mm/memcontrol.c: try harder to decrease [memory,memsw].limit_in_bytes
[linux-2.6-block.git] / mm / hugetlb.c
CommitLineData
1da177e4
LT
1/*
2 * Generic hugetlb support.
6d49e352 3 * (C) Nadia Yvette Chambers, April 2004
1da177e4 4 */
1da177e4
LT
5#include <linux/list.h>
6#include <linux/init.h>
1da177e4 7#include <linux/mm.h>
e1759c21 8#include <linux/seq_file.h>
1da177e4
LT
9#include <linux/sysctl.h>
10#include <linux/highmem.h>
cddb8a5c 11#include <linux/mmu_notifier.h>
1da177e4 12#include <linux/nodemask.h>
63551ae0 13#include <linux/pagemap.h>
5da7ca86 14#include <linux/mempolicy.h>
3b32123d 15#include <linux/compiler.h>
aea47ff3 16#include <linux/cpuset.h>
3935baa9 17#include <linux/mutex.h>
aa888a74 18#include <linux/bootmem.h>
a3437870 19#include <linux/sysfs.h>
5a0e3ad6 20#include <linux/slab.h>
174cd4b1 21#include <linux/sched/signal.h>
0fe6e20b 22#include <linux/rmap.h>
c6247f72 23#include <linux/string_helpers.h>
fd6a03ed
NH
24#include <linux/swap.h>
25#include <linux/swapops.h>
8382d914 26#include <linux/jhash.h>
d6606683 27
63551ae0
DG
28#include <asm/page.h>
29#include <asm/pgtable.h>
24669e58 30#include <asm/tlb.h>
63551ae0 31
24669e58 32#include <linux/io.h>
63551ae0 33#include <linux/hugetlb.h>
9dd540e2 34#include <linux/hugetlb_cgroup.h>
9a305230 35#include <linux/node.h>
1a1aad8a 36#include <linux/userfaultfd_k.h>
7835e98b 37#include "internal.h"
1da177e4 38
c3f38a38 39int hugetlb_max_hstate __read_mostly;
e5ff2159
AK
40unsigned int default_hstate_idx;
41struct hstate hstates[HUGE_MAX_HSTATE];
641844f5
NH
42/*
43 * Minimum page order among possible hugepage sizes, set to a proper value
44 * at boot time.
45 */
46static unsigned int minimum_order __read_mostly = UINT_MAX;
e5ff2159 47
53ba51d2
JT
48__initdata LIST_HEAD(huge_boot_pages);
49
e5ff2159
AK
50/* for command line parsing */
51static struct hstate * __initdata parsed_hstate;
52static unsigned long __initdata default_hstate_max_huge_pages;
e11bfbfc 53static unsigned long __initdata default_hstate_size;
9fee021d 54static bool __initdata parsed_valid_hugepagesz = true;
e5ff2159 55
3935baa9 56/*
31caf665
NH
57 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
58 * free_huge_pages, and surplus_huge_pages.
3935baa9 59 */
c3f38a38 60DEFINE_SPINLOCK(hugetlb_lock);
0bd0f9fb 61
8382d914
DB
62/*
63 * Serializes faults on the same logical page. This is used to
64 * prevent spurious OOMs when the hugepage pool is fully utilized.
65 */
66static int num_fault_mutexes;
c672c7f2 67struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
8382d914 68
7ca02d0a
MK
69/* Forward declaration */
70static int hugetlb_acct_memory(struct hstate *h, long delta);
71
90481622
DG
72static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
73{
74 bool free = (spool->count == 0) && (spool->used_hpages == 0);
75
76 spin_unlock(&spool->lock);
77
78 /* If no pages are used, and no other handles to the subpool
7ca02d0a
MK
79 * remain, give up any reservations mased on minimum size and
80 * free the subpool */
81 if (free) {
82 if (spool->min_hpages != -1)
83 hugetlb_acct_memory(spool->hstate,
84 -spool->min_hpages);
90481622 85 kfree(spool);
7ca02d0a 86 }
90481622
DG
87}
88
7ca02d0a
MK
89struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
90 long min_hpages)
90481622
DG
91{
92 struct hugepage_subpool *spool;
93
c6a91820 94 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
90481622
DG
95 if (!spool)
96 return NULL;
97
98 spin_lock_init(&spool->lock);
99 spool->count = 1;
7ca02d0a
MK
100 spool->max_hpages = max_hpages;
101 spool->hstate = h;
102 spool->min_hpages = min_hpages;
103
104 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
105 kfree(spool);
106 return NULL;
107 }
108 spool->rsv_hpages = min_hpages;
90481622
DG
109
110 return spool;
111}
112
113void hugepage_put_subpool(struct hugepage_subpool *spool)
114{
115 spin_lock(&spool->lock);
116 BUG_ON(!spool->count);
117 spool->count--;
118 unlock_or_release_subpool(spool);
119}
120
1c5ecae3
MK
121/*
122 * Subpool accounting for allocating and reserving pages.
123 * Return -ENOMEM if there are not enough resources to satisfy the
124 * the request. Otherwise, return the number of pages by which the
125 * global pools must be adjusted (upward). The returned value may
126 * only be different than the passed value (delta) in the case where
127 * a subpool minimum size must be manitained.
128 */
129static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
90481622
DG
130 long delta)
131{
1c5ecae3 132 long ret = delta;
90481622
DG
133
134 if (!spool)
1c5ecae3 135 return ret;
90481622
DG
136
137 spin_lock(&spool->lock);
1c5ecae3
MK
138
139 if (spool->max_hpages != -1) { /* maximum size accounting */
140 if ((spool->used_hpages + delta) <= spool->max_hpages)
141 spool->used_hpages += delta;
142 else {
143 ret = -ENOMEM;
144 goto unlock_ret;
145 }
90481622 146 }
90481622 147
09a95e29
MK
148 /* minimum size accounting */
149 if (spool->min_hpages != -1 && spool->rsv_hpages) {
1c5ecae3
MK
150 if (delta > spool->rsv_hpages) {
151 /*
152 * Asking for more reserves than those already taken on
153 * behalf of subpool. Return difference.
154 */
155 ret = delta - spool->rsv_hpages;
156 spool->rsv_hpages = 0;
157 } else {
158 ret = 0; /* reserves already accounted for */
159 spool->rsv_hpages -= delta;
160 }
161 }
162
163unlock_ret:
164 spin_unlock(&spool->lock);
90481622
DG
165 return ret;
166}
167
1c5ecae3
MK
168/*
169 * Subpool accounting for freeing and unreserving pages.
170 * Return the number of global page reservations that must be dropped.
171 * The return value may only be different than the passed value (delta)
172 * in the case where a subpool minimum size must be maintained.
173 */
174static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
90481622
DG
175 long delta)
176{
1c5ecae3
MK
177 long ret = delta;
178
90481622 179 if (!spool)
1c5ecae3 180 return delta;
90481622
DG
181
182 spin_lock(&spool->lock);
1c5ecae3
MK
183
184 if (spool->max_hpages != -1) /* maximum size accounting */
185 spool->used_hpages -= delta;
186
09a95e29
MK
187 /* minimum size accounting */
188 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
1c5ecae3
MK
189 if (spool->rsv_hpages + delta <= spool->min_hpages)
190 ret = 0;
191 else
192 ret = spool->rsv_hpages + delta - spool->min_hpages;
193
194 spool->rsv_hpages += delta;
195 if (spool->rsv_hpages > spool->min_hpages)
196 spool->rsv_hpages = spool->min_hpages;
197 }
198
199 /*
200 * If hugetlbfs_put_super couldn't free spool due to an outstanding
201 * quota reference, free it now.
202 */
90481622 203 unlock_or_release_subpool(spool);
1c5ecae3
MK
204
205 return ret;
90481622
DG
206}
207
208static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
209{
210 return HUGETLBFS_SB(inode->i_sb)->spool;
211}
212
213static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
214{
496ad9aa 215 return subpool_inode(file_inode(vma->vm_file));
90481622
DG
216}
217
96822904
AW
218/*
219 * Region tracking -- allows tracking of reservations and instantiated pages
220 * across the pages in a mapping.
84afd99b 221 *
1dd308a7
MK
222 * The region data structures are embedded into a resv_map and protected
223 * by a resv_map's lock. The set of regions within the resv_map represent
224 * reservations for huge pages, or huge pages that have already been
225 * instantiated within the map. The from and to elements are huge page
226 * indicies into the associated mapping. from indicates the starting index
227 * of the region. to represents the first index past the end of the region.
228 *
229 * For example, a file region structure with from == 0 and to == 4 represents
230 * four huge pages in a mapping. It is important to note that the to element
231 * represents the first element past the end of the region. This is used in
232 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
233 *
234 * Interval notation of the form [from, to) will be used to indicate that
235 * the endpoint from is inclusive and to is exclusive.
96822904
AW
236 */
237struct file_region {
238 struct list_head link;
239 long from;
240 long to;
241};
242
1dd308a7
MK
243/*
244 * Add the huge page range represented by [f, t) to the reserve
5e911373
MK
245 * map. In the normal case, existing regions will be expanded
246 * to accommodate the specified range. Sufficient regions should
247 * exist for expansion due to the previous call to region_chg
248 * with the same range. However, it is possible that region_del
249 * could have been called after region_chg and modifed the map
250 * in such a way that no region exists to be expanded. In this
251 * case, pull a region descriptor from the cache associated with
252 * the map and use that for the new range.
cf3ad20b
MK
253 *
254 * Return the number of new huge pages added to the map. This
255 * number is greater than or equal to zero.
1dd308a7 256 */
1406ec9b 257static long region_add(struct resv_map *resv, long f, long t)
96822904 258{
1406ec9b 259 struct list_head *head = &resv->regions;
96822904 260 struct file_region *rg, *nrg, *trg;
cf3ad20b 261 long add = 0;
96822904 262
7b24d861 263 spin_lock(&resv->lock);
96822904
AW
264 /* Locate the region we are either in or before. */
265 list_for_each_entry(rg, head, link)
266 if (f <= rg->to)
267 break;
268
5e911373
MK
269 /*
270 * If no region exists which can be expanded to include the
271 * specified range, the list must have been modified by an
272 * interleving call to region_del(). Pull a region descriptor
273 * from the cache and use it for this range.
274 */
275 if (&rg->link == head || t < rg->from) {
276 VM_BUG_ON(resv->region_cache_count <= 0);
277
278 resv->region_cache_count--;
279 nrg = list_first_entry(&resv->region_cache, struct file_region,
280 link);
281 list_del(&nrg->link);
282
283 nrg->from = f;
284 nrg->to = t;
285 list_add(&nrg->link, rg->link.prev);
286
287 add += t - f;
288 goto out_locked;
289 }
290
96822904
AW
291 /* Round our left edge to the current segment if it encloses us. */
292 if (f > rg->from)
293 f = rg->from;
294
295 /* Check for and consume any regions we now overlap with. */
296 nrg = rg;
297 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
298 if (&rg->link == head)
299 break;
300 if (rg->from > t)
301 break;
302
303 /* If this area reaches higher then extend our area to
304 * include it completely. If this is not the first area
305 * which we intend to reuse, free it. */
306 if (rg->to > t)
307 t = rg->to;
308 if (rg != nrg) {
cf3ad20b
MK
309 /* Decrement return value by the deleted range.
310 * Another range will span this area so that by
311 * end of routine add will be >= zero
312 */
313 add -= (rg->to - rg->from);
96822904
AW
314 list_del(&rg->link);
315 kfree(rg);
316 }
317 }
cf3ad20b
MK
318
319 add += (nrg->from - f); /* Added to beginning of region */
96822904 320 nrg->from = f;
cf3ad20b 321 add += t - nrg->to; /* Added to end of region */
96822904 322 nrg->to = t;
cf3ad20b 323
5e911373
MK
324out_locked:
325 resv->adds_in_progress--;
7b24d861 326 spin_unlock(&resv->lock);
cf3ad20b
MK
327 VM_BUG_ON(add < 0);
328 return add;
96822904
AW
329}
330
1dd308a7
MK
331/*
332 * Examine the existing reserve map and determine how many
333 * huge pages in the specified range [f, t) are NOT currently
334 * represented. This routine is called before a subsequent
335 * call to region_add that will actually modify the reserve
336 * map to add the specified range [f, t). region_chg does
337 * not change the number of huge pages represented by the
338 * map. However, if the existing regions in the map can not
339 * be expanded to represent the new range, a new file_region
340 * structure is added to the map as a placeholder. This is
341 * so that the subsequent region_add call will have all the
342 * regions it needs and will not fail.
343 *
5e911373
MK
344 * Upon entry, region_chg will also examine the cache of region descriptors
345 * associated with the map. If there are not enough descriptors cached, one
346 * will be allocated for the in progress add operation.
347 *
348 * Returns the number of huge pages that need to be added to the existing
349 * reservation map for the range [f, t). This number is greater or equal to
350 * zero. -ENOMEM is returned if a new file_region structure or cache entry
351 * is needed and can not be allocated.
1dd308a7 352 */
1406ec9b 353static long region_chg(struct resv_map *resv, long f, long t)
96822904 354{
1406ec9b 355 struct list_head *head = &resv->regions;
7b24d861 356 struct file_region *rg, *nrg = NULL;
96822904
AW
357 long chg = 0;
358
7b24d861
DB
359retry:
360 spin_lock(&resv->lock);
5e911373
MK
361retry_locked:
362 resv->adds_in_progress++;
363
364 /*
365 * Check for sufficient descriptors in the cache to accommodate
366 * the number of in progress add operations.
367 */
368 if (resv->adds_in_progress > resv->region_cache_count) {
369 struct file_region *trg;
370
371 VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
372 /* Must drop lock to allocate a new descriptor. */
373 resv->adds_in_progress--;
374 spin_unlock(&resv->lock);
375
376 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
dbe409e4
MK
377 if (!trg) {
378 kfree(nrg);
5e911373 379 return -ENOMEM;
dbe409e4 380 }
5e911373
MK
381
382 spin_lock(&resv->lock);
383 list_add(&trg->link, &resv->region_cache);
384 resv->region_cache_count++;
385 goto retry_locked;
386 }
387
96822904
AW
388 /* Locate the region we are before or in. */
389 list_for_each_entry(rg, head, link)
390 if (f <= rg->to)
391 break;
392
393 /* If we are below the current region then a new region is required.
394 * Subtle, allocate a new region at the position but make it zero
395 * size such that we can guarantee to record the reservation. */
396 if (&rg->link == head || t < rg->from) {
7b24d861 397 if (!nrg) {
5e911373 398 resv->adds_in_progress--;
7b24d861
DB
399 spin_unlock(&resv->lock);
400 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
401 if (!nrg)
402 return -ENOMEM;
403
404 nrg->from = f;
405 nrg->to = f;
406 INIT_LIST_HEAD(&nrg->link);
407 goto retry;
408 }
96822904 409
7b24d861
DB
410 list_add(&nrg->link, rg->link.prev);
411 chg = t - f;
412 goto out_nrg;
96822904
AW
413 }
414
415 /* Round our left edge to the current segment if it encloses us. */
416 if (f > rg->from)
417 f = rg->from;
418 chg = t - f;
419
420 /* Check for and consume any regions we now overlap with. */
421 list_for_each_entry(rg, rg->link.prev, link) {
422 if (&rg->link == head)
423 break;
424 if (rg->from > t)
7b24d861 425 goto out;
96822904 426
25985edc 427 /* We overlap with this area, if it extends further than
96822904
AW
428 * us then we must extend ourselves. Account for its
429 * existing reservation. */
430 if (rg->to > t) {
431 chg += rg->to - t;
432 t = rg->to;
433 }
434 chg -= rg->to - rg->from;
435 }
7b24d861
DB
436
437out:
438 spin_unlock(&resv->lock);
439 /* We already know we raced and no longer need the new region */
440 kfree(nrg);
441 return chg;
442out_nrg:
443 spin_unlock(&resv->lock);
96822904
AW
444 return chg;
445}
446
5e911373
MK
447/*
448 * Abort the in progress add operation. The adds_in_progress field
449 * of the resv_map keeps track of the operations in progress between
450 * calls to region_chg and region_add. Operations are sometimes
451 * aborted after the call to region_chg. In such cases, region_abort
452 * is called to decrement the adds_in_progress counter.
453 *
454 * NOTE: The range arguments [f, t) are not needed or used in this
455 * routine. They are kept to make reading the calling code easier as
456 * arguments will match the associated region_chg call.
457 */
458static void region_abort(struct resv_map *resv, long f, long t)
459{
460 spin_lock(&resv->lock);
461 VM_BUG_ON(!resv->region_cache_count);
462 resv->adds_in_progress--;
463 spin_unlock(&resv->lock);
464}
465
1dd308a7 466/*
feba16e2
MK
467 * Delete the specified range [f, t) from the reserve map. If the
468 * t parameter is LONG_MAX, this indicates that ALL regions after f
469 * should be deleted. Locate the regions which intersect [f, t)
470 * and either trim, delete or split the existing regions.
471 *
472 * Returns the number of huge pages deleted from the reserve map.
473 * In the normal case, the return value is zero or more. In the
474 * case where a region must be split, a new region descriptor must
475 * be allocated. If the allocation fails, -ENOMEM will be returned.
476 * NOTE: If the parameter t == LONG_MAX, then we will never split
477 * a region and possibly return -ENOMEM. Callers specifying
478 * t == LONG_MAX do not need to check for -ENOMEM error.
1dd308a7 479 */
feba16e2 480static long region_del(struct resv_map *resv, long f, long t)
96822904 481{
1406ec9b 482 struct list_head *head = &resv->regions;
96822904 483 struct file_region *rg, *trg;
feba16e2
MK
484 struct file_region *nrg = NULL;
485 long del = 0;
96822904 486
feba16e2 487retry:
7b24d861 488 spin_lock(&resv->lock);
feba16e2 489 list_for_each_entry_safe(rg, trg, head, link) {
dbe409e4
MK
490 /*
491 * Skip regions before the range to be deleted. file_region
492 * ranges are normally of the form [from, to). However, there
493 * may be a "placeholder" entry in the map which is of the form
494 * (from, to) with from == to. Check for placeholder entries
495 * at the beginning of the range to be deleted.
496 */
497 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
feba16e2 498 continue;
dbe409e4 499
feba16e2 500 if (rg->from >= t)
96822904 501 break;
96822904 502
feba16e2
MK
503 if (f > rg->from && t < rg->to) { /* Must split region */
504 /*
505 * Check for an entry in the cache before dropping
506 * lock and attempting allocation.
507 */
508 if (!nrg &&
509 resv->region_cache_count > resv->adds_in_progress) {
510 nrg = list_first_entry(&resv->region_cache,
511 struct file_region,
512 link);
513 list_del(&nrg->link);
514 resv->region_cache_count--;
515 }
96822904 516
feba16e2
MK
517 if (!nrg) {
518 spin_unlock(&resv->lock);
519 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
520 if (!nrg)
521 return -ENOMEM;
522 goto retry;
523 }
524
525 del += t - f;
526
527 /* New entry for end of split region */
528 nrg->from = t;
529 nrg->to = rg->to;
530 INIT_LIST_HEAD(&nrg->link);
531
532 /* Original entry is trimmed */
533 rg->to = f;
534
535 list_add(&nrg->link, &rg->link);
536 nrg = NULL;
96822904 537 break;
feba16e2
MK
538 }
539
540 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
541 del += rg->to - rg->from;
542 list_del(&rg->link);
543 kfree(rg);
544 continue;
545 }
546
547 if (f <= rg->from) { /* Trim beginning of region */
548 del += t - rg->from;
549 rg->from = t;
550 } else { /* Trim end of region */
551 del += rg->to - f;
552 rg->to = f;
553 }
96822904 554 }
7b24d861 555
7b24d861 556 spin_unlock(&resv->lock);
feba16e2
MK
557 kfree(nrg);
558 return del;
96822904
AW
559}
560
b5cec28d
MK
561/*
562 * A rare out of memory error was encountered which prevented removal of
563 * the reserve map region for a page. The huge page itself was free'ed
564 * and removed from the page cache. This routine will adjust the subpool
565 * usage count, and the global reserve count if needed. By incrementing
566 * these counts, the reserve map entry which could not be deleted will
567 * appear as a "reserved" entry instead of simply dangling with incorrect
568 * counts.
569 */
72e2936c 570void hugetlb_fix_reserve_counts(struct inode *inode)
b5cec28d
MK
571{
572 struct hugepage_subpool *spool = subpool_inode(inode);
573 long rsv_adjust;
574
575 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
72e2936c 576 if (rsv_adjust) {
b5cec28d
MK
577 struct hstate *h = hstate_inode(inode);
578
579 hugetlb_acct_memory(h, 1);
580 }
581}
582
1dd308a7
MK
583/*
584 * Count and return the number of huge pages in the reserve map
585 * that intersect with the range [f, t).
586 */
1406ec9b 587static long region_count(struct resv_map *resv, long f, long t)
84afd99b 588{
1406ec9b 589 struct list_head *head = &resv->regions;
84afd99b
AW
590 struct file_region *rg;
591 long chg = 0;
592
7b24d861 593 spin_lock(&resv->lock);
84afd99b
AW
594 /* Locate each segment we overlap with, and count that overlap. */
595 list_for_each_entry(rg, head, link) {
f2135a4a
WSH
596 long seg_from;
597 long seg_to;
84afd99b
AW
598
599 if (rg->to <= f)
600 continue;
601 if (rg->from >= t)
602 break;
603
604 seg_from = max(rg->from, f);
605 seg_to = min(rg->to, t);
606
607 chg += seg_to - seg_from;
608 }
7b24d861 609 spin_unlock(&resv->lock);
84afd99b
AW
610
611 return chg;
612}
613
e7c4b0bf
AW
614/*
615 * Convert the address within this vma to the page offset within
616 * the mapping, in pagecache page units; huge pages here.
617 */
a5516438
AK
618static pgoff_t vma_hugecache_offset(struct hstate *h,
619 struct vm_area_struct *vma, unsigned long address)
e7c4b0bf 620{
a5516438
AK
621 return ((address - vma->vm_start) >> huge_page_shift(h)) +
622 (vma->vm_pgoff >> huge_page_order(h));
e7c4b0bf
AW
623}
624
0fe6e20b
NH
625pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
626 unsigned long address)
627{
628 return vma_hugecache_offset(hstate_vma(vma), vma, address);
629}
dee41079 630EXPORT_SYMBOL_GPL(linear_hugepage_index);
0fe6e20b 631
08fba699
MG
632/*
633 * Return the size of the pages allocated when backing a VMA. In the majority
634 * cases this will be same size as used by the page table entries.
635 */
636unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
637{
638 struct hstate *hstate;
639
640 if (!is_vm_hugetlb_page(vma))
641 return PAGE_SIZE;
642
643 hstate = hstate_vma(vma);
644
2415cf12 645 return 1UL << huge_page_shift(hstate);
08fba699 646}
f340ca0f 647EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
08fba699 648
3340289d
MG
649/*
650 * Return the page size being used by the MMU to back a VMA. In the majority
651 * of cases, the page size used by the kernel matches the MMU size. On
652 * architectures where it differs, an architecture-specific version of this
653 * function is required.
654 */
655#ifndef vma_mmu_pagesize
656unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
657{
658 return vma_kernel_pagesize(vma);
659}
660#endif
661
84afd99b
AW
662/*
663 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
664 * bits of the reservation map pointer, which are always clear due to
665 * alignment.
666 */
667#define HPAGE_RESV_OWNER (1UL << 0)
668#define HPAGE_RESV_UNMAPPED (1UL << 1)
04f2cbe3 669#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
84afd99b 670
a1e78772
MG
671/*
672 * These helpers are used to track how many pages are reserved for
673 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
674 * is guaranteed to have their future faults succeed.
675 *
676 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
677 * the reserve counters are updated with the hugetlb_lock held. It is safe
678 * to reset the VMA at fork() time as it is not in use yet and there is no
679 * chance of the global counters getting corrupted as a result of the values.
84afd99b
AW
680 *
681 * The private mapping reservation is represented in a subtly different
682 * manner to a shared mapping. A shared mapping has a region map associated
683 * with the underlying file, this region map represents the backing file
684 * pages which have ever had a reservation assigned which this persists even
685 * after the page is instantiated. A private mapping has a region map
686 * associated with the original mmap which is attached to all VMAs which
687 * reference it, this region map represents those offsets which have consumed
688 * reservation ie. where pages have been instantiated.
a1e78772 689 */
e7c4b0bf
AW
690static unsigned long get_vma_private_data(struct vm_area_struct *vma)
691{
692 return (unsigned long)vma->vm_private_data;
693}
694
695static void set_vma_private_data(struct vm_area_struct *vma,
696 unsigned long value)
697{
698 vma->vm_private_data = (void *)value;
699}
700
9119a41e 701struct resv_map *resv_map_alloc(void)
84afd99b
AW
702{
703 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
5e911373
MK
704 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
705
706 if (!resv_map || !rg) {
707 kfree(resv_map);
708 kfree(rg);
84afd99b 709 return NULL;
5e911373 710 }
84afd99b
AW
711
712 kref_init(&resv_map->refs);
7b24d861 713 spin_lock_init(&resv_map->lock);
84afd99b
AW
714 INIT_LIST_HEAD(&resv_map->regions);
715
5e911373
MK
716 resv_map->adds_in_progress = 0;
717
718 INIT_LIST_HEAD(&resv_map->region_cache);
719 list_add(&rg->link, &resv_map->region_cache);
720 resv_map->region_cache_count = 1;
721
84afd99b
AW
722 return resv_map;
723}
724
9119a41e 725void resv_map_release(struct kref *ref)
84afd99b
AW
726{
727 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
5e911373
MK
728 struct list_head *head = &resv_map->region_cache;
729 struct file_region *rg, *trg;
84afd99b
AW
730
731 /* Clear out any active regions before we release the map. */
feba16e2 732 region_del(resv_map, 0, LONG_MAX);
5e911373
MK
733
734 /* ... and any entries left in the cache */
735 list_for_each_entry_safe(rg, trg, head, link) {
736 list_del(&rg->link);
737 kfree(rg);
738 }
739
740 VM_BUG_ON(resv_map->adds_in_progress);
741
84afd99b
AW
742 kfree(resv_map);
743}
744
4e35f483
JK
745static inline struct resv_map *inode_resv_map(struct inode *inode)
746{
747 return inode->i_mapping->private_data;
748}
749
84afd99b 750static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
a1e78772 751{
81d1b09c 752 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
4e35f483
JK
753 if (vma->vm_flags & VM_MAYSHARE) {
754 struct address_space *mapping = vma->vm_file->f_mapping;
755 struct inode *inode = mapping->host;
756
757 return inode_resv_map(inode);
758
759 } else {
84afd99b
AW
760 return (struct resv_map *)(get_vma_private_data(vma) &
761 ~HPAGE_RESV_MASK);
4e35f483 762 }
a1e78772
MG
763}
764
84afd99b 765static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
a1e78772 766{
81d1b09c
SL
767 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
768 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
a1e78772 769
84afd99b
AW
770 set_vma_private_data(vma, (get_vma_private_data(vma) &
771 HPAGE_RESV_MASK) | (unsigned long)map);
04f2cbe3
MG
772}
773
774static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
775{
81d1b09c
SL
776 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
777 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
e7c4b0bf
AW
778
779 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
04f2cbe3
MG
780}
781
782static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
783{
81d1b09c 784 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
e7c4b0bf
AW
785
786 return (get_vma_private_data(vma) & flag) != 0;
a1e78772
MG
787}
788
04f2cbe3 789/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
a1e78772
MG
790void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
791{
81d1b09c 792 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
f83a275d 793 if (!(vma->vm_flags & VM_MAYSHARE))
a1e78772
MG
794 vma->vm_private_data = (void *)0;
795}
796
797/* Returns true if the VMA has associated reserve pages */
559ec2f8 798static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
a1e78772 799{
af0ed73e
JK
800 if (vma->vm_flags & VM_NORESERVE) {
801 /*
802 * This address is already reserved by other process(chg == 0),
803 * so, we should decrement reserved count. Without decrementing,
804 * reserve count remains after releasing inode, because this
805 * allocated page will go into page cache and is regarded as
806 * coming from reserved pool in releasing step. Currently, we
807 * don't have any other solution to deal with this situation
808 * properly, so add work-around here.
809 */
810 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
559ec2f8 811 return true;
af0ed73e 812 else
559ec2f8 813 return false;
af0ed73e 814 }
a63884e9
JK
815
816 /* Shared mappings always use reserves */
1fb1b0e9
MK
817 if (vma->vm_flags & VM_MAYSHARE) {
818 /*
819 * We know VM_NORESERVE is not set. Therefore, there SHOULD
820 * be a region map for all pages. The only situation where
821 * there is no region map is if a hole was punched via
822 * fallocate. In this case, there really are no reverves to
823 * use. This situation is indicated if chg != 0.
824 */
825 if (chg)
826 return false;
827 else
828 return true;
829 }
a63884e9
JK
830
831 /*
832 * Only the process that called mmap() has reserves for
833 * private mappings.
834 */
67961f9d
MK
835 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
836 /*
837 * Like the shared case above, a hole punch or truncate
838 * could have been performed on the private mapping.
839 * Examine the value of chg to determine if reserves
840 * actually exist or were previously consumed.
841 * Very Subtle - The value of chg comes from a previous
842 * call to vma_needs_reserves(). The reserve map for
843 * private mappings has different (opposite) semantics
844 * than that of shared mappings. vma_needs_reserves()
845 * has already taken this difference in semantics into
846 * account. Therefore, the meaning of chg is the same
847 * as in the shared case above. Code could easily be
848 * combined, but keeping it separate draws attention to
849 * subtle differences.
850 */
851 if (chg)
852 return false;
853 else
854 return true;
855 }
a63884e9 856
559ec2f8 857 return false;
a1e78772
MG
858}
859
a5516438 860static void enqueue_huge_page(struct hstate *h, struct page *page)
1da177e4
LT
861{
862 int nid = page_to_nid(page);
0edaecfa 863 list_move(&page->lru, &h->hugepage_freelists[nid]);
a5516438
AK
864 h->free_huge_pages++;
865 h->free_huge_pages_node[nid]++;
1da177e4
LT
866}
867
94310cbc 868static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
bf50bab2
NH
869{
870 struct page *page;
871
c8721bbb 872 list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
243abd5b 873 if (!PageHWPoison(page))
c8721bbb
NH
874 break;
875 /*
876 * if 'non-isolated free hugepage' not found on the list,
877 * the allocation fails.
878 */
879 if (&h->hugepage_freelists[nid] == &page->lru)
bf50bab2 880 return NULL;
0edaecfa 881 list_move(&page->lru, &h->hugepage_activelist);
a9869b83 882 set_page_refcounted(page);
bf50bab2
NH
883 h->free_huge_pages--;
884 h->free_huge_pages_node[nid]--;
885 return page;
886}
887
3e59fcb0
MH
888static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
889 nodemask_t *nmask)
94310cbc 890{
3e59fcb0
MH
891 unsigned int cpuset_mems_cookie;
892 struct zonelist *zonelist;
893 struct zone *zone;
894 struct zoneref *z;
895 int node = -1;
94310cbc 896
3e59fcb0
MH
897 zonelist = node_zonelist(nid, gfp_mask);
898
899retry_cpuset:
900 cpuset_mems_cookie = read_mems_allowed_begin();
901 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
902 struct page *page;
903
904 if (!cpuset_zone_allowed(zone, gfp_mask))
905 continue;
906 /*
907 * no need to ask again on the same node. Pool is node rather than
908 * zone aware
909 */
910 if (zone_to_nid(zone) == node)
911 continue;
912 node = zone_to_nid(zone);
94310cbc 913
94310cbc
AK
914 page = dequeue_huge_page_node_exact(h, node);
915 if (page)
916 return page;
917 }
3e59fcb0
MH
918 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
919 goto retry_cpuset;
920
94310cbc
AK
921 return NULL;
922}
923
86cdb465
NH
924/* Movability of hugepages depends on migration support. */
925static inline gfp_t htlb_alloc_mask(struct hstate *h)
926{
d6cb41cc 927 if (hugepage_migration_supported(h))
86cdb465
NH
928 return GFP_HIGHUSER_MOVABLE;
929 else
930 return GFP_HIGHUSER;
931}
932
a5516438
AK
933static struct page *dequeue_huge_page_vma(struct hstate *h,
934 struct vm_area_struct *vma,
af0ed73e
JK
935 unsigned long address, int avoid_reserve,
936 long chg)
1da177e4 937{
3e59fcb0 938 struct page *page;
480eccf9 939 struct mempolicy *mpol;
04ec6264 940 gfp_t gfp_mask;
3e59fcb0 941 nodemask_t *nodemask;
04ec6264 942 int nid;
1da177e4 943
a1e78772
MG
944 /*
945 * A child process with MAP_PRIVATE mappings created by their parent
946 * have no page reserves. This check ensures that reservations are
947 * not "stolen". The child may still get SIGKILLed
948 */
af0ed73e 949 if (!vma_has_reserves(vma, chg) &&
a5516438 950 h->free_huge_pages - h->resv_huge_pages == 0)
c0ff7453 951 goto err;
a1e78772 952
04f2cbe3 953 /* If reserves cannot be used, ensure enough pages are in the pool */
a5516438 954 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
6eab04a8 955 goto err;
04f2cbe3 956
04ec6264
VB
957 gfp_mask = htlb_alloc_mask(h);
958 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
3e59fcb0
MH
959 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
960 if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
961 SetPagePrivate(page);
962 h->resv_huge_pages--;
1da177e4 963 }
cc9a6c87 964
52cd3b07 965 mpol_cond_put(mpol);
1da177e4 966 return page;
cc9a6c87
MG
967
968err:
cc9a6c87 969 return NULL;
1da177e4
LT
970}
971
1cac6f2c
LC
972/*
973 * common helper functions for hstate_next_node_to_{alloc|free}.
974 * We may have allocated or freed a huge page based on a different
975 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
976 * be outside of *nodes_allowed. Ensure that we use an allowed
977 * node for alloc or free.
978 */
979static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
980{
0edaf86c 981 nid = next_node_in(nid, *nodes_allowed);
1cac6f2c
LC
982 VM_BUG_ON(nid >= MAX_NUMNODES);
983
984 return nid;
985}
986
987static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
988{
989 if (!node_isset(nid, *nodes_allowed))
990 nid = next_node_allowed(nid, nodes_allowed);
991 return nid;
992}
993
994/*
995 * returns the previously saved node ["this node"] from which to
996 * allocate a persistent huge page for the pool and advance the
997 * next node from which to allocate, handling wrap at end of node
998 * mask.
999 */
1000static int hstate_next_node_to_alloc(struct hstate *h,
1001 nodemask_t *nodes_allowed)
1002{
1003 int nid;
1004
1005 VM_BUG_ON(!nodes_allowed);
1006
1007 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1008 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1009
1010 return nid;
1011}
1012
1013/*
1014 * helper for free_pool_huge_page() - return the previously saved
1015 * node ["this node"] from which to free a huge page. Advance the
1016 * next node id whether or not we find a free huge page to free so
1017 * that the next attempt to free addresses the next node.
1018 */
1019static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1020{
1021 int nid;
1022
1023 VM_BUG_ON(!nodes_allowed);
1024
1025 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1026 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1027
1028 return nid;
1029}
1030
1031#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
1032 for (nr_nodes = nodes_weight(*mask); \
1033 nr_nodes > 0 && \
1034 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
1035 nr_nodes--)
1036
1037#define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1038 for (nr_nodes = nodes_weight(*mask); \
1039 nr_nodes > 0 && \
1040 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1041 nr_nodes--)
1042
e1073d1e 1043#ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
944d9fec 1044static void destroy_compound_gigantic_page(struct page *page,
d00181b9 1045 unsigned int order)
944d9fec
LC
1046{
1047 int i;
1048 int nr_pages = 1 << order;
1049 struct page *p = page + 1;
1050
c8cc708a 1051 atomic_set(compound_mapcount_ptr(page), 0);
944d9fec 1052 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1d798ca3 1053 clear_compound_head(p);
944d9fec 1054 set_page_refcounted(p);
944d9fec
LC
1055 }
1056
1057 set_compound_order(page, 0);
1058 __ClearPageHead(page);
1059}
1060
d00181b9 1061static void free_gigantic_page(struct page *page, unsigned int order)
944d9fec
LC
1062{
1063 free_contig_range(page_to_pfn(page), 1 << order);
1064}
1065
1066static int __alloc_gigantic_page(unsigned long start_pfn,
79b63f12 1067 unsigned long nr_pages, gfp_t gfp_mask)
944d9fec
LC
1068{
1069 unsigned long end_pfn = start_pfn + nr_pages;
ca96b625 1070 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
79b63f12 1071 gfp_mask);
944d9fec
LC
1072}
1073
f44b2dda
JK
1074static bool pfn_range_valid_gigantic(struct zone *z,
1075 unsigned long start_pfn, unsigned long nr_pages)
944d9fec
LC
1076{
1077 unsigned long i, end_pfn = start_pfn + nr_pages;
1078 struct page *page;
1079
1080 for (i = start_pfn; i < end_pfn; i++) {
1081 if (!pfn_valid(i))
1082 return false;
1083
1084 page = pfn_to_page(i);
1085
f44b2dda
JK
1086 if (page_zone(page) != z)
1087 return false;
1088
944d9fec
LC
1089 if (PageReserved(page))
1090 return false;
1091
1092 if (page_count(page) > 0)
1093 return false;
1094
1095 if (PageHuge(page))
1096 return false;
1097 }
1098
1099 return true;
1100}
1101
1102static bool zone_spans_last_pfn(const struct zone *zone,
1103 unsigned long start_pfn, unsigned long nr_pages)
1104{
1105 unsigned long last_pfn = start_pfn + nr_pages - 1;
1106 return zone_spans_pfn(zone, last_pfn);
1107}
1108
79b63f12 1109static struct page *alloc_gigantic_page(int nid, struct hstate *h)
944d9fec 1110{
79b63f12 1111 unsigned int order = huge_page_order(h);
944d9fec
LC
1112 unsigned long nr_pages = 1 << order;
1113 unsigned long ret, pfn, flags;
79b63f12
MH
1114 struct zonelist *zonelist;
1115 struct zone *zone;
1116 struct zoneref *z;
1117 gfp_t gfp_mask;
944d9fec 1118
79b63f12
MH
1119 gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1120 zonelist = node_zonelist(nid, gfp_mask);
1121 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), NULL) {
1122 spin_lock_irqsave(&zone->lock, flags);
944d9fec 1123
79b63f12
MH
1124 pfn = ALIGN(zone->zone_start_pfn, nr_pages);
1125 while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
1126 if (pfn_range_valid_gigantic(zone, pfn, nr_pages)) {
944d9fec
LC
1127 /*
1128 * We release the zone lock here because
1129 * alloc_contig_range() will also lock the zone
1130 * at some point. If there's an allocation
1131 * spinning on this lock, it may win the race
1132 * and cause alloc_contig_range() to fail...
1133 */
79b63f12
MH
1134 spin_unlock_irqrestore(&zone->lock, flags);
1135 ret = __alloc_gigantic_page(pfn, nr_pages, gfp_mask);
944d9fec
LC
1136 if (!ret)
1137 return pfn_to_page(pfn);
79b63f12 1138 spin_lock_irqsave(&zone->lock, flags);
944d9fec
LC
1139 }
1140 pfn += nr_pages;
1141 }
1142
79b63f12 1143 spin_unlock_irqrestore(&zone->lock, flags);
944d9fec
LC
1144 }
1145
1146 return NULL;
1147}
1148
1149static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
d00181b9 1150static void prep_compound_gigantic_page(struct page *page, unsigned int order);
944d9fec
LC
1151
1152static struct page *alloc_fresh_gigantic_page_node(struct hstate *h, int nid)
1153{
1154 struct page *page;
1155
79b63f12 1156 page = alloc_gigantic_page(nid, h);
944d9fec
LC
1157 if (page) {
1158 prep_compound_gigantic_page(page, huge_page_order(h));
1159 prep_new_huge_page(h, page, nid);
1160 }
1161
1162 return page;
1163}
1164
1165static int alloc_fresh_gigantic_page(struct hstate *h,
1166 nodemask_t *nodes_allowed)
1167{
1168 struct page *page = NULL;
1169 int nr_nodes, node;
1170
1171 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1172 page = alloc_fresh_gigantic_page_node(h, node);
1173 if (page)
1174 return 1;
1175 }
1176
1177 return 0;
1178}
1179
e1073d1e 1180#else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
944d9fec 1181static inline bool gigantic_page_supported(void) { return false; }
d00181b9 1182static inline void free_gigantic_page(struct page *page, unsigned int order) { }
944d9fec 1183static inline void destroy_compound_gigantic_page(struct page *page,
d00181b9 1184 unsigned int order) { }
944d9fec
LC
1185static inline int alloc_fresh_gigantic_page(struct hstate *h,
1186 nodemask_t *nodes_allowed) { return 0; }
1187#endif
1188
a5516438 1189static void update_and_free_page(struct hstate *h, struct page *page)
6af2acb6
AL
1190{
1191 int i;
a5516438 1192
944d9fec
LC
1193 if (hstate_is_gigantic(h) && !gigantic_page_supported())
1194 return;
18229df5 1195
a5516438
AK
1196 h->nr_huge_pages--;
1197 h->nr_huge_pages_node[page_to_nid(page)]--;
1198 for (i = 0; i < pages_per_huge_page(h); i++) {
32f84528
CF
1199 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1200 1 << PG_referenced | 1 << PG_dirty |
a7407a27
LC
1201 1 << PG_active | 1 << PG_private |
1202 1 << PG_writeback);
6af2acb6 1203 }
309381fe 1204 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
f1e61557 1205 set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
6af2acb6 1206 set_page_refcounted(page);
944d9fec
LC
1207 if (hstate_is_gigantic(h)) {
1208 destroy_compound_gigantic_page(page, huge_page_order(h));
1209 free_gigantic_page(page, huge_page_order(h));
1210 } else {
944d9fec
LC
1211 __free_pages(page, huge_page_order(h));
1212 }
6af2acb6
AL
1213}
1214
e5ff2159
AK
1215struct hstate *size_to_hstate(unsigned long size)
1216{
1217 struct hstate *h;
1218
1219 for_each_hstate(h) {
1220 if (huge_page_size(h) == size)
1221 return h;
1222 }
1223 return NULL;
1224}
1225
bcc54222
NH
1226/*
1227 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1228 * to hstate->hugepage_activelist.)
1229 *
1230 * This function can be called for tail pages, but never returns true for them.
1231 */
1232bool page_huge_active(struct page *page)
1233{
1234 VM_BUG_ON_PAGE(!PageHuge(page), page);
1235 return PageHead(page) && PagePrivate(&page[1]);
1236}
1237
1238/* never called for tail page */
1239static void set_page_huge_active(struct page *page)
1240{
1241 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1242 SetPagePrivate(&page[1]);
1243}
1244
1245static void clear_page_huge_active(struct page *page)
1246{
1247 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1248 ClearPagePrivate(&page[1]);
1249}
1250
8f1d26d0 1251void free_huge_page(struct page *page)
27a85ef1 1252{
a5516438
AK
1253 /*
1254 * Can't pass hstate in here because it is called from the
1255 * compound page destructor.
1256 */
e5ff2159 1257 struct hstate *h = page_hstate(page);
7893d1d5 1258 int nid = page_to_nid(page);
90481622
DG
1259 struct hugepage_subpool *spool =
1260 (struct hugepage_subpool *)page_private(page);
07443a85 1261 bool restore_reserve;
27a85ef1 1262
e5df70ab 1263 set_page_private(page, 0);
23be7468 1264 page->mapping = NULL;
b4330afb
MK
1265 VM_BUG_ON_PAGE(page_count(page), page);
1266 VM_BUG_ON_PAGE(page_mapcount(page), page);
07443a85 1267 restore_reserve = PagePrivate(page);
16c794b4 1268 ClearPagePrivate(page);
27a85ef1 1269
1c5ecae3
MK
1270 /*
1271 * A return code of zero implies that the subpool will be under its
1272 * minimum size if the reservation is not restored after page is free.
1273 * Therefore, force restore_reserve operation.
1274 */
1275 if (hugepage_subpool_put_pages(spool, 1) == 0)
1276 restore_reserve = true;
1277
27a85ef1 1278 spin_lock(&hugetlb_lock);
bcc54222 1279 clear_page_huge_active(page);
6d76dcf4
AK
1280 hugetlb_cgroup_uncharge_page(hstate_index(h),
1281 pages_per_huge_page(h), page);
07443a85
JK
1282 if (restore_reserve)
1283 h->resv_huge_pages++;
1284
944d9fec 1285 if (h->surplus_huge_pages_node[nid]) {
0edaecfa
AK
1286 /* remove the page from active list */
1287 list_del(&page->lru);
a5516438
AK
1288 update_and_free_page(h, page);
1289 h->surplus_huge_pages--;
1290 h->surplus_huge_pages_node[nid]--;
7893d1d5 1291 } else {
5d3a551c 1292 arch_clear_hugepage_flags(page);
a5516438 1293 enqueue_huge_page(h, page);
7893d1d5 1294 }
27a85ef1
DG
1295 spin_unlock(&hugetlb_lock);
1296}
1297
a5516438 1298static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
b7ba30c6 1299{
0edaecfa 1300 INIT_LIST_HEAD(&page->lru);
f1e61557 1301 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
b7ba30c6 1302 spin_lock(&hugetlb_lock);
9dd540e2 1303 set_hugetlb_cgroup(page, NULL);
a5516438
AK
1304 h->nr_huge_pages++;
1305 h->nr_huge_pages_node[nid]++;
b7ba30c6
AK
1306 spin_unlock(&hugetlb_lock);
1307 put_page(page); /* free it into the hugepage allocator */
1308}
1309
d00181b9 1310static void prep_compound_gigantic_page(struct page *page, unsigned int order)
20a0307c
WF
1311{
1312 int i;
1313 int nr_pages = 1 << order;
1314 struct page *p = page + 1;
1315
1316 /* we rely on prep_new_huge_page to set the destructor */
1317 set_compound_order(page, order);
ef5a22be 1318 __ClearPageReserved(page);
de09d31d 1319 __SetPageHead(page);
20a0307c 1320 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
ef5a22be
AA
1321 /*
1322 * For gigantic hugepages allocated through bootmem at
1323 * boot, it's safer to be consistent with the not-gigantic
1324 * hugepages and clear the PG_reserved bit from all tail pages
1325 * too. Otherwse drivers using get_user_pages() to access tail
1326 * pages may get the reference counting wrong if they see
1327 * PG_reserved set on a tail page (despite the head page not
1328 * having PG_reserved set). Enforcing this consistency between
1329 * head and tail pages allows drivers to optimize away a check
1330 * on the head page when they need know if put_page() is needed
1331 * after get_user_pages().
1332 */
1333 __ClearPageReserved(p);
58a84aa9 1334 set_page_count(p, 0);
1d798ca3 1335 set_compound_head(p, page);
20a0307c 1336 }
b4330afb 1337 atomic_set(compound_mapcount_ptr(page), -1);
20a0307c
WF
1338}
1339
7795912c
AM
1340/*
1341 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1342 * transparent huge pages. See the PageTransHuge() documentation for more
1343 * details.
1344 */
20a0307c
WF
1345int PageHuge(struct page *page)
1346{
20a0307c
WF
1347 if (!PageCompound(page))
1348 return 0;
1349
1350 page = compound_head(page);
f1e61557 1351 return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
20a0307c 1352}
43131e14
NH
1353EXPORT_SYMBOL_GPL(PageHuge);
1354
27c73ae7
AA
1355/*
1356 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1357 * normal or transparent huge pages.
1358 */
1359int PageHeadHuge(struct page *page_head)
1360{
27c73ae7
AA
1361 if (!PageHead(page_head))
1362 return 0;
1363
758f66a2 1364 return get_compound_page_dtor(page_head) == free_huge_page;
27c73ae7 1365}
27c73ae7 1366
13d60f4b
ZY
1367pgoff_t __basepage_index(struct page *page)
1368{
1369 struct page *page_head = compound_head(page);
1370 pgoff_t index = page_index(page_head);
1371 unsigned long compound_idx;
1372
1373 if (!PageHuge(page_head))
1374 return page_index(page);
1375
1376 if (compound_order(page_head) >= MAX_ORDER)
1377 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1378 else
1379 compound_idx = page - page_head;
1380
1381 return (index << compound_order(page_head)) + compound_idx;
1382}
1383
a5516438 1384static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
1da177e4 1385{
1da177e4 1386 struct page *page;
f96efd58 1387
96db800f 1388 page = __alloc_pages_node(nid,
86cdb465 1389 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
dcda9b04 1390 __GFP_RETRY_MAYFAIL|__GFP_NOWARN,
a5516438 1391 huge_page_order(h));
1da177e4 1392 if (page) {
a5516438 1393 prep_new_huge_page(h, page, nid);
1da177e4 1394 }
63b4613c
NA
1395
1396 return page;
1397}
1398
b2261026
JK
1399static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
1400{
1401 struct page *page;
1402 int nr_nodes, node;
1403 int ret = 0;
1404
1405 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1406 page = alloc_fresh_huge_page_node(h, node);
1407 if (page) {
1408 ret = 1;
1409 break;
1410 }
1411 }
1412
1413 if (ret)
1414 count_vm_event(HTLB_BUDDY_PGALLOC);
1415 else
1416 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1417
1418 return ret;
1419}
1420
e8c5c824
LS
1421/*
1422 * Free huge page from pool from next node to free.
1423 * Attempt to keep persistent huge pages more or less
1424 * balanced over allowed nodes.
1425 * Called with hugetlb_lock locked.
1426 */
6ae11b27
LS
1427static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1428 bool acct_surplus)
e8c5c824 1429{
b2261026 1430 int nr_nodes, node;
e8c5c824
LS
1431 int ret = 0;
1432
b2261026 1433 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
685f3457
LS
1434 /*
1435 * If we're returning unused surplus pages, only examine
1436 * nodes with surplus pages.
1437 */
b2261026
JK
1438 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1439 !list_empty(&h->hugepage_freelists[node])) {
e8c5c824 1440 struct page *page =
b2261026 1441 list_entry(h->hugepage_freelists[node].next,
e8c5c824
LS
1442 struct page, lru);
1443 list_del(&page->lru);
1444 h->free_huge_pages--;
b2261026 1445 h->free_huge_pages_node[node]--;
685f3457
LS
1446 if (acct_surplus) {
1447 h->surplus_huge_pages--;
b2261026 1448 h->surplus_huge_pages_node[node]--;
685f3457 1449 }
e8c5c824
LS
1450 update_and_free_page(h, page);
1451 ret = 1;
9a76db09 1452 break;
e8c5c824 1453 }
b2261026 1454 }
e8c5c824
LS
1455
1456 return ret;
1457}
1458
c8721bbb
NH
1459/*
1460 * Dissolve a given free hugepage into free buddy pages. This function does
082d5b6b
GS
1461 * nothing for in-use (including surplus) hugepages. Returns -EBUSY if the
1462 * number of free hugepages would be reduced below the number of reserved
1463 * hugepages.
c8721bbb 1464 */
c3114a84 1465int dissolve_free_huge_page(struct page *page)
c8721bbb 1466{
082d5b6b
GS
1467 int rc = 0;
1468
c8721bbb
NH
1469 spin_lock(&hugetlb_lock);
1470 if (PageHuge(page) && !page_count(page)) {
2247bb33
GS
1471 struct page *head = compound_head(page);
1472 struct hstate *h = page_hstate(head);
1473 int nid = page_to_nid(head);
082d5b6b
GS
1474 if (h->free_huge_pages - h->resv_huge_pages == 0) {
1475 rc = -EBUSY;
1476 goto out;
1477 }
c3114a84
AK
1478 /*
1479 * Move PageHWPoison flag from head page to the raw error page,
1480 * which makes any subpages rather than the error page reusable.
1481 */
1482 if (PageHWPoison(head) && page != head) {
1483 SetPageHWPoison(page);
1484 ClearPageHWPoison(head);
1485 }
2247bb33 1486 list_del(&head->lru);
c8721bbb
NH
1487 h->free_huge_pages--;
1488 h->free_huge_pages_node[nid]--;
c1470b33 1489 h->max_huge_pages--;
2247bb33 1490 update_and_free_page(h, head);
c8721bbb 1491 }
082d5b6b 1492out:
c8721bbb 1493 spin_unlock(&hugetlb_lock);
082d5b6b 1494 return rc;
c8721bbb
NH
1495}
1496
1497/*
1498 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1499 * make specified memory blocks removable from the system.
2247bb33
GS
1500 * Note that this will dissolve a free gigantic hugepage completely, if any
1501 * part of it lies within the given range.
082d5b6b
GS
1502 * Also note that if dissolve_free_huge_page() returns with an error, all
1503 * free hugepages that were dissolved before that error are lost.
c8721bbb 1504 */
082d5b6b 1505int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
c8721bbb 1506{
c8721bbb 1507 unsigned long pfn;
eb03aa00 1508 struct page *page;
082d5b6b 1509 int rc = 0;
c8721bbb 1510
d0177639 1511 if (!hugepages_supported())
082d5b6b 1512 return rc;
d0177639 1513
eb03aa00
GS
1514 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1515 page = pfn_to_page(pfn);
1516 if (PageHuge(page) && !page_count(page)) {
1517 rc = dissolve_free_huge_page(page);
1518 if (rc)
1519 break;
1520 }
1521 }
082d5b6b
GS
1522
1523 return rc;
c8721bbb
NH
1524}
1525
099730d6 1526static struct page *__hugetlb_alloc_buddy_huge_page(struct hstate *h,
aaf14e40 1527 gfp_t gfp_mask, int nid, nodemask_t *nmask)
099730d6
DH
1528{
1529 int order = huge_page_order(h);
099730d6 1530
dcda9b04 1531 gfp_mask |= __GFP_COMP|__GFP_RETRY_MAYFAIL|__GFP_NOWARN;
aaf14e40
MH
1532 if (nid == NUMA_NO_NODE)
1533 nid = numa_mem_id();
1534 return __alloc_pages_nodemask(gfp_mask, order, nid, nmask);
099730d6
DH
1535}
1536
aaf14e40
MH
1537static struct page *__alloc_buddy_huge_page(struct hstate *h, gfp_t gfp_mask,
1538 int nid, nodemask_t *nmask)
7893d1d5
AL
1539{
1540 struct page *page;
bf50bab2 1541 unsigned int r_nid;
7893d1d5 1542
bae7f4ae 1543 if (hstate_is_gigantic(h))
aa888a74
AK
1544 return NULL;
1545
d1c3fb1f
NA
1546 /*
1547 * Assume we will successfully allocate the surplus page to
1548 * prevent racing processes from causing the surplus to exceed
1549 * overcommit
1550 *
1551 * This however introduces a different race, where a process B
1552 * tries to grow the static hugepage pool while alloc_pages() is
1553 * called by process A. B will only examine the per-node
1554 * counters in determining if surplus huge pages can be
1555 * converted to normal huge pages in adjust_pool_surplus(). A
1556 * won't be able to increment the per-node counter, until the
1557 * lock is dropped by B, but B doesn't drop hugetlb_lock until
1558 * no more huge pages can be converted from surplus to normal
1559 * state (and doesn't try to convert again). Thus, we have a
1560 * case where a surplus huge page exists, the pool is grown, and
1561 * the surplus huge page still exists after, even though it
1562 * should just have been converted to a normal huge page. This
1563 * does not leak memory, though, as the hugepage will be freed
1564 * once it is out of use. It also does not allow the counters to
1565 * go out of whack in adjust_pool_surplus() as we don't modify
1566 * the node values until we've gotten the hugepage and only the
1567 * per-node value is checked there.
1568 */
1569 spin_lock(&hugetlb_lock);
a5516438 1570 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
d1c3fb1f
NA
1571 spin_unlock(&hugetlb_lock);
1572 return NULL;
1573 } else {
a5516438
AK
1574 h->nr_huge_pages++;
1575 h->surplus_huge_pages++;
d1c3fb1f
NA
1576 }
1577 spin_unlock(&hugetlb_lock);
1578
aaf14e40 1579 page = __hugetlb_alloc_buddy_huge_page(h, gfp_mask, nid, nmask);
d1c3fb1f
NA
1580
1581 spin_lock(&hugetlb_lock);
7893d1d5 1582 if (page) {
0edaecfa 1583 INIT_LIST_HEAD(&page->lru);
bf50bab2 1584 r_nid = page_to_nid(page);
f1e61557 1585 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
9dd540e2 1586 set_hugetlb_cgroup(page, NULL);
d1c3fb1f
NA
1587 /*
1588 * We incremented the global counters already
1589 */
bf50bab2
NH
1590 h->nr_huge_pages_node[r_nid]++;
1591 h->surplus_huge_pages_node[r_nid]++;
3b116300 1592 __count_vm_event(HTLB_BUDDY_PGALLOC);
d1c3fb1f 1593 } else {
a5516438
AK
1594 h->nr_huge_pages--;
1595 h->surplus_huge_pages--;
3b116300 1596 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
7893d1d5 1597 }
d1c3fb1f 1598 spin_unlock(&hugetlb_lock);
7893d1d5
AL
1599
1600 return page;
1601}
1602
099730d6
DH
1603/*
1604 * Use the VMA's mpolicy to allocate a huge page from the buddy.
1605 */
e0ec90ee 1606static
099730d6
DH
1607struct page *__alloc_buddy_huge_page_with_mpol(struct hstate *h,
1608 struct vm_area_struct *vma, unsigned long addr)
1609{
aaf14e40
MH
1610 struct page *page;
1611 struct mempolicy *mpol;
1612 gfp_t gfp_mask = htlb_alloc_mask(h);
1613 int nid;
1614 nodemask_t *nodemask;
1615
1616 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
1617 page = __alloc_buddy_huge_page(h, gfp_mask, nid, nodemask);
1618 mpol_cond_put(mpol);
1619
1620 return page;
099730d6
DH
1621}
1622
bf50bab2
NH
1623/*
1624 * This allocation function is useful in the context where vma is irrelevant.
1625 * E.g. soft-offlining uses this function because it only cares physical
1626 * address of error page.
1627 */
1628struct page *alloc_huge_page_node(struct hstate *h, int nid)
1629{
aaf14e40 1630 gfp_t gfp_mask = htlb_alloc_mask(h);
4ef91848 1631 struct page *page = NULL;
bf50bab2 1632
aaf14e40
MH
1633 if (nid != NUMA_NO_NODE)
1634 gfp_mask |= __GFP_THISNODE;
1635
bf50bab2 1636 spin_lock(&hugetlb_lock);
4ef91848 1637 if (h->free_huge_pages - h->resv_huge_pages > 0)
3e59fcb0 1638 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, NULL);
bf50bab2
NH
1639 spin_unlock(&hugetlb_lock);
1640
94ae8ba7 1641 if (!page)
aaf14e40 1642 page = __alloc_buddy_huge_page(h, gfp_mask, nid, NULL);
bf50bab2
NH
1643
1644 return page;
1645}
1646
3e59fcb0
MH
1647
1648struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
1649 nodemask_t *nmask)
4db9b2ef 1650{
aaf14e40 1651 gfp_t gfp_mask = htlb_alloc_mask(h);
4db9b2ef
MH
1652
1653 spin_lock(&hugetlb_lock);
1654 if (h->free_huge_pages - h->resv_huge_pages > 0) {
3e59fcb0
MH
1655 struct page *page;
1656
1657 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
1658 if (page) {
1659 spin_unlock(&hugetlb_lock);
1660 return page;
4db9b2ef
MH
1661 }
1662 }
1663 spin_unlock(&hugetlb_lock);
4db9b2ef
MH
1664
1665 /* No reservations, try to overcommit */
3e59fcb0
MH
1666
1667 return __alloc_buddy_huge_page(h, gfp_mask, preferred_nid, nmask);
4db9b2ef
MH
1668}
1669
e4e574b7 1670/*
25985edc 1671 * Increase the hugetlb pool such that it can accommodate a reservation
e4e574b7
AL
1672 * of size 'delta'.
1673 */
a5516438 1674static int gather_surplus_pages(struct hstate *h, int delta)
e4e574b7
AL
1675{
1676 struct list_head surplus_list;
1677 struct page *page, *tmp;
1678 int ret, i;
1679 int needed, allocated;
28073b02 1680 bool alloc_ok = true;
e4e574b7 1681
a5516438 1682 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
ac09b3a1 1683 if (needed <= 0) {
a5516438 1684 h->resv_huge_pages += delta;
e4e574b7 1685 return 0;
ac09b3a1 1686 }
e4e574b7
AL
1687
1688 allocated = 0;
1689 INIT_LIST_HEAD(&surplus_list);
1690
1691 ret = -ENOMEM;
1692retry:
1693 spin_unlock(&hugetlb_lock);
1694 for (i = 0; i < needed; i++) {
aaf14e40
MH
1695 page = __alloc_buddy_huge_page(h, htlb_alloc_mask(h),
1696 NUMA_NO_NODE, NULL);
28073b02
HD
1697 if (!page) {
1698 alloc_ok = false;
1699 break;
1700 }
e4e574b7 1701 list_add(&page->lru, &surplus_list);
69ed779a 1702 cond_resched();
e4e574b7 1703 }
28073b02 1704 allocated += i;
e4e574b7
AL
1705
1706 /*
1707 * After retaking hugetlb_lock, we need to recalculate 'needed'
1708 * because either resv_huge_pages or free_huge_pages may have changed.
1709 */
1710 spin_lock(&hugetlb_lock);
a5516438
AK
1711 needed = (h->resv_huge_pages + delta) -
1712 (h->free_huge_pages + allocated);
28073b02
HD
1713 if (needed > 0) {
1714 if (alloc_ok)
1715 goto retry;
1716 /*
1717 * We were not able to allocate enough pages to
1718 * satisfy the entire reservation so we free what
1719 * we've allocated so far.
1720 */
1721 goto free;
1722 }
e4e574b7
AL
1723 /*
1724 * The surplus_list now contains _at_least_ the number of extra pages
25985edc 1725 * needed to accommodate the reservation. Add the appropriate number
e4e574b7 1726 * of pages to the hugetlb pool and free the extras back to the buddy
ac09b3a1
AL
1727 * allocator. Commit the entire reservation here to prevent another
1728 * process from stealing the pages as they are added to the pool but
1729 * before they are reserved.
e4e574b7
AL
1730 */
1731 needed += allocated;
a5516438 1732 h->resv_huge_pages += delta;
e4e574b7 1733 ret = 0;
a9869b83 1734
19fc3f0a 1735 /* Free the needed pages to the hugetlb pool */
e4e574b7 1736 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
19fc3f0a
AL
1737 if ((--needed) < 0)
1738 break;
a9869b83
NH
1739 /*
1740 * This page is now managed by the hugetlb allocator and has
1741 * no users -- drop the buddy allocator's reference.
1742 */
1743 put_page_testzero(page);
309381fe 1744 VM_BUG_ON_PAGE(page_count(page), page);
a5516438 1745 enqueue_huge_page(h, page);
19fc3f0a 1746 }
28073b02 1747free:
b0365c8d 1748 spin_unlock(&hugetlb_lock);
19fc3f0a
AL
1749
1750 /* Free unnecessary surplus pages to the buddy allocator */
c0d934ba
JK
1751 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1752 put_page(page);
a9869b83 1753 spin_lock(&hugetlb_lock);
e4e574b7
AL
1754
1755 return ret;
1756}
1757
1758/*
e5bbc8a6
MK
1759 * This routine has two main purposes:
1760 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
1761 * in unused_resv_pages. This corresponds to the prior adjustments made
1762 * to the associated reservation map.
1763 * 2) Free any unused surplus pages that may have been allocated to satisfy
1764 * the reservation. As many as unused_resv_pages may be freed.
1765 *
1766 * Called with hugetlb_lock held. However, the lock could be dropped (and
1767 * reacquired) during calls to cond_resched_lock. Whenever dropping the lock,
1768 * we must make sure nobody else can claim pages we are in the process of
1769 * freeing. Do this by ensuring resv_huge_page always is greater than the
1770 * number of huge pages we plan to free when dropping the lock.
e4e574b7 1771 */
a5516438
AK
1772static void return_unused_surplus_pages(struct hstate *h,
1773 unsigned long unused_resv_pages)
e4e574b7 1774{
e4e574b7
AL
1775 unsigned long nr_pages;
1776
aa888a74 1777 /* Cannot return gigantic pages currently */
bae7f4ae 1778 if (hstate_is_gigantic(h))
e5bbc8a6 1779 goto out;
aa888a74 1780
e5bbc8a6
MK
1781 /*
1782 * Part (or even all) of the reservation could have been backed
1783 * by pre-allocated pages. Only free surplus pages.
1784 */
a5516438 1785 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
e4e574b7 1786
685f3457
LS
1787 /*
1788 * We want to release as many surplus pages as possible, spread
9b5e5d0f
LS
1789 * evenly across all nodes with memory. Iterate across these nodes
1790 * until we can no longer free unreserved surplus pages. This occurs
1791 * when the nodes with surplus pages have no free pages.
1792 * free_pool_huge_page() will balance the the freed pages across the
1793 * on-line nodes with memory and will handle the hstate accounting.
e5bbc8a6
MK
1794 *
1795 * Note that we decrement resv_huge_pages as we free the pages. If
1796 * we drop the lock, resv_huge_pages will still be sufficiently large
1797 * to cover subsequent pages we may free.
685f3457
LS
1798 */
1799 while (nr_pages--) {
e5bbc8a6
MK
1800 h->resv_huge_pages--;
1801 unused_resv_pages--;
8cebfcd0 1802 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
e5bbc8a6 1803 goto out;
7848a4bf 1804 cond_resched_lock(&hugetlb_lock);
e4e574b7 1805 }
e5bbc8a6
MK
1806
1807out:
1808 /* Fully uncommit the reservation */
1809 h->resv_huge_pages -= unused_resv_pages;
e4e574b7
AL
1810}
1811
5e911373 1812
c37f9fb1 1813/*
feba16e2 1814 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
5e911373 1815 * are used by the huge page allocation routines to manage reservations.
cf3ad20b
MK
1816 *
1817 * vma_needs_reservation is called to determine if the huge page at addr
1818 * within the vma has an associated reservation. If a reservation is
1819 * needed, the value 1 is returned. The caller is then responsible for
1820 * managing the global reservation and subpool usage counts. After
1821 * the huge page has been allocated, vma_commit_reservation is called
feba16e2
MK
1822 * to add the page to the reservation map. If the page allocation fails,
1823 * the reservation must be ended instead of committed. vma_end_reservation
1824 * is called in such cases.
cf3ad20b
MK
1825 *
1826 * In the normal case, vma_commit_reservation returns the same value
1827 * as the preceding vma_needs_reservation call. The only time this
1828 * is not the case is if a reserve map was changed between calls. It
1829 * is the responsibility of the caller to notice the difference and
1830 * take appropriate action.
96b96a96
MK
1831 *
1832 * vma_add_reservation is used in error paths where a reservation must
1833 * be restored when a newly allocated huge page must be freed. It is
1834 * to be called after calling vma_needs_reservation to determine if a
1835 * reservation exists.
c37f9fb1 1836 */
5e911373
MK
1837enum vma_resv_mode {
1838 VMA_NEEDS_RESV,
1839 VMA_COMMIT_RESV,
feba16e2 1840 VMA_END_RESV,
96b96a96 1841 VMA_ADD_RESV,
5e911373 1842};
cf3ad20b
MK
1843static long __vma_reservation_common(struct hstate *h,
1844 struct vm_area_struct *vma, unsigned long addr,
5e911373 1845 enum vma_resv_mode mode)
c37f9fb1 1846{
4e35f483
JK
1847 struct resv_map *resv;
1848 pgoff_t idx;
cf3ad20b 1849 long ret;
c37f9fb1 1850
4e35f483
JK
1851 resv = vma_resv_map(vma);
1852 if (!resv)
84afd99b 1853 return 1;
c37f9fb1 1854
4e35f483 1855 idx = vma_hugecache_offset(h, vma, addr);
5e911373
MK
1856 switch (mode) {
1857 case VMA_NEEDS_RESV:
cf3ad20b 1858 ret = region_chg(resv, idx, idx + 1);
5e911373
MK
1859 break;
1860 case VMA_COMMIT_RESV:
1861 ret = region_add(resv, idx, idx + 1);
1862 break;
feba16e2 1863 case VMA_END_RESV:
5e911373
MK
1864 region_abort(resv, idx, idx + 1);
1865 ret = 0;
1866 break;
96b96a96
MK
1867 case VMA_ADD_RESV:
1868 if (vma->vm_flags & VM_MAYSHARE)
1869 ret = region_add(resv, idx, idx + 1);
1870 else {
1871 region_abort(resv, idx, idx + 1);
1872 ret = region_del(resv, idx, idx + 1);
1873 }
1874 break;
5e911373
MK
1875 default:
1876 BUG();
1877 }
84afd99b 1878
4e35f483 1879 if (vma->vm_flags & VM_MAYSHARE)
cf3ad20b 1880 return ret;
67961f9d
MK
1881 else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
1882 /*
1883 * In most cases, reserves always exist for private mappings.
1884 * However, a file associated with mapping could have been
1885 * hole punched or truncated after reserves were consumed.
1886 * As subsequent fault on such a range will not use reserves.
1887 * Subtle - The reserve map for private mappings has the
1888 * opposite meaning than that of shared mappings. If NO
1889 * entry is in the reserve map, it means a reservation exists.
1890 * If an entry exists in the reserve map, it means the
1891 * reservation has already been consumed. As a result, the
1892 * return value of this routine is the opposite of the
1893 * value returned from reserve map manipulation routines above.
1894 */
1895 if (ret)
1896 return 0;
1897 else
1898 return 1;
1899 }
4e35f483 1900 else
cf3ad20b 1901 return ret < 0 ? ret : 0;
c37f9fb1 1902}
cf3ad20b
MK
1903
1904static long vma_needs_reservation(struct hstate *h,
a5516438 1905 struct vm_area_struct *vma, unsigned long addr)
c37f9fb1 1906{
5e911373 1907 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
cf3ad20b 1908}
84afd99b 1909
cf3ad20b
MK
1910static long vma_commit_reservation(struct hstate *h,
1911 struct vm_area_struct *vma, unsigned long addr)
1912{
5e911373
MK
1913 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
1914}
1915
feba16e2 1916static void vma_end_reservation(struct hstate *h,
5e911373
MK
1917 struct vm_area_struct *vma, unsigned long addr)
1918{
feba16e2 1919 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
c37f9fb1
AW
1920}
1921
96b96a96
MK
1922static long vma_add_reservation(struct hstate *h,
1923 struct vm_area_struct *vma, unsigned long addr)
1924{
1925 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
1926}
1927
1928/*
1929 * This routine is called to restore a reservation on error paths. In the
1930 * specific error paths, a huge page was allocated (via alloc_huge_page)
1931 * and is about to be freed. If a reservation for the page existed,
1932 * alloc_huge_page would have consumed the reservation and set PagePrivate
1933 * in the newly allocated page. When the page is freed via free_huge_page,
1934 * the global reservation count will be incremented if PagePrivate is set.
1935 * However, free_huge_page can not adjust the reserve map. Adjust the
1936 * reserve map here to be consistent with global reserve count adjustments
1937 * to be made by free_huge_page.
1938 */
1939static void restore_reserve_on_error(struct hstate *h,
1940 struct vm_area_struct *vma, unsigned long address,
1941 struct page *page)
1942{
1943 if (unlikely(PagePrivate(page))) {
1944 long rc = vma_needs_reservation(h, vma, address);
1945
1946 if (unlikely(rc < 0)) {
1947 /*
1948 * Rare out of memory condition in reserve map
1949 * manipulation. Clear PagePrivate so that
1950 * global reserve count will not be incremented
1951 * by free_huge_page. This will make it appear
1952 * as though the reservation for this page was
1953 * consumed. This may prevent the task from
1954 * faulting in the page at a later time. This
1955 * is better than inconsistent global huge page
1956 * accounting of reserve counts.
1957 */
1958 ClearPagePrivate(page);
1959 } else if (rc) {
1960 rc = vma_add_reservation(h, vma, address);
1961 if (unlikely(rc < 0))
1962 /*
1963 * See above comment about rare out of
1964 * memory condition.
1965 */
1966 ClearPagePrivate(page);
1967 } else
1968 vma_end_reservation(h, vma, address);
1969 }
1970}
1971
70c3547e 1972struct page *alloc_huge_page(struct vm_area_struct *vma,
04f2cbe3 1973 unsigned long addr, int avoid_reserve)
1da177e4 1974{
90481622 1975 struct hugepage_subpool *spool = subpool_vma(vma);
a5516438 1976 struct hstate *h = hstate_vma(vma);
348ea204 1977 struct page *page;
d85f69b0
MK
1978 long map_chg, map_commit;
1979 long gbl_chg;
6d76dcf4
AK
1980 int ret, idx;
1981 struct hugetlb_cgroup *h_cg;
a1e78772 1982
6d76dcf4 1983 idx = hstate_index(h);
a1e78772 1984 /*
d85f69b0
MK
1985 * Examine the region/reserve map to determine if the process
1986 * has a reservation for the page to be allocated. A return
1987 * code of zero indicates a reservation exists (no change).
a1e78772 1988 */
d85f69b0
MK
1989 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
1990 if (map_chg < 0)
76dcee75 1991 return ERR_PTR(-ENOMEM);
d85f69b0
MK
1992
1993 /*
1994 * Processes that did not create the mapping will have no
1995 * reserves as indicated by the region/reserve map. Check
1996 * that the allocation will not exceed the subpool limit.
1997 * Allocations for MAP_NORESERVE mappings also need to be
1998 * checked against any subpool limit.
1999 */
2000 if (map_chg || avoid_reserve) {
2001 gbl_chg = hugepage_subpool_get_pages(spool, 1);
2002 if (gbl_chg < 0) {
feba16e2 2003 vma_end_reservation(h, vma, addr);
76dcee75 2004 return ERR_PTR(-ENOSPC);
5e911373 2005 }
1da177e4 2006
d85f69b0
MK
2007 /*
2008 * Even though there was no reservation in the region/reserve
2009 * map, there could be reservations associated with the
2010 * subpool that can be used. This would be indicated if the
2011 * return value of hugepage_subpool_get_pages() is zero.
2012 * However, if avoid_reserve is specified we still avoid even
2013 * the subpool reservations.
2014 */
2015 if (avoid_reserve)
2016 gbl_chg = 1;
2017 }
2018
6d76dcf4 2019 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
8f34af6f
JZ
2020 if (ret)
2021 goto out_subpool_put;
2022
1da177e4 2023 spin_lock(&hugetlb_lock);
d85f69b0
MK
2024 /*
2025 * glb_chg is passed to indicate whether or not a page must be taken
2026 * from the global free pool (global change). gbl_chg == 0 indicates
2027 * a reservation exists for the allocation.
2028 */
2029 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
81a6fcae 2030 if (!page) {
94ae8ba7 2031 spin_unlock(&hugetlb_lock);
099730d6 2032 page = __alloc_buddy_huge_page_with_mpol(h, vma, addr);
8f34af6f
JZ
2033 if (!page)
2034 goto out_uncharge_cgroup;
a88c7695
NH
2035 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2036 SetPagePrivate(page);
2037 h->resv_huge_pages--;
2038 }
79dbb236
AK
2039 spin_lock(&hugetlb_lock);
2040 list_move(&page->lru, &h->hugepage_activelist);
81a6fcae 2041 /* Fall through */
68842c9b 2042 }
81a6fcae
JK
2043 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2044 spin_unlock(&hugetlb_lock);
348ea204 2045
90481622 2046 set_page_private(page, (unsigned long)spool);
90d8b7e6 2047
d85f69b0
MK
2048 map_commit = vma_commit_reservation(h, vma, addr);
2049 if (unlikely(map_chg > map_commit)) {
33039678
MK
2050 /*
2051 * The page was added to the reservation map between
2052 * vma_needs_reservation and vma_commit_reservation.
2053 * This indicates a race with hugetlb_reserve_pages.
2054 * Adjust for the subpool count incremented above AND
2055 * in hugetlb_reserve_pages for the same page. Also,
2056 * the reservation count added in hugetlb_reserve_pages
2057 * no longer applies.
2058 */
2059 long rsv_adjust;
2060
2061 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2062 hugetlb_acct_memory(h, -rsv_adjust);
2063 }
90d8b7e6 2064 return page;
8f34af6f
JZ
2065
2066out_uncharge_cgroup:
2067 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2068out_subpool_put:
d85f69b0 2069 if (map_chg || avoid_reserve)
8f34af6f 2070 hugepage_subpool_put_pages(spool, 1);
feba16e2 2071 vma_end_reservation(h, vma, addr);
8f34af6f 2072 return ERR_PTR(-ENOSPC);
b45b5bd6
DG
2073}
2074
74060e4d
NH
2075/*
2076 * alloc_huge_page()'s wrapper which simply returns the page if allocation
2077 * succeeds, otherwise NULL. This function is called from new_vma_page(),
2078 * where no ERR_VALUE is expected to be returned.
2079 */
2080struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
2081 unsigned long addr, int avoid_reserve)
2082{
2083 struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
2084 if (IS_ERR(page))
2085 page = NULL;
2086 return page;
2087}
2088
e24a1307
AK
2089int alloc_bootmem_huge_page(struct hstate *h)
2090 __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2091int __alloc_bootmem_huge_page(struct hstate *h)
aa888a74
AK
2092{
2093 struct huge_bootmem_page *m;
b2261026 2094 int nr_nodes, node;
aa888a74 2095
b2261026 2096 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
aa888a74
AK
2097 void *addr;
2098
8b89a116
GS
2099 addr = memblock_virt_alloc_try_nid_nopanic(
2100 huge_page_size(h), huge_page_size(h),
2101 0, BOOTMEM_ALLOC_ACCESSIBLE, node);
aa888a74
AK
2102 if (addr) {
2103 /*
2104 * Use the beginning of the huge page to store the
2105 * huge_bootmem_page struct (until gather_bootmem
2106 * puts them into the mem_map).
2107 */
2108 m = addr;
91f47662 2109 goto found;
aa888a74 2110 }
aa888a74
AK
2111 }
2112 return 0;
2113
2114found:
df994ead 2115 BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
aa888a74
AK
2116 /* Put them into a private list first because mem_map is not up yet */
2117 list_add(&m->list, &huge_boot_pages);
2118 m->hstate = h;
2119 return 1;
2120}
2121
d00181b9
KS
2122static void __init prep_compound_huge_page(struct page *page,
2123 unsigned int order)
18229df5
AW
2124{
2125 if (unlikely(order > (MAX_ORDER - 1)))
2126 prep_compound_gigantic_page(page, order);
2127 else
2128 prep_compound_page(page, order);
2129}
2130
aa888a74
AK
2131/* Put bootmem huge pages into the standard lists after mem_map is up */
2132static void __init gather_bootmem_prealloc(void)
2133{
2134 struct huge_bootmem_page *m;
2135
2136 list_for_each_entry(m, &huge_boot_pages, list) {
aa888a74 2137 struct hstate *h = m->hstate;
ee8f248d
BB
2138 struct page *page;
2139
2140#ifdef CONFIG_HIGHMEM
2141 page = pfn_to_page(m->phys >> PAGE_SHIFT);
8b89a116
GS
2142 memblock_free_late(__pa(m),
2143 sizeof(struct huge_bootmem_page));
ee8f248d
BB
2144#else
2145 page = virt_to_page(m);
2146#endif
aa888a74 2147 WARN_ON(page_count(page) != 1);
18229df5 2148 prep_compound_huge_page(page, h->order);
ef5a22be 2149 WARN_ON(PageReserved(page));
aa888a74 2150 prep_new_huge_page(h, page, page_to_nid(page));
b0320c7b
RA
2151 /*
2152 * If we had gigantic hugepages allocated at boot time, we need
2153 * to restore the 'stolen' pages to totalram_pages in order to
2154 * fix confusing memory reports from free(1) and another
2155 * side-effects, like CommitLimit going negative.
2156 */
bae7f4ae 2157 if (hstate_is_gigantic(h))
3dcc0571 2158 adjust_managed_page_count(page, 1 << h->order);
aa888a74
AK
2159 }
2160}
2161
8faa8b07 2162static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1da177e4
LT
2163{
2164 unsigned long i;
a5516438 2165
e5ff2159 2166 for (i = 0; i < h->max_huge_pages; ++i) {
bae7f4ae 2167 if (hstate_is_gigantic(h)) {
aa888a74
AK
2168 if (!alloc_bootmem_huge_page(h))
2169 break;
9b5e5d0f 2170 } else if (!alloc_fresh_huge_page(h,
8cebfcd0 2171 &node_states[N_MEMORY]))
1da177e4 2172 break;
69ed779a 2173 cond_resched();
1da177e4 2174 }
d715cf80
LH
2175 if (i < h->max_huge_pages) {
2176 char buf[32];
2177
c6247f72 2178 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
d715cf80
LH
2179 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n",
2180 h->max_huge_pages, buf, i);
2181 h->max_huge_pages = i;
2182 }
e5ff2159
AK
2183}
2184
2185static void __init hugetlb_init_hstates(void)
2186{
2187 struct hstate *h;
2188
2189 for_each_hstate(h) {
641844f5
NH
2190 if (minimum_order > huge_page_order(h))
2191 minimum_order = huge_page_order(h);
2192
8faa8b07 2193 /* oversize hugepages were init'ed in early boot */
bae7f4ae 2194 if (!hstate_is_gigantic(h))
8faa8b07 2195 hugetlb_hstate_alloc_pages(h);
e5ff2159 2196 }
641844f5 2197 VM_BUG_ON(minimum_order == UINT_MAX);
e5ff2159
AK
2198}
2199
2200static void __init report_hugepages(void)
2201{
2202 struct hstate *h;
2203
2204 for_each_hstate(h) {
4abd32db 2205 char buf[32];
c6247f72
MW
2206
2207 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
ffb22af5 2208 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
c6247f72 2209 buf, h->free_huge_pages);
e5ff2159
AK
2210 }
2211}
2212
1da177e4 2213#ifdef CONFIG_HIGHMEM
6ae11b27
LS
2214static void try_to_free_low(struct hstate *h, unsigned long count,
2215 nodemask_t *nodes_allowed)
1da177e4 2216{
4415cc8d
CL
2217 int i;
2218
bae7f4ae 2219 if (hstate_is_gigantic(h))
aa888a74
AK
2220 return;
2221
6ae11b27 2222 for_each_node_mask(i, *nodes_allowed) {
1da177e4 2223 struct page *page, *next;
a5516438
AK
2224 struct list_head *freel = &h->hugepage_freelists[i];
2225 list_for_each_entry_safe(page, next, freel, lru) {
2226 if (count >= h->nr_huge_pages)
6b0c880d 2227 return;
1da177e4
LT
2228 if (PageHighMem(page))
2229 continue;
2230 list_del(&page->lru);
e5ff2159 2231 update_and_free_page(h, page);
a5516438
AK
2232 h->free_huge_pages--;
2233 h->free_huge_pages_node[page_to_nid(page)]--;
1da177e4
LT
2234 }
2235 }
2236}
2237#else
6ae11b27
LS
2238static inline void try_to_free_low(struct hstate *h, unsigned long count,
2239 nodemask_t *nodes_allowed)
1da177e4
LT
2240{
2241}
2242#endif
2243
20a0307c
WF
2244/*
2245 * Increment or decrement surplus_huge_pages. Keep node-specific counters
2246 * balanced by operating on them in a round-robin fashion.
2247 * Returns 1 if an adjustment was made.
2248 */
6ae11b27
LS
2249static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2250 int delta)
20a0307c 2251{
b2261026 2252 int nr_nodes, node;
20a0307c
WF
2253
2254 VM_BUG_ON(delta != -1 && delta != 1);
20a0307c 2255
b2261026
JK
2256 if (delta < 0) {
2257 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2258 if (h->surplus_huge_pages_node[node])
2259 goto found;
e8c5c824 2260 }
b2261026
JK
2261 } else {
2262 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2263 if (h->surplus_huge_pages_node[node] <
2264 h->nr_huge_pages_node[node])
2265 goto found;
e8c5c824 2266 }
b2261026
JK
2267 }
2268 return 0;
20a0307c 2269
b2261026
JK
2270found:
2271 h->surplus_huge_pages += delta;
2272 h->surplus_huge_pages_node[node] += delta;
2273 return 1;
20a0307c
WF
2274}
2275
a5516438 2276#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
6ae11b27
LS
2277static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
2278 nodemask_t *nodes_allowed)
1da177e4 2279{
7893d1d5 2280 unsigned long min_count, ret;
1da177e4 2281
944d9fec 2282 if (hstate_is_gigantic(h) && !gigantic_page_supported())
aa888a74
AK
2283 return h->max_huge_pages;
2284
7893d1d5
AL
2285 /*
2286 * Increase the pool size
2287 * First take pages out of surplus state. Then make up the
2288 * remaining difference by allocating fresh huge pages.
d1c3fb1f 2289 *
d15c7c09 2290 * We might race with __alloc_buddy_huge_page() here and be unable
d1c3fb1f
NA
2291 * to convert a surplus huge page to a normal huge page. That is
2292 * not critical, though, it just means the overall size of the
2293 * pool might be one hugepage larger than it needs to be, but
2294 * within all the constraints specified by the sysctls.
7893d1d5 2295 */
1da177e4 2296 spin_lock(&hugetlb_lock);
a5516438 2297 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
6ae11b27 2298 if (!adjust_pool_surplus(h, nodes_allowed, -1))
7893d1d5
AL
2299 break;
2300 }
2301
a5516438 2302 while (count > persistent_huge_pages(h)) {
7893d1d5
AL
2303 /*
2304 * If this allocation races such that we no longer need the
2305 * page, free_huge_page will handle it by freeing the page
2306 * and reducing the surplus.
2307 */
2308 spin_unlock(&hugetlb_lock);
649920c6
JH
2309
2310 /* yield cpu to avoid soft lockup */
2311 cond_resched();
2312
944d9fec
LC
2313 if (hstate_is_gigantic(h))
2314 ret = alloc_fresh_gigantic_page(h, nodes_allowed);
2315 else
2316 ret = alloc_fresh_huge_page(h, nodes_allowed);
7893d1d5
AL
2317 spin_lock(&hugetlb_lock);
2318 if (!ret)
2319 goto out;
2320
536240f2
MG
2321 /* Bail for signals. Probably ctrl-c from user */
2322 if (signal_pending(current))
2323 goto out;
7893d1d5 2324 }
7893d1d5
AL
2325
2326 /*
2327 * Decrease the pool size
2328 * First return free pages to the buddy allocator (being careful
2329 * to keep enough around to satisfy reservations). Then place
2330 * pages into surplus state as needed so the pool will shrink
2331 * to the desired size as pages become free.
d1c3fb1f
NA
2332 *
2333 * By placing pages into the surplus state independent of the
2334 * overcommit value, we are allowing the surplus pool size to
2335 * exceed overcommit. There are few sane options here. Since
d15c7c09 2336 * __alloc_buddy_huge_page() is checking the global counter,
d1c3fb1f
NA
2337 * though, we'll note that we're not allowed to exceed surplus
2338 * and won't grow the pool anywhere else. Not until one of the
2339 * sysctls are changed, or the surplus pages go out of use.
7893d1d5 2340 */
a5516438 2341 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
6b0c880d 2342 min_count = max(count, min_count);
6ae11b27 2343 try_to_free_low(h, min_count, nodes_allowed);
a5516438 2344 while (min_count < persistent_huge_pages(h)) {
6ae11b27 2345 if (!free_pool_huge_page(h, nodes_allowed, 0))
1da177e4 2346 break;
55f67141 2347 cond_resched_lock(&hugetlb_lock);
1da177e4 2348 }
a5516438 2349 while (count < persistent_huge_pages(h)) {
6ae11b27 2350 if (!adjust_pool_surplus(h, nodes_allowed, 1))
7893d1d5
AL
2351 break;
2352 }
2353out:
a5516438 2354 ret = persistent_huge_pages(h);
1da177e4 2355 spin_unlock(&hugetlb_lock);
7893d1d5 2356 return ret;
1da177e4
LT
2357}
2358
a3437870
NA
2359#define HSTATE_ATTR_RO(_name) \
2360 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2361
2362#define HSTATE_ATTR(_name) \
2363 static struct kobj_attribute _name##_attr = \
2364 __ATTR(_name, 0644, _name##_show, _name##_store)
2365
2366static struct kobject *hugepages_kobj;
2367static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2368
9a305230
LS
2369static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2370
2371static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
a3437870
NA
2372{
2373 int i;
9a305230 2374
a3437870 2375 for (i = 0; i < HUGE_MAX_HSTATE; i++)
9a305230
LS
2376 if (hstate_kobjs[i] == kobj) {
2377 if (nidp)
2378 *nidp = NUMA_NO_NODE;
a3437870 2379 return &hstates[i];
9a305230
LS
2380 }
2381
2382 return kobj_to_node_hstate(kobj, nidp);
a3437870
NA
2383}
2384
06808b08 2385static ssize_t nr_hugepages_show_common(struct kobject *kobj,
a3437870
NA
2386 struct kobj_attribute *attr, char *buf)
2387{
9a305230
LS
2388 struct hstate *h;
2389 unsigned long nr_huge_pages;
2390 int nid;
2391
2392 h = kobj_to_hstate(kobj, &nid);
2393 if (nid == NUMA_NO_NODE)
2394 nr_huge_pages = h->nr_huge_pages;
2395 else
2396 nr_huge_pages = h->nr_huge_pages_node[nid];
2397
2398 return sprintf(buf, "%lu\n", nr_huge_pages);
a3437870 2399}
adbe8726 2400
238d3c13
DR
2401static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2402 struct hstate *h, int nid,
2403 unsigned long count, size_t len)
a3437870
NA
2404{
2405 int err;
bad44b5b 2406 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
a3437870 2407
944d9fec 2408 if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
adbe8726
EM
2409 err = -EINVAL;
2410 goto out;
2411 }
2412
9a305230
LS
2413 if (nid == NUMA_NO_NODE) {
2414 /*
2415 * global hstate attribute
2416 */
2417 if (!(obey_mempolicy &&
2418 init_nodemask_of_mempolicy(nodes_allowed))) {
2419 NODEMASK_FREE(nodes_allowed);
8cebfcd0 2420 nodes_allowed = &node_states[N_MEMORY];
9a305230
LS
2421 }
2422 } else if (nodes_allowed) {
2423 /*
2424 * per node hstate attribute: adjust count to global,
2425 * but restrict alloc/free to the specified node.
2426 */
2427 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2428 init_nodemask_of_node(nodes_allowed, nid);
2429 } else
8cebfcd0 2430 nodes_allowed = &node_states[N_MEMORY];
9a305230 2431
06808b08 2432 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
a3437870 2433
8cebfcd0 2434 if (nodes_allowed != &node_states[N_MEMORY])
06808b08
LS
2435 NODEMASK_FREE(nodes_allowed);
2436
2437 return len;
adbe8726
EM
2438out:
2439 NODEMASK_FREE(nodes_allowed);
2440 return err;
06808b08
LS
2441}
2442
238d3c13
DR
2443static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2444 struct kobject *kobj, const char *buf,
2445 size_t len)
2446{
2447 struct hstate *h;
2448 unsigned long count;
2449 int nid;
2450 int err;
2451
2452 err = kstrtoul(buf, 10, &count);
2453 if (err)
2454 return err;
2455
2456 h = kobj_to_hstate(kobj, &nid);
2457 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2458}
2459
06808b08
LS
2460static ssize_t nr_hugepages_show(struct kobject *kobj,
2461 struct kobj_attribute *attr, char *buf)
2462{
2463 return nr_hugepages_show_common(kobj, attr, buf);
2464}
2465
2466static ssize_t nr_hugepages_store(struct kobject *kobj,
2467 struct kobj_attribute *attr, const char *buf, size_t len)
2468{
238d3c13 2469 return nr_hugepages_store_common(false, kobj, buf, len);
a3437870
NA
2470}
2471HSTATE_ATTR(nr_hugepages);
2472
06808b08
LS
2473#ifdef CONFIG_NUMA
2474
2475/*
2476 * hstate attribute for optionally mempolicy-based constraint on persistent
2477 * huge page alloc/free.
2478 */
2479static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2480 struct kobj_attribute *attr, char *buf)
2481{
2482 return nr_hugepages_show_common(kobj, attr, buf);
2483}
2484
2485static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2486 struct kobj_attribute *attr, const char *buf, size_t len)
2487{
238d3c13 2488 return nr_hugepages_store_common(true, kobj, buf, len);
06808b08
LS
2489}
2490HSTATE_ATTR(nr_hugepages_mempolicy);
2491#endif
2492
2493
a3437870
NA
2494static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2495 struct kobj_attribute *attr, char *buf)
2496{
9a305230 2497 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870
NA
2498 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2499}
adbe8726 2500
a3437870
NA
2501static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2502 struct kobj_attribute *attr, const char *buf, size_t count)
2503{
2504 int err;
2505 unsigned long input;
9a305230 2506 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870 2507
bae7f4ae 2508 if (hstate_is_gigantic(h))
adbe8726
EM
2509 return -EINVAL;
2510
3dbb95f7 2511 err = kstrtoul(buf, 10, &input);
a3437870 2512 if (err)
73ae31e5 2513 return err;
a3437870
NA
2514
2515 spin_lock(&hugetlb_lock);
2516 h->nr_overcommit_huge_pages = input;
2517 spin_unlock(&hugetlb_lock);
2518
2519 return count;
2520}
2521HSTATE_ATTR(nr_overcommit_hugepages);
2522
2523static ssize_t free_hugepages_show(struct kobject *kobj,
2524 struct kobj_attribute *attr, char *buf)
2525{
9a305230
LS
2526 struct hstate *h;
2527 unsigned long free_huge_pages;
2528 int nid;
2529
2530 h = kobj_to_hstate(kobj, &nid);
2531 if (nid == NUMA_NO_NODE)
2532 free_huge_pages = h->free_huge_pages;
2533 else
2534 free_huge_pages = h->free_huge_pages_node[nid];
2535
2536 return sprintf(buf, "%lu\n", free_huge_pages);
a3437870
NA
2537}
2538HSTATE_ATTR_RO(free_hugepages);
2539
2540static ssize_t resv_hugepages_show(struct kobject *kobj,
2541 struct kobj_attribute *attr, char *buf)
2542{
9a305230 2543 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870
NA
2544 return sprintf(buf, "%lu\n", h->resv_huge_pages);
2545}
2546HSTATE_ATTR_RO(resv_hugepages);
2547
2548static ssize_t surplus_hugepages_show(struct kobject *kobj,
2549 struct kobj_attribute *attr, char *buf)
2550{
9a305230
LS
2551 struct hstate *h;
2552 unsigned long surplus_huge_pages;
2553 int nid;
2554
2555 h = kobj_to_hstate(kobj, &nid);
2556 if (nid == NUMA_NO_NODE)
2557 surplus_huge_pages = h->surplus_huge_pages;
2558 else
2559 surplus_huge_pages = h->surplus_huge_pages_node[nid];
2560
2561 return sprintf(buf, "%lu\n", surplus_huge_pages);
a3437870
NA
2562}
2563HSTATE_ATTR_RO(surplus_hugepages);
2564
2565static struct attribute *hstate_attrs[] = {
2566 &nr_hugepages_attr.attr,
2567 &nr_overcommit_hugepages_attr.attr,
2568 &free_hugepages_attr.attr,
2569 &resv_hugepages_attr.attr,
2570 &surplus_hugepages_attr.attr,
06808b08
LS
2571#ifdef CONFIG_NUMA
2572 &nr_hugepages_mempolicy_attr.attr,
2573#endif
a3437870
NA
2574 NULL,
2575};
2576
67e5ed96 2577static const struct attribute_group hstate_attr_group = {
a3437870
NA
2578 .attrs = hstate_attrs,
2579};
2580
094e9539
JM
2581static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2582 struct kobject **hstate_kobjs,
67e5ed96 2583 const struct attribute_group *hstate_attr_group)
a3437870
NA
2584{
2585 int retval;
972dc4de 2586 int hi = hstate_index(h);
a3437870 2587
9a305230
LS
2588 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2589 if (!hstate_kobjs[hi])
a3437870
NA
2590 return -ENOMEM;
2591
9a305230 2592 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
a3437870 2593 if (retval)
9a305230 2594 kobject_put(hstate_kobjs[hi]);
a3437870
NA
2595
2596 return retval;
2597}
2598
2599static void __init hugetlb_sysfs_init(void)
2600{
2601 struct hstate *h;
2602 int err;
2603
2604 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2605 if (!hugepages_kobj)
2606 return;
2607
2608 for_each_hstate(h) {
9a305230
LS
2609 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2610 hstate_kobjs, &hstate_attr_group);
a3437870 2611 if (err)
ffb22af5 2612 pr_err("Hugetlb: Unable to add hstate %s", h->name);
a3437870
NA
2613 }
2614}
2615
9a305230
LS
2616#ifdef CONFIG_NUMA
2617
2618/*
2619 * node_hstate/s - associate per node hstate attributes, via their kobjects,
10fbcf4c
KS
2620 * with node devices in node_devices[] using a parallel array. The array
2621 * index of a node device or _hstate == node id.
2622 * This is here to avoid any static dependency of the node device driver, in
9a305230
LS
2623 * the base kernel, on the hugetlb module.
2624 */
2625struct node_hstate {
2626 struct kobject *hugepages_kobj;
2627 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2628};
b4e289a6 2629static struct node_hstate node_hstates[MAX_NUMNODES];
9a305230
LS
2630
2631/*
10fbcf4c 2632 * A subset of global hstate attributes for node devices
9a305230
LS
2633 */
2634static struct attribute *per_node_hstate_attrs[] = {
2635 &nr_hugepages_attr.attr,
2636 &free_hugepages_attr.attr,
2637 &surplus_hugepages_attr.attr,
2638 NULL,
2639};
2640
67e5ed96 2641static const struct attribute_group per_node_hstate_attr_group = {
9a305230
LS
2642 .attrs = per_node_hstate_attrs,
2643};
2644
2645/*
10fbcf4c 2646 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
9a305230
LS
2647 * Returns node id via non-NULL nidp.
2648 */
2649static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2650{
2651 int nid;
2652
2653 for (nid = 0; nid < nr_node_ids; nid++) {
2654 struct node_hstate *nhs = &node_hstates[nid];
2655 int i;
2656 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2657 if (nhs->hstate_kobjs[i] == kobj) {
2658 if (nidp)
2659 *nidp = nid;
2660 return &hstates[i];
2661 }
2662 }
2663
2664 BUG();
2665 return NULL;
2666}
2667
2668/*
10fbcf4c 2669 * Unregister hstate attributes from a single node device.
9a305230
LS
2670 * No-op if no hstate attributes attached.
2671 */
3cd8b44f 2672static void hugetlb_unregister_node(struct node *node)
9a305230
LS
2673{
2674 struct hstate *h;
10fbcf4c 2675 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
2676
2677 if (!nhs->hugepages_kobj)
9b5e5d0f 2678 return; /* no hstate attributes */
9a305230 2679
972dc4de
AK
2680 for_each_hstate(h) {
2681 int idx = hstate_index(h);
2682 if (nhs->hstate_kobjs[idx]) {
2683 kobject_put(nhs->hstate_kobjs[idx]);
2684 nhs->hstate_kobjs[idx] = NULL;
9a305230 2685 }
972dc4de 2686 }
9a305230
LS
2687
2688 kobject_put(nhs->hugepages_kobj);
2689 nhs->hugepages_kobj = NULL;
2690}
2691
9a305230
LS
2692
2693/*
10fbcf4c 2694 * Register hstate attributes for a single node device.
9a305230
LS
2695 * No-op if attributes already registered.
2696 */
3cd8b44f 2697static void hugetlb_register_node(struct node *node)
9a305230
LS
2698{
2699 struct hstate *h;
10fbcf4c 2700 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
2701 int err;
2702
2703 if (nhs->hugepages_kobj)
2704 return; /* already allocated */
2705
2706 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
10fbcf4c 2707 &node->dev.kobj);
9a305230
LS
2708 if (!nhs->hugepages_kobj)
2709 return;
2710
2711 for_each_hstate(h) {
2712 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2713 nhs->hstate_kobjs,
2714 &per_node_hstate_attr_group);
2715 if (err) {
ffb22af5
AM
2716 pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2717 h->name, node->dev.id);
9a305230
LS
2718 hugetlb_unregister_node(node);
2719 break;
2720 }
2721 }
2722}
2723
2724/*
9b5e5d0f 2725 * hugetlb init time: register hstate attributes for all registered node
10fbcf4c
KS
2726 * devices of nodes that have memory. All on-line nodes should have
2727 * registered their associated device by this time.
9a305230 2728 */
7d9ca000 2729static void __init hugetlb_register_all_nodes(void)
9a305230
LS
2730{
2731 int nid;
2732
8cebfcd0 2733 for_each_node_state(nid, N_MEMORY) {
8732794b 2734 struct node *node = node_devices[nid];
10fbcf4c 2735 if (node->dev.id == nid)
9a305230
LS
2736 hugetlb_register_node(node);
2737 }
2738
2739 /*
10fbcf4c 2740 * Let the node device driver know we're here so it can
9a305230
LS
2741 * [un]register hstate attributes on node hotplug.
2742 */
2743 register_hugetlbfs_with_node(hugetlb_register_node,
2744 hugetlb_unregister_node);
2745}
2746#else /* !CONFIG_NUMA */
2747
2748static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2749{
2750 BUG();
2751 if (nidp)
2752 *nidp = -1;
2753 return NULL;
2754}
2755
9a305230
LS
2756static void hugetlb_register_all_nodes(void) { }
2757
2758#endif
2759
a3437870
NA
2760static int __init hugetlb_init(void)
2761{
8382d914
DB
2762 int i;
2763
457c1b27 2764 if (!hugepages_supported())
0ef89d25 2765 return 0;
a3437870 2766
e11bfbfc 2767 if (!size_to_hstate(default_hstate_size)) {
d715cf80
LH
2768 if (default_hstate_size != 0) {
2769 pr_err("HugeTLB: unsupported default_hugepagesz %lu. Reverting to %lu\n",
2770 default_hstate_size, HPAGE_SIZE);
2771 }
2772
e11bfbfc
NP
2773 default_hstate_size = HPAGE_SIZE;
2774 if (!size_to_hstate(default_hstate_size))
2775 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
a3437870 2776 }
972dc4de 2777 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
f8b74815
VT
2778 if (default_hstate_max_huge_pages) {
2779 if (!default_hstate.max_huge_pages)
2780 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2781 }
a3437870
NA
2782
2783 hugetlb_init_hstates();
aa888a74 2784 gather_bootmem_prealloc();
a3437870
NA
2785 report_hugepages();
2786
2787 hugetlb_sysfs_init();
9a305230 2788 hugetlb_register_all_nodes();
7179e7bf 2789 hugetlb_cgroup_file_init();
9a305230 2790
8382d914
DB
2791#ifdef CONFIG_SMP
2792 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2793#else
2794 num_fault_mutexes = 1;
2795#endif
c672c7f2 2796 hugetlb_fault_mutex_table =
8382d914 2797 kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
c672c7f2 2798 BUG_ON(!hugetlb_fault_mutex_table);
8382d914
DB
2799
2800 for (i = 0; i < num_fault_mutexes; i++)
c672c7f2 2801 mutex_init(&hugetlb_fault_mutex_table[i]);
a3437870
NA
2802 return 0;
2803}
3e89e1c5 2804subsys_initcall(hugetlb_init);
a3437870
NA
2805
2806/* Should be called on processing a hugepagesz=... option */
9fee021d
VT
2807void __init hugetlb_bad_size(void)
2808{
2809 parsed_valid_hugepagesz = false;
2810}
2811
d00181b9 2812void __init hugetlb_add_hstate(unsigned int order)
a3437870
NA
2813{
2814 struct hstate *h;
8faa8b07
AK
2815 unsigned long i;
2816
a3437870 2817 if (size_to_hstate(PAGE_SIZE << order)) {
598d8091 2818 pr_warn("hugepagesz= specified twice, ignoring\n");
a3437870
NA
2819 return;
2820 }
47d38344 2821 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
a3437870 2822 BUG_ON(order == 0);
47d38344 2823 h = &hstates[hugetlb_max_hstate++];
a3437870
NA
2824 h->order = order;
2825 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
8faa8b07
AK
2826 h->nr_huge_pages = 0;
2827 h->free_huge_pages = 0;
2828 for (i = 0; i < MAX_NUMNODES; ++i)
2829 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
0edaecfa 2830 INIT_LIST_HEAD(&h->hugepage_activelist);
54f18d35
AM
2831 h->next_nid_to_alloc = first_memory_node;
2832 h->next_nid_to_free = first_memory_node;
a3437870
NA
2833 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2834 huge_page_size(h)/1024);
8faa8b07 2835
a3437870
NA
2836 parsed_hstate = h;
2837}
2838
e11bfbfc 2839static int __init hugetlb_nrpages_setup(char *s)
a3437870
NA
2840{
2841 unsigned long *mhp;
8faa8b07 2842 static unsigned long *last_mhp;
a3437870 2843
9fee021d
VT
2844 if (!parsed_valid_hugepagesz) {
2845 pr_warn("hugepages = %s preceded by "
2846 "an unsupported hugepagesz, ignoring\n", s);
2847 parsed_valid_hugepagesz = true;
2848 return 1;
2849 }
a3437870 2850 /*
47d38344 2851 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
a3437870
NA
2852 * so this hugepages= parameter goes to the "default hstate".
2853 */
9fee021d 2854 else if (!hugetlb_max_hstate)
a3437870
NA
2855 mhp = &default_hstate_max_huge_pages;
2856 else
2857 mhp = &parsed_hstate->max_huge_pages;
2858
8faa8b07 2859 if (mhp == last_mhp) {
598d8091 2860 pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
8faa8b07
AK
2861 return 1;
2862 }
2863
a3437870
NA
2864 if (sscanf(s, "%lu", mhp) <= 0)
2865 *mhp = 0;
2866
8faa8b07
AK
2867 /*
2868 * Global state is always initialized later in hugetlb_init.
2869 * But we need to allocate >= MAX_ORDER hstates here early to still
2870 * use the bootmem allocator.
2871 */
47d38344 2872 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
8faa8b07
AK
2873 hugetlb_hstate_alloc_pages(parsed_hstate);
2874
2875 last_mhp = mhp;
2876
a3437870
NA
2877 return 1;
2878}
e11bfbfc
NP
2879__setup("hugepages=", hugetlb_nrpages_setup);
2880
2881static int __init hugetlb_default_setup(char *s)
2882{
2883 default_hstate_size = memparse(s, &s);
2884 return 1;
2885}
2886__setup("default_hugepagesz=", hugetlb_default_setup);
a3437870 2887
8a213460
NA
2888static unsigned int cpuset_mems_nr(unsigned int *array)
2889{
2890 int node;
2891 unsigned int nr = 0;
2892
2893 for_each_node_mask(node, cpuset_current_mems_allowed)
2894 nr += array[node];
2895
2896 return nr;
2897}
2898
2899#ifdef CONFIG_SYSCTL
06808b08
LS
2900static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2901 struct ctl_table *table, int write,
2902 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 2903{
e5ff2159 2904 struct hstate *h = &default_hstate;
238d3c13 2905 unsigned long tmp = h->max_huge_pages;
08d4a246 2906 int ret;
e5ff2159 2907
457c1b27 2908 if (!hugepages_supported())
86613628 2909 return -EOPNOTSUPP;
457c1b27 2910
e5ff2159
AK
2911 table->data = &tmp;
2912 table->maxlen = sizeof(unsigned long);
08d4a246
MH
2913 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2914 if (ret)
2915 goto out;
e5ff2159 2916
238d3c13
DR
2917 if (write)
2918 ret = __nr_hugepages_store_common(obey_mempolicy, h,
2919 NUMA_NO_NODE, tmp, *length);
08d4a246
MH
2920out:
2921 return ret;
1da177e4 2922}
396faf03 2923
06808b08
LS
2924int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2925 void __user *buffer, size_t *length, loff_t *ppos)
2926{
2927
2928 return hugetlb_sysctl_handler_common(false, table, write,
2929 buffer, length, ppos);
2930}
2931
2932#ifdef CONFIG_NUMA
2933int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2934 void __user *buffer, size_t *length, loff_t *ppos)
2935{
2936 return hugetlb_sysctl_handler_common(true, table, write,
2937 buffer, length, ppos);
2938}
2939#endif /* CONFIG_NUMA */
2940
a3d0c6aa 2941int hugetlb_overcommit_handler(struct ctl_table *table, int write,
8d65af78 2942 void __user *buffer,
a3d0c6aa
NA
2943 size_t *length, loff_t *ppos)
2944{
a5516438 2945 struct hstate *h = &default_hstate;
e5ff2159 2946 unsigned long tmp;
08d4a246 2947 int ret;
e5ff2159 2948
457c1b27 2949 if (!hugepages_supported())
86613628 2950 return -EOPNOTSUPP;
457c1b27 2951
c033a93c 2952 tmp = h->nr_overcommit_huge_pages;
e5ff2159 2953
bae7f4ae 2954 if (write && hstate_is_gigantic(h))
adbe8726
EM
2955 return -EINVAL;
2956
e5ff2159
AK
2957 table->data = &tmp;
2958 table->maxlen = sizeof(unsigned long);
08d4a246
MH
2959 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2960 if (ret)
2961 goto out;
e5ff2159
AK
2962
2963 if (write) {
2964 spin_lock(&hugetlb_lock);
2965 h->nr_overcommit_huge_pages = tmp;
2966 spin_unlock(&hugetlb_lock);
2967 }
08d4a246
MH
2968out:
2969 return ret;
a3d0c6aa
NA
2970}
2971
1da177e4
LT
2972#endif /* CONFIG_SYSCTL */
2973
e1759c21 2974void hugetlb_report_meminfo(struct seq_file *m)
1da177e4 2975{
fcb2b0c5
RG
2976 struct hstate *h;
2977 unsigned long total = 0;
2978
457c1b27
NA
2979 if (!hugepages_supported())
2980 return;
fcb2b0c5
RG
2981
2982 for_each_hstate(h) {
2983 unsigned long count = h->nr_huge_pages;
2984
2985 total += (PAGE_SIZE << huge_page_order(h)) * count;
2986
2987 if (h == &default_hstate)
2988 seq_printf(m,
2989 "HugePages_Total: %5lu\n"
2990 "HugePages_Free: %5lu\n"
2991 "HugePages_Rsvd: %5lu\n"
2992 "HugePages_Surp: %5lu\n"
2993 "Hugepagesize: %8lu kB\n",
2994 count,
2995 h->free_huge_pages,
2996 h->resv_huge_pages,
2997 h->surplus_huge_pages,
2998 (PAGE_SIZE << huge_page_order(h)) / 1024);
2999 }
3000
3001 seq_printf(m, "Hugetlb: %8lu kB\n", total / 1024);
1da177e4
LT
3002}
3003
3004int hugetlb_report_node_meminfo(int nid, char *buf)
3005{
a5516438 3006 struct hstate *h = &default_hstate;
457c1b27
NA
3007 if (!hugepages_supported())
3008 return 0;
1da177e4
LT
3009 return sprintf(buf,
3010 "Node %d HugePages_Total: %5u\n"
a1de0919
NA
3011 "Node %d HugePages_Free: %5u\n"
3012 "Node %d HugePages_Surp: %5u\n",
a5516438
AK
3013 nid, h->nr_huge_pages_node[nid],
3014 nid, h->free_huge_pages_node[nid],
3015 nid, h->surplus_huge_pages_node[nid]);
1da177e4
LT
3016}
3017
949f7ec5
DR
3018void hugetlb_show_meminfo(void)
3019{
3020 struct hstate *h;
3021 int nid;
3022
457c1b27
NA
3023 if (!hugepages_supported())
3024 return;
3025
949f7ec5
DR
3026 for_each_node_state(nid, N_MEMORY)
3027 for_each_hstate(h)
3028 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3029 nid,
3030 h->nr_huge_pages_node[nid],
3031 h->free_huge_pages_node[nid],
3032 h->surplus_huge_pages_node[nid],
3033 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3034}
3035
5d317b2b
NH
3036void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3037{
3038 seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3039 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3040}
3041
1da177e4
LT
3042/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3043unsigned long hugetlb_total_pages(void)
3044{
d0028588
WL
3045 struct hstate *h;
3046 unsigned long nr_total_pages = 0;
3047
3048 for_each_hstate(h)
3049 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3050 return nr_total_pages;
1da177e4 3051}
1da177e4 3052
a5516438 3053static int hugetlb_acct_memory(struct hstate *h, long delta)
fc1b8a73
MG
3054{
3055 int ret = -ENOMEM;
3056
3057 spin_lock(&hugetlb_lock);
3058 /*
3059 * When cpuset is configured, it breaks the strict hugetlb page
3060 * reservation as the accounting is done on a global variable. Such
3061 * reservation is completely rubbish in the presence of cpuset because
3062 * the reservation is not checked against page availability for the
3063 * current cpuset. Application can still potentially OOM'ed by kernel
3064 * with lack of free htlb page in cpuset that the task is in.
3065 * Attempt to enforce strict accounting with cpuset is almost
3066 * impossible (or too ugly) because cpuset is too fluid that
3067 * task or memory node can be dynamically moved between cpusets.
3068 *
3069 * The change of semantics for shared hugetlb mapping with cpuset is
3070 * undesirable. However, in order to preserve some of the semantics,
3071 * we fall back to check against current free page availability as
3072 * a best attempt and hopefully to minimize the impact of changing
3073 * semantics that cpuset has.
3074 */
3075 if (delta > 0) {
a5516438 3076 if (gather_surplus_pages(h, delta) < 0)
fc1b8a73
MG
3077 goto out;
3078
a5516438
AK
3079 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
3080 return_unused_surplus_pages(h, delta);
fc1b8a73
MG
3081 goto out;
3082 }
3083 }
3084
3085 ret = 0;
3086 if (delta < 0)
a5516438 3087 return_unused_surplus_pages(h, (unsigned long) -delta);
fc1b8a73
MG
3088
3089out:
3090 spin_unlock(&hugetlb_lock);
3091 return ret;
3092}
3093
84afd99b
AW
3094static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3095{
f522c3ac 3096 struct resv_map *resv = vma_resv_map(vma);
84afd99b
AW
3097
3098 /*
3099 * This new VMA should share its siblings reservation map if present.
3100 * The VMA will only ever have a valid reservation map pointer where
3101 * it is being copied for another still existing VMA. As that VMA
25985edc 3102 * has a reference to the reservation map it cannot disappear until
84afd99b
AW
3103 * after this open call completes. It is therefore safe to take a
3104 * new reference here without additional locking.
3105 */
4e35f483 3106 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
f522c3ac 3107 kref_get(&resv->refs);
84afd99b
AW
3108}
3109
a1e78772
MG
3110static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3111{
a5516438 3112 struct hstate *h = hstate_vma(vma);
f522c3ac 3113 struct resv_map *resv = vma_resv_map(vma);
90481622 3114 struct hugepage_subpool *spool = subpool_vma(vma);
4e35f483 3115 unsigned long reserve, start, end;
1c5ecae3 3116 long gbl_reserve;
84afd99b 3117
4e35f483
JK
3118 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3119 return;
84afd99b 3120
4e35f483
JK
3121 start = vma_hugecache_offset(h, vma, vma->vm_start);
3122 end = vma_hugecache_offset(h, vma, vma->vm_end);
84afd99b 3123
4e35f483 3124 reserve = (end - start) - region_count(resv, start, end);
84afd99b 3125
4e35f483
JK
3126 kref_put(&resv->refs, resv_map_release);
3127
3128 if (reserve) {
1c5ecae3
MK
3129 /*
3130 * Decrement reserve counts. The global reserve count may be
3131 * adjusted if the subpool has a minimum size.
3132 */
3133 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3134 hugetlb_acct_memory(h, -gbl_reserve);
84afd99b 3135 }
a1e78772
MG
3136}
3137
31383c68
DW
3138static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
3139{
3140 if (addr & ~(huge_page_mask(hstate_vma(vma))))
3141 return -EINVAL;
3142 return 0;
3143}
3144
1da177e4
LT
3145/*
3146 * We cannot handle pagefaults against hugetlb pages at all. They cause
3147 * handle_mm_fault() to try to instantiate regular-sized pages in the
3148 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
3149 * this far.
3150 */
11bac800 3151static int hugetlb_vm_op_fault(struct vm_fault *vmf)
1da177e4
LT
3152{
3153 BUG();
d0217ac0 3154 return 0;
1da177e4
LT
3155}
3156
f0f37e2f 3157const struct vm_operations_struct hugetlb_vm_ops = {
d0217ac0 3158 .fault = hugetlb_vm_op_fault,
84afd99b 3159 .open = hugetlb_vm_op_open,
a1e78772 3160 .close = hugetlb_vm_op_close,
31383c68 3161 .split = hugetlb_vm_op_split,
1da177e4
LT
3162};
3163
1e8f889b
DG
3164static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3165 int writable)
63551ae0
DG
3166{
3167 pte_t entry;
3168
1e8f889b 3169 if (writable) {
106c992a
GS
3170 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3171 vma->vm_page_prot)));
63551ae0 3172 } else {
106c992a
GS
3173 entry = huge_pte_wrprotect(mk_huge_pte(page,
3174 vma->vm_page_prot));
63551ae0
DG
3175 }
3176 entry = pte_mkyoung(entry);
3177 entry = pte_mkhuge(entry);
d9ed9faa 3178 entry = arch_make_huge_pte(entry, vma, page, writable);
63551ae0
DG
3179
3180 return entry;
3181}
3182
1e8f889b
DG
3183static void set_huge_ptep_writable(struct vm_area_struct *vma,
3184 unsigned long address, pte_t *ptep)
3185{
3186 pte_t entry;
3187
106c992a 3188 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
32f84528 3189 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4b3073e1 3190 update_mmu_cache(vma, address, ptep);
1e8f889b
DG
3191}
3192
d5ed7444 3193bool is_hugetlb_entry_migration(pte_t pte)
4a705fef
NH
3194{
3195 swp_entry_t swp;
3196
3197 if (huge_pte_none(pte) || pte_present(pte))
d5ed7444 3198 return false;
4a705fef
NH
3199 swp = pte_to_swp_entry(pte);
3200 if (non_swap_entry(swp) && is_migration_entry(swp))
d5ed7444 3201 return true;
4a705fef 3202 else
d5ed7444 3203 return false;
4a705fef
NH
3204}
3205
3206static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3207{
3208 swp_entry_t swp;
3209
3210 if (huge_pte_none(pte) || pte_present(pte))
3211 return 0;
3212 swp = pte_to_swp_entry(pte);
3213 if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3214 return 1;
3215 else
3216 return 0;
3217}
1e8f889b 3218
63551ae0
DG
3219int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3220 struct vm_area_struct *vma)
3221{
3222 pte_t *src_pte, *dst_pte, entry;
3223 struct page *ptepage;
1c59827d 3224 unsigned long addr;
1e8f889b 3225 int cow;
a5516438
AK
3226 struct hstate *h = hstate_vma(vma);
3227 unsigned long sz = huge_page_size(h);
e8569dd2
AS
3228 unsigned long mmun_start; /* For mmu_notifiers */
3229 unsigned long mmun_end; /* For mmu_notifiers */
3230 int ret = 0;
1e8f889b
DG
3231
3232 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
63551ae0 3233
e8569dd2
AS
3234 mmun_start = vma->vm_start;
3235 mmun_end = vma->vm_end;
3236 if (cow)
3237 mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
3238
a5516438 3239 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
cb900f41 3240 spinlock_t *src_ptl, *dst_ptl;
7868a208 3241 src_pte = huge_pte_offset(src, addr, sz);
c74df32c
HD
3242 if (!src_pte)
3243 continue;
a5516438 3244 dst_pte = huge_pte_alloc(dst, addr, sz);
e8569dd2
AS
3245 if (!dst_pte) {
3246 ret = -ENOMEM;
3247 break;
3248 }
c5c99429
LW
3249
3250 /* If the pagetables are shared don't copy or take references */
3251 if (dst_pte == src_pte)
3252 continue;
3253
cb900f41
KS
3254 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3255 src_ptl = huge_pte_lockptr(h, src, src_pte);
3256 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4a705fef
NH
3257 entry = huge_ptep_get(src_pte);
3258 if (huge_pte_none(entry)) { /* skip none entry */
3259 ;
3260 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3261 is_hugetlb_entry_hwpoisoned(entry))) {
3262 swp_entry_t swp_entry = pte_to_swp_entry(entry);
3263
3264 if (is_write_migration_entry(swp_entry) && cow) {
3265 /*
3266 * COW mappings require pages in both
3267 * parent and child to be set to read.
3268 */
3269 make_migration_entry_read(&swp_entry);
3270 entry = swp_entry_to_pte(swp_entry);
e5251fd4
PA
3271 set_huge_swap_pte_at(src, addr, src_pte,
3272 entry, sz);
4a705fef 3273 }
e5251fd4 3274 set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
4a705fef 3275 } else {
34ee645e 3276 if (cow) {
0f10851e
JG
3277 /*
3278 * No need to notify as we are downgrading page
3279 * table protection not changing it to point
3280 * to a new page.
3281 *
3282 * See Documentation/vm/mmu_notifier.txt
3283 */
7f2e9525 3284 huge_ptep_set_wrprotect(src, addr, src_pte);
34ee645e 3285 }
0253d634 3286 entry = huge_ptep_get(src_pte);
1c59827d
HD
3287 ptepage = pte_page(entry);
3288 get_page(ptepage);
53f9263b 3289 page_dup_rmap(ptepage, true);
1c59827d 3290 set_huge_pte_at(dst, addr, dst_pte, entry);
5d317b2b 3291 hugetlb_count_add(pages_per_huge_page(h), dst);
1c59827d 3292 }
cb900f41
KS
3293 spin_unlock(src_ptl);
3294 spin_unlock(dst_ptl);
63551ae0 3295 }
63551ae0 3296
e8569dd2
AS
3297 if (cow)
3298 mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
3299
3300 return ret;
63551ae0
DG
3301}
3302
24669e58
AK
3303void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3304 unsigned long start, unsigned long end,
3305 struct page *ref_page)
63551ae0
DG
3306{
3307 struct mm_struct *mm = vma->vm_mm;
3308 unsigned long address;
c7546f8f 3309 pte_t *ptep;
63551ae0 3310 pte_t pte;
cb900f41 3311 spinlock_t *ptl;
63551ae0 3312 struct page *page;
a5516438
AK
3313 struct hstate *h = hstate_vma(vma);
3314 unsigned long sz = huge_page_size(h);
2ec74c3e
SG
3315 const unsigned long mmun_start = start; /* For mmu_notifiers */
3316 const unsigned long mmun_end = end; /* For mmu_notifiers */
a5516438 3317
63551ae0 3318 WARN_ON(!is_vm_hugetlb_page(vma));
a5516438
AK
3319 BUG_ON(start & ~huge_page_mask(h));
3320 BUG_ON(end & ~huge_page_mask(h));
63551ae0 3321
07e32661
AK
3322 /*
3323 * This is a hugetlb vma, all the pte entries should point
3324 * to huge page.
3325 */
3326 tlb_remove_check_page_size_change(tlb, sz);
24669e58 3327 tlb_start_vma(tlb, vma);
2ec74c3e 3328 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
569f48b8 3329 address = start;
569f48b8 3330 for (; address < end; address += sz) {
7868a208 3331 ptep = huge_pte_offset(mm, address, sz);
4c887265 3332 if (!ptep)
c7546f8f
DG
3333 continue;
3334
cb900f41 3335 ptl = huge_pte_lock(h, mm, ptep);
31d49da5
AK
3336 if (huge_pmd_unshare(mm, &address, ptep)) {
3337 spin_unlock(ptl);
3338 continue;
3339 }
39dde65c 3340
6629326b 3341 pte = huge_ptep_get(ptep);
31d49da5
AK
3342 if (huge_pte_none(pte)) {
3343 spin_unlock(ptl);
3344 continue;
3345 }
6629326b
HD
3346
3347 /*
9fbc1f63
NH
3348 * Migrating hugepage or HWPoisoned hugepage is already
3349 * unmapped and its refcount is dropped, so just clear pte here.
6629326b 3350 */
9fbc1f63 3351 if (unlikely(!pte_present(pte))) {
9386fac3 3352 huge_pte_clear(mm, address, ptep, sz);
31d49da5
AK
3353 spin_unlock(ptl);
3354 continue;
8c4894c6 3355 }
6629326b
HD
3356
3357 page = pte_page(pte);
04f2cbe3
MG
3358 /*
3359 * If a reference page is supplied, it is because a specific
3360 * page is being unmapped, not a range. Ensure the page we
3361 * are about to unmap is the actual page of interest.
3362 */
3363 if (ref_page) {
31d49da5
AK
3364 if (page != ref_page) {
3365 spin_unlock(ptl);
3366 continue;
3367 }
04f2cbe3
MG
3368 /*
3369 * Mark the VMA as having unmapped its page so that
3370 * future faults in this VMA will fail rather than
3371 * looking like data was lost
3372 */
3373 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3374 }
3375
c7546f8f 3376 pte = huge_ptep_get_and_clear(mm, address, ptep);
b528e4b6 3377 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
106c992a 3378 if (huge_pte_dirty(pte))
6649a386 3379 set_page_dirty(page);
9e81130b 3380
5d317b2b 3381 hugetlb_count_sub(pages_per_huge_page(h), mm);
d281ee61 3382 page_remove_rmap(page, true);
31d49da5 3383
cb900f41 3384 spin_unlock(ptl);
e77b0852 3385 tlb_remove_page_size(tlb, page, huge_page_size(h));
31d49da5
AK
3386 /*
3387 * Bail out after unmapping reference page if supplied
3388 */
3389 if (ref_page)
3390 break;
fe1668ae 3391 }
2ec74c3e 3392 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
24669e58 3393 tlb_end_vma(tlb, vma);
1da177e4 3394}
63551ae0 3395
d833352a
MG
3396void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3397 struct vm_area_struct *vma, unsigned long start,
3398 unsigned long end, struct page *ref_page)
3399{
3400 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
3401
3402 /*
3403 * Clear this flag so that x86's huge_pmd_share page_table_shareable
3404 * test will fail on a vma being torn down, and not grab a page table
3405 * on its way out. We're lucky that the flag has such an appropriate
3406 * name, and can in fact be safely cleared here. We could clear it
3407 * before the __unmap_hugepage_range above, but all that's necessary
c8c06efa 3408 * is to clear it before releasing the i_mmap_rwsem. This works
d833352a 3409 * because in the context this is called, the VMA is about to be
c8c06efa 3410 * destroyed and the i_mmap_rwsem is held.
d833352a
MG
3411 */
3412 vma->vm_flags &= ~VM_MAYSHARE;
3413}
3414
502717f4 3415void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
04f2cbe3 3416 unsigned long end, struct page *ref_page)
502717f4 3417{
24669e58
AK
3418 struct mm_struct *mm;
3419 struct mmu_gather tlb;
3420
3421 mm = vma->vm_mm;
3422
2b047252 3423 tlb_gather_mmu(&tlb, mm, start, end);
24669e58
AK
3424 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
3425 tlb_finish_mmu(&tlb, start, end);
502717f4
CK
3426}
3427
04f2cbe3
MG
3428/*
3429 * This is called when the original mapper is failing to COW a MAP_PRIVATE
3430 * mappping it owns the reserve page for. The intention is to unmap the page
3431 * from other VMAs and let the children be SIGKILLed if they are faulting the
3432 * same region.
3433 */
2f4612af
DB
3434static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3435 struct page *page, unsigned long address)
04f2cbe3 3436{
7526674d 3437 struct hstate *h = hstate_vma(vma);
04f2cbe3
MG
3438 struct vm_area_struct *iter_vma;
3439 struct address_space *mapping;
04f2cbe3
MG
3440 pgoff_t pgoff;
3441
3442 /*
3443 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3444 * from page cache lookup which is in HPAGE_SIZE units.
3445 */
7526674d 3446 address = address & huge_page_mask(h);
36e4f20a
MH
3447 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3448 vma->vm_pgoff;
93c76a3d 3449 mapping = vma->vm_file->f_mapping;
04f2cbe3 3450
4eb2b1dc
MG
3451 /*
3452 * Take the mapping lock for the duration of the table walk. As
3453 * this mapping should be shared between all the VMAs,
3454 * __unmap_hugepage_range() is called as the lock is already held
3455 */
83cde9e8 3456 i_mmap_lock_write(mapping);
6b2dbba8 3457 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
04f2cbe3
MG
3458 /* Do not unmap the current VMA */
3459 if (iter_vma == vma)
3460 continue;
3461
2f84a899
MG
3462 /*
3463 * Shared VMAs have their own reserves and do not affect
3464 * MAP_PRIVATE accounting but it is possible that a shared
3465 * VMA is using the same page so check and skip such VMAs.
3466 */
3467 if (iter_vma->vm_flags & VM_MAYSHARE)
3468 continue;
3469
04f2cbe3
MG
3470 /*
3471 * Unmap the page from other VMAs without their own reserves.
3472 * They get marked to be SIGKILLed if they fault in these
3473 * areas. This is because a future no-page fault on this VMA
3474 * could insert a zeroed page instead of the data existing
3475 * from the time of fork. This would look like data corruption
3476 */
3477 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
24669e58
AK
3478 unmap_hugepage_range(iter_vma, address,
3479 address + huge_page_size(h), page);
04f2cbe3 3480 }
83cde9e8 3481 i_mmap_unlock_write(mapping);
04f2cbe3
MG
3482}
3483
0fe6e20b
NH
3484/*
3485 * Hugetlb_cow() should be called with page lock of the original hugepage held.
ef009b25
MH
3486 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3487 * cannot race with other handlers or page migration.
3488 * Keep the pte_same checks anyway to make transition from the mutex easier.
0fe6e20b 3489 */
1e8f889b 3490static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
3999f52e
AK
3491 unsigned long address, pte_t *ptep,
3492 struct page *pagecache_page, spinlock_t *ptl)
1e8f889b 3493{
3999f52e 3494 pte_t pte;
a5516438 3495 struct hstate *h = hstate_vma(vma);
1e8f889b 3496 struct page *old_page, *new_page;
ad4404a2 3497 int ret = 0, outside_reserve = 0;
2ec74c3e
SG
3498 unsigned long mmun_start; /* For mmu_notifiers */
3499 unsigned long mmun_end; /* For mmu_notifiers */
1e8f889b 3500
3999f52e 3501 pte = huge_ptep_get(ptep);
1e8f889b
DG
3502 old_page = pte_page(pte);
3503
04f2cbe3 3504retry_avoidcopy:
1e8f889b
DG
3505 /* If no-one else is actually using this page, avoid the copy
3506 * and just make the page writable */
37a2140d 3507 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
5a49973d 3508 page_move_anon_rmap(old_page, vma);
1e8f889b 3509 set_huge_ptep_writable(vma, address, ptep);
83c54070 3510 return 0;
1e8f889b
DG
3511 }
3512
04f2cbe3
MG
3513 /*
3514 * If the process that created a MAP_PRIVATE mapping is about to
3515 * perform a COW due to a shared page count, attempt to satisfy
3516 * the allocation without using the existing reserves. The pagecache
3517 * page is used to determine if the reserve at this address was
3518 * consumed or not. If reserves were used, a partial faulted mapping
3519 * at the time of fork() could consume its reserves on COW instead
3520 * of the full address range.
3521 */
5944d011 3522 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
04f2cbe3
MG
3523 old_page != pagecache_page)
3524 outside_reserve = 1;
3525
09cbfeaf 3526 get_page(old_page);
b76c8cfb 3527
ad4404a2
DB
3528 /*
3529 * Drop page table lock as buddy allocator may be called. It will
3530 * be acquired again before returning to the caller, as expected.
3531 */
cb900f41 3532 spin_unlock(ptl);
04f2cbe3 3533 new_page = alloc_huge_page(vma, address, outside_reserve);
1e8f889b 3534
2fc39cec 3535 if (IS_ERR(new_page)) {
04f2cbe3
MG
3536 /*
3537 * If a process owning a MAP_PRIVATE mapping fails to COW,
3538 * it is due to references held by a child and an insufficient
3539 * huge page pool. To guarantee the original mappers
3540 * reliability, unmap the page from child processes. The child
3541 * may get SIGKILLed if it later faults.
3542 */
3543 if (outside_reserve) {
09cbfeaf 3544 put_page(old_page);
04f2cbe3 3545 BUG_ON(huge_pte_none(pte));
2f4612af
DB
3546 unmap_ref_private(mm, vma, old_page, address);
3547 BUG_ON(huge_pte_none(pte));
3548 spin_lock(ptl);
7868a208
PA
3549 ptep = huge_pte_offset(mm, address & huge_page_mask(h),
3550 huge_page_size(h));
2f4612af
DB
3551 if (likely(ptep &&
3552 pte_same(huge_ptep_get(ptep), pte)))
3553 goto retry_avoidcopy;
3554 /*
3555 * race occurs while re-acquiring page table
3556 * lock, and our job is done.
3557 */
3558 return 0;
04f2cbe3
MG
3559 }
3560
ad4404a2
DB
3561 ret = (PTR_ERR(new_page) == -ENOMEM) ?
3562 VM_FAULT_OOM : VM_FAULT_SIGBUS;
3563 goto out_release_old;
1e8f889b
DG
3564 }
3565
0fe6e20b
NH
3566 /*
3567 * When the original hugepage is shared one, it does not have
3568 * anon_vma prepared.
3569 */
44e2aa93 3570 if (unlikely(anon_vma_prepare(vma))) {
ad4404a2
DB
3571 ret = VM_FAULT_OOM;
3572 goto out_release_all;
44e2aa93 3573 }
0fe6e20b 3574
47ad8475
AA
3575 copy_user_huge_page(new_page, old_page, address, vma,
3576 pages_per_huge_page(h));
0ed361de 3577 __SetPageUptodate(new_page);
bcc54222 3578 set_page_huge_active(new_page);
1e8f889b 3579
2ec74c3e
SG
3580 mmun_start = address & huge_page_mask(h);
3581 mmun_end = mmun_start + huge_page_size(h);
3582 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
ad4404a2 3583
b76c8cfb 3584 /*
cb900f41 3585 * Retake the page table lock to check for racing updates
b76c8cfb
LW
3586 * before the page tables are altered
3587 */
cb900f41 3588 spin_lock(ptl);
7868a208
PA
3589 ptep = huge_pte_offset(mm, address & huge_page_mask(h),
3590 huge_page_size(h));
a9af0c5d 3591 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
07443a85
JK
3592 ClearPagePrivate(new_page);
3593
1e8f889b 3594 /* Break COW */
8fe627ec 3595 huge_ptep_clear_flush(vma, address, ptep);
34ee645e 3596 mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
1e8f889b
DG
3597 set_huge_pte_at(mm, address, ptep,
3598 make_huge_pte(vma, new_page, 1));
d281ee61 3599 page_remove_rmap(old_page, true);
cd67f0d2 3600 hugepage_add_new_anon_rmap(new_page, vma, address);
1e8f889b
DG
3601 /* Make the old page be freed below */
3602 new_page = old_page;
3603 }
cb900f41 3604 spin_unlock(ptl);
2ec74c3e 3605 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
ad4404a2 3606out_release_all:
96b96a96 3607 restore_reserve_on_error(h, vma, address, new_page);
09cbfeaf 3608 put_page(new_page);
ad4404a2 3609out_release_old:
09cbfeaf 3610 put_page(old_page);
8312034f 3611
ad4404a2
DB
3612 spin_lock(ptl); /* Caller expects lock to be held */
3613 return ret;
1e8f889b
DG
3614}
3615
04f2cbe3 3616/* Return the pagecache page at a given address within a VMA */
a5516438
AK
3617static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3618 struct vm_area_struct *vma, unsigned long address)
04f2cbe3
MG
3619{
3620 struct address_space *mapping;
e7c4b0bf 3621 pgoff_t idx;
04f2cbe3
MG
3622
3623 mapping = vma->vm_file->f_mapping;
a5516438 3624 idx = vma_hugecache_offset(h, vma, address);
04f2cbe3
MG
3625
3626 return find_lock_page(mapping, idx);
3627}
3628
3ae77f43
HD
3629/*
3630 * Return whether there is a pagecache page to back given address within VMA.
3631 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3632 */
3633static bool hugetlbfs_pagecache_present(struct hstate *h,
2a15efc9
HD
3634 struct vm_area_struct *vma, unsigned long address)
3635{
3636 struct address_space *mapping;
3637 pgoff_t idx;
3638 struct page *page;
3639
3640 mapping = vma->vm_file->f_mapping;
3641 idx = vma_hugecache_offset(h, vma, address);
3642
3643 page = find_get_page(mapping, idx);
3644 if (page)
3645 put_page(page);
3646 return page != NULL;
3647}
3648
ab76ad54
MK
3649int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
3650 pgoff_t idx)
3651{
3652 struct inode *inode = mapping->host;
3653 struct hstate *h = hstate_inode(inode);
3654 int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3655
3656 if (err)
3657 return err;
3658 ClearPagePrivate(page);
3659
3660 spin_lock(&inode->i_lock);
3661 inode->i_blocks += blocks_per_huge_page(h);
3662 spin_unlock(&inode->i_lock);
3663 return 0;
3664}
3665
a1ed3dda 3666static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
8382d914
DB
3667 struct address_space *mapping, pgoff_t idx,
3668 unsigned long address, pte_t *ptep, unsigned int flags)
ac9b9c66 3669{
a5516438 3670 struct hstate *h = hstate_vma(vma);
ac9b9c66 3671 int ret = VM_FAULT_SIGBUS;
409eb8c2 3672 int anon_rmap = 0;
4c887265 3673 unsigned long size;
4c887265 3674 struct page *page;
1e8f889b 3675 pte_t new_pte;
cb900f41 3676 spinlock_t *ptl;
4c887265 3677
04f2cbe3
MG
3678 /*
3679 * Currently, we are forced to kill the process in the event the
3680 * original mapper has unmapped pages from the child due to a failed
25985edc 3681 * COW. Warn that such a situation has occurred as it may not be obvious
04f2cbe3
MG
3682 */
3683 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
910154d5 3684 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
ffb22af5 3685 current->pid);
04f2cbe3
MG
3686 return ret;
3687 }
3688
4c887265
AL
3689 /*
3690 * Use page lock to guard against racing truncation
3691 * before we get page_table_lock.
3692 */
6bda666a
CL
3693retry:
3694 page = find_lock_page(mapping, idx);
3695 if (!page) {
a5516438 3696 size = i_size_read(mapping->host) >> huge_page_shift(h);
ebed4bfc
HD
3697 if (idx >= size)
3698 goto out;
1a1aad8a
MK
3699
3700 /*
3701 * Check for page in userfault range
3702 */
3703 if (userfaultfd_missing(vma)) {
3704 u32 hash;
3705 struct vm_fault vmf = {
3706 .vma = vma,
3707 .address = address,
3708 .flags = flags,
3709 /*
3710 * Hard to debug if it ends up being
3711 * used by a callee that assumes
3712 * something about the other
3713 * uninitialized fields... same as in
3714 * memory.c
3715 */
3716 };
3717
3718 /*
3719 * hugetlb_fault_mutex must be dropped before
3720 * handling userfault. Reacquire after handling
3721 * fault to make calling code simpler.
3722 */
3723 hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping,
3724 idx, address);
3725 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3726 ret = handle_userfault(&vmf, VM_UFFD_MISSING);
3727 mutex_lock(&hugetlb_fault_mutex_table[hash]);
3728 goto out;
3729 }
3730
04f2cbe3 3731 page = alloc_huge_page(vma, address, 0);
2fc39cec 3732 if (IS_ERR(page)) {
76dcee75
AK
3733 ret = PTR_ERR(page);
3734 if (ret == -ENOMEM)
3735 ret = VM_FAULT_OOM;
3736 else
3737 ret = VM_FAULT_SIGBUS;
6bda666a
CL
3738 goto out;
3739 }
47ad8475 3740 clear_huge_page(page, address, pages_per_huge_page(h));
0ed361de 3741 __SetPageUptodate(page);
bcc54222 3742 set_page_huge_active(page);
ac9b9c66 3743
f83a275d 3744 if (vma->vm_flags & VM_MAYSHARE) {
ab76ad54 3745 int err = huge_add_to_page_cache(page, mapping, idx);
6bda666a
CL
3746 if (err) {
3747 put_page(page);
6bda666a
CL
3748 if (err == -EEXIST)
3749 goto retry;
3750 goto out;
3751 }
23be7468 3752 } else {
6bda666a 3753 lock_page(page);
0fe6e20b
NH
3754 if (unlikely(anon_vma_prepare(vma))) {
3755 ret = VM_FAULT_OOM;
3756 goto backout_unlocked;
3757 }
409eb8c2 3758 anon_rmap = 1;
23be7468 3759 }
0fe6e20b 3760 } else {
998b4382
NH
3761 /*
3762 * If memory error occurs between mmap() and fault, some process
3763 * don't have hwpoisoned swap entry for errored virtual address.
3764 * So we need to block hugepage fault by PG_hwpoison bit check.
3765 */
3766 if (unlikely(PageHWPoison(page))) {
32f84528 3767 ret = VM_FAULT_HWPOISON |
972dc4de 3768 VM_FAULT_SET_HINDEX(hstate_index(h));
998b4382
NH
3769 goto backout_unlocked;
3770 }
6bda666a 3771 }
1e8f889b 3772
57303d80
AW
3773 /*
3774 * If we are going to COW a private mapping later, we examine the
3775 * pending reservations for this page now. This will ensure that
3776 * any allocations necessary to record that reservation occur outside
3777 * the spinlock.
3778 */
5e911373 3779 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2b26736c
AW
3780 if (vma_needs_reservation(h, vma, address) < 0) {
3781 ret = VM_FAULT_OOM;
3782 goto backout_unlocked;
3783 }
5e911373 3784 /* Just decrements count, does not deallocate */
feba16e2 3785 vma_end_reservation(h, vma, address);
5e911373 3786 }
57303d80 3787
8bea8052 3788 ptl = huge_pte_lock(h, mm, ptep);
a5516438 3789 size = i_size_read(mapping->host) >> huge_page_shift(h);
4c887265
AL
3790 if (idx >= size)
3791 goto backout;
3792
83c54070 3793 ret = 0;
7f2e9525 3794 if (!huge_pte_none(huge_ptep_get(ptep)))
4c887265
AL
3795 goto backout;
3796
07443a85
JK
3797 if (anon_rmap) {
3798 ClearPagePrivate(page);
409eb8c2 3799 hugepage_add_new_anon_rmap(page, vma, address);
ac714904 3800 } else
53f9263b 3801 page_dup_rmap(page, true);
1e8f889b
DG
3802 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3803 && (vma->vm_flags & VM_SHARED)));
3804 set_huge_pte_at(mm, address, ptep, new_pte);
3805
5d317b2b 3806 hugetlb_count_add(pages_per_huge_page(h), mm);
788c7df4 3807 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
1e8f889b 3808 /* Optimization, do the COW without a second fault */
3999f52e 3809 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
1e8f889b
DG
3810 }
3811
cb900f41 3812 spin_unlock(ptl);
4c887265
AL
3813 unlock_page(page);
3814out:
ac9b9c66 3815 return ret;
4c887265
AL
3816
3817backout:
cb900f41 3818 spin_unlock(ptl);
2b26736c 3819backout_unlocked:
4c887265 3820 unlock_page(page);
96b96a96 3821 restore_reserve_on_error(h, vma, address, page);
4c887265
AL
3822 put_page(page);
3823 goto out;
ac9b9c66
HD
3824}
3825
8382d914 3826#ifdef CONFIG_SMP
c672c7f2 3827u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
8382d914
DB
3828 struct vm_area_struct *vma,
3829 struct address_space *mapping,
3830 pgoff_t idx, unsigned long address)
3831{
3832 unsigned long key[2];
3833 u32 hash;
3834
3835 if (vma->vm_flags & VM_SHARED) {
3836 key[0] = (unsigned long) mapping;
3837 key[1] = idx;
3838 } else {
3839 key[0] = (unsigned long) mm;
3840 key[1] = address >> huge_page_shift(h);
3841 }
3842
3843 hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
3844
3845 return hash & (num_fault_mutexes - 1);
3846}
3847#else
3848/*
3849 * For uniprocesor systems we always use a single mutex, so just
3850 * return 0 and avoid the hashing overhead.
3851 */
c672c7f2 3852u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
8382d914
DB
3853 struct vm_area_struct *vma,
3854 struct address_space *mapping,
3855 pgoff_t idx, unsigned long address)
3856{
3857 return 0;
3858}
3859#endif
3860
86e5216f 3861int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
788c7df4 3862 unsigned long address, unsigned int flags)
86e5216f 3863{
8382d914 3864 pte_t *ptep, entry;
cb900f41 3865 spinlock_t *ptl;
1e8f889b 3866 int ret;
8382d914
DB
3867 u32 hash;
3868 pgoff_t idx;
0fe6e20b 3869 struct page *page = NULL;
57303d80 3870 struct page *pagecache_page = NULL;
a5516438 3871 struct hstate *h = hstate_vma(vma);
8382d914 3872 struct address_space *mapping;
0f792cf9 3873 int need_wait_lock = 0;
86e5216f 3874
1e16a539
KH
3875 address &= huge_page_mask(h);
3876
7868a208 3877 ptep = huge_pte_offset(mm, address, huge_page_size(h));
fd6a03ed
NH
3878 if (ptep) {
3879 entry = huge_ptep_get(ptep);
290408d4 3880 if (unlikely(is_hugetlb_entry_migration(entry))) {
cb900f41 3881 migration_entry_wait_huge(vma, mm, ptep);
290408d4
NH
3882 return 0;
3883 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
32f84528 3884 return VM_FAULT_HWPOISON_LARGE |
972dc4de 3885 VM_FAULT_SET_HINDEX(hstate_index(h));
0d777df5
NH
3886 } else {
3887 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
3888 if (!ptep)
3889 return VM_FAULT_OOM;
fd6a03ed
NH
3890 }
3891
8382d914
DB
3892 mapping = vma->vm_file->f_mapping;
3893 idx = vma_hugecache_offset(h, vma, address);
3894
3935baa9
DG
3895 /*
3896 * Serialize hugepage allocation and instantiation, so that we don't
3897 * get spurious allocation failures if two CPUs race to instantiate
3898 * the same page in the page cache.
3899 */
c672c7f2
MK
3900 hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, idx, address);
3901 mutex_lock(&hugetlb_fault_mutex_table[hash]);
8382d914 3902
7f2e9525
GS
3903 entry = huge_ptep_get(ptep);
3904 if (huge_pte_none(entry)) {
8382d914 3905 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
b4d1d99f 3906 goto out_mutex;
3935baa9 3907 }
86e5216f 3908
83c54070 3909 ret = 0;
1e8f889b 3910
0f792cf9
NH
3911 /*
3912 * entry could be a migration/hwpoison entry at this point, so this
3913 * check prevents the kernel from going below assuming that we have
3914 * a active hugepage in pagecache. This goto expects the 2nd page fault,
3915 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
3916 * handle it.
3917 */
3918 if (!pte_present(entry))
3919 goto out_mutex;
3920
57303d80
AW
3921 /*
3922 * If we are going to COW the mapping later, we examine the pending
3923 * reservations for this page now. This will ensure that any
3924 * allocations necessary to record that reservation occur outside the
3925 * spinlock. For private mappings, we also lookup the pagecache
3926 * page now as it is used to determine if a reservation has been
3927 * consumed.
3928 */
106c992a 3929 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
2b26736c
AW
3930 if (vma_needs_reservation(h, vma, address) < 0) {
3931 ret = VM_FAULT_OOM;
b4d1d99f 3932 goto out_mutex;
2b26736c 3933 }
5e911373 3934 /* Just decrements count, does not deallocate */
feba16e2 3935 vma_end_reservation(h, vma, address);
57303d80 3936
f83a275d 3937 if (!(vma->vm_flags & VM_MAYSHARE))
57303d80
AW
3938 pagecache_page = hugetlbfs_pagecache_page(h,
3939 vma, address);
3940 }
3941
0f792cf9
NH
3942 ptl = huge_pte_lock(h, mm, ptep);
3943
3944 /* Check for a racing update before calling hugetlb_cow */
3945 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
3946 goto out_ptl;
3947
56c9cfb1
NH
3948 /*
3949 * hugetlb_cow() requires page locks of pte_page(entry) and
3950 * pagecache_page, so here we need take the former one
3951 * when page != pagecache_page or !pagecache_page.
56c9cfb1
NH
3952 */
3953 page = pte_page(entry);
3954 if (page != pagecache_page)
0f792cf9
NH
3955 if (!trylock_page(page)) {
3956 need_wait_lock = 1;
3957 goto out_ptl;
3958 }
b4d1d99f 3959
0f792cf9 3960 get_page(page);
b4d1d99f 3961
788c7df4 3962 if (flags & FAULT_FLAG_WRITE) {
106c992a 3963 if (!huge_pte_write(entry)) {
3999f52e
AK
3964 ret = hugetlb_cow(mm, vma, address, ptep,
3965 pagecache_page, ptl);
0f792cf9 3966 goto out_put_page;
b4d1d99f 3967 }
106c992a 3968 entry = huge_pte_mkdirty(entry);
b4d1d99f
DG
3969 }
3970 entry = pte_mkyoung(entry);
788c7df4
HD
3971 if (huge_ptep_set_access_flags(vma, address, ptep, entry,
3972 flags & FAULT_FLAG_WRITE))
4b3073e1 3973 update_mmu_cache(vma, address, ptep);
0f792cf9
NH
3974out_put_page:
3975 if (page != pagecache_page)
3976 unlock_page(page);
3977 put_page(page);
cb900f41
KS
3978out_ptl:
3979 spin_unlock(ptl);
57303d80
AW
3980
3981 if (pagecache_page) {
3982 unlock_page(pagecache_page);
3983 put_page(pagecache_page);
3984 }
b4d1d99f 3985out_mutex:
c672c7f2 3986 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
0f792cf9
NH
3987 /*
3988 * Generally it's safe to hold refcount during waiting page lock. But
3989 * here we just wait to defer the next page fault to avoid busy loop and
3990 * the page is not used after unlocked before returning from the current
3991 * page fault. So we are safe from accessing freed page, even if we wait
3992 * here without taking refcount.
3993 */
3994 if (need_wait_lock)
3995 wait_on_page_locked(page);
1e8f889b 3996 return ret;
86e5216f
AL
3997}
3998
8fb5debc
MK
3999/*
4000 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with
4001 * modifications for huge pages.
4002 */
4003int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
4004 pte_t *dst_pte,
4005 struct vm_area_struct *dst_vma,
4006 unsigned long dst_addr,
4007 unsigned long src_addr,
4008 struct page **pagep)
4009{
1e392147
AA
4010 struct address_space *mapping;
4011 pgoff_t idx;
4012 unsigned long size;
1c9e8def 4013 int vm_shared = dst_vma->vm_flags & VM_SHARED;
8fb5debc
MK
4014 struct hstate *h = hstate_vma(dst_vma);
4015 pte_t _dst_pte;
4016 spinlock_t *ptl;
4017 int ret;
4018 struct page *page;
4019
4020 if (!*pagep) {
4021 ret = -ENOMEM;
4022 page = alloc_huge_page(dst_vma, dst_addr, 0);
4023 if (IS_ERR(page))
4024 goto out;
4025
4026 ret = copy_huge_page_from_user(page,
4027 (const void __user *) src_addr,
810a56b9 4028 pages_per_huge_page(h), false);
8fb5debc
MK
4029
4030 /* fallback to copy_from_user outside mmap_sem */
4031 if (unlikely(ret)) {
4032 ret = -EFAULT;
4033 *pagep = page;
4034 /* don't free the page */
4035 goto out;
4036 }
4037 } else {
4038 page = *pagep;
4039 *pagep = NULL;
4040 }
4041
4042 /*
4043 * The memory barrier inside __SetPageUptodate makes sure that
4044 * preceding stores to the page contents become visible before
4045 * the set_pte_at() write.
4046 */
4047 __SetPageUptodate(page);
4048 set_page_huge_active(page);
4049
1e392147
AA
4050 mapping = dst_vma->vm_file->f_mapping;
4051 idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4052
1c9e8def
MK
4053 /*
4054 * If shared, add to page cache
4055 */
4056 if (vm_shared) {
1e392147
AA
4057 size = i_size_read(mapping->host) >> huge_page_shift(h);
4058 ret = -EFAULT;
4059 if (idx >= size)
4060 goto out_release_nounlock;
1c9e8def 4061
1e392147
AA
4062 /*
4063 * Serialization between remove_inode_hugepages() and
4064 * huge_add_to_page_cache() below happens through the
4065 * hugetlb_fault_mutex_table that here must be hold by
4066 * the caller.
4067 */
1c9e8def
MK
4068 ret = huge_add_to_page_cache(page, mapping, idx);
4069 if (ret)
4070 goto out_release_nounlock;
4071 }
4072
8fb5debc
MK
4073 ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4074 spin_lock(ptl);
4075
1e392147
AA
4076 /*
4077 * Recheck the i_size after holding PT lock to make sure not
4078 * to leave any page mapped (as page_mapped()) beyond the end
4079 * of the i_size (remove_inode_hugepages() is strict about
4080 * enforcing that). If we bail out here, we'll also leave a
4081 * page in the radix tree in the vm_shared case beyond the end
4082 * of the i_size, but remove_inode_hugepages() will take care
4083 * of it as soon as we drop the hugetlb_fault_mutex_table.
4084 */
4085 size = i_size_read(mapping->host) >> huge_page_shift(h);
4086 ret = -EFAULT;
4087 if (idx >= size)
4088 goto out_release_unlock;
4089
8fb5debc
MK
4090 ret = -EEXIST;
4091 if (!huge_pte_none(huge_ptep_get(dst_pte)))
4092 goto out_release_unlock;
4093
1c9e8def
MK
4094 if (vm_shared) {
4095 page_dup_rmap(page, true);
4096 } else {
4097 ClearPagePrivate(page);
4098 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4099 }
8fb5debc
MK
4100
4101 _dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4102 if (dst_vma->vm_flags & VM_WRITE)
4103 _dst_pte = huge_pte_mkdirty(_dst_pte);
4104 _dst_pte = pte_mkyoung(_dst_pte);
4105
4106 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4107
4108 (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4109 dst_vma->vm_flags & VM_WRITE);
4110 hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4111
4112 /* No need to invalidate - it was non-present before */
4113 update_mmu_cache(dst_vma, dst_addr, dst_pte);
4114
4115 spin_unlock(ptl);
1c9e8def
MK
4116 if (vm_shared)
4117 unlock_page(page);
8fb5debc
MK
4118 ret = 0;
4119out:
4120 return ret;
4121out_release_unlock:
4122 spin_unlock(ptl);
1c9e8def
MK
4123 if (vm_shared)
4124 unlock_page(page);
5af10dfd 4125out_release_nounlock:
8fb5debc
MK
4126 put_page(page);
4127 goto out;
4128}
4129
28a35716
ML
4130long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4131 struct page **pages, struct vm_area_struct **vmas,
4132 unsigned long *position, unsigned long *nr_pages,
87ffc118 4133 long i, unsigned int flags, int *nonblocking)
63551ae0 4134{
d5d4b0aa
CK
4135 unsigned long pfn_offset;
4136 unsigned long vaddr = *position;
28a35716 4137 unsigned long remainder = *nr_pages;
a5516438 4138 struct hstate *h = hstate_vma(vma);
2be7cfed 4139 int err = -EFAULT;
63551ae0 4140
63551ae0 4141 while (vaddr < vma->vm_end && remainder) {
4c887265 4142 pte_t *pte;
cb900f41 4143 spinlock_t *ptl = NULL;
2a15efc9 4144 int absent;
4c887265 4145 struct page *page;
63551ae0 4146
02057967
DR
4147 /*
4148 * If we have a pending SIGKILL, don't keep faulting pages and
4149 * potentially allocating memory.
4150 */
4151 if (unlikely(fatal_signal_pending(current))) {
4152 remainder = 0;
4153 break;
4154 }
4155
4c887265
AL
4156 /*
4157 * Some archs (sparc64, sh*) have multiple pte_ts to
2a15efc9 4158 * each hugepage. We have to make sure we get the
4c887265 4159 * first, for the page indexing below to work.
cb900f41
KS
4160 *
4161 * Note that page table lock is not held when pte is null.
4c887265 4162 */
7868a208
PA
4163 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
4164 huge_page_size(h));
cb900f41
KS
4165 if (pte)
4166 ptl = huge_pte_lock(h, mm, pte);
2a15efc9
HD
4167 absent = !pte || huge_pte_none(huge_ptep_get(pte));
4168
4169 /*
4170 * When coredumping, it suits get_dump_page if we just return
3ae77f43
HD
4171 * an error where there's an empty slot with no huge pagecache
4172 * to back it. This way, we avoid allocating a hugepage, and
4173 * the sparse dumpfile avoids allocating disk blocks, but its
4174 * huge holes still show up with zeroes where they need to be.
2a15efc9 4175 */
3ae77f43
HD
4176 if (absent && (flags & FOLL_DUMP) &&
4177 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
cb900f41
KS
4178 if (pte)
4179 spin_unlock(ptl);
2a15efc9
HD
4180 remainder = 0;
4181 break;
4182 }
63551ae0 4183
9cc3a5bd
NH
4184 /*
4185 * We need call hugetlb_fault for both hugepages under migration
4186 * (in which case hugetlb_fault waits for the migration,) and
4187 * hwpoisoned hugepages (in which case we need to prevent the
4188 * caller from accessing to them.) In order to do this, we use
4189 * here is_swap_pte instead of is_hugetlb_entry_migration and
4190 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4191 * both cases, and because we can't follow correct pages
4192 * directly from any kind of swap entries.
4193 */
4194 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
106c992a
GS
4195 ((flags & FOLL_WRITE) &&
4196 !huge_pte_write(huge_ptep_get(pte)))) {
4c887265 4197 int ret;
87ffc118 4198 unsigned int fault_flags = 0;
63551ae0 4199
cb900f41
KS
4200 if (pte)
4201 spin_unlock(ptl);
87ffc118
AA
4202 if (flags & FOLL_WRITE)
4203 fault_flags |= FAULT_FLAG_WRITE;
4204 if (nonblocking)
4205 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
4206 if (flags & FOLL_NOWAIT)
4207 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4208 FAULT_FLAG_RETRY_NOWAIT;
4209 if (flags & FOLL_TRIED) {
4210 VM_WARN_ON_ONCE(fault_flags &
4211 FAULT_FLAG_ALLOW_RETRY);
4212 fault_flags |= FAULT_FLAG_TRIED;
4213 }
4214 ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4215 if (ret & VM_FAULT_ERROR) {
2be7cfed 4216 err = vm_fault_to_errno(ret, flags);
87ffc118
AA
4217 remainder = 0;
4218 break;
4219 }
4220 if (ret & VM_FAULT_RETRY) {
4221 if (nonblocking)
4222 *nonblocking = 0;
4223 *nr_pages = 0;
4224 /*
4225 * VM_FAULT_RETRY must not return an
4226 * error, it will return zero
4227 * instead.
4228 *
4229 * No need to update "position" as the
4230 * caller will not check it after
4231 * *nr_pages is set to 0.
4232 */
4233 return i;
4234 }
4235 continue;
4c887265
AL
4236 }
4237
a5516438 4238 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
7f2e9525 4239 page = pte_page(huge_ptep_get(pte));
d5d4b0aa 4240same_page:
d6692183 4241 if (pages) {
2a15efc9 4242 pages[i] = mem_map_offset(page, pfn_offset);
ddc58f27 4243 get_page(pages[i]);
d6692183 4244 }
63551ae0
DG
4245
4246 if (vmas)
4247 vmas[i] = vma;
4248
4249 vaddr += PAGE_SIZE;
d5d4b0aa 4250 ++pfn_offset;
63551ae0
DG
4251 --remainder;
4252 ++i;
d5d4b0aa 4253 if (vaddr < vma->vm_end && remainder &&
a5516438 4254 pfn_offset < pages_per_huge_page(h)) {
d5d4b0aa
CK
4255 /*
4256 * We use pfn_offset to avoid touching the pageframes
4257 * of this compound page.
4258 */
4259 goto same_page;
4260 }
cb900f41 4261 spin_unlock(ptl);
63551ae0 4262 }
28a35716 4263 *nr_pages = remainder;
87ffc118
AA
4264 /*
4265 * setting position is actually required only if remainder is
4266 * not zero but it's faster not to add a "if (remainder)"
4267 * branch.
4268 */
63551ae0
DG
4269 *position = vaddr;
4270
2be7cfed 4271 return i ? i : err;
63551ae0 4272}
8f860591 4273
5491ae7b
AK
4274#ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4275/*
4276 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4277 * implement this.
4278 */
4279#define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
4280#endif
4281
7da4d641 4282unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
8f860591
ZY
4283 unsigned long address, unsigned long end, pgprot_t newprot)
4284{
4285 struct mm_struct *mm = vma->vm_mm;
4286 unsigned long start = address;
4287 pte_t *ptep;
4288 pte_t pte;
a5516438 4289 struct hstate *h = hstate_vma(vma);
7da4d641 4290 unsigned long pages = 0;
8f860591
ZY
4291
4292 BUG_ON(address >= end);
4293 flush_cache_range(vma, address, end);
4294
a5338093 4295 mmu_notifier_invalidate_range_start(mm, start, end);
83cde9e8 4296 i_mmap_lock_write(vma->vm_file->f_mapping);
a5516438 4297 for (; address < end; address += huge_page_size(h)) {
cb900f41 4298 spinlock_t *ptl;
7868a208 4299 ptep = huge_pte_offset(mm, address, huge_page_size(h));
8f860591
ZY
4300 if (!ptep)
4301 continue;
cb900f41 4302 ptl = huge_pte_lock(h, mm, ptep);
7da4d641
PZ
4303 if (huge_pmd_unshare(mm, &address, ptep)) {
4304 pages++;
cb900f41 4305 spin_unlock(ptl);
39dde65c 4306 continue;
7da4d641 4307 }
a8bda28d
NH
4308 pte = huge_ptep_get(ptep);
4309 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
4310 spin_unlock(ptl);
4311 continue;
4312 }
4313 if (unlikely(is_hugetlb_entry_migration(pte))) {
4314 swp_entry_t entry = pte_to_swp_entry(pte);
4315
4316 if (is_write_migration_entry(entry)) {
4317 pte_t newpte;
4318
4319 make_migration_entry_read(&entry);
4320 newpte = swp_entry_to_pte(entry);
e5251fd4
PA
4321 set_huge_swap_pte_at(mm, address, ptep,
4322 newpte, huge_page_size(h));
a8bda28d
NH
4323 pages++;
4324 }
4325 spin_unlock(ptl);
4326 continue;
4327 }
4328 if (!huge_pte_none(pte)) {
8f860591 4329 pte = huge_ptep_get_and_clear(mm, address, ptep);
106c992a 4330 pte = pte_mkhuge(huge_pte_modify(pte, newprot));
be7517d6 4331 pte = arch_make_huge_pte(pte, vma, NULL, 0);
8f860591 4332 set_huge_pte_at(mm, address, ptep, pte);
7da4d641 4333 pages++;
8f860591 4334 }
cb900f41 4335 spin_unlock(ptl);
8f860591 4336 }
d833352a 4337 /*
c8c06efa 4338 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
d833352a 4339 * may have cleared our pud entry and done put_page on the page table:
c8c06efa 4340 * once we release i_mmap_rwsem, another task can do the final put_page
d833352a
MG
4341 * and that page table be reused and filled with junk.
4342 */
5491ae7b 4343 flush_hugetlb_tlb_range(vma, start, end);
0f10851e
JG
4344 /*
4345 * No need to call mmu_notifier_invalidate_range() we are downgrading
4346 * page table protection not changing it to point to a new page.
4347 *
4348 * See Documentation/vm/mmu_notifier.txt
4349 */
83cde9e8 4350 i_mmap_unlock_write(vma->vm_file->f_mapping);
a5338093 4351 mmu_notifier_invalidate_range_end(mm, start, end);
7da4d641
PZ
4352
4353 return pages << h->order;
8f860591
ZY
4354}
4355
a1e78772
MG
4356int hugetlb_reserve_pages(struct inode *inode,
4357 long from, long to,
5a6fe125 4358 struct vm_area_struct *vma,
ca16d140 4359 vm_flags_t vm_flags)
e4e574b7 4360{
17c9d12e 4361 long ret, chg;
a5516438 4362 struct hstate *h = hstate_inode(inode);
90481622 4363 struct hugepage_subpool *spool = subpool_inode(inode);
9119a41e 4364 struct resv_map *resv_map;
1c5ecae3 4365 long gbl_reserve;
e4e574b7 4366
17c9d12e
MG
4367 /*
4368 * Only apply hugepage reservation if asked. At fault time, an
4369 * attempt will be made for VM_NORESERVE to allocate a page
90481622 4370 * without using reserves
17c9d12e 4371 */
ca16d140 4372 if (vm_flags & VM_NORESERVE)
17c9d12e
MG
4373 return 0;
4374
a1e78772
MG
4375 /*
4376 * Shared mappings base their reservation on the number of pages that
4377 * are already allocated on behalf of the file. Private mappings need
4378 * to reserve the full area even if read-only as mprotect() may be
4379 * called to make the mapping read-write. Assume !vma is a shm mapping
4380 */
9119a41e 4381 if (!vma || vma->vm_flags & VM_MAYSHARE) {
4e35f483 4382 resv_map = inode_resv_map(inode);
9119a41e 4383
1406ec9b 4384 chg = region_chg(resv_map, from, to);
9119a41e
JK
4385
4386 } else {
4387 resv_map = resv_map_alloc();
17c9d12e
MG
4388 if (!resv_map)
4389 return -ENOMEM;
4390
a1e78772 4391 chg = to - from;
84afd99b 4392
17c9d12e
MG
4393 set_vma_resv_map(vma, resv_map);
4394 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
4395 }
4396
c50ac050
DH
4397 if (chg < 0) {
4398 ret = chg;
4399 goto out_err;
4400 }
8a630112 4401
1c5ecae3
MK
4402 /*
4403 * There must be enough pages in the subpool for the mapping. If
4404 * the subpool has a minimum size, there may be some global
4405 * reservations already in place (gbl_reserve).
4406 */
4407 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
4408 if (gbl_reserve < 0) {
c50ac050
DH
4409 ret = -ENOSPC;
4410 goto out_err;
4411 }
5a6fe125
MG
4412
4413 /*
17c9d12e 4414 * Check enough hugepages are available for the reservation.
90481622 4415 * Hand the pages back to the subpool if there are not
5a6fe125 4416 */
1c5ecae3 4417 ret = hugetlb_acct_memory(h, gbl_reserve);
68842c9b 4418 if (ret < 0) {
1c5ecae3
MK
4419 /* put back original number of pages, chg */
4420 (void)hugepage_subpool_put_pages(spool, chg);
c50ac050 4421 goto out_err;
68842c9b 4422 }
17c9d12e
MG
4423
4424 /*
4425 * Account for the reservations made. Shared mappings record regions
4426 * that have reservations as they are shared by multiple VMAs.
4427 * When the last VMA disappears, the region map says how much
4428 * the reservation was and the page cache tells how much of
4429 * the reservation was consumed. Private mappings are per-VMA and
4430 * only the consumed reservations are tracked. When the VMA
4431 * disappears, the original reservation is the VMA size and the
4432 * consumed reservations are stored in the map. Hence, nothing
4433 * else has to be done for private mappings here
4434 */
33039678
MK
4435 if (!vma || vma->vm_flags & VM_MAYSHARE) {
4436 long add = region_add(resv_map, from, to);
4437
4438 if (unlikely(chg > add)) {
4439 /*
4440 * pages in this range were added to the reserve
4441 * map between region_chg and region_add. This
4442 * indicates a race with alloc_huge_page. Adjust
4443 * the subpool and reserve counts modified above
4444 * based on the difference.
4445 */
4446 long rsv_adjust;
4447
4448 rsv_adjust = hugepage_subpool_put_pages(spool,
4449 chg - add);
4450 hugetlb_acct_memory(h, -rsv_adjust);
4451 }
4452 }
a43a8c39 4453 return 0;
c50ac050 4454out_err:
5e911373 4455 if (!vma || vma->vm_flags & VM_MAYSHARE)
ff8c0c53
MK
4456 /* Don't call region_abort if region_chg failed */
4457 if (chg >= 0)
4458 region_abort(resv_map, from, to);
f031dd27
JK
4459 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4460 kref_put(&resv_map->refs, resv_map_release);
c50ac050 4461 return ret;
a43a8c39
CK
4462}
4463
b5cec28d
MK
4464long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
4465 long freed)
a43a8c39 4466{
a5516438 4467 struct hstate *h = hstate_inode(inode);
4e35f483 4468 struct resv_map *resv_map = inode_resv_map(inode);
9119a41e 4469 long chg = 0;
90481622 4470 struct hugepage_subpool *spool = subpool_inode(inode);
1c5ecae3 4471 long gbl_reserve;
45c682a6 4472
b5cec28d
MK
4473 if (resv_map) {
4474 chg = region_del(resv_map, start, end);
4475 /*
4476 * region_del() can fail in the rare case where a region
4477 * must be split and another region descriptor can not be
4478 * allocated. If end == LONG_MAX, it will not fail.
4479 */
4480 if (chg < 0)
4481 return chg;
4482 }
4483
45c682a6 4484 spin_lock(&inode->i_lock);
e4c6f8be 4485 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
45c682a6
KC
4486 spin_unlock(&inode->i_lock);
4487
1c5ecae3
MK
4488 /*
4489 * If the subpool has a minimum size, the number of global
4490 * reservations to be released may be adjusted.
4491 */
4492 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
4493 hugetlb_acct_memory(h, -gbl_reserve);
b5cec28d
MK
4494
4495 return 0;
a43a8c39 4496}
93f70f90 4497
3212b535
SC
4498#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
4499static unsigned long page_table_shareable(struct vm_area_struct *svma,
4500 struct vm_area_struct *vma,
4501 unsigned long addr, pgoff_t idx)
4502{
4503 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
4504 svma->vm_start;
4505 unsigned long sbase = saddr & PUD_MASK;
4506 unsigned long s_end = sbase + PUD_SIZE;
4507
4508 /* Allow segments to share if only one is marked locked */
de60f5f1
EM
4509 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
4510 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
3212b535
SC
4511
4512 /*
4513 * match the virtual addresses, permission and the alignment of the
4514 * page table page.
4515 */
4516 if (pmd_index(addr) != pmd_index(saddr) ||
4517 vm_flags != svm_flags ||
4518 sbase < svma->vm_start || svma->vm_end < s_end)
4519 return 0;
4520
4521 return saddr;
4522}
4523
31aafb45 4524static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
3212b535
SC
4525{
4526 unsigned long base = addr & PUD_MASK;
4527 unsigned long end = base + PUD_SIZE;
4528
4529 /*
4530 * check on proper vm_flags and page table alignment
4531 */
4532 if (vma->vm_flags & VM_MAYSHARE &&
4533 vma->vm_start <= base && end <= vma->vm_end)
31aafb45
NK
4534 return true;
4535 return false;
3212b535
SC
4536}
4537
4538/*
4539 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4540 * and returns the corresponding pte. While this is not necessary for the
4541 * !shared pmd case because we can allocate the pmd later as well, it makes the
4542 * code much cleaner. pmd allocation is essential for the shared case because
c8c06efa 4543 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
3212b535
SC
4544 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4545 * bad pmd for sharing.
4546 */
4547pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4548{
4549 struct vm_area_struct *vma = find_vma(mm, addr);
4550 struct address_space *mapping = vma->vm_file->f_mapping;
4551 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
4552 vma->vm_pgoff;
4553 struct vm_area_struct *svma;
4554 unsigned long saddr;
4555 pte_t *spte = NULL;
4556 pte_t *pte;
cb900f41 4557 spinlock_t *ptl;
3212b535
SC
4558
4559 if (!vma_shareable(vma, addr))
4560 return (pte_t *)pmd_alloc(mm, pud, addr);
4561
83cde9e8 4562 i_mmap_lock_write(mapping);
3212b535
SC
4563 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
4564 if (svma == vma)
4565 continue;
4566
4567 saddr = page_table_shareable(svma, vma, addr, idx);
4568 if (saddr) {
7868a208
PA
4569 spte = huge_pte_offset(svma->vm_mm, saddr,
4570 vma_mmu_pagesize(svma));
3212b535
SC
4571 if (spte) {
4572 get_page(virt_to_page(spte));
4573 break;
4574 }
4575 }
4576 }
4577
4578 if (!spte)
4579 goto out;
4580
8bea8052 4581 ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
dc6c9a35 4582 if (pud_none(*pud)) {
3212b535
SC
4583 pud_populate(mm, pud,
4584 (pmd_t *)((unsigned long)spte & PAGE_MASK));
c17b1f42 4585 mm_inc_nr_pmds(mm);
dc6c9a35 4586 } else {
3212b535 4587 put_page(virt_to_page(spte));
dc6c9a35 4588 }
cb900f41 4589 spin_unlock(ptl);
3212b535
SC
4590out:
4591 pte = (pte_t *)pmd_alloc(mm, pud, addr);
83cde9e8 4592 i_mmap_unlock_write(mapping);
3212b535
SC
4593 return pte;
4594}
4595
4596/*
4597 * unmap huge page backed by shared pte.
4598 *
4599 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
4600 * indicated by page_count > 1, unmap is achieved by clearing pud and
4601 * decrementing the ref count. If count == 1, the pte page is not shared.
4602 *
cb900f41 4603 * called with page table lock held.
3212b535
SC
4604 *
4605 * returns: 1 successfully unmapped a shared pte page
4606 * 0 the underlying pte page is not shared, or it is the last user
4607 */
4608int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4609{
4610 pgd_t *pgd = pgd_offset(mm, *addr);
c2febafc
KS
4611 p4d_t *p4d = p4d_offset(pgd, *addr);
4612 pud_t *pud = pud_offset(p4d, *addr);
3212b535
SC
4613
4614 BUG_ON(page_count(virt_to_page(ptep)) == 0);
4615 if (page_count(virt_to_page(ptep)) == 1)
4616 return 0;
4617
4618 pud_clear(pud);
4619 put_page(virt_to_page(ptep));
dc6c9a35 4620 mm_dec_nr_pmds(mm);
3212b535
SC
4621 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
4622 return 1;
4623}
9e5fc74c
SC
4624#define want_pmd_share() (1)
4625#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4626pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4627{
4628 return NULL;
4629}
e81f2d22
ZZ
4630
4631int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4632{
4633 return 0;
4634}
9e5fc74c 4635#define want_pmd_share() (0)
3212b535
SC
4636#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4637
9e5fc74c
SC
4638#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
4639pte_t *huge_pte_alloc(struct mm_struct *mm,
4640 unsigned long addr, unsigned long sz)
4641{
4642 pgd_t *pgd;
c2febafc 4643 p4d_t *p4d;
9e5fc74c
SC
4644 pud_t *pud;
4645 pte_t *pte = NULL;
4646
4647 pgd = pgd_offset(mm, addr);
f4f0a3d8
KS
4648 p4d = p4d_alloc(mm, pgd, addr);
4649 if (!p4d)
4650 return NULL;
c2febafc 4651 pud = pud_alloc(mm, p4d, addr);
9e5fc74c
SC
4652 if (pud) {
4653 if (sz == PUD_SIZE) {
4654 pte = (pte_t *)pud;
4655 } else {
4656 BUG_ON(sz != PMD_SIZE);
4657 if (want_pmd_share() && pud_none(*pud))
4658 pte = huge_pmd_share(mm, addr, pud);
4659 else
4660 pte = (pte_t *)pmd_alloc(mm, pud, addr);
4661 }
4662 }
4e666314 4663 BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
9e5fc74c
SC
4664
4665 return pte;
4666}
4667
9b19df29
PA
4668/*
4669 * huge_pte_offset() - Walk the page table to resolve the hugepage
4670 * entry at address @addr
4671 *
4672 * Return: Pointer to page table or swap entry (PUD or PMD) for
4673 * address @addr, or NULL if a p*d_none() entry is encountered and the
4674 * size @sz doesn't match the hugepage size at this level of the page
4675 * table.
4676 */
7868a208
PA
4677pte_t *huge_pte_offset(struct mm_struct *mm,
4678 unsigned long addr, unsigned long sz)
9e5fc74c
SC
4679{
4680 pgd_t *pgd;
c2febafc 4681 p4d_t *p4d;
9e5fc74c 4682 pud_t *pud;
c2febafc 4683 pmd_t *pmd;
9e5fc74c
SC
4684
4685 pgd = pgd_offset(mm, addr);
c2febafc
KS
4686 if (!pgd_present(*pgd))
4687 return NULL;
4688 p4d = p4d_offset(pgd, addr);
4689 if (!p4d_present(*p4d))
4690 return NULL;
9b19df29 4691
c2febafc 4692 pud = pud_offset(p4d, addr);
9b19df29 4693 if (sz != PUD_SIZE && pud_none(*pud))
c2febafc 4694 return NULL;
9b19df29
PA
4695 /* hugepage or swap? */
4696 if (pud_huge(*pud) || !pud_present(*pud))
c2febafc 4697 return (pte_t *)pud;
9b19df29 4698
c2febafc 4699 pmd = pmd_offset(pud, addr);
9b19df29
PA
4700 if (sz != PMD_SIZE && pmd_none(*pmd))
4701 return NULL;
4702 /* hugepage or swap? */
4703 if (pmd_huge(*pmd) || !pmd_present(*pmd))
4704 return (pte_t *)pmd;
4705
4706 return NULL;
9e5fc74c
SC
4707}
4708
61f77eda
NH
4709#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4710
4711/*
4712 * These functions are overwritable if your architecture needs its own
4713 * behavior.
4714 */
4715struct page * __weak
4716follow_huge_addr(struct mm_struct *mm, unsigned long address,
4717 int write)
4718{
4719 return ERR_PTR(-EINVAL);
4720}
4721
4dc71451
AK
4722struct page * __weak
4723follow_huge_pd(struct vm_area_struct *vma,
4724 unsigned long address, hugepd_t hpd, int flags, int pdshift)
4725{
4726 WARN(1, "hugepd follow called with no support for hugepage directory format\n");
4727 return NULL;
4728}
4729
61f77eda 4730struct page * __weak
9e5fc74c 4731follow_huge_pmd(struct mm_struct *mm, unsigned long address,
e66f17ff 4732 pmd_t *pmd, int flags)
9e5fc74c 4733{
e66f17ff
NH
4734 struct page *page = NULL;
4735 spinlock_t *ptl;
c9d398fa 4736 pte_t pte;
e66f17ff
NH
4737retry:
4738 ptl = pmd_lockptr(mm, pmd);
4739 spin_lock(ptl);
4740 /*
4741 * make sure that the address range covered by this pmd is not
4742 * unmapped from other threads.
4743 */
4744 if (!pmd_huge(*pmd))
4745 goto out;
c9d398fa
NH
4746 pte = huge_ptep_get((pte_t *)pmd);
4747 if (pte_present(pte)) {
97534127 4748 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
e66f17ff
NH
4749 if (flags & FOLL_GET)
4750 get_page(page);
4751 } else {
c9d398fa 4752 if (is_hugetlb_entry_migration(pte)) {
e66f17ff
NH
4753 spin_unlock(ptl);
4754 __migration_entry_wait(mm, (pte_t *)pmd, ptl);
4755 goto retry;
4756 }
4757 /*
4758 * hwpoisoned entry is treated as no_page_table in
4759 * follow_page_mask().
4760 */
4761 }
4762out:
4763 spin_unlock(ptl);
9e5fc74c
SC
4764 return page;
4765}
4766
61f77eda 4767struct page * __weak
9e5fc74c 4768follow_huge_pud(struct mm_struct *mm, unsigned long address,
e66f17ff 4769 pud_t *pud, int flags)
9e5fc74c 4770{
e66f17ff
NH
4771 if (flags & FOLL_GET)
4772 return NULL;
9e5fc74c 4773
e66f17ff 4774 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
9e5fc74c
SC
4775}
4776
faaa5b62
AK
4777struct page * __weak
4778follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
4779{
4780 if (flags & FOLL_GET)
4781 return NULL;
4782
4783 return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
4784}
4785
31caf665
NH
4786bool isolate_huge_page(struct page *page, struct list_head *list)
4787{
bcc54222
NH
4788 bool ret = true;
4789
309381fe 4790 VM_BUG_ON_PAGE(!PageHead(page), page);
31caf665 4791 spin_lock(&hugetlb_lock);
bcc54222
NH
4792 if (!page_huge_active(page) || !get_page_unless_zero(page)) {
4793 ret = false;
4794 goto unlock;
4795 }
4796 clear_page_huge_active(page);
31caf665 4797 list_move_tail(&page->lru, list);
bcc54222 4798unlock:
31caf665 4799 spin_unlock(&hugetlb_lock);
bcc54222 4800 return ret;
31caf665
NH
4801}
4802
4803void putback_active_hugepage(struct page *page)
4804{
309381fe 4805 VM_BUG_ON_PAGE(!PageHead(page), page);
31caf665 4806 spin_lock(&hugetlb_lock);
bcc54222 4807 set_page_huge_active(page);
31caf665
NH
4808 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
4809 spin_unlock(&hugetlb_lock);
4810 put_page(page);
4811}