_subpool *spool =
1268 (struct hugepage_subpool *)page_private(page);
07443a85 1269 bool restore_reserve;
27a85ef1 1270
e5df70ab 1271 set_page_private(page, 0);
23be7468 1272 page->mapping = NULL;
b4330afb
MK
1273 VM_BUG_ON_PAGE(page_count(page), page);
1274 VM_BUG_ON_PAGE(page_mapcount(page), page);
07443a85 1275 restore_reserve = PagePrivate(page);
16c794b4 1276 ClearPagePrivate(page);
27a85ef1 1277
1c5ecae3
MK
1278 /*
1279 * A return code of zero implies that the subpool will be under its
1280 * minimum size if the reservation is not restored after page is free.
1281 * Therefore, force restore_reserve operation.
1282 */
1283 if (hugepage_subpool_put_pages(spool, 1) == 0)
1284 restore_reserve = true;
1285
27a85ef1 1286 spin_lock(&hugetlb_lock);
bcc54222 1287 clear_page_huge_active(page);
6d76dcf4
AK
1288 hugetlb_cgroup_uncharge_page(hstate_index(h),
1289 pages_per_huge_page(h), page);
07443a85
JK
1290 if (restore_reserve)
1291 h->resv_huge_pages++;
1292
944d9fec 1293 if (h->surplus_huge_pages_node[nid]) {
0edaecfa
AK
1294 /* remove the page from active list */
1295 list_del(&page->lru);
a5516438
AK
1296 update_and_free_page(h, page);
1297 h->surplus_huge_pages--;
1298 h->surplus_huge_pages_node[nid]--;
7893d1d5 1299 } else {
5d3a551c 1300 arch_clear_hugepage_flags(page);
a5516438 1301 enqueue_huge_page(h, page);
7893d1d5 1302 }
27a85ef1
DG
1303 spin_unlock(&hugetlb_lock);
1304}
1305
a5516438 1306static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
b7ba30c6 1307{
0edaecfa 1308 INIT_LIST_HEAD(&page->lru);
f1e61557 1309 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
b7ba30c6 1310 spin_lock(&hugetlb_lock);
9dd540e2 1311 set_hugetlb_cgroup(page, NULL);
a5516438
AK
1312 h->nr_huge_pages++;
1313 h->nr_huge_pages_node[nid]++;
b7ba30c6
AK
1314 spin_unlock(&hugetlb_lock);
1315 put_page(page); /* free it into the hugepage allocator */
1316}
1317
d00181b9 1318static void prep_compound_gigantic_page(struct page *page, unsigned int order)
20a0307c
WF
1319{
1320 int i;
1321 int nr_pages = 1 << order;
1322 struct page *p = page + 1;
1323
1324 /* we rely on prep_new_huge_page to set the destructor */
1325 set_compound_order(page, order);
ef5a22be 1326 __ClearPageReserved(page);
de09d31d 1327 __SetPageHead(page);
20a0307c 1328 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
ef5a22be
AA
1329 /*
1330 * For gigantic hugepages allocated through bootmem at
1331 * boot, it's safer to be consistent with the not-gigantic
1332 * hugepages and clear the PG_reserved bit from all tail pages
1333 * too. Otherwse drivers using get_user_pages() to access tail
1334 * pages may get the reference counting wrong if they see
1335 * PG_reserved set on a tail page (despite the head page not
1336 * having PG_reserved set). Enforcing this consistency between
1337 * head and tail pages allows drivers to optimize away a check
1338 * on the head page when they need know if put_page() is needed
1339 * after get_user_pages().
1340 */
1341 __ClearPageReserved(p);
58a84aa9 1342 set_page_count(p, 0);
1d798ca3 1343 set_compound_head(p, page);
20a0307c 1344 }
b4330afb 1345 atomic_set(compound_mapcount_ptr(page), -1);
20a0307c
WF
1346}
1347
7795912c
AM
1348/*
1349 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1350 * transparent huge pages. See the PageTransHuge() documentation for more
1351 * details.
1352 */
20a0307c
WF
1353int PageHuge(struct page *page)
1354{
20a0307c
WF
1355 if (!PageCompound(page))
1356 return 0;
1357
1358 page = compound_head(page);
f1e61557 1359 return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
20a0307c 1360}
43131e14
NH
1361EXPORT_SYMBOL_GPL(PageHuge);
1362
27c73ae7
AA
1363/*
1364 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1365 * normal or transparent huge pages.
1366 */
1367int PageHeadHuge(struct page *page_head)
1368{
27c73ae7
AA
1369 if (!PageHead(page_head))
1370 return 0;
1371
758f66a2 1372 return get_compound_page_dtor(page_head) == free_huge_page;
27c73ae7 1373}
27c73ae7 1374
13d60f4b
ZY
1375pgoff_t __basepage_index(struct page *page)
1376{
1377 struct page *page_head = compound_head(page);
1378 pgoff_t index = page_index(page_head);
1379 unsigned long compound_idx;
1380
1381 if (!PageHuge(page_head))
1382 return page_index(page);
1383
1384 if (compound_order(page_head) >= MAX_ORDER)
1385 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1386 else
1387 compound_idx = page - page_head;
1388
1389 return (index << compound_order(page_head)) + compound_idx;
1390}
1391
a5516438 1392static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
1da177e4 1393{
1da177e4 1394 struct page *page;
f96efd58 1395
96db800f 1396 page = __alloc_pages_node(nid,
86cdb465 1397 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
551883ae 1398 __GFP_REPEAT|__GFP_NOWARN,
a5516438 1399 huge_page_order(h));
1da177e4 1400 if (page) {
a5516438 1401 prep_new_huge_page(h, page, nid);
1da177e4 1402 }
63b4613c
NA
1403
1404 return page;
1405}
1406
b2261026
JK
1407static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
1408{
1409 struct page *page;
1410 int nr_nodes, node;
1411 int ret = 0;
1412
1413 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1414 page = alloc_fresh_huge_page_node(h, node);
1415 if (page) {
1416 ret = 1;
1417 break;
1418 }
1419 }
1420
1421 if (ret)
1422 count_vm_event(HTLB_BUDDY_PGALLOC);
1423 else
1424 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1425
1426 return ret;
1427}
1428
e8c5c824
LS
1429/*
1430 * Free huge page from pool from next node to free.
1431 * Attempt to keep persistent huge pages more or less
1432 * balanced over allowed nodes.
1433 * Called with hugetlb_lock locked.
1434 */
6ae11b27
LS
1435static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1436 bool acct_surplus)
e8c5c824 1437{
b2261026 1438 int nr_nodes, node;
e8c5c824
LS
1439 int ret = 0;
1440
b2261026 1441 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
685f3457
LS
1442 /*
1443 * If we're returning unused surplus pages, only examine
1444 * nodes with surplus pages.
1445 */
b2261026
JK
1446 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1447 !list_empty(&h->hugepage_freelists[node])) {
e8c5c824 1448 struct page *page =
b2261026 1449 list_entry(h->hugepage_freelists[node].next,
e8c5c824
LS
1450 struct page, lru);
1451 list_del(&page->lru);
1452 h->free_huge_pages--;
b2261026 1453 h->free_huge_pages_node[node]--;
685f3457
LS
1454 if (acct_surplus) {
1455 h->surplus_huge_pages--;
b2261026 1456 h->surplus_huge_pages_node[node]--;
685f3457 1457 }
e8c5c824
LS
1458 update_and_free_page(h, page);
1459 ret = 1;
9a76db09 1460 break;
e8c5c824 1461 }
b2261026 1462 }
e8c5c824
LS
1463
1464 return ret;
1465}
1466
c8721bbb
NH
1467/*
1468 * Dissolve a given free hugepage into free buddy pages. This function does
082d5b6b
GS
1469 * nothing for in-use (including surplus) hugepages. Returns -EBUSY if the
1470 * number of free hugepages would be reduced below the number of reserved
1471 * hugepages.
c8721bbb 1472 */
c3114a84 1473int dissolve_free_huge_page(struct page *page)
c8721bbb 1474{
082d5b6b
GS
1475 int rc = 0;
1476
c8721bbb
NH
1477 spin_lock(&hugetlb_lock);
1478 if (PageHuge(page) && !page_count(page)) {
2247bb33
GS
1479 struct page *head = compound_head(page);
1480 struct hstate *h = page_hstate(head);
1481 int nid = page_to_nid(head);
082d5b6b
GS
1482 if (h->free_huge_pages - h->resv_huge_pages == 0) {
1483 rc = -EBUSY;
1484 goto out;
1485 }
c3114a84
AK
1486 /*
1487 * Move PageHWPoison flag from head page to the raw error page,
1488 * which makes any subpages rather than the error page reusable.
1489 */
1490 if (PageHWPoison(head) && page != head) {
1491 SetPageHWPoison(page);
1492 ClearPageHWPoison(head);
1493 }
2247bb33 1494 list_del(&head->lru);
c8721bbb
NH
1495 h->free_huge_pages--;
1496 h->free_huge_pages_node[nid]--;
c1470b33 1497 h->max_huge_pages--;
2247bb33 1498 update_and_free_page(h, head);
c8721bbb 1499 }
082d5b6b 1500out:
c8721bbb 1501 spin_unlock(&hugetlb_lock);
082d5b6b 1502 return rc;
c8721bbb
NH
1503}
1504
1505/*
1506 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1507 * make specified memory blocks removable from the system.
2247bb33
GS
1508 * Note that this will dissolve a free gigantic hugepage completely, if any
1509 * part of it lies within the given range.
082d5b6b
GS
1510 * Also note that if dissolve_free_huge_page() returns with an error, all
1511 * free hugepages that were dissolved before that error are lost.
c8721bbb 1512 */
082d5b6b 1513int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
c8721bbb 1514{
c8721bbb 1515 unsigned long pfn;
eb03aa00 1516 struct page *page;
082d5b6b 1517 int rc = 0;
c8721bbb 1518
d0177639 1519 if (!hugepages_supported())
082d5b6b 1520 return rc;
d0177639 1521
eb03aa00
GS
1522 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1523 page = pfn_to_page(pfn);
1524 if (PageHuge(page) && !page_count(page)) {
1525 rc = dissolve_free_huge_page(page);
1526 if (rc)
1527 break;
1528 }
1529 }
082d5b6b
GS
1530
1531 return rc;
c8721bbb
NH
1532}
1533
099730d6
DH
1534/*
1535 * There are 3 ways this can get called:
1536 * 1. With vma+addr: we use the VMA's memory policy
1537 * 2. With !vma, but nid=NUMA_NO_NODE: We try to allocate a huge
1538 * page from any node, and let the buddy allocator itself figure
1539 * it out.
1540 * 3. With !vma, but nid!=NUMA_NO_NODE. We allocate a huge page
1541 * strictly from 'nid'
1542 */
1543static struct page *__hugetlb_alloc_buddy_huge_page(struct hstate *h,
1544 struct vm_area_struct *vma, unsigned long addr, int nid)
1545{
1546 int order = huge_page_order(h);
1547 gfp_t gfp = htlb_alloc_mask(h)|__GFP_COMP|__GFP_REPEAT|__GFP_NOWARN;
1548 unsigned int cpuset_mems_cookie;
1549
1550 /*
1551 * We need a VMA to get a memory policy. If we do not
e0ec90ee
DH
1552 * have one, we use the 'nid' argument.
1553 *
1554 * The mempolicy stuff below has some non-inlined bits
1555 * and calls ->vm_ops. That makes it hard to optimize at
1556 * compile-time, even when NUMA is off and it does
1557 * nothing. This helps the compiler optimize it out.
099730d6 1558 */
e0ec90ee 1559 if (!IS_ENABLED(CONFIG_NUMA) || !vma) {
099730d6
DH
1560 /*
1561 * If a specific node is requested, make sure to
1562 * get memory from there, but only when a node
1563 * is explicitly specified.
1564 */
1565 if (nid != NUMA_NO_NODE)
1566 gfp |= __GFP_THISNODE;
1567 /*
1568 * Make sure to call something that can handle
1569 * nid=NUMA_NO_NODE
1570 */
1571 return alloc_pages_node(nid, gfp, order);
1572 }
1573
1574 /*
1575 * OK, so we have a VMA. Fetch the mempolicy and try to
e0ec90ee
DH
1576 * allocate a huge page with it. We will only reach this
1577 * when CONFIG_NUMA=y.
099730d6
DH
1578 */
1579 do {
1580 struct page *page;
1581 struct mempolicy *mpol;
04ec6264 1582 int nid;
099730d6
DH
1583 nodemask_t *nodemask;
1584
1585 cpuset_mems_cookie = read_mems_allowed_begin();
04ec6264 1586 nid = huge_node(vma, addr, gfp, &mpol, &nodemask);
099730d6 1587 mpol_cond_put(mpol);
04ec6264 1588 page = __alloc_pages_nodemask(gfp, order, nid, nodemask);
099730d6
DH
1589 if (page)
1590 return page;
1591 } while (read_mems_allowed_retry(cpuset_mems_cookie));
1592
1593 return NULL;
1594}
1595
1596/*
1597 * There are two ways to allocate a huge page:
1598 * 1. When you have a VMA and an address (like a fault)
1599 * 2. When you have no VMA (like when setting /proc/.../nr_hugepages)
1600 *
1601 * 'vma' and 'addr' are only for (1). 'nid' is always NUMA_NO_NODE in
1602 * this case which signifies that the allocation should be done with
1603 * respect for the VMA's memory policy.
1604 *
1605 * For (2), we ignore 'vma' and 'addr' and use 'nid' exclusively. This
1606 * implies that memory policies will not be taken in to account.
1607 */
1608static struct page *__alloc_buddy_huge_page(struct hstate *h,
1609 struct vm_area_struct *vma, unsigned long addr, int nid)
7893d1d5
AL
1610{
1611 struct page *page;
bf50bab2 1612 unsigned int r_nid;
7893d1d5 1613
bae7f4ae 1614 if (hstate_is_gigantic(h))
aa888a74
AK
1615 return NULL;
1616
099730d6
DH
1617 /*
1618 * Make sure that anyone specifying 'nid' is not also specifying a VMA.
1619 * This makes sure the caller is picking _one_ of the modes with which
1620 * we can call this function, not both.
1621 */
1622 if (vma || (addr != -1)) {
e0ec90ee
DH
1623 VM_WARN_ON_ONCE(addr == -1);
1624 VM_WARN_ON_ONCE(nid != NUMA_NO_NODE);
099730d6 1625 }
d1c3fb1f
NA
1626 /*
1627 * Assume we will successfully allocate the surplus page to
1628 * prevent racing processes from causing the surplus to exceed
1629 * overcommit
1630 *
1631 * This however introduces a different race, where a process B
1632 * tries to grow the static hugepage pool while alloc_pages() is
1633 * called by process A. B will only examine the per-node
1634 * counters in determining if surplus huge pages can be
1635 * converted to normal huge pages in adjust_pool_surplus(). A
1636 * won't be able to increment the per-node counter, until the
1637 * lock is dropped by B, but B doesn't drop hugetlb_lock until
1638 * no more huge pages can be converted from surplus to normal
1639 * state (and doesn't try to convert again). Thus, we have a
1640 * case where a surplus huge page exists, the pool is grown, and
1641 * the surplus huge page still exists after, even though it
1642 * should just have been converted to a normal huge page. This
1643 * does not leak memory, though, as the hugepage will be freed
1644 * once it is out of use. It also does not allow the counters to
1645 * go out of whack in adjust_pool_surplus() as we don't modify
1646 * the node values until we've gotten the hugepage and only the
1647 * per-node value is checked there.
1648 */
1649 spin_lock(&hugetlb_lock);
a5516438 1650 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
d1c3fb1f
NA
1651 spin_unlock(&hugetlb_lock);
1652 return NULL;
1653 } else {
a5516438
AK
1654 h->nr_huge_pages++;
1655 h->surplus_huge_pages++;
d1c3fb1f
NA
1656 }
1657 spin_unlock(&hugetlb_lock);
1658
099730d6 1659 page = __hugetlb_alloc_buddy_huge_page(h, vma, addr, nid);
d1c3fb1f
NA
1660
1661 spin_lock(&hugetlb_lock);
7893d1d5 1662 if (page) {
0edaecfa 1663 INIT_LIST_HEAD(&page->lru);
bf50bab2 1664 r_nid = page_to_nid(page);
f1e61557 1665 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
9dd540e2 1666 set_hugetlb_cgroup(page, NULL);
d1c3fb1f
NA
1667 /*
1668 * We incremented the global counters already
1669 */
bf50bab2
NH
1670 h->nr_huge_pages_node[r_nid]++;
1671 h->surplus_huge_pages_node[r_nid]++;
3b116300 1672 __count_vm_event(HTLB_BUDDY_PGALLOC);
d1c3fb1f 1673 } else {
a5516438
AK
1674 h->nr_huge_pages--;
1675 h->surplus_huge_pages--;
3b116300 1676 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
7893d1d5 1677 }
d1c3fb1f 1678 spin_unlock(&hugetlb_lock);
7893d1d5
AL
1679
1680 return page;
1681}
1682
099730d6
DH
1683/*
1684 * Allocate a huge page from 'nid'. Note, 'nid' may be
1685 * NUMA_NO_NODE, which means that it may be allocated
1686 * anywhere.
1687 */
e0ec90ee 1688static
099730d6
DH
1689struct page *__alloc_buddy_huge_page_no_mpol(struct hstate *h, int nid)
1690{
1691 unsigned long addr = -1;
1692
1693 return __alloc_buddy_huge_page(h, NULL, addr, nid);
1694}
1695
1696/*
1697 * Use the VMA's mpolicy to allocate a huge page from the buddy.
1698 */
e0ec90ee 1699static
099730d6
DH
1700struct page *__alloc_buddy_huge_page_with_mpol(struct hstate *h,
1701 struct vm_area_struct *vma, unsigned long addr)
1702{
1703 return __alloc_buddy_huge_page(h, vma, addr, NUMA_NO_NODE);
1704}
1705
bf50bab2
NH
1706/*
1707 * This allocation function is useful in the context where vma is irrelevant.
1708 * E.g. soft-offlining uses this function because it only cares physical
1709 * address of error page.
1710 */
1711struct page *alloc_huge_page_node(struct hstate *h, int nid)
1712{
4ef91848 1713 struct page *page = NULL;
bf50bab2
NH
1714
1715 spin_lock(&hugetlb_lock);
4ef91848
JK
1716 if (h->free_huge_pages - h->resv_huge_pages > 0)
1717 page = dequeue_huge_page_node(h, nid);
bf50bab2
NH
1718 spin_unlock(&hugetlb_lock);
1719
94ae8ba7 1720 if (!page)
099730d6 1721 page = __alloc_buddy_huge_page_no_mpol(h, nid);
bf50bab2
NH
1722
1723 return page;
1724}
1725
4db9b2ef
MH
1726struct page *alloc_huge_page_nodemask(struct hstate *h, const nodemask_t *nmask)
1727{
1728 struct page *page = NULL;
1729 int node;
1730
1731 spin_lock(&hugetlb_lock);
1732 if (h->free_huge_pages - h->resv_huge_pages > 0) {
1733 for_each_node_mask(node, *nmask) {
1734 page = dequeue_huge_page_node_exact(h, node);
1735 if (page)
1736 break;
1737 }
1738 }
1739 spin_unlock(&hugetlb_lock);
1740 if (page)
1741 return page;
1742
1743 /* No reservations, try to overcommit */
1744 for_each_node_mask(node, *nmask) {
1745 page = __alloc_buddy_huge_page_no_mpol(h, node);
1746 if (page)
1747 return page;
1748 }
1749
1750 return NULL;
1751}
1752
e4e574b7 1753/*
25985edc 1754 * Increase the hugetlb pool such that it can accommodate a reservation
e4e574b7
AL
1755 * of size 'delta'.
1756 */
a5516438 1757static int gather_surplus_pages(struct hstate *h, int delta)
e4e574b7
AL
1758{
1759 struct list_head surplus_list;
1760 struct page *page, *tmp;
1761 int ret, i;
1762 int needed, allocated;
28073b02 1763 bool alloc_ok = true;
e4e574b7 1764
a5516438 1765 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
ac09b3a1 1766 if (needed <= 0) {
a5516438 1767 h->resv_huge_pages += delta;
e4e574b7 1768 return 0;
ac09b3a1 1769 }
e4e574b7
AL
1770
1771 allocated = 0;
1772 INIT_LIST_HEAD(&surplus_list);
1773
1774 ret = -ENOMEM;
1775retry:
1776 spin_unlock(&hugetlb_lock);
1777 for (i = 0; i < needed; i++) {
099730d6 1778 page = __alloc_buddy_huge_page_no_mpol(h, NUMA_NO_NODE);
28073b02
HD
1779 if (!page) {
1780 alloc_ok = false;
1781 break;
1782 }
e4e574b7 1783 list_add(&page->lru, &surplus_list);
69ed779a 1784 cond_resched();
e4e574b7 1785 }
28073b02 1786 allocated += i;
e4e574b7
AL
1787
1788 /*
1789 * After retaking hugetlb_lock, we need to recalculate 'needed'
1790 * because either resv_huge_pages or free_huge_pages may have changed.
1791 */
1792 spin_lock(&hugetlb_lock);
a5516438
AK
1793 needed = (h->resv_huge_pages + delta) -
1794 (h->free_huge_pages + allocated);
28073b02
HD
1795 if (needed > 0) {
1796 if (alloc_ok)
1797 goto retry;
1798 /*
1799 * We were not able to allocate enough pages to
1800 * satisfy the entire reservation so we free what
1801 * we've allocated so far.
1802 */
1803 goto free;
1804 }
e4e574b7
AL
1805 /*
1806 * The surplus_list now contains _at_least_ the number of extra pages
25985edc 1807 * needed to accommodate the reservation. Add the appropriate number
e4e574b7 1808 * of pages to the hugetlb pool and free the extras back to the buddy
ac09b3a1
AL
1809 * allocator. Commit the entire reservation here to prevent another
1810 * process from stealing the pages as they are added to the pool but
1811 * before they are reserved.
e4e574b7
AL
1812 */
1813 needed += allocated;
a5516438 1814 h->resv_huge_pages += delta;
e4e574b7 1815 ret = 0;
a9869b83 1816
19fc3f0a 1817 /* Free the needed pages to the hugetlb pool */
e4e574b7 1818 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
19fc3f0a
AL
1819 if ((--needed) < 0)
1820 break;
a9869b83
NH
1821 /*
1822 * This page is now managed by the hugetlb allocator and has
1823 * no users -- drop the buddy allocator's reference.
1824 */
1825 put_page_testzero(page);
309381fe 1826 VM_BUG_ON_PAGE(page_count(page), page);
a5516438 1827 enqueue_huge_page(h, page);
19fc3f0a 1828 }
28073b02 1829free:
b0365c8d 1830 spin_unlock(&hugetlb_lock);
19fc3f0a
AL
1831
1832 /* Free unnecessary surplus pages to the buddy allocator */
c0d934ba
JK
1833 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1834 put_page(page);
a9869b83 1835 spin_lock(&hugetlb_lock);
e4e574b7
AL
1836
1837 return ret;
1838}
1839
1840/*
e5bbc8a6
MK
1841 * This routine has two main purposes:
1842 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
1843 * in unused_resv_pages. This corresponds to the prior adjustments made
1844 * to the associated reservation map.
1845 * 2) Free any unused surplus pages that may have been allocated to satisfy
1846 * the reservation. As many as unused_resv_pages may be freed.
1847 *
1848 * Called with hugetlb_lock held. However, the lock could be dropped (and
1849 * reacquired) during calls to cond_resched_lock. Whenever dropping the lock,
1850 * we must make sure nobody else can claim pages we are in the process of
1851 * freeing. Do this by ensuring resv_huge_page always is greater than the
1852 * number of huge pages we plan to free when dropping the lock.
e4e574b7 1853 */
a5516438
AK
1854static void return_unused_surplus_pages(struct hstate *h,
1855 unsigned long unused_resv_pages)
e4e574b7 1856{
e4e574b7
AL
1857 unsigned long nr_pages;
1858
aa888a74 1859 /* Cannot return gigantic pages currently */
bae7f4ae 1860 if (hstate_is_gigantic(h))
e5bbc8a6 1861 goto out;
aa888a74 1862
e5bbc8a6
MK
1863 /*
1864 * Part (or even all) of the reservation could have been backed
1865 * by pre-allocated pages. Only free surplus pages.
1866 */
a5516438 1867 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
e4e574b7 1868
685f3457
LS
1869 /*
1870 * We want to release as many surplus pages as possible, spread
9b5e5d0f
LS
1871 * evenly across all nodes with memory. Iterate across these nodes
1872 * until we can no longer free unreserved surplus pages. This occurs
1873 * when the nodes with surplus pages have no free pages.
1874 * free_pool_huge_page() will balance the the freed pages across the
1875 * on-line nodes with memory and will handle the hstate accounting.
e5bbc8a6
MK
1876 *
1877 * Note that we decrement resv_huge_pages as we free the pages. If
1878 * we drop the lock, resv_huge_pages will still be sufficiently large
1879 * to cover subsequent pages we may free.
685f3457
LS
1880 */
1881 while (nr_pages--) {
e5bbc8a6
MK
1882 h->resv_huge_pages--;
1883 unused_resv_pages--;
8cebfcd0 1884 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
e5bbc8a6 1885 goto out;
7848a4bf 1886 cond_resched_lock(&hugetlb_lock);
e4e574b7 1887 }
e5bbc8a6
MK
1888
1889out:
1890 /* Fully uncommit the reservation */
1891 h->resv_huge_pages -= unused_resv_pages;
e4e574b7
AL
1892}
1893
5e911373 1894
c37f9fb1 1895/*
feba16e2 1896 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
5e911373 1897 * are used by the huge page allocation routines to manage reservations.
cf3ad20b
MK
1898 *
1899 * vma_needs_reservation is called to determine if the huge page at addr
1900 * within the vma has an associated reservation. If a reservation is
1901 * needed, the value 1 is returned. The caller is then responsible for
1902 * managing the global reservation and subpool usage counts. After
1903 * the huge page has been allocated, vma_commit_reservation is called
feba16e2
MK
1904 * to add the page to the reservation map. If the page allocation fails,
1905 * the reservation must be ended instead of committed. vma_end_reservation
1906 * is called in such cases.
cf3ad20b
MK
1907 *
1908 * In the normal case, vma_commit_reservation returns the same value
1909 * as the preceding vma_needs_reservation call. The only time this
1910 * is not the case is if a reserve map was changed between calls. It
1911 * is the responsibility of the caller to notice the difference and
1912 * take appropriate action.
96b96a96
MK
1913 *
1914 * vma_add_reservation is used in error paths where a reservation must
1915 * be restored when a newly allocated huge page must be freed. It is
1916 * to be called after calling vma_needs_reservation to determine if a
1917 * reservation exists.
c37f9fb1 1918 */
5e911373
MK
1919enum vma_resv_mode {
1920 VMA_NEEDS_RESV,
1921 VMA_COMMIT_RESV,
feba16e2 1922 VMA_END_RESV,
96b96a96 1923 VMA_ADD_RESV,
5e911373 1924};
cf3ad20b
MK
1925static long __vma_reservation_common(struct hstate *h,
1926 struct vm_area_struct *vma, unsigned long addr,
5e911373 1927 enum vma_resv_mode mode)
c37f9fb1 1928{
4e35f483
JK
1929 struct resv_map *resv;
1930 pgoff_t idx;
cf3ad20b 1931 long ret;
c37f9fb1 1932
4e35f483
JK
1933 resv = vma_resv_map(vma);
1934 if (!resv)
84afd99b 1935 return 1;
c37f9fb1 1936
4e35f483 1937 idx = vma_hugecache_offset(h, vma, addr);
5e911373
MK
1938 switch (mode) {
1939 case VMA_NEEDS_RESV:
cf3ad20b 1940 ret = region_chg(resv, idx, idx + 1);
5e911373
MK
1941 break;
1942 case VMA_COMMIT_RESV:
1943 ret = region_add(resv, idx, idx + 1);
1944 break;
feba16e2 1945 case VMA_END_RESV:
5e911373
MK
1946 region_abort(resv, idx, idx + 1);
1947 ret = 0;
1948 break;
96b96a96
MK
1949 case VMA_ADD_RESV:
1950 if (vma->vm_flags & VM_MAYSHARE)
1951 ret = region_add(resv, idx, idx + 1);
1952 else {
1953 region_abort(resv, idx, idx + 1);
1954 ret = region_del(resv, idx, idx + 1);
1955 }
1956 break;
5e911373
MK
1957 default:
1958 BUG();
1959 }
84afd99b 1960
4e35f483 1961 if (vma->vm_flags & VM_MAYSHARE)
cf3ad20b 1962 return ret;
67961f9d
MK
1963 else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
1964 /*
1965 * In most cases, reserves always exist for private mappings.
1966 * However, a file associated with mapping could have been
1967 * hole punched or truncated after reserves were consumed.
1968 * As subsequent fault on such a range will not use reserves.
1969 * Subtle - The reserve map for private mappings has the
1970 * opposite meaning than that of shared mappings. If NO
1971 * entry is in the reserve map, it means a reservation exists.
1972 * If an entry exists in the reserve map, it means the
1973 * reservation has already been consumed. As a result, the
1974 * return value of this routine is the opposite of the
1975 * value returned from reserve map manipulation routines above.
1976 */
1977 if (ret)
1978 return 0;
1979 else
1980 return 1;
1981 }
4e35f483 1982 else
cf3ad20b 1983 return ret < 0 ? ret : 0;
c37f9fb1 1984}
cf3ad20b
MK
1985
1986static long vma_needs_reservation(struct hstate *h,
a5516438 1987 struct vm_area_struct *vma, unsigned long addr)
c37f9fb1 1988{
5e911373 1989 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
cf3ad20b 1990}
84afd99b 1991
cf3ad20b
MK
1992static long vma_commit_reservation(struct hstate *h,
1993 struct vm_area_struct *vma, unsigned long addr)
1994{
5e911373
MK
1995 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
1996}
1997
feba16e2 1998static void vma_end_reservation(struct hstate *h,
5e911373
MK
1999 struct vm_area_struct *vma, unsigned long addr)
2000{
feba16e2 2001 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
c37f9fb1
AW
2002}
2003
96b96a96
MK
2004static long vma_add_reservation(struct hstate *h,
2005 struct vm_area_struct *vma, unsigned long addr)
2006{
2007 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2008}
2009
2010/*
2011 * This routine is called to restore a reservation on error paths. In the
2012 * specific error paths, a huge page was allocated (via alloc_huge_page)
2013 * and is about to be freed. If a reservation for the page existed,
2014 * alloc_huge_page would have consumed the reservation and set PagePrivate
2015 * in the newly allocated page. When the page is freed via free_huge_page,
2016 * the global reservation count will be incremented if PagePrivate is set.
2017 * However, free_huge_page can not adjust the reserve map. Adjust the
2018 * reserve map here to be consistent with global reserve count adjustments
2019 * to be made by free_huge_page.
2020 */
2021static void restore_reserve_on_error(struct hstate *h,
2022 struct vm_area_struct *vma, unsigned long address,
2023 struct page *page)
2024{
2025 if (unlikely(PagePrivate(page))) {
2026 long rc = vma_needs_reservation(h, vma, address);
2027
2028 if (unlikely(rc < 0)) {
2029 /*
2030 * Rare out of memory condition in reserve map
2031 * manipulation. Clear PagePrivate so that
2032 * global reserve count will not be incremented
2033 * by free_huge_page. This will make it appear
2034 * as though the reservation for this page was
2035 * consumed. This may prevent the task from
2036 * faulting in the page at a later time. This
2037 * is better than inconsistent global huge page
2038 * accounting of reserve counts.
2039 */
2040 ClearPagePrivate(page);
2041 } else if (rc) {
2042 rc = vma_add_reservation(h, vma, address);
2043 if (unlikely(rc < 0))
2044 /*
2045 * See above comment about rare out of
2046 * memory condition.
2047 */
2048 ClearPagePrivate(page);
2049 } else
2050 vma_end_reservation(h, vma, address);
2051 }
2052}
2053
70c3547e 2054struct page *alloc_huge_page(struct vm_area_struct *vma,
04f2cbe3 2055 unsigned long addr, int avoid_reserve)
1da177e4 2056{
90481622 2057 struct hugepage_subpool *spool = subpool_vma(vma);
a5516438 2058 struct hstate *h = hstate_vma(vma);
348ea204 2059 struct page *page;
d85f69b0
MK
2060 long map_chg, map_commit;
2061 long gbl_chg;
6d76dcf4
AK
2062 int ret, idx;
2063 struct hugetlb_cgroup *h_cg;
a1e78772 2064
6d76dcf4 2065 idx = hstate_index(h);
a1e78772 2066 /*
d85f69b0
MK
2067 * Examine the region/reserve map to determine if the process
2068 * has a reservation for the page to be allocated. A return
2069 * code of zero indicates a reservation exists (no change).
a1e78772 2070 */
d85f69b0
MK
2071 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2072 if (map_chg < 0)
76dcee75 2073 return ERR_PTR(-ENOMEM);
d85f69b0
MK
2074
2075 /*
2076 * Processes that did not create the mapping will have no
2077 * reserves as indicated by the region/reserve map. Check
2078 * that the allocation will not exceed the subpool limit.
2079 * Allocations for MAP_NORESERVE mappings also need to be
2080 * checked against any subpool limit.
2081 */
2082 if (map_chg || avoid_reserve) {
2083 gbl_chg = hugepage_subpool_get_pages(spool, 1);
2084 if (gbl_chg < 0) {
feba16e2 2085 vma_end_reservation(h, vma, addr);
76dcee75 2086 return ERR_PTR(-ENOSPC);
5e911373 2087 }
1da177e4 2088
d85f69b0
MK
2089 /*
2090 * Even though there was no reservation in the region/reserve
2091 * map, there could be reservations associated with the
2092 * subpool that can be used. This would be indicated if the
2093 * return value of hugepage_subpool_get_pages() is zero.
2094 * However, if avoid_reserve is specified we still avoid even
2095 * the subpool reservations.
2096 */
2097 if (avoid_reserve)
2098 gbl_chg = 1;
2099 }
2100
6d76dcf4 2101 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
8f34af6f
JZ
2102 if (ret)
2103 goto out_subpool_put;
2104
1da177e4 2105 spin_lock(&hugetlb_lock);
d85f69b0
MK
2106 /*
2107 * glb_chg is passed to indicate whether or not a page must be taken
2108 * from the global free pool (global change). gbl_chg == 0 indicates
2109 * a reservation exists for the allocation.
2110 */
2111 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
81a6fcae 2112 if (!page) {
94ae8ba7 2113 spin_unlock(&hugetlb_lock);
099730d6 2114 page = __alloc_buddy_huge_page_with_mpol(h, vma, addr);
8f34af6f
JZ
2115 if (!page)
2116 goto out_uncharge_cgroup;
a88c7695
NH
2117 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2118 SetPagePrivate(page);
2119 h->resv_huge_pages--;
2120 }
79dbb236
AK
2121 spin_lock(&hugetlb_lock);
2122 list_move(&page->lru, &h->hugepage_activelist);
81a6fcae 2123 /* Fall through */
68842c9b 2124 }
81a6fcae
JK
2125 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2126 spin_unlock(&hugetlb_lock);
348ea204 2127
90481622 2128 set_page_private(page, (unsigned long)spool);
90d8b7e6 2129
d85f69b0
MK
2130 map_commit = vma_commit_reservation(h, vma, addr);
2131 if (unlikely(map_chg > map_commit)) {
33039678
MK
2132 /*
2133 * The page was added to the reservation map between
2134 * vma_needs_reservation and vma_commit_reservation.
2135 * This indicates a race with hugetlb_reserve_pages.
2136 * Adjust for the subpool count incremented above AND
2137 * in hugetlb_reserve_pages for the same page. Also,
2138 * the reservation count added in hugetlb_reserve_pages
2139 * no longer applies.
2140 */
2141 long rsv_adjust;
2142
2143 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2144 hugetlb_acct_memory(h, -rsv_adjust);
2145 }
90d8b7e6 2146 return page;
8f34af6f
JZ
2147
2148out_uncharge_cgroup:
2149 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2150out_subpool_put:
d85f69b0 2151 if (map_chg || avoid_reserve)
8f34af6f 2152 hugepage_subpool_put_pages(spool, 1);
feba16e2 2153 vma_end_reservation(h, vma, addr);
8f34af6f 2154 return ERR_PTR(-ENOSPC);
b45b5bd6
DG
2155}
2156
74060e4d
NH
2157/*
2158 * alloc_huge_page()'s wrapper which simply returns the page if allocation
2159 * succeeds, otherwise NULL. This function is called from new_vma_page(),
2160 * where no ERR_VALUE is expected to be returned.
2161 */
2162struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
2163 unsigned long addr, int avoid_reserve)
2164{
2165 struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
2166 if (IS_ERR(page))
2167 page = NULL;
2168 return page;
2169}
2170
91f47662 2171int __weak alloc_bootmem_huge_page(struct hstate *h)
aa888a74
AK
2172{
2173 struct huge_bootmem_page *m;
b2261026 2174 int nr_nodes, node;
aa888a74 2175
b2261026 2176 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
aa888a74
AK
2177 void *addr;
2178
8b89a116
GS
2179 addr = memblock_virt_alloc_try_nid_nopanic(
2180 huge_page_size(h), huge_page_size(h),
2181 0, BOOTMEM_ALLOC_ACCESSIBLE, node);
aa888a74
AK
2182 if (addr) {
2183 /*
2184 * Use the beginning of the huge page to store the
2185 * huge_bootmem_page struct (until gather_bootmem
2186 * puts them into the mem_map).
2187 */
2188 m = addr;
91f47662 2189 goto found;
aa888a74 2190 }
aa888a74
AK
2191 }
2192 return 0;
2193
2194found:
df994ead 2195 BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
aa888a74
AK
2196 /* Put them into a private list first because mem_map is not up yet */
2197 list_add(&m->list, &huge_boot_pages);
2198 m->hstate = h;
2199 return 1;
2200}
2201
d00181b9
KS
2202static void __init prep_compound_huge_page(struct page *page,
2203 unsigned int order)
18229df5
AW
2204{
2205 if (unlikely(order > (MAX_ORDER - 1)))
2206 prep_compound_gigantic_page(page, order);
2207 else
2208 prep_compound_page(page, order);
2209}
2210
aa888a74
AK
2211/* Put bootmem huge pages into the standard lists after mem_map is up */
2212static void __init gather_bootmem_prealloc(void)
2213{
2214 struct huge_bootmem_page *m;
2215
2216 list_for_each_entry(m, &huge_boot_pages, list) {
aa888a74 2217 struct hstate *h = m->hstate;
ee8f248d
BB
2218 struct page *page;
2219
2220#ifdef CONFIG_HIGHMEM
2221 page = pfn_to_page(m->phys >> PAGE_SHIFT);
8b89a116
GS
2222 memblock_free_late(__pa(m),
2223 sizeof(struct huge_bootmem_page));
ee8f248d
BB
2224#else
2225 page = virt_to_page(m);
2226#endif
aa888a74 2227 WARN_ON(page_count(page) != 1);
18229df5 2228 prep_compound_huge_page(page, h->order);
ef5a22be 2229 WARN_ON(PageReserved(page));
aa888a74 2230 prep_new_huge_page(h, page, page_to_nid(page));
b0320c7b
RA
2231 /*
2232 * If we had gigantic hugepages allocated at boot time, we need
2233 * to restore the 'stolen' pages to totalram_pages in order to
2234 * fix confusing memory reports from free(1) and another
2235 * side-effects, like CommitLimit going negative.
2236 */
bae7f4ae 2237 if (hstate_is_gigantic(h))
3dcc0571 2238 adjust_managed_page_count(page, 1 << h->order);
aa888a74
AK
2239 }
2240}
2241
8faa8b07 2242static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1da177e4
LT
2243{
2244 unsigned long i;
a5516438 2245
e5ff2159 2246 for (i = 0; i < h->max_huge_pages; ++i) {
bae7f4ae 2247 if (hstate_is_gigantic(h)) {
aa888a74
AK
2248 if (!alloc_bootmem_huge_page(h))
2249 break;
9b5e5d0f 2250 } else if (!alloc_fresh_huge_page(h,
8cebfcd0 2251 &node_states[N_MEMORY]))
1da177e4 2252 break;
69ed779a 2253 cond_resched();
1da177e4 2254 }
d715cf80
LH
2255 if (i < h->max_huge_pages) {
2256 char buf[32];
2257
2258 memfmt(buf, huge_page_size(h)),
2259 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n",
2260 h->max_huge_pages, buf, i);
2261 h->max_huge_pages = i;
2262 }
e5ff2159
AK
2263}
2264
2265static void __init hugetlb_init_hstates(void)
2266{
2267 struct hstate *h;
2268
2269 for_each_hstate(h) {
641844f5
NH
2270 if (minimum_order > huge_page_order(h))
2271 minimum_order = huge_page_order(h);
2272
8faa8b07 2273 /* oversize hugepages were init'ed in early boot */
bae7f4ae 2274 if (!hstate_is_gigantic(h))
8faa8b07 2275 hugetlb_hstate_alloc_pages(h);
e5ff2159 2276 }
641844f5 2277 VM_BUG_ON(minimum_order == UINT_MAX);
e5ff2159
AK
2278}
2279
2280static void __init report_hugepages(void)
2281{
2282 struct hstate *h;
2283
2284 for_each_hstate(h) {
4abd32db 2285 char buf[32];
ffb22af5 2286 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
4abd32db
AK
2287 memfmt(buf, huge_page_size(h)),
2288 h->free_huge_pages);
e5ff2159
AK
2289 }
2290}
2291
1da177e4 2292#ifdef CONFIG_HIGHMEM
6ae11b27
LS
2293static void try_to_free_low(struct hstate *h, unsigned long count,
2294 nodemask_t *nodes_allowed)
1da177e4 2295{
4415cc8d
CL
2296 int i;
2297
bae7f4ae 2298 if (hstate_is_gigantic(h))
aa888a74
AK
2299 return;
2300
6ae11b27 2301 for_each_node_mask(i, *nodes_allowed) {
1da177e4 2302 struct page *page, *next;
a5516438
AK
2303 struct list_head *freel = &h->hugepage_freelists[i];
2304 list_for_each_entry_safe(page, next, freel, lru) {
2305 if (count >= h->nr_huge_pages)
6b0c880d 2306 return;
1da177e4
LT
2307 if (PageHighMem(page))
2308 continue;
2309 list_del(&page->lru);
e5ff2159 2310 update_and_free_page(h, page);
a5516438
AK
2311 h->free_huge_pages--;
2312 h->free_huge_pages_node[page_to_nid(page)]--;
1da177e4
LT
2313 }
2314 }
2315}
2316#else
6ae11b27
LS
2317static inline void try_to_free_low(struct hstate *h, unsigned long count,
2318 nodemask_t *nodes_allowed)
1da177e4
LT
2319{
2320}
2321#endif
2322
20a0307c
WF
2323/*
2324 * Increment or decrement surplus_huge_pages. Keep node-specific counters
2325 * balanced by operating on them in a round-robin fashion.
2326 * Returns 1 if an adjustment was made.
2327 */
6ae11b27
LS
2328static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2329 int delta)
20a0307c 2330{
b2261026 2331 int nr_nodes, node;
20a0307c
WF
2332
2333 VM_BUG_ON(delta != -1 && delta != 1);
20a0307c 2334
b2261026
JK
2335 if (delta < 0) {
2336 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2337 if (h->surplus_huge_pages_node[node])
2338 goto found;
e8c5c824 2339 }
b2261026
JK
2340 } else {
2341 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2342 if (h->surplus_huge_pages_node[node] <
2343 h->nr_huge_pages_node[node])
2344 goto found;
e8c5c824 2345 }
b2261026
JK
2346 }
2347 return 0;
20a0307c 2348
b2261026
JK
2349found:
2350 h->surplus_huge_pages += delta;
2351 h->surplus_huge_pages_node[node] += delta;
2352 return 1;
20a0307c
WF
2353}
2354
a5516438 2355#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
6ae11b27
LS
2356static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
2357 nodemask_t *nodes_allowed)
1da177e4 2358{
7893d1d5 2359 unsigned long min_count, ret;
1da177e4 2360
944d9fec 2361 if (hstate_is_gigantic(h) && !gigantic_page_supported())
aa888a74
AK
2362 return h->max_huge_pages;
2363
7893d1d5
AL
2364 /*
2365 * Increase the pool size
2366 * First take pages out of surplus state. Then make up the
2367 * remaining difference by allocating fresh huge pages.
d1c3fb1f 2368 *
d15c7c09 2369 * We might race with __alloc_buddy_huge_page() here and be unable
d1c3fb1f
NA
2370 * to convert a surplus huge page to a normal huge page. That is
2371 * not critical, though, it just means the overall size of the
2372 * pool might be one hugepage larger than it needs to be, but
2373 * within all the constraints specified by the sysctls.
7893d1d5 2374 */
1da177e4 2375 spin_lock(&hugetlb_lock);
a5516438 2376 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
6ae11b27 2377 if (!adjust_pool_surplus(h, nodes_allowed, -1))
7893d1d5
AL
2378 break;
2379 }
2380
a5516438 2381 while (count > persistent_huge_pages(h)) {
7893d1d5
AL
2382 /*
2383 * If this allocation races such that we no longer need the
2384 * page, free_huge_page will handle it by freeing the page
2385 * and reducing the surplus.
2386 */
2387 spin_unlock(&hugetlb_lock);
649920c6
JH
2388
2389 /* yield cpu to avoid soft lockup */
2390 cond_resched();
2391
944d9fec
LC
2392 if (hstate_is_gigantic(h))
2393 ret = alloc_fresh_gigantic_page(h, nodes_allowed);
2394 else
2395 ret = alloc_fresh_huge_page(h, nodes_allowed);
7893d1d5
AL
2396 spin_lock(&hugetlb_lock);
2397 if (!ret)
2398 goto out;
2399
536240f2
MG
2400 /* Bail for signals. Probably ctrl-c from user */
2401 if (signal_pending(current))
2402 goto out;
7893d1d5 2403 }
7893d1d5
AL
2404
2405 /*
2406 * Decrease the pool size
2407 * First return free pages to the buddy allocator (being careful
2408 * to keep enough around to satisfy reservations). Then place
2409 * pages into surplus state as needed so the pool will shrink
2410 * to the desired size as pages become free.
d1c3fb1f
NA
2411 *
2412 * By placing pages into the surplus state independent of the
2413 * overcommit value, we are allowing the surplus pool size to
2414 * exceed overcommit. There are few sane options here. Since
d15c7c09 2415 * __alloc_buddy_huge_page() is checking the global counter,
d1c3fb1f
NA
2416 * though, we'll note that we're not allowed to exceed surplus
2417 * and won't grow the pool anywhere else. Not until one of the
2418 * sysctls are changed, or the surplus pages go out of use.
7893d1d5 2419 */
a5516438 2420 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
6b0c880d 2421 min_count = max(count, min_count);
6ae11b27 2422 try_to_free_low(h, min_count, nodes_allowed);
a5516438 2423 while (min_count < persistent_huge_pages(h)) {
6ae11b27 2424 if (!free_pool_huge_page(h, nodes_allowed, 0))
1da177e4 2425 break;
55f67141 2426 cond_resched_lock(&hugetlb_lock);
1da177e4 2427 }
a5516438 2428 while (count < persistent_huge_pages(h)) {
6ae11b27 2429 if (!adjust_pool_surplus(h, nodes_allowed, 1))
7893d1d5
AL
2430 break;
2431 }
2432out:
a5516438 2433 ret = persistent_huge_pages(h);
1da177e4 2434 spin_unlock(&hugetlb_lock);
7893d1d5 2435 return ret;
1da177e4
LT
2436}
2437
a3437870
NA
2438#define HSTATE_ATTR_RO(_name) \
2439 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2440
2441#define HSTATE_ATTR(_name) \
2442 static struct kobj_attribute _name##_attr = \
2443 __ATTR(_name, 0644, _name##_show, _name##_store)
2444
2445static struct kobject *hugepages_kobj;
2446static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2447
9a305230
LS
2448static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2449
2450static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
a3437870
NA
2451{
2452 int i;
9a305230 2453
a3437870 2454 for (i = 0; i < HUGE_MAX_HSTATE; i++)
9a305230
LS
2455 if (hstate_kobjs[i] == kobj) {
2456 if (nidp)
2457 *nidp = NUMA_NO_NODE;
a3437870 2458 return &hstates[i];
9a305230
LS
2459 }
2460
2461 return kobj_to_node_hstate(kobj, nidp);
a3437870
NA
2462}
2463
06808b08 2464static ssize_t nr_hugepages_show_common(struct kobject *kobj,
a3437870
NA
2465 struct kobj_attribute *attr, char *buf)
2466{
9a305230
LS
2467 struct hstate *h;
2468 unsigned long nr_huge_pages;
2469 int nid;
2470
2471 h = kobj_to_hstate(kobj, &nid);
2472 if (nid == NUMA_NO_NODE)
2473 nr_huge_pages = h->nr_huge_pages;
2474 else
2475 nr_huge_pages = h->nr_huge_pages_node[nid];
2476
2477 return sprintf(buf, "%lu\n", nr_huge_pages);
a3437870 2478}
adbe8726 2479
238d3c13
DR
2480static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2481 struct hstate *h, int nid,
2482 unsigned long count, size_t len)
a3437870
NA
2483{
2484 int err;
bad44b5b 2485 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
a3437870 2486
944d9fec 2487 if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
adbe8726
EM
2488 err = -EINVAL;
2489 goto out;
2490 }
2491
9a305230
LS
2492 if (nid == NUMA_NO_NODE) {
2493 /*
2494 * global hstate attribute
2495 */
2496 if (!(obey_mempolicy &&
2497 init_nodemask_of_mempolicy(nodes_allowed))) {
2498 NODEMASK_FREE(nodes_allowed);
8cebfcd0 2499 nodes_allowed = &node_states[N_MEMORY];
9a305230
LS
2500 }
2501 } else if (nodes_allowed) {
2502 /*
2503 * per node hstate attribute: adjust count to global,
2504 * but restrict alloc/free to the specified node.
2505 */
2506 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2507 init_nodemask_of_node(nodes_allowed, nid);
2508 } else
8cebfcd0 2509 nodes_allowed = &node_states[N_MEMORY];
9a305230 2510
06808b08 2511 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
a3437870 2512
8cebfcd0 2513 if (nodes_allowed != &node_states[N_MEMORY])
06808b08
LS
2514 NODEMASK_FREE(nodes_allowed);
2515
2516 return len;
adbe8726
EM
2517out:
2518 NODEMASK_FREE(nodes_allowed);
2519 return err;
06808b08
LS
2520}
2521
238d3c13
DR
2522static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2523 struct kobject *kobj, const char *buf,
2524 size_t len)
2525{
2526 struct hstate *h;
2527 unsigned long count;
2528 int nid;
2529 int err;
2530
2531 err = kstrtoul(buf, 10, &count);
2532 if (err)
2533 return err;
2534
2535 h = kobj_to_hstate(kobj, &nid);
2536 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2537}
2538
06808b08
LS
2539static ssize_t nr_hugepages_show(struct kobject *kobj,
2540 struct kobj_attribute *attr, char *buf)
2541{
2542 return nr_hugepages_show_common(kobj, attr, buf);
2543}
2544
2545static ssize_t nr_hugepages_store(struct kobject *kobj,
2546 struct kobj_attribute *attr, const char *buf, size_t len)
2547{
238d3c13 2548 return nr_hugepages_store_common(false, kobj, buf, len);
a3437870
NA
2549}
2550HSTATE_ATTR(nr_hugepages);
2551
06808b08
LS
2552#ifdef CONFIG_NUMA
2553
2554/*
2555 * hstate attribute for optionally mempolicy-based constraint on persistent
2556 * huge page alloc/free.
2557 */
2558static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2559 struct kobj_attribute *attr, char *buf)
2560{
2561 return nr_hugepages_show_common(kobj, attr, buf);
2562}
2563
2564static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2565 struct kobj_attribute *attr, const char *buf, size_t len)
2566{
238d3c13 2567 return nr_hugepages_store_common(true, kobj, buf, len);
06808b08
LS
2568}
2569HSTATE_ATTR(nr_hugepages_mempolicy);
2570#endif
2571
2572
a3437870
NA
2573static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2574 struct kobj_attribute *attr, char *buf)
2575{
9a305230 2576 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870
NA
2577 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2578}
adbe8726 2579
a3437870
NA
2580static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2581 struct kobj_attribute *attr, const char *buf, size_t count)
2582{
2583 int err;
2584 unsigned long input;
9a305230 2585 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870 2586
bae7f4ae 2587 if (hstate_is_gigantic(h))
adbe8726
EM
2588 return -EINVAL;
2589
3dbb95f7 2590 err = kstrtoul(buf, 10, &input);
a3437870 2591 if (err)
73ae31e5 2592 return err;
a3437870
NA
2593
2594 spin_lock(&hugetlb_lock);
2595 h->nr_overcommit_huge_pages = input;
2596 spin_unlock(&hugetlb_lock);
2597
2598 return count;
2599}
2600HSTATE_ATTR(nr_overcommit_hugepages);
2601
2602static ssize_t free_hugepages_show(struct kobject *kobj,
2603 struct kobj_attribute *attr, char *buf)
2604{
9a305230
LS
2605 struct hstate *h;
2606 unsigned long free_huge_pages;
2607 int nid;
2608
2609 h = kobj_to_hstate(kobj, &nid);
2610 if (nid == NUMA_NO_NODE)
2611 free_huge_pages = h->free_huge_pages;
2612 else
2613 free_huge_pages = h->free_huge_pages_node[nid];
2614
2615 return sprintf(buf, "%lu\n", free_huge_pages);
a3437870
NA
2616}
2617HSTATE_ATTR_RO(free_hugepages);
2618
2619static ssize_t resv_hugepages_show(struct kobject *kobj,
2620 struct kobj_attribute *attr, char *buf)
2621{
9a305230 2622 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870
NA
2623 return sprintf(buf, "%lu\n", h->resv_huge_pages);
2624}
2625HSTATE_ATTR_RO(resv_hugepages);
2626
2627static ssize_t surplus_hugepages_show(struct kobject *kobj,
2628 struct kobj_attribute *attr, char *buf)
2629{
9a305230
LS
2630 struct hstate *h;
2631 unsigned long surplus_huge_pages;
2632 int nid;
2633
2634 h = kobj_to_hstate(kobj, &nid);
2635 if (nid == NUMA_NO_NODE)
2636 surplus_huge_pages = h->surplus_huge_pages;
2637 else
2638 surplus_huge_pages = h->surplus_huge_pages_node[nid];
2639
2640 return sprintf(buf, "%lu\n", surplus_huge_pages);
a3437870
NA
2641}
2642HSTATE_ATTR_RO(surplus_hugepages);
2643
2644static struct attribute *hstate_attrs[] = {
2645 &nr_hugepages_attr.attr,
2646 &nr_overcommit_hugepages_attr.attr,
2647 &free_hugepages_attr.attr,
2648 &resv_hugepages_attr.attr,
2649 &surplus_hugepages_attr.attr,
06808b08
LS
2650#ifdef CONFIG_NUMA
2651 &nr_hugepages_mempolicy_attr.attr,
2652#endif
a3437870
NA
2653 NULL,
2654};
2655
2656static struct attribute_group hstate_attr_group = {
2657 .attrs = hstate_attrs,
2658};
2659
094e9539
JM
2660static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2661 struct kobject **hstate_kobjs,
2662 struct attribute_group *hstate_attr_group)
a3437870
NA
2663{
2664 int retval;
972dc4de 2665 int hi = hstate_index(h);
a3437870 2666
9a305230
LS
2667 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2668 if (!hstate_kobjs[hi])
a3437870
NA
2669 return -ENOMEM;
2670
9a305230 2671 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
a3437870 2672 if (retval)
9a305230 2673 kobject_put(hstate_kobjs[hi]);
a3437870
NA
2674
2675 return retval;
2676}
2677
2678static void __init hugetlb_sysfs_init(void)
2679{
2680 struct hstate *h;
2681 int err;
2682
2683 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2684 if (!hugepages_kobj)
2685 return;
2686
2687 for_each_hstate(h) {
9a305230
LS
2688 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2689 hstate_kobjs, &hstate_attr_group);
a3437870 2690 if (err)
ffb22af5 2691 pr_err("Hugetlb: Unable to add hstate %s", h->name);
a3437870
NA
2692 }
2693}
2694
9a305230
LS
2695#ifdef CONFIG_NUMA
2696
2697/*
2698 * node_hstate/s - associate per node hstate attributes, via their kobjects,
10fbcf4c
KS
2699 * with node devices in node_devices[] using a parallel array. The array
2700 * index of a node device or _hstate == node id.
2701 * This is here to avoid any static dependency of the node device driver, in
9a305230
LS
2702 * the base kernel, on the hugetlb module.
2703 */
2704struct node_hstate {
2705 struct kobject *hugepages_kobj;
2706 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2707};
b4e289a6 2708static struct node_hstate node_hstates[MAX_NUMNODES];
9a305230
LS
2709
2710/*
10fbcf4c 2711 * A subset of global hstate attributes for node devices
9a305230
LS
2712 */
2713static struct attribute *per_node_hstate_attrs[] = {
2714 &nr_hugepages_attr.attr,
2715 &free_hugepages_attr.attr,
2716 &surplus_hugepages_attr.attr,
2717 NULL,
2718};
2719
2720static struct attribute_group per_node_hstate_attr_group = {
2721 .attrs = per_node_hstate_attrs,
2722};
2723
2724/*
10fbcf4c 2725 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
9a305230
LS
2726 * Returns node id via non-NULL nidp.
2727 */
2728static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2729{
2730 int nid;
2731
2732 for (nid = 0; nid < nr_node_ids; nid++) {
2733 struct node_hstate *nhs = &node_hstates[nid];
2734 int i;
2735 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2736 if (nhs->hstate_kobjs[i] == kobj) {
2737 if (nidp)
2738 *nidp = nid;
2739 return &hstates[i];
2740 }
2741 }
2742
2743 BUG();
2744 return NULL;
2745}
2746
2747/*
10fbcf4c 2748 * Unregister hstate attributes from a single node device.
9a305230
LS
2749 * No-op if no hstate attributes attached.
2750 */
3cd8b44f 2751static void hugetlb_unregister_node(struct node *node)
9a305230
LS
2752{
2753 struct hstate *h;
10fbcf4c 2754 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
2755
2756 if (!nhs->hugepages_kobj)
9b5e5d0f 2757 return; /* no hstate attributes */
9a305230 2758
972dc4de
AK
2759 for_each_hstate(h) {
2760 int idx = hstate_index(h);
2761 if (nhs->hstate_kobjs[idx]) {
2762 kobject_put(nhs->hstate_kobjs[idx]);
2763 nhs->hstate_kobjs[idx] = NULL;
9a305230 2764 }
972dc4de 2765 }
9a305230
LS
2766
2767 kobject_put(nhs->hugepages_kobj);
2768 nhs->hugepages_kobj = NULL;
2769}
2770
9a305230
LS
2771
2772/*
10fbcf4c 2773 * Register hstate attributes for a single node device.
9a305230
LS
2774 * No-op if attributes already registered.
2775 */
3cd8b44f 2776static void hugetlb_register_node(struct node *node)
9a305230
LS
2777{
2778 struct hstate *h;
10fbcf4c 2779 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
2780 int err;
2781
2782 if (nhs->hugepages_kobj)
2783 return; /* already allocated */
2784
2785 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
10fbcf4c 2786 &node->dev.kobj);
9a305230
LS
2787 if (!nhs->hugepages_kobj)
2788 return;
2789
2790 for_each_hstate(h) {
2791 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2792 nhs->hstate_kobjs,
2793 &per_node_hstate_attr_group);
2794 if (err) {
ffb22af5
AM
2795 pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2796 h->name, node->dev.id);
9a305230
LS
2797 hugetlb_unregister_node(node);
2798 break;
2799 }
2800 }
2801}
2802
2803/*
9b5e5d0f 2804 * hugetlb init time: register hstate attributes for all registered node
10fbcf4c
KS
2805 * devices of nodes that have memory. All on-line nodes should have
2806 * registered their associated device by this time.
9a305230 2807 */
7d9ca000 2808static void __init hugetlb_register_all_nodes(void)
9a305230
LS
2809{
2810 int nid;
2811
8cebfcd0 2812 for_each_node_state(nid, N_MEMORY) {
8732794b 2813 struct node *node = node_devices[nid];
10fbcf4c 2814 if (node->dev.id == nid)
9a305230
LS
2815 hugetlb_register_node(node);
2816 }
2817
2818 /*
10fbcf4c 2819 * Let the node device driver know we're here so it can
9a305230
LS
2820 * [un]register hstate attributes on node hotplug.
2821 */
2822 register_hugetlbfs_with_node(hugetlb_register_node,
2823 hugetlb_unregister_node);
2824}
2825#else /* !CONFIG_NUMA */
2826
2827static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2828{
2829 BUG();
2830 if (nidp)
2831 *nidp = -1;
2832 return NULL;
2833}
2834
9a305230
LS
2835static void hugetlb_register_all_nodes(void) { }
2836
2837#endif
2838
a3437870
NA
2839static int __init hugetlb_init(void)
2840{
8382d914
DB
2841 int i;
2842
457c1b27 2843 if (!hugepages_supported())
0ef89d25 2844 return 0;
a3437870 2845
e11bfbfc 2846 if (!size_to_hstate(default_hstate_size)) {
d715cf80
LH
2847 if (default_hstate_size != 0) {
2848 pr_err("HugeTLB: unsupported default_hugepagesz %lu. Reverting to %lu\n",
2849 default_hstate_size, HPAGE_SIZE);
2850 }
2851
e11bfbfc
NP
2852 default_hstate_size = HPAGE_SIZE;
2853 if (!size_to_hstate(default_hstate_size))
2854 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
a3437870 2855 }
972dc4de 2856 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
f8b74815
VT
2857 if (default_hstate_max_huge_pages) {
2858 if (!default_hstate.max_huge_pages)
2859 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2860 }
a3437870
NA
2861
2862 hugetlb_init_hstates();
aa888a74 2863 gather_bootmem_prealloc();
a3437870
NA
2864 report_hugepages();
2865
2866 hugetlb_sysfs_init();
9a305230 2867 hugetlb_register_all_nodes();
7179e7bf 2868 hugetlb_cgroup_file_init();
9a305230 2869
8382d914
DB
2870#ifdef CONFIG_SMP
2871 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2872#else
2873 num_fault_mutexes = 1;
2874#endif
c672c7f2 2875 hugetlb_fault_mutex_table =
8382d914 2876 kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
c672c7f2 2877 BUG_ON(!hugetlb_fault_mutex_table);
8382d914
DB
2878
2879 for (i = 0; i < num_fault_mutexes; i++)
c672c7f2 2880 mutex_init(&hugetlb_fault_mutex_table[i]);
a3437870
NA
2881 return 0;
2882}
3e89e1c5 2883subsys_initcall(hugetlb_init);
a3437870
NA
2884
2885/* Should be called on processing a hugepagesz=... option */
9fee021d
VT
2886void __init hugetlb_bad_size(void)
2887{
2888 parsed_valid_hugepagesz = false;
2889}
2890
d00181b9 2891void __init hugetlb_add_hstate(unsigned int order)
a3437870
NA
2892{
2893 struct hstate *h;
8faa8b07
AK
2894 unsigned long i;
2895
a3437870 2896 if (size_to_hstate(PAGE_SIZE << order)) {
598d8091 2897 pr_warn("hugepagesz= specified twice, ignoring\n");
a3437870
NA
2898 return;
2899 }
47d38344 2900 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
a3437870 2901 BUG_ON(order == 0);
47d38344 2902 h = &hstates[hugetlb_max_hstate++];
a3437870
NA
2903 h->order = order;
2904 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
8faa8b07
AK
2905 h->nr_huge_pages = 0;
2906 h->free_huge_pages = 0;
2907 for (i = 0; i < MAX_NUMNODES; ++i)
2908 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
0edaecfa 2909 INIT_LIST_HEAD(&h->hugepage_activelist);
54f18d35
AM
2910 h->next_nid_to_alloc = first_memory_node;
2911 h->next_nid_to_free = first_memory_node;
a3437870
NA
2912 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2913 huge_page_size(h)/1024);
8faa8b07 2914
a3437870
NA
2915 parsed_hstate = h;
2916}
2917
e11bfbfc 2918static int __init hugetlb_nrpages_setup(char *s)
a3437870
NA
2919{
2920 unsigned long *mhp;
8faa8b07 2921 static unsigned long *last_mhp;
a3437870 2922
9fee021d
VT
2923 if (!parsed_valid_hugepagesz) {
2924 pr_warn("hugepages = %s preceded by "
2925 "an unsupported hugepagesz, ignoring\n", s);
2926 parsed_valid_hugepagesz = true;
2927 return 1;
2928 }
a3437870 2929 /*
47d38344 2930 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
a3437870
NA
2931 * so this hugepages= parameter goes to the "default hstate".
2932 */
9fee021d 2933 else if (!hugetlb_max_hstate)
a3437870
NA
2934 mhp = &default_hstate_max_huge_pages;
2935 else
2936 mhp = &parsed_hstate->max_huge_pages;
2937
8faa8b07 2938 if (mhp == last_mhp) {
598d8091 2939 pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
8faa8b07
AK
2940 return 1;
2941 }
2942
a3437870
NA
2943 if (sscanf(s, "%lu", mhp) <= 0)
2944 *mhp = 0;
2945
8faa8b07
AK
2946 /*
2947 * Global state is always initialized later in hugetlb_init.
2948 * But we need to allocate >= MAX_ORDER hstates here early to still
2949 * use the bootmem allocator.
2950 */
47d38344 2951 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
8faa8b07
AK
2952 hugetlb_hstate_alloc_pages(parsed_hstate);
2953
2954 last_mhp = mhp;
2955
a3437870
NA
2956 return 1;
2957}
e11bfbfc
NP
2958__setup("hugepages=", hugetlb_nrpages_setup);
2959
2960static int __init hugetlb_default_setup(char *s)
2961{
2962 default_hstate_size = memparse(s, &s);
2963 return 1;
2964}
2965__setup("default_hugepagesz=", hugetlb_default_setup);
a3437870 2966
8a213460
NA
2967static unsigned int cpuset_mems_nr(unsigned int *array)
2968{
2969 int node;
2970 unsigned int nr = 0;
2971
2972 for_each_node_mask(node, cpuset_current_mems_allowed)
2973 nr += array[node];
2974
2975 return nr;
2976}
2977
2978#ifdef CONFIG_SYSCTL
06808b08
LS
2979static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2980 struct ctl_table *table, int write,
2981 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 2982{
e5ff2159 2983 struct hstate *h = &default_hstate;
238d3c13 2984 unsigned long tmp = h->max_huge_pages;
08d4a246 2985 int ret;
e5ff2159 2986
457c1b27 2987 if (!hugepages_supported())
86613628 2988 return -EOPNOTSUPP;
457c1b27 2989
e5ff2159
AK
2990 table->data = &tmp;
2991 table->maxlen = sizeof(unsigned long);
08d4a246
MH
2992 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2993 if (ret)
2994 goto out;
e5ff2159 2995
238d3c13
DR
2996 if (write)
2997 ret = __nr_hugepages_store_common(obey_mempolicy, h,
2998 NUMA_NO_NODE, tmp, *length);
08d4a246
MH
2999out:
3000 return ret;
1da177e4 3001}
396faf03 3002
06808b08
LS
3003int hugetlb_sysctl_handler(struct ctl_table *table, int write,
3004 void __user *buffer, size_t *length, loff_t *ppos)
3005{
3006
3007 return hugetlb_sysctl_handler_common(false, table, write,
3008 buffer, length, ppos);
3009}
3010
3011#ifdef CONFIG_NUMA
3012int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
3013 void __user *buffer, size_t *length, loff_t *ppos)
3014{
3015 return hugetlb_sysctl_handler_common(true, table, write,
3016 buffer, length, ppos);
3017}
3018#endif /* CONFIG_NUMA */
3019
a3d0c6aa 3020int hugetlb_overcommit_handler(struct ctl_table *table, int write,
8d65af78 3021 void __user *buffer,
a3d0c6aa
NA
3022 size_t *length, loff_t *ppos)
3023{
a5516438 3024 struct hstate *h = &default_hstate;
e5ff2159 3025 unsigned long tmp;
08d4a246 3026 int ret;
e5ff2159 3027
457c1b27 3028 if (!hugepages_supported())
86613628 3029 return -EOPNOTSUPP;
457c1b27 3030
c033a93c 3031 tmp = h->nr_overcommit_huge_pages;
e5ff2159 3032
bae7f4ae 3033 if (write && hstate_is_gigantic(h))
adbe8726
EM
3034 return -EINVAL;
3035
e5ff2159
AK
3036 table->data = &tmp;
3037 table->maxlen = sizeof(unsigned long);
08d4a246
MH
3038 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
3039 if (ret)
3040 goto out;
e5ff2159
AK
3041
3042 if (write) {
3043 spin_lock(&hugetlb_lock);
3044 h->nr_overcommit_huge_pages = tmp;
3045 spin_unlock(&hugetlb_lock);
3046 }
08d4a246
MH
3047out:
3048 return ret;
a3d0c6aa
NA
3049}
3050
1da177e4
LT
3051#endif /* CONFIG_SYSCTL */
3052
e1759c21 3053void hugetlb_report_meminfo(struct seq_file *m)
1da177e4 3054{
a5516438 3055 struct hstate *h = &default_hstate;
457c1b27
NA
3056 if (!hugepages_supported())
3057 return;
e1759c21 3058 seq_printf(m,
4f98a2fe
RR
3059 "HugePages_Total: %5lu\n"
3060 "HugePages_Free: %5lu\n"
3061 "HugePages_Rsvd: %5lu\n"
3062 "HugePages_Surp: %5lu\n"
3063 "Hugepagesize: %8lu kB\n",
a5516438
AK
3064 h->nr_huge_pages,
3065 h->free_huge_pages,
3066 h->resv_huge_pages,
3067 h->surplus_huge_pages,
3068 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
1da177e4
LT
3069}
3070
3071int hugetlb_report_node_meminfo(int nid, char *buf)
3072{
a5516438 3073 struct hstate *h = &default_hstate;
457c1b27
NA
3074 if (!hugepages_supported())
3075 return 0;
1da177e4
LT
3076 return sprintf(buf,
3077 "Node %d HugePages_Total: %5u\n"
a1de0919
NA
3078 "Node %d HugePages_Free: %5u\n"
3079 "Node %d HugePages_Surp: %5u\n",
a5516438
AK
3080 nid, h->nr_huge_pages_node[nid],
3081 nid, h->free_huge_pages_node[nid],
3082 nid, h->surplus_huge_pages_node[nid]);
1da177e4
LT
3083}
3084
949f7ec5
DR
3085void hugetlb_show_meminfo(void)
3086{
3087 struct hstate *h;
3088 int nid;
3089
457c1b27
NA
3090 if (!hugepages_supported())
3091 return;
3092
949f7ec5
DR
3093 for_each_node_state(nid, N_MEMORY)
3094 for_each_hstate(h)
3095 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3096 nid,
3097 h->nr_huge_pages_node[nid],
3098 h->free_huge_pages_node[nid],
3099 h->surplus_huge_pages_node[nid],
3100 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3101}
3102
5d317b2b
NH
3103void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3104{
3105 seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3106 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3107}
3108
1da177e4
LT
3109/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3110unsigned long hugetlb_total_pages(void)
3111{
d0028588
WL
3112 struct hstate *h;
3113 unsigned long nr_total_pages = 0;
3114
3115 for_each_hstate(h)
3116 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3117 return nr_total_pages;
1da177e4 3118}
1da177e4 3119
a5516438 3120static int hugetlb_acct_memory(struct hstate *h, long delta)
fc1b8a73
MG
3121{
3122 int ret = -ENOMEM;
3123
3124 spin_lock(&hugetlb_lock);
3125 /*
3126 * When cpuset is configured, it breaks the strict hugetlb page
3127 * reservation as the accounting is done on a global variable. Such
3128 * reservation is completely rubbish in the presence of cpuset because
3129 * the reservation is not checked against page availability for the
3130 * current cpuset. Application can still potentially OOM'ed by kernel
3131 * with lack of free htlb page in cpuset that the task is in.
3132 * Attempt to enforce strict accounting with cpuset is almost
3133 * impossible (or too ugly) because cpuset is too fluid that
3134 * task or memory node can be dynamically moved between cpusets.
3135 *
3136 * The change of semantics for shared hugetlb mapping with cpuset is
3137 * undesirable. However, in order to preserve some of the semantics,
3138 * we fall back to check against current free page availability as
3139 * a best attempt and hopefully to minimize the impact of changing
3140 * semantics that cpuset has.
3141 */
3142 if (delta > 0) {
a5516438 3143 if (gather_surplus_pages(h, delta) < 0)
fc1b8a73
MG
3144 goto out;
3145
a5516438
AK
3146 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
3147 return_unused_surplus_pages(h, delta);
fc1b8a73
MG
3148 goto out;
3149 }
3150 }
3151
3152 ret = 0;
3153 if (delta < 0)
a5516438 3154 return_unused_surplus_pages(h, (unsigned long) -delta);
fc1b8a73
MG
3155
3156out:
3157 spin_unlock(&hugetlb_lock);
3158 return ret;
3159}
3160
84afd99b
AW
3161static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3162{
f522c3ac 3163 struct resv_map *resv = vma_resv_map(vma);
84afd99b
AW
3164
3165 /*
3166 * This new VMA should share its siblings reservation map if present.
3167 * The VMA will only ever have a valid reservation map pointer where
3168 * it is being copied for another still existing VMA. As that VMA
25985edc 3169 * has a reference to the reservation map it cannot disappear until
84afd99b
AW
3170 * after this open call completes. It is therefore safe to take a
3171 * new reference here without additional locking.
3172 */
4e35f483 3173 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
f522c3ac 3174 kref_get(&resv->refs);
84afd99b
AW
3175}
3176
a1e78772
MG
3177static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3178{
a5516438 3179 struct hstate *h = hstate_vma(vma);
f522c3ac 3180 struct resv_map *resv = vma_resv_map(vma);
90481622 3181 struct hugepage_subpool *spool = subpool_vma(vma);
4e35f483 3182 unsigned long reserve, start, end;
1c5ecae3 3183 long gbl_reserve;
84afd99b 3184
4e35f483
JK
3185 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3186 return;
84afd99b 3187
4e35f483
JK
3188 start = vma_hugecache_offset(h, vma, vma->vm_start);
3189 end = vma_hugecache_offset(h, vma, vma->vm_end);
84afd99b 3190
4e35f483 3191 reserve = (end - start) - region_count(resv, start, end);
84afd99b 3192
4e35f483
JK
3193 kref_put(&resv->refs, resv_map_release);
3194
3195 if (reserve) {
1c5ecae3
MK
3196 /*
3197 * Decrement reserve counts. The global reserve count may be
3198 * adjusted if the subpool has a minimum size.
3199 */
3200 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3201 hugetlb_acct_memory(h, -gbl_reserve);
84afd99b 3202 }
a1e78772
MG
3203}
3204
1da177e4
LT
3205/*
3206 * We cannot handle pagefaults against hugetlb pages at all. They cause
3207 * handle_mm_fault() to try to instantiate regular-sized pages in the
3208 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
3209 * this far.
3210 */
11bac800 3211static int hugetlb_vm_op_fault(struct vm_fault *vmf)
1da177e4
LT
3212{
3213 BUG();
d0217ac0 3214 return 0;
1da177e4
LT
3215}
3216
f0f37e2f 3217const struct vm_operations_struct hugetlb_vm_ops = {
d0217ac0 3218 .fault = hugetlb_vm_op_fault,
84afd99b 3219 .open = hugetlb_vm_op_open,
a1e78772 3220 .close = hugetlb_vm_op_close,
1da177e4
LT
3221};
3222
1e8f889b
DG
3223static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3224 int writable)
63551ae0
DG
3225{
3226 pte_t entry;
3227
1e8f889b 3228 if (writable) {
106c992a
GS
3229 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3230 vma->vm_page_prot)));
63551ae0 3231 } else {
106c992a
GS
3232 entry = huge_pte_wrprotect(mk_huge_pte(page,
3233 vma->vm_page_prot));
63551ae0
DG
3234 }
3235 entry = pte_mkyoung(entry);
3236 entry = pte_mkhuge(entry);
d9ed9faa 3237 entry = arch_make_huge_pte(entry, vma, page, writable);
63551ae0
DG
3238
3239 return entry;
3240}
3241
1e8f889b
DG
3242static void set_huge_ptep_writable(struct vm_area_struct *vma,
3243 unsigned long address, pte_t *ptep)
3244{
3245 pte_t entry;
3246
106c992a 3247 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
32f84528 3248 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4b3073e1 3249 update_mmu_cache(vma, address, ptep);
1e8f889b
DG
3250}
3251
d5ed7444 3252bool is_hugetlb_entry_migration(pte_t pte)
4a705fef
NH
3253{
3254 swp_entry_t swp;
3255
3256 if (huge_pte_none(pte) || pte_present(pte))
d5ed7444 3257 return false;
4a705fef
NH
3258 swp = pte_to_swp_entry(pte);
3259 if (non_swap_entry(swp) && is_migration_entry(swp))
d5ed7444 3260 return true;
4a705fef 3261 else
d5ed7444 3262 return false;
4a705fef
NH
3263}
3264
3265static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3266{
3267 swp_entry_t swp;
3268
3269 if (huge_pte_none(pte) || pte_present(pte))
3270 return 0;
3271 swp = pte_to_swp_entry(pte);
3272 if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3273 return 1;
3274 else
3275 return 0;
3276}
1e8f889b 3277
63551ae0
DG
3278int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3279 struct vm_area_struct *vma)
3280{
3281 pte_t *src_pte, *dst_pte, entry;
3282 struct page *ptepage;
1c59827d 3283 unsigned long addr;
1e8f889b 3284 int cow;
a5516438
AK
3285 struct hstate *h = hstate_vma(vma);
3286 unsigned long sz = huge_page_size(h);
e8569dd2
AS
3287 unsigned long mmun_start; /* For mmu_notifiers */
3288 unsigned long mmun_end; /* For mmu_notifiers */
3289 int ret = 0;
1e8f889b
DG
3290
3291 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
63551ae0 3292
e8569dd2
AS
3293 mmun_start = vma->vm_start;
3294 mmun_end = vma->vm_end;
3295 if (cow)
3296 mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
3297
a5516438 3298 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
cb900f41 3299 spinlock_t *src_ptl, *dst_ptl;
7868a208 3300 src_pte = huge_pte_offset(src, addr, sz);
c74df32c
HD
3301 if (!src_pte)
3302 continue;
a5516438 3303 dst_pte = huge_pte_alloc(dst, addr, sz);
e8569dd2
AS
3304 if (!dst_pte) {
3305 ret = -ENOMEM;
3306 break;
3307 }
c5c99429
LW
3308
3309 /* If the pagetables are shared don't copy or take references */
3310 if (dst_pte == src_pte)
3311 continue;
3312
cb900f41
KS
3313 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3314 src_ptl = huge_pte_lockptr(h, src, src_pte);
3315 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4a705fef
NH
3316 entry = huge_ptep_get(src_pte);
3317 if (huge_pte_none(entry)) { /* skip none entry */
3318 ;
3319 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3320 is_hugetlb_entry_hwpoisoned(entry))) {
3321 swp_entry_t swp_entry = pte_to_swp_entry(entry);
3322
3323 if (is_write_migration_entry(swp_entry) && cow) {
3324 /*
3325 * COW mappings require pages in both
3326 * parent and child to be set to read.
3327 */
3328 make_migration_entry_read(&swp_entry);
3329 entry = swp_entry_to_pte(swp_entry);
e5251fd4
PA
3330 set_huge_swap_pte_at(src, addr, src_pte,
3331 entry, sz);
4a705fef 3332 }
e5251fd4 3333 set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
4a705fef 3334 } else {
34ee645e 3335 if (cow) {
7f2e9525 3336 huge_ptep_set_wrprotect(src, addr, src_pte);
34ee645e
JR
3337 mmu_notifier_invalidate_range(src, mmun_start,
3338 mmun_end);
3339 }
0253d634 3340 entry = huge_ptep_get(src_pte);
1c59827d
HD
3341 ptepage = pte_page(entry);
3342 get_page(ptepage);
53f9263b 3343 page_dup_rmap(ptepage, true);
1c59827d 3344 set_huge_pte_at(dst, addr, dst_pte, entry);
5d317b2b 3345 hugetlb_count_add(pages_per_huge_page(h), dst);
1c59827d 3346 }
cb900f41
KS
3347 spin_unlock(src_ptl);
3348 spin_unlock(dst_ptl);
63551ae0 3349 }
63551ae0 3350
e8569dd2
AS
3351 if (cow)
3352 mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
3353
3354 return ret;
63551ae0
DG
3355}
3356
24669e58
AK
3357void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3358 unsigned long start, unsigned long end,
3359 struct page *ref_page)
63551ae0
DG
3360{
3361 struct mm_struct *mm = vma->vm_mm;
3362 unsigned long address;
c7546f8f 3363 pte_t *ptep;
63551ae0 3364 pte_t pte;
cb900f41 3365 spinlock_t *ptl;
63551ae0 3366 struct page *page;
a5516438
AK
3367 struct hstate *h = hstate_vma(vma);
3368 unsigned long sz = huge_page_size(h);
2ec74c3e
SG
3369 const unsigned long mmun_start = start; /* For mmu_notifiers */
3370 const unsigned long mmun_end = end; /* For mmu_notifiers */
a5516438 3371
63551ae0 3372 WARN_ON(!is_vm_hugetlb_page(vma));
a5516438
AK
3373 BUG_ON(start & ~huge_page_mask(h));
3374 BUG_ON(end & ~huge_page_mask(h));
63551ae0 3375
07e32661
AK
3376 /*
3377 * This is a hugetlb vma, all the pte entries should point
3378 * to huge page.
3379 */
3380 tlb_remove_check_page_size_change(tlb, sz);
24669e58 3381 tlb_start_vma(tlb, vma);
2ec74c3e 3382 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
569f48b8 3383 address = start;
569f48b8 3384 for (; address < end; address += sz) {
7868a208 3385 ptep = huge_pte_offset(mm, address, sz);
4c887265 3386 if (!ptep)
c7546f8f
DG
3387 continue;
3388
cb900f41 3389 ptl = huge_pte_lock(h, mm, ptep);
31d49da5
AK
3390 if (huge_pmd_unshare(mm, &address, ptep)) {
3391 spin_unlock(ptl);
3392 continue;
3393 }
39dde65c 3394
6629326b 3395 pte = huge_ptep_get(ptep);
31d49da5
AK
3396 if (huge_pte_none(pte)) {
3397 spin_unlock(ptl);
3398 continue;
3399 }
6629326b
HD
3400
3401 /*
9fbc1f63
NH
3402 * Migrating hugepage or HWPoisoned hugepage is already
3403 * unmapped and its refcount is dropped, so just clear pte here.
6629326b 3404 */
9fbc1f63 3405 if (unlikely(!pte_present(pte))) {
9386fac3 3406 huge_pte_clear(mm, address, ptep, sz);
31d49da5
AK
3407 spin_unlock(ptl);
3408 continue;
8c4894c6 3409 }
6629326b
HD
3410
3411 page = pte_page(pte);
04f2cbe3
MG
3412 /*
3413 * If a reference page is supplied, it is because a specific
3414 * page is being unmapped, not a range. Ensure the page we
3415 * are about to unmap is the actual page of interest.
3416 */
3417 if (ref_page) {
31d49da5
AK
3418 if (page != ref_page) {
3419 spin_unlock(ptl);
3420 continue;
3421 }
04f2cbe3
MG
3422 /*
3423 * Mark the VMA as having unmapped its page so that
3424 * future faults in this VMA will fail rather than
3425 * looking like data was lost
3426 */
3427 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3428 }
3429
c7546f8f 3430 pte = huge_ptep_get_and_clear(mm, address, ptep);
b528e4b6 3431 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
106c992a 3432 if (huge_pte_dirty(pte))
6649a386 3433 set_page_dirty(page);
9e81130b 3434
5d317b2b 3435 hugetlb_count_sub(pages_per_huge_page(h), mm);
d281ee61 3436 page_remove_rmap(page, true);
31d49da5 3437
cb900f41 3438 spin_unlock(ptl);
e77b0852 3439 tlb_remove_page_size(tlb, page, huge_page_size(h));
31d49da5
AK
3440 /*
3441 * Bail out after unmapping reference page if supplied
3442 */
3443 if (ref_page)
3444 break;
fe1668ae 3445 }
2ec74c3e 3446 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
24669e58 3447 tlb_end_vma(tlb, vma);
1da177e4 3448}
63551ae0 3449
d833352a
MG
3450void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3451 struct vm_area_struct *vma, unsigned long start,
3452 unsigned long end, struct page *ref_page)
3453{
3454 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
3455
3456 /*
3457 * Clear this flag so that x86's huge_pmd_share page_table_shareable
3458 * test will fail on a vma being torn down, and not grab a page table
3459 * on its way out. We're lucky that the flag has such an appropriate
3460 * name, and can in fact be safely cleared here. We could clear it
3461 * before the __unmap_hugepage_range above, but all that's necessary
c8c06efa 3462 * is to clear it before releasing the i_mmap_rwsem. This works
d833352a 3463 * because in the context this is called, the VMA is about to be
c8c06efa 3464 * destroyed and the i_mmap_rwsem is held.
d833352a
MG
3465 */
3466 vma->vm_flags &= ~VM_MAYSHARE;
3467}
3468
502717f4 3469void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
04f2cbe3 3470 unsigned long end, struct page *ref_page)
502717f4 3471{
24669e58
AK
3472 struct mm_struct *mm;
3473 struct mmu_gather tlb;
3474
3475 mm = vma->vm_mm;
3476
2b047252 3477 tlb_gather_mmu(&tlb, mm, start, end);
24669e58
AK
3478 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
3479 tlb_finish_mmu(&tlb, start, end);
502717f4
CK
3480}
3481
04f2cbe3
MG
3482/*
3483 * This is called when the original mapper is failing to COW a MAP_PRIVATE
3484 * mappping it owns the reserve page for. The intention is to unmap the page
3485 * from other VMAs and let the children be SIGKILLed if they are faulting the
3486 * same region.
3487 */
2f4612af
DB
3488static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3489 struct page *page, unsigned long address)
04f2cbe3 3490{
7526674d 3491 struct hstate *h = hstate_vma(vma);
04f2cbe3
MG
3492 struct vm_area_struct *iter_vma;
3493 struct address_space *mapping;
04f2cbe3
MG
3494 pgoff_t pgoff;
3495
3496 /*
3497 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3498 * from page cache lookup which is in HPAGE_SIZE units.
3499 */
7526674d 3500 address = address & huge_page_mask(h);
36e4f20a
MH
3501 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3502 vma->vm_pgoff;
93c76a3d 3503 mapping = vma->vm_file->f_mapping;
04f2cbe3 3504
4eb2b1dc
MG
3505 /*
3506 * Take the mapping lock for the duration of the table walk. As
3507 * this mapping should be shared between all the VMAs,
3508 * __unmap_hugepage_range() is called as the lock is already held
3509 */
83cde9e8 3510 i_mmap_lock_write(mapping);
6b2dbba8 3511 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
04f2cbe3
MG
3512 /* Do not unmap the current VMA */
3513 if (iter_vma == vma)
3514 continue;
3515
2f84a899
MG
3516 /*
3517 * Shared VMAs have their own reserves and do not affect
3518 * MAP_PRIVATE accounting but it is possible that a shared
3519 * VMA is using the same page so check and skip such VMAs.
3520 */
3521 if (iter_vma->vm_flags & VM_MAYSHARE)
3522 continue;
3523
04f2cbe3
MG
3524 /*
3525 * Unmap the page from other VMAs without their own reserves.
3526 * They get marked to be SIGKILLed if they fault in these
3527 * areas. This is because a future no-page fault on this VMA
3528 * could insert a zeroed page instead of the data existing
3529 * from the time of fork. This would look like data corruption
3530 */
3531 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
24669e58
AK
3532 unmap_hugepage_range(iter_vma, address,
3533 address + huge_page_size(h), page);
04f2cbe3 3534 }
83cde9e8 3535 i_mmap_unlock_write(mapping);
04f2cbe3
MG
3536}
3537
0fe6e20b
NH
3538/*
3539 * Hugetlb_cow() should be called with page lock of the original hugepage held.
ef009b25
MH
3540 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3541 * cannot race with other handlers or page migration.
3542 * Keep the pte_same checks anyway to make transition from the mutex easier.
0fe6e20b 3543 */
1e8f889b 3544static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
3999f52e
AK
3545 unsigned long address, pte_t *ptep,
3546 struct page *pagecache_page, spinlock_t *ptl)
1e8f889b 3547{
3999f52e 3548 pte_t pte;
a5516438 3549 struct hstate *h = hstate_vma(vma);
1e8f889b 3550 struct page *old_page, *new_page;
ad4404a2 3551 int ret = 0, outside_reserve = 0;
2ec74c3e
SG
3552 unsigned long mmun_start; /* For mmu_notifiers */
3553 unsigned long mmun_end; /* For mmu_notifiers */
1e8f889b 3554
3999f52e 3555 pte = huge_ptep_get(ptep);
1e8f889b
DG
3556 old_page = pte_page(pte);
3557
04f2cbe3 3558retry_avoidcopy:
1e8f889b
DG
3559 /* If no-one else is actually using this page, avoid the copy
3560 * and just make the page writable */
37a2140d 3561 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
5a49973d 3562 page_move_anon_rmap(old_page, vma);
1e8f889b 3563 set_huge_ptep_writable(vma, address, ptep);
83c54070 3564 return 0;
1e8f889b
DG
3565 }
3566
04f2cbe3
MG
3567 /*
3568 * If the process that created a MAP_PRIVATE mapping is about to
3569 * perform a COW due to a shared page count, attempt to satisfy
3570 * the allocation without using the existing reserves. The pagecache
3571 * page is used to determine if the reserve at this address was
3572 * consumed or not. If reserves were used, a partial faulted mapping
3573 * at the time of fork() could consume its reserves on COW instead
3574 * of the full address range.
3575 */
5944d011 3576 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
04f2cbe3
MG
3577 old_page != pagecache_page)
3578 outside_reserve = 1;
3579
09cbfeaf 3580 get_page(old_page);
b76c8cfb 3581
ad4404a2
DB
3582 /*
3583 * Drop page table lock as buddy allocator may be called. It will
3584 * be acquired again before returning to the caller, as expected.
3585 */
cb900f41 3586 spin_unlock(ptl);
04f2cbe3 3587 new_page = alloc_huge_page(vma, address, outside_reserve);
1e8f889b 3588
2fc39cec 3589 if (IS_ERR(new_page)) {
04f2cbe3
MG
3590 /*
3591 * If a process owning a MAP_PRIVATE mapping fails to COW,
3592 * it is due to references held by a child and an insufficient
3593 * huge page pool. To guarantee the original mappers
3594 * reliability, unmap the page from child processes. The child
3595 * may get SIGKILLed if it later faults.
3596 */
3597 if (outside_reserve) {
09cbfeaf 3598 put_page(old_page);
04f2cbe3 3599 BUG_ON(huge_pte_none(pte));
2f4612af
DB
3600 unmap_ref_private(mm, vma, old_page, address);
3601 BUG_ON(huge_pte_none(pte));
3602 spin_lock(ptl);
7868a208
PA
3603 ptep = huge_pte_offset(mm, address & huge_page_mask(h),
3604 huge_page_size(h));
2f4612af
DB
3605 if (likely(ptep &&
3606 pte_same(huge_ptep_get(ptep), pte)))
3607 goto retry_avoidcopy;
3608 /*
3609 * race occurs while re-acquiring page table
3610 * lock, and our job is done.
3611 */
3612 return 0;
04f2cbe3
MG
3613 }
3614
ad4404a2
DB
3615 ret = (PTR_ERR(new_page) == -ENOMEM) ?
3616 VM_FAULT_OOM : VM_FAULT_SIGBUS;
3617 goto out_release_old;
1e8f889b
DG
3618 }
3619
0fe6e20b
NH
3620 /*
3621 * When the original hugepage is shared one, it does not have
3622 * anon_vma prepared.
3623 */
44e2aa93 3624 if (unlikely(anon_vma_prepare(vma))) {
ad4404a2
DB
3625 ret = VM_FAULT_OOM;
3626 goto out_release_all;
44e2aa93 3627 }
0fe6e20b 3628
47ad8475
AA
3629 copy_user_huge_page(new_page, old_page, address, vma,
3630 pages_per_huge_page(h));
0ed361de 3631 __SetPageUptodate(new_page);
bcc54222 3632 set_page_huge_active(new_page);
1e8f889b 3633
2ec74c3e
SG
3634 mmun_start = address & huge_page_mask(h);
3635 mmun_end = mmun_start + huge_page_size(h);
3636 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
ad4404a2 3637
b76c8cfb 3638 /*
cb900f41 3639 * Retake the page table lock to check for racing updates
b76c8cfb
LW
3640 * before the page tables are altered
3641 */
cb900f41 3642 spin_lock(ptl);
7868a208
PA
3643 ptep = huge_pte_offset(mm, address & huge_page_mask(h),
3644 huge_page_size(h));
a9af0c5d 3645 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
07443a85
JK
3646 ClearPagePrivate(new_page);
3647
1e8f889b 3648 /* Break COW */
8fe627ec 3649 huge_ptep_clear_flush(vma, address, ptep);
34ee645e 3650 mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
1e8f889b
DG
3651 set_huge_pte_at(mm, address, ptep,
3652 make_huge_pte(vma, new_page, 1));
d281ee61 3653 page_remove_rmap(old_page, true);
cd67f0d2 3654 hugepage_add_new_anon_rmap(new_page, vma, address);
1e8f889b
DG
3655 /* Make the old page be freed below */
3656 new_page = old_page;
3657 }
cb900f41 3658 spin_unlock(ptl);
2ec74c3e 3659 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
ad4404a2 3660out_release_all:
96b96a96 3661 restore_reserve_on_error(h, vma, address, new_page);
09cbfeaf 3662 put_page(new_page);
ad4404a2 3663out_release_old:
09cbfeaf 3664 put_page(old_page);
8312034f 3665
ad4404a2
DB
3666 spin_lock(ptl); /* Caller expects lock to be held */
3667 return ret;
1e8f889b
DG
3668}
3669
04f2cbe3 3670/* Return the pagecache page at a given address within a VMA */
a5516438
AK
3671static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3672 struct vm_area_struct *vma, unsigned long address)
04f2cbe3
MG
3673{
3674 struct address_space *mapping;
e7c4b0bf 3675 pgoff_t idx;
04f2cbe3
MG
3676
3677 mapping = vma->vm_file->f_mapping;
a5516438 3678 idx = vma_hugecache_offset(h, vma, address);
04f2cbe3
MG
3679
3680 return find_lock_page(mapping, idx);
3681}
3682
3ae77f43
HD
3683/*
3684 * Return whether there is a pagecache page to back given address within VMA.
3685 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3686 */
3687static bool hugetlbfs_pagecache_present(struct hstate *h,
2a15efc9
HD
3688 struct vm_area_struct *vma, unsigned long address)
3689{
3690 struct address_space *mapping;
3691 pgoff_t idx;
3692 struct page *page;
3693
3694 mapping = vma->vm_file->f_mapping;
3695 idx = vma_hugecache_offset(h, vma, address);
3696
3697 page = find_get_page(mapping, idx);
3698 if (page)
3699 put_page(page);
3700 return page != NULL;
3701}
3702
ab76ad54
MK
3703int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
3704 pgoff_t idx)
3705{
3706 struct inode *inode = mapping->host;
3707 struct hstate *h = hstate_inode(inode);
3708 int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3709
3710 if (err)
3711 return err;
3712 ClearPagePrivate(page);
3713
3714 spin_lock(&inode->i_lock);
3715 inode->i_blocks += blocks_per_huge_page(h);
3716 spin_unlock(&inode->i_lock);
3717 return 0;
3718}
3719
a1ed3dda 3720static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
8382d914
DB
3721 struct address_space *mapping, pgoff_t idx,
3722 unsigned long address, pte_t *ptep, unsigned int flags)
ac9b9c66 3723{
a5516438 3724 struct hstate *h = hstate_vma(vma);
ac9b9c66 3725 int ret = VM_FAULT_SIGBUS;
409eb8c2 3726 int anon_rmap = 0;
4c887265 3727 unsigned long size;
4c887265 3728 struct page *page;
1e8f889b 3729 pte_t new_pte;
cb900f41 3730 spinlock_t *ptl;
4c887265 3731
04f2cbe3
MG
3732 /*
3733 * Currently, we are forced to kill the process in the event the
3734 * original mapper has unmapped pages from the child due to a failed
25985edc 3735 * COW. Warn that such a situation has occurred as it may not be obvious
04f2cbe3
MG
3736 */
3737 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
910154d5 3738 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
ffb22af5 3739 current->pid);
04f2cbe3
MG
3740 return ret;
3741 }
3742
4c887265
AL
3743 /*
3744 * Use page lock to guard against racing truncation
3745 * before we get page_table_lock.
3746 */
6bda666a
CL
3747retry:
3748 page = find_lock_page(mapping, idx);
3749 if (!page) {
a5516438 3750 size = i_size_read(mapping->host) >> huge_page_shift(h);
ebed4bfc
HD
3751 if (idx >= size)
3752 goto out;
1a1aad8a
MK
3753
3754 /*
3755 * Check for page in userfault range
3756 */
3757 if (userfaultfd_missing(vma)) {
3758 u32 hash;
3759 struct vm_fault vmf = {
3760 .vma = vma,
3761 .address = address,
3762 .flags = flags,
3763 /*
3764 * Hard to debug if it ends up being
3765 * used by a callee that assumes
3766 * something about the other
3767 * uninitialized fields... same as in
3768 * memory.c
3769 */
3770 };
3771
3772 /*
3773 * hugetlb_fault_mutex must be dropped before
3774 * handling userfault. Reacquire after handling
3775 * fault to make calling code simpler.
3776 */
3777 hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping,
3778 idx, address);
3779 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3780 ret = handle_userfault(&vmf, VM_UFFD_MISSING);
3781 mutex_lock(&hugetlb_fault_mutex_table[hash]);
3782 goto out;
3783 }
3784
04f2cbe3 3785 page = alloc_huge_page(vma, address, 0);
2fc39cec 3786 if (IS_ERR(page)) {
76dcee75
AK
3787 ret = PTR_ERR(page);
3788 if (ret == -ENOMEM)
3789 ret = VM_FAULT_OOM;
3790 else
3791 ret = VM_FAULT_SIGBUS;
6bda666a
CL
3792 goto out;
3793 }
47ad8475 3794 clear_huge_page(page, address, pages_per_huge_page(h));
0ed361de 3795 __SetPageUptodate(page);
bcc54222 3796 set_page_huge_active(page);
ac9b9c66 3797
f83a275d 3798 if (vma->vm_flags & VM_MAYSHARE) {
ab76ad54 3799 int err = huge_add_to_page_cache(page, mapping, idx);
6bda666a
CL
3800 if (err) {
3801 put_page(page);
6bda666a
CL
3802 if (err == -EEXIST)
3803 goto retry;
3804 goto out;
3805 }
23be7468 3806 } else {
6bda666a 3807 lock_page(page);
0fe6e20b
NH
3808 if (unlikely(anon_vma_prepare(vma))) {
3809 ret = VM_FAULT_OOM;
3810 goto backout_unlocked;
3811 }
409eb8c2 3812 anon_rmap = 1;
23be7468 3813 }
0fe6e20b 3814 } else {
998b4382
NH
3815 /*
3816 * If memory error occurs between mmap() and fault, some process
3817 * don't have hwpoisoned swap entry for errored virtual address.
3818 * So we need to block hugepage fault by PG_hwpoison bit check.
3819 */
3820 if (unlikely(PageHWPoison(page))) {
32f84528 3821 ret = VM_FAULT_HWPOISON |
972dc4de 3822 VM_FAULT_SET_HINDEX(hstate_index(h));
998b4382
NH
3823 goto backout_unlocked;
3824 }
6bda666a 3825 }
1e8f889b 3826
57303d80
AW
3827 /*
3828 * If we are going to COW a private mapping later, we examine the
3829 * pending reservations for this page now. This will ensure that
3830 * any allocations necessary to record that reservation occur outside
3831 * the spinlock.
3832 */
5e911373 3833 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2b26736c
AW
3834 if (vma_needs_reservation(h, vma, address) < 0) {
3835 ret = VM_FAULT_OOM;
3836 goto backout_unlocked;
3837 }
5e911373 3838 /* Just decrements count, does not deallocate */
feba16e2 3839 vma_end_reservation(h, vma, address);
5e911373 3840 }
57303d80 3841
8bea8052 3842 ptl = huge_pte_lock(h, mm, ptep);
a5516438 3843 size = i_size_read(mapping->host) >> huge_page_shift(h);
4c887265
AL
3844 if (idx >= size)
3845 goto backout;
3846
83c54070 3847 ret = 0;
7f2e9525 3848 if (!huge_pte_none(huge_ptep_get(ptep)))
4c887265
AL
3849 goto backout;
3850
07443a85
JK
3851 if (anon_rmap) {
3852 ClearPagePrivate(page);
409eb8c2 3853 hugepage_add_new_anon_rmap(page, vma, address);
ac714904 3854 } else
53f9263b 3855 page_dup_rmap(page, true);
1e8f889b
DG
3856 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3857 && (vma->vm_flags & VM_SHARED)));
3858 set_huge_pte_at(mm, address, ptep, new_pte);
3859
5d317b2b 3860 hugetlb_count_add(pages_per_huge_page(h), mm);
788c7df4 3861 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
1e8f889b 3862 /* Optimization, do the COW without a second fault */
3999f52e 3863 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
1e8f889b
DG
3864 }
3865
cb900f41 3866 spin_unlock(ptl);
4c887265
AL
3867 unlock_page(page);
3868out:
ac9b9c66 3869 return ret;
4c887265
AL
3870
3871backout:
cb900f41 3872 spin_unlock(ptl);
2b26736c 3873backout_unlocked:
4c887265 3874 unlock_page(page);
96b96a96 3875 restore_reserve_on_error(h, vma, address, page);
4c887265
AL
3876 put_page(page);
3877 goto out;
ac9b9c66
HD
3878}
3879
8382d914 3880#ifdef CONFIG_SMP
c672c7f2 3881u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
8382d914
DB
3882 struct vm_area_struct *vma,
3883 struct address_space *mapping,
3884 pgoff_t idx, unsigned long address)
3885{
3886 unsigned long key[2];
3887 u32 hash;
3888
3889 if (vma->vm_flags & VM_SHARED) {
3890 key[0] = (unsigned long) mapping;
3891 key[1] = idx;
3892 } else {
3893 key[0] = (unsigned long) mm;
3894 key[1] = address >> huge_page_shift(h);
3895 }
3896
3897 hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
3898
3899 return hash & (num_fault_mutexes - 1);
3900}
3901#else
3902/*
3903 * For uniprocesor systems we always use a single mutex, so just
3904 * return 0 and avoid the hashing overhead.
3905 */
c672c7f2 3906u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
8382d914
DB
3907 struct vm_area_struct *vma,
3908 struct address_space *mapping,
3909 pgoff_t idx, unsigned long address)
3910{
3911 return 0;
3912}
3913#endif
3914
86e5216f 3915int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
788c7df4 3916 unsigned long address, unsigned int flags)
86e5216f 3917{
8382d914 3918 pte_t *ptep, entry;
cb900f41 3919 spinlock_t *ptl;
1e8f889b 3920 int ret;
8382d914
DB
3921 u32 hash;
3922 pgoff_t idx;
0fe6e20b 3923 struct page *page = NULL;
57303d80 3924 struct page *pagecache_page = NULL;
a5516438 3925 struct hstate *h = hstate_vma(vma);
8382d914 3926 struct address_space *mapping;
0f792cf9 3927 int need_wait_lock = 0;
86e5216f 3928
1e16a539
KH
3929 address &= huge_page_mask(h);
3930
7868a208 3931 ptep = huge_pte_offset(mm, address, huge_page_size(h));
fd6a03ed
NH
3932 if (ptep) {
3933 entry = huge_ptep_get(ptep);
290408d4 3934 if (unlikely(is_hugetlb_entry_migration(entry))) {
cb900f41 3935 migration_entry_wait_huge(vma, mm, ptep);
290408d4
NH
3936 return 0;
3937 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
32f84528 3938 return VM_FAULT_HWPOISON_LARGE |
972dc4de 3939 VM_FAULT_SET_HINDEX(hstate_index(h));
0d777df5
NH
3940 } else {
3941 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
3942 if (!ptep)
3943 return VM_FAULT_OOM;
fd6a03ed
NH
3944 }
3945
8382d914
DB
3946 mapping = vma->vm_file->f_mapping;
3947 idx = vma_hugecache_offset(h, vma, address);
3948
3935baa9
DG
3949 /*
3950 * Serialize hugepage allocation and instantiation, so that we don't
3951 * get spurious allocation failures if two CPUs race to instantiate
3952 * the same page in the page cache.
3953 */
c672c7f2
MK
3954 hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, idx, address);
3955 mutex_lock(&hugetlb_fault_mutex_table[hash]);
8382d914 3956
7f2e9525
GS
3957 entry = huge_ptep_get(ptep);
3958 if (huge_pte_none(entry)) {
8382d914 3959 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
b4d1d99f 3960 goto out_mutex;
3935baa9 3961 }
86e5216f 3962
83c54070 3963 ret = 0;
1e8f889b 3964
0f792cf9
NH
3965 /*
3966 * entry could be a migration/hwpoison entry at this point, so this
3967 * check prevents the kernel from going below assuming that we have
3968 * a active hugepage in pagecache. This goto expects the 2nd page fault,
3969 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
3970 * handle it.
3971 */
3972 if (!pte_present(entry))
3973 goto out_mutex;
3974
57303d80
AW
3975 /*
3976 * If we are going to COW the mapping later, we examine the pending
3977 * reservations for this page now. This will ensure that any
3978 * allocations necessary to record that reservation occur outside the
3979 * spinlock. For private mappings, we also lookup the pagecache
3980 * page now as it is used to determine if a reservation has been
3981 * consumed.
3982 */
106c992a 3983 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
2b26736c
AW
3984 if (vma_needs_reservation(h, vma, address) < 0) {
3985 ret = VM_FAULT_OOM;
b4d1d99f 3986 goto out_mutex;
2b26736c 3987 }
5e911373 3988 /* Just decrements count, does not deallocate */
feba16e2 3989 vma_end_reservation(h, vma, address);
57303d80 3990
f83a275d 3991 if (!(vma->vm_flags & VM_MAYSHARE))
57303d80
AW
3992 pagecache_page = hugetlbfs_pagecache_page(h,
3993 vma, address);
3994 }
3995
0f792cf9
NH
3996 ptl = huge_pte_lock(h, mm, ptep);
3997
3998 /* Check for a racing update before calling hugetlb_cow */
3999 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
4000 goto out_ptl;
4001
56c9cfb1
NH
4002 /*
4003 * hugetlb_cow() requires page locks of pte_page(entry) and
4004 * pagecache_page, so here we need take the former one
4005 * when page != pagecache_page or !pagecache_page.
56c9cfb1
NH
4006 */
4007 page = pte_page(entry);
4008 if (page != pagecache_page)
0f792cf9
NH
4009 if (!trylock_page(page)) {
4010 need_wait_lock = 1;
4011 goto out_ptl;
4012 }
b4d1d99f 4013
0f792cf9 4014 get_page(page);
b4d1d99f 4015
788c7df4 4016 if (flags & FAULT_FLAG_WRITE) {
106c992a 4017 if (!huge_pte_write(entry)) {
3999f52e
AK
4018 ret = hugetlb_cow(mm, vma, address, ptep,
4019 pagecache_page, ptl);
0f792cf9 4020 goto out_put_page;
b4d1d99f 4021 }
106c992a 4022 entry = huge_pte_mkdirty(entry);
b4d1d99f
DG
4023 }
4024 entry = pte_mkyoung(entry);
788c7df4
HD
4025 if (huge_ptep_set_access_flags(vma, address, ptep, entry,
4026 flags & FAULT_FLAG_WRITE))
4b3073e1 4027 update_mmu_cache(vma, address, ptep);
0f792cf9
NH
4028out_put_page:
4029 if (page != pagecache_page)
4030 unlock_page(page);
4031 put_page(page);
cb900f41
KS
4032out_ptl:
4033 spin_unlock(ptl);
57303d80
AW
4034
4035 if (pagecache_page) {
4036 unlock_page(pagecache_page);
4037 put_page(pagecache_page);
4038 }
b4d1d99f 4039out_mutex:
c672c7f2 4040 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
0f792cf9
NH
4041 /*
4042 * Generally it's safe to hold refcount during waiting page lock. But
4043 * here we just wait to defer the next page fault to avoid busy loop and
4044 * the page is not used after unlocked before returning from the current
4045 * page fault. So we are safe from accessing freed page, even if we wait
4046 * here without taking refcount.
4047 */
4048 if (need_wait_lock)
4049 wait_on_page_locked(page);
1e8f889b 4050 return ret;
86e5216f
AL
4051}
4052
8fb5debc
MK
4053/*
4054 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with
4055 * modifications for huge pages.
4056 */
4057int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
4058 pte_t *dst_pte,
4059 struct vm_area_struct *dst_vma,
4060 unsigned long dst_addr,
4061 unsigned long src_addr,
4062 struct page **pagep)
4063{
1c9e8def 4064 int vm_shared = dst_vma->vm_flags & VM_SHARED;
8fb5debc
MK
4065 struct hstate *h = hstate_vma(dst_vma);
4066 pte_t _dst_pte;
4067 spinlock_t *ptl;
4068 int ret;
4069 struct page *page;
4070
4071 if (!*pagep) {
4072 ret = -ENOMEM;
4073 page = alloc_huge_page(dst_vma, dst_addr, 0);
4074 if (IS_ERR(page))
4075 goto out;
4076
4077 ret = copy_huge_page_from_user(page,
4078 (const void __user *) src_addr,
810a56b9 4079 pages_per_huge_page(h), false);
8fb5debc
MK
4080
4081 /* fallback to copy_from_user outside mmap_sem */
4082 if (unlikely(ret)) {
4083 ret = -EFAULT;
4084 *pagep = page;
4085 /* don't free the page */
4086 goto out;
4087 }
4088 } else {
4089 page = *pagep;
4090 *pagep = NULL;
4091 }
4092
4093 /*
4094 * The memory barrier inside __SetPageUptodate makes sure that
4095 * preceding stores to the page contents become visible before
4096 * the set_pte_at() write.
4097 */
4098 __SetPageUptodate(page);
4099 set_page_huge_active(page);
4100
1c9e8def
MK
4101 /*
4102 * If shared, add to page cache
4103 */
4104 if (vm_shared) {
4105 struct address_space *mapping = dst_vma->vm_file->f_mapping;
4106 pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4107
4108 ret = huge_add_to_page_cache(page, mapping, idx);
4109 if (ret)
4110 goto out_release_nounlock;
4111 }
4112
8fb5debc
MK
4113 ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4114 spin_lock(ptl);
4115
4116 ret = -EEXIST;
4117 if (!huge_pte_none(huge_ptep_get(dst_pte)))
4118 goto out_release_unlock;
4119
1c9e8def
MK
4120 if (vm_shared) {
4121 page_dup_rmap(page, true);
4122 } else {
4123 ClearPagePrivate(page);
4124 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4125 }
8fb5debc
MK
4126
4127 _dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4128 if (dst_vma->vm_flags & VM_WRITE)
4129 _dst_pte = huge_pte_mkdirty(_dst_pte);
4130 _dst_pte = pte_mkyoung(_dst_pte);
4131
4132 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4133
4134 (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4135 dst_vma->vm_flags & VM_WRITE);
4136 hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4137
4138 /* No need to invalidate - it was non-present before */
4139 update_mmu_cache(dst_vma, dst_addr, dst_pte);
4140
4141 spin_unlock(ptl);
1c9e8def
MK
4142 if (vm_shared)
4143 unlock_page(page);
8fb5debc
MK
4144 ret = 0;
4145out:
4146 return ret;
4147out_release_unlock:
4148 spin_unlock(ptl);
1c9e8def
MK
4149out_release_nounlock:
4150 if (vm_shared)
4151 unlock_page(page);
8fb5debc
MK
4152 put_page(page);
4153 goto out;
4154}
4155
28a35716
ML
4156long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4157 struct page **pages, struct vm_area_struct **vmas,
4158 unsigned long *position, unsigned long *nr_pages,
87ffc118 4159 long i, unsigned int flags, int *nonblocking)
63551ae0 4160{
d5d4b0aa
CK
4161 unsigned long pfn_offset;
4162 unsigned long vaddr = *position;
28a35716 4163 unsigned long remainder = *nr_pages;
a5516438 4164 struct hstate *h = hstate_vma(vma);
63551ae0 4165
63551ae0 4166 while (vaddr < vma->vm_end && remainder) {
4c887265 4167 pte_t *pte;
cb900f41 4168 spinlock_t *ptl = NULL;
2a15efc9 4169 int absent;
4c887265 4170 struct page *page;
63551ae0 4171
02057967
DR
4172 /*
4173 * If we have a pending SIGKILL, don't keep faulting pages and
4174 * potentially allocating memory.
4175 */
4176 if (unlikely(fatal_signal_pending(current))) {
4177 remainder = 0;
4178 break;
4179 }
4180
4c887265
AL
4181 /*
4182 * Some archs (sparc64, sh*) have multiple pte_ts to
2a15efc9 4183 * each hugepage. We have to make sure we get the
4c887265 4184 * first, for the page indexing below to work.
cb900f41
KS
4185 *
4186 * Note that page table lock is not held when pte is null.
4c887265 4187 */
7868a208
PA
4188 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
4189 huge_page_size(h));
cb900f41
KS
4190 if (pte)
4191 ptl = huge_pte_lock(h, mm, pte);
2a15efc9
HD
4192 absent = !pte || huge_pte_none(huge_ptep_get(pte));
4193
4194 /*
4195 * When coredumping, it suits get_dump_page if we just return
3ae77f43
HD
4196 * an error where there's an empty slot with no huge pagecache
4197 * to back it. This way, we avoid allocating a hugepage, and
4198 * the sparse dumpfile avoids allocating disk blocks, but its
4199 * huge holes still show up with zeroes where they need to be.
2a15efc9 4200 */
3ae77f43
HD
4201 if (absent && (flags & FOLL_DUMP) &&
4202 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
cb900f41
KS
4203 if (pte)
4204 spin_unlock(ptl);
2a15efc9
HD
4205 remainder = 0;
4206 break;
4207 }
63551ae0 4208
9cc3a5bd
NH
4209 /*
4210 * We need call hugetlb_fault for both hugepages under migration
4211 * (in which case hugetlb_fault waits for the migration,) and
4212 * hwpoisoned hugepages (in which case we need to prevent the
4213 * caller from accessing to them.) In order to do this, we use
4214 * here is_swap_pte instead of is_hugetlb_entry_migration and
4215 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4216 * both cases, and because we can't follow correct pages
4217 * directly from any kind of swap entries.
4218 */
4219 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
106c992a
GS
4220 ((flags & FOLL_WRITE) &&
4221 !huge_pte_write(huge_ptep_get(pte)))) {
4c887265 4222 int ret;
87ffc118 4223 unsigned int fault_flags = 0;
63551ae0 4224
cb900f41
KS
4225 if (pte)
4226 spin_unlock(ptl);
87ffc118
AA
4227 if (flags & FOLL_WRITE)
4228 fault_flags |= FAULT_FLAG_WRITE;
4229 if (nonblocking)
4230 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
4231 if (flags & FOLL_NOWAIT)
4232 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4233 FAULT_FLAG_RETRY_NOWAIT;
4234 if (flags & FOLL_TRIED) {
4235 VM_WARN_ON_ONCE(fault_flags &
4236 FAULT_FLAG_ALLOW_RETRY);
4237 fault_flags |= FAULT_FLAG_TRIED;
4238 }
4239 ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4240 if (ret & VM_FAULT_ERROR) {
9a291a7c
JM
4241 int err = vm_fault_to_errno(ret, flags);
4242
4243 if (err)
4244 return err;
4245
87ffc118
AA
4246 remainder = 0;
4247 break;
4248 }
4249 if (ret & VM_FAULT_RETRY) {
4250 if (nonblocking)
4251 *nonblocking = 0;
4252 *nr_pages = 0;
4253 /*
4254 * VM_FAULT_RETRY must not return an
4255 * error, it will return zero
4256 * instead.
4257 *
4258 * No need to update "position" as the
4259 * caller will not check it after
4260 * *nr_pages is set to 0.
4261 */
4262 return i;
4263 }
4264 continue;
4c887265
AL
4265 }
4266
a5516438 4267 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
7f2e9525 4268 page = pte_page(huge_ptep_get(pte));
d5d4b0aa 4269same_page:
d6692183 4270 if (pages) {
2a15efc9 4271 pages[i] = mem_map_offset(page, pfn_offset);
ddc58f27 4272 get_page(pages[i]);
d6692183 4273 }
63551ae0
DG
4274
4275 if (vmas)
4276 vmas[i] = vma;
4277
4278 vaddr += PAGE_SIZE;
d5d4b0aa 4279 ++pfn_offset;
63551ae0
DG
4280 --remainder;
4281 ++i;
d5d4b0aa 4282 if (vaddr < vma->vm_end && remainder &&
a5516438 4283 pfn_offset < pages_per_huge_page(h)) {
d5d4b0aa
CK
4284 /*
4285 * We use pfn_offset to avoid touching the pageframes
4286 * of this compound page.
4287 */
4288 goto same_page;
4289 }
cb900f41 4290 spin_unlock(ptl);
63551ae0 4291 }
28a35716 4292 *nr_pages = remainder;
87ffc118
AA
4293 /*
4294 * setting position is actually required only if remainder is
4295 * not zero but it's faster not to add a "if (remainder)"
4296 * branch.
4297 */
63551ae0
DG
4298 *position = vaddr;
4299
2a15efc9 4300 return i ? i : -EFAULT;
63551ae0 4301}
8f860591 4302
5491ae7b
AK
4303#ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4304/*
4305 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4306 * implement this.
4307 */
4308#define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
4309#endif
4310
7da4d641 4311unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
8f860591
ZY
4312 unsigned long address, unsigned long end, pgprot_t newprot)
4313{
4314 struct mm_struct *mm = vma->vm_mm;
4315 unsigned long start = address;
4316 pte_t *ptep;
4317 pte_t pte;
a5516438 4318 struct hstate *h = hstate_vma(vma);
7da4d641 4319 unsigned long pages = 0;
8f860591
ZY
4320
4321 BUG_ON(address >= end);
4322 flush_cache_range(vma, address, end);
4323
a5338093 4324 mmu_notifier_invalidate_range_start(mm, start, end);
83cde9e8 4325 i_mmap_lock_write(vma->vm_file->f_mapping);
a5516438 4326 for (; address < end; address += huge_page_size(h)) {
cb900f41 4327 spinlock_t *ptl;
7868a208 4328 ptep = huge_pte_offset(mm, address, huge_page_size(h));
8f860591
ZY
4329 if (!ptep)
4330 continue;
cb900f41 4331 ptl = huge_pte_lock(h, mm, ptep);
7da4d641
PZ
4332 if (huge_pmd_unshare(mm, &address, ptep)) {
4333 pages++;
cb900f41 4334 spin_unlock(ptl);
39dde65c 4335 continue;
7da4d641 4336 }
a8bda28d
NH
4337 pte = huge_ptep_get(ptep);
4338 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
4339 spin_unlock(ptl);
4340 continue;
4341 }
4342 if (unlikely(is_hugetlb_entry_migration(pte))) {
4343 swp_entry_t entry = pte_to_swp_entry(pte);
4344
4345 if (is_write_migration_entry(entry)) {
4346 pte_t newpte;
4347
4348 make_migration_entry_read(&entry);
4349 newpte = swp_entry_to_pte(entry);
e5251fd4
PA
4350 set_huge_swap_pte_at(mm, address, ptep,
4351 newpte, huge_page_size(h));
a8bda28d
NH
4352 pages++;
4353 }
4354 spin_unlock(ptl);
4355 continue;
4356 }
4357 if (!huge_pte_none(pte)) {
8f860591 4358 pte = huge_ptep_get_and_clear(mm, address, ptep);
106c992a 4359 pte = pte_mkhuge(huge_pte_modify(pte, newprot));
be7517d6 4360 pte = arch_make_huge_pte(pte, vma, NULL, 0);
8f860591 4361 set_huge_pte_at(mm, address, ptep, pte);
7da4d641 4362 pages++;
8f860591 4363 }
cb900f41 4364 spin_unlock(ptl);
8f860591 4365 }
d833352a 4366 /*
c8c06efa 4367 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
d833352a 4368 * may have cleared our pud entry and done put_page on the page table:
c8c06efa 4369 * once we release i_mmap_rwsem, another task can do the final put_page
d833352a
MG
4370 * and that page table be reused and filled with junk.
4371 */
5491ae7b 4372 flush_hugetlb_tlb_range(vma, start, end);
34ee645e 4373 mmu_notifier_invalidate_range(mm, start, end);
83cde9e8 4374 i_mmap_unlock_write(vma->vm_file->f_mapping);
a5338093 4375 mmu_notifier_invalidate_range_end(mm, start, end);
7da4d641
PZ
4376
4377 return pages << h->order;
8f860591
ZY
4378}
4379
a1e78772
MG
4380int hugetlb_reserve_pages(struct inode *inode,
4381 long from, long to,
5a6fe125 4382 struct vm_area_struct *vma,
ca16d140 4383 vm_flags_t vm_flags)
e4e574b7 4384{
17c9d12e 4385 long ret, chg;
a5516438 4386 struct hstate *h = hstate_inode(inode);
90481622 4387 struct hugepage_subpool *spool = subpool_inode(inode);
9119a41e 4388 struct resv_map *resv_map;
1c5ecae3 4389 long gbl_reserve;
e4e574b7 4390
17c9d12e
MG
4391 /*
4392 * Only apply hugepage reservation if asked. At fault time, an
4393 * attempt will be made for VM_NORESERVE to allocate a page
90481622 4394 * without using reserves
17c9d12e 4395 */
ca16d140 4396 if (vm_flags & VM_NORESERVE)
17c9d12e
MG
4397 return 0;
4398
a1e78772
MG
4399 /*
4400 * Shared mappings base their reservation on the number of pages that
4401 * are already allocated on behalf of the file. Private mappings need
4402 * to reserve the full area even if read-only as mprotect() may be
4403 * called to make the mapping read-write. Assume !vma is a shm mapping
4404 */
9119a41e 4405 if (!vma || vma->vm_flags & VM_MAYSHARE) {
4e35f483 4406 resv_map = inode_resv_map(inode);
9119a41e 4407
1406ec9b 4408 chg = region_chg(resv_map, from, to);
9119a41e
JK
4409
4410 } else {
4411 resv_map = resv_map_alloc();
17c9d12e
MG
4412 if (!resv_map)
4413 return -ENOMEM;
4414
a1e78772 4415 chg = to - from;
84afd99b 4416
17c9d12e
MG
4417 set_vma_resv_map(vma, resv_map);
4418 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
4419 }
4420
c50ac050
DH
4421 if (chg < 0) {
4422 ret = chg;
4423 goto out_err;
4424 }
8a630112 4425
1c5ecae3
MK
4426 /*
4427 * There must be enough pages in the subpool for the mapping. If
4428 * the subpool has a minimum size, there may be some global
4429 * reservations already in place (gbl_reserve).
4430 */
4431 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
4432 if (gbl_reserve < 0) {
c50ac050
DH
4433 ret = -ENOSPC;
4434 goto out_err;
4435 }
5a6fe125
MG
4436
4437 /*
17c9d12e 4438 * Check enough hugepages are available for the reservation.
90481622 4439 * Hand the pages back to the subpool if there are not
5a6fe125 4440 */
1c5ecae3 4441 ret = hugetlb_acct_memory(h, gbl_reserve);
68842c9b 4442 if (ret < 0) {
1c5ecae3
MK
4443 /* put back original number of pages, chg */
4444 (void)hugepage_subpool_put_pages(spool, chg);
c50ac050 4445 goto out_err;
68842c9b 4446 }
17c9d12e
MG
4447
4448 /*
4449 * Account for the reservations made. Shared mappings record regions
4450 * that have reservations as they are shared by multiple VMAs.
4451 * When the last VMA disappears, the region map says how much
4452 * the reservation was and the page cache tells how much of
4453 * the reservation was consumed. Private mappings are per-VMA and
4454 * only the consumed reservations are tracked. When the VMA
4455 * disappears, the original reservation is the VMA size and the
4456 * consumed reservations are stored in the map. Hence, nothing
4457 * else has to be done for private mappings here
4458 */
33039678
MK
4459 if (!vma || vma->vm_flags & VM_MAYSHARE) {
4460 long add = region_add(resv_map, from, to);
4461
4462 if (unlikely(chg > add)) {
4463 /*
4464 * pages in this range were added to the reserve
4465 * map between region_chg and region_add. This
4466 * indicates a race with alloc_huge_page. Adjust
4467 * the subpool and reserve counts modified above
4468 * based on the difference.
4469 */
4470 long rsv_adjust;
4471
4472 rsv_adjust = hugepage_subpool_put_pages(spool,
4473 chg - add);
4474 hugetlb_acct_memory(h, -rsv_adjust);
4475 }
4476 }
a43a8c39 4477 return 0;
c50ac050 4478out_err:
5e911373 4479 if (!vma || vma->vm_flags & VM_MAYSHARE)
ff8c0c53
MK
4480 /* Don't call region_abort if region_chg failed */
4481 if (chg >= 0)
4482 region_abort(resv_map, from, to);
f031dd27
JK
4483 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4484 kref_put(&resv_map->refs, resv_map_release);
c50ac050 4485 return ret;
a43a8c39
CK
4486}
4487
b5cec28d
MK
4488long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
4489 long freed)
a43a8c39 4490{
a5516438 4491 struct hstate *h = hstate_inode(inode);
4e35f483 4492 struct resv_map *resv_map = inode_resv_map(inode);
9119a41e 4493 long chg = 0;
90481622 4494 struct hugepage_subpool *spool = subpool_inode(inode);
1c5ecae3 4495 long gbl_reserve;
45c682a6 4496
b5cec28d
MK
4497 if (resv_map) {
4498 chg = region_del(resv_map, start, end);
4499 /*
4500 * region_del() can fail in the rare case where a region
4501 * must be split and another region descriptor can not be
4502 * allocated. If end == LONG_MAX, it will not fail.
4503 */
4504 if (chg < 0)
4505 return chg;
4506 }
4507
45c682a6 4508 spin_lock(&inode->i_lock);
e4c6f8be 4509 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
45c682a6
KC
4510 spin_unlock(&inode->i_lock);
4511
1c5ecae3
MK
4512 /*
4513 * If the subpool has a minimum size, the number of global
4514 * reservations to be released may be adjusted.
4515 */
4516 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
4517 hugetlb_acct_memory(h, -gbl_reserve);
b5cec28d
MK
4518
4519 return 0;
a43a8c39 4520}
93f70f90 4521
3212b535
SC
4522#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
4523static unsigned long page_table_shareable(struct vm_area_struct *svma,
4524 struct vm_area_struct *vma,
4525 unsigned long addr, pgoff_t idx)
4526{
4527 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
4528 svma->vm_start;
4529 unsigned long sbase = saddr & PUD_MASK;
4530 unsigned long s_end = sbase + PUD_SIZE;
4531
4532 /* Allow segments to share if only one is marked locked */
de60f5f1
EM
4533 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
4534 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
3212b535
SC
4535
4536 /*
4537 * match the virtual addresses, permission and the alignment of the
4538 * page table page.
4539 */
4540 if (pmd_index(addr) != pmd_index(saddr) ||
4541 vm_flags != svm_flags ||
4542 sbase < svma->vm_start || svma->vm_end < s_end)
4543 return 0;
4544
4545 return saddr;
4546}
4547
31aafb45 4548static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
3212b535
SC
4549{
4550 unsigned long base = addr & PUD_MASK;
4551 unsigned long end = base + PUD_SIZE;
4552
4553 /*
4554 * check on proper vm_flags and page table alignment
4555 */
4556 if (vma->vm_flags & VM_MAYSHARE &&
4557 vma->vm_start <= base && end <= vma->vm_end)
31aafb45
NK
4558 return true;
4559 return false;
3212b535
SC
4560}
4561
4562/*
4563 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4564 * and returns the corresponding pte. While this is not necessary for the
4565 * !shared pmd case because we can allocate the pmd later as well, it makes the
4566 * code much cleaner. pmd allocation is essential for the shared case because
c8c06efa 4567 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
3212b535
SC
4568 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4569 * bad pmd for sharing.
4570 */
4571pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4572{
4573 struct vm_area_struct *vma = find_vma(mm, addr);
4574 struct address_space *mapping = vma->vm_file->f_mapping;
4575 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
4576 vma->vm_pgoff;
4577 struct vm_area_struct *svma;
4578 unsigned long saddr;
4579 pte_t *spte = NULL;
4580 pte_t *pte;
cb900f41 4581 spinlock_t *ptl;
3212b535
SC
4582
4583 if (!vma_shareable(vma, addr))
4584 return (pte_t *)pmd_alloc(mm, pud, addr);
4585
83cde9e8 4586 i_mmap_lock_write(mapping);
3212b535
SC
4587 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
4588 if (svma == vma)
4589 continue;
4590
4591 saddr = page_table_shareable(svma, vma, addr, idx);
4592 if (saddr) {
7868a208
PA
4593 spte = huge_pte_offset(svma->vm_mm, saddr,
4594 vma_mmu_pagesize(svma));
3212b535
SC
4595 if (spte) {
4596 get_page(virt_to_page(spte));
4597 break;
4598 }
4599 }
4600 }
4601
4602 if (!spte)
4603 goto out;
4604
8bea8052 4605 ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
dc6c9a35 4606 if (pud_none(*pud)) {
3212b535
SC
4607 pud_populate(mm, pud,
4608 (pmd_t *)((unsigned long)spte & PAGE_MASK));
c17b1f42 4609 mm_inc_nr_pmds(mm);
dc6c9a35 4610 } else {
3212b535 4611 put_page(virt_to_page(spte));
dc6c9a35 4612 }
cb900f41 4613 spin_unlock(ptl);
3212b535
SC
4614out:
4615 pte = (pte_t *)pmd_alloc(mm, pud, addr);
83cde9e8 4616 i_mmap_unlock_write(mapping);
3212b535
SC
4617 return pte;
4618}
4619
4620/*
4621 * unmap huge page backed by shared pte.
4622 *
4623 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
4624 * indicated by page_count > 1, unmap is achieved by clearing pud and
4625 * decrementing the ref count. If count == 1, the pte page is not shared.
4626 *
cb900f41 4627 * called with page table lock held.
3212b535
SC
4628 *
4629 * returns: 1 successfully unmapped a shared pte page
4630 * 0 the underlying pte page is not shared, or it is the last user
4631 */
4632int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4633{
4634 pgd_t *pgd = pgd_offset(mm, *addr);
c2febafc
KS
4635 p4d_t *p4d = p4d_offset(pgd, *addr);
4636 pud_t *pud = pud_offset(p4d, *addr);
3212b535
SC
4637
4638 BUG_ON(page_count(virt_to_page(ptep)) == 0);
4639 if (page_count(virt_to_page(ptep)) == 1)
4640 return 0;
4641
4642 pud_clear(pud);
4643 put_page(virt_to_page(ptep));
dc6c9a35 4644 mm_dec_nr_pmds(mm);
3212b535
SC
4645 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
4646 return 1;
4647}
9e5fc74c
SC
4648#define want_pmd_share() (1)
4649#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4650pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4651{
4652 return NULL;
4653}
e81f2d22
ZZ
4654
4655int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4656{
4657 return 0;
4658}
9e5fc74c 4659#define want_pmd_share() (0)
3212b535
SC
4660#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4661
9e5fc74c
SC
4662#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
4663pte_t *huge_pte_alloc(struct mm_struct *mm,
4664 unsigned long addr, unsigned long sz)
4665{
4666 pgd_t *pgd;
c2febafc 4667 p4d_t *p4d;
9e5fc74c
SC
4668 pud_t *pud;
4669 pte_t *pte = NULL;
4670
4671 pgd = pgd_offset(mm, addr);
c2febafc
KS
4672 p4d = p4d_offset(pgd, addr);
4673 pud = pud_alloc(mm, p4d, addr);
9e5fc74c
SC
4674 if (pud) {
4675 if (sz == PUD_SIZE) {
4676 pte = (pte_t *)pud;
4677 } else {
4678 BUG_ON(sz != PMD_SIZE);
4679 if (want_pmd_share() && pud_none(*pud))
4680 pte = huge_pmd_share(mm, addr, pud);
4681 else
4682 pte = (pte_t *)pmd_alloc(mm, pud, addr);
4683 }
4684 }
4e666314 4685 BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
9e5fc74c
SC
4686
4687 return pte;
4688}
4689
7868a208
PA
4690pte_t *huge_pte_offset(struct mm_struct *mm,
4691 unsigned long addr, unsigned long sz)
9e5fc74c
SC
4692{
4693 pgd_t *pgd;
c2febafc 4694 p4d_t *p4d;
9e5fc74c 4695 pud_t *pud;
c2febafc 4696 pmd_t *pmd;
9e5fc74c
SC
4697
4698 pgd = pgd_offset(mm, addr);
c2febafc
KS
4699 if (!pgd_present(*pgd))
4700 return NULL;
4701 p4d = p4d_offset(pgd, addr);
4702 if (!p4d_present(*p4d))
4703 return NULL;
4704 pud = pud_offset(p4d, addr);
4705 if (!pud_present(*pud))
4706 return NULL;
4707 if (pud_huge(*pud))
4708 return (pte_t *)pud;
4709 pmd = pmd_offset(pud, addr);
9e5fc74c
SC
4710 return (pte_t *) pmd;
4711}
4712
61f77eda
NH
4713#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4714
4715/*
4716 * These functions are overwritable if your architecture needs its own
4717 * behavior.
4718 */
4719struct page * __weak
4720follow_huge_addr(struct mm_struct *mm, unsigned long address,
4721 int write)
4722{
4723 return ERR_PTR(-EINVAL);
4724}
4725
4dc71451
AK
4726struct page * __weak
4727follow_huge_pd(struct vm_area_struct *vma,
4728 unsigned long address, hugepd_t hpd, int flags, int pdshift)
4729{
4730 WARN(1, "hugepd follow called with no support for hugepage directory format\n");
4731 return NULL;
4732}
4733
61f77eda 4734struct page * __weak
9e5fc74c 4735follow_huge_pmd(struct mm_struct *mm, unsigned long address,
e66f17ff 4736 pmd_t *pmd, int flags)
9e5fc74c 4737{
e66f17ff
NH
4738 struct page *page = NULL;
4739 spinlock_t *ptl;
c9d398fa 4740 pte_t pte;
e66f17ff
NH
4741retry:
4742 ptl = pmd_lockptr(mm, pmd);
4743 spin_lock(ptl);
4744 /*
4745 * make sure that the address range covered by this pmd is not
4746 * unmapped from other threads.
4747 */
4748 if (!pmd_huge(*pmd))
4749 goto out;
c9d398fa
NH
4750 pte = huge_ptep_get((pte_t *)pmd);
4751 if (pte_present(pte)) {
97534127 4752 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
e66f17ff
NH
4753 if (flags & FOLL_GET)
4754 get_page(page);
4755 } else {
c9d398fa 4756 if (is_hugetlb_entry_migration(pte)) {
e66f17ff
NH
4757 spin_unlock(ptl);
4758 __migration_entry_wait(mm, (pte_t *)pmd, ptl);
4759 goto retry;
4760 }
4761 /*
4762 * hwpoisoned entry is treated as no_page_table in
4763 * follow_page_mask().
4764 */
4765 }
4766out:
4767 spin_unlock(ptl);
9e5fc74c
SC
4768 return page;
4769}
4770
61f77eda 4771struct page * __weak
9e5fc74c 4772follow_huge_pud(struct mm_struct *mm, unsigned long address,
e66f17ff 4773 pud_t *pud, int flags)
9e5fc74c 4774{
e66f17ff
NH
4775 if (flags & FOLL_GET)
4776 return NULL;
9e5fc74c 4777
e66f17ff 4778 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
9e5fc74c
SC
4779}
4780
faaa5b62
AK
4781struct page * __weak
4782follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
4783{
4784 if (flags & FOLL_GET)
4785 return NULL;
4786
4787 return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
4788}
4789
31caf665
NH
4790bool isolate_huge_page(struct page *page, struct list_head *list)
4791{
bcc54222
NH
4792 bool ret = true;
4793
309381fe 4794 VM_BUG_ON_PAGE(!PageHead(page), page);
31caf665 4795 spin_lock(&hugetlb_lock);
bcc54222
NH
4796 if (!page_huge_active(page) || !get_page_unless_zero(page)) {
4797 ret = false;
4798 goto unlock;
4799 }
4800 clear_page_huge_active(page);
31caf665 4801 list_move_tail(&page->lru, list);
bcc54222 4802unlock:
31caf665 4803 spin_unlock(&hugetlb_lock);
bcc54222 4804 return ret;
31caf665
NH
4805}
4806
4807void putback_active_hugepage(struct page *page)
4808{
309381fe 4809 VM_BUG_ON_PAGE(!PageHead(page), page);
31caf665 4810 spin_lock(&hugetlb_lock);
bcc54222 4811 set_page_huge_active(page);
31caf665
NH
4812 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
4813 spin_unlock(&hugetlb_lock);
4814 put_page(page);
4815}