hugetlb: change free_pool_huge_page to remove_pool_huge_page
[linux-block.git] / mm / hugetlb.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * Generic hugetlb support.
6d49e352 4 * (C) Nadia Yvette Chambers, April 2004
1da177e4 5 */
1da177e4
LT
6#include <linux/list.h>
7#include <linux/init.h>
1da177e4 8#include <linux/mm.h>
e1759c21 9#include <linux/seq_file.h>
1da177e4
LT
10#include <linux/sysctl.h>
11#include <linux/highmem.h>
cddb8a5c 12#include <linux/mmu_notifier.h>
1da177e4 13#include <linux/nodemask.h>
63551ae0 14#include <linux/pagemap.h>
5da7ca86 15#include <linux/mempolicy.h>
3b32123d 16#include <linux/compiler.h>
aea47ff3 17#include <linux/cpuset.h>
3935baa9 18#include <linux/mutex.h>
97ad1087 19#include <linux/memblock.h>
a3437870 20#include <linux/sysfs.h>
5a0e3ad6 21#include <linux/slab.h>
bbe88753 22#include <linux/sched/mm.h>
63489f8e 23#include <linux/mmdebug.h>
174cd4b1 24#include <linux/sched/signal.h>
0fe6e20b 25#include <linux/rmap.h>
c6247f72 26#include <linux/string_helpers.h>
fd6a03ed
NH
27#include <linux/swap.h>
28#include <linux/swapops.h>
8382d914 29#include <linux/jhash.h>
98fa15f3 30#include <linux/numa.h>
c77c0a8a 31#include <linux/llist.h>
cf11e85f 32#include <linux/cma.h>
d6606683 33
63551ae0 34#include <asm/page.h>
ca15ca40 35#include <asm/pgalloc.h>
24669e58 36#include <asm/tlb.h>
63551ae0 37
24669e58 38#include <linux/io.h>
63551ae0 39#include <linux/hugetlb.h>
9dd540e2 40#include <linux/hugetlb_cgroup.h>
9a305230 41#include <linux/node.h>
1a1aad8a 42#include <linux/userfaultfd_k.h>
ab5ac90a 43#include <linux/page_owner.h>
7835e98b 44#include "internal.h"
1da177e4 45
c3f38a38 46int hugetlb_max_hstate __read_mostly;
e5ff2159
AK
47unsigned int default_hstate_idx;
48struct hstate hstates[HUGE_MAX_HSTATE];
cf11e85f 49
dbda8fea 50#ifdef CONFIG_CMA
cf11e85f 51static struct cma *hugetlb_cma[MAX_NUMNODES];
dbda8fea
BS
52#endif
53static unsigned long hugetlb_cma_size __initdata;
cf11e85f 54
641844f5
NH
55/*
56 * Minimum page order among possible hugepage sizes, set to a proper value
57 * at boot time.
58 */
59static unsigned int minimum_order __read_mostly = UINT_MAX;
e5ff2159 60
53ba51d2
JT
61__initdata LIST_HEAD(huge_boot_pages);
62
e5ff2159
AK
63/* for command line parsing */
64static struct hstate * __initdata parsed_hstate;
65static unsigned long __initdata default_hstate_max_huge_pages;
9fee021d 66static bool __initdata parsed_valid_hugepagesz = true;
282f4214 67static bool __initdata parsed_default_hugepagesz;
e5ff2159 68
3935baa9 69/*
31caf665
NH
70 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
71 * free_huge_pages, and surplus_huge_pages.
3935baa9 72 */
c3f38a38 73DEFINE_SPINLOCK(hugetlb_lock);
0bd0f9fb 74
8382d914
DB
75/*
76 * Serializes faults on the same logical page. This is used to
77 * prevent spurious OOMs when the hugepage pool is fully utilized.
78 */
79static int num_fault_mutexes;
c672c7f2 80struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
8382d914 81
7ca02d0a
MK
82/* Forward declaration */
83static int hugetlb_acct_memory(struct hstate *h, long delta);
84
1d88433b 85static inline bool subpool_is_free(struct hugepage_subpool *spool)
90481622 86{
1d88433b
ML
87 if (spool->count)
88 return false;
89 if (spool->max_hpages != -1)
90 return spool->used_hpages == 0;
91 if (spool->min_hpages != -1)
92 return spool->rsv_hpages == spool->min_hpages;
93
94 return true;
95}
90481622 96
1d88433b
ML
97static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
98{
90481622
DG
99 spin_unlock(&spool->lock);
100
101 /* If no pages are used, and no other handles to the subpool
7c8de358 102 * remain, give up any reservations based on minimum size and
7ca02d0a 103 * free the subpool */
1d88433b 104 if (subpool_is_free(spool)) {
7ca02d0a
MK
105 if (spool->min_hpages != -1)
106 hugetlb_acct_memory(spool->hstate,
107 -spool->min_hpages);
90481622 108 kfree(spool);
7ca02d0a 109 }
90481622
DG
110}
111
7ca02d0a
MK
112struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
113 long min_hpages)
90481622
DG
114{
115 struct hugepage_subpool *spool;
116
c6a91820 117 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
90481622
DG
118 if (!spool)
119 return NULL;
120
121 spin_lock_init(&spool->lock);
122 spool->count = 1;
7ca02d0a
MK
123 spool->max_hpages = max_hpages;
124 spool->hstate = h;
125 spool->min_hpages = min_hpages;
126
127 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
128 kfree(spool);
129 return NULL;
130 }
131 spool->rsv_hpages = min_hpages;
90481622
DG
132
133 return spool;
134}
135
136void hugepage_put_subpool(struct hugepage_subpool *spool)
137{
138 spin_lock(&spool->lock);
139 BUG_ON(!spool->count);
140 spool->count--;
141 unlock_or_release_subpool(spool);
142}
143
1c5ecae3
MK
144/*
145 * Subpool accounting for allocating and reserving pages.
146 * Return -ENOMEM if there are not enough resources to satisfy the
9e7ee400 147 * request. Otherwise, return the number of pages by which the
1c5ecae3
MK
148 * global pools must be adjusted (upward). The returned value may
149 * only be different than the passed value (delta) in the case where
7c8de358 150 * a subpool minimum size must be maintained.
1c5ecae3
MK
151 */
152static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
90481622
DG
153 long delta)
154{
1c5ecae3 155 long ret = delta;
90481622
DG
156
157 if (!spool)
1c5ecae3 158 return ret;
90481622
DG
159
160 spin_lock(&spool->lock);
1c5ecae3
MK
161
162 if (spool->max_hpages != -1) { /* maximum size accounting */
163 if ((spool->used_hpages + delta) <= spool->max_hpages)
164 spool->used_hpages += delta;
165 else {
166 ret = -ENOMEM;
167 goto unlock_ret;
168 }
90481622 169 }
90481622 170
09a95e29
MK
171 /* minimum size accounting */
172 if (spool->min_hpages != -1 && spool->rsv_hpages) {
1c5ecae3
MK
173 if (delta > spool->rsv_hpages) {
174 /*
175 * Asking for more reserves than those already taken on
176 * behalf of subpool. Return difference.
177 */
178 ret = delta - spool->rsv_hpages;
179 spool->rsv_hpages = 0;
180 } else {
181 ret = 0; /* reserves already accounted for */
182 spool->rsv_hpages -= delta;
183 }
184 }
185
186unlock_ret:
187 spin_unlock(&spool->lock);
90481622
DG
188 return ret;
189}
190
1c5ecae3
MK
191/*
192 * Subpool accounting for freeing and unreserving pages.
193 * Return the number of global page reservations that must be dropped.
194 * The return value may only be different than the passed value (delta)
195 * in the case where a subpool minimum size must be maintained.
196 */
197static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
90481622
DG
198 long delta)
199{
1c5ecae3
MK
200 long ret = delta;
201
90481622 202 if (!spool)
1c5ecae3 203 return delta;
90481622
DG
204
205 spin_lock(&spool->lock);
1c5ecae3
MK
206
207 if (spool->max_hpages != -1) /* maximum size accounting */
208 spool->used_hpages -= delta;
209
09a95e29
MK
210 /* minimum size accounting */
211 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
1c5ecae3
MK
212 if (spool->rsv_hpages + delta <= spool->min_hpages)
213 ret = 0;
214 else
215 ret = spool->rsv_hpages + delta - spool->min_hpages;
216
217 spool->rsv_hpages += delta;
218 if (spool->rsv_hpages > spool->min_hpages)
219 spool->rsv_hpages = spool->min_hpages;
220 }
221
222 /*
223 * If hugetlbfs_put_super couldn't free spool due to an outstanding
224 * quota reference, free it now.
225 */
90481622 226 unlock_or_release_subpool(spool);
1c5ecae3
MK
227
228 return ret;
90481622
DG
229}
230
231static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
232{
233 return HUGETLBFS_SB(inode->i_sb)->spool;
234}
235
236static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
237{
496ad9aa 238 return subpool_inode(file_inode(vma->vm_file));
90481622
DG
239}
240
0db9d74e
MA
241/* Helper that removes a struct file_region from the resv_map cache and returns
242 * it for use.
243 */
244static struct file_region *
245get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
246{
247 struct file_region *nrg = NULL;
248
249 VM_BUG_ON(resv->region_cache_count <= 0);
250
251 resv->region_cache_count--;
252 nrg = list_first_entry(&resv->region_cache, struct file_region, link);
0db9d74e
MA
253 list_del(&nrg->link);
254
255 nrg->from = from;
256 nrg->to = to;
257
258 return nrg;
259}
260
075a61d0
MA
261static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
262 struct file_region *rg)
263{
264#ifdef CONFIG_CGROUP_HUGETLB
265 nrg->reservation_counter = rg->reservation_counter;
266 nrg->css = rg->css;
267 if (rg->css)
268 css_get(rg->css);
269#endif
270}
271
272/* Helper that records hugetlb_cgroup uncharge info. */
273static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
274 struct hstate *h,
275 struct resv_map *resv,
276 struct file_region *nrg)
277{
278#ifdef CONFIG_CGROUP_HUGETLB
279 if (h_cg) {
280 nrg->reservation_counter =
281 &h_cg->rsvd_hugepage[hstate_index(h)];
282 nrg->css = &h_cg->css;
d85aecf2
ML
283 /*
284 * The caller will hold exactly one h_cg->css reference for the
285 * whole contiguous reservation region. But this area might be
286 * scattered when there are already some file_regions reside in
287 * it. As a result, many file_regions may share only one css
288 * reference. In order to ensure that one file_region must hold
289 * exactly one h_cg->css reference, we should do css_get for
290 * each file_region and leave the reference held by caller
291 * untouched.
292 */
293 css_get(&h_cg->css);
075a61d0
MA
294 if (!resv->pages_per_hpage)
295 resv->pages_per_hpage = pages_per_huge_page(h);
296 /* pages_per_hpage should be the same for all entries in
297 * a resv_map.
298 */
299 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
300 } else {
301 nrg->reservation_counter = NULL;
302 nrg->css = NULL;
303 }
304#endif
305}
306
d85aecf2
ML
307static void put_uncharge_info(struct file_region *rg)
308{
309#ifdef CONFIG_CGROUP_HUGETLB
310 if (rg->css)
311 css_put(rg->css);
312#endif
313}
314
a9b3f867
MA
315static bool has_same_uncharge_info(struct file_region *rg,
316 struct file_region *org)
317{
318#ifdef CONFIG_CGROUP_HUGETLB
319 return rg && org &&
320 rg->reservation_counter == org->reservation_counter &&
321 rg->css == org->css;
322
323#else
324 return true;
325#endif
326}
327
328static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
329{
330 struct file_region *nrg = NULL, *prg = NULL;
331
332 prg = list_prev_entry(rg, link);
333 if (&prg->link != &resv->regions && prg->to == rg->from &&
334 has_same_uncharge_info(prg, rg)) {
335 prg->to = rg->to;
336
337 list_del(&rg->link);
d85aecf2 338 put_uncharge_info(rg);
a9b3f867
MA
339 kfree(rg);
340
7db5e7b6 341 rg = prg;
a9b3f867
MA
342 }
343
344 nrg = list_next_entry(rg, link);
345 if (&nrg->link != &resv->regions && nrg->from == rg->to &&
346 has_same_uncharge_info(nrg, rg)) {
347 nrg->from = rg->from;
348
349 list_del(&rg->link);
d85aecf2 350 put_uncharge_info(rg);
a9b3f867 351 kfree(rg);
a9b3f867
MA
352 }
353}
354
2103cf9c
PX
355static inline long
356hugetlb_resv_map_add(struct resv_map *map, struct file_region *rg, long from,
357 long to, struct hstate *h, struct hugetlb_cgroup *cg,
358 long *regions_needed)
359{
360 struct file_region *nrg;
361
362 if (!regions_needed) {
363 nrg = get_file_region_entry_from_cache(map, from, to);
364 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
365 list_add(&nrg->link, rg->link.prev);
366 coalesce_file_region(map, nrg);
367 } else
368 *regions_needed += 1;
369
370 return to - from;
371}
372
972a3da3
WY
373/*
374 * Must be called with resv->lock held.
375 *
376 * Calling this with regions_needed != NULL will count the number of pages
377 * to be added but will not modify the linked list. And regions_needed will
378 * indicate the number of file_regions needed in the cache to carry out to add
379 * the regions for this range.
d75c6af9
MA
380 */
381static long add_reservation_in_range(struct resv_map *resv, long f, long t,
075a61d0 382 struct hugetlb_cgroup *h_cg,
972a3da3 383 struct hstate *h, long *regions_needed)
d75c6af9 384{
0db9d74e 385 long add = 0;
d75c6af9 386 struct list_head *head = &resv->regions;
0db9d74e 387 long last_accounted_offset = f;
2103cf9c 388 struct file_region *rg = NULL, *trg = NULL;
d75c6af9 389
0db9d74e
MA
390 if (regions_needed)
391 *regions_needed = 0;
d75c6af9 392
0db9d74e
MA
393 /* In this loop, we essentially handle an entry for the range
394 * [last_accounted_offset, rg->from), at every iteration, with some
395 * bounds checking.
396 */
397 list_for_each_entry_safe(rg, trg, head, link) {
398 /* Skip irrelevant regions that start before our range. */
399 if (rg->from < f) {
400 /* If this region ends after the last accounted offset,
401 * then we need to update last_accounted_offset.
402 */
403 if (rg->to > last_accounted_offset)
404 last_accounted_offset = rg->to;
405 continue;
406 }
d75c6af9 407
0db9d74e
MA
408 /* When we find a region that starts beyond our range, we've
409 * finished.
410 */
ca7e0457 411 if (rg->from >= t)
d75c6af9
MA
412 break;
413
0db9d74e
MA
414 /* Add an entry for last_accounted_offset -> rg->from, and
415 * update last_accounted_offset.
416 */
2103cf9c
PX
417 if (rg->from > last_accounted_offset)
418 add += hugetlb_resv_map_add(resv, rg,
419 last_accounted_offset,
420 rg->from, h, h_cg,
421 regions_needed);
0db9d74e
MA
422
423 last_accounted_offset = rg->to;
424 }
425
426 /* Handle the case where our range extends beyond
427 * last_accounted_offset.
428 */
2103cf9c
PX
429 if (last_accounted_offset < t)
430 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
431 t, h, h_cg, regions_needed);
0db9d74e
MA
432
433 VM_BUG_ON(add < 0);
434 return add;
435}
436
437/* Must be called with resv->lock acquired. Will drop lock to allocate entries.
438 */
439static int allocate_file_region_entries(struct resv_map *resv,
440 int regions_needed)
441 __must_hold(&resv->lock)
442{
443 struct list_head allocated_regions;
444 int to_allocate = 0, i = 0;
445 struct file_region *trg = NULL, *rg = NULL;
446
447 VM_BUG_ON(regions_needed < 0);
448
449 INIT_LIST_HEAD(&allocated_regions);
450
451 /*
452 * Check for sufficient descriptors in the cache to accommodate
453 * the number of in progress add operations plus regions_needed.
454 *
455 * This is a while loop because when we drop the lock, some other call
456 * to region_add or region_del may have consumed some region_entries,
457 * so we keep looping here until we finally have enough entries for
458 * (adds_in_progress + regions_needed).
459 */
460 while (resv->region_cache_count <
461 (resv->adds_in_progress + regions_needed)) {
462 to_allocate = resv->adds_in_progress + regions_needed -
463 resv->region_cache_count;
464
465 /* At this point, we should have enough entries in the cache
466 * for all the existings adds_in_progress. We should only be
467 * needing to allocate for regions_needed.
d75c6af9 468 */
0db9d74e
MA
469 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
470
471 spin_unlock(&resv->lock);
472 for (i = 0; i < to_allocate; i++) {
473 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
474 if (!trg)
475 goto out_of_memory;
476 list_add(&trg->link, &allocated_regions);
d75c6af9 477 }
d75c6af9 478
0db9d74e
MA
479 spin_lock(&resv->lock);
480
d3ec7b6e
WY
481 list_splice(&allocated_regions, &resv->region_cache);
482 resv->region_cache_count += to_allocate;
d75c6af9
MA
483 }
484
0db9d74e 485 return 0;
d75c6af9 486
0db9d74e
MA
487out_of_memory:
488 list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
489 list_del(&rg->link);
490 kfree(rg);
491 }
492 return -ENOMEM;
d75c6af9
MA
493}
494
1dd308a7
MK
495/*
496 * Add the huge page range represented by [f, t) to the reserve
0db9d74e
MA
497 * map. Regions will be taken from the cache to fill in this range.
498 * Sufficient regions should exist in the cache due to the previous
499 * call to region_chg with the same range, but in some cases the cache will not
500 * have sufficient entries due to races with other code doing region_add or
501 * region_del. The extra needed entries will be allocated.
cf3ad20b 502 *
0db9d74e
MA
503 * regions_needed is the out value provided by a previous call to region_chg.
504 *
505 * Return the number of new huge pages added to the map. This number is greater
506 * than or equal to zero. If file_region entries needed to be allocated for
7c8de358 507 * this operation and we were not able to allocate, it returns -ENOMEM.
0db9d74e
MA
508 * region_add of regions of length 1 never allocate file_regions and cannot
509 * fail; region_chg will always allocate at least 1 entry and a region_add for
510 * 1 page will only require at most 1 entry.
1dd308a7 511 */
0db9d74e 512static long region_add(struct resv_map *resv, long f, long t,
075a61d0
MA
513 long in_regions_needed, struct hstate *h,
514 struct hugetlb_cgroup *h_cg)
96822904 515{
0db9d74e 516 long add = 0, actual_regions_needed = 0;
96822904 517
7b24d861 518 spin_lock(&resv->lock);
0db9d74e
MA
519retry:
520
521 /* Count how many regions are actually needed to execute this add. */
972a3da3
WY
522 add_reservation_in_range(resv, f, t, NULL, NULL,
523 &actual_regions_needed);
96822904 524
5e911373 525 /*
0db9d74e
MA
526 * Check for sufficient descriptors in the cache to accommodate
527 * this add operation. Note that actual_regions_needed may be greater
528 * than in_regions_needed, as the resv_map may have been modified since
529 * the region_chg call. In this case, we need to make sure that we
530 * allocate extra entries, such that we have enough for all the
531 * existing adds_in_progress, plus the excess needed for this
532 * operation.
5e911373 533 */
0db9d74e
MA
534 if (actual_regions_needed > in_regions_needed &&
535 resv->region_cache_count <
536 resv->adds_in_progress +
537 (actual_regions_needed - in_regions_needed)) {
538 /* region_add operation of range 1 should never need to
539 * allocate file_region entries.
540 */
541 VM_BUG_ON(t - f <= 1);
5e911373 542
0db9d74e
MA
543 if (allocate_file_region_entries(
544 resv, actual_regions_needed - in_regions_needed)) {
545 return -ENOMEM;
546 }
5e911373 547
0db9d74e 548 goto retry;
5e911373
MK
549 }
550
972a3da3 551 add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
0db9d74e
MA
552
553 resv->adds_in_progress -= in_regions_needed;
cf3ad20b 554
7b24d861 555 spin_unlock(&resv->lock);
cf3ad20b 556 return add;
96822904
AW
557}
558
1dd308a7
MK
559/*
560 * Examine the existing reserve map and determine how many
561 * huge pages in the specified range [f, t) are NOT currently
562 * represented. This routine is called before a subsequent
563 * call to region_add that will actually modify the reserve
564 * map to add the specified range [f, t). region_chg does
565 * not change the number of huge pages represented by the
0db9d74e
MA
566 * map. A number of new file_region structures is added to the cache as a
567 * placeholder, for the subsequent region_add call to use. At least 1
568 * file_region structure is added.
569 *
570 * out_regions_needed is the number of regions added to the
571 * resv->adds_in_progress. This value needs to be provided to a follow up call
572 * to region_add or region_abort for proper accounting.
5e911373
MK
573 *
574 * Returns the number of huge pages that need to be added to the existing
575 * reservation map for the range [f, t). This number is greater or equal to
576 * zero. -ENOMEM is returned if a new file_region structure or cache entry
577 * is needed and can not be allocated.
1dd308a7 578 */
0db9d74e
MA
579static long region_chg(struct resv_map *resv, long f, long t,
580 long *out_regions_needed)
96822904 581{
96822904
AW
582 long chg = 0;
583
7b24d861 584 spin_lock(&resv->lock);
5e911373 585
972a3da3 586 /* Count how many hugepages in this range are NOT represented. */
075a61d0 587 chg = add_reservation_in_range(resv, f, t, NULL, NULL,
972a3da3 588 out_regions_needed);
5e911373 589
0db9d74e
MA
590 if (*out_regions_needed == 0)
591 *out_regions_needed = 1;
5e911373 592
0db9d74e
MA
593 if (allocate_file_region_entries(resv, *out_regions_needed))
594 return -ENOMEM;
5e911373 595
0db9d74e 596 resv->adds_in_progress += *out_regions_needed;
7b24d861 597
7b24d861 598 spin_unlock(&resv->lock);
96822904
AW
599 return chg;
600}
601
5e911373
MK
602/*
603 * Abort the in progress add operation. The adds_in_progress field
604 * of the resv_map keeps track of the operations in progress between
605 * calls to region_chg and region_add. Operations are sometimes
606 * aborted after the call to region_chg. In such cases, region_abort
0db9d74e
MA
607 * is called to decrement the adds_in_progress counter. regions_needed
608 * is the value returned by the region_chg call, it is used to decrement
609 * the adds_in_progress counter.
5e911373
MK
610 *
611 * NOTE: The range arguments [f, t) are not needed or used in this
612 * routine. They are kept to make reading the calling code easier as
613 * arguments will match the associated region_chg call.
614 */
0db9d74e
MA
615static void region_abort(struct resv_map *resv, long f, long t,
616 long regions_needed)
5e911373
MK
617{
618 spin_lock(&resv->lock);
619 VM_BUG_ON(!resv->region_cache_count);
0db9d74e 620 resv->adds_in_progress -= regions_needed;
5e911373
MK
621 spin_unlock(&resv->lock);
622}
623
1dd308a7 624/*
feba16e2
MK
625 * Delete the specified range [f, t) from the reserve map. If the
626 * t parameter is LONG_MAX, this indicates that ALL regions after f
627 * should be deleted. Locate the regions which intersect [f, t)
628 * and either trim, delete or split the existing regions.
629 *
630 * Returns the number of huge pages deleted from the reserve map.
631 * In the normal case, the return value is zero or more. In the
632 * case where a region must be split, a new region descriptor must
633 * be allocated. If the allocation fails, -ENOMEM will be returned.
634 * NOTE: If the parameter t == LONG_MAX, then we will never split
635 * a region and possibly return -ENOMEM. Callers specifying
636 * t == LONG_MAX do not need to check for -ENOMEM error.
1dd308a7 637 */
feba16e2 638static long region_del(struct resv_map *resv, long f, long t)
96822904 639{
1406ec9b 640 struct list_head *head = &resv->regions;
96822904 641 struct file_region *rg, *trg;
feba16e2
MK
642 struct file_region *nrg = NULL;
643 long del = 0;
96822904 644
feba16e2 645retry:
7b24d861 646 spin_lock(&resv->lock);
feba16e2 647 list_for_each_entry_safe(rg, trg, head, link) {
dbe409e4
MK
648 /*
649 * Skip regions before the range to be deleted. file_region
650 * ranges are normally of the form [from, to). However, there
651 * may be a "placeholder" entry in the map which is of the form
652 * (from, to) with from == to. Check for placeholder entries
653 * at the beginning of the range to be deleted.
654 */
655 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
feba16e2 656 continue;
dbe409e4 657
feba16e2 658 if (rg->from >= t)
96822904 659 break;
96822904 660
feba16e2
MK
661 if (f > rg->from && t < rg->to) { /* Must split region */
662 /*
663 * Check for an entry in the cache before dropping
664 * lock and attempting allocation.
665 */
666 if (!nrg &&
667 resv->region_cache_count > resv->adds_in_progress) {
668 nrg = list_first_entry(&resv->region_cache,
669 struct file_region,
670 link);
671 list_del(&nrg->link);
672 resv->region_cache_count--;
673 }
96822904 674
feba16e2
MK
675 if (!nrg) {
676 spin_unlock(&resv->lock);
677 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
678 if (!nrg)
679 return -ENOMEM;
680 goto retry;
681 }
682
683 del += t - f;
79aa925b 684 hugetlb_cgroup_uncharge_file_region(
d85aecf2 685 resv, rg, t - f, false);
feba16e2
MK
686
687 /* New entry for end of split region */
688 nrg->from = t;
689 nrg->to = rg->to;
075a61d0
MA
690
691 copy_hugetlb_cgroup_uncharge_info(nrg, rg);
692
feba16e2
MK
693 INIT_LIST_HEAD(&nrg->link);
694
695 /* Original entry is trimmed */
696 rg->to = f;
697
698 list_add(&nrg->link, &rg->link);
699 nrg = NULL;
96822904 700 break;
feba16e2
MK
701 }
702
703 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
704 del += rg->to - rg->from;
075a61d0 705 hugetlb_cgroup_uncharge_file_region(resv, rg,
d85aecf2 706 rg->to - rg->from, true);
feba16e2
MK
707 list_del(&rg->link);
708 kfree(rg);
709 continue;
710 }
711
712 if (f <= rg->from) { /* Trim beginning of region */
075a61d0 713 hugetlb_cgroup_uncharge_file_region(resv, rg,
d85aecf2 714 t - rg->from, false);
075a61d0 715
79aa925b
MK
716 del += t - rg->from;
717 rg->from = t;
718 } else { /* Trim end of region */
075a61d0 719 hugetlb_cgroup_uncharge_file_region(resv, rg,
d85aecf2 720 rg->to - f, false);
79aa925b
MK
721
722 del += rg->to - f;
723 rg->to = f;
feba16e2 724 }
96822904 725 }
7b24d861 726
7b24d861 727 spin_unlock(&resv->lock);
feba16e2
MK
728 kfree(nrg);
729 return del;
96822904
AW
730}
731
b5cec28d
MK
732/*
733 * A rare out of memory error was encountered which prevented removal of
734 * the reserve map region for a page. The huge page itself was free'ed
735 * and removed from the page cache. This routine will adjust the subpool
736 * usage count, and the global reserve count if needed. By incrementing
737 * these counts, the reserve map entry which could not be deleted will
738 * appear as a "reserved" entry instead of simply dangling with incorrect
739 * counts.
740 */
72e2936c 741void hugetlb_fix_reserve_counts(struct inode *inode)
b5cec28d
MK
742{
743 struct hugepage_subpool *spool = subpool_inode(inode);
744 long rsv_adjust;
da56388c 745 bool reserved = false;
b5cec28d
MK
746
747 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
da56388c 748 if (rsv_adjust > 0) {
b5cec28d
MK
749 struct hstate *h = hstate_inode(inode);
750
da56388c
ML
751 if (!hugetlb_acct_memory(h, 1))
752 reserved = true;
753 } else if (!rsv_adjust) {
754 reserved = true;
b5cec28d 755 }
da56388c
ML
756
757 if (!reserved)
758 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
b5cec28d
MK
759}
760
1dd308a7
MK
761/*
762 * Count and return the number of huge pages in the reserve map
763 * that intersect with the range [f, t).
764 */
1406ec9b 765static long region_count(struct resv_map *resv, long f, long t)
84afd99b 766{
1406ec9b 767 struct list_head *head = &resv->regions;
84afd99b
AW
768 struct file_region *rg;
769 long chg = 0;
770
7b24d861 771 spin_lock(&resv->lock);
84afd99b
AW
772 /* Locate each segment we overlap with, and count that overlap. */
773 list_for_each_entry(rg, head, link) {
f2135a4a
WSH
774 long seg_from;
775 long seg_to;
84afd99b
AW
776
777 if (rg->to <= f)
778 continue;
779 if (rg->from >= t)
780 break;
781
782 seg_from = max(rg->from, f);
783 seg_to = min(rg->to, t);
784
785 chg += seg_to - seg_from;
786 }
7b24d861 787 spin_unlock(&resv->lock);
84afd99b
AW
788
789 return chg;
790}
791
e7c4b0bf
AW
792/*
793 * Convert the address within this vma to the page offset within
794 * the mapping, in pagecache page units; huge pages here.
795 */
a5516438
AK
796static pgoff_t vma_hugecache_offset(struct hstate *h,
797 struct vm_area_struct *vma, unsigned long address)
e7c4b0bf 798{
a5516438
AK
799 return ((address - vma->vm_start) >> huge_page_shift(h)) +
800 (vma->vm_pgoff >> huge_page_order(h));
e7c4b0bf
AW
801}
802
0fe6e20b
NH
803pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
804 unsigned long address)
805{
806 return vma_hugecache_offset(hstate_vma(vma), vma, address);
807}
dee41079 808EXPORT_SYMBOL_GPL(linear_hugepage_index);
0fe6e20b 809
08fba699
MG
810/*
811 * Return the size of the pages allocated when backing a VMA. In the majority
812 * cases this will be same size as used by the page table entries.
813 */
814unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
815{
05ea8860
DW
816 if (vma->vm_ops && vma->vm_ops->pagesize)
817 return vma->vm_ops->pagesize(vma);
818 return PAGE_SIZE;
08fba699 819}
f340ca0f 820EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
08fba699 821
3340289d
MG
822/*
823 * Return the page size being used by the MMU to back a VMA. In the majority
824 * of cases, the page size used by the kernel matches the MMU size. On
09135cc5
DW
825 * architectures where it differs, an architecture-specific 'strong'
826 * version of this symbol is required.
3340289d 827 */
09135cc5 828__weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
3340289d
MG
829{
830 return vma_kernel_pagesize(vma);
831}
3340289d 832
84afd99b
AW
833/*
834 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
835 * bits of the reservation map pointer, which are always clear due to
836 * alignment.
837 */
838#define HPAGE_RESV_OWNER (1UL << 0)
839#define HPAGE_RESV_UNMAPPED (1UL << 1)
04f2cbe3 840#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
84afd99b 841
a1e78772
MG
842/*
843 * These helpers are used to track how many pages are reserved for
844 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
845 * is guaranteed to have their future faults succeed.
846 *
847 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
848 * the reserve counters are updated with the hugetlb_lock held. It is safe
849 * to reset the VMA at fork() time as it is not in use yet and there is no
850 * chance of the global counters getting corrupted as a result of the values.
84afd99b
AW
851 *
852 * The private mapping reservation is represented in a subtly different
853 * manner to a shared mapping. A shared mapping has a region map associated
854 * with the underlying file, this region map represents the backing file
855 * pages which have ever had a reservation assigned which this persists even
856 * after the page is instantiated. A private mapping has a region map
857 * associated with the original mmap which is attached to all VMAs which
858 * reference it, this region map represents those offsets which have consumed
859 * reservation ie. where pages have been instantiated.
a1e78772 860 */
e7c4b0bf
AW
861static unsigned long get_vma_private_data(struct vm_area_struct *vma)
862{
863 return (unsigned long)vma->vm_private_data;
864}
865
866static void set_vma_private_data(struct vm_area_struct *vma,
867 unsigned long value)
868{
869 vma->vm_private_data = (void *)value;
870}
871
e9fe92ae
MA
872static void
873resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
874 struct hugetlb_cgroup *h_cg,
875 struct hstate *h)
876{
877#ifdef CONFIG_CGROUP_HUGETLB
878 if (!h_cg || !h) {
879 resv_map->reservation_counter = NULL;
880 resv_map->pages_per_hpage = 0;
881 resv_map->css = NULL;
882 } else {
883 resv_map->reservation_counter =
884 &h_cg->rsvd_hugepage[hstate_index(h)];
885 resv_map->pages_per_hpage = pages_per_huge_page(h);
886 resv_map->css = &h_cg->css;
887 }
888#endif
889}
890
9119a41e 891struct resv_map *resv_map_alloc(void)
84afd99b
AW
892{
893 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
5e911373
MK
894 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
895
896 if (!resv_map || !rg) {
897 kfree(resv_map);
898 kfree(rg);
84afd99b 899 return NULL;
5e911373 900 }
84afd99b
AW
901
902 kref_init(&resv_map->refs);
7b24d861 903 spin_lock_init(&resv_map->lock);
84afd99b
AW
904 INIT_LIST_HEAD(&resv_map->regions);
905
5e911373 906 resv_map->adds_in_progress = 0;
e9fe92ae
MA
907 /*
908 * Initialize these to 0. On shared mappings, 0's here indicate these
909 * fields don't do cgroup accounting. On private mappings, these will be
910 * re-initialized to the proper values, to indicate that hugetlb cgroup
911 * reservations are to be un-charged from here.
912 */
913 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
5e911373
MK
914
915 INIT_LIST_HEAD(&resv_map->region_cache);
916 list_add(&rg->link, &resv_map->region_cache);
917 resv_map->region_cache_count = 1;
918
84afd99b
AW
919 return resv_map;
920}
921
9119a41e 922void resv_map_release(struct kref *ref)
84afd99b
AW
923{
924 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
5e911373
MK
925 struct list_head *head = &resv_map->region_cache;
926 struct file_region *rg, *trg;
84afd99b
AW
927
928 /* Clear out any active regions before we release the map. */
feba16e2 929 region_del(resv_map, 0, LONG_MAX);
5e911373
MK
930
931 /* ... and any entries left in the cache */
932 list_for_each_entry_safe(rg, trg, head, link) {
933 list_del(&rg->link);
934 kfree(rg);
935 }
936
937 VM_BUG_ON(resv_map->adds_in_progress);
938
84afd99b
AW
939 kfree(resv_map);
940}
941
4e35f483
JK
942static inline struct resv_map *inode_resv_map(struct inode *inode)
943{
f27a5136
MK
944 /*
945 * At inode evict time, i_mapping may not point to the original
946 * address space within the inode. This original address space
947 * contains the pointer to the resv_map. So, always use the
948 * address space embedded within the inode.
949 * The VERY common case is inode->mapping == &inode->i_data but,
950 * this may not be true for device special inodes.
951 */
952 return (struct resv_map *)(&inode->i_data)->private_data;
4e35f483
JK
953}
954
84afd99b 955static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
a1e78772 956{
81d1b09c 957 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
4e35f483
JK
958 if (vma->vm_flags & VM_MAYSHARE) {
959 struct address_space *mapping = vma->vm_file->f_mapping;
960 struct inode *inode = mapping->host;
961
962 return inode_resv_map(inode);
963
964 } else {
84afd99b
AW
965 return (struct resv_map *)(get_vma_private_data(vma) &
966 ~HPAGE_RESV_MASK);
4e35f483 967 }
a1e78772
MG
968}
969
84afd99b 970static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
a1e78772 971{
81d1b09c
SL
972 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
973 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
a1e78772 974
84afd99b
AW
975 set_vma_private_data(vma, (get_vma_private_data(vma) &
976 HPAGE_RESV_MASK) | (unsigned long)map);
04f2cbe3
MG
977}
978
979static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
980{
81d1b09c
SL
981 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
982 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
e7c4b0bf
AW
983
984 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
04f2cbe3
MG
985}
986
987static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
988{
81d1b09c 989 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
e7c4b0bf
AW
990
991 return (get_vma_private_data(vma) & flag) != 0;
a1e78772
MG
992}
993
04f2cbe3 994/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
a1e78772
MG
995void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
996{
81d1b09c 997 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
f83a275d 998 if (!(vma->vm_flags & VM_MAYSHARE))
a1e78772
MG
999 vma->vm_private_data = (void *)0;
1000}
1001
1002/* Returns true if the VMA has associated reserve pages */
559ec2f8 1003static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
a1e78772 1004{
af0ed73e
JK
1005 if (vma->vm_flags & VM_NORESERVE) {
1006 /*
1007 * This address is already reserved by other process(chg == 0),
1008 * so, we should decrement reserved count. Without decrementing,
1009 * reserve count remains after releasing inode, because this
1010 * allocated page will go into page cache and is regarded as
1011 * coming from reserved pool in releasing step. Currently, we
1012 * don't have any other solution to deal with this situation
1013 * properly, so add work-around here.
1014 */
1015 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
559ec2f8 1016 return true;
af0ed73e 1017 else
559ec2f8 1018 return false;
af0ed73e 1019 }
a63884e9
JK
1020
1021 /* Shared mappings always use reserves */
1fb1b0e9
MK
1022 if (vma->vm_flags & VM_MAYSHARE) {
1023 /*
1024 * We know VM_NORESERVE is not set. Therefore, there SHOULD
1025 * be a region map for all pages. The only situation where
1026 * there is no region map is if a hole was punched via
7c8de358 1027 * fallocate. In this case, there really are no reserves to
1fb1b0e9
MK
1028 * use. This situation is indicated if chg != 0.
1029 */
1030 if (chg)
1031 return false;
1032 else
1033 return true;
1034 }
a63884e9
JK
1035
1036 /*
1037 * Only the process that called mmap() has reserves for
1038 * private mappings.
1039 */
67961f9d
MK
1040 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1041 /*
1042 * Like the shared case above, a hole punch or truncate
1043 * could have been performed on the private mapping.
1044 * Examine the value of chg to determine if reserves
1045 * actually exist or were previously consumed.
1046 * Very Subtle - The value of chg comes from a previous
1047 * call to vma_needs_reserves(). The reserve map for
1048 * private mappings has different (opposite) semantics
1049 * than that of shared mappings. vma_needs_reserves()
1050 * has already taken this difference in semantics into
1051 * account. Therefore, the meaning of chg is the same
1052 * as in the shared case above. Code could easily be
1053 * combined, but keeping it separate draws attention to
1054 * subtle differences.
1055 */
1056 if (chg)
1057 return false;
1058 else
1059 return true;
1060 }
a63884e9 1061
559ec2f8 1062 return false;
a1e78772
MG
1063}
1064
a5516438 1065static void enqueue_huge_page(struct hstate *h, struct page *page)
1da177e4
LT
1066{
1067 int nid = page_to_nid(page);
0edaecfa 1068 list_move(&page->lru, &h->hugepage_freelists[nid]);
a5516438
AK
1069 h->free_huge_pages++;
1070 h->free_huge_pages_node[nid]++;
6c037149 1071 SetHPageFreed(page);
1da177e4
LT
1072}
1073
94310cbc 1074static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
bf50bab2
NH
1075{
1076 struct page *page;
bbe88753
JK
1077 bool nocma = !!(current->flags & PF_MEMALLOC_NOCMA);
1078
1079 list_for_each_entry(page, &h->hugepage_freelists[nid], lru) {
1080 if (nocma && is_migrate_cma_page(page))
1081 continue;
bf50bab2 1082
6664bfc8
WY
1083 if (PageHWPoison(page))
1084 continue;
1085
1086 list_move(&page->lru, &h->hugepage_activelist);
1087 set_page_refcounted(page);
6c037149 1088 ClearHPageFreed(page);
6664bfc8
WY
1089 h->free_huge_pages--;
1090 h->free_huge_pages_node[nid]--;
1091 return page;
bbe88753
JK
1092 }
1093
6664bfc8 1094 return NULL;
bf50bab2
NH
1095}
1096
3e59fcb0
MH
1097static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
1098 nodemask_t *nmask)
94310cbc 1099{
3e59fcb0
MH
1100 unsigned int cpuset_mems_cookie;
1101 struct zonelist *zonelist;
1102 struct zone *zone;
1103 struct zoneref *z;
98fa15f3 1104 int node = NUMA_NO_NODE;
94310cbc 1105
3e59fcb0
MH
1106 zonelist = node_zonelist(nid, gfp_mask);
1107
1108retry_cpuset:
1109 cpuset_mems_cookie = read_mems_allowed_begin();
1110 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1111 struct page *page;
1112
1113 if (!cpuset_zone_allowed(zone, gfp_mask))
1114 continue;
1115 /*
1116 * no need to ask again on the same node. Pool is node rather than
1117 * zone aware
1118 */
1119 if (zone_to_nid(zone) == node)
1120 continue;
1121 node = zone_to_nid(zone);
94310cbc 1122
94310cbc
AK
1123 page = dequeue_huge_page_node_exact(h, node);
1124 if (page)
1125 return page;
1126 }
3e59fcb0
MH
1127 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1128 goto retry_cpuset;
1129
94310cbc
AK
1130 return NULL;
1131}
1132
a5516438
AK
1133static struct page *dequeue_huge_page_vma(struct hstate *h,
1134 struct vm_area_struct *vma,
af0ed73e
JK
1135 unsigned long address, int avoid_reserve,
1136 long chg)
1da177e4 1137{
3e59fcb0 1138 struct page *page;
480eccf9 1139 struct mempolicy *mpol;
04ec6264 1140 gfp_t gfp_mask;
3e59fcb0 1141 nodemask_t *nodemask;
04ec6264 1142 int nid;
1da177e4 1143
a1e78772
MG
1144 /*
1145 * A child process with MAP_PRIVATE mappings created by their parent
1146 * have no page reserves. This check ensures that reservations are
1147 * not "stolen". The child may still get SIGKILLed
1148 */
af0ed73e 1149 if (!vma_has_reserves(vma, chg) &&
a5516438 1150 h->free_huge_pages - h->resv_huge_pages == 0)
c0ff7453 1151 goto err;
a1e78772 1152
04f2cbe3 1153 /* If reserves cannot be used, ensure enough pages are in the pool */
a5516438 1154 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
6eab04a8 1155 goto err;
04f2cbe3 1156
04ec6264
VB
1157 gfp_mask = htlb_alloc_mask(h);
1158 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
3e59fcb0
MH
1159 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1160 if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
d6995da3 1161 SetHPageRestoreReserve(page);
3e59fcb0 1162 h->resv_huge_pages--;
1da177e4 1163 }
cc9a6c87 1164
52cd3b07 1165 mpol_cond_put(mpol);
1da177e4 1166 return page;
cc9a6c87
MG
1167
1168err:
cc9a6c87 1169 return NULL;
1da177e4
LT
1170}
1171
1cac6f2c
LC
1172/*
1173 * common helper functions for hstate_next_node_to_{alloc|free}.
1174 * We may have allocated or freed a huge page based on a different
1175 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1176 * be outside of *nodes_allowed. Ensure that we use an allowed
1177 * node for alloc or free.
1178 */
1179static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1180{
0edaf86c 1181 nid = next_node_in(nid, *nodes_allowed);
1cac6f2c
LC
1182 VM_BUG_ON(nid >= MAX_NUMNODES);
1183
1184 return nid;
1185}
1186
1187static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1188{
1189 if (!node_isset(nid, *nodes_allowed))
1190 nid = next_node_allowed(nid, nodes_allowed);
1191 return nid;
1192}
1193
1194/*
1195 * returns the previously saved node ["this node"] from which to
1196 * allocate a persistent huge page for the pool and advance the
1197 * next node from which to allocate, handling wrap at end of node
1198 * mask.
1199 */
1200static int hstate_next_node_to_alloc(struct hstate *h,
1201 nodemask_t *nodes_allowed)
1202{
1203 int nid;
1204
1205 VM_BUG_ON(!nodes_allowed);
1206
1207 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1208 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1209
1210 return nid;
1211}
1212
1213/*
10c6ec49 1214 * helper for remove_pool_huge_page() - return the previously saved
1cac6f2c
LC
1215 * node ["this node"] from which to free a huge page. Advance the
1216 * next node id whether or not we find a free huge page to free so
1217 * that the next attempt to free addresses the next node.
1218 */
1219static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1220{
1221 int nid;
1222
1223 VM_BUG_ON(!nodes_allowed);
1224
1225 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1226 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1227
1228 return nid;
1229}
1230
1231#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
1232 for (nr_nodes = nodes_weight(*mask); \
1233 nr_nodes > 0 && \
1234 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
1235 nr_nodes--)
1236
1237#define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1238 for (nr_nodes = nodes_weight(*mask); \
1239 nr_nodes > 0 && \
1240 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1241 nr_nodes--)
1242
e1073d1e 1243#ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
944d9fec 1244static void destroy_compound_gigantic_page(struct page *page,
d00181b9 1245 unsigned int order)
944d9fec
LC
1246{
1247 int i;
1248 int nr_pages = 1 << order;
1249 struct page *p = page + 1;
1250
c8cc708a 1251 atomic_set(compound_mapcount_ptr(page), 0);
5291c09b 1252 atomic_set(compound_pincount_ptr(page), 0);
47e29d32 1253
944d9fec 1254 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1d798ca3 1255 clear_compound_head(p);
944d9fec 1256 set_page_refcounted(p);
944d9fec
LC
1257 }
1258
1259 set_compound_order(page, 0);
ba9c1201 1260 page[1].compound_nr = 0;
944d9fec
LC
1261 __ClearPageHead(page);
1262}
1263
d00181b9 1264static void free_gigantic_page(struct page *page, unsigned int order)
944d9fec 1265{
cf11e85f
RG
1266 /*
1267 * If the page isn't allocated using the cma allocator,
1268 * cma_release() returns false.
1269 */
dbda8fea
BS
1270#ifdef CONFIG_CMA
1271 if (cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order))
cf11e85f 1272 return;
dbda8fea 1273#endif
cf11e85f 1274
944d9fec
LC
1275 free_contig_range(page_to_pfn(page), 1 << order);
1276}
1277
4eb0716e 1278#ifdef CONFIG_CONTIG_ALLOC
d9cc948f
MH
1279static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1280 int nid, nodemask_t *nodemask)
944d9fec 1281{
04adbc3f 1282 unsigned long nr_pages = pages_per_huge_page(h);
953f064a
LX
1283 if (nid == NUMA_NO_NODE)
1284 nid = numa_mem_id();
944d9fec 1285
dbda8fea
BS
1286#ifdef CONFIG_CMA
1287 {
cf11e85f
RG
1288 struct page *page;
1289 int node;
1290
953f064a
LX
1291 if (hugetlb_cma[nid]) {
1292 page = cma_alloc(hugetlb_cma[nid], nr_pages,
1293 huge_page_order(h), true);
cf11e85f
RG
1294 if (page)
1295 return page;
1296 }
953f064a
LX
1297
1298 if (!(gfp_mask & __GFP_THISNODE)) {
1299 for_each_node_mask(node, *nodemask) {
1300 if (node == nid || !hugetlb_cma[node])
1301 continue;
1302
1303 page = cma_alloc(hugetlb_cma[node], nr_pages,
1304 huge_page_order(h), true);
1305 if (page)
1306 return page;
1307 }
1308 }
cf11e85f 1309 }
dbda8fea 1310#endif
cf11e85f 1311
5e27a2df 1312 return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
944d9fec
LC
1313}
1314
1315static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
d00181b9 1316static void prep_compound_gigantic_page(struct page *page, unsigned int order);
4eb0716e
AG
1317#else /* !CONFIG_CONTIG_ALLOC */
1318static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1319 int nid, nodemask_t *nodemask)
1320{
1321 return NULL;
1322}
1323#endif /* CONFIG_CONTIG_ALLOC */
944d9fec 1324
e1073d1e 1325#else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
d9cc948f 1326static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
4eb0716e
AG
1327 int nid, nodemask_t *nodemask)
1328{
1329 return NULL;
1330}
d00181b9 1331static inline void free_gigantic_page(struct page *page, unsigned int order) { }
944d9fec 1332static inline void destroy_compound_gigantic_page(struct page *page,
d00181b9 1333 unsigned int order) { }
944d9fec
LC
1334#endif
1335
6eb4e88a
MK
1336/*
1337 * Remove hugetlb page from lists, and update dtor so that page appears
1338 * as just a compound page. A reference is held on the page.
1339 *
1340 * Must be called with hugetlb lock held.
1341 */
1342static void remove_hugetlb_page(struct hstate *h, struct page *page,
1343 bool adjust_surplus)
1344{
1345 int nid = page_to_nid(page);
1346
1347 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1348 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page);
1349
1350 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1351 return;
1352
1353 list_del(&page->lru);
1354
1355 if (HPageFreed(page)) {
1356 h->free_huge_pages--;
1357 h->free_huge_pages_node[nid]--;
1358 }
1359 if (adjust_surplus) {
1360 h->surplus_huge_pages--;
1361 h->surplus_huge_pages_node[nid]--;
1362 }
1363
1364 set_page_refcounted(page);
1365 set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1366
1367 h->nr_huge_pages--;
1368 h->nr_huge_pages_node[nid]--;
1369}
1370
a5516438 1371static void update_and_free_page(struct hstate *h, struct page *page)
6af2acb6
AL
1372{
1373 int i;
dbfee5ae 1374 struct page *subpage = page;
a5516438 1375
4eb0716e 1376 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
944d9fec 1377 return;
18229df5 1378
dbfee5ae
MK
1379 for (i = 0; i < pages_per_huge_page(h);
1380 i++, subpage = mem_map_next(subpage, page, i)) {
1381 subpage->flags &= ~(1 << PG_locked | 1 << PG_error |
32f84528 1382 1 << PG_referenced | 1 << PG_dirty |
a7407a27
LC
1383 1 << PG_active | 1 << PG_private |
1384 1 << PG_writeback);
6af2acb6 1385 }
944d9fec
LC
1386 if (hstate_is_gigantic(h)) {
1387 destroy_compound_gigantic_page(page, huge_page_order(h));
1388 free_gigantic_page(page, huge_page_order(h));
1389 } else {
944d9fec
LC
1390 __free_pages(page, huge_page_order(h));
1391 }
6af2acb6
AL
1392}
1393
10c6ec49
MK
1394static void update_and_free_pages_bulk(struct hstate *h, struct list_head *list)
1395{
1396 struct page *page, *t_page;
1397
1398 list_for_each_entry_safe(page, t_page, list, lru) {
1399 update_and_free_page(h, page);
1400 cond_resched();
1401 }
1402}
1403
e5ff2159
AK
1404struct hstate *size_to_hstate(unsigned long size)
1405{
1406 struct hstate *h;
1407
1408 for_each_hstate(h) {
1409 if (huge_page_size(h) == size)
1410 return h;
1411 }
1412 return NULL;
1413}
1414
c77c0a8a 1415static void __free_huge_page(struct page *page)
27a85ef1 1416{
a5516438
AK
1417 /*
1418 * Can't pass hstate in here because it is called from the
1419 * compound page destructor.
1420 */
e5ff2159 1421 struct hstate *h = page_hstate(page);
7893d1d5 1422 int nid = page_to_nid(page);
d6995da3 1423 struct hugepage_subpool *spool = hugetlb_page_subpool(page);
07443a85 1424 bool restore_reserve;
27a85ef1 1425
b4330afb
MK
1426 VM_BUG_ON_PAGE(page_count(page), page);
1427 VM_BUG_ON_PAGE(page_mapcount(page), page);
8ace22bc 1428
d6995da3 1429 hugetlb_set_page_subpool(page, NULL);
8ace22bc 1430 page->mapping = NULL;
d6995da3
MK
1431 restore_reserve = HPageRestoreReserve(page);
1432 ClearHPageRestoreReserve(page);
27a85ef1 1433
1c5ecae3 1434 /*
d6995da3 1435 * If HPageRestoreReserve was set on page, page allocation consumed a
0919e1b6
MK
1436 * reservation. If the page was associated with a subpool, there
1437 * would have been a page reserved in the subpool before allocation
1438 * via hugepage_subpool_get_pages(). Since we are 'restoring' the
6c26d310 1439 * reservation, do not call hugepage_subpool_put_pages() as this will
0919e1b6 1440 * remove the reserved page from the subpool.
1c5ecae3 1441 */
0919e1b6
MK
1442 if (!restore_reserve) {
1443 /*
1444 * A return code of zero implies that the subpool will be
1445 * under its minimum size if the reservation is not restored
1446 * after page is free. Therefore, force restore_reserve
1447 * operation.
1448 */
1449 if (hugepage_subpool_put_pages(spool, 1) == 0)
1450 restore_reserve = true;
1451 }
1c5ecae3 1452
27a85ef1 1453 spin_lock(&hugetlb_lock);
8f251a3d 1454 ClearHPageMigratable(page);
6d76dcf4
AK
1455 hugetlb_cgroup_uncharge_page(hstate_index(h),
1456 pages_per_huge_page(h), page);
08cf9faf
MA
1457 hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
1458 pages_per_huge_page(h), page);
07443a85
JK
1459 if (restore_reserve)
1460 h->resv_huge_pages++;
1461
9157c311 1462 if (HPageTemporary(page)) {
6eb4e88a 1463 remove_hugetlb_page(h, page, false);
1121828a 1464 spin_unlock(&hugetlb_lock);
ab5ac90a
MH
1465 update_and_free_page(h, page);
1466 } else if (h->surplus_huge_pages_node[nid]) {
0edaecfa 1467 /* remove the page from active list */
6eb4e88a 1468 remove_hugetlb_page(h, page, true);
1121828a 1469 spin_unlock(&hugetlb_lock);
a5516438 1470 update_and_free_page(h, page);
7893d1d5 1471 } else {
5d3a551c 1472 arch_clear_hugepage_flags(page);
a5516438 1473 enqueue_huge_page(h, page);
1121828a 1474 spin_unlock(&hugetlb_lock);
7893d1d5 1475 }
27a85ef1
DG
1476}
1477
c77c0a8a
WL
1478/*
1479 * As free_huge_page() can be called from a non-task context, we have
1480 * to defer the actual freeing in a workqueue to prevent potential
1481 * hugetlb_lock deadlock.
1482 *
1483 * free_hpage_workfn() locklessly retrieves the linked list of pages to
1484 * be freed and frees them one-by-one. As the page->mapping pointer is
1485 * going to be cleared in __free_huge_page() anyway, it is reused as the
1486 * llist_node structure of a lockless linked list of huge pages to be freed.
1487 */
1488static LLIST_HEAD(hpage_freelist);
1489
1490static void free_hpage_workfn(struct work_struct *work)
1491{
1492 struct llist_node *node;
1493 struct page *page;
1494
1495 node = llist_del_all(&hpage_freelist);
1496
1497 while (node) {
1498 page = container_of((struct address_space **)node,
1499 struct page, mapping);
1500 node = node->next;
1501 __free_huge_page(page);
1502 }
1503}
1504static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1505
1506void free_huge_page(struct page *page)
1507{
1508 /*
1509 * Defer freeing if in non-task context to avoid hugetlb_lock deadlock.
1510 */
1511 if (!in_task()) {
1512 /*
1513 * Only call schedule_work() if hpage_freelist is previously
1514 * empty. Otherwise, schedule_work() had been called but the
1515 * workfn hasn't retrieved the list yet.
1516 */
1517 if (llist_add((struct llist_node *)&page->mapping,
1518 &hpage_freelist))
1519 schedule_work(&free_hpage_work);
1520 return;
1521 }
1522
1523 __free_huge_page(page);
1524}
1525
a5516438 1526static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
b7ba30c6 1527{
0edaecfa 1528 INIT_LIST_HEAD(&page->lru);
f1e61557 1529 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
ff546117 1530 hugetlb_set_page_subpool(page, NULL);
9dd540e2 1531 set_hugetlb_cgroup(page, NULL);
1adc4d41 1532 set_hugetlb_cgroup_rsvd(page, NULL);
2f37511c 1533 spin_lock(&hugetlb_lock);
a5516438
AK
1534 h->nr_huge_pages++;
1535 h->nr_huge_pages_node[nid]++;
6c037149 1536 ClearHPageFreed(page);
b7ba30c6 1537 spin_unlock(&hugetlb_lock);
b7ba30c6
AK
1538}
1539
d00181b9 1540static void prep_compound_gigantic_page(struct page *page, unsigned int order)
20a0307c
WF
1541{
1542 int i;
1543 int nr_pages = 1 << order;
1544 struct page *p = page + 1;
1545
1546 /* we rely on prep_new_huge_page to set the destructor */
1547 set_compound_order(page, order);
ef5a22be 1548 __ClearPageReserved(page);
de09d31d 1549 __SetPageHead(page);
20a0307c 1550 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
ef5a22be
AA
1551 /*
1552 * For gigantic hugepages allocated through bootmem at
1553 * boot, it's safer to be consistent with the not-gigantic
1554 * hugepages and clear the PG_reserved bit from all tail pages
7c8de358 1555 * too. Otherwise drivers using get_user_pages() to access tail
ef5a22be
AA
1556 * pages may get the reference counting wrong if they see
1557 * PG_reserved set on a tail page (despite the head page not
1558 * having PG_reserved set). Enforcing this consistency between
1559 * head and tail pages allows drivers to optimize away a check
1560 * on the head page when they need know if put_page() is needed
1561 * after get_user_pages().
1562 */
1563 __ClearPageReserved(p);
58a84aa9 1564 set_page_count(p, 0);
1d798ca3 1565 set_compound_head(p, page);
20a0307c 1566 }
b4330afb 1567 atomic_set(compound_mapcount_ptr(page), -1);
5291c09b 1568 atomic_set(compound_pincount_ptr(page), 0);
20a0307c
WF
1569}
1570
7795912c
AM
1571/*
1572 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1573 * transparent huge pages. See the PageTransHuge() documentation for more
1574 * details.
1575 */
20a0307c
WF
1576int PageHuge(struct page *page)
1577{
20a0307c
WF
1578 if (!PageCompound(page))
1579 return 0;
1580
1581 page = compound_head(page);
f1e61557 1582 return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
20a0307c 1583}
43131e14
NH
1584EXPORT_SYMBOL_GPL(PageHuge);
1585
27c73ae7
AA
1586/*
1587 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1588 * normal or transparent huge pages.
1589 */
1590int PageHeadHuge(struct page *page_head)
1591{
27c73ae7
AA
1592 if (!PageHead(page_head))
1593 return 0;
1594
d4af73e3 1595 return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR;
27c73ae7 1596}
27c73ae7 1597
c0d0381a
MK
1598/*
1599 * Find and lock address space (mapping) in write mode.
1600 *
336bf30e
MK
1601 * Upon entry, the page is locked which means that page_mapping() is
1602 * stable. Due to locking order, we can only trylock_write. If we can
1603 * not get the lock, simply return NULL to caller.
c0d0381a
MK
1604 */
1605struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
1606{
336bf30e 1607 struct address_space *mapping = page_mapping(hpage);
c0d0381a 1608
c0d0381a
MK
1609 if (!mapping)
1610 return mapping;
1611
c0d0381a
MK
1612 if (i_mmap_trylock_write(mapping))
1613 return mapping;
1614
336bf30e 1615 return NULL;
c0d0381a
MK
1616}
1617
13d60f4b
ZY
1618pgoff_t __basepage_index(struct page *page)
1619{
1620 struct page *page_head = compound_head(page);
1621 pgoff_t index = page_index(page_head);
1622 unsigned long compound_idx;
1623
1624 if (!PageHuge(page_head))
1625 return page_index(page);
1626
1627 if (compound_order(page_head) >= MAX_ORDER)
1628 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1629 else
1630 compound_idx = page - page_head;
1631
1632 return (index << compound_order(page_head)) + compound_idx;
1633}
1634
0c397dae 1635static struct page *alloc_buddy_huge_page(struct hstate *h,
f60858f9
MK
1636 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1637 nodemask_t *node_alloc_noretry)
1da177e4 1638{
af0fb9df 1639 int order = huge_page_order(h);
1da177e4 1640 struct page *page;
f60858f9 1641 bool alloc_try_hard = true;
f96efd58 1642
f60858f9
MK
1643 /*
1644 * By default we always try hard to allocate the page with
1645 * __GFP_RETRY_MAYFAIL flag. However, if we are allocating pages in
1646 * a loop (to adjust global huge page counts) and previous allocation
1647 * failed, do not continue to try hard on the same node. Use the
1648 * node_alloc_noretry bitmap to manage this state information.
1649 */
1650 if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1651 alloc_try_hard = false;
1652 gfp_mask |= __GFP_COMP|__GFP_NOWARN;
1653 if (alloc_try_hard)
1654 gfp_mask |= __GFP_RETRY_MAYFAIL;
af0fb9df
MH
1655 if (nid == NUMA_NO_NODE)
1656 nid = numa_mem_id();
84172f4b 1657 page = __alloc_pages(gfp_mask, order, nid, nmask);
af0fb9df
MH
1658 if (page)
1659 __count_vm_event(HTLB_BUDDY_PGALLOC);
1660 else
1661 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
63b4613c 1662
f60858f9
MK
1663 /*
1664 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
1665 * indicates an overall state change. Clear bit so that we resume
1666 * normal 'try hard' allocations.
1667 */
1668 if (node_alloc_noretry && page && !alloc_try_hard)
1669 node_clear(nid, *node_alloc_noretry);
1670
1671 /*
1672 * If we tried hard to get a page but failed, set bit so that
1673 * subsequent attempts will not try as hard until there is an
1674 * overall state change.
1675 */
1676 if (node_alloc_noretry && !page && alloc_try_hard)
1677 node_set(nid, *node_alloc_noretry);
1678
63b4613c
NA
1679 return page;
1680}
1681
0c397dae
MH
1682/*
1683 * Common helper to allocate a fresh hugetlb page. All specific allocators
1684 * should use this function to get new hugetlb pages
1685 */
1686static struct page *alloc_fresh_huge_page(struct hstate *h,
f60858f9
MK
1687 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1688 nodemask_t *node_alloc_noretry)
0c397dae
MH
1689{
1690 struct page *page;
1691
1692 if (hstate_is_gigantic(h))
1693 page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1694 else
1695 page = alloc_buddy_huge_page(h, gfp_mask,
f60858f9 1696 nid, nmask, node_alloc_noretry);
0c397dae
MH
1697 if (!page)
1698 return NULL;
1699
1700 if (hstate_is_gigantic(h))
1701 prep_compound_gigantic_page(page, huge_page_order(h));
1702 prep_new_huge_page(h, page, page_to_nid(page));
1703
1704 return page;
1705}
1706
af0fb9df
MH
1707/*
1708 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1709 * manner.
1710 */
f60858f9
MK
1711static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1712 nodemask_t *node_alloc_noretry)
b2261026
JK
1713{
1714 struct page *page;
1715 int nr_nodes, node;
af0fb9df 1716 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
b2261026
JK
1717
1718 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
f60858f9
MK
1719 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
1720 node_alloc_noretry);
af0fb9df 1721 if (page)
b2261026 1722 break;
b2261026
JK
1723 }
1724
af0fb9df
MH
1725 if (!page)
1726 return 0;
b2261026 1727
af0fb9df
MH
1728 put_page(page); /* free it into the hugepage allocator */
1729
1730 return 1;
b2261026
JK
1731}
1732
e8c5c824 1733/*
10c6ec49
MK
1734 * Remove huge page from pool from next node to free. Attempt to keep
1735 * persistent huge pages more or less balanced over allowed nodes.
1736 * This routine only 'removes' the hugetlb page. The caller must make
1737 * an additional call to free the page to low level allocators.
e8c5c824
LS
1738 * Called with hugetlb_lock locked.
1739 */
10c6ec49
MK
1740static struct page *remove_pool_huge_page(struct hstate *h,
1741 nodemask_t *nodes_allowed,
1742 bool acct_surplus)
e8c5c824 1743{
b2261026 1744 int nr_nodes, node;
10c6ec49 1745 struct page *page = NULL;
e8c5c824 1746
b2261026 1747 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
685f3457
LS
1748 /*
1749 * If we're returning unused surplus pages, only examine
1750 * nodes with surplus pages.
1751 */
b2261026
JK
1752 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1753 !list_empty(&h->hugepage_freelists[node])) {
10c6ec49 1754 page = list_entry(h->hugepage_freelists[node].next,
e8c5c824 1755 struct page, lru);
6eb4e88a 1756 remove_hugetlb_page(h, page, acct_surplus);
9a76db09 1757 break;
e8c5c824 1758 }
b2261026 1759 }
e8c5c824 1760
10c6ec49 1761 return page;
e8c5c824
LS
1762}
1763
c8721bbb
NH
1764/*
1765 * Dissolve a given free hugepage into free buddy pages. This function does
faf53def
NH
1766 * nothing for in-use hugepages and non-hugepages.
1767 * This function returns values like below:
1768 *
1769 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
1770 * (allocated or reserved.)
1771 * 0: successfully dissolved free hugepages or the page is not a
1772 * hugepage (considered as already dissolved)
c8721bbb 1773 */
c3114a84 1774int dissolve_free_huge_page(struct page *page)
c8721bbb 1775{
6bc9b564 1776 int rc = -EBUSY;
082d5b6b 1777
7ffddd49 1778retry:
faf53def
NH
1779 /* Not to disrupt normal path by vainly holding hugetlb_lock */
1780 if (!PageHuge(page))
1781 return 0;
1782
c8721bbb 1783 spin_lock(&hugetlb_lock);
faf53def
NH
1784 if (!PageHuge(page)) {
1785 rc = 0;
1786 goto out;
1787 }
1788
1789 if (!page_count(page)) {
2247bb33
GS
1790 struct page *head = compound_head(page);
1791 struct hstate *h = page_hstate(head);
6bc9b564 1792 if (h->free_huge_pages - h->resv_huge_pages == 0)
082d5b6b 1793 goto out;
7ffddd49
MS
1794
1795 /*
1796 * We should make sure that the page is already on the free list
1797 * when it is dissolved.
1798 */
6c037149 1799 if (unlikely(!HPageFreed(head))) {
7ffddd49
MS
1800 spin_unlock(&hugetlb_lock);
1801 cond_resched();
1802
1803 /*
1804 * Theoretically, we should return -EBUSY when we
1805 * encounter this race. In fact, we have a chance
1806 * to successfully dissolve the page if we do a
1807 * retry. Because the race window is quite small.
1808 * If we seize this opportunity, it is an optimization
1809 * for increasing the success rate of dissolving page.
1810 */
1811 goto retry;
1812 }
1813
c3114a84
AK
1814 /*
1815 * Move PageHWPoison flag from head page to the raw error page,
1816 * which makes any subpages rather than the error page reusable.
1817 */
1818 if (PageHWPoison(head) && page != head) {
1819 SetPageHWPoison(page);
1820 ClearPageHWPoison(head);
1821 }
6eb4e88a 1822 remove_hugetlb_page(h, page, false);
c1470b33 1823 h->max_huge_pages--;
1121828a 1824 spin_unlock(&hugetlb_lock);
2247bb33 1825 update_and_free_page(h, head);
1121828a 1826 return 0;
c8721bbb 1827 }
082d5b6b 1828out:
c8721bbb 1829 spin_unlock(&hugetlb_lock);
082d5b6b 1830 return rc;
c8721bbb
NH
1831}
1832
1833/*
1834 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1835 * make specified memory blocks removable from the system.
2247bb33
GS
1836 * Note that this will dissolve a free gigantic hugepage completely, if any
1837 * part of it lies within the given range.
082d5b6b
GS
1838 * Also note that if dissolve_free_huge_page() returns with an error, all
1839 * free hugepages that were dissolved before that error are lost.
c8721bbb 1840 */
082d5b6b 1841int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
c8721bbb 1842{
c8721bbb 1843 unsigned long pfn;
eb03aa00 1844 struct page *page;
082d5b6b 1845 int rc = 0;
c8721bbb 1846
d0177639 1847 if (!hugepages_supported())
082d5b6b 1848 return rc;
d0177639 1849
eb03aa00
GS
1850 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1851 page = pfn_to_page(pfn);
faf53def
NH
1852 rc = dissolve_free_huge_page(page);
1853 if (rc)
1854 break;
eb03aa00 1855 }
082d5b6b
GS
1856
1857 return rc;
c8721bbb
NH
1858}
1859
ab5ac90a
MH
1860/*
1861 * Allocates a fresh surplus page from the page allocator.
1862 */
0c397dae 1863static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
aaf14e40 1864 int nid, nodemask_t *nmask)
7893d1d5 1865{
9980d744 1866 struct page *page = NULL;
7893d1d5 1867
bae7f4ae 1868 if (hstate_is_gigantic(h))
aa888a74
AK
1869 return NULL;
1870
d1c3fb1f 1871 spin_lock(&hugetlb_lock);
9980d744
MH
1872 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
1873 goto out_unlock;
d1c3fb1f
NA
1874 spin_unlock(&hugetlb_lock);
1875
f60858f9 1876 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
9980d744 1877 if (!page)
0c397dae 1878 return NULL;
d1c3fb1f
NA
1879
1880 spin_lock(&hugetlb_lock);
9980d744
MH
1881 /*
1882 * We could have raced with the pool size change.
1883 * Double check that and simply deallocate the new page
1884 * if we would end up overcommiting the surpluses. Abuse
1885 * temporary page to workaround the nasty free_huge_page
1886 * codeflow
1887 */
1888 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
9157c311 1889 SetHPageTemporary(page);
2bf753e6 1890 spin_unlock(&hugetlb_lock);
9980d744 1891 put_page(page);
2bf753e6 1892 return NULL;
9980d744 1893 } else {
9980d744 1894 h->surplus_huge_pages++;
4704dea3 1895 h->surplus_huge_pages_node[page_to_nid(page)]++;
7893d1d5 1896 }
9980d744
MH
1897
1898out_unlock:
d1c3fb1f 1899 spin_unlock(&hugetlb_lock);
7893d1d5
AL
1900
1901 return page;
1902}
1903
bbe88753 1904static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
9a4e9f3b 1905 int nid, nodemask_t *nmask)
ab5ac90a
MH
1906{
1907 struct page *page;
1908
1909 if (hstate_is_gigantic(h))
1910 return NULL;
1911
f60858f9 1912 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
ab5ac90a
MH
1913 if (!page)
1914 return NULL;
1915
1916 /*
1917 * We do not account these pages as surplus because they are only
1918 * temporary and will be released properly on the last reference
1919 */
9157c311 1920 SetHPageTemporary(page);
ab5ac90a
MH
1921
1922 return page;
1923}
1924
099730d6
DH
1925/*
1926 * Use the VMA's mpolicy to allocate a huge page from the buddy.
1927 */
e0ec90ee 1928static
0c397dae 1929struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
099730d6
DH
1930 struct vm_area_struct *vma, unsigned long addr)
1931{
aaf14e40
MH
1932 struct page *page;
1933 struct mempolicy *mpol;
1934 gfp_t gfp_mask = htlb_alloc_mask(h);
1935 int nid;
1936 nodemask_t *nodemask;
1937
1938 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
0c397dae 1939 page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
aaf14e40
MH
1940 mpol_cond_put(mpol);
1941
1942 return page;
099730d6
DH
1943}
1944
ab5ac90a 1945/* page migration callback function */
3e59fcb0 1946struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
d92bbc27 1947 nodemask_t *nmask, gfp_t gfp_mask)
4db9b2ef 1948{
4db9b2ef
MH
1949 spin_lock(&hugetlb_lock);
1950 if (h->free_huge_pages - h->resv_huge_pages > 0) {
3e59fcb0
MH
1951 struct page *page;
1952
1953 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
1954 if (page) {
1955 spin_unlock(&hugetlb_lock);
1956 return page;
4db9b2ef
MH
1957 }
1958 }
1959 spin_unlock(&hugetlb_lock);
4db9b2ef 1960
0c397dae 1961 return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
4db9b2ef
MH
1962}
1963
ebd63723 1964/* mempolicy aware migration callback */
389c8178
MH
1965struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
1966 unsigned long address)
ebd63723
MH
1967{
1968 struct mempolicy *mpol;
1969 nodemask_t *nodemask;
1970 struct page *page;
ebd63723
MH
1971 gfp_t gfp_mask;
1972 int node;
1973
ebd63723
MH
1974 gfp_mask = htlb_alloc_mask(h);
1975 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
d92bbc27 1976 page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask);
ebd63723
MH
1977 mpol_cond_put(mpol);
1978
1979 return page;
1980}
1981
e4e574b7 1982/*
25985edc 1983 * Increase the hugetlb pool such that it can accommodate a reservation
e4e574b7
AL
1984 * of size 'delta'.
1985 */
0a4f3d1b 1986static int gather_surplus_pages(struct hstate *h, long delta)
1b2a1e7b 1987 __must_hold(&hugetlb_lock)
e4e574b7
AL
1988{
1989 struct list_head surplus_list;
1990 struct page *page, *tmp;
0a4f3d1b
LX
1991 int ret;
1992 long i;
1993 long needed, allocated;
28073b02 1994 bool alloc_ok = true;
e4e574b7 1995
a5516438 1996 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
ac09b3a1 1997 if (needed <= 0) {
a5516438 1998 h->resv_huge_pages += delta;
e4e574b7 1999 return 0;
ac09b3a1 2000 }
e4e574b7
AL
2001
2002 allocated = 0;
2003 INIT_LIST_HEAD(&surplus_list);
2004
2005 ret = -ENOMEM;
2006retry:
2007 spin_unlock(&hugetlb_lock);
2008 for (i = 0; i < needed; i++) {
0c397dae 2009 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
aaf14e40 2010 NUMA_NO_NODE, NULL);
28073b02
HD
2011 if (!page) {
2012 alloc_ok = false;
2013 break;
2014 }
e4e574b7 2015 list_add(&page->lru, &surplus_list);
69ed779a 2016 cond_resched();
e4e574b7 2017 }
28073b02 2018 allocated += i;
e4e574b7
AL
2019
2020 /*
2021 * After retaking hugetlb_lock, we need to recalculate 'needed'
2022 * because either resv_huge_pages or free_huge_pages may have changed.
2023 */
2024 spin_lock(&hugetlb_lock);
a5516438
AK
2025 needed = (h->resv_huge_pages + delta) -
2026 (h->free_huge_pages + allocated);
28073b02
HD
2027 if (needed > 0) {
2028 if (alloc_ok)
2029 goto retry;
2030 /*
2031 * We were not able to allocate enough pages to
2032 * satisfy the entire reservation so we free what
2033 * we've allocated so far.
2034 */
2035 goto free;
2036 }
e4e574b7
AL
2037 /*
2038 * The surplus_list now contains _at_least_ the number of extra pages
25985edc 2039 * needed to accommodate the reservation. Add the appropriate number
e4e574b7 2040 * of pages to the hugetlb pool and free the extras back to the buddy
ac09b3a1
AL
2041 * allocator. Commit the entire reservation here to prevent another
2042 * process from stealing the pages as they are added to the pool but
2043 * before they are reserved.
e4e574b7
AL
2044 */
2045 needed += allocated;
a5516438 2046 h->resv_huge_pages += delta;
e4e574b7 2047 ret = 0;
a9869b83 2048
19fc3f0a 2049 /* Free the needed pages to the hugetlb pool */
e4e574b7 2050 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
e558464b
MS
2051 int zeroed;
2052
19fc3f0a
AL
2053 if ((--needed) < 0)
2054 break;
a9869b83
NH
2055 /*
2056 * This page is now managed by the hugetlb allocator and has
2057 * no users -- drop the buddy allocator's reference.
2058 */
e558464b
MS
2059 zeroed = put_page_testzero(page);
2060 VM_BUG_ON_PAGE(!zeroed, page);
a5516438 2061 enqueue_huge_page(h, page);
19fc3f0a 2062 }
28073b02 2063free:
b0365c8d 2064 spin_unlock(&hugetlb_lock);
19fc3f0a
AL
2065
2066 /* Free unnecessary surplus pages to the buddy allocator */
c0d934ba
JK
2067 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
2068 put_page(page);
a9869b83 2069 spin_lock(&hugetlb_lock);
e4e574b7
AL
2070
2071 return ret;
2072}
2073
2074/*
e5bbc8a6
MK
2075 * This routine has two main purposes:
2076 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2077 * in unused_resv_pages. This corresponds to the prior adjustments made
2078 * to the associated reservation map.
2079 * 2) Free any unused surplus pages that may have been allocated to satisfy
2080 * the reservation. As many as unused_resv_pages may be freed.
e4e574b7 2081 */
a5516438
AK
2082static void return_unused_surplus_pages(struct hstate *h,
2083 unsigned long unused_resv_pages)
e4e574b7 2084{
e4e574b7 2085 unsigned long nr_pages;
10c6ec49
MK
2086 struct page *page;
2087 LIST_HEAD(page_list);
2088
2089 /* Uncommit the reservation */
2090 h->resv_huge_pages -= unused_resv_pages;
e4e574b7 2091
aa888a74 2092 /* Cannot return gigantic pages currently */
bae7f4ae 2093 if (hstate_is_gigantic(h))
e5bbc8a6 2094 goto out;
aa888a74 2095
e5bbc8a6
MK
2096 /*
2097 * Part (or even all) of the reservation could have been backed
2098 * by pre-allocated pages. Only free surplus pages.
2099 */
a5516438 2100 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
e4e574b7 2101
685f3457
LS
2102 /*
2103 * We want to release as many surplus pages as possible, spread
9b5e5d0f
LS
2104 * evenly across all nodes with memory. Iterate across these nodes
2105 * until we can no longer free unreserved surplus pages. This occurs
2106 * when the nodes with surplus pages have no free pages.
10c6ec49 2107 * remove_pool_huge_page() will balance the freed pages across the
9b5e5d0f 2108 * on-line nodes with memory and will handle the hstate accounting.
685f3457
LS
2109 */
2110 while (nr_pages--) {
10c6ec49
MK
2111 page = remove_pool_huge_page(h, &node_states[N_MEMORY], 1);
2112 if (!page)
e5bbc8a6 2113 goto out;
10c6ec49
MK
2114
2115 list_add(&page->lru, &page_list);
e4e574b7 2116 }
e5bbc8a6
MK
2117
2118out:
10c6ec49
MK
2119 spin_unlock(&hugetlb_lock);
2120 update_and_free_pages_bulk(h, &page_list);
2121 spin_lock(&hugetlb_lock);
e4e574b7
AL
2122}
2123
5e911373 2124
c37f9fb1 2125/*
feba16e2 2126 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
5e911373 2127 * are used by the huge page allocation routines to manage reservations.
cf3ad20b
MK
2128 *
2129 * vma_needs_reservation is called to determine if the huge page at addr
2130 * within the vma has an associated reservation. If a reservation is
2131 * needed, the value 1 is returned. The caller is then responsible for
2132 * managing the global reservation and subpool usage counts. After
2133 * the huge page has been allocated, vma_commit_reservation is called
feba16e2
MK
2134 * to add the page to the reservation map. If the page allocation fails,
2135 * the reservation must be ended instead of committed. vma_end_reservation
2136 * is called in such cases.
cf3ad20b
MK
2137 *
2138 * In the normal case, vma_commit_reservation returns the same value
2139 * as the preceding vma_needs_reservation call. The only time this
2140 * is not the case is if a reserve map was changed between calls. It
2141 * is the responsibility of the caller to notice the difference and
2142 * take appropriate action.
96b96a96
MK
2143 *
2144 * vma_add_reservation is used in error paths where a reservation must
2145 * be restored when a newly allocated huge page must be freed. It is
2146 * to be called after calling vma_needs_reservation to determine if a
2147 * reservation exists.
c37f9fb1 2148 */
5e911373
MK
2149enum vma_resv_mode {
2150 VMA_NEEDS_RESV,
2151 VMA_COMMIT_RESV,
feba16e2 2152 VMA_END_RESV,
96b96a96 2153 VMA_ADD_RESV,
5e911373 2154};
cf3ad20b
MK
2155static long __vma_reservation_common(struct hstate *h,
2156 struct vm_area_struct *vma, unsigned long addr,
5e911373 2157 enum vma_resv_mode mode)
c37f9fb1 2158{
4e35f483
JK
2159 struct resv_map *resv;
2160 pgoff_t idx;
cf3ad20b 2161 long ret;
0db9d74e 2162 long dummy_out_regions_needed;
c37f9fb1 2163
4e35f483
JK
2164 resv = vma_resv_map(vma);
2165 if (!resv)
84afd99b 2166 return 1;
c37f9fb1 2167
4e35f483 2168 idx = vma_hugecache_offset(h, vma, addr);
5e911373
MK
2169 switch (mode) {
2170 case VMA_NEEDS_RESV:
0db9d74e
MA
2171 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2172 /* We assume that vma_reservation_* routines always operate on
2173 * 1 page, and that adding to resv map a 1 page entry can only
2174 * ever require 1 region.
2175 */
2176 VM_BUG_ON(dummy_out_regions_needed != 1);
5e911373
MK
2177 break;
2178 case VMA_COMMIT_RESV:
075a61d0 2179 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
0db9d74e
MA
2180 /* region_add calls of range 1 should never fail. */
2181 VM_BUG_ON(ret < 0);
5e911373 2182 break;
feba16e2 2183 case VMA_END_RESV:
0db9d74e 2184 region_abort(resv, idx, idx + 1, 1);
5e911373
MK
2185 ret = 0;
2186 break;
96b96a96 2187 case VMA_ADD_RESV:
0db9d74e 2188 if (vma->vm_flags & VM_MAYSHARE) {
075a61d0 2189 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
0db9d74e
MA
2190 /* region_add calls of range 1 should never fail. */
2191 VM_BUG_ON(ret < 0);
2192 } else {
2193 region_abort(resv, idx, idx + 1, 1);
96b96a96
MK
2194 ret = region_del(resv, idx, idx + 1);
2195 }
2196 break;
5e911373
MK
2197 default:
2198 BUG();
2199 }
84afd99b 2200
4e35f483 2201 if (vma->vm_flags & VM_MAYSHARE)
cf3ad20b 2202 return ret;
bf3d12b9
ML
2203 /*
2204 * We know private mapping must have HPAGE_RESV_OWNER set.
2205 *
2206 * In most cases, reserves always exist for private mappings.
2207 * However, a file associated with mapping could have been
2208 * hole punched or truncated after reserves were consumed.
2209 * As subsequent fault on such a range will not use reserves.
2210 * Subtle - The reserve map for private mappings has the
2211 * opposite meaning than that of shared mappings. If NO
2212 * entry is in the reserve map, it means a reservation exists.
2213 * If an entry exists in the reserve map, it means the
2214 * reservation has already been consumed. As a result, the
2215 * return value of this routine is the opposite of the
2216 * value returned from reserve map manipulation routines above.
2217 */
2218 if (ret > 0)
2219 return 0;
2220 if (ret == 0)
2221 return 1;
2222 return ret;
c37f9fb1 2223}
cf3ad20b
MK
2224
2225static long vma_needs_reservation(struct hstate *h,
a5516438 2226 struct vm_area_struct *vma, unsigned long addr)
c37f9fb1 2227{
5e911373 2228 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
cf3ad20b 2229}
84afd99b 2230
cf3ad20b
MK
2231static long vma_commit_reservation(struct hstate *h,
2232 struct vm_area_struct *vma, unsigned long addr)
2233{
5e911373
MK
2234 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2235}
2236
feba16e2 2237static void vma_end_reservation(struct hstate *h,
5e911373
MK
2238 struct vm_area_struct *vma, unsigned long addr)
2239{
feba16e2 2240 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
c37f9fb1
AW
2241}
2242
96b96a96
MK
2243static long vma_add_reservation(struct hstate *h,
2244 struct vm_area_struct *vma, unsigned long addr)
2245{
2246 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2247}
2248
2249/*
2250 * This routine is called to restore a reservation on error paths. In the
2251 * specific error paths, a huge page was allocated (via alloc_huge_page)
2252 * and is about to be freed. If a reservation for the page existed,
d6995da3
MK
2253 * alloc_huge_page would have consumed the reservation and set
2254 * HPageRestoreReserve in the newly allocated page. When the page is freed
2255 * via free_huge_page, the global reservation count will be incremented if
2256 * HPageRestoreReserve is set. However, free_huge_page can not adjust the
2257 * reserve map. Adjust the reserve map here to be consistent with global
2258 * reserve count adjustments to be made by free_huge_page.
96b96a96
MK
2259 */
2260static void restore_reserve_on_error(struct hstate *h,
2261 struct vm_area_struct *vma, unsigned long address,
2262 struct page *page)
2263{
d6995da3 2264 if (unlikely(HPageRestoreReserve(page))) {
96b96a96
MK
2265 long rc = vma_needs_reservation(h, vma, address);
2266
2267 if (unlikely(rc < 0)) {
2268 /*
2269 * Rare out of memory condition in reserve map
d6995da3 2270 * manipulation. Clear HPageRestoreReserve so that
96b96a96
MK
2271 * global reserve count will not be incremented
2272 * by free_huge_page. This will make it appear
2273 * as though the reservation for this page was
2274 * consumed. This may prevent the task from
2275 * faulting in the page at a later time. This
2276 * is better than inconsistent global huge page
2277 * accounting of reserve counts.
2278 */
d6995da3 2279 ClearHPageRestoreReserve(page);
96b96a96
MK
2280 } else if (rc) {
2281 rc = vma_add_reservation(h, vma, address);
2282 if (unlikely(rc < 0))
2283 /*
2284 * See above comment about rare out of
2285 * memory condition.
2286 */
d6995da3 2287 ClearHPageRestoreReserve(page);
96b96a96
MK
2288 } else
2289 vma_end_reservation(h, vma, address);
2290 }
2291}
2292
70c3547e 2293struct page *alloc_huge_page(struct vm_area_struct *vma,
04f2cbe3 2294 unsigned long addr, int avoid_reserve)
1da177e4 2295{
90481622 2296 struct hugepage_subpool *spool = subpool_vma(vma);
a5516438 2297 struct hstate *h = hstate_vma(vma);
348ea204 2298 struct page *page;
d85f69b0
MK
2299 long map_chg, map_commit;
2300 long gbl_chg;
6d76dcf4
AK
2301 int ret, idx;
2302 struct hugetlb_cgroup *h_cg;
08cf9faf 2303 bool deferred_reserve;
a1e78772 2304
6d76dcf4 2305 idx = hstate_index(h);
a1e78772 2306 /*
d85f69b0
MK
2307 * Examine the region/reserve map to determine if the process
2308 * has a reservation for the page to be allocated. A return
2309 * code of zero indicates a reservation exists (no change).
a1e78772 2310 */
d85f69b0
MK
2311 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2312 if (map_chg < 0)
76dcee75 2313 return ERR_PTR(-ENOMEM);
d85f69b0
MK
2314
2315 /*
2316 * Processes that did not create the mapping will have no
2317 * reserves as indicated by the region/reserve map. Check
2318 * that the allocation will not exceed the subpool limit.
2319 * Allocations for MAP_NORESERVE mappings also need to be
2320 * checked against any subpool limit.
2321 */
2322 if (map_chg || avoid_reserve) {
2323 gbl_chg = hugepage_subpool_get_pages(spool, 1);
2324 if (gbl_chg < 0) {
feba16e2 2325 vma_end_reservation(h, vma, addr);
76dcee75 2326 return ERR_PTR(-ENOSPC);
5e911373 2327 }
1da177e4 2328
d85f69b0
MK
2329 /*
2330 * Even though there was no reservation in the region/reserve
2331 * map, there could be reservations associated with the
2332 * subpool that can be used. This would be indicated if the
2333 * return value of hugepage_subpool_get_pages() is zero.
2334 * However, if avoid_reserve is specified we still avoid even
2335 * the subpool reservations.
2336 */
2337 if (avoid_reserve)
2338 gbl_chg = 1;
2339 }
2340
08cf9faf
MA
2341 /* If this allocation is not consuming a reservation, charge it now.
2342 */
6501fe5f 2343 deferred_reserve = map_chg || avoid_reserve;
08cf9faf
MA
2344 if (deferred_reserve) {
2345 ret = hugetlb_cgroup_charge_cgroup_rsvd(
2346 idx, pages_per_huge_page(h), &h_cg);
2347 if (ret)
2348 goto out_subpool_put;
2349 }
2350
6d76dcf4 2351 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
8f34af6f 2352 if (ret)
08cf9faf 2353 goto out_uncharge_cgroup_reservation;
8f34af6f 2354
1da177e4 2355 spin_lock(&hugetlb_lock);
d85f69b0
MK
2356 /*
2357 * glb_chg is passed to indicate whether or not a page must be taken
2358 * from the global free pool (global change). gbl_chg == 0 indicates
2359 * a reservation exists for the allocation.
2360 */
2361 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
81a6fcae 2362 if (!page) {
94ae8ba7 2363 spin_unlock(&hugetlb_lock);
0c397dae 2364 page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
8f34af6f
JZ
2365 if (!page)
2366 goto out_uncharge_cgroup;
a88c7695 2367 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
d6995da3 2368 SetHPageRestoreReserve(page);
a88c7695
NH
2369 h->resv_huge_pages--;
2370 }
79dbb236 2371 spin_lock(&hugetlb_lock);
15a8d68e 2372 list_add(&page->lru, &h->hugepage_activelist);
81a6fcae 2373 /* Fall through */
68842c9b 2374 }
81a6fcae 2375 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
08cf9faf
MA
2376 /* If allocation is not consuming a reservation, also store the
2377 * hugetlb_cgroup pointer on the page.
2378 */
2379 if (deferred_reserve) {
2380 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
2381 h_cg, page);
2382 }
2383
81a6fcae 2384 spin_unlock(&hugetlb_lock);
348ea204 2385
d6995da3 2386 hugetlb_set_page_subpool(page, spool);
90d8b7e6 2387
d85f69b0
MK
2388 map_commit = vma_commit_reservation(h, vma, addr);
2389 if (unlikely(map_chg > map_commit)) {
33039678
MK
2390 /*
2391 * The page was added to the reservation map between
2392 * vma_needs_reservation and vma_commit_reservation.
2393 * This indicates a race with hugetlb_reserve_pages.
2394 * Adjust for the subpool count incremented above AND
2395 * in hugetlb_reserve_pages for the same page. Also,
2396 * the reservation count added in hugetlb_reserve_pages
2397 * no longer applies.
2398 */
2399 long rsv_adjust;
2400
2401 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2402 hugetlb_acct_memory(h, -rsv_adjust);
79aa925b
MK
2403 if (deferred_reserve)
2404 hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
2405 pages_per_huge_page(h), page);
33039678 2406 }
90d8b7e6 2407 return page;
8f34af6f
JZ
2408
2409out_uncharge_cgroup:
2410 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
08cf9faf
MA
2411out_uncharge_cgroup_reservation:
2412 if (deferred_reserve)
2413 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
2414 h_cg);
8f34af6f 2415out_subpool_put:
d85f69b0 2416 if (map_chg || avoid_reserve)
8f34af6f 2417 hugepage_subpool_put_pages(spool, 1);
feba16e2 2418 vma_end_reservation(h, vma, addr);
8f34af6f 2419 return ERR_PTR(-ENOSPC);
b45b5bd6
DG
2420}
2421
e24a1307
AK
2422int alloc_bootmem_huge_page(struct hstate *h)
2423 __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2424int __alloc_bootmem_huge_page(struct hstate *h)
aa888a74
AK
2425{
2426 struct huge_bootmem_page *m;
b2261026 2427 int nr_nodes, node;
aa888a74 2428
b2261026 2429 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
aa888a74
AK
2430 void *addr;
2431
eb31d559 2432 addr = memblock_alloc_try_nid_raw(
8b89a116 2433 huge_page_size(h), huge_page_size(h),
97ad1087 2434 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
aa888a74
AK
2435 if (addr) {
2436 /*
2437 * Use the beginning of the huge page to store the
2438 * huge_bootmem_page struct (until gather_bootmem
2439 * puts them into the mem_map).
2440 */
2441 m = addr;
91f47662 2442 goto found;
aa888a74 2443 }
aa888a74
AK
2444 }
2445 return 0;
2446
2447found:
df994ead 2448 BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
aa888a74 2449 /* Put them into a private list first because mem_map is not up yet */
330d6e48 2450 INIT_LIST_HEAD(&m->list);
aa888a74
AK
2451 list_add(&m->list, &huge_boot_pages);
2452 m->hstate = h;
2453 return 1;
2454}
2455
d00181b9
KS
2456static void __init prep_compound_huge_page(struct page *page,
2457 unsigned int order)
18229df5
AW
2458{
2459 if (unlikely(order > (MAX_ORDER - 1)))
2460 prep_compound_gigantic_page(page, order);
2461 else
2462 prep_compound_page(page, order);
2463}
2464
aa888a74
AK
2465/* Put bootmem huge pages into the standard lists after mem_map is up */
2466static void __init gather_bootmem_prealloc(void)
2467{
2468 struct huge_bootmem_page *m;
2469
2470 list_for_each_entry(m, &huge_boot_pages, list) {
40d18ebf 2471 struct page *page = virt_to_page(m);
aa888a74 2472 struct hstate *h = m->hstate;
ee8f248d 2473
aa888a74 2474 WARN_ON(page_count(page) != 1);
c78a7f36 2475 prep_compound_huge_page(page, huge_page_order(h));
ef5a22be 2476 WARN_ON(PageReserved(page));
aa888a74 2477 prep_new_huge_page(h, page, page_to_nid(page));
af0fb9df
MH
2478 put_page(page); /* free it into the hugepage allocator */
2479
b0320c7b
RA
2480 /*
2481 * If we had gigantic hugepages allocated at boot time, we need
2482 * to restore the 'stolen' pages to totalram_pages in order to
2483 * fix confusing memory reports from free(1) and another
2484 * side-effects, like CommitLimit going negative.
2485 */
bae7f4ae 2486 if (hstate_is_gigantic(h))
c78a7f36 2487 adjust_managed_page_count(page, pages_per_huge_page(h));
520495fe 2488 cond_resched();
aa888a74
AK
2489 }
2490}
2491
8faa8b07 2492static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1da177e4
LT
2493{
2494 unsigned long i;
f60858f9
MK
2495 nodemask_t *node_alloc_noretry;
2496
2497 if (!hstate_is_gigantic(h)) {
2498 /*
2499 * Bit mask controlling how hard we retry per-node allocations.
2500 * Ignore errors as lower level routines can deal with
2501 * node_alloc_noretry == NULL. If this kmalloc fails at boot
2502 * time, we are likely in bigger trouble.
2503 */
2504 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
2505 GFP_KERNEL);
2506 } else {
2507 /* allocations done at boot time */
2508 node_alloc_noretry = NULL;
2509 }
2510
2511 /* bit mask controlling how hard we retry per-node allocations */
2512 if (node_alloc_noretry)
2513 nodes_clear(*node_alloc_noretry);
a5516438 2514
e5ff2159 2515 for (i = 0; i < h->max_huge_pages; ++i) {
bae7f4ae 2516 if (hstate_is_gigantic(h)) {
dbda8fea 2517 if (hugetlb_cma_size) {
cf11e85f 2518 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
7ecc9565 2519 goto free;
cf11e85f 2520 }
aa888a74
AK
2521 if (!alloc_bootmem_huge_page(h))
2522 break;
0c397dae 2523 } else if (!alloc_pool_huge_page(h,
f60858f9
MK
2524 &node_states[N_MEMORY],
2525 node_alloc_noretry))
1da177e4 2526 break;
69ed779a 2527 cond_resched();
1da177e4 2528 }
d715cf80
LH
2529 if (i < h->max_huge_pages) {
2530 char buf[32];
2531
c6247f72 2532 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
d715cf80
LH
2533 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n",
2534 h->max_huge_pages, buf, i);
2535 h->max_huge_pages = i;
2536 }
7ecc9565 2537free:
f60858f9 2538 kfree(node_alloc_noretry);
e5ff2159
AK
2539}
2540
2541static void __init hugetlb_init_hstates(void)
2542{
2543 struct hstate *h;
2544
2545 for_each_hstate(h) {
641844f5
NH
2546 if (minimum_order > huge_page_order(h))
2547 minimum_order = huge_page_order(h);
2548
8faa8b07 2549 /* oversize hugepages were init'ed in early boot */
bae7f4ae 2550 if (!hstate_is_gigantic(h))
8faa8b07 2551 hugetlb_hstate_alloc_pages(h);
e5ff2159 2552 }
641844f5 2553 VM_BUG_ON(minimum_order == UINT_MAX);
e5ff2159
AK
2554}
2555
2556static void __init report_hugepages(void)
2557{
2558 struct hstate *h;
2559
2560 for_each_hstate(h) {
4abd32db 2561 char buf[32];
c6247f72
MW
2562
2563 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
ffb22af5 2564 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
c6247f72 2565 buf, h->free_huge_pages);
e5ff2159
AK
2566 }
2567}
2568
1da177e4 2569#ifdef CONFIG_HIGHMEM
6ae11b27
LS
2570static void try_to_free_low(struct hstate *h, unsigned long count,
2571 nodemask_t *nodes_allowed)
1da177e4 2572{
4415cc8d 2573 int i;
1121828a 2574 LIST_HEAD(page_list);
4415cc8d 2575
bae7f4ae 2576 if (hstate_is_gigantic(h))
aa888a74
AK
2577 return;
2578
1121828a
MK
2579 /*
2580 * Collect pages to be freed on a list, and free after dropping lock
2581 */
6ae11b27 2582 for_each_node_mask(i, *nodes_allowed) {
10c6ec49 2583 struct page *page, *next;
a5516438
AK
2584 struct list_head *freel = &h->hugepage_freelists[i];
2585 list_for_each_entry_safe(page, next, freel, lru) {
2586 if (count >= h->nr_huge_pages)
1121828a 2587 goto out;
1da177e4
LT
2588 if (PageHighMem(page))
2589 continue;
6eb4e88a 2590 remove_hugetlb_page(h, page, false);
1121828a 2591 list_add(&page->lru, &page_list);
1da177e4
LT
2592 }
2593 }
1121828a
MK
2594
2595out:
2596 spin_unlock(&hugetlb_lock);
10c6ec49 2597 update_and_free_pages_bulk(h, &page_list);
1121828a 2598 spin_lock(&hugetlb_lock);
1da177e4
LT
2599}
2600#else
6ae11b27
LS
2601static inline void try_to_free_low(struct hstate *h, unsigned long count,
2602 nodemask_t *nodes_allowed)
1da177e4
LT
2603{
2604}
2605#endif
2606
20a0307c
WF
2607/*
2608 * Increment or decrement surplus_huge_pages. Keep node-specific counters
2609 * balanced by operating on them in a round-robin fashion.
2610 * Returns 1 if an adjustment was made.
2611 */
6ae11b27
LS
2612static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2613 int delta)
20a0307c 2614{
b2261026 2615 int nr_nodes, node;
20a0307c
WF
2616
2617 VM_BUG_ON(delta != -1 && delta != 1);
20a0307c 2618
b2261026
JK
2619 if (delta < 0) {
2620 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2621 if (h->surplus_huge_pages_node[node])
2622 goto found;
e8c5c824 2623 }
b2261026
JK
2624 } else {
2625 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2626 if (h->surplus_huge_pages_node[node] <
2627 h->nr_huge_pages_node[node])
2628 goto found;
e8c5c824 2629 }
b2261026
JK
2630 }
2631 return 0;
20a0307c 2632
b2261026
JK
2633found:
2634 h->surplus_huge_pages += delta;
2635 h->surplus_huge_pages_node[node] += delta;
2636 return 1;
20a0307c
WF
2637}
2638
a5516438 2639#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
fd875dca 2640static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
4eb0716e 2641 nodemask_t *nodes_allowed)
1da177e4 2642{
7893d1d5 2643 unsigned long min_count, ret;
10c6ec49
MK
2644 struct page *page;
2645 LIST_HEAD(page_list);
f60858f9
MK
2646 NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
2647
2648 /*
2649 * Bit mask controlling how hard we retry per-node allocations.
2650 * If we can not allocate the bit mask, do not attempt to allocate
2651 * the requested huge pages.
2652 */
2653 if (node_alloc_noretry)
2654 nodes_clear(*node_alloc_noretry);
2655 else
2656 return -ENOMEM;
1da177e4 2657
29383967
MK
2658 /*
2659 * resize_lock mutex prevents concurrent adjustments to number of
2660 * pages in hstate via the proc/sysfs interfaces.
2661 */
2662 mutex_lock(&h->resize_lock);
4eb0716e
AG
2663 spin_lock(&hugetlb_lock);
2664
fd875dca
MK
2665 /*
2666 * Check for a node specific request.
2667 * Changing node specific huge page count may require a corresponding
2668 * change to the global count. In any case, the passed node mask
2669 * (nodes_allowed) will restrict alloc/free to the specified node.
2670 */
2671 if (nid != NUMA_NO_NODE) {
2672 unsigned long old_count = count;
2673
2674 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2675 /*
2676 * User may have specified a large count value which caused the
2677 * above calculation to overflow. In this case, they wanted
2678 * to allocate as many huge pages as possible. Set count to
2679 * largest possible value to align with their intention.
2680 */
2681 if (count < old_count)
2682 count = ULONG_MAX;
2683 }
2684
4eb0716e
AG
2685 /*
2686 * Gigantic pages runtime allocation depend on the capability for large
2687 * page range allocation.
2688 * If the system does not provide this feature, return an error when
2689 * the user tries to allocate gigantic pages but let the user free the
2690 * boottime allocated gigantic pages.
2691 */
2692 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
2693 if (count > persistent_huge_pages(h)) {
2694 spin_unlock(&hugetlb_lock);
29383967 2695 mutex_unlock(&h->resize_lock);
f60858f9 2696 NODEMASK_FREE(node_alloc_noretry);
4eb0716e
AG
2697 return -EINVAL;
2698 }
2699 /* Fall through to decrease pool */
2700 }
aa888a74 2701
7893d1d5
AL
2702 /*
2703 * Increase the pool size
2704 * First take pages out of surplus state. Then make up the
2705 * remaining difference by allocating fresh huge pages.
d1c3fb1f 2706 *
0c397dae 2707 * We might race with alloc_surplus_huge_page() here and be unable
d1c3fb1f
NA
2708 * to convert a surplus huge page to a normal huge page. That is
2709 * not critical, though, it just means the overall size of the
2710 * pool might be one hugepage larger than it needs to be, but
2711 * within all the constraints specified by the sysctls.
7893d1d5 2712 */
a5516438 2713 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
6ae11b27 2714 if (!adjust_pool_surplus(h, nodes_allowed, -1))
7893d1d5
AL
2715 break;
2716 }
2717
a5516438 2718 while (count > persistent_huge_pages(h)) {
7893d1d5
AL
2719 /*
2720 * If this allocation races such that we no longer need the
2721 * page, free_huge_page will handle it by freeing the page
2722 * and reducing the surplus.
2723 */
2724 spin_unlock(&hugetlb_lock);
649920c6
JH
2725
2726 /* yield cpu to avoid soft lockup */
2727 cond_resched();
2728
f60858f9
MK
2729 ret = alloc_pool_huge_page(h, nodes_allowed,
2730 node_alloc_noretry);
7893d1d5
AL
2731 spin_lock(&hugetlb_lock);
2732 if (!ret)
2733 goto out;
2734
536240f2
MG
2735 /* Bail for signals. Probably ctrl-c from user */
2736 if (signal_pending(current))
2737 goto out;
7893d1d5 2738 }
7893d1d5
AL
2739
2740 /*
2741 * Decrease the pool size
2742 * First return free pages to the buddy allocator (being careful
2743 * to keep enough around to satisfy reservations). Then place
2744 * pages into surplus state as needed so the pool will shrink
2745 * to the desired size as pages become free.
d1c3fb1f
NA
2746 *
2747 * By placing pages into the surplus state independent of the
2748 * overcommit value, we are allowing the surplus pool size to
2749 * exceed overcommit. There are few sane options here. Since
0c397dae 2750 * alloc_surplus_huge_page() is checking the global counter,
d1c3fb1f
NA
2751 * though, we'll note that we're not allowed to exceed surplus
2752 * and won't grow the pool anywhere else. Not until one of the
2753 * sysctls are changed, or the surplus pages go out of use.
7893d1d5 2754 */
a5516438 2755 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
6b0c880d 2756 min_count = max(count, min_count);
6ae11b27 2757 try_to_free_low(h, min_count, nodes_allowed);
10c6ec49
MK
2758
2759 /*
2760 * Collect pages to be removed on list without dropping lock
2761 */
a5516438 2762 while (min_count < persistent_huge_pages(h)) {
10c6ec49
MK
2763 page = remove_pool_huge_page(h, nodes_allowed, 0);
2764 if (!page)
1da177e4 2765 break;
10c6ec49
MK
2766
2767 list_add(&page->lru, &page_list);
1da177e4 2768 }
10c6ec49
MK
2769 /* free the pages after dropping lock */
2770 spin_unlock(&hugetlb_lock);
2771 update_and_free_pages_bulk(h, &page_list);
2772 spin_lock(&hugetlb_lock);
2773
a5516438 2774 while (count < persistent_huge_pages(h)) {
6ae11b27 2775 if (!adjust_pool_surplus(h, nodes_allowed, 1))
7893d1d5
AL
2776 break;
2777 }
2778out:
4eb0716e 2779 h->max_huge_pages = persistent_huge_pages(h);
1da177e4 2780 spin_unlock(&hugetlb_lock);
29383967 2781 mutex_unlock(&h->resize_lock);
4eb0716e 2782
f60858f9
MK
2783 NODEMASK_FREE(node_alloc_noretry);
2784
4eb0716e 2785 return 0;
1da177e4
LT
2786}
2787
a3437870
NA
2788#define HSTATE_ATTR_RO(_name) \
2789 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2790
2791#define HSTATE_ATTR(_name) \
2792 static struct kobj_attribute _name##_attr = \
2793 __ATTR(_name, 0644, _name##_show, _name##_store)
2794
2795static struct kobject *hugepages_kobj;
2796static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2797
9a305230
LS
2798static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2799
2800static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
a3437870
NA
2801{
2802 int i;
9a305230 2803
a3437870 2804 for (i = 0; i < HUGE_MAX_HSTATE; i++)
9a305230
LS
2805 if (hstate_kobjs[i] == kobj) {
2806 if (nidp)
2807 *nidp = NUMA_NO_NODE;
a3437870 2808 return &hstates[i];
9a305230
LS
2809 }
2810
2811 return kobj_to_node_hstate(kobj, nidp);
a3437870
NA
2812}
2813
06808b08 2814static ssize_t nr_hugepages_show_common(struct kobject *kobj,
a3437870
NA
2815 struct kobj_attribute *attr, char *buf)
2816{
9a305230
LS
2817 struct hstate *h;
2818 unsigned long nr_huge_pages;
2819 int nid;
2820
2821 h = kobj_to_hstate(kobj, &nid);
2822 if (nid == NUMA_NO_NODE)
2823 nr_huge_pages = h->nr_huge_pages;
2824 else
2825 nr_huge_pages = h->nr_huge_pages_node[nid];
2826
ae7a927d 2827 return sysfs_emit(buf, "%lu\n", nr_huge_pages);
a3437870 2828}
adbe8726 2829
238d3c13
DR
2830static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2831 struct hstate *h, int nid,
2832 unsigned long count, size_t len)
a3437870
NA
2833{
2834 int err;
2d0adf7e 2835 nodemask_t nodes_allowed, *n_mask;
a3437870 2836
2d0adf7e
OS
2837 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2838 return -EINVAL;
adbe8726 2839
9a305230
LS
2840 if (nid == NUMA_NO_NODE) {
2841 /*
2842 * global hstate attribute
2843 */
2844 if (!(obey_mempolicy &&
2d0adf7e
OS
2845 init_nodemask_of_mempolicy(&nodes_allowed)))
2846 n_mask = &node_states[N_MEMORY];
2847 else
2848 n_mask = &nodes_allowed;
2849 } else {
9a305230 2850 /*
fd875dca
MK
2851 * Node specific request. count adjustment happens in
2852 * set_max_huge_pages() after acquiring hugetlb_lock.
9a305230 2853 */
2d0adf7e
OS
2854 init_nodemask_of_node(&nodes_allowed, nid);
2855 n_mask = &nodes_allowed;
fd875dca 2856 }
9a305230 2857
2d0adf7e 2858 err = set_max_huge_pages(h, count, nid, n_mask);
06808b08 2859
4eb0716e 2860 return err ? err : len;
06808b08
LS
2861}
2862
238d3c13
DR
2863static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2864 struct kobject *kobj, const char *buf,
2865 size_t len)
2866{
2867 struct hstate *h;
2868 unsigned long count;
2869 int nid;
2870 int err;
2871
2872 err = kstrtoul(buf, 10, &count);
2873 if (err)
2874 return err;
2875
2876 h = kobj_to_hstate(kobj, &nid);
2877 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2878}
2879
06808b08
LS
2880static ssize_t nr_hugepages_show(struct kobject *kobj,
2881 struct kobj_attribute *attr, char *buf)
2882{
2883 return nr_hugepages_show_common(kobj, attr, buf);
2884}
2885
2886static ssize_t nr_hugepages_store(struct kobject *kobj,
2887 struct kobj_attribute *attr, const char *buf, size_t len)
2888{
238d3c13 2889 return nr_hugepages_store_common(false, kobj, buf, len);
a3437870
NA
2890}
2891HSTATE_ATTR(nr_hugepages);
2892
06808b08
LS
2893#ifdef CONFIG_NUMA
2894
2895/*
2896 * hstate attribute for optionally mempolicy-based constraint on persistent
2897 * huge page alloc/free.
2898 */
2899static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
ae7a927d
JP
2900 struct kobj_attribute *attr,
2901 char *buf)
06808b08
LS
2902{
2903 return nr_hugepages_show_common(kobj, attr, buf);
2904}
2905
2906static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2907 struct kobj_attribute *attr, const char *buf, size_t len)
2908{
238d3c13 2909 return nr_hugepages_store_common(true, kobj, buf, len);
06808b08
LS
2910}
2911HSTATE_ATTR(nr_hugepages_mempolicy);
2912#endif
2913
2914
a3437870
NA
2915static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2916 struct kobj_attribute *attr, char *buf)
2917{
9a305230 2918 struct hstate *h = kobj_to_hstate(kobj, NULL);
ae7a927d 2919 return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
a3437870 2920}
adbe8726 2921
a3437870
NA
2922static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2923 struct kobj_attribute *attr, const char *buf, size_t count)
2924{
2925 int err;
2926 unsigned long input;
9a305230 2927 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870 2928
bae7f4ae 2929 if (hstate_is_gigantic(h))
adbe8726
EM
2930 return -EINVAL;
2931
3dbb95f7 2932 err = kstrtoul(buf, 10, &input);
a3437870 2933 if (err)
73ae31e5 2934 return err;
a3437870
NA
2935
2936 spin_lock(&hugetlb_lock);
2937 h->nr_overcommit_huge_pages = input;
2938 spin_unlock(&hugetlb_lock);
2939
2940 return count;
2941}
2942HSTATE_ATTR(nr_overcommit_hugepages);
2943
2944static ssize_t free_hugepages_show(struct kobject *kobj,
2945 struct kobj_attribute *attr, char *buf)
2946{
9a305230
LS
2947 struct hstate *h;
2948 unsigned long free_huge_pages;
2949 int nid;
2950
2951 h = kobj_to_hstate(kobj, &nid);
2952 if (nid == NUMA_NO_NODE)
2953 free_huge_pages = h->free_huge_pages;
2954 else
2955 free_huge_pages = h->free_huge_pages_node[nid];
2956
ae7a927d 2957 return sysfs_emit(buf, "%lu\n", free_huge_pages);
a3437870
NA
2958}
2959HSTATE_ATTR_RO(free_hugepages);
2960
2961static ssize_t resv_hugepages_show(struct kobject *kobj,
2962 struct kobj_attribute *attr, char *buf)
2963{
9a305230 2964 struct hstate *h = kobj_to_hstate(kobj, NULL);
ae7a927d 2965 return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
a3437870
NA
2966}
2967HSTATE_ATTR_RO(resv_hugepages);
2968
2969static ssize_t surplus_hugepages_show(struct kobject *kobj,
2970 struct kobj_attribute *attr, char *buf)
2971{
9a305230
LS
2972 struct hstate *h;
2973 unsigned long surplus_huge_pages;
2974 int nid;
2975
2976 h = kobj_to_hstate(kobj, &nid);
2977 if (nid == NUMA_NO_NODE)
2978 surplus_huge_pages = h->surplus_huge_pages;
2979 else
2980 surplus_huge_pages = h->surplus_huge_pages_node[nid];
2981
ae7a927d 2982 return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
a3437870
NA
2983}
2984HSTATE_ATTR_RO(surplus_hugepages);
2985
2986static struct attribute *hstate_attrs[] = {
2987 &nr_hugepages_attr.attr,
2988 &nr_overcommit_hugepages_attr.attr,
2989 &free_hugepages_attr.attr,
2990 &resv_hugepages_attr.attr,
2991 &surplus_hugepages_attr.attr,
06808b08
LS
2992#ifdef CONFIG_NUMA
2993 &nr_hugepages_mempolicy_attr.attr,
2994#endif
a3437870
NA
2995 NULL,
2996};
2997
67e5ed96 2998static const struct attribute_group hstate_attr_group = {
a3437870
NA
2999 .attrs = hstate_attrs,
3000};
3001
094e9539
JM
3002static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
3003 struct kobject **hstate_kobjs,
67e5ed96 3004 const struct attribute_group *hstate_attr_group)
a3437870
NA
3005{
3006 int retval;
972dc4de 3007 int hi = hstate_index(h);
a3437870 3008
9a305230
LS
3009 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
3010 if (!hstate_kobjs[hi])
a3437870
NA
3011 return -ENOMEM;
3012
9a305230 3013 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
cc2205a6 3014 if (retval) {
9a305230 3015 kobject_put(hstate_kobjs[hi]);
cc2205a6
ML
3016 hstate_kobjs[hi] = NULL;
3017 }
a3437870
NA
3018
3019 return retval;
3020}
3021
3022static void __init hugetlb_sysfs_init(void)
3023{
3024 struct hstate *h;
3025 int err;
3026
3027 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
3028 if (!hugepages_kobj)
3029 return;
3030
3031 for_each_hstate(h) {
9a305230
LS
3032 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
3033 hstate_kobjs, &hstate_attr_group);
a3437870 3034 if (err)
282f4214 3035 pr_err("HugeTLB: Unable to add hstate %s", h->name);
a3437870
NA
3036 }
3037}
3038
9a305230
LS
3039#ifdef CONFIG_NUMA
3040
3041/*
3042 * node_hstate/s - associate per node hstate attributes, via their kobjects,
10fbcf4c
KS
3043 * with node devices in node_devices[] using a parallel array. The array
3044 * index of a node device or _hstate == node id.
3045 * This is here to avoid any static dependency of the node device driver, in
9a305230
LS
3046 * the base kernel, on the hugetlb module.
3047 */
3048struct node_hstate {
3049 struct kobject *hugepages_kobj;
3050 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3051};
b4e289a6 3052static struct node_hstate node_hstates[MAX_NUMNODES];
9a305230
LS
3053
3054/*
10fbcf4c 3055 * A subset of global hstate attributes for node devices
9a305230
LS
3056 */
3057static struct attribute *per_node_hstate_attrs[] = {
3058 &nr_hugepages_attr.attr,
3059 &free_hugepages_attr.attr,
3060 &surplus_hugepages_attr.attr,
3061 NULL,
3062};
3063
67e5ed96 3064static const struct attribute_group per_node_hstate_attr_group = {
9a305230
LS
3065 .attrs = per_node_hstate_attrs,
3066};
3067
3068/*
10fbcf4c 3069 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
9a305230
LS
3070 * Returns node id via non-NULL nidp.
3071 */
3072static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3073{
3074 int nid;
3075
3076 for (nid = 0; nid < nr_node_ids; nid++) {
3077 struct node_hstate *nhs = &node_hstates[nid];
3078 int i;
3079 for (i = 0; i < HUGE_MAX_HSTATE; i++)
3080 if (nhs->hstate_kobjs[i] == kobj) {
3081 if (nidp)
3082 *nidp = nid;
3083 return &hstates[i];
3084 }
3085 }
3086
3087 BUG();
3088 return NULL;
3089}
3090
3091/*
10fbcf4c 3092 * Unregister hstate attributes from a single node device.
9a305230
LS
3093 * No-op if no hstate attributes attached.
3094 */
3cd8b44f 3095static void hugetlb_unregister_node(struct node *node)
9a305230
LS
3096{
3097 struct hstate *h;
10fbcf4c 3098 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
3099
3100 if (!nhs->hugepages_kobj)
9b5e5d0f 3101 return; /* no hstate attributes */
9a305230 3102
972dc4de
AK
3103 for_each_hstate(h) {
3104 int idx = hstate_index(h);
3105 if (nhs->hstate_kobjs[idx]) {
3106 kobject_put(nhs->hstate_kobjs[idx]);
3107 nhs->hstate_kobjs[idx] = NULL;
9a305230 3108 }
972dc4de 3109 }
9a305230
LS
3110
3111 kobject_put(nhs->hugepages_kobj);
3112 nhs->hugepages_kobj = NULL;
3113}
3114
9a305230
LS
3115
3116/*
10fbcf4c 3117 * Register hstate attributes for a single node device.
9a305230
LS
3118 * No-op if attributes already registered.
3119 */
3cd8b44f 3120static void hugetlb_register_node(struct node *node)
9a305230
LS
3121{
3122 struct hstate *h;
10fbcf4c 3123 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
3124 int err;
3125
3126 if (nhs->hugepages_kobj)
3127 return; /* already allocated */
3128
3129 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
10fbcf4c 3130 &node->dev.kobj);
9a305230
LS
3131 if (!nhs->hugepages_kobj)
3132 return;
3133
3134 for_each_hstate(h) {
3135 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
3136 nhs->hstate_kobjs,
3137 &per_node_hstate_attr_group);
3138 if (err) {
282f4214 3139 pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
ffb22af5 3140 h->name, node->dev.id);
9a305230
LS
3141 hugetlb_unregister_node(node);
3142 break;
3143 }
3144 }
3145}
3146
3147/*
9b5e5d0f 3148 * hugetlb init time: register hstate attributes for all registered node
10fbcf4c
KS
3149 * devices of nodes that have memory. All on-line nodes should have
3150 * registered their associated device by this time.
9a305230 3151 */
7d9ca000 3152static void __init hugetlb_register_all_nodes(void)
9a305230
LS
3153{
3154 int nid;
3155
8cebfcd0 3156 for_each_node_state(nid, N_MEMORY) {
8732794b 3157 struct node *node = node_devices[nid];
10fbcf4c 3158 if (node->dev.id == nid)
9a305230
LS
3159 hugetlb_register_node(node);
3160 }
3161
3162 /*
10fbcf4c 3163 * Let the node device driver know we're here so it can
9a305230
LS
3164 * [un]register hstate attributes on node hotplug.
3165 */
3166 register_hugetlbfs_with_node(hugetlb_register_node,
3167 hugetlb_unregister_node);
3168}
3169#else /* !CONFIG_NUMA */
3170
3171static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3172{
3173 BUG();
3174 if (nidp)
3175 *nidp = -1;
3176 return NULL;
3177}
3178
9a305230
LS
3179static void hugetlb_register_all_nodes(void) { }
3180
3181#endif
3182
a3437870
NA
3183static int __init hugetlb_init(void)
3184{
8382d914
DB
3185 int i;
3186
d6995da3
MK
3187 BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
3188 __NR_HPAGEFLAGS);
3189
c2833a5b
MK
3190 if (!hugepages_supported()) {
3191 if (hugetlb_max_hstate || default_hstate_max_huge_pages)
3192 pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
0ef89d25 3193 return 0;
c2833a5b 3194 }
a3437870 3195
282f4214
MK
3196 /*
3197 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists. Some
3198 * architectures depend on setup being done here.
3199 */
3200 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
3201 if (!parsed_default_hugepagesz) {
3202 /*
3203 * If we did not parse a default huge page size, set
3204 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
3205 * number of huge pages for this default size was implicitly
3206 * specified, set that here as well.
3207 * Note that the implicit setting will overwrite an explicit
3208 * setting. A warning will be printed in this case.
3209 */
3210 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
3211 if (default_hstate_max_huge_pages) {
3212 if (default_hstate.max_huge_pages) {
3213 char buf[32];
3214
3215 string_get_size(huge_page_size(&default_hstate),
3216 1, STRING_UNITS_2, buf, 32);
3217 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
3218 default_hstate.max_huge_pages, buf);
3219 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
3220 default_hstate_max_huge_pages);
3221 }
3222 default_hstate.max_huge_pages =
3223 default_hstate_max_huge_pages;
d715cf80 3224 }
f8b74815 3225 }
a3437870 3226
cf11e85f 3227 hugetlb_cma_check();
a3437870 3228 hugetlb_init_hstates();
aa888a74 3229 gather_bootmem_prealloc();
a3437870
NA
3230 report_hugepages();
3231
3232 hugetlb_sysfs_init();
9a305230 3233 hugetlb_register_all_nodes();
7179e7bf 3234 hugetlb_cgroup_file_init();
9a305230 3235
8382d914
DB
3236#ifdef CONFIG_SMP
3237 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
3238#else
3239 num_fault_mutexes = 1;
3240#endif
c672c7f2 3241 hugetlb_fault_mutex_table =
6da2ec56
KC
3242 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
3243 GFP_KERNEL);
c672c7f2 3244 BUG_ON(!hugetlb_fault_mutex_table);
8382d914
DB
3245
3246 for (i = 0; i < num_fault_mutexes; i++)
c672c7f2 3247 mutex_init(&hugetlb_fault_mutex_table[i]);
a3437870
NA
3248 return 0;
3249}
3e89e1c5 3250subsys_initcall(hugetlb_init);
a3437870 3251
ae94da89
MK
3252/* Overwritten by architectures with more huge page sizes */
3253bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
9fee021d 3254{
ae94da89 3255 return size == HPAGE_SIZE;
9fee021d
VT
3256}
3257
d00181b9 3258void __init hugetlb_add_hstate(unsigned int order)
a3437870
NA
3259{
3260 struct hstate *h;
8faa8b07
AK
3261 unsigned long i;
3262
a3437870 3263 if (size_to_hstate(PAGE_SIZE << order)) {
a3437870
NA
3264 return;
3265 }
47d38344 3266 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
a3437870 3267 BUG_ON(order == 0);
47d38344 3268 h = &hstates[hugetlb_max_hstate++];
29383967 3269 mutex_init(&h->resize_lock);
a3437870 3270 h->order = order;
aca78307 3271 h->mask = ~(huge_page_size(h) - 1);
8faa8b07
AK
3272 for (i = 0; i < MAX_NUMNODES; ++i)
3273 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
0edaecfa 3274 INIT_LIST_HEAD(&h->hugepage_activelist);
54f18d35
AM
3275 h->next_nid_to_alloc = first_memory_node;
3276 h->next_nid_to_free = first_memory_node;
a3437870
NA
3277 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
3278 huge_page_size(h)/1024);
8faa8b07 3279
a3437870
NA
3280 parsed_hstate = h;
3281}
3282
282f4214
MK
3283/*
3284 * hugepages command line processing
3285 * hugepages normally follows a valid hugepagsz or default_hugepagsz
3286 * specification. If not, ignore the hugepages value. hugepages can also
3287 * be the first huge page command line option in which case it implicitly
3288 * specifies the number of huge pages for the default size.
3289 */
3290static int __init hugepages_setup(char *s)
a3437870
NA
3291{
3292 unsigned long *mhp;
8faa8b07 3293 static unsigned long *last_mhp;
a3437870 3294
9fee021d 3295 if (!parsed_valid_hugepagesz) {
282f4214 3296 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
9fee021d 3297 parsed_valid_hugepagesz = true;
282f4214 3298 return 0;
9fee021d 3299 }
282f4214 3300
a3437870 3301 /*
282f4214
MK
3302 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
3303 * yet, so this hugepages= parameter goes to the "default hstate".
3304 * Otherwise, it goes with the previously parsed hugepagesz or
3305 * default_hugepagesz.
a3437870 3306 */
9fee021d 3307 else if (!hugetlb_max_hstate)
a3437870
NA
3308 mhp = &default_hstate_max_huge_pages;
3309 else
3310 mhp = &parsed_hstate->max_huge_pages;
3311
8faa8b07 3312 if (mhp == last_mhp) {
282f4214
MK
3313 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
3314 return 0;
8faa8b07
AK
3315 }
3316
a3437870
NA
3317 if (sscanf(s, "%lu", mhp) <= 0)
3318 *mhp = 0;
3319
8faa8b07
AK
3320 /*
3321 * Global state is always initialized later in hugetlb_init.
04adbc3f 3322 * But we need to allocate gigantic hstates here early to still
8faa8b07
AK
3323 * use the bootmem allocator.
3324 */
04adbc3f 3325 if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
8faa8b07
AK
3326 hugetlb_hstate_alloc_pages(parsed_hstate);
3327
3328 last_mhp = mhp;
3329
a3437870
NA
3330 return 1;
3331}
282f4214 3332__setup("hugepages=", hugepages_setup);
e11bfbfc 3333
282f4214
MK
3334/*
3335 * hugepagesz command line processing
3336 * A specific huge page size can only be specified once with hugepagesz.
3337 * hugepagesz is followed by hugepages on the command line. The global
3338 * variable 'parsed_valid_hugepagesz' is used to determine if prior
3339 * hugepagesz argument was valid.
3340 */
359f2544 3341static int __init hugepagesz_setup(char *s)
e11bfbfc 3342{
359f2544 3343 unsigned long size;
282f4214
MK
3344 struct hstate *h;
3345
3346 parsed_valid_hugepagesz = false;
359f2544
MK
3347 size = (unsigned long)memparse(s, NULL);
3348
3349 if (!arch_hugetlb_valid_size(size)) {
282f4214 3350 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
359f2544
MK
3351 return 0;
3352 }
3353
282f4214
MK
3354 h = size_to_hstate(size);
3355 if (h) {
3356 /*
3357 * hstate for this size already exists. This is normally
3358 * an error, but is allowed if the existing hstate is the
3359 * default hstate. More specifically, it is only allowed if
3360 * the number of huge pages for the default hstate was not
3361 * previously specified.
3362 */
3363 if (!parsed_default_hugepagesz || h != &default_hstate ||
3364 default_hstate.max_huge_pages) {
3365 pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
3366 return 0;
3367 }
3368
3369 /*
3370 * No need to call hugetlb_add_hstate() as hstate already
3371 * exists. But, do set parsed_hstate so that a following
3372 * hugepages= parameter will be applied to this hstate.
3373 */
3374 parsed_hstate = h;
3375 parsed_valid_hugepagesz = true;
3376 return 1;
38237830
MK
3377 }
3378
359f2544 3379 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
282f4214 3380 parsed_valid_hugepagesz = true;
e11bfbfc
NP
3381 return 1;
3382}
359f2544
MK
3383__setup("hugepagesz=", hugepagesz_setup);
3384
282f4214
MK
3385/*
3386 * default_hugepagesz command line input
3387 * Only one instance of default_hugepagesz allowed on command line.
3388 */
ae94da89 3389static int __init default_hugepagesz_setup(char *s)
e11bfbfc 3390{
ae94da89
MK
3391 unsigned long size;
3392
282f4214 3393 parsed_valid_hugepagesz = false;
282f4214
MK
3394 if (parsed_default_hugepagesz) {
3395 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
3396 return 0;
3397 }
3398
ae94da89
MK
3399 size = (unsigned long)memparse(s, NULL);
3400
3401 if (!arch_hugetlb_valid_size(size)) {
282f4214 3402 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
ae94da89
MK
3403 return 0;
3404 }
3405
282f4214
MK
3406 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3407 parsed_valid_hugepagesz = true;
3408 parsed_default_hugepagesz = true;
3409 default_hstate_idx = hstate_index(size_to_hstate(size));
3410
3411 /*
3412 * The number of default huge pages (for this size) could have been
3413 * specified as the first hugetlb parameter: hugepages=X. If so,
3414 * then default_hstate_max_huge_pages is set. If the default huge
3415 * page size is gigantic (>= MAX_ORDER), then the pages must be
3416 * allocated here from bootmem allocator.
3417 */
3418 if (default_hstate_max_huge_pages) {
3419 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
3420 if (hstate_is_gigantic(&default_hstate))
3421 hugetlb_hstate_alloc_pages(&default_hstate);
3422 default_hstate_max_huge_pages = 0;
3423 }
3424
e11bfbfc
NP
3425 return 1;
3426}
ae94da89 3427__setup("default_hugepagesz=", default_hugepagesz_setup);
a3437870 3428
8ca39e68 3429static unsigned int allowed_mems_nr(struct hstate *h)
8a213460
NA
3430{
3431 int node;
3432 unsigned int nr = 0;
8ca39e68
MS
3433 nodemask_t *mpol_allowed;
3434 unsigned int *array = h->free_huge_pages_node;
3435 gfp_t gfp_mask = htlb_alloc_mask(h);
3436
3437 mpol_allowed = policy_nodemask_current(gfp_mask);
8a213460 3438
8ca39e68 3439 for_each_node_mask(node, cpuset_current_mems_allowed) {
c93b0a99 3440 if (!mpol_allowed || node_isset(node, *mpol_allowed))
8ca39e68
MS
3441 nr += array[node];
3442 }
8a213460
NA
3443
3444 return nr;
3445}
3446
3447#ifdef CONFIG_SYSCTL
17743798
MS
3448static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
3449 void *buffer, size_t *length,
3450 loff_t *ppos, unsigned long *out)
3451{
3452 struct ctl_table dup_table;
3453
3454 /*
3455 * In order to avoid races with __do_proc_doulongvec_minmax(), we
3456 * can duplicate the @table and alter the duplicate of it.
3457 */
3458 dup_table = *table;
3459 dup_table.data = out;
3460
3461 return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
3462}
3463
06808b08
LS
3464static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
3465 struct ctl_table *table, int write,
32927393 3466 void *buffer, size_t *length, loff_t *ppos)
1da177e4 3467{
e5ff2159 3468 struct hstate *h = &default_hstate;
238d3c13 3469 unsigned long tmp = h->max_huge_pages;
08d4a246 3470 int ret;
e5ff2159 3471
457c1b27 3472 if (!hugepages_supported())
86613628 3473 return -EOPNOTSUPP;
457c1b27 3474
17743798
MS
3475 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3476 &tmp);
08d4a246
MH
3477 if (ret)
3478 goto out;
e5ff2159 3479
238d3c13
DR
3480 if (write)
3481 ret = __nr_hugepages_store_common(obey_mempolicy, h,
3482 NUMA_NO_NODE, tmp, *length);
08d4a246
MH
3483out:
3484 return ret;
1da177e4 3485}
396faf03 3486
06808b08 3487int hugetlb_sysctl_handler(struct ctl_table *table, int write,
32927393 3488 void *buffer, size_t *length, loff_t *ppos)
06808b08
LS
3489{
3490
3491 return hugetlb_sysctl_handler_common(false, table, write,
3492 buffer, length, ppos);
3493}
3494
3495#ifdef CONFIG_NUMA
3496int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
32927393 3497 void *buffer, size_t *length, loff_t *ppos)
06808b08
LS
3498{
3499 return hugetlb_sysctl_handler_common(true, table, write,
3500 buffer, length, ppos);
3501}
3502#endif /* CONFIG_NUMA */
3503
a3d0c6aa 3504int hugetlb_overcommit_handler(struct ctl_table *table, int write,
32927393 3505 void *buffer, size_t *length, loff_t *ppos)
a3d0c6aa 3506{
a5516438 3507 struct hstate *h = &default_hstate;
e5ff2159 3508 unsigned long tmp;
08d4a246 3509 int ret;
e5ff2159 3510
457c1b27 3511 if (!hugepages_supported())
86613628 3512 return -EOPNOTSUPP;
457c1b27 3513
c033a93c 3514 tmp = h->nr_overcommit_huge_pages;
e5ff2159 3515
bae7f4ae 3516 if (write && hstate_is_gigantic(h))
adbe8726
EM
3517 return -EINVAL;
3518
17743798
MS
3519 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3520 &tmp);
08d4a246
MH
3521 if (ret)
3522 goto out;
e5ff2159
AK
3523
3524 if (write) {
3525 spin_lock(&hugetlb_lock);
3526 h->nr_overcommit_huge_pages = tmp;
3527 spin_unlock(&hugetlb_lock);
3528 }
08d4a246
MH
3529out:
3530 return ret;
a3d0c6aa
NA
3531}
3532
1da177e4
LT
3533#endif /* CONFIG_SYSCTL */
3534
e1759c21 3535void hugetlb_report_meminfo(struct seq_file *m)
1da177e4 3536{
fcb2b0c5
RG
3537 struct hstate *h;
3538 unsigned long total = 0;
3539
457c1b27
NA
3540 if (!hugepages_supported())
3541 return;
fcb2b0c5
RG
3542
3543 for_each_hstate(h) {
3544 unsigned long count = h->nr_huge_pages;
3545
aca78307 3546 total += huge_page_size(h) * count;
fcb2b0c5
RG
3547
3548 if (h == &default_hstate)
3549 seq_printf(m,
3550 "HugePages_Total: %5lu\n"
3551 "HugePages_Free: %5lu\n"
3552 "HugePages_Rsvd: %5lu\n"
3553 "HugePages_Surp: %5lu\n"
3554 "Hugepagesize: %8lu kB\n",
3555 count,
3556 h->free_huge_pages,
3557 h->resv_huge_pages,
3558 h->surplus_huge_pages,
aca78307 3559 huge_page_size(h) / SZ_1K);
fcb2b0c5
RG
3560 }
3561
aca78307 3562 seq_printf(m, "Hugetlb: %8lu kB\n", total / SZ_1K);
1da177e4
LT
3563}
3564
7981593b 3565int hugetlb_report_node_meminfo(char *buf, int len, int nid)
1da177e4 3566{
a5516438 3567 struct hstate *h = &default_hstate;
7981593b 3568
457c1b27
NA
3569 if (!hugepages_supported())
3570 return 0;
7981593b
JP
3571
3572 return sysfs_emit_at(buf, len,
3573 "Node %d HugePages_Total: %5u\n"
3574 "Node %d HugePages_Free: %5u\n"
3575 "Node %d HugePages_Surp: %5u\n",
3576 nid, h->nr_huge_pages_node[nid],
3577 nid, h->free_huge_pages_node[nid],
3578 nid, h->surplus_huge_pages_node[nid]);
1da177e4
LT
3579}
3580
949f7ec5
DR
3581void hugetlb_show_meminfo(void)
3582{
3583 struct hstate *h;
3584 int nid;
3585
457c1b27
NA
3586 if (!hugepages_supported())
3587 return;
3588
949f7ec5
DR
3589 for_each_node_state(nid, N_MEMORY)
3590 for_each_hstate(h)
3591 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3592 nid,
3593 h->nr_huge_pages_node[nid],
3594 h->free_huge_pages_node[nid],
3595 h->surplus_huge_pages_node[nid],
aca78307 3596 huge_page_size(h) / SZ_1K);
949f7ec5
DR
3597}
3598
5d317b2b
NH
3599void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3600{
3601 seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3602 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3603}
3604
1da177e4
LT
3605/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3606unsigned long hugetlb_total_pages(void)
3607{
d0028588
WL
3608 struct hstate *h;
3609 unsigned long nr_total_pages = 0;
3610
3611 for_each_hstate(h)
3612 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3613 return nr_total_pages;
1da177e4 3614}
1da177e4 3615
a5516438 3616static int hugetlb_acct_memory(struct hstate *h, long delta)
fc1b8a73
MG
3617{
3618 int ret = -ENOMEM;
3619
0aa7f354
ML
3620 if (!delta)
3621 return 0;
3622
fc1b8a73
MG
3623 spin_lock(&hugetlb_lock);
3624 /*
3625 * When cpuset is configured, it breaks the strict hugetlb page
3626 * reservation as the accounting is done on a global variable. Such
3627 * reservation is completely rubbish in the presence of cpuset because
3628 * the reservation is not checked against page availability for the
3629 * current cpuset. Application can still potentially OOM'ed by kernel
3630 * with lack of free htlb page in cpuset that the task is in.
3631 * Attempt to enforce strict accounting with cpuset is almost
3632 * impossible (or too ugly) because cpuset is too fluid that
3633 * task or memory node can be dynamically moved between cpusets.
3634 *
3635 * The change of semantics for shared hugetlb mapping with cpuset is
3636 * undesirable. However, in order to preserve some of the semantics,
3637 * we fall back to check against current free page availability as
3638 * a best attempt and hopefully to minimize the impact of changing
3639 * semantics that cpuset has.
8ca39e68
MS
3640 *
3641 * Apart from cpuset, we also have memory policy mechanism that
3642 * also determines from which node the kernel will allocate memory
3643 * in a NUMA system. So similar to cpuset, we also should consider
3644 * the memory policy of the current task. Similar to the description
3645 * above.
fc1b8a73
MG
3646 */
3647 if (delta > 0) {
a5516438 3648 if (gather_surplus_pages(h, delta) < 0)
fc1b8a73
MG
3649 goto out;
3650
8ca39e68 3651 if (delta > allowed_mems_nr(h)) {
a5516438 3652 return_unused_surplus_pages(h, delta);
fc1b8a73
MG
3653 goto out;
3654 }
3655 }
3656
3657 ret = 0;
3658 if (delta < 0)
a5516438 3659 return_unused_surplus_pages(h, (unsigned long) -delta);
fc1b8a73
MG
3660
3661out:
3662 spin_unlock(&hugetlb_lock);
3663 return ret;
3664}
3665
84afd99b
AW
3666static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3667{
f522c3ac 3668 struct resv_map *resv = vma_resv_map(vma);
84afd99b
AW
3669
3670 /*
3671 * This new VMA should share its siblings reservation map if present.
3672 * The VMA will only ever have a valid reservation map pointer where
3673 * it is being copied for another still existing VMA. As that VMA
25985edc 3674 * has a reference to the reservation map it cannot disappear until
84afd99b
AW
3675 * after this open call completes. It is therefore safe to take a
3676 * new reference here without additional locking.
3677 */
4e35f483 3678 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
f522c3ac 3679 kref_get(&resv->refs);
84afd99b
AW
3680}
3681
a1e78772
MG
3682static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3683{
a5516438 3684 struct hstate *h = hstate_vma(vma);
f522c3ac 3685 struct resv_map *resv = vma_resv_map(vma);
90481622 3686 struct hugepage_subpool *spool = subpool_vma(vma);
4e35f483 3687 unsigned long reserve, start, end;
1c5ecae3 3688 long gbl_reserve;
84afd99b 3689
4e35f483
JK
3690 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3691 return;
84afd99b 3692
4e35f483
JK
3693 start = vma_hugecache_offset(h, vma, vma->vm_start);
3694 end = vma_hugecache_offset(h, vma, vma->vm_end);
84afd99b 3695
4e35f483 3696 reserve = (end - start) - region_count(resv, start, end);
e9fe92ae 3697 hugetlb_cgroup_uncharge_counter(resv, start, end);
4e35f483 3698 if (reserve) {
1c5ecae3
MK
3699 /*
3700 * Decrement reserve counts. The global reserve count may be
3701 * adjusted if the subpool has a minimum size.
3702 */
3703 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3704 hugetlb_acct_memory(h, -gbl_reserve);
84afd99b 3705 }
e9fe92ae
MA
3706
3707 kref_put(&resv->refs, resv_map_release);
a1e78772
MG
3708}
3709
31383c68
DW
3710static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
3711{
3712 if (addr & ~(huge_page_mask(hstate_vma(vma))))
3713 return -EINVAL;
3714 return 0;
3715}
3716
05ea8860
DW
3717static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
3718{
aca78307 3719 return huge_page_size(hstate_vma(vma));
05ea8860
DW
3720}
3721
1da177e4
LT
3722/*
3723 * We cannot handle pagefaults against hugetlb pages at all. They cause
3724 * handle_mm_fault() to try to instantiate regular-sized pages in the
6c26d310 3725 * hugepage VMA. do_page_fault() is supposed to trap this, so BUG is we get
1da177e4
LT
3726 * this far.
3727 */
b3ec9f33 3728static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
1da177e4
LT
3729{
3730 BUG();
d0217ac0 3731 return 0;
1da177e4
LT
3732}
3733
eec3636a
JC
3734/*
3735 * When a new function is introduced to vm_operations_struct and added
3736 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
3737 * This is because under System V memory model, mappings created via
3738 * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
3739 * their original vm_ops are overwritten with shm_vm_ops.
3740 */
f0f37e2f 3741const struct vm_operations_struct hugetlb_vm_ops = {
d0217ac0 3742 .fault = hugetlb_vm_op_fault,
84afd99b 3743 .open = hugetlb_vm_op_open,
a1e78772 3744 .close = hugetlb_vm_op_close,
dd3b614f 3745 .may_split = hugetlb_vm_op_split,
05ea8860 3746 .pagesize = hugetlb_vm_op_pagesize,
1da177e4
LT
3747};
3748
1e8f889b
DG
3749static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3750 int writable)
63551ae0
DG
3751{
3752 pte_t entry;
3753
1e8f889b 3754 if (writable) {
106c992a
GS
3755 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3756 vma->vm_page_prot)));
63551ae0 3757 } else {
106c992a
GS
3758 entry = huge_pte_wrprotect(mk_huge_pte(page,
3759 vma->vm_page_prot));
63551ae0
DG
3760 }
3761 entry = pte_mkyoung(entry);
3762 entry = pte_mkhuge(entry);
d9ed9faa 3763 entry = arch_make_huge_pte(entry, vma, page, writable);
63551ae0
DG
3764
3765 return entry;
3766}
3767
1e8f889b
DG
3768static void set_huge_ptep_writable(struct vm_area_struct *vma,
3769 unsigned long address, pte_t *ptep)
3770{
3771 pte_t entry;
3772
106c992a 3773 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
32f84528 3774 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4b3073e1 3775 update_mmu_cache(vma, address, ptep);
1e8f889b
DG
3776}
3777
d5ed7444 3778bool is_hugetlb_entry_migration(pte_t pte)
4a705fef
NH
3779{
3780 swp_entry_t swp;
3781
3782 if (huge_pte_none(pte) || pte_present(pte))
d5ed7444 3783 return false;
4a705fef 3784 swp = pte_to_swp_entry(pte);
d79d176a 3785 if (is_migration_entry(swp))
d5ed7444 3786 return true;
4a705fef 3787 else
d5ed7444 3788 return false;
4a705fef
NH
3789}
3790
3e5c3600 3791static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
4a705fef
NH
3792{
3793 swp_entry_t swp;
3794
3795 if (huge_pte_none(pte) || pte_present(pte))
3e5c3600 3796 return false;
4a705fef 3797 swp = pte_to_swp_entry(pte);
d79d176a 3798 if (is_hwpoison_entry(swp))
3e5c3600 3799 return true;
4a705fef 3800 else
3e5c3600 3801 return false;
4a705fef 3802}
1e8f889b 3803
4eae4efa
PX
3804static void
3805hugetlb_install_page(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
3806 struct page *new_page)
3807{
3808 __SetPageUptodate(new_page);
3809 set_huge_pte_at(vma->vm_mm, addr, ptep, make_huge_pte(vma, new_page, 1));
3810 hugepage_add_new_anon_rmap(new_page, vma, addr);
3811 hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
3812 ClearHPageRestoreReserve(new_page);
3813 SetHPageMigratable(new_page);
3814}
3815
63551ae0
DG
3816int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3817 struct vm_area_struct *vma)
3818{
5e41540c 3819 pte_t *src_pte, *dst_pte, entry, dst_entry;
63551ae0 3820 struct page *ptepage;
1c59827d 3821 unsigned long addr;
ca6eb14d 3822 bool cow = is_cow_mapping(vma->vm_flags);
a5516438
AK
3823 struct hstate *h = hstate_vma(vma);
3824 unsigned long sz = huge_page_size(h);
4eae4efa 3825 unsigned long npages = pages_per_huge_page(h);
c0d0381a 3826 struct address_space *mapping = vma->vm_file->f_mapping;
ac46d4f3 3827 struct mmu_notifier_range range;
e8569dd2 3828 int ret = 0;
1e8f889b 3829
ac46d4f3 3830 if (cow) {
7269f999 3831 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src,
6f4f13e8 3832 vma->vm_start,
ac46d4f3
JG
3833 vma->vm_end);
3834 mmu_notifier_invalidate_range_start(&range);
c0d0381a
MK
3835 } else {
3836 /*
3837 * For shared mappings i_mmap_rwsem must be held to call
3838 * huge_pte_alloc, otherwise the returned ptep could go
3839 * away if part of a shared pmd and another thread calls
3840 * huge_pmd_unshare.
3841 */
3842 i_mmap_lock_read(mapping);
ac46d4f3 3843 }
e8569dd2 3844
a5516438 3845 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
cb900f41 3846 spinlock_t *src_ptl, *dst_ptl;
7868a208 3847 src_pte = huge_pte_offset(src, addr, sz);
c74df32c
HD
3848 if (!src_pte)
3849 continue;
aec44e0f 3850 dst_pte = huge_pte_alloc(dst, vma, addr, sz);
e8569dd2
AS
3851 if (!dst_pte) {
3852 ret = -ENOMEM;
3853 break;
3854 }
c5c99429 3855
5e41540c
MK
3856 /*
3857 * If the pagetables are shared don't copy or take references.
3858 * dst_pte == src_pte is the common case of src/dest sharing.
3859 *
3860 * However, src could have 'unshared' and dst shares with
3861 * another vma. If dst_pte !none, this implies sharing.
3862 * Check here before taking page table lock, and once again
3863 * after taking the lock below.
3864 */
3865 dst_entry = huge_ptep_get(dst_pte);
3866 if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
c5c99429
LW
3867 continue;
3868
cb900f41
KS
3869 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3870 src_ptl = huge_pte_lockptr(h, src, src_pte);
3871 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4a705fef 3872 entry = huge_ptep_get(src_pte);
5e41540c 3873 dst_entry = huge_ptep_get(dst_pte);
4eae4efa 3874again:
5e41540c
MK
3875 if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
3876 /*
3877 * Skip if src entry none. Also, skip in the
3878 * unlikely case dst entry !none as this implies
3879 * sharing with another vma.
3880 */
4a705fef
NH
3881 ;
3882 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3883 is_hugetlb_entry_hwpoisoned(entry))) {
3884 swp_entry_t swp_entry = pte_to_swp_entry(entry);
3885
3886 if (is_write_migration_entry(swp_entry) && cow) {
3887 /*
3888 * COW mappings require pages in both
3889 * parent and child to be set to read.
3890 */
3891 make_migration_entry_read(&swp_entry);
3892 entry = swp_entry_to_pte(swp_entry);
e5251fd4
PA
3893 set_huge_swap_pte_at(src, addr, src_pte,
3894 entry, sz);
4a705fef 3895 }
e5251fd4 3896 set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
4a705fef 3897 } else {
4eae4efa
PX
3898 entry = huge_ptep_get(src_pte);
3899 ptepage = pte_page(entry);
3900 get_page(ptepage);
3901
3902 /*
3903 * This is a rare case where we see pinned hugetlb
3904 * pages while they're prone to COW. We need to do the
3905 * COW earlier during fork.
3906 *
3907 * When pre-allocating the page or copying data, we
3908 * need to be without the pgtable locks since we could
3909 * sleep during the process.
3910 */
3911 if (unlikely(page_needs_cow_for_dma(vma, ptepage))) {
3912 pte_t src_pte_old = entry;
3913 struct page *new;
3914
3915 spin_unlock(src_ptl);
3916 spin_unlock(dst_ptl);
3917 /* Do not use reserve as it's private owned */
3918 new = alloc_huge_page(vma, addr, 1);
3919 if (IS_ERR(new)) {
3920 put_page(ptepage);
3921 ret = PTR_ERR(new);
3922 break;
3923 }
3924 copy_user_huge_page(new, ptepage, addr, vma,
3925 npages);
3926 put_page(ptepage);
3927
3928 /* Install the new huge page if src pte stable */
3929 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3930 src_ptl = huge_pte_lockptr(h, src, src_pte);
3931 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3932 entry = huge_ptep_get(src_pte);
3933 if (!pte_same(src_pte_old, entry)) {
3934 put_page(new);
3935 /* dst_entry won't change as in child */
3936 goto again;
3937 }
3938 hugetlb_install_page(vma, dst_pte, addr, new);
3939 spin_unlock(src_ptl);
3940 spin_unlock(dst_ptl);
3941 continue;
3942 }
3943
34ee645e 3944 if (cow) {
0f10851e
JG
3945 /*
3946 * No need to notify as we are downgrading page
3947 * table protection not changing it to point
3948 * to a new page.
3949 *
ad56b738 3950 * See Documentation/vm/mmu_notifier.rst
0f10851e 3951 */
7f2e9525 3952 huge_ptep_set_wrprotect(src, addr, src_pte);
34ee645e 3953 }
4eae4efa 3954
53f9263b 3955 page_dup_rmap(ptepage, true);
1c59827d 3956 set_huge_pte_at(dst, addr, dst_pte, entry);
4eae4efa 3957 hugetlb_count_add(npages, dst);
1c59827d 3958 }
cb900f41
KS
3959 spin_unlock(src_ptl);
3960 spin_unlock(dst_ptl);
63551ae0 3961 }
63551ae0 3962
e8569dd2 3963 if (cow)
ac46d4f3 3964 mmu_notifier_invalidate_range_end(&range);
c0d0381a
MK
3965 else
3966 i_mmap_unlock_read(mapping);
e8569dd2
AS
3967
3968 return ret;
63551ae0
DG
3969}
3970
24669e58
AK
3971void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3972 unsigned long start, unsigned long end,
3973 struct page *ref_page)
63551ae0
DG
3974{
3975 struct mm_struct *mm = vma->vm_mm;
3976 unsigned long address;
c7546f8f 3977 pte_t *ptep;
63551ae0 3978 pte_t pte;
cb900f41 3979 spinlock_t *ptl;
63551ae0 3980 struct page *page;
a5516438
AK
3981 struct hstate *h = hstate_vma(vma);
3982 unsigned long sz = huge_page_size(h);
ac46d4f3 3983 struct mmu_notifier_range range;
a5516438 3984
63551ae0 3985 WARN_ON(!is_vm_hugetlb_page(vma));
a5516438
AK
3986 BUG_ON(start & ~huge_page_mask(h));
3987 BUG_ON(end & ~huge_page_mask(h));
63551ae0 3988
07e32661
AK
3989 /*
3990 * This is a hugetlb vma, all the pte entries should point
3991 * to huge page.
3992 */
ed6a7935 3993 tlb_change_page_size(tlb, sz);
24669e58 3994 tlb_start_vma(tlb, vma);
dff11abe
MK
3995
3996 /*
3997 * If sharing possible, alert mmu notifiers of worst case.
3998 */
6f4f13e8
JG
3999 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
4000 end);
ac46d4f3
JG
4001 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
4002 mmu_notifier_invalidate_range_start(&range);
569f48b8 4003 address = start;
569f48b8 4004 for (; address < end; address += sz) {
7868a208 4005 ptep = huge_pte_offset(mm, address, sz);
4c887265 4006 if (!ptep)
c7546f8f
DG
4007 continue;
4008
cb900f41 4009 ptl = huge_pte_lock(h, mm, ptep);
34ae204f 4010 if (huge_pmd_unshare(mm, vma, &address, ptep)) {
31d49da5 4011 spin_unlock(ptl);
dff11abe
MK
4012 /*
4013 * We just unmapped a page of PMDs by clearing a PUD.
4014 * The caller's TLB flush range should cover this area.
4015 */
31d49da5
AK
4016 continue;
4017 }
39dde65c 4018
6629326b 4019 pte = huge_ptep_get(ptep);
31d49da5
AK
4020 if (huge_pte_none(pte)) {
4021 spin_unlock(ptl);
4022 continue;
4023 }
6629326b
HD
4024
4025 /*
9fbc1f63
NH
4026 * Migrating hugepage or HWPoisoned hugepage is already
4027 * unmapped and its refcount is dropped, so just clear pte here.
6629326b 4028 */
9fbc1f63 4029 if (unlikely(!pte_present(pte))) {
9386fac3 4030 huge_pte_clear(mm, address, ptep, sz);
31d49da5
AK
4031 spin_unlock(ptl);
4032 continue;
8c4894c6 4033 }
6629326b
HD
4034
4035 page = pte_page(pte);
04f2cbe3
MG
4036 /*
4037 * If a reference page is supplied, it is because a specific
4038 * page is being unmapped, not a range. Ensure the page we
4039 * are about to unmap is the actual page of interest.
4040 */
4041 if (ref_page) {
31d49da5
AK
4042 if (page != ref_page) {
4043 spin_unlock(ptl);
4044 continue;
4045 }
04f2cbe3
MG
4046 /*
4047 * Mark the VMA as having unmapped its page so that
4048 * future faults in this VMA will fail rather than
4049 * looking like data was lost
4050 */
4051 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
4052 }
4053
c7546f8f 4054 pte = huge_ptep_get_and_clear(mm, address, ptep);
b528e4b6 4055 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
106c992a 4056 if (huge_pte_dirty(pte))
6649a386 4057 set_page_dirty(page);
9e81130b 4058
5d317b2b 4059 hugetlb_count_sub(pages_per_huge_page(h), mm);
d281ee61 4060 page_remove_rmap(page, true);
31d49da5 4061
cb900f41 4062 spin_unlock(ptl);
e77b0852 4063 tlb_remove_page_size(tlb, page, huge_page_size(h));
31d49da5
AK
4064 /*
4065 * Bail out after unmapping reference page if supplied
4066 */
4067 if (ref_page)
4068 break;
fe1668ae 4069 }
ac46d4f3 4070 mmu_notifier_invalidate_range_end(&range);
24669e58 4071 tlb_end_vma(tlb, vma);
1da177e4 4072}
63551ae0 4073
d833352a
MG
4074void __unmap_hugepage_range_final(struct mmu_gather *tlb,
4075 struct vm_area_struct *vma, unsigned long start,
4076 unsigned long end, struct page *ref_page)
4077{
4078 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
4079
4080 /*
4081 * Clear this flag so that x86's huge_pmd_share page_table_shareable
4082 * test will fail on a vma being torn down, and not grab a page table
4083 * on its way out. We're lucky that the flag has such an appropriate
4084 * name, and can in fact be safely cleared here. We could clear it
4085 * before the __unmap_hugepage_range above, but all that's necessary
c8c06efa 4086 * is to clear it before releasing the i_mmap_rwsem. This works
d833352a 4087 * because in the context this is called, the VMA is about to be
c8c06efa 4088 * destroyed and the i_mmap_rwsem is held.
d833352a
MG
4089 */
4090 vma->vm_flags &= ~VM_MAYSHARE;
4091}
4092
502717f4 4093void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
04f2cbe3 4094 unsigned long end, struct page *ref_page)
502717f4 4095{
24669e58 4096 struct mmu_gather tlb;
dff11abe 4097
a72afd87 4098 tlb_gather_mmu(&tlb, vma->vm_mm);
24669e58 4099 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
ae8eba8b 4100 tlb_finish_mmu(&tlb);
502717f4
CK
4101}
4102
04f2cbe3
MG
4103/*
4104 * This is called when the original mapper is failing to COW a MAP_PRIVATE
578b7725 4105 * mapping it owns the reserve page for. The intention is to unmap the page
04f2cbe3
MG
4106 * from other VMAs and let the children be SIGKILLed if they are faulting the
4107 * same region.
4108 */
2f4612af
DB
4109static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
4110 struct page *page, unsigned long address)
04f2cbe3 4111{
7526674d 4112 struct hstate *h = hstate_vma(vma);
04f2cbe3
MG
4113 struct vm_area_struct *iter_vma;
4114 struct address_space *mapping;
04f2cbe3
MG
4115 pgoff_t pgoff;
4116
4117 /*
4118 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
4119 * from page cache lookup which is in HPAGE_SIZE units.
4120 */
7526674d 4121 address = address & huge_page_mask(h);
36e4f20a
MH
4122 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
4123 vma->vm_pgoff;
93c76a3d 4124 mapping = vma->vm_file->f_mapping;
04f2cbe3 4125
4eb2b1dc
MG
4126 /*
4127 * Take the mapping lock for the duration of the table walk. As
4128 * this mapping should be shared between all the VMAs,
4129 * __unmap_hugepage_range() is called as the lock is already held
4130 */
83cde9e8 4131 i_mmap_lock_write(mapping);
6b2dbba8 4132 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
04f2cbe3
MG
4133 /* Do not unmap the current VMA */
4134 if (iter_vma == vma)
4135 continue;
4136
2f84a899
MG
4137 /*
4138 * Shared VMAs have their own reserves and do not affect
4139 * MAP_PRIVATE accounting but it is possible that a shared
4140 * VMA is using the same page so check and skip such VMAs.
4141 */
4142 if (iter_vma->vm_flags & VM_MAYSHARE)
4143 continue;
4144
04f2cbe3
MG
4145 /*
4146 * Unmap the page from other VMAs without their own reserves.
4147 * They get marked to be SIGKILLed if they fault in these
4148 * areas. This is because a future no-page fault on this VMA
4149 * could insert a zeroed page instead of the data existing
4150 * from the time of fork. This would look like data corruption
4151 */
4152 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
24669e58
AK
4153 unmap_hugepage_range(iter_vma, address,
4154 address + huge_page_size(h), page);
04f2cbe3 4155 }
83cde9e8 4156 i_mmap_unlock_write(mapping);
04f2cbe3
MG
4157}
4158
0fe6e20b
NH
4159/*
4160 * Hugetlb_cow() should be called with page lock of the original hugepage held.
ef009b25
MH
4161 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
4162 * cannot race with other handlers or page migration.
4163 * Keep the pte_same checks anyway to make transition from the mutex easier.
0fe6e20b 4164 */
2b740303 4165static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
974e6d66 4166 unsigned long address, pte_t *ptep,
3999f52e 4167 struct page *pagecache_page, spinlock_t *ptl)
1e8f889b 4168{
3999f52e 4169 pte_t pte;
a5516438 4170 struct hstate *h = hstate_vma(vma);
1e8f889b 4171 struct page *old_page, *new_page;
2b740303
SJ
4172 int outside_reserve = 0;
4173 vm_fault_t ret = 0;
974e6d66 4174 unsigned long haddr = address & huge_page_mask(h);
ac46d4f3 4175 struct mmu_notifier_range range;
1e8f889b 4176
3999f52e 4177 pte = huge_ptep_get(ptep);
1e8f889b
DG
4178 old_page = pte_page(pte);
4179
04f2cbe3 4180retry_avoidcopy:
1e8f889b
DG
4181 /* If no-one else is actually using this page, avoid the copy
4182 * and just make the page writable */
37a2140d 4183 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
5a49973d 4184 page_move_anon_rmap(old_page, vma);
5b7a1d40 4185 set_huge_ptep_writable(vma, haddr, ptep);
83c54070 4186 return 0;
1e8f889b
DG
4187 }
4188
04f2cbe3
MG
4189 /*
4190 * If the process that created a MAP_PRIVATE mapping is about to
4191 * perform a COW due to a shared page count, attempt to satisfy
4192 * the allocation without using the existing reserves. The pagecache
4193 * page is used to determine if the reserve at this address was
4194 * consumed or not. If reserves were used, a partial faulted mapping
4195 * at the time of fork() could consume its reserves on COW instead
4196 * of the full address range.
4197 */
5944d011 4198 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
04f2cbe3
MG
4199 old_page != pagecache_page)
4200 outside_reserve = 1;
4201
09cbfeaf 4202 get_page(old_page);
b76c8cfb 4203
ad4404a2
DB
4204 /*
4205 * Drop page table lock as buddy allocator may be called. It will
4206 * be acquired again before returning to the caller, as expected.
4207 */
cb900f41 4208 spin_unlock(ptl);
5b7a1d40 4209 new_page = alloc_huge_page(vma, haddr, outside_reserve);
1e8f889b 4210
2fc39cec 4211 if (IS_ERR(new_page)) {
04f2cbe3
MG
4212 /*
4213 * If a process owning a MAP_PRIVATE mapping fails to COW,
4214 * it is due to references held by a child and an insufficient
4215 * huge page pool. To guarantee the original mappers
4216 * reliability, unmap the page from child processes. The child
4217 * may get SIGKILLed if it later faults.
4218 */
4219 if (outside_reserve) {
e7dd91c4
MK
4220 struct address_space *mapping = vma->vm_file->f_mapping;
4221 pgoff_t idx;
4222 u32 hash;
4223
09cbfeaf 4224 put_page(old_page);
04f2cbe3 4225 BUG_ON(huge_pte_none(pte));
e7dd91c4
MK
4226 /*
4227 * Drop hugetlb_fault_mutex and i_mmap_rwsem before
4228 * unmapping. unmapping needs to hold i_mmap_rwsem
4229 * in write mode. Dropping i_mmap_rwsem in read mode
4230 * here is OK as COW mappings do not interact with
4231 * PMD sharing.
4232 *
4233 * Reacquire both after unmap operation.
4234 */
4235 idx = vma_hugecache_offset(h, vma, haddr);
4236 hash = hugetlb_fault_mutex_hash(mapping, idx);
4237 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4238 i_mmap_unlock_read(mapping);
4239
5b7a1d40 4240 unmap_ref_private(mm, vma, old_page, haddr);
e7dd91c4
MK
4241
4242 i_mmap_lock_read(mapping);
4243 mutex_lock(&hugetlb_fault_mutex_table[hash]);
2f4612af 4244 spin_lock(ptl);
5b7a1d40 4245 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
2f4612af
DB
4246 if (likely(ptep &&
4247 pte_same(huge_ptep_get(ptep), pte)))
4248 goto retry_avoidcopy;
4249 /*
4250 * race occurs while re-acquiring page table
4251 * lock, and our job is done.
4252 */
4253 return 0;
04f2cbe3
MG
4254 }
4255
2b740303 4256 ret = vmf_error(PTR_ERR(new_page));
ad4404a2 4257 goto out_release_old;
1e8f889b
DG
4258 }
4259
0fe6e20b
NH
4260 /*
4261 * When the original hugepage is shared one, it does not have
4262 * anon_vma prepared.
4263 */
44e2aa93 4264 if (unlikely(anon_vma_prepare(vma))) {
ad4404a2
DB
4265 ret = VM_FAULT_OOM;
4266 goto out_release_all;
44e2aa93 4267 }
0fe6e20b 4268
974e6d66 4269 copy_user_huge_page(new_page, old_page, address, vma,
47ad8475 4270 pages_per_huge_page(h));
0ed361de 4271 __SetPageUptodate(new_page);
1e8f889b 4272
7269f999 4273 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
6f4f13e8 4274 haddr + huge_page_size(h));
ac46d4f3 4275 mmu_notifier_invalidate_range_start(&range);
ad4404a2 4276
b76c8cfb 4277 /*
cb900f41 4278 * Retake the page table lock to check for racing updates
b76c8cfb
LW
4279 * before the page tables are altered
4280 */
cb900f41 4281 spin_lock(ptl);
5b7a1d40 4282 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
a9af0c5d 4283 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
d6995da3 4284 ClearHPageRestoreReserve(new_page);
07443a85 4285
1e8f889b 4286 /* Break COW */
5b7a1d40 4287 huge_ptep_clear_flush(vma, haddr, ptep);
ac46d4f3 4288 mmu_notifier_invalidate_range(mm, range.start, range.end);
5b7a1d40 4289 set_huge_pte_at(mm, haddr, ptep,
1e8f889b 4290 make_huge_pte(vma, new_page, 1));
d281ee61 4291 page_remove_rmap(old_page, true);
5b7a1d40 4292 hugepage_add_new_anon_rmap(new_page, vma, haddr);
8f251a3d 4293 SetHPageMigratable(new_page);
1e8f889b
DG
4294 /* Make the old page be freed below */
4295 new_page = old_page;
4296 }
cb900f41 4297 spin_unlock(ptl);
ac46d4f3 4298 mmu_notifier_invalidate_range_end(&range);
ad4404a2 4299out_release_all:
5b7a1d40 4300 restore_reserve_on_error(h, vma, haddr, new_page);
09cbfeaf 4301 put_page(new_page);
ad4404a2 4302out_release_old:
09cbfeaf 4303 put_page(old_page);
8312034f 4304
ad4404a2
DB
4305 spin_lock(ptl); /* Caller expects lock to be held */
4306 return ret;
1e8f889b
DG
4307}
4308
04f2cbe3 4309/* Return the pagecache page at a given address within a VMA */
a5516438
AK
4310static struct page *hugetlbfs_pagecache_page(struct hstate *h,
4311 struct vm_area_struct *vma, unsigned long address)
04f2cbe3
MG
4312{
4313 struct address_space *mapping;
e7c4b0bf 4314 pgoff_t idx;
04f2cbe3
MG
4315
4316 mapping = vma->vm_file->f_mapping;
a5516438 4317 idx = vma_hugecache_offset(h, vma, address);
04f2cbe3
MG
4318
4319 return find_lock_page(mapping, idx);
4320}
4321
3ae77f43
HD
4322/*
4323 * Return whether there is a pagecache page to back given address within VMA.
4324 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
4325 */
4326static bool hugetlbfs_pagecache_present(struct hstate *h,
2a15efc9
HD
4327 struct vm_area_struct *vma, unsigned long address)
4328{
4329 struct address_space *mapping;
4330 pgoff_t idx;
4331 struct page *page;
4332
4333 mapping = vma->vm_file->f_mapping;
4334 idx = vma_hugecache_offset(h, vma, address);
4335
4336 page = find_get_page(mapping, idx);
4337 if (page)
4338 put_page(page);
4339 return page != NULL;
4340}
4341
ab76ad54
MK
4342int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
4343 pgoff_t idx)
4344{
4345 struct inode *inode = mapping->host;
4346 struct hstate *h = hstate_inode(inode);
4347 int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
4348
4349 if (err)
4350 return err;
d6995da3 4351 ClearHPageRestoreReserve(page);
ab76ad54 4352
22146c3c
MK
4353 /*
4354 * set page dirty so that it will not be removed from cache/file
4355 * by non-hugetlbfs specific code paths.
4356 */
4357 set_page_dirty(page);
4358
ab76ad54
MK
4359 spin_lock(&inode->i_lock);
4360 inode->i_blocks += blocks_per_huge_page(h);
4361 spin_unlock(&inode->i_lock);
4362 return 0;
4363}
4364
2b740303
SJ
4365static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
4366 struct vm_area_struct *vma,
4367 struct address_space *mapping, pgoff_t idx,
4368 unsigned long address, pte_t *ptep, unsigned int flags)
ac9b9c66 4369{
a5516438 4370 struct hstate *h = hstate_vma(vma);
2b740303 4371 vm_fault_t ret = VM_FAULT_SIGBUS;
409eb8c2 4372 int anon_rmap = 0;
4c887265 4373 unsigned long size;
4c887265 4374 struct page *page;
1e8f889b 4375 pte_t new_pte;
cb900f41 4376 spinlock_t *ptl;
285b8dca 4377 unsigned long haddr = address & huge_page_mask(h);
cb6acd01 4378 bool new_page = false;
4c887265 4379
04f2cbe3
MG
4380 /*
4381 * Currently, we are forced to kill the process in the event the
4382 * original mapper has unmapped pages from the child due to a failed
25985edc 4383 * COW. Warn that such a situation has occurred as it may not be obvious
04f2cbe3
MG
4384 */
4385 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
910154d5 4386 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
ffb22af5 4387 current->pid);
04f2cbe3
MG
4388 return ret;
4389 }
4390
4c887265 4391 /*
87bf91d3
MK
4392 * We can not race with truncation due to holding i_mmap_rwsem.
4393 * i_size is modified when holding i_mmap_rwsem, so check here
4394 * once for faults beyond end of file.
4c887265 4395 */
87bf91d3
MK
4396 size = i_size_read(mapping->host) >> huge_page_shift(h);
4397 if (idx >= size)
4398 goto out;
4399
6bda666a
CL
4400retry:
4401 page = find_lock_page(mapping, idx);
4402 if (!page) {
1a1aad8a
MK
4403 /*
4404 * Check for page in userfault range
4405 */
4406 if (userfaultfd_missing(vma)) {
4407 u32 hash;
4408 struct vm_fault vmf = {
4409 .vma = vma,
285b8dca 4410 .address = haddr,
1a1aad8a
MK
4411 .flags = flags,
4412 /*
4413 * Hard to debug if it ends up being
4414 * used by a callee that assumes
4415 * something about the other
4416 * uninitialized fields... same as in
4417 * memory.c
4418 */
4419 };
4420
4421 /*
c0d0381a
MK
4422 * hugetlb_fault_mutex and i_mmap_rwsem must be
4423 * dropped before handling userfault. Reacquire
4424 * after handling fault to make calling code simpler.
1a1aad8a 4425 */
188b04a7 4426 hash = hugetlb_fault_mutex_hash(mapping, idx);
1a1aad8a 4427 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
c0d0381a 4428 i_mmap_unlock_read(mapping);
1a1aad8a 4429 ret = handle_userfault(&vmf, VM_UFFD_MISSING);
c0d0381a 4430 i_mmap_lock_read(mapping);
1a1aad8a
MK
4431 mutex_lock(&hugetlb_fault_mutex_table[hash]);
4432 goto out;
4433 }
4434
285b8dca 4435 page = alloc_huge_page(vma, haddr, 0);
2fc39cec 4436 if (IS_ERR(page)) {
4643d67e
MK
4437 /*
4438 * Returning error will result in faulting task being
4439 * sent SIGBUS. The hugetlb fault mutex prevents two
4440 * tasks from racing to fault in the same page which
4441 * could result in false unable to allocate errors.
4442 * Page migration does not take the fault mutex, but
4443 * does a clear then write of pte's under page table
4444 * lock. Page fault code could race with migration,
4445 * notice the clear pte and try to allocate a page
4446 * here. Before returning error, get ptl and make
4447 * sure there really is no pte entry.
4448 */
4449 ptl = huge_pte_lock(h, mm, ptep);
d83e6c8a
ML
4450 ret = 0;
4451 if (huge_pte_none(huge_ptep_get(ptep)))
4452 ret = vmf_error(PTR_ERR(page));
4643d67e 4453 spin_unlock(ptl);
6bda666a
CL
4454 goto out;
4455 }
47ad8475 4456 clear_huge_page(page, address, pages_per_huge_page(h));
0ed361de 4457 __SetPageUptodate(page);
cb6acd01 4458 new_page = true;
ac9b9c66 4459
f83a275d 4460 if (vma->vm_flags & VM_MAYSHARE) {
ab76ad54 4461 int err = huge_add_to_page_cache(page, mapping, idx);
6bda666a
CL
4462 if (err) {
4463 put_page(page);
6bda666a
CL
4464 if (err == -EEXIST)
4465 goto retry;
4466 goto out;
4467 }
23be7468 4468 } else {
6bda666a 4469 lock_page(page);
0fe6e20b
NH
4470 if (unlikely(anon_vma_prepare(vma))) {
4471 ret = VM_FAULT_OOM;
4472 goto backout_unlocked;
4473 }
409eb8c2 4474 anon_rmap = 1;
23be7468 4475 }
0fe6e20b 4476 } else {
998b4382
NH
4477 /*
4478 * If memory error occurs between mmap() and fault, some process
4479 * don't have hwpoisoned swap entry for errored virtual address.
4480 * So we need to block hugepage fault by PG_hwpoison bit check.
4481 */
4482 if (unlikely(PageHWPoison(page))) {
0eb98f15 4483 ret = VM_FAULT_HWPOISON_LARGE |
972dc4de 4484 VM_FAULT_SET_HINDEX(hstate_index(h));
998b4382
NH
4485 goto backout_unlocked;
4486 }
6bda666a 4487 }
1e8f889b 4488
57303d80
AW
4489 /*
4490 * If we are going to COW a private mapping later, we examine the
4491 * pending reservations for this page now. This will ensure that
4492 * any allocations necessary to record that reservation occur outside
4493 * the spinlock.
4494 */
5e911373 4495 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
285b8dca 4496 if (vma_needs_reservation(h, vma, haddr) < 0) {
2b26736c
AW
4497 ret = VM_FAULT_OOM;
4498 goto backout_unlocked;
4499 }
5e911373 4500 /* Just decrements count, does not deallocate */
285b8dca 4501 vma_end_reservation(h, vma, haddr);
5e911373 4502 }
57303d80 4503
8bea8052 4504 ptl = huge_pte_lock(h, mm, ptep);
83c54070 4505 ret = 0;
7f2e9525 4506 if (!huge_pte_none(huge_ptep_get(ptep)))
4c887265
AL
4507 goto backout;
4508
07443a85 4509 if (anon_rmap) {
d6995da3 4510 ClearHPageRestoreReserve(page);
285b8dca 4511 hugepage_add_new_anon_rmap(page, vma, haddr);
ac714904 4512 } else
53f9263b 4513 page_dup_rmap(page, true);
1e8f889b
DG
4514 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
4515 && (vma->vm_flags & VM_SHARED)));
285b8dca 4516 set_huge_pte_at(mm, haddr, ptep, new_pte);
1e8f889b 4517
5d317b2b 4518 hugetlb_count_add(pages_per_huge_page(h), mm);
788c7df4 4519 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
1e8f889b 4520 /* Optimization, do the COW without a second fault */
974e6d66 4521 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
1e8f889b
DG
4522 }
4523
cb900f41 4524 spin_unlock(ptl);
cb6acd01
MK
4525
4526 /*
8f251a3d
MK
4527 * Only set HPageMigratable in newly allocated pages. Existing pages
4528 * found in the pagecache may not have HPageMigratableset if they have
4529 * been isolated for migration.
cb6acd01
MK
4530 */
4531 if (new_page)
8f251a3d 4532 SetHPageMigratable(page);
cb6acd01 4533
4c887265
AL
4534 unlock_page(page);
4535out:
ac9b9c66 4536 return ret;
4c887265
AL
4537
4538backout:
cb900f41 4539 spin_unlock(ptl);
2b26736c 4540backout_unlocked:
4c887265 4541 unlock_page(page);
285b8dca 4542 restore_reserve_on_error(h, vma, haddr, page);
4c887265
AL
4543 put_page(page);
4544 goto out;
ac9b9c66
HD
4545}
4546
8382d914 4547#ifdef CONFIG_SMP
188b04a7 4548u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
8382d914
DB
4549{
4550 unsigned long key[2];
4551 u32 hash;
4552
1b426bac
MK
4553 key[0] = (unsigned long) mapping;
4554 key[1] = idx;
8382d914 4555
55254636 4556 hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
8382d914
DB
4557
4558 return hash & (num_fault_mutexes - 1);
4559}
4560#else
4561/*
6c26d310 4562 * For uniprocessor systems we always use a single mutex, so just
8382d914
DB
4563 * return 0 and avoid the hashing overhead.
4564 */
188b04a7 4565u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
8382d914
DB
4566{
4567 return 0;
4568}
4569#endif
4570
2b740303 4571vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
788c7df4 4572 unsigned long address, unsigned int flags)
86e5216f 4573{
8382d914 4574 pte_t *ptep, entry;
cb900f41 4575 spinlock_t *ptl;
2b740303 4576 vm_fault_t ret;
8382d914
DB
4577 u32 hash;
4578 pgoff_t idx;
0fe6e20b 4579 struct page *page = NULL;
57303d80 4580 struct page *pagecache_page = NULL;
a5516438 4581 struct hstate *h = hstate_vma(vma);
8382d914 4582 struct address_space *mapping;
0f792cf9 4583 int need_wait_lock = 0;
285b8dca 4584 unsigned long haddr = address & huge_page_mask(h);
86e5216f 4585
285b8dca 4586 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
fd6a03ed 4587 if (ptep) {
c0d0381a
MK
4588 /*
4589 * Since we hold no locks, ptep could be stale. That is
4590 * OK as we are only making decisions based on content and
4591 * not actually modifying content here.
4592 */
fd6a03ed 4593 entry = huge_ptep_get(ptep);
290408d4 4594 if (unlikely(is_hugetlb_entry_migration(entry))) {
cb900f41 4595 migration_entry_wait_huge(vma, mm, ptep);
290408d4
NH
4596 return 0;
4597 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
32f84528 4598 return VM_FAULT_HWPOISON_LARGE |
972dc4de 4599 VM_FAULT_SET_HINDEX(hstate_index(h));
fd6a03ed
NH
4600 }
4601
c0d0381a
MK
4602 /*
4603 * Acquire i_mmap_rwsem before calling huge_pte_alloc and hold
87bf91d3
MK
4604 * until finished with ptep. This serves two purposes:
4605 * 1) It prevents huge_pmd_unshare from being called elsewhere
4606 * and making the ptep no longer valid.
4607 * 2) It synchronizes us with i_size modifications during truncation.
c0d0381a
MK
4608 *
4609 * ptep could have already be assigned via huge_pte_offset. That
4610 * is OK, as huge_pte_alloc will return the same value unless
4611 * something has changed.
4612 */
8382d914 4613 mapping = vma->vm_file->f_mapping;
c0d0381a 4614 i_mmap_lock_read(mapping);
aec44e0f 4615 ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h));
c0d0381a
MK
4616 if (!ptep) {
4617 i_mmap_unlock_read(mapping);
4618 return VM_FAULT_OOM;
4619 }
8382d914 4620
3935baa9
DG
4621 /*
4622 * Serialize hugepage allocation and instantiation, so that we don't
4623 * get spurious allocation failures if two CPUs race to instantiate
4624 * the same page in the page cache.
4625 */
c0d0381a 4626 idx = vma_hugecache_offset(h, vma, haddr);
188b04a7 4627 hash = hugetlb_fault_mutex_hash(mapping, idx);
c672c7f2 4628 mutex_lock(&hugetlb_fault_mutex_table[hash]);
8382d914 4629
7f2e9525
GS
4630 entry = huge_ptep_get(ptep);
4631 if (huge_pte_none(entry)) {
8382d914 4632 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
b4d1d99f 4633 goto out_mutex;
3935baa9 4634 }
86e5216f 4635
83c54070 4636 ret = 0;
1e8f889b 4637
0f792cf9
NH
4638 /*
4639 * entry could be a migration/hwpoison entry at this point, so this
4640 * check prevents the kernel from going below assuming that we have
7c8de358
EP
4641 * an active hugepage in pagecache. This goto expects the 2nd page
4642 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
4643 * properly handle it.
0f792cf9
NH
4644 */
4645 if (!pte_present(entry))
4646 goto out_mutex;
4647
57303d80
AW
4648 /*
4649 * If we are going to COW the mapping later, we examine the pending
4650 * reservations for this page now. This will ensure that any
4651 * allocations necessary to record that reservation occur outside the
4652 * spinlock. For private mappings, we also lookup the pagecache
4653 * page now as it is used to determine if a reservation has been
4654 * consumed.
4655 */
106c992a 4656 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
285b8dca 4657 if (vma_needs_reservation(h, vma, haddr) < 0) {
2b26736c 4658 ret = VM_FAULT_OOM;
b4d1d99f 4659 goto out_mutex;
2b26736c 4660 }
5e911373 4661 /* Just decrements count, does not deallocate */
285b8dca 4662 vma_end_reservation(h, vma, haddr);
57303d80 4663
f83a275d 4664 if (!(vma->vm_flags & VM_MAYSHARE))
57303d80 4665 pagecache_page = hugetlbfs_pagecache_page(h,
285b8dca 4666 vma, haddr);
57303d80
AW
4667 }
4668
0f792cf9
NH
4669 ptl = huge_pte_lock(h, mm, ptep);
4670
4671 /* Check for a racing update before calling hugetlb_cow */
4672 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
4673 goto out_ptl;
4674
56c9cfb1
NH
4675 /*
4676 * hugetlb_cow() requires page locks of pte_page(entry) and
4677 * pagecache_page, so here we need take the former one
4678 * when page != pagecache_page or !pagecache_page.
56c9cfb1
NH
4679 */
4680 page = pte_page(entry);
4681 if (page != pagecache_page)
0f792cf9
NH
4682 if (!trylock_page(page)) {
4683 need_wait_lock = 1;
4684 goto out_ptl;
4685 }
b4d1d99f 4686
0f792cf9 4687 get_page(page);
b4d1d99f 4688
788c7df4 4689 if (flags & FAULT_FLAG_WRITE) {
106c992a 4690 if (!huge_pte_write(entry)) {
974e6d66 4691 ret = hugetlb_cow(mm, vma, address, ptep,
3999f52e 4692 pagecache_page, ptl);
0f792cf9 4693 goto out_put_page;
b4d1d99f 4694 }
106c992a 4695 entry = huge_pte_mkdirty(entry);
b4d1d99f
DG
4696 }
4697 entry = pte_mkyoung(entry);
285b8dca 4698 if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
788c7df4 4699 flags & FAULT_FLAG_WRITE))
285b8dca 4700 update_mmu_cache(vma, haddr, ptep);
0f792cf9
NH
4701out_put_page:
4702 if (page != pagecache_page)
4703 unlock_page(page);
4704 put_page(page);
cb900f41
KS
4705out_ptl:
4706 spin_unlock(ptl);
57303d80
AW
4707
4708 if (pagecache_page) {
4709 unlock_page(pagecache_page);
4710 put_page(pagecache_page);
4711 }
b4d1d99f 4712out_mutex:
c672c7f2 4713 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
c0d0381a 4714 i_mmap_unlock_read(mapping);
0f792cf9
NH
4715 /*
4716 * Generally it's safe to hold refcount during waiting page lock. But
4717 * here we just wait to defer the next page fault to avoid busy loop and
4718 * the page is not used after unlocked before returning from the current
4719 * page fault. So we are safe from accessing freed page, even if we wait
4720 * here without taking refcount.
4721 */
4722 if (need_wait_lock)
4723 wait_on_page_locked(page);
1e8f889b 4724 return ret;
86e5216f
AL
4725}
4726
8fb5debc
MK
4727/*
4728 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with
4729 * modifications for huge pages.
4730 */
4731int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
4732 pte_t *dst_pte,
4733 struct vm_area_struct *dst_vma,
4734 unsigned long dst_addr,
4735 unsigned long src_addr,
4736 struct page **pagep)
4737{
1e392147
AA
4738 struct address_space *mapping;
4739 pgoff_t idx;
4740 unsigned long size;
1c9e8def 4741 int vm_shared = dst_vma->vm_flags & VM_SHARED;
8fb5debc
MK
4742 struct hstate *h = hstate_vma(dst_vma);
4743 pte_t _dst_pte;
4744 spinlock_t *ptl;
4745 int ret;
4746 struct page *page;
4747
4748 if (!*pagep) {
4749 ret = -ENOMEM;
4750 page = alloc_huge_page(dst_vma, dst_addr, 0);
4751 if (IS_ERR(page))
4752 goto out;
4753
4754 ret = copy_huge_page_from_user(page,
4755 (const void __user *) src_addr,
810a56b9 4756 pages_per_huge_page(h), false);
8fb5debc 4757
c1e8d7c6 4758 /* fallback to copy_from_user outside mmap_lock */
8fb5debc 4759 if (unlikely(ret)) {
9e368259 4760 ret = -ENOENT;
8fb5debc
MK
4761 *pagep = page;
4762 /* don't free the page */
4763 goto out;
4764 }
4765 } else {
4766 page = *pagep;
4767 *pagep = NULL;
4768 }
4769
4770 /*
4771 * The memory barrier inside __SetPageUptodate makes sure that
4772 * preceding stores to the page contents become visible before
4773 * the set_pte_at() write.
4774 */
4775 __SetPageUptodate(page);
8fb5debc 4776
1e392147
AA
4777 mapping = dst_vma->vm_file->f_mapping;
4778 idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4779
1c9e8def
MK
4780 /*
4781 * If shared, add to page cache
4782 */
4783 if (vm_shared) {
1e392147
AA
4784 size = i_size_read(mapping->host) >> huge_page_shift(h);
4785 ret = -EFAULT;
4786 if (idx >= size)
4787 goto out_release_nounlock;
1c9e8def 4788
1e392147
AA
4789 /*
4790 * Serialization between remove_inode_hugepages() and
4791 * huge_add_to_page_cache() below happens through the
4792 * hugetlb_fault_mutex_table that here must be hold by
4793 * the caller.
4794 */
1c9e8def
MK
4795 ret = huge_add_to_page_cache(page, mapping, idx);
4796 if (ret)
4797 goto out_release_nounlock;
4798 }
4799
8fb5debc
MK
4800 ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4801 spin_lock(ptl);
4802
1e392147
AA
4803 /*
4804 * Recheck the i_size after holding PT lock to make sure not
4805 * to leave any page mapped (as page_mapped()) beyond the end
4806 * of the i_size (remove_inode_hugepages() is strict about
4807 * enforcing that). If we bail out here, we'll also leave a
4808 * page in the radix tree in the vm_shared case beyond the end
4809 * of the i_size, but remove_inode_hugepages() will take care
4810 * of it as soon as we drop the hugetlb_fault_mutex_table.
4811 */
4812 size = i_size_read(mapping->host) >> huge_page_shift(h);
4813 ret = -EFAULT;
4814 if (idx >= size)
4815 goto out_release_unlock;
4816
8fb5debc
MK
4817 ret = -EEXIST;
4818 if (!huge_pte_none(huge_ptep_get(dst_pte)))
4819 goto out_release_unlock;
4820
1c9e8def
MK
4821 if (vm_shared) {
4822 page_dup_rmap(page, true);
4823 } else {
d6995da3 4824 ClearHPageRestoreReserve(page);
1c9e8def
MK
4825 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4826 }
8fb5debc
MK
4827
4828 _dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4829 if (dst_vma->vm_flags & VM_WRITE)
4830 _dst_pte = huge_pte_mkdirty(_dst_pte);
4831 _dst_pte = pte_mkyoung(_dst_pte);
4832
4833 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4834
4835 (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4836 dst_vma->vm_flags & VM_WRITE);
4837 hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4838
4839 /* No need to invalidate - it was non-present before */
4840 update_mmu_cache(dst_vma, dst_addr, dst_pte);
4841
4842 spin_unlock(ptl);
8f251a3d 4843 SetHPageMigratable(page);
1c9e8def
MK
4844 if (vm_shared)
4845 unlock_page(page);
8fb5debc
MK
4846 ret = 0;
4847out:
4848 return ret;
4849out_release_unlock:
4850 spin_unlock(ptl);
1c9e8def
MK
4851 if (vm_shared)
4852 unlock_page(page);
5af10dfd 4853out_release_nounlock:
8fb5debc
MK
4854 put_page(page);
4855 goto out;
4856}
4857
82e5d378
JM
4858static void record_subpages_vmas(struct page *page, struct vm_area_struct *vma,
4859 int refs, struct page **pages,
4860 struct vm_area_struct **vmas)
4861{
4862 int nr;
4863
4864 for (nr = 0; nr < refs; nr++) {
4865 if (likely(pages))
4866 pages[nr] = mem_map_offset(page, nr);
4867 if (vmas)
4868 vmas[nr] = vma;
4869 }
4870}
4871
28a35716
ML
4872long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4873 struct page **pages, struct vm_area_struct **vmas,
4874 unsigned long *position, unsigned long *nr_pages,
4f6da934 4875 long i, unsigned int flags, int *locked)
63551ae0 4876{
d5d4b0aa
CK
4877 unsigned long pfn_offset;
4878 unsigned long vaddr = *position;
28a35716 4879 unsigned long remainder = *nr_pages;
a5516438 4880 struct hstate *h = hstate_vma(vma);
0fa5bc40 4881 int err = -EFAULT, refs;
63551ae0 4882
63551ae0 4883 while (vaddr < vma->vm_end && remainder) {
4c887265 4884 pte_t *pte;
cb900f41 4885 spinlock_t *ptl = NULL;
2a15efc9 4886 int absent;
4c887265 4887 struct page *page;
63551ae0 4888
02057967
DR
4889 /*
4890 * If we have a pending SIGKILL, don't keep faulting pages and
4891 * potentially allocating memory.
4892 */
fa45f116 4893 if (fatal_signal_pending(current)) {
02057967
DR
4894 remainder = 0;
4895 break;
4896 }
4897
4c887265
AL
4898 /*
4899 * Some archs (sparc64, sh*) have multiple pte_ts to
2a15efc9 4900 * each hugepage. We have to make sure we get the
4c887265 4901 * first, for the page indexing below to work.
cb900f41
KS
4902 *
4903 * Note that page table lock is not held when pte is null.
4c887265 4904 */
7868a208
PA
4905 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
4906 huge_page_size(h));
cb900f41
KS
4907 if (pte)
4908 ptl = huge_pte_lock(h, mm, pte);
2a15efc9
HD
4909 absent = !pte || huge_pte_none(huge_ptep_get(pte));
4910
4911 /*
4912 * When coredumping, it suits get_dump_page if we just return
3ae77f43
HD
4913 * an error where there's an empty slot with no huge pagecache
4914 * to back it. This way, we avoid allocating a hugepage, and
4915 * the sparse dumpfile avoids allocating disk blocks, but its
4916 * huge holes still show up with zeroes where they need to be.
2a15efc9 4917 */
3ae77f43
HD
4918 if (absent && (flags & FOLL_DUMP) &&
4919 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
cb900f41
KS
4920 if (pte)
4921 spin_unlock(ptl);
2a15efc9
HD
4922 remainder = 0;
4923 break;
4924 }
63551ae0 4925
9cc3a5bd
NH
4926 /*
4927 * We need call hugetlb_fault for both hugepages under migration
4928 * (in which case hugetlb_fault waits for the migration,) and
4929 * hwpoisoned hugepages (in which case we need to prevent the
4930 * caller from accessing to them.) In order to do this, we use
4931 * here is_swap_pte instead of is_hugetlb_entry_migration and
4932 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4933 * both cases, and because we can't follow correct pages
4934 * directly from any kind of swap entries.
4935 */
4936 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
106c992a
GS
4937 ((flags & FOLL_WRITE) &&
4938 !huge_pte_write(huge_ptep_get(pte)))) {
2b740303 4939 vm_fault_t ret;
87ffc118 4940 unsigned int fault_flags = 0;
63551ae0 4941
cb900f41
KS
4942 if (pte)
4943 spin_unlock(ptl);
87ffc118
AA
4944 if (flags & FOLL_WRITE)
4945 fault_flags |= FAULT_FLAG_WRITE;
4f6da934 4946 if (locked)
71335f37
PX
4947 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4948 FAULT_FLAG_KILLABLE;
87ffc118
AA
4949 if (flags & FOLL_NOWAIT)
4950 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4951 FAULT_FLAG_RETRY_NOWAIT;
4952 if (flags & FOLL_TRIED) {
4426e945
PX
4953 /*
4954 * Note: FAULT_FLAG_ALLOW_RETRY and
4955 * FAULT_FLAG_TRIED can co-exist
4956 */
87ffc118
AA
4957 fault_flags |= FAULT_FLAG_TRIED;
4958 }
4959 ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4960 if (ret & VM_FAULT_ERROR) {
2be7cfed 4961 err = vm_fault_to_errno(ret, flags);
87ffc118
AA
4962 remainder = 0;
4963 break;
4964 }
4965 if (ret & VM_FAULT_RETRY) {
4f6da934 4966 if (locked &&
1ac25013 4967 !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
4f6da934 4968 *locked = 0;
87ffc118
AA
4969 *nr_pages = 0;
4970 /*
4971 * VM_FAULT_RETRY must not return an
4972 * error, it will return zero
4973 * instead.
4974 *
4975 * No need to update "position" as the
4976 * caller will not check it after
4977 * *nr_pages is set to 0.
4978 */
4979 return i;
4980 }
4981 continue;
4c887265
AL
4982 }
4983
a5516438 4984 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
7f2e9525 4985 page = pte_page(huge_ptep_get(pte));
8fde12ca 4986
acbfb087
ZL
4987 /*
4988 * If subpage information not requested, update counters
4989 * and skip the same_page loop below.
4990 */
4991 if (!pages && !vmas && !pfn_offset &&
4992 (vaddr + huge_page_size(h) < vma->vm_end) &&
4993 (remainder >= pages_per_huge_page(h))) {
4994 vaddr += huge_page_size(h);
4995 remainder -= pages_per_huge_page(h);
4996 i += pages_per_huge_page(h);
4997 spin_unlock(ptl);
4998 continue;
4999 }
5000
82e5d378
JM
5001 refs = min3(pages_per_huge_page(h) - pfn_offset,
5002 (vma->vm_end - vaddr) >> PAGE_SHIFT, remainder);
0fa5bc40 5003
82e5d378
JM
5004 if (pages || vmas)
5005 record_subpages_vmas(mem_map_offset(page, pfn_offset),
5006 vma, refs,
5007 likely(pages) ? pages + i : NULL,
5008 vmas ? vmas + i : NULL);
63551ae0 5009
82e5d378 5010 if (pages) {
0fa5bc40
JM
5011 /*
5012 * try_grab_compound_head() should always succeed here,
5013 * because: a) we hold the ptl lock, and b) we've just
5014 * checked that the huge page is present in the page
5015 * tables. If the huge page is present, then the tail
5016 * pages must also be present. The ptl prevents the
5017 * head page and tail pages from being rearranged in
5018 * any way. So this page must be available at this
5019 * point, unless the page refcount overflowed:
5020 */
82e5d378 5021 if (WARN_ON_ONCE(!try_grab_compound_head(pages[i],
0fa5bc40
JM
5022 refs,
5023 flags))) {
5024 spin_unlock(ptl);
5025 remainder = 0;
5026 err = -ENOMEM;
5027 break;
5028 }
d5d4b0aa 5029 }
82e5d378
JM
5030
5031 vaddr += (refs << PAGE_SHIFT);
5032 remainder -= refs;
5033 i += refs;
5034
cb900f41 5035 spin_unlock(ptl);
63551ae0 5036 }
28a35716 5037 *nr_pages = remainder;
87ffc118
AA
5038 /*
5039 * setting position is actually required only if remainder is
5040 * not zero but it's faster not to add a "if (remainder)"
5041 * branch.
5042 */
63551ae0
DG
5043 *position = vaddr;
5044
2be7cfed 5045 return i ? i : err;
63551ae0 5046}
8f860591 5047
7da4d641 5048unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
8f860591
ZY
5049 unsigned long address, unsigned long end, pgprot_t newprot)
5050{
5051 struct mm_struct *mm = vma->vm_mm;
5052 unsigned long start = address;
5053 pte_t *ptep;
5054 pte_t pte;
a5516438 5055 struct hstate *h = hstate_vma(vma);
7da4d641 5056 unsigned long pages = 0;
dff11abe 5057 bool shared_pmd = false;
ac46d4f3 5058 struct mmu_notifier_range range;
dff11abe
MK
5059
5060 /*
5061 * In the case of shared PMDs, the area to flush could be beyond
ac46d4f3 5062 * start/end. Set range.start/range.end to cover the maximum possible
dff11abe
MK
5063 * range if PMD sharing is possible.
5064 */
7269f999
JG
5065 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
5066 0, vma, mm, start, end);
ac46d4f3 5067 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
8f860591
ZY
5068
5069 BUG_ON(address >= end);
ac46d4f3 5070 flush_cache_range(vma, range.start, range.end);
8f860591 5071
ac46d4f3 5072 mmu_notifier_invalidate_range_start(&range);
83cde9e8 5073 i_mmap_lock_write(vma->vm_file->f_mapping);
a5516438 5074 for (; address < end; address += huge_page_size(h)) {
cb900f41 5075 spinlock_t *ptl;
7868a208 5076 ptep = huge_pte_offset(mm, address, huge_page_size(h));
8f860591
ZY
5077 if (!ptep)
5078 continue;
cb900f41 5079 ptl = huge_pte_lock(h, mm, ptep);
34ae204f 5080 if (huge_pmd_unshare(mm, vma, &address, ptep)) {
7da4d641 5081 pages++;
cb900f41 5082 spin_unlock(ptl);
dff11abe 5083 shared_pmd = true;
39dde65c 5084 continue;
7da4d641 5085 }
a8bda28d
NH
5086 pte = huge_ptep_get(ptep);
5087 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
5088 spin_unlock(ptl);
5089 continue;
5090 }
5091 if (unlikely(is_hugetlb_entry_migration(pte))) {
5092 swp_entry_t entry = pte_to_swp_entry(pte);
5093
5094 if (is_write_migration_entry(entry)) {
5095 pte_t newpte;
5096
5097 make_migration_entry_read(&entry);
5098 newpte = swp_entry_to_pte(entry);
e5251fd4
PA
5099 set_huge_swap_pte_at(mm, address, ptep,
5100 newpte, huge_page_size(h));
a8bda28d
NH
5101 pages++;
5102 }
5103 spin_unlock(ptl);
5104 continue;
5105 }
5106 if (!huge_pte_none(pte)) {
023bdd00
AK
5107 pte_t old_pte;
5108
5109 old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
5110 pte = pte_mkhuge(huge_pte_modify(old_pte, newprot));
be7517d6 5111 pte = arch_make_huge_pte(pte, vma, NULL, 0);
023bdd00 5112 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
7da4d641 5113 pages++;
8f860591 5114 }
cb900f41 5115 spin_unlock(ptl);
8f860591 5116 }
d833352a 5117 /*
c8c06efa 5118 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
d833352a 5119 * may have cleared our pud entry and done put_page on the page table:
c8c06efa 5120 * once we release i_mmap_rwsem, another task can do the final put_page
dff11abe
MK
5121 * and that page table be reused and filled with junk. If we actually
5122 * did unshare a page of pmds, flush the range corresponding to the pud.
d833352a 5123 */
dff11abe 5124 if (shared_pmd)
ac46d4f3 5125 flush_hugetlb_tlb_range(vma, range.start, range.end);
dff11abe
MK
5126 else
5127 flush_hugetlb_tlb_range(vma, start, end);
0f10851e
JG
5128 /*
5129 * No need to call mmu_notifier_invalidate_range() we are downgrading
5130 * page table protection not changing it to point to a new page.
5131 *
ad56b738 5132 * See Documentation/vm/mmu_notifier.rst
0f10851e 5133 */
83cde9e8 5134 i_mmap_unlock_write(vma->vm_file->f_mapping);
ac46d4f3 5135 mmu_notifier_invalidate_range_end(&range);
7da4d641
PZ
5136
5137 return pages << h->order;
8f860591
ZY
5138}
5139
33b8f84a
MK
5140/* Return true if reservation was successful, false otherwise. */
5141bool hugetlb_reserve_pages(struct inode *inode,
a1e78772 5142 long from, long to,
5a6fe125 5143 struct vm_area_struct *vma,
ca16d140 5144 vm_flags_t vm_flags)
e4e574b7 5145{
33b8f84a 5146 long chg, add = -1;
a5516438 5147 struct hstate *h = hstate_inode(inode);
90481622 5148 struct hugepage_subpool *spool = subpool_inode(inode);
9119a41e 5149 struct resv_map *resv_map;
075a61d0 5150 struct hugetlb_cgroup *h_cg = NULL;
0db9d74e 5151 long gbl_reserve, regions_needed = 0;
e4e574b7 5152
63489f8e
MK
5153 /* This should never happen */
5154 if (from > to) {
5155 VM_WARN(1, "%s called with a negative range\n", __func__);
33b8f84a 5156 return false;
63489f8e
MK
5157 }
5158
17c9d12e
MG
5159 /*
5160 * Only apply hugepage reservation if asked. At fault time, an
5161 * attempt will be made for VM_NORESERVE to allocate a page
90481622 5162 * without using reserves
17c9d12e 5163 */
ca16d140 5164 if (vm_flags & VM_NORESERVE)
33b8f84a 5165 return true;
17c9d12e 5166
a1e78772
MG
5167 /*
5168 * Shared mappings base their reservation on the number of pages that
5169 * are already allocated on behalf of the file. Private mappings need
5170 * to reserve the full area even if read-only as mprotect() may be
5171 * called to make the mapping read-write. Assume !vma is a shm mapping
5172 */
9119a41e 5173 if (!vma || vma->vm_flags & VM_MAYSHARE) {
f27a5136
MK
5174 /*
5175 * resv_map can not be NULL as hugetlb_reserve_pages is only
5176 * called for inodes for which resv_maps were created (see
5177 * hugetlbfs_get_inode).
5178 */
4e35f483 5179 resv_map = inode_resv_map(inode);
9119a41e 5180
0db9d74e 5181 chg = region_chg(resv_map, from, to, &regions_needed);
9119a41e
JK
5182
5183 } else {
e9fe92ae 5184 /* Private mapping. */
9119a41e 5185 resv_map = resv_map_alloc();
17c9d12e 5186 if (!resv_map)
33b8f84a 5187 return false;
17c9d12e 5188
a1e78772 5189 chg = to - from;
84afd99b 5190
17c9d12e
MG
5191 set_vma_resv_map(vma, resv_map);
5192 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
5193 }
5194
33b8f84a 5195 if (chg < 0)
c50ac050 5196 goto out_err;
8a630112 5197
33b8f84a
MK
5198 if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
5199 chg * pages_per_huge_page(h), &h_cg) < 0)
075a61d0 5200 goto out_err;
075a61d0
MA
5201
5202 if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
5203 /* For private mappings, the hugetlb_cgroup uncharge info hangs
5204 * of the resv_map.
5205 */
5206 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
5207 }
5208
1c5ecae3
MK
5209 /*
5210 * There must be enough pages in the subpool for the mapping. If
5211 * the subpool has a minimum size, there may be some global
5212 * reservations already in place (gbl_reserve).
5213 */
5214 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
33b8f84a 5215 if (gbl_reserve < 0)
075a61d0 5216 goto out_uncharge_cgroup;
5a6fe125
MG
5217
5218 /*
17c9d12e 5219 * Check enough hugepages are available for the reservation.
90481622 5220 * Hand the pages back to the subpool if there are not
5a6fe125 5221 */
33b8f84a 5222 if (hugetlb_acct_memory(h, gbl_reserve) < 0)
075a61d0 5223 goto out_put_pages;
17c9d12e
MG
5224
5225 /*
5226 * Account for the reservations made. Shared mappings record regions
5227 * that have reservations as they are shared by multiple VMAs.
5228 * When the last VMA disappears, the region map says how much
5229 * the reservation was and the page cache tells how much of
5230 * the reservation was consumed. Private mappings are per-VMA and
5231 * only the consumed reservations are tracked. When the VMA
5232 * disappears, the original reservation is the VMA size and the
5233 * consumed reservations are stored in the map. Hence, nothing
5234 * else has to be done for private mappings here
5235 */
33039678 5236 if (!vma || vma->vm_flags & VM_MAYSHARE) {
075a61d0 5237 add = region_add(resv_map, from, to, regions_needed, h, h_cg);
0db9d74e
MA
5238
5239 if (unlikely(add < 0)) {
5240 hugetlb_acct_memory(h, -gbl_reserve);
075a61d0 5241 goto out_put_pages;
0db9d74e 5242 } else if (unlikely(chg > add)) {
33039678
MK
5243 /*
5244 * pages in this range were added to the reserve
5245 * map between region_chg and region_add. This
5246 * indicates a race with alloc_huge_page. Adjust
5247 * the subpool and reserve counts modified above
5248 * based on the difference.
5249 */
5250 long rsv_adjust;
5251
d85aecf2
ML
5252 /*
5253 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
5254 * reference to h_cg->css. See comment below for detail.
5255 */
075a61d0
MA
5256 hugetlb_cgroup_uncharge_cgroup_rsvd(
5257 hstate_index(h),
5258 (chg - add) * pages_per_huge_page(h), h_cg);
5259
33039678
MK
5260 rsv_adjust = hugepage_subpool_put_pages(spool,
5261 chg - add);
5262 hugetlb_acct_memory(h, -rsv_adjust);
d85aecf2
ML
5263 } else if (h_cg) {
5264 /*
5265 * The file_regions will hold their own reference to
5266 * h_cg->css. So we should release the reference held
5267 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
5268 * done.
5269 */
5270 hugetlb_cgroup_put_rsvd_cgroup(h_cg);
33039678
MK
5271 }
5272 }
33b8f84a
MK
5273 return true;
5274
075a61d0
MA
5275out_put_pages:
5276 /* put back original number of pages, chg */
5277 (void)hugepage_subpool_put_pages(spool, chg);
5278out_uncharge_cgroup:
5279 hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
5280 chg * pages_per_huge_page(h), h_cg);
c50ac050 5281out_err:
5e911373 5282 if (!vma || vma->vm_flags & VM_MAYSHARE)
0db9d74e
MA
5283 /* Only call region_abort if the region_chg succeeded but the
5284 * region_add failed or didn't run.
5285 */
5286 if (chg >= 0 && add < 0)
5287 region_abort(resv_map, from, to, regions_needed);
f031dd27
JK
5288 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
5289 kref_put(&resv_map->refs, resv_map_release);
33b8f84a 5290 return false;
a43a8c39
CK
5291}
5292
b5cec28d
MK
5293long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
5294 long freed)
a43a8c39 5295{
a5516438 5296 struct hstate *h = hstate_inode(inode);
4e35f483 5297 struct resv_map *resv_map = inode_resv_map(inode);
9119a41e 5298 long chg = 0;
90481622 5299 struct hugepage_subpool *spool = subpool_inode(inode);
1c5ecae3 5300 long gbl_reserve;
45c682a6 5301
f27a5136
MK
5302 /*
5303 * Since this routine can be called in the evict inode path for all
5304 * hugetlbfs inodes, resv_map could be NULL.
5305 */
b5cec28d
MK
5306 if (resv_map) {
5307 chg = region_del(resv_map, start, end);
5308 /*
5309 * region_del() can fail in the rare case where a region
5310 * must be split and another region descriptor can not be
5311 * allocated. If end == LONG_MAX, it will not fail.
5312 */
5313 if (chg < 0)
5314 return chg;
5315 }
5316
45c682a6 5317 spin_lock(&inode->i_lock);
e4c6f8be 5318 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
45c682a6
KC
5319 spin_unlock(&inode->i_lock);
5320
1c5ecae3
MK
5321 /*
5322 * If the subpool has a minimum size, the number of global
5323 * reservations to be released may be adjusted.
dddf31a4
ML
5324 *
5325 * Note that !resv_map implies freed == 0. So (chg - freed)
5326 * won't go negative.
1c5ecae3
MK
5327 */
5328 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
5329 hugetlb_acct_memory(h, -gbl_reserve);
b5cec28d
MK
5330
5331 return 0;
a43a8c39 5332}
93f70f90 5333
3212b535
SC
5334#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
5335static unsigned long page_table_shareable(struct vm_area_struct *svma,
5336 struct vm_area_struct *vma,
5337 unsigned long addr, pgoff_t idx)
5338{
5339 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
5340 svma->vm_start;
5341 unsigned long sbase = saddr & PUD_MASK;
5342 unsigned long s_end = sbase + PUD_SIZE;
5343
5344 /* Allow segments to share if only one is marked locked */
de60f5f1
EM
5345 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
5346 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
3212b535
SC
5347
5348 /*
5349 * match the virtual addresses, permission and the alignment of the
5350 * page table page.
5351 */
5352 if (pmd_index(addr) != pmd_index(saddr) ||
5353 vm_flags != svm_flags ||
07e51edf 5354 !range_in_vma(svma, sbase, s_end))
3212b535
SC
5355 return 0;
5356
5357 return saddr;
5358}
5359
31aafb45 5360static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
3212b535
SC
5361{
5362 unsigned long base = addr & PUD_MASK;
5363 unsigned long end = base + PUD_SIZE;
5364
5365 /*
5366 * check on proper vm_flags and page table alignment
5367 */
017b1660 5368 if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
31aafb45
NK
5369 return true;
5370 return false;
3212b535
SC
5371}
5372
c1991e07
PX
5373bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
5374{
5375#ifdef CONFIG_USERFAULTFD
5376 if (uffd_disable_huge_pmd_share(vma))
5377 return false;
5378#endif
5379 return vma_shareable(vma, addr);
5380}
5381
017b1660
MK
5382/*
5383 * Determine if start,end range within vma could be mapped by shared pmd.
5384 * If yes, adjust start and end to cover range associated with possible
5385 * shared pmd mappings.
5386 */
5387void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5388 unsigned long *start, unsigned long *end)
5389{
a1ba9da8
LX
5390 unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
5391 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
017b1660 5392
a1ba9da8
LX
5393 /*
5394 * vma need span at least one aligned PUD size and the start,end range
5395 * must at least partialy within it.
5396 */
5397 if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
5398 (*end <= v_start) || (*start >= v_end))
017b1660
MK
5399 return;
5400
75802ca6 5401 /* Extend the range to be PUD aligned for a worst case scenario */
a1ba9da8
LX
5402 if (*start > v_start)
5403 *start = ALIGN_DOWN(*start, PUD_SIZE);
017b1660 5404
a1ba9da8
LX
5405 if (*end < v_end)
5406 *end = ALIGN(*end, PUD_SIZE);
017b1660
MK
5407}
5408
3212b535
SC
5409/*
5410 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
5411 * and returns the corresponding pte. While this is not necessary for the
5412 * !shared pmd case because we can allocate the pmd later as well, it makes the
c0d0381a
MK
5413 * code much cleaner.
5414 *
0bf7b64e
MK
5415 * This routine must be called with i_mmap_rwsem held in at least read mode if
5416 * sharing is possible. For hugetlbfs, this prevents removal of any page
5417 * table entries associated with the address space. This is important as we
5418 * are setting up sharing based on existing page table entries (mappings).
5419 *
5420 * NOTE: This routine is only called from huge_pte_alloc. Some callers of
5421 * huge_pte_alloc know that sharing is not possible and do not take
5422 * i_mmap_rwsem as a performance optimization. This is handled by the
5423 * if !vma_shareable check at the beginning of the routine. i_mmap_rwsem is
5424 * only required for subsequent processing.
3212b535 5425 */
aec44e0f
PX
5426pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
5427 unsigned long addr, pud_t *pud)
3212b535 5428{
3212b535
SC
5429 struct address_space *mapping = vma->vm_file->f_mapping;
5430 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
5431 vma->vm_pgoff;
5432 struct vm_area_struct *svma;
5433 unsigned long saddr;
5434 pte_t *spte = NULL;
5435 pte_t *pte;
cb900f41 5436 spinlock_t *ptl;
3212b535 5437
0bf7b64e 5438 i_mmap_assert_locked(mapping);
3212b535
SC
5439 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
5440 if (svma == vma)
5441 continue;
5442
5443 saddr = page_table_shareable(svma, vma, addr, idx);
5444 if (saddr) {
7868a208
PA
5445 spte = huge_pte_offset(svma->vm_mm, saddr,
5446 vma_mmu_pagesize(svma));
3212b535
SC
5447 if (spte) {
5448 get_page(virt_to_page(spte));
5449 break;
5450 }
5451 }
5452 }
5453
5454 if (!spte)
5455 goto out;
5456
8bea8052 5457 ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
dc6c9a35 5458 if (pud_none(*pud)) {
3212b535
SC
5459 pud_populate(mm, pud,
5460 (pmd_t *)((unsigned long)spte & PAGE_MASK));
c17b1f42 5461 mm_inc_nr_pmds(mm);
dc6c9a35 5462 } else {
3212b535 5463 put_page(virt_to_page(spte));
dc6c9a35 5464 }
cb900f41 5465 spin_unlock(ptl);
3212b535
SC
5466out:
5467 pte = (pte_t *)pmd_alloc(mm, pud, addr);
3212b535
SC
5468 return pte;
5469}
5470
5471/*
5472 * unmap huge page backed by shared pte.
5473 *
5474 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
5475 * indicated by page_count > 1, unmap is achieved by clearing pud and
5476 * decrementing the ref count. If count == 1, the pte page is not shared.
5477 *
c0d0381a 5478 * Called with page table lock held and i_mmap_rwsem held in write mode.
3212b535
SC
5479 *
5480 * returns: 1 successfully unmapped a shared pte page
5481 * 0 the underlying pte page is not shared, or it is the last user
5482 */
34ae204f
MK
5483int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
5484 unsigned long *addr, pte_t *ptep)
3212b535
SC
5485{
5486 pgd_t *pgd = pgd_offset(mm, *addr);
c2febafc
KS
5487 p4d_t *p4d = p4d_offset(pgd, *addr);
5488 pud_t *pud = pud_offset(p4d, *addr);
3212b535 5489
34ae204f 5490 i_mmap_assert_write_locked(vma->vm_file->f_mapping);
3212b535
SC
5491 BUG_ON(page_count(virt_to_page(ptep)) == 0);
5492 if (page_count(virt_to_page(ptep)) == 1)
5493 return 0;
5494
5495 pud_clear(pud);
5496 put_page(virt_to_page(ptep));
dc6c9a35 5497 mm_dec_nr_pmds(mm);
3212b535
SC
5498 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
5499 return 1;
5500}
c1991e07 5501
9e5fc74c 5502#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
aec44e0f
PX
5503pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
5504 unsigned long addr, pud_t *pud)
9e5fc74c
SC
5505{
5506 return NULL;
5507}
e81f2d22 5508
34ae204f
MK
5509int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
5510 unsigned long *addr, pte_t *ptep)
e81f2d22
ZZ
5511{
5512 return 0;
5513}
017b1660
MK
5514
5515void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5516 unsigned long *start, unsigned long *end)
5517{
5518}
c1991e07
PX
5519
5520bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
5521{
5522 return false;
5523}
3212b535
SC
5524#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5525
9e5fc74c 5526#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
aec44e0f 5527pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
9e5fc74c
SC
5528 unsigned long addr, unsigned long sz)
5529{
5530 pgd_t *pgd;
c2febafc 5531 p4d_t *p4d;
9e5fc74c
SC
5532 pud_t *pud;
5533 pte_t *pte = NULL;
5534
5535 pgd = pgd_offset(mm, addr);
f4f0a3d8
KS
5536 p4d = p4d_alloc(mm, pgd, addr);
5537 if (!p4d)
5538 return NULL;
c2febafc 5539 pud = pud_alloc(mm, p4d, addr);
9e5fc74c
SC
5540 if (pud) {
5541 if (sz == PUD_SIZE) {
5542 pte = (pte_t *)pud;
5543 } else {
5544 BUG_ON(sz != PMD_SIZE);
c1991e07 5545 if (want_pmd_share(vma, addr) && pud_none(*pud))
aec44e0f 5546 pte = huge_pmd_share(mm, vma, addr, pud);
9e5fc74c
SC
5547 else
5548 pte = (pte_t *)pmd_alloc(mm, pud, addr);
5549 }
5550 }
4e666314 5551 BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
9e5fc74c
SC
5552
5553 return pte;
5554}
5555
9b19df29
PA
5556/*
5557 * huge_pte_offset() - Walk the page table to resolve the hugepage
5558 * entry at address @addr
5559 *
8ac0b81a
LX
5560 * Return: Pointer to page table entry (PUD or PMD) for
5561 * address @addr, or NULL if a !p*d_present() entry is encountered and the
9b19df29
PA
5562 * size @sz doesn't match the hugepage size at this level of the page
5563 * table.
5564 */
7868a208
PA
5565pte_t *huge_pte_offset(struct mm_struct *mm,
5566 unsigned long addr, unsigned long sz)
9e5fc74c
SC
5567{
5568 pgd_t *pgd;
c2febafc 5569 p4d_t *p4d;
8ac0b81a
LX
5570 pud_t *pud;
5571 pmd_t *pmd;
9e5fc74c
SC
5572
5573 pgd = pgd_offset(mm, addr);
c2febafc
KS
5574 if (!pgd_present(*pgd))
5575 return NULL;
5576 p4d = p4d_offset(pgd, addr);
5577 if (!p4d_present(*p4d))
5578 return NULL;
9b19df29 5579
c2febafc 5580 pud = pud_offset(p4d, addr);
8ac0b81a
LX
5581 if (sz == PUD_SIZE)
5582 /* must be pud huge, non-present or none */
c2febafc 5583 return (pte_t *)pud;
8ac0b81a 5584 if (!pud_present(*pud))
9b19df29 5585 return NULL;
8ac0b81a 5586 /* must have a valid entry and size to go further */
9b19df29 5587
8ac0b81a
LX
5588 pmd = pmd_offset(pud, addr);
5589 /* must be pmd huge, non-present or none */
5590 return (pte_t *)pmd;
9e5fc74c
SC
5591}
5592
61f77eda
NH
5593#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
5594
5595/*
5596 * These functions are overwritable if your architecture needs its own
5597 * behavior.
5598 */
5599struct page * __weak
5600follow_huge_addr(struct mm_struct *mm, unsigned long address,
5601 int write)
5602{
5603 return ERR_PTR(-EINVAL);
5604}
5605
4dc71451
AK
5606struct page * __weak
5607follow_huge_pd(struct vm_area_struct *vma,
5608 unsigned long address, hugepd_t hpd, int flags, int pdshift)
5609{
5610 WARN(1, "hugepd follow called with no support for hugepage directory format\n");
5611 return NULL;
5612}
5613
61f77eda 5614struct page * __weak
9e5fc74c 5615follow_huge_pmd(struct mm_struct *mm, unsigned long address,
e66f17ff 5616 pmd_t *pmd, int flags)
9e5fc74c 5617{
e66f17ff
NH
5618 struct page *page = NULL;
5619 spinlock_t *ptl;
c9d398fa 5620 pte_t pte;
3faa52c0
JH
5621
5622 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
5623 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
5624 (FOLL_PIN | FOLL_GET)))
5625 return NULL;
5626
e66f17ff
NH
5627retry:
5628 ptl = pmd_lockptr(mm, pmd);
5629 spin_lock(ptl);
5630 /*
5631 * make sure that the address range covered by this pmd is not
5632 * unmapped from other threads.
5633 */
5634 if (!pmd_huge(*pmd))
5635 goto out;
c9d398fa
NH
5636 pte = huge_ptep_get((pte_t *)pmd);
5637 if (pte_present(pte)) {
97534127 5638 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
3faa52c0
JH
5639 /*
5640 * try_grab_page() should always succeed here, because: a) we
5641 * hold the pmd (ptl) lock, and b) we've just checked that the
5642 * huge pmd (head) page is present in the page tables. The ptl
5643 * prevents the head page and tail pages from being rearranged
5644 * in any way. So this page must be available at this point,
5645 * unless the page refcount overflowed:
5646 */
5647 if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
5648 page = NULL;
5649 goto out;
5650 }
e66f17ff 5651 } else {
c9d398fa 5652 if (is_hugetlb_entry_migration(pte)) {
e66f17ff
NH
5653 spin_unlock(ptl);
5654 __migration_entry_wait(mm, (pte_t *)pmd, ptl);
5655 goto retry;
5656 }
5657 /*
5658 * hwpoisoned entry is treated as no_page_table in
5659 * follow_page_mask().
5660 */
5661 }
5662out:
5663 spin_unlock(ptl);
9e5fc74c
SC
5664 return page;
5665}
5666
61f77eda 5667struct page * __weak
9e5fc74c 5668follow_huge_pud(struct mm_struct *mm, unsigned long address,
e66f17ff 5669 pud_t *pud, int flags)
9e5fc74c 5670{
3faa52c0 5671 if (flags & (FOLL_GET | FOLL_PIN))
e66f17ff 5672 return NULL;
9e5fc74c 5673
e66f17ff 5674 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
9e5fc74c
SC
5675}
5676
faaa5b62
AK
5677struct page * __weak
5678follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
5679{
3faa52c0 5680 if (flags & (FOLL_GET | FOLL_PIN))
faaa5b62
AK
5681 return NULL;
5682
5683 return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
5684}
5685
31caf665
NH
5686bool isolate_huge_page(struct page *page, struct list_head *list)
5687{
bcc54222
NH
5688 bool ret = true;
5689
31caf665 5690 spin_lock(&hugetlb_lock);
8f251a3d
MK
5691 if (!PageHeadHuge(page) ||
5692 !HPageMigratable(page) ||
0eb2df2b 5693 !get_page_unless_zero(page)) {
bcc54222
NH
5694 ret = false;
5695 goto unlock;
5696 }
8f251a3d 5697 ClearHPageMigratable(page);
31caf665 5698 list_move_tail(&page->lru, list);
bcc54222 5699unlock:
31caf665 5700 spin_unlock(&hugetlb_lock);
bcc54222 5701 return ret;
31caf665
NH
5702}
5703
5704void putback_active_hugepage(struct page *page)
5705{
31caf665 5706 spin_lock(&hugetlb_lock);
8f251a3d 5707 SetHPageMigratable(page);
31caf665
NH
5708 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
5709 spin_unlock(&hugetlb_lock);
5710 put_page(page);
5711}
ab5ac90a
MH
5712
5713void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
5714{
5715 struct hstate *h = page_hstate(oldpage);
5716
5717 hugetlb_cgroup_migrate(oldpage, newpage);
5718 set_page_owner_migrate_reason(newpage, reason);
5719
5720 /*
5721 * transfer temporary state of the new huge page. This is
5722 * reverse to other transitions because the newpage is going to
5723 * be final while the old one will be freed so it takes over
5724 * the temporary status.
5725 *
5726 * Also note that we have to transfer the per-node surplus state
5727 * here as well otherwise the global surplus count will not match
5728 * the per-node's.
5729 */
9157c311 5730 if (HPageTemporary(newpage)) {
ab5ac90a
MH
5731 int old_nid = page_to_nid(oldpage);
5732 int new_nid = page_to_nid(newpage);
5733
9157c311
MK
5734 SetHPageTemporary(oldpage);
5735 ClearHPageTemporary(newpage);
ab5ac90a 5736
5af1ab1d
ML
5737 /*
5738 * There is no need to transfer the per-node surplus state
5739 * when we do not cross the node.
5740 */
5741 if (new_nid == old_nid)
5742 return;
ab5ac90a
MH
5743 spin_lock(&hugetlb_lock);
5744 if (h->surplus_huge_pages_node[old_nid]) {
5745 h->surplus_huge_pages_node[old_nid]--;
5746 h->surplus_huge_pages_node[new_nid]++;
5747 }
5748 spin_unlock(&hugetlb_lock);
5749 }
5750}
cf11e85f 5751
6dfeaff9
PX
5752/*
5753 * This function will unconditionally remove all the shared pmd pgtable entries
5754 * within the specific vma for a hugetlbfs memory range.
5755 */
5756void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
5757{
5758 struct hstate *h = hstate_vma(vma);
5759 unsigned long sz = huge_page_size(h);
5760 struct mm_struct *mm = vma->vm_mm;
5761 struct mmu_notifier_range range;
5762 unsigned long address, start, end;
5763 spinlock_t *ptl;
5764 pte_t *ptep;
5765
5766 if (!(vma->vm_flags & VM_MAYSHARE))
5767 return;
5768
5769 start = ALIGN(vma->vm_start, PUD_SIZE);
5770 end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
5771
5772 if (start >= end)
5773 return;
5774
5775 /*
5776 * No need to call adjust_range_if_pmd_sharing_possible(), because
5777 * we have already done the PUD_SIZE alignment.
5778 */
5779 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
5780 start, end);
5781 mmu_notifier_invalidate_range_start(&range);
5782 i_mmap_lock_write(vma->vm_file->f_mapping);
5783 for (address = start; address < end; address += PUD_SIZE) {
5784 unsigned long tmp = address;
5785
5786 ptep = huge_pte_offset(mm, address, sz);
5787 if (!ptep)
5788 continue;
5789 ptl = huge_pte_lock(h, mm, ptep);
5790 /* We don't want 'address' to be changed */
5791 huge_pmd_unshare(mm, vma, &tmp, ptep);
5792 spin_unlock(ptl);
5793 }
5794 flush_hugetlb_tlb_range(vma, start, end);
5795 i_mmap_unlock_write(vma->vm_file->f_mapping);
5796 /*
5797 * No need to call mmu_notifier_invalidate_range(), see
5798 * Documentation/vm/mmu_notifier.rst.
5799 */
5800 mmu_notifier_invalidate_range_end(&range);
5801}
5802
cf11e85f 5803#ifdef CONFIG_CMA
cf11e85f
RG
5804static bool cma_reserve_called __initdata;
5805
5806static int __init cmdline_parse_hugetlb_cma(char *p)
5807{
5808 hugetlb_cma_size = memparse(p, &p);
5809 return 0;
5810}
5811
5812early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
5813
5814void __init hugetlb_cma_reserve(int order)
5815{
5816 unsigned long size, reserved, per_node;
5817 int nid;
5818
5819 cma_reserve_called = true;
5820
5821 if (!hugetlb_cma_size)
5822 return;
5823
5824 if (hugetlb_cma_size < (PAGE_SIZE << order)) {
5825 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
5826 (PAGE_SIZE << order) / SZ_1M);
5827 return;
5828 }
5829
5830 /*
5831 * If 3 GB area is requested on a machine with 4 numa nodes,
5832 * let's allocate 1 GB on first three nodes and ignore the last one.
5833 */
5834 per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
5835 pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
5836 hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
5837
5838 reserved = 0;
5839 for_each_node_state(nid, N_ONLINE) {
5840 int res;
2281f797 5841 char name[CMA_MAX_NAME];
cf11e85f
RG
5842
5843 size = min(per_node, hugetlb_cma_size - reserved);
5844 size = round_up(size, PAGE_SIZE << order);
5845
2281f797 5846 snprintf(name, sizeof(name), "hugetlb%d", nid);
cf11e85f 5847 res = cma_declare_contiguous_nid(0, size, 0, PAGE_SIZE << order,
29d0f41d 5848 0, false, name,
cf11e85f
RG
5849 &hugetlb_cma[nid], nid);
5850 if (res) {
5851 pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
5852 res, nid);
5853 continue;
5854 }
5855
5856 reserved += size;
5857 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
5858 size / SZ_1M, nid);
5859
5860 if (reserved >= hugetlb_cma_size)
5861 break;
5862 }
5863}
5864
5865void __init hugetlb_cma_check(void)
5866{
5867 if (!hugetlb_cma_size || cma_reserve_called)
5868 return;
5869
5870 pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
5871}
5872
5873#endif /* CONFIG_CMA */