mm, powerpc: use vma_kernel_pagesize() in vma_mmu_pagesize()
[linux-2.6-block.git] / mm / hugetlb.c
CommitLineData
1da177e4
LT
1/*
2 * Generic hugetlb support.
6d49e352 3 * (C) Nadia Yvette Chambers, April 2004
1da177e4 4 */
1da177e4
LT
5#include <linux/list.h>
6#include <linux/init.h>
1da177e4 7#include <linux/mm.h>
e1759c21 8#include <linux/seq_file.h>
1da177e4
LT
9#include <linux/sysctl.h>
10#include <linux/highmem.h>
cddb8a5c 11#include <linux/mmu_notifier.h>
1da177e4 12#include <linux/nodemask.h>
63551ae0 13#include <linux/pagemap.h>
5da7ca86 14#include <linux/mempolicy.h>
3b32123d 15#include <linux/compiler.h>
aea47ff3 16#include <linux/cpuset.h>
3935baa9 17#include <linux/mutex.h>
aa888a74 18#include <linux/bootmem.h>
a3437870 19#include <linux/sysfs.h>
5a0e3ad6 20#include <linux/slab.h>
63489f8e 21#include <linux/mmdebug.h>
174cd4b1 22#include <linux/sched/signal.h>
0fe6e20b 23#include <linux/rmap.h>
c6247f72 24#include <linux/string_helpers.h>
fd6a03ed
NH
25#include <linux/swap.h>
26#include <linux/swapops.h>
8382d914 27#include <linux/jhash.h>
d6606683 28
63551ae0
DG
29#include <asm/page.h>
30#include <asm/pgtable.h>
24669e58 31#include <asm/tlb.h>
63551ae0 32
24669e58 33#include <linux/io.h>
63551ae0 34#include <linux/hugetlb.h>
9dd540e2 35#include <linux/hugetlb_cgroup.h>
9a305230 36#include <linux/node.h>
1a1aad8a 37#include <linux/userfaultfd_k.h>
ab5ac90a 38#include <linux/page_owner.h>
7835e98b 39#include "internal.h"
1da177e4 40
c3f38a38 41int hugetlb_max_hstate __read_mostly;
e5ff2159
AK
42unsigned int default_hstate_idx;
43struct hstate hstates[HUGE_MAX_HSTATE];
641844f5
NH
44/*
45 * Minimum page order among possible hugepage sizes, set to a proper value
46 * at boot time.
47 */
48static unsigned int minimum_order __read_mostly = UINT_MAX;
e5ff2159 49
53ba51d2
JT
50__initdata LIST_HEAD(huge_boot_pages);
51
e5ff2159
AK
52/* for command line parsing */
53static struct hstate * __initdata parsed_hstate;
54static unsigned long __initdata default_hstate_max_huge_pages;
e11bfbfc 55static unsigned long __initdata default_hstate_size;
9fee021d 56static bool __initdata parsed_valid_hugepagesz = true;
e5ff2159 57
3935baa9 58/*
31caf665
NH
59 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
60 * free_huge_pages, and surplus_huge_pages.
3935baa9 61 */
c3f38a38 62DEFINE_SPINLOCK(hugetlb_lock);
0bd0f9fb 63
8382d914
DB
64/*
65 * Serializes faults on the same logical page. This is used to
66 * prevent spurious OOMs when the hugepage pool is fully utilized.
67 */
68static int num_fault_mutexes;
c672c7f2 69struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
8382d914 70
7ca02d0a
MK
71/* Forward declaration */
72static int hugetlb_acct_memory(struct hstate *h, long delta);
73
90481622
DG
74static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
75{
76 bool free = (spool->count == 0) && (spool->used_hpages == 0);
77
78 spin_unlock(&spool->lock);
79
80 /* If no pages are used, and no other handles to the subpool
7ca02d0a
MK
81 * remain, give up any reservations mased on minimum size and
82 * free the subpool */
83 if (free) {
84 if (spool->min_hpages != -1)
85 hugetlb_acct_memory(spool->hstate,
86 -spool->min_hpages);
90481622 87 kfree(spool);
7ca02d0a 88 }
90481622
DG
89}
90
7ca02d0a
MK
91struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
92 long min_hpages)
90481622
DG
93{
94 struct hugepage_subpool *spool;
95
c6a91820 96 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
90481622
DG
97 if (!spool)
98 return NULL;
99
100 spin_lock_init(&spool->lock);
101 spool->count = 1;
7ca02d0a
MK
102 spool->max_hpages = max_hpages;
103 spool->hstate = h;
104 spool->min_hpages = min_hpages;
105
106 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
107 kfree(spool);
108 return NULL;
109 }
110 spool->rsv_hpages = min_hpages;
90481622
DG
111
112 return spool;
113}
114
115void hugepage_put_subpool(struct hugepage_subpool *spool)
116{
117 spin_lock(&spool->lock);
118 BUG_ON(!spool->count);
119 spool->count--;
120 unlock_or_release_subpool(spool);
121}
122
1c5ecae3
MK
123/*
124 * Subpool accounting for allocating and reserving pages.
125 * Return -ENOMEM if there are not enough resources to satisfy the
126 * the request. Otherwise, return the number of pages by which the
127 * global pools must be adjusted (upward). The returned value may
128 * only be different than the passed value (delta) in the case where
129 * a subpool minimum size must be manitained.
130 */
131static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
90481622
DG
132 long delta)
133{
1c5ecae3 134 long ret = delta;
90481622
DG
135
136 if (!spool)
1c5ecae3 137 return ret;
90481622
DG
138
139 spin_lock(&spool->lock);
1c5ecae3
MK
140
141 if (spool->max_hpages != -1) { /* maximum size accounting */
142 if ((spool->used_hpages + delta) <= spool->max_hpages)
143 spool->used_hpages += delta;
144 else {
145 ret = -ENOMEM;
146 goto unlock_ret;
147 }
90481622 148 }
90481622 149
09a95e29
MK
150 /* minimum size accounting */
151 if (spool->min_hpages != -1 && spool->rsv_hpages) {
1c5ecae3
MK
152 if (delta > spool->rsv_hpages) {
153 /*
154 * Asking for more reserves than those already taken on
155 * behalf of subpool. Return difference.
156 */
157 ret = delta - spool->rsv_hpages;
158 spool->rsv_hpages = 0;
159 } else {
160 ret = 0; /* reserves already accounted for */
161 spool->rsv_hpages -= delta;
162 }
163 }
164
165unlock_ret:
166 spin_unlock(&spool->lock);
90481622
DG
167 return ret;
168}
169
1c5ecae3
MK
170/*
171 * Subpool accounting for freeing and unreserving pages.
172 * Return the number of global page reservations that must be dropped.
173 * The return value may only be different than the passed value (delta)
174 * in the case where a subpool minimum size must be maintained.
175 */
176static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
90481622
DG
177 long delta)
178{
1c5ecae3
MK
179 long ret = delta;
180
90481622 181 if (!spool)
1c5ecae3 182 return delta;
90481622
DG
183
184 spin_lock(&spool->lock);
1c5ecae3
MK
185
186 if (spool->max_hpages != -1) /* maximum size accounting */
187 spool->used_hpages -= delta;
188
09a95e29
MK
189 /* minimum size accounting */
190 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
1c5ecae3
MK
191 if (spool->rsv_hpages + delta <= spool->min_hpages)
192 ret = 0;
193 else
194 ret = spool->rsv_hpages + delta - spool->min_hpages;
195
196 spool->rsv_hpages += delta;
197 if (spool->rsv_hpages > spool->min_hpages)
198 spool->rsv_hpages = spool->min_hpages;
199 }
200
201 /*
202 * If hugetlbfs_put_super couldn't free spool due to an outstanding
203 * quota reference, free it now.
204 */
90481622 205 unlock_or_release_subpool(spool);
1c5ecae3
MK
206
207 return ret;
90481622
DG
208}
209
210static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
211{
212 return HUGETLBFS_SB(inode->i_sb)->spool;
213}
214
215static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
216{
496ad9aa 217 return subpool_inode(file_inode(vma->vm_file));
90481622
DG
218}
219
96822904
AW
220/*
221 * Region tracking -- allows tracking of reservations and instantiated pages
222 * across the pages in a mapping.
84afd99b 223 *
1dd308a7
MK
224 * The region data structures are embedded into a resv_map and protected
225 * by a resv_map's lock. The set of regions within the resv_map represent
226 * reservations for huge pages, or huge pages that have already been
227 * instantiated within the map. The from and to elements are huge page
228 * indicies into the associated mapping. from indicates the starting index
229 * of the region. to represents the first index past the end of the region.
230 *
231 * For example, a file region structure with from == 0 and to == 4 represents
232 * four huge pages in a mapping. It is important to note that the to element
233 * represents the first element past the end of the region. This is used in
234 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
235 *
236 * Interval notation of the form [from, to) will be used to indicate that
237 * the endpoint from is inclusive and to is exclusive.
96822904
AW
238 */
239struct file_region {
240 struct list_head link;
241 long from;
242 long to;
243};
244
1dd308a7
MK
245/*
246 * Add the huge page range represented by [f, t) to the reserve
5e911373
MK
247 * map. In the normal case, existing regions will be expanded
248 * to accommodate the specified range. Sufficient regions should
249 * exist for expansion due to the previous call to region_chg
250 * with the same range. However, it is possible that region_del
251 * could have been called after region_chg and modifed the map
252 * in such a way that no region exists to be expanded. In this
253 * case, pull a region descriptor from the cache associated with
254 * the map and use that for the new range.
cf3ad20b
MK
255 *
256 * Return the number of new huge pages added to the map. This
257 * number is greater than or equal to zero.
1dd308a7 258 */
1406ec9b 259static long region_add(struct resv_map *resv, long f, long t)
96822904 260{
1406ec9b 261 struct list_head *head = &resv->regions;
96822904 262 struct file_region *rg, *nrg, *trg;
cf3ad20b 263 long add = 0;
96822904 264
7b24d861 265 spin_lock(&resv->lock);
96822904
AW
266 /* Locate the region we are either in or before. */
267 list_for_each_entry(rg, head, link)
268 if (f <= rg->to)
269 break;
270
5e911373
MK
271 /*
272 * If no region exists which can be expanded to include the
273 * specified range, the list must have been modified by an
274 * interleving call to region_del(). Pull a region descriptor
275 * from the cache and use it for this range.
276 */
277 if (&rg->link == head || t < rg->from) {
278 VM_BUG_ON(resv->region_cache_count <= 0);
279
280 resv->region_cache_count--;
281 nrg = list_first_entry(&resv->region_cache, struct file_region,
282 link);
283 list_del(&nrg->link);
284
285 nrg->from = f;
286 nrg->to = t;
287 list_add(&nrg->link, rg->link.prev);
288
289 add += t - f;
290 goto out_locked;
291 }
292
96822904
AW
293 /* Round our left edge to the current segment if it encloses us. */
294 if (f > rg->from)
295 f = rg->from;
296
297 /* Check for and consume any regions we now overlap with. */
298 nrg = rg;
299 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
300 if (&rg->link == head)
301 break;
302 if (rg->from > t)
303 break;
304
305 /* If this area reaches higher then extend our area to
306 * include it completely. If this is not the first area
307 * which we intend to reuse, free it. */
308 if (rg->to > t)
309 t = rg->to;
310 if (rg != nrg) {
cf3ad20b
MK
311 /* Decrement return value by the deleted range.
312 * Another range will span this area so that by
313 * end of routine add will be >= zero
314 */
315 add -= (rg->to - rg->from);
96822904
AW
316 list_del(&rg->link);
317 kfree(rg);
318 }
319 }
cf3ad20b
MK
320
321 add += (nrg->from - f); /* Added to beginning of region */
96822904 322 nrg->from = f;
cf3ad20b 323 add += t - nrg->to; /* Added to end of region */
96822904 324 nrg->to = t;
cf3ad20b 325
5e911373
MK
326out_locked:
327 resv->adds_in_progress--;
7b24d861 328 spin_unlock(&resv->lock);
cf3ad20b
MK
329 VM_BUG_ON(add < 0);
330 return add;
96822904
AW
331}
332
1dd308a7
MK
333/*
334 * Examine the existing reserve map and determine how many
335 * huge pages in the specified range [f, t) are NOT currently
336 * represented. This routine is called before a subsequent
337 * call to region_add that will actually modify the reserve
338 * map to add the specified range [f, t). region_chg does
339 * not change the number of huge pages represented by the
340 * map. However, if the existing regions in the map can not
341 * be expanded to represent the new range, a new file_region
342 * structure is added to the map as a placeholder. This is
343 * so that the subsequent region_add call will have all the
344 * regions it needs and will not fail.
345 *
5e911373
MK
346 * Upon entry, region_chg will also examine the cache of region descriptors
347 * associated with the map. If there are not enough descriptors cached, one
348 * will be allocated for the in progress add operation.
349 *
350 * Returns the number of huge pages that need to be added to the existing
351 * reservation map for the range [f, t). This number is greater or equal to
352 * zero. -ENOMEM is returned if a new file_region structure or cache entry
353 * is needed and can not be allocated.
1dd308a7 354 */
1406ec9b 355static long region_chg(struct resv_map *resv, long f, long t)
96822904 356{
1406ec9b 357 struct list_head *head = &resv->regions;
7b24d861 358 struct file_region *rg, *nrg = NULL;
96822904
AW
359 long chg = 0;
360
7b24d861
DB
361retry:
362 spin_lock(&resv->lock);
5e911373
MK
363retry_locked:
364 resv->adds_in_progress++;
365
366 /*
367 * Check for sufficient descriptors in the cache to accommodate
368 * the number of in progress add operations.
369 */
370 if (resv->adds_in_progress > resv->region_cache_count) {
371 struct file_region *trg;
372
373 VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
374 /* Must drop lock to allocate a new descriptor. */
375 resv->adds_in_progress--;
376 spin_unlock(&resv->lock);
377
378 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
dbe409e4
MK
379 if (!trg) {
380 kfree(nrg);
5e911373 381 return -ENOMEM;
dbe409e4 382 }
5e911373
MK
383
384 spin_lock(&resv->lock);
385 list_add(&trg->link, &resv->region_cache);
386 resv->region_cache_count++;
387 goto retry_locked;
388 }
389
96822904
AW
390 /* Locate the region we are before or in. */
391 list_for_each_entry(rg, head, link)
392 if (f <= rg->to)
393 break;
394
395 /* If we are below the current region then a new region is required.
396 * Subtle, allocate a new region at the position but make it zero
397 * size such that we can guarantee to record the reservation. */
398 if (&rg->link == head || t < rg->from) {
7b24d861 399 if (!nrg) {
5e911373 400 resv->adds_in_progress--;
7b24d861
DB
401 spin_unlock(&resv->lock);
402 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
403 if (!nrg)
404 return -ENOMEM;
405
406 nrg->from = f;
407 nrg->to = f;
408 INIT_LIST_HEAD(&nrg->link);
409 goto retry;
410 }
96822904 411
7b24d861
DB
412 list_add(&nrg->link, rg->link.prev);
413 chg = t - f;
414 goto out_nrg;
96822904
AW
415 }
416
417 /* Round our left edge to the current segment if it encloses us. */
418 if (f > rg->from)
419 f = rg->from;
420 chg = t - f;
421
422 /* Check for and consume any regions we now overlap with. */
423 list_for_each_entry(rg, rg->link.prev, link) {
424 if (&rg->link == head)
425 break;
426 if (rg->from > t)
7b24d861 427 goto out;
96822904 428
25985edc 429 /* We overlap with this area, if it extends further than
96822904
AW
430 * us then we must extend ourselves. Account for its
431 * existing reservation. */
432 if (rg->to > t) {
433 chg += rg->to - t;
434 t = rg->to;
435 }
436 chg -= rg->to - rg->from;
437 }
7b24d861
DB
438
439out:
440 spin_unlock(&resv->lock);
441 /* We already know we raced and no longer need the new region */
442 kfree(nrg);
443 return chg;
444out_nrg:
445 spin_unlock(&resv->lock);
96822904
AW
446 return chg;
447}
448
5e911373
MK
449/*
450 * Abort the in progress add operation. The adds_in_progress field
451 * of the resv_map keeps track of the operations in progress between
452 * calls to region_chg and region_add. Operations are sometimes
453 * aborted after the call to region_chg. In such cases, region_abort
454 * is called to decrement the adds_in_progress counter.
455 *
456 * NOTE: The range arguments [f, t) are not needed or used in this
457 * routine. They are kept to make reading the calling code easier as
458 * arguments will match the associated region_chg call.
459 */
460static void region_abort(struct resv_map *resv, long f, long t)
461{
462 spin_lock(&resv->lock);
463 VM_BUG_ON(!resv->region_cache_count);
464 resv->adds_in_progress--;
465 spin_unlock(&resv->lock);
466}
467
1dd308a7 468/*
feba16e2
MK
469 * Delete the specified range [f, t) from the reserve map. If the
470 * t parameter is LONG_MAX, this indicates that ALL regions after f
471 * should be deleted. Locate the regions which intersect [f, t)
472 * and either trim, delete or split the existing regions.
473 *
474 * Returns the number of huge pages deleted from the reserve map.
475 * In the normal case, the return value is zero or more. In the
476 * case where a region must be split, a new region descriptor must
477 * be allocated. If the allocation fails, -ENOMEM will be returned.
478 * NOTE: If the parameter t == LONG_MAX, then we will never split
479 * a region and possibly return -ENOMEM. Callers specifying
480 * t == LONG_MAX do not need to check for -ENOMEM error.
1dd308a7 481 */
feba16e2 482static long region_del(struct resv_map *resv, long f, long t)
96822904 483{
1406ec9b 484 struct list_head *head = &resv->regions;
96822904 485 struct file_region *rg, *trg;
feba16e2
MK
486 struct file_region *nrg = NULL;
487 long del = 0;
96822904 488
feba16e2 489retry:
7b24d861 490 spin_lock(&resv->lock);
feba16e2 491 list_for_each_entry_safe(rg, trg, head, link) {
dbe409e4
MK
492 /*
493 * Skip regions before the range to be deleted. file_region
494 * ranges are normally of the form [from, to). However, there
495 * may be a "placeholder" entry in the map which is of the form
496 * (from, to) with from == to. Check for placeholder entries
497 * at the beginning of the range to be deleted.
498 */
499 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
feba16e2 500 continue;
dbe409e4 501
feba16e2 502 if (rg->from >= t)
96822904 503 break;
96822904 504
feba16e2
MK
505 if (f > rg->from && t < rg->to) { /* Must split region */
506 /*
507 * Check for an entry in the cache before dropping
508 * lock and attempting allocation.
509 */
510 if (!nrg &&
511 resv->region_cache_count > resv->adds_in_progress) {
512 nrg = list_first_entry(&resv->region_cache,
513 struct file_region,
514 link);
515 list_del(&nrg->link);
516 resv->region_cache_count--;
517 }
96822904 518
feba16e2
MK
519 if (!nrg) {
520 spin_unlock(&resv->lock);
521 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
522 if (!nrg)
523 return -ENOMEM;
524 goto retry;
525 }
526
527 del += t - f;
528
529 /* New entry for end of split region */
530 nrg->from = t;
531 nrg->to = rg->to;
532 INIT_LIST_HEAD(&nrg->link);
533
534 /* Original entry is trimmed */
535 rg->to = f;
536
537 list_add(&nrg->link, &rg->link);
538 nrg = NULL;
96822904 539 break;
feba16e2
MK
540 }
541
542 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
543 del += rg->to - rg->from;
544 list_del(&rg->link);
545 kfree(rg);
546 continue;
547 }
548
549 if (f <= rg->from) { /* Trim beginning of region */
550 del += t - rg->from;
551 rg->from = t;
552 } else { /* Trim end of region */
553 del += rg->to - f;
554 rg->to = f;
555 }
96822904 556 }
7b24d861 557
7b24d861 558 spin_unlock(&resv->lock);
feba16e2
MK
559 kfree(nrg);
560 return del;
96822904
AW
561}
562
b5cec28d
MK
563/*
564 * A rare out of memory error was encountered which prevented removal of
565 * the reserve map region for a page. The huge page itself was free'ed
566 * and removed from the page cache. This routine will adjust the subpool
567 * usage count, and the global reserve count if needed. By incrementing
568 * these counts, the reserve map entry which could not be deleted will
569 * appear as a "reserved" entry instead of simply dangling with incorrect
570 * counts.
571 */
72e2936c 572void hugetlb_fix_reserve_counts(struct inode *inode)
b5cec28d
MK
573{
574 struct hugepage_subpool *spool = subpool_inode(inode);
575 long rsv_adjust;
576
577 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
72e2936c 578 if (rsv_adjust) {
b5cec28d
MK
579 struct hstate *h = hstate_inode(inode);
580
581 hugetlb_acct_memory(h, 1);
582 }
583}
584
1dd308a7
MK
585/*
586 * Count and return the number of huge pages in the reserve map
587 * that intersect with the range [f, t).
588 */
1406ec9b 589static long region_count(struct resv_map *resv, long f, long t)
84afd99b 590{
1406ec9b 591 struct list_head *head = &resv->regions;
84afd99b
AW
592 struct file_region *rg;
593 long chg = 0;
594
7b24d861 595 spin_lock(&resv->lock);
84afd99b
AW
596 /* Locate each segment we overlap with, and count that overlap. */
597 list_for_each_entry(rg, head, link) {
f2135a4a
WSH
598 long seg_from;
599 long seg_to;
84afd99b
AW
600
601 if (rg->to <= f)
602 continue;
603 if (rg->from >= t)
604 break;
605
606 seg_from = max(rg->from, f);
607 seg_to = min(rg->to, t);
608
609 chg += seg_to - seg_from;
610 }
7b24d861 611 spin_unlock(&resv->lock);
84afd99b
AW
612
613 return chg;
614}
615
e7c4b0bf
AW
616/*
617 * Convert the address within this vma to the page offset within
618 * the mapping, in pagecache page units; huge pages here.
619 */
a5516438
AK
620static pgoff_t vma_hugecache_offset(struct hstate *h,
621 struct vm_area_struct *vma, unsigned long address)
e7c4b0bf 622{
a5516438
AK
623 return ((address - vma->vm_start) >> huge_page_shift(h)) +
624 (vma->vm_pgoff >> huge_page_order(h));
e7c4b0bf
AW
625}
626
0fe6e20b
NH
627pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
628 unsigned long address)
629{
630 return vma_hugecache_offset(hstate_vma(vma), vma, address);
631}
dee41079 632EXPORT_SYMBOL_GPL(linear_hugepage_index);
0fe6e20b 633
08fba699
MG
634/*
635 * Return the size of the pages allocated when backing a VMA. In the majority
636 * cases this will be same size as used by the page table entries.
637 */
638unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
639{
640 struct hstate *hstate;
641
642 if (!is_vm_hugetlb_page(vma))
643 return PAGE_SIZE;
644
645 hstate = hstate_vma(vma);
646
2415cf12 647 return 1UL << huge_page_shift(hstate);
08fba699 648}
f340ca0f 649EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
08fba699 650
3340289d
MG
651/*
652 * Return the page size being used by the MMU to back a VMA. In the majority
653 * of cases, the page size used by the kernel matches the MMU size. On
09135cc5
DW
654 * architectures where it differs, an architecture-specific 'strong'
655 * version of this symbol is required.
3340289d 656 */
09135cc5 657__weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
3340289d
MG
658{
659 return vma_kernel_pagesize(vma);
660}
3340289d 661
84afd99b
AW
662/*
663 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
664 * bits of the reservation map pointer, which are always clear due to
665 * alignment.
666 */
667#define HPAGE_RESV_OWNER (1UL << 0)
668#define HPAGE_RESV_UNMAPPED (1UL << 1)
04f2cbe3 669#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
84afd99b 670
a1e78772
MG
671/*
672 * These helpers are used to track how many pages are reserved for
673 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
674 * is guaranteed to have their future faults succeed.
675 *
676 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
677 * the reserve counters are updated with the hugetlb_lock held. It is safe
678 * to reset the VMA at fork() time as it is not in use yet and there is no
679 * chance of the global counters getting corrupted as a result of the values.
84afd99b
AW
680 *
681 * The private mapping reservation is represented in a subtly different
682 * manner to a shared mapping. A shared mapping has a region map associated
683 * with the underlying file, this region map represents the backing file
684 * pages which have ever had a reservation assigned which this persists even
685 * after the page is instantiated. A private mapping has a region map
686 * associated with the original mmap which is attached to all VMAs which
687 * reference it, this region map represents those offsets which have consumed
688 * reservation ie. where pages have been instantiated.
a1e78772 689 */
e7c4b0bf
AW
690static unsigned long get_vma_private_data(struct vm_area_struct *vma)
691{
692 return (unsigned long)vma->vm_private_data;
693}
694
695static void set_vma_private_data(struct vm_area_struct *vma,
696 unsigned long value)
697{
698 vma->vm_private_data = (void *)value;
699}
700
9119a41e 701struct resv_map *resv_map_alloc(void)
84afd99b
AW
702{
703 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
5e911373
MK
704 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
705
706 if (!resv_map || !rg) {
707 kfree(resv_map);
708 kfree(rg);
84afd99b 709 return NULL;
5e911373 710 }
84afd99b
AW
711
712 kref_init(&resv_map->refs);
7b24d861 713 spin_lock_init(&resv_map->lock);
84afd99b
AW
714 INIT_LIST_HEAD(&resv_map->regions);
715
5e911373
MK
716 resv_map->adds_in_progress = 0;
717
718 INIT_LIST_HEAD(&resv_map->region_cache);
719 list_add(&rg->link, &resv_map->region_cache);
720 resv_map->region_cache_count = 1;
721
84afd99b
AW
722 return resv_map;
723}
724
9119a41e 725void resv_map_release(struct kref *ref)
84afd99b
AW
726{
727 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
5e911373
MK
728 struct list_head *head = &resv_map->region_cache;
729 struct file_region *rg, *trg;
84afd99b
AW
730
731 /* Clear out any active regions before we release the map. */
feba16e2 732 region_del(resv_map, 0, LONG_MAX);
5e911373
MK
733
734 /* ... and any entries left in the cache */
735 list_for_each_entry_safe(rg, trg, head, link) {
736 list_del(&rg->link);
737 kfree(rg);
738 }
739
740 VM_BUG_ON(resv_map->adds_in_progress);
741
84afd99b
AW
742 kfree(resv_map);
743}
744
4e35f483
JK
745static inline struct resv_map *inode_resv_map(struct inode *inode)
746{
747 return inode->i_mapping->private_data;
748}
749
84afd99b 750static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
a1e78772 751{
81d1b09c 752 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
4e35f483
JK
753 if (vma->vm_flags & VM_MAYSHARE) {
754 struct address_space *mapping = vma->vm_file->f_mapping;
755 struct inode *inode = mapping->host;
756
757 return inode_resv_map(inode);
758
759 } else {
84afd99b
AW
760 return (struct resv_map *)(get_vma_private_data(vma) &
761 ~HPAGE_RESV_MASK);
4e35f483 762 }
a1e78772
MG
763}
764
84afd99b 765static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
a1e78772 766{
81d1b09c
SL
767 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
768 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
a1e78772 769
84afd99b
AW
770 set_vma_private_data(vma, (get_vma_private_data(vma) &
771 HPAGE_RESV_MASK) | (unsigned long)map);
04f2cbe3
MG
772}
773
774static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
775{
81d1b09c
SL
776 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
777 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
e7c4b0bf
AW
778
779 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
04f2cbe3
MG
780}
781
782static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
783{
81d1b09c 784 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
e7c4b0bf
AW
785
786 return (get_vma_private_data(vma) & flag) != 0;
a1e78772
MG
787}
788
04f2cbe3 789/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
a1e78772
MG
790void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
791{
81d1b09c 792 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
f83a275d 793 if (!(vma->vm_flags & VM_MAYSHARE))
a1e78772
MG
794 vma->vm_private_data = (void *)0;
795}
796
797/* Returns true if the VMA has associated reserve pages */
559ec2f8 798static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
a1e78772 799{
af0ed73e
JK
800 if (vma->vm_flags & VM_NORESERVE) {
801 /*
802 * This address is already reserved by other process(chg == 0),
803 * so, we should decrement reserved count. Without decrementing,
804 * reserve count remains after releasing inode, because this
805 * allocated page will go into page cache and is regarded as
806 * coming from reserved pool in releasing step. Currently, we
807 * don't have any other solution to deal with this situation
808 * properly, so add work-around here.
809 */
810 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
559ec2f8 811 return true;
af0ed73e 812 else
559ec2f8 813 return false;
af0ed73e 814 }
a63884e9
JK
815
816 /* Shared mappings always use reserves */
1fb1b0e9
MK
817 if (vma->vm_flags & VM_MAYSHARE) {
818 /*
819 * We know VM_NORESERVE is not set. Therefore, there SHOULD
820 * be a region map for all pages. The only situation where
821 * there is no region map is if a hole was punched via
822 * fallocate. In this case, there really are no reverves to
823 * use. This situation is indicated if chg != 0.
824 */
825 if (chg)
826 return false;
827 else
828 return true;
829 }
a63884e9
JK
830
831 /*
832 * Only the process that called mmap() has reserves for
833 * private mappings.
834 */
67961f9d
MK
835 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
836 /*
837 * Like the shared case above, a hole punch or truncate
838 * could have been performed on the private mapping.
839 * Examine the value of chg to determine if reserves
840 * actually exist or were previously consumed.
841 * Very Subtle - The value of chg comes from a previous
842 * call to vma_needs_reserves(). The reserve map for
843 * private mappings has different (opposite) semantics
844 * than that of shared mappings. vma_needs_reserves()
845 * has already taken this difference in semantics into
846 * account. Therefore, the meaning of chg is the same
847 * as in the shared case above. Code could easily be
848 * combined, but keeping it separate draws attention to
849 * subtle differences.
850 */
851 if (chg)
852 return false;
853 else
854 return true;
855 }
a63884e9 856
559ec2f8 857 return false;
a1e78772
MG
858}
859
a5516438 860static void enqueue_huge_page(struct hstate *h, struct page *page)
1da177e4
LT
861{
862 int nid = page_to_nid(page);
0edaecfa 863 list_move(&page->lru, &h->hugepage_freelists[nid]);
a5516438
AK
864 h->free_huge_pages++;
865 h->free_huge_pages_node[nid]++;
1da177e4
LT
866}
867
94310cbc 868static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
bf50bab2
NH
869{
870 struct page *page;
871
c8721bbb 872 list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
243abd5b 873 if (!PageHWPoison(page))
c8721bbb
NH
874 break;
875 /*
876 * if 'non-isolated free hugepage' not found on the list,
877 * the allocation fails.
878 */
879 if (&h->hugepage_freelists[nid] == &page->lru)
bf50bab2 880 return NULL;
0edaecfa 881 list_move(&page->lru, &h->hugepage_activelist);
a9869b83 882 set_page_refcounted(page);
bf50bab2
NH
883 h->free_huge_pages--;
884 h->free_huge_pages_node[nid]--;
885 return page;
886}
887
3e59fcb0
MH
888static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
889 nodemask_t *nmask)
94310cbc 890{
3e59fcb0
MH
891 unsigned int cpuset_mems_cookie;
892 struct zonelist *zonelist;
893 struct zone *zone;
894 struct zoneref *z;
895 int node = -1;
94310cbc 896
3e59fcb0
MH
897 zonelist = node_zonelist(nid, gfp_mask);
898
899retry_cpuset:
900 cpuset_mems_cookie = read_mems_allowed_begin();
901 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
902 struct page *page;
903
904 if (!cpuset_zone_allowed(zone, gfp_mask))
905 continue;
906 /*
907 * no need to ask again on the same node. Pool is node rather than
908 * zone aware
909 */
910 if (zone_to_nid(zone) == node)
911 continue;
912 node = zone_to_nid(zone);
94310cbc 913
94310cbc
AK
914 page = dequeue_huge_page_node_exact(h, node);
915 if (page)
916 return page;
917 }
3e59fcb0
MH
918 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
919 goto retry_cpuset;
920
94310cbc
AK
921 return NULL;
922}
923
86cdb465
NH
924/* Movability of hugepages depends on migration support. */
925static inline gfp_t htlb_alloc_mask(struct hstate *h)
926{
d6cb41cc 927 if (hugepage_migration_supported(h))
86cdb465
NH
928 return GFP_HIGHUSER_MOVABLE;
929 else
930 return GFP_HIGHUSER;
931}
932
a5516438
AK
933static struct page *dequeue_huge_page_vma(struct hstate *h,
934 struct vm_area_struct *vma,
af0ed73e
JK
935 unsigned long address, int avoid_reserve,
936 long chg)
1da177e4 937{
3e59fcb0 938 struct page *page;
480eccf9 939 struct mempolicy *mpol;
04ec6264 940 gfp_t gfp_mask;
3e59fcb0 941 nodemask_t *nodemask;
04ec6264 942 int nid;
1da177e4 943
a1e78772
MG
944 /*
945 * A child process with MAP_PRIVATE mappings created by their parent
946 * have no page reserves. This check ensures that reservations are
947 * not "stolen". The child may still get SIGKILLed
948 */
af0ed73e 949 if (!vma_has_reserves(vma, chg) &&
a5516438 950 h->free_huge_pages - h->resv_huge_pages == 0)
c0ff7453 951 goto err;
a1e78772 952
04f2cbe3 953 /* If reserves cannot be used, ensure enough pages are in the pool */
a5516438 954 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
6eab04a8 955 goto err;
04f2cbe3 956
04ec6264
VB
957 gfp_mask = htlb_alloc_mask(h);
958 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
3e59fcb0
MH
959 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
960 if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
961 SetPagePrivate(page);
962 h->resv_huge_pages--;
1da177e4 963 }
cc9a6c87 964
52cd3b07 965 mpol_cond_put(mpol);
1da177e4 966 return page;
cc9a6c87
MG
967
968err:
cc9a6c87 969 return NULL;
1da177e4
LT
970}
971
1cac6f2c
LC
972/*
973 * common helper functions for hstate_next_node_to_{alloc|free}.
974 * We may have allocated or freed a huge page based on a different
975 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
976 * be outside of *nodes_allowed. Ensure that we use an allowed
977 * node for alloc or free.
978 */
979static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
980{
0edaf86c 981 nid = next_node_in(nid, *nodes_allowed);
1cac6f2c
LC
982 VM_BUG_ON(nid >= MAX_NUMNODES);
983
984 return nid;
985}
986
987static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
988{
989 if (!node_isset(nid, *nodes_allowed))
990 nid = next_node_allowed(nid, nodes_allowed);
991 return nid;
992}
993
994/*
995 * returns the previously saved node ["this node"] from which to
996 * allocate a persistent huge page for the pool and advance the
997 * next node from which to allocate, handling wrap at end of node
998 * mask.
999 */
1000static int hstate_next_node_to_alloc(struct hstate *h,
1001 nodemask_t *nodes_allowed)
1002{
1003 int nid;
1004
1005 VM_BUG_ON(!nodes_allowed);
1006
1007 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1008 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1009
1010 return nid;
1011}
1012
1013/*
1014 * helper for free_pool_huge_page() - return the previously saved
1015 * node ["this node"] from which to free a huge page. Advance the
1016 * next node id whether or not we find a free huge page to free so
1017 * that the next attempt to free addresses the next node.
1018 */
1019static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1020{
1021 int nid;
1022
1023 VM_BUG_ON(!nodes_allowed);
1024
1025 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1026 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1027
1028 return nid;
1029}
1030
1031#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
1032 for (nr_nodes = nodes_weight(*mask); \
1033 nr_nodes > 0 && \
1034 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
1035 nr_nodes--)
1036
1037#define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1038 for (nr_nodes = nodes_weight(*mask); \
1039 nr_nodes > 0 && \
1040 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1041 nr_nodes--)
1042
e1073d1e 1043#ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
944d9fec 1044static void destroy_compound_gigantic_page(struct page *page,
d00181b9 1045 unsigned int order)
944d9fec
LC
1046{
1047 int i;
1048 int nr_pages = 1 << order;
1049 struct page *p = page + 1;
1050
c8cc708a 1051 atomic_set(compound_mapcount_ptr(page), 0);
944d9fec 1052 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1d798ca3 1053 clear_compound_head(p);
944d9fec 1054 set_page_refcounted(p);
944d9fec
LC
1055 }
1056
1057 set_compound_order(page, 0);
1058 __ClearPageHead(page);
1059}
1060
d00181b9 1061static void free_gigantic_page(struct page *page, unsigned int order)
944d9fec
LC
1062{
1063 free_contig_range(page_to_pfn(page), 1 << order);
1064}
1065
1066static int __alloc_gigantic_page(unsigned long start_pfn,
79b63f12 1067 unsigned long nr_pages, gfp_t gfp_mask)
944d9fec
LC
1068{
1069 unsigned long end_pfn = start_pfn + nr_pages;
ca96b625 1070 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
79b63f12 1071 gfp_mask);
944d9fec
LC
1072}
1073
f44b2dda
JK
1074static bool pfn_range_valid_gigantic(struct zone *z,
1075 unsigned long start_pfn, unsigned long nr_pages)
944d9fec
LC
1076{
1077 unsigned long i, end_pfn = start_pfn + nr_pages;
1078 struct page *page;
1079
1080 for (i = start_pfn; i < end_pfn; i++) {
1081 if (!pfn_valid(i))
1082 return false;
1083
1084 page = pfn_to_page(i);
1085
f44b2dda
JK
1086 if (page_zone(page) != z)
1087 return false;
1088
944d9fec
LC
1089 if (PageReserved(page))
1090 return false;
1091
1092 if (page_count(page) > 0)
1093 return false;
1094
1095 if (PageHuge(page))
1096 return false;
1097 }
1098
1099 return true;
1100}
1101
1102static bool zone_spans_last_pfn(const struct zone *zone,
1103 unsigned long start_pfn, unsigned long nr_pages)
1104{
1105 unsigned long last_pfn = start_pfn + nr_pages - 1;
1106 return zone_spans_pfn(zone, last_pfn);
1107}
1108
d9cc948f
MH
1109static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1110 int nid, nodemask_t *nodemask)
944d9fec 1111{
79b63f12 1112 unsigned int order = huge_page_order(h);
944d9fec
LC
1113 unsigned long nr_pages = 1 << order;
1114 unsigned long ret, pfn, flags;
79b63f12
MH
1115 struct zonelist *zonelist;
1116 struct zone *zone;
1117 struct zoneref *z;
944d9fec 1118
79b63f12 1119 zonelist = node_zonelist(nid, gfp_mask);
d9cc948f 1120 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nodemask) {
79b63f12 1121 spin_lock_irqsave(&zone->lock, flags);
944d9fec 1122
79b63f12
MH
1123 pfn = ALIGN(zone->zone_start_pfn, nr_pages);
1124 while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
1125 if (pfn_range_valid_gigantic(zone, pfn, nr_pages)) {
944d9fec
LC
1126 /*
1127 * We release the zone lock here because
1128 * alloc_contig_range() will also lock the zone
1129 * at some point. If there's an allocation
1130 * spinning on this lock, it may win the race
1131 * and cause alloc_contig_range() to fail...
1132 */
79b63f12
MH
1133 spin_unlock_irqrestore(&zone->lock, flags);
1134 ret = __alloc_gigantic_page(pfn, nr_pages, gfp_mask);
944d9fec
LC
1135 if (!ret)
1136 return pfn_to_page(pfn);
79b63f12 1137 spin_lock_irqsave(&zone->lock, flags);
944d9fec
LC
1138 }
1139 pfn += nr_pages;
1140 }
1141
79b63f12 1142 spin_unlock_irqrestore(&zone->lock, flags);
944d9fec
LC
1143 }
1144
1145 return NULL;
1146}
1147
1148static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
d00181b9 1149static void prep_compound_gigantic_page(struct page *page, unsigned int order);
944d9fec 1150
e1073d1e 1151#else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
944d9fec 1152static inline bool gigantic_page_supported(void) { return false; }
d9cc948f
MH
1153static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1154 int nid, nodemask_t *nodemask) { return NULL; }
d00181b9 1155static inline void free_gigantic_page(struct page *page, unsigned int order) { }
944d9fec 1156static inline void destroy_compound_gigantic_page(struct page *page,
d00181b9 1157 unsigned int order) { }
944d9fec
LC
1158#endif
1159
a5516438 1160static void update_and_free_page(struct hstate *h, struct page *page)
6af2acb6
AL
1161{
1162 int i;
a5516438 1163
944d9fec
LC
1164 if (hstate_is_gigantic(h) && !gigantic_page_supported())
1165 return;
18229df5 1166
a5516438
AK
1167 h->nr_huge_pages--;
1168 h->nr_huge_pages_node[page_to_nid(page)]--;
1169 for (i = 0; i < pages_per_huge_page(h); i++) {
32f84528
CF
1170 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1171 1 << PG_referenced | 1 << PG_dirty |
a7407a27
LC
1172 1 << PG_active | 1 << PG_private |
1173 1 << PG_writeback);
6af2acb6 1174 }
309381fe 1175 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
f1e61557 1176 set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
6af2acb6 1177 set_page_refcounted(page);
944d9fec
LC
1178 if (hstate_is_gigantic(h)) {
1179 destroy_compound_gigantic_page(page, huge_page_order(h));
1180 free_gigantic_page(page, huge_page_order(h));
1181 } else {
944d9fec
LC
1182 __free_pages(page, huge_page_order(h));
1183 }
6af2acb6
AL
1184}
1185
e5ff2159
AK
1186struct hstate *size_to_hstate(unsigned long size)
1187{
1188 struct hstate *h;
1189
1190 for_each_hstate(h) {
1191 if (huge_page_size(h) == size)
1192 return h;
1193 }
1194 return NULL;
1195}
1196
bcc54222
NH
1197/*
1198 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1199 * to hstate->hugepage_activelist.)
1200 *
1201 * This function can be called for tail pages, but never returns true for them.
1202 */
1203bool page_huge_active(struct page *page)
1204{
1205 VM_BUG_ON_PAGE(!PageHuge(page), page);
1206 return PageHead(page) && PagePrivate(&page[1]);
1207}
1208
1209/* never called for tail page */
1210static void set_page_huge_active(struct page *page)
1211{
1212 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1213 SetPagePrivate(&page[1]);
1214}
1215
1216static void clear_page_huge_active(struct page *page)
1217{
1218 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1219 ClearPagePrivate(&page[1]);
1220}
1221
ab5ac90a
MH
1222/*
1223 * Internal hugetlb specific page flag. Do not use outside of the hugetlb
1224 * code
1225 */
1226static inline bool PageHugeTemporary(struct page *page)
1227{
1228 if (!PageHuge(page))
1229 return false;
1230
1231 return (unsigned long)page[2].mapping == -1U;
1232}
1233
1234static inline void SetPageHugeTemporary(struct page *page)
1235{
1236 page[2].mapping = (void *)-1U;
1237}
1238
1239static inline void ClearPageHugeTemporary(struct page *page)
1240{
1241 page[2].mapping = NULL;
1242}
1243
8f1d26d0 1244void free_huge_page(struct page *page)
27a85ef1 1245{
a5516438
AK
1246 /*
1247 * Can't pass hstate in here because it is called from the
1248 * compound page destructor.
1249 */
e5ff2159 1250 struct hstate *h = page_hstate(page);
7893d1d5 1251 int nid = page_to_nid(page);
90481622
DG
1252 struct hugepage_subpool *spool =
1253 (struct hugepage_subpool *)page_private(page);
07443a85 1254 bool restore_reserve;
27a85ef1 1255
e5df70ab 1256 set_page_private(page, 0);
23be7468 1257 page->mapping = NULL;
b4330afb
MK
1258 VM_BUG_ON_PAGE(page_count(page), page);
1259 VM_BUG_ON_PAGE(page_mapcount(page), page);
07443a85 1260 restore_reserve = PagePrivate(page);
16c794b4 1261 ClearPagePrivate(page);
27a85ef1 1262
1c5ecae3
MK
1263 /*
1264 * A return code of zero implies that the subpool will be under its
1265 * minimum size if the reservation is not restored after page is free.
1266 * Therefore, force restore_reserve operation.
1267 */
1268 if (hugepage_subpool_put_pages(spool, 1) == 0)
1269 restore_reserve = true;
1270
27a85ef1 1271 spin_lock(&hugetlb_lock);
bcc54222 1272 clear_page_huge_active(page);
6d76dcf4
AK
1273 hugetlb_cgroup_uncharge_page(hstate_index(h),
1274 pages_per_huge_page(h), page);
07443a85
JK
1275 if (restore_reserve)
1276 h->resv_huge_pages++;
1277
ab5ac90a
MH
1278 if (PageHugeTemporary(page)) {
1279 list_del(&page->lru);
1280 ClearPageHugeTemporary(page);
1281 update_and_free_page(h, page);
1282 } else if (h->surplus_huge_pages_node[nid]) {
0edaecfa
AK
1283 /* remove the page from active list */
1284 list_del(&page->lru);
a5516438
AK
1285 update_and_free_page(h, page);
1286 h->surplus_huge_pages--;
1287 h->surplus_huge_pages_node[nid]--;
7893d1d5 1288 } else {
5d3a551c 1289 arch_clear_hugepage_flags(page);
a5516438 1290 enqueue_huge_page(h, page);
7893d1d5 1291 }
27a85ef1
DG
1292 spin_unlock(&hugetlb_lock);
1293}
1294
a5516438 1295static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
b7ba30c6 1296{
0edaecfa 1297 INIT_LIST_HEAD(&page->lru);
f1e61557 1298 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
b7ba30c6 1299 spin_lock(&hugetlb_lock);
9dd540e2 1300 set_hugetlb_cgroup(page, NULL);
a5516438
AK
1301 h->nr_huge_pages++;
1302 h->nr_huge_pages_node[nid]++;
b7ba30c6 1303 spin_unlock(&hugetlb_lock);
b7ba30c6
AK
1304}
1305
d00181b9 1306static void prep_compound_gigantic_page(struct page *page, unsigned int order)
20a0307c
WF
1307{
1308 int i;
1309 int nr_pages = 1 << order;
1310 struct page *p = page + 1;
1311
1312 /* we rely on prep_new_huge_page to set the destructor */
1313 set_compound_order(page, order);
ef5a22be 1314 __ClearPageReserved(page);
de09d31d 1315 __SetPageHead(page);
20a0307c 1316 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
ef5a22be
AA
1317 /*
1318 * For gigantic hugepages allocated through bootmem at
1319 * boot, it's safer to be consistent with the not-gigantic
1320 * hugepages and clear the PG_reserved bit from all tail pages
1321 * too. Otherwse drivers using get_user_pages() to access tail
1322 * pages may get the reference counting wrong if they see
1323 * PG_reserved set on a tail page (despite the head page not
1324 * having PG_reserved set). Enforcing this consistency between
1325 * head and tail pages allows drivers to optimize away a check
1326 * on the head page when they need know if put_page() is needed
1327 * after get_user_pages().
1328 */
1329 __ClearPageReserved(p);
58a84aa9 1330 set_page_count(p, 0);
1d798ca3 1331 set_compound_head(p, page);
20a0307c 1332 }
b4330afb 1333 atomic_set(compound_mapcount_ptr(page), -1);
20a0307c
WF
1334}
1335
7795912c
AM
1336/*
1337 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1338 * transparent huge pages. See the PageTransHuge() documentation for more
1339 * details.
1340 */
20a0307c
WF
1341int PageHuge(struct page *page)
1342{
20a0307c
WF
1343 if (!PageCompound(page))
1344 return 0;
1345
1346 page = compound_head(page);
f1e61557 1347 return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
20a0307c 1348}
43131e14
NH
1349EXPORT_SYMBOL_GPL(PageHuge);
1350
27c73ae7
AA
1351/*
1352 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1353 * normal or transparent huge pages.
1354 */
1355int PageHeadHuge(struct page *page_head)
1356{
27c73ae7
AA
1357 if (!PageHead(page_head))
1358 return 0;
1359
758f66a2 1360 return get_compound_page_dtor(page_head) == free_huge_page;
27c73ae7 1361}
27c73ae7 1362
13d60f4b
ZY
1363pgoff_t __basepage_index(struct page *page)
1364{
1365 struct page *page_head = compound_head(page);
1366 pgoff_t index = page_index(page_head);
1367 unsigned long compound_idx;
1368
1369 if (!PageHuge(page_head))
1370 return page_index(page);
1371
1372 if (compound_order(page_head) >= MAX_ORDER)
1373 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1374 else
1375 compound_idx = page - page_head;
1376
1377 return (index << compound_order(page_head)) + compound_idx;
1378}
1379
0c397dae 1380static struct page *alloc_buddy_huge_page(struct hstate *h,
af0fb9df 1381 gfp_t gfp_mask, int nid, nodemask_t *nmask)
1da177e4 1382{
af0fb9df 1383 int order = huge_page_order(h);
1da177e4 1384 struct page *page;
f96efd58 1385
af0fb9df
MH
1386 gfp_mask |= __GFP_COMP|__GFP_RETRY_MAYFAIL|__GFP_NOWARN;
1387 if (nid == NUMA_NO_NODE)
1388 nid = numa_mem_id();
1389 page = __alloc_pages_nodemask(gfp_mask, order, nid, nmask);
1390 if (page)
1391 __count_vm_event(HTLB_BUDDY_PGALLOC);
1392 else
1393 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
63b4613c
NA
1394
1395 return page;
1396}
1397
0c397dae
MH
1398/*
1399 * Common helper to allocate a fresh hugetlb page. All specific allocators
1400 * should use this function to get new hugetlb pages
1401 */
1402static struct page *alloc_fresh_huge_page(struct hstate *h,
1403 gfp_t gfp_mask, int nid, nodemask_t *nmask)
1404{
1405 struct page *page;
1406
1407 if (hstate_is_gigantic(h))
1408 page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1409 else
1410 page = alloc_buddy_huge_page(h, gfp_mask,
1411 nid, nmask);
1412 if (!page)
1413 return NULL;
1414
1415 if (hstate_is_gigantic(h))
1416 prep_compound_gigantic_page(page, huge_page_order(h));
1417 prep_new_huge_page(h, page, page_to_nid(page));
1418
1419 return page;
1420}
1421
af0fb9df
MH
1422/*
1423 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1424 * manner.
1425 */
0c397dae 1426static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
b2261026
JK
1427{
1428 struct page *page;
1429 int nr_nodes, node;
af0fb9df 1430 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
b2261026
JK
1431
1432 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
0c397dae 1433 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed);
af0fb9df 1434 if (page)
b2261026 1435 break;
b2261026
JK
1436 }
1437
af0fb9df
MH
1438 if (!page)
1439 return 0;
b2261026 1440
af0fb9df
MH
1441 put_page(page); /* free it into the hugepage allocator */
1442
1443 return 1;
b2261026
JK
1444}
1445
e8c5c824
LS
1446/*
1447 * Free huge page from pool from next node to free.
1448 * Attempt to keep persistent huge pages more or less
1449 * balanced over allowed nodes.
1450 * Called with hugetlb_lock locked.
1451 */
6ae11b27
LS
1452static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1453 bool acct_surplus)
e8c5c824 1454{
b2261026 1455 int nr_nodes, node;
e8c5c824
LS
1456 int ret = 0;
1457
b2261026 1458 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
685f3457
LS
1459 /*
1460 * If we're returning unused surplus pages, only examine
1461 * nodes with surplus pages.
1462 */
b2261026
JK
1463 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1464 !list_empty(&h->hugepage_freelists[node])) {
e8c5c824 1465 struct page *page =
b2261026 1466 list_entry(h->hugepage_freelists[node].next,
e8c5c824
LS
1467 struct page, lru);
1468 list_del(&page->lru);
1469 h->free_huge_pages--;
b2261026 1470 h->free_huge_pages_node[node]--;
685f3457
LS
1471 if (acct_surplus) {
1472 h->surplus_huge_pages--;
b2261026 1473 h->surplus_huge_pages_node[node]--;
685f3457 1474 }
e8c5c824
LS
1475 update_and_free_page(h, page);
1476 ret = 1;
9a76db09 1477 break;
e8c5c824 1478 }
b2261026 1479 }
e8c5c824
LS
1480
1481 return ret;
1482}
1483
c8721bbb
NH
1484/*
1485 * Dissolve a given free hugepage into free buddy pages. This function does
082d5b6b
GS
1486 * nothing for in-use (including surplus) hugepages. Returns -EBUSY if the
1487 * number of free hugepages would be reduced below the number of reserved
1488 * hugepages.
c8721bbb 1489 */
c3114a84 1490int dissolve_free_huge_page(struct page *page)
c8721bbb 1491{
082d5b6b
GS
1492 int rc = 0;
1493
c8721bbb
NH
1494 spin_lock(&hugetlb_lock);
1495 if (PageHuge(page) && !page_count(page)) {
2247bb33
GS
1496 struct page *head = compound_head(page);
1497 struct hstate *h = page_hstate(head);
1498 int nid = page_to_nid(head);
082d5b6b
GS
1499 if (h->free_huge_pages - h->resv_huge_pages == 0) {
1500 rc = -EBUSY;
1501 goto out;
1502 }
c3114a84
AK
1503 /*
1504 * Move PageHWPoison flag from head page to the raw error page,
1505 * which makes any subpages rather than the error page reusable.
1506 */
1507 if (PageHWPoison(head) && page != head) {
1508 SetPageHWPoison(page);
1509 ClearPageHWPoison(head);
1510 }
2247bb33 1511 list_del(&head->lru);
c8721bbb
NH
1512 h->free_huge_pages--;
1513 h->free_huge_pages_node[nid]--;
c1470b33 1514 h->max_huge_pages--;
2247bb33 1515 update_and_free_page(h, head);
c8721bbb 1516 }
082d5b6b 1517out:
c8721bbb 1518 spin_unlock(&hugetlb_lock);
082d5b6b 1519 return rc;
c8721bbb
NH
1520}
1521
1522/*
1523 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1524 * make specified memory blocks removable from the system.
2247bb33
GS
1525 * Note that this will dissolve a free gigantic hugepage completely, if any
1526 * part of it lies within the given range.
082d5b6b
GS
1527 * Also note that if dissolve_free_huge_page() returns with an error, all
1528 * free hugepages that were dissolved before that error are lost.
c8721bbb 1529 */
082d5b6b 1530int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
c8721bbb 1531{
c8721bbb 1532 unsigned long pfn;
eb03aa00 1533 struct page *page;
082d5b6b 1534 int rc = 0;
c8721bbb 1535
d0177639 1536 if (!hugepages_supported())
082d5b6b 1537 return rc;
d0177639 1538
eb03aa00
GS
1539 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1540 page = pfn_to_page(pfn);
1541 if (PageHuge(page) && !page_count(page)) {
1542 rc = dissolve_free_huge_page(page);
1543 if (rc)
1544 break;
1545 }
1546 }
082d5b6b
GS
1547
1548 return rc;
c8721bbb
NH
1549}
1550
ab5ac90a
MH
1551/*
1552 * Allocates a fresh surplus page from the page allocator.
1553 */
0c397dae 1554static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
aaf14e40 1555 int nid, nodemask_t *nmask)
7893d1d5 1556{
9980d744 1557 struct page *page = NULL;
7893d1d5 1558
bae7f4ae 1559 if (hstate_is_gigantic(h))
aa888a74
AK
1560 return NULL;
1561
d1c3fb1f 1562 spin_lock(&hugetlb_lock);
9980d744
MH
1563 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
1564 goto out_unlock;
d1c3fb1f
NA
1565 spin_unlock(&hugetlb_lock);
1566
0c397dae 1567 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask);
9980d744 1568 if (!page)
0c397dae 1569 return NULL;
d1c3fb1f
NA
1570
1571 spin_lock(&hugetlb_lock);
9980d744
MH
1572 /*
1573 * We could have raced with the pool size change.
1574 * Double check that and simply deallocate the new page
1575 * if we would end up overcommiting the surpluses. Abuse
1576 * temporary page to workaround the nasty free_huge_page
1577 * codeflow
1578 */
1579 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1580 SetPageHugeTemporary(page);
1581 put_page(page);
1582 page = NULL;
1583 } else {
9980d744 1584 h->surplus_huge_pages++;
4704dea3 1585 h->surplus_huge_pages_node[page_to_nid(page)]++;
7893d1d5 1586 }
9980d744
MH
1587
1588out_unlock:
d1c3fb1f 1589 spin_unlock(&hugetlb_lock);
7893d1d5
AL
1590
1591 return page;
1592}
1593
0c397dae 1594static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
ab5ac90a
MH
1595 int nid, nodemask_t *nmask)
1596{
1597 struct page *page;
1598
1599 if (hstate_is_gigantic(h))
1600 return NULL;
1601
0c397dae 1602 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask);
ab5ac90a
MH
1603 if (!page)
1604 return NULL;
1605
1606 /*
1607 * We do not account these pages as surplus because they are only
1608 * temporary and will be released properly on the last reference
1609 */
ab5ac90a
MH
1610 SetPageHugeTemporary(page);
1611
1612 return page;
1613}
1614
099730d6
DH
1615/*
1616 * Use the VMA's mpolicy to allocate a huge page from the buddy.
1617 */
e0ec90ee 1618static
0c397dae 1619struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
099730d6
DH
1620 struct vm_area_struct *vma, unsigned long addr)
1621{
aaf14e40
MH
1622 struct page *page;
1623 struct mempolicy *mpol;
1624 gfp_t gfp_mask = htlb_alloc_mask(h);
1625 int nid;
1626 nodemask_t *nodemask;
1627
1628 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
0c397dae 1629 page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
aaf14e40
MH
1630 mpol_cond_put(mpol);
1631
1632 return page;
099730d6
DH
1633}
1634
ab5ac90a 1635/* page migration callback function */
bf50bab2
NH
1636struct page *alloc_huge_page_node(struct hstate *h, int nid)
1637{
aaf14e40 1638 gfp_t gfp_mask = htlb_alloc_mask(h);
4ef91848 1639 struct page *page = NULL;
bf50bab2 1640
aaf14e40
MH
1641 if (nid != NUMA_NO_NODE)
1642 gfp_mask |= __GFP_THISNODE;
1643
bf50bab2 1644 spin_lock(&hugetlb_lock);
4ef91848 1645 if (h->free_huge_pages - h->resv_huge_pages > 0)
3e59fcb0 1646 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, NULL);
bf50bab2
NH
1647 spin_unlock(&hugetlb_lock);
1648
94ae8ba7 1649 if (!page)
0c397dae 1650 page = alloc_migrate_huge_page(h, gfp_mask, nid, NULL);
bf50bab2
NH
1651
1652 return page;
1653}
1654
ab5ac90a 1655/* page migration callback function */
3e59fcb0
MH
1656struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
1657 nodemask_t *nmask)
4db9b2ef 1658{
aaf14e40 1659 gfp_t gfp_mask = htlb_alloc_mask(h);
4db9b2ef
MH
1660
1661 spin_lock(&hugetlb_lock);
1662 if (h->free_huge_pages - h->resv_huge_pages > 0) {
3e59fcb0
MH
1663 struct page *page;
1664
1665 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
1666 if (page) {
1667 spin_unlock(&hugetlb_lock);
1668 return page;
4db9b2ef
MH
1669 }
1670 }
1671 spin_unlock(&hugetlb_lock);
4db9b2ef 1672
0c397dae 1673 return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
4db9b2ef
MH
1674}
1675
ebd63723 1676/* mempolicy aware migration callback */
389c8178
MH
1677struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
1678 unsigned long address)
ebd63723
MH
1679{
1680 struct mempolicy *mpol;
1681 nodemask_t *nodemask;
1682 struct page *page;
ebd63723
MH
1683 gfp_t gfp_mask;
1684 int node;
1685
ebd63723
MH
1686 gfp_mask = htlb_alloc_mask(h);
1687 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1688 page = alloc_huge_page_nodemask(h, node, nodemask);
1689 mpol_cond_put(mpol);
1690
1691 return page;
1692}
1693
e4e574b7 1694/*
25985edc 1695 * Increase the hugetlb pool such that it can accommodate a reservation
e4e574b7
AL
1696 * of size 'delta'.
1697 */
a5516438 1698static int gather_surplus_pages(struct hstate *h, int delta)
e4e574b7
AL
1699{
1700 struct list_head surplus_list;
1701 struct page *page, *tmp;
1702 int ret, i;
1703 int needed, allocated;
28073b02 1704 bool alloc_ok = true;
e4e574b7 1705
a5516438 1706 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
ac09b3a1 1707 if (needed <= 0) {
a5516438 1708 h->resv_huge_pages += delta;
e4e574b7 1709 return 0;
ac09b3a1 1710 }
e4e574b7
AL
1711
1712 allocated = 0;
1713 INIT_LIST_HEAD(&surplus_list);
1714
1715 ret = -ENOMEM;
1716retry:
1717 spin_unlock(&hugetlb_lock);
1718 for (i = 0; i < needed; i++) {
0c397dae 1719 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
aaf14e40 1720 NUMA_NO_NODE, NULL);
28073b02
HD
1721 if (!page) {
1722 alloc_ok = false;
1723 break;
1724 }
e4e574b7 1725 list_add(&page->lru, &surplus_list);
69ed779a 1726 cond_resched();
e4e574b7 1727 }
28073b02 1728 allocated += i;
e4e574b7
AL
1729
1730 /*
1731 * After retaking hugetlb_lock, we need to recalculate 'needed'
1732 * because either resv_huge_pages or free_huge_pages may have changed.
1733 */
1734 spin_lock(&hugetlb_lock);
a5516438
AK
1735 needed = (h->resv_huge_pages + delta) -
1736 (h->free_huge_pages + allocated);
28073b02
HD
1737 if (needed > 0) {
1738 if (alloc_ok)
1739 goto retry;
1740 /*
1741 * We were not able to allocate enough pages to
1742 * satisfy the entire reservation so we free what
1743 * we've allocated so far.
1744 */
1745 goto free;
1746 }
e4e574b7
AL
1747 /*
1748 * The surplus_list now contains _at_least_ the number of extra pages
25985edc 1749 * needed to accommodate the reservation. Add the appropriate number
e4e574b7 1750 * of pages to the hugetlb pool and free the extras back to the buddy
ac09b3a1
AL
1751 * allocator. Commit the entire reservation here to prevent another
1752 * process from stealing the pages as they are added to the pool but
1753 * before they are reserved.
e4e574b7
AL
1754 */
1755 needed += allocated;
a5516438 1756 h->resv_huge_pages += delta;
e4e574b7 1757 ret = 0;
a9869b83 1758
19fc3f0a 1759 /* Free the needed pages to the hugetlb pool */
e4e574b7 1760 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
19fc3f0a
AL
1761 if ((--needed) < 0)
1762 break;
a9869b83
NH
1763 /*
1764 * This page is now managed by the hugetlb allocator and has
1765 * no users -- drop the buddy allocator's reference.
1766 */
1767 put_page_testzero(page);
309381fe 1768 VM_BUG_ON_PAGE(page_count(page), page);
a5516438 1769 enqueue_huge_page(h, page);
19fc3f0a 1770 }
28073b02 1771free:
b0365c8d 1772 spin_unlock(&hugetlb_lock);
19fc3f0a
AL
1773
1774 /* Free unnecessary surplus pages to the buddy allocator */
c0d934ba
JK
1775 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1776 put_page(page);
a9869b83 1777 spin_lock(&hugetlb_lock);
e4e574b7
AL
1778
1779 return ret;
1780}
1781
1782/*
e5bbc8a6
MK
1783 * This routine has two main purposes:
1784 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
1785 * in unused_resv_pages. This corresponds to the prior adjustments made
1786 * to the associated reservation map.
1787 * 2) Free any unused surplus pages that may have been allocated to satisfy
1788 * the reservation. As many as unused_resv_pages may be freed.
1789 *
1790 * Called with hugetlb_lock held. However, the lock could be dropped (and
1791 * reacquired) during calls to cond_resched_lock. Whenever dropping the lock,
1792 * we must make sure nobody else can claim pages we are in the process of
1793 * freeing. Do this by ensuring resv_huge_page always is greater than the
1794 * number of huge pages we plan to free when dropping the lock.
e4e574b7 1795 */
a5516438
AK
1796static void return_unused_surplus_pages(struct hstate *h,
1797 unsigned long unused_resv_pages)
e4e574b7 1798{
e4e574b7
AL
1799 unsigned long nr_pages;
1800
aa888a74 1801 /* Cannot return gigantic pages currently */
bae7f4ae 1802 if (hstate_is_gigantic(h))
e5bbc8a6 1803 goto out;
aa888a74 1804
e5bbc8a6
MK
1805 /*
1806 * Part (or even all) of the reservation could have been backed
1807 * by pre-allocated pages. Only free surplus pages.
1808 */
a5516438 1809 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
e4e574b7 1810
685f3457
LS
1811 /*
1812 * We want to release as many surplus pages as possible, spread
9b5e5d0f
LS
1813 * evenly across all nodes with memory. Iterate across these nodes
1814 * until we can no longer free unreserved surplus pages. This occurs
1815 * when the nodes with surplus pages have no free pages.
1816 * free_pool_huge_page() will balance the the freed pages across the
1817 * on-line nodes with memory and will handle the hstate accounting.
e5bbc8a6
MK
1818 *
1819 * Note that we decrement resv_huge_pages as we free the pages. If
1820 * we drop the lock, resv_huge_pages will still be sufficiently large
1821 * to cover subsequent pages we may free.
685f3457
LS
1822 */
1823 while (nr_pages--) {
e5bbc8a6
MK
1824 h->resv_huge_pages--;
1825 unused_resv_pages--;
8cebfcd0 1826 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
e5bbc8a6 1827 goto out;
7848a4bf 1828 cond_resched_lock(&hugetlb_lock);
e4e574b7 1829 }
e5bbc8a6
MK
1830
1831out:
1832 /* Fully uncommit the reservation */
1833 h->resv_huge_pages -= unused_resv_pages;
e4e574b7
AL
1834}
1835
5e911373 1836
c37f9fb1 1837/*
feba16e2 1838 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
5e911373 1839 * are used by the huge page allocation routines to manage reservations.
cf3ad20b
MK
1840 *
1841 * vma_needs_reservation is called to determine if the huge page at addr
1842 * within the vma has an associated reservation. If a reservation is
1843 * needed, the value 1 is returned. The caller is then responsible for
1844 * managing the global reservation and subpool usage counts. After
1845 * the huge page has been allocated, vma_commit_reservation is called
feba16e2
MK
1846 * to add the page to the reservation map. If the page allocation fails,
1847 * the reservation must be ended instead of committed. vma_end_reservation
1848 * is called in such cases.
cf3ad20b
MK
1849 *
1850 * In the normal case, vma_commit_reservation returns the same value
1851 * as the preceding vma_needs_reservation call. The only time this
1852 * is not the case is if a reserve map was changed between calls. It
1853 * is the responsibility of the caller to notice the difference and
1854 * take appropriate action.
96b96a96
MK
1855 *
1856 * vma_add_reservation is used in error paths where a reservation must
1857 * be restored when a newly allocated huge page must be freed. It is
1858 * to be called after calling vma_needs_reservation to determine if a
1859 * reservation exists.
c37f9fb1 1860 */
5e911373
MK
1861enum vma_resv_mode {
1862 VMA_NEEDS_RESV,
1863 VMA_COMMIT_RESV,
feba16e2 1864 VMA_END_RESV,
96b96a96 1865 VMA_ADD_RESV,
5e911373 1866};
cf3ad20b
MK
1867static long __vma_reservation_common(struct hstate *h,
1868 struct vm_area_struct *vma, unsigned long addr,
5e911373 1869 enum vma_resv_mode mode)
c37f9fb1 1870{
4e35f483
JK
1871 struct resv_map *resv;
1872 pgoff_t idx;
cf3ad20b 1873 long ret;
c37f9fb1 1874
4e35f483
JK
1875 resv = vma_resv_map(vma);
1876 if (!resv)
84afd99b 1877 return 1;
c37f9fb1 1878
4e35f483 1879 idx = vma_hugecache_offset(h, vma, addr);
5e911373
MK
1880 switch (mode) {
1881 case VMA_NEEDS_RESV:
cf3ad20b 1882 ret = region_chg(resv, idx, idx + 1);
5e911373
MK
1883 break;
1884 case VMA_COMMIT_RESV:
1885 ret = region_add(resv, idx, idx + 1);
1886 break;
feba16e2 1887 case VMA_END_RESV:
5e911373
MK
1888 region_abort(resv, idx, idx + 1);
1889 ret = 0;
1890 break;
96b96a96
MK
1891 case VMA_ADD_RESV:
1892 if (vma->vm_flags & VM_MAYSHARE)
1893 ret = region_add(resv, idx, idx + 1);
1894 else {
1895 region_abort(resv, idx, idx + 1);
1896 ret = region_del(resv, idx, idx + 1);
1897 }
1898 break;
5e911373
MK
1899 default:
1900 BUG();
1901 }
84afd99b 1902
4e35f483 1903 if (vma->vm_flags & VM_MAYSHARE)
cf3ad20b 1904 return ret;
67961f9d
MK
1905 else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
1906 /*
1907 * In most cases, reserves always exist for private mappings.
1908 * However, a file associated with mapping could have been
1909 * hole punched or truncated after reserves were consumed.
1910 * As subsequent fault on such a range will not use reserves.
1911 * Subtle - The reserve map for private mappings has the
1912 * opposite meaning than that of shared mappings. If NO
1913 * entry is in the reserve map, it means a reservation exists.
1914 * If an entry exists in the reserve map, it means the
1915 * reservation has already been consumed. As a result, the
1916 * return value of this routine is the opposite of the
1917 * value returned from reserve map manipulation routines above.
1918 */
1919 if (ret)
1920 return 0;
1921 else
1922 return 1;
1923 }
4e35f483 1924 else
cf3ad20b 1925 return ret < 0 ? ret : 0;
c37f9fb1 1926}
cf3ad20b
MK
1927
1928static long vma_needs_reservation(struct hstate *h,
a5516438 1929 struct vm_area_struct *vma, unsigned long addr)
c37f9fb1 1930{
5e911373 1931 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
cf3ad20b 1932}
84afd99b 1933
cf3ad20b
MK
1934static long vma_commit_reservation(struct hstate *h,
1935 struct vm_area_struct *vma, unsigned long addr)
1936{
5e911373
MK
1937 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
1938}
1939
feba16e2 1940static void vma_end_reservation(struct hstate *h,
5e911373
MK
1941 struct vm_area_struct *vma, unsigned long addr)
1942{
feba16e2 1943 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
c37f9fb1
AW
1944}
1945
96b96a96
MK
1946static long vma_add_reservation(struct hstate *h,
1947 struct vm_area_struct *vma, unsigned long addr)
1948{
1949 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
1950}
1951
1952/*
1953 * This routine is called to restore a reservation on error paths. In the
1954 * specific error paths, a huge page was allocated (via alloc_huge_page)
1955 * and is about to be freed. If a reservation for the page existed,
1956 * alloc_huge_page would have consumed the reservation and set PagePrivate
1957 * in the newly allocated page. When the page is freed via free_huge_page,
1958 * the global reservation count will be incremented if PagePrivate is set.
1959 * However, free_huge_page can not adjust the reserve map. Adjust the
1960 * reserve map here to be consistent with global reserve count adjustments
1961 * to be made by free_huge_page.
1962 */
1963static void restore_reserve_on_error(struct hstate *h,
1964 struct vm_area_struct *vma, unsigned long address,
1965 struct page *page)
1966{
1967 if (unlikely(PagePrivate(page))) {
1968 long rc = vma_needs_reservation(h, vma, address);
1969
1970 if (unlikely(rc < 0)) {
1971 /*
1972 * Rare out of memory condition in reserve map
1973 * manipulation. Clear PagePrivate so that
1974 * global reserve count will not be incremented
1975 * by free_huge_page. This will make it appear
1976 * as though the reservation for this page was
1977 * consumed. This may prevent the task from
1978 * faulting in the page at a later time. This
1979 * is better than inconsistent global huge page
1980 * accounting of reserve counts.
1981 */
1982 ClearPagePrivate(page);
1983 } else if (rc) {
1984 rc = vma_add_reservation(h, vma, address);
1985 if (unlikely(rc < 0))
1986 /*
1987 * See above comment about rare out of
1988 * memory condition.
1989 */
1990 ClearPagePrivate(page);
1991 } else
1992 vma_end_reservation(h, vma, address);
1993 }
1994}
1995
70c3547e 1996struct page *alloc_huge_page(struct vm_area_struct *vma,
04f2cbe3 1997 unsigned long addr, int avoid_reserve)
1da177e4 1998{
90481622 1999 struct hugepage_subpool *spool = subpool_vma(vma);
a5516438 2000 struct hstate *h = hstate_vma(vma);
348ea204 2001 struct page *page;
d85f69b0
MK
2002 long map_chg, map_commit;
2003 long gbl_chg;
6d76dcf4
AK
2004 int ret, idx;
2005 struct hugetlb_cgroup *h_cg;
a1e78772 2006
6d76dcf4 2007 idx = hstate_index(h);
a1e78772 2008 /*
d85f69b0
MK
2009 * Examine the region/reserve map to determine if the process
2010 * has a reservation for the page to be allocated. A return
2011 * code of zero indicates a reservation exists (no change).
a1e78772 2012 */
d85f69b0
MK
2013 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2014 if (map_chg < 0)
76dcee75 2015 return ERR_PTR(-ENOMEM);
d85f69b0
MK
2016
2017 /*
2018 * Processes that did not create the mapping will have no
2019 * reserves as indicated by the region/reserve map. Check
2020 * that the allocation will not exceed the subpool limit.
2021 * Allocations for MAP_NORESERVE mappings also need to be
2022 * checked against any subpool limit.
2023 */
2024 if (map_chg || avoid_reserve) {
2025 gbl_chg = hugepage_subpool_get_pages(spool, 1);
2026 if (gbl_chg < 0) {
feba16e2 2027 vma_end_reservation(h, vma, addr);
76dcee75 2028 return ERR_PTR(-ENOSPC);
5e911373 2029 }
1da177e4 2030
d85f69b0
MK
2031 /*
2032 * Even though there was no reservation in the region/reserve
2033 * map, there could be reservations associated with the
2034 * subpool that can be used. This would be indicated if the
2035 * return value of hugepage_subpool_get_pages() is zero.
2036 * However, if avoid_reserve is specified we still avoid even
2037 * the subpool reservations.
2038 */
2039 if (avoid_reserve)
2040 gbl_chg = 1;
2041 }
2042
6d76dcf4 2043 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
8f34af6f
JZ
2044 if (ret)
2045 goto out_subpool_put;
2046
1da177e4 2047 spin_lock(&hugetlb_lock);
d85f69b0
MK
2048 /*
2049 * glb_chg is passed to indicate whether or not a page must be taken
2050 * from the global free pool (global change). gbl_chg == 0 indicates
2051 * a reservation exists for the allocation.
2052 */
2053 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
81a6fcae 2054 if (!page) {
94ae8ba7 2055 spin_unlock(&hugetlb_lock);
0c397dae 2056 page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
8f34af6f
JZ
2057 if (!page)
2058 goto out_uncharge_cgroup;
a88c7695
NH
2059 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2060 SetPagePrivate(page);
2061 h->resv_huge_pages--;
2062 }
79dbb236
AK
2063 spin_lock(&hugetlb_lock);
2064 list_move(&page->lru, &h->hugepage_activelist);
81a6fcae 2065 /* Fall through */
68842c9b 2066 }
81a6fcae
JK
2067 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2068 spin_unlock(&hugetlb_lock);
348ea204 2069
90481622 2070 set_page_private(page, (unsigned long)spool);
90d8b7e6 2071
d85f69b0
MK
2072 map_commit = vma_commit_reservation(h, vma, addr);
2073 if (unlikely(map_chg > map_commit)) {
33039678
MK
2074 /*
2075 * The page was added to the reservation map between
2076 * vma_needs_reservation and vma_commit_reservation.
2077 * This indicates a race with hugetlb_reserve_pages.
2078 * Adjust for the subpool count incremented above AND
2079 * in hugetlb_reserve_pages for the same page. Also,
2080 * the reservation count added in hugetlb_reserve_pages
2081 * no longer applies.
2082 */
2083 long rsv_adjust;
2084
2085 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2086 hugetlb_acct_memory(h, -rsv_adjust);
2087 }
90d8b7e6 2088 return page;
8f34af6f
JZ
2089
2090out_uncharge_cgroup:
2091 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2092out_subpool_put:
d85f69b0 2093 if (map_chg || avoid_reserve)
8f34af6f 2094 hugepage_subpool_put_pages(spool, 1);
feba16e2 2095 vma_end_reservation(h, vma, addr);
8f34af6f 2096 return ERR_PTR(-ENOSPC);
b45b5bd6
DG
2097}
2098
e24a1307
AK
2099int alloc_bootmem_huge_page(struct hstate *h)
2100 __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2101int __alloc_bootmem_huge_page(struct hstate *h)
aa888a74
AK
2102{
2103 struct huge_bootmem_page *m;
b2261026 2104 int nr_nodes, node;
aa888a74 2105
b2261026 2106 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
aa888a74
AK
2107 void *addr;
2108
8b89a116
GS
2109 addr = memblock_virt_alloc_try_nid_nopanic(
2110 huge_page_size(h), huge_page_size(h),
2111 0, BOOTMEM_ALLOC_ACCESSIBLE, node);
aa888a74
AK
2112 if (addr) {
2113 /*
2114 * Use the beginning of the huge page to store the
2115 * huge_bootmem_page struct (until gather_bootmem
2116 * puts them into the mem_map).
2117 */
2118 m = addr;
91f47662 2119 goto found;
aa888a74 2120 }
aa888a74
AK
2121 }
2122 return 0;
2123
2124found:
df994ead 2125 BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
aa888a74
AK
2126 /* Put them into a private list first because mem_map is not up yet */
2127 list_add(&m->list, &huge_boot_pages);
2128 m->hstate = h;
2129 return 1;
2130}
2131
d00181b9
KS
2132static void __init prep_compound_huge_page(struct page *page,
2133 unsigned int order)
18229df5
AW
2134{
2135 if (unlikely(order > (MAX_ORDER - 1)))
2136 prep_compound_gigantic_page(page, order);
2137 else
2138 prep_compound_page(page, order);
2139}
2140
aa888a74
AK
2141/* Put bootmem huge pages into the standard lists after mem_map is up */
2142static void __init gather_bootmem_prealloc(void)
2143{
2144 struct huge_bootmem_page *m;
2145
2146 list_for_each_entry(m, &huge_boot_pages, list) {
aa888a74 2147 struct hstate *h = m->hstate;
ee8f248d
BB
2148 struct page *page;
2149
2150#ifdef CONFIG_HIGHMEM
2151 page = pfn_to_page(m->phys >> PAGE_SHIFT);
8b89a116
GS
2152 memblock_free_late(__pa(m),
2153 sizeof(struct huge_bootmem_page));
ee8f248d
BB
2154#else
2155 page = virt_to_page(m);
2156#endif
aa888a74 2157 WARN_ON(page_count(page) != 1);
18229df5 2158 prep_compound_huge_page(page, h->order);
ef5a22be 2159 WARN_ON(PageReserved(page));
aa888a74 2160 prep_new_huge_page(h, page, page_to_nid(page));
af0fb9df
MH
2161 put_page(page); /* free it into the hugepage allocator */
2162
b0320c7b
RA
2163 /*
2164 * If we had gigantic hugepages allocated at boot time, we need
2165 * to restore the 'stolen' pages to totalram_pages in order to
2166 * fix confusing memory reports from free(1) and another
2167 * side-effects, like CommitLimit going negative.
2168 */
bae7f4ae 2169 if (hstate_is_gigantic(h))
3dcc0571 2170 adjust_managed_page_count(page, 1 << h->order);
aa888a74
AK
2171 }
2172}
2173
8faa8b07 2174static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1da177e4
LT
2175{
2176 unsigned long i;
a5516438 2177
e5ff2159 2178 for (i = 0; i < h->max_huge_pages; ++i) {
bae7f4ae 2179 if (hstate_is_gigantic(h)) {
aa888a74
AK
2180 if (!alloc_bootmem_huge_page(h))
2181 break;
0c397dae 2182 } else if (!alloc_pool_huge_page(h,
8cebfcd0 2183 &node_states[N_MEMORY]))
1da177e4 2184 break;
69ed779a 2185 cond_resched();
1da177e4 2186 }
d715cf80
LH
2187 if (i < h->max_huge_pages) {
2188 char buf[32];
2189
c6247f72 2190 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
d715cf80
LH
2191 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n",
2192 h->max_huge_pages, buf, i);
2193 h->max_huge_pages = i;
2194 }
e5ff2159
AK
2195}
2196
2197static void __init hugetlb_init_hstates(void)
2198{
2199 struct hstate *h;
2200
2201 for_each_hstate(h) {
641844f5
NH
2202 if (minimum_order > huge_page_order(h))
2203 minimum_order = huge_page_order(h);
2204
8faa8b07 2205 /* oversize hugepages were init'ed in early boot */
bae7f4ae 2206 if (!hstate_is_gigantic(h))
8faa8b07 2207 hugetlb_hstate_alloc_pages(h);
e5ff2159 2208 }
641844f5 2209 VM_BUG_ON(minimum_order == UINT_MAX);
e5ff2159
AK
2210}
2211
2212static void __init report_hugepages(void)
2213{
2214 struct hstate *h;
2215
2216 for_each_hstate(h) {
4abd32db 2217 char buf[32];
c6247f72
MW
2218
2219 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
ffb22af5 2220 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
c6247f72 2221 buf, h->free_huge_pages);
e5ff2159
AK
2222 }
2223}
2224
1da177e4 2225#ifdef CONFIG_HIGHMEM
6ae11b27
LS
2226static void try_to_free_low(struct hstate *h, unsigned long count,
2227 nodemask_t *nodes_allowed)
1da177e4 2228{
4415cc8d
CL
2229 int i;
2230
bae7f4ae 2231 if (hstate_is_gigantic(h))
aa888a74
AK
2232 return;
2233
6ae11b27 2234 for_each_node_mask(i, *nodes_allowed) {
1da177e4 2235 struct page *page, *next;
a5516438
AK
2236 struct list_head *freel = &h->hugepage_freelists[i];
2237 list_for_each_entry_safe(page, next, freel, lru) {
2238 if (count >= h->nr_huge_pages)
6b0c880d 2239 return;
1da177e4
LT
2240 if (PageHighMem(page))
2241 continue;
2242 list_del(&page->lru);
e5ff2159 2243 update_and_free_page(h, page);
a5516438
AK
2244 h->free_huge_pages--;
2245 h->free_huge_pages_node[page_to_nid(page)]--;
1da177e4
LT
2246 }
2247 }
2248}
2249#else
6ae11b27
LS
2250static inline void try_to_free_low(struct hstate *h, unsigned long count,
2251 nodemask_t *nodes_allowed)
1da177e4
LT
2252{
2253}
2254#endif
2255
20a0307c
WF
2256/*
2257 * Increment or decrement surplus_huge_pages. Keep node-specific counters
2258 * balanced by operating on them in a round-robin fashion.
2259 * Returns 1 if an adjustment was made.
2260 */
6ae11b27
LS
2261static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2262 int delta)
20a0307c 2263{
b2261026 2264 int nr_nodes, node;
20a0307c
WF
2265
2266 VM_BUG_ON(delta != -1 && delta != 1);
20a0307c 2267
b2261026
JK
2268 if (delta < 0) {
2269 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2270 if (h->surplus_huge_pages_node[node])
2271 goto found;
e8c5c824 2272 }
b2261026
JK
2273 } else {
2274 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2275 if (h->surplus_huge_pages_node[node] <
2276 h->nr_huge_pages_node[node])
2277 goto found;
e8c5c824 2278 }
b2261026
JK
2279 }
2280 return 0;
20a0307c 2281
b2261026
JK
2282found:
2283 h->surplus_huge_pages += delta;
2284 h->surplus_huge_pages_node[node] += delta;
2285 return 1;
20a0307c
WF
2286}
2287
a5516438 2288#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
6ae11b27
LS
2289static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
2290 nodemask_t *nodes_allowed)
1da177e4 2291{
7893d1d5 2292 unsigned long min_count, ret;
1da177e4 2293
944d9fec 2294 if (hstate_is_gigantic(h) && !gigantic_page_supported())
aa888a74
AK
2295 return h->max_huge_pages;
2296
7893d1d5
AL
2297 /*
2298 * Increase the pool size
2299 * First take pages out of surplus state. Then make up the
2300 * remaining difference by allocating fresh huge pages.
d1c3fb1f 2301 *
0c397dae 2302 * We might race with alloc_surplus_huge_page() here and be unable
d1c3fb1f
NA
2303 * to convert a surplus huge page to a normal huge page. That is
2304 * not critical, though, it just means the overall size of the
2305 * pool might be one hugepage larger than it needs to be, but
2306 * within all the constraints specified by the sysctls.
7893d1d5 2307 */
1da177e4 2308 spin_lock(&hugetlb_lock);
a5516438 2309 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
6ae11b27 2310 if (!adjust_pool_surplus(h, nodes_allowed, -1))
7893d1d5
AL
2311 break;
2312 }
2313
a5516438 2314 while (count > persistent_huge_pages(h)) {
7893d1d5
AL
2315 /*
2316 * If this allocation races such that we no longer need the
2317 * page, free_huge_page will handle it by freeing the page
2318 * and reducing the surplus.
2319 */
2320 spin_unlock(&hugetlb_lock);
649920c6
JH
2321
2322 /* yield cpu to avoid soft lockup */
2323 cond_resched();
2324
0c397dae 2325 ret = alloc_pool_huge_page(h, nodes_allowed);
7893d1d5
AL
2326 spin_lock(&hugetlb_lock);
2327 if (!ret)
2328 goto out;
2329
536240f2
MG
2330 /* Bail for signals. Probably ctrl-c from user */
2331 if (signal_pending(current))
2332 goto out;
7893d1d5 2333 }
7893d1d5
AL
2334
2335 /*
2336 * Decrease the pool size
2337 * First return free pages to the buddy allocator (being careful
2338 * to keep enough around to satisfy reservations). Then place
2339 * pages into surplus state as needed so the pool will shrink
2340 * to the desired size as pages become free.
d1c3fb1f
NA
2341 *
2342 * By placing pages into the surplus state independent of the
2343 * overcommit value, we are allowing the surplus pool size to
2344 * exceed overcommit. There are few sane options here. Since
0c397dae 2345 * alloc_surplus_huge_page() is checking the global counter,
d1c3fb1f
NA
2346 * though, we'll note that we're not allowed to exceed surplus
2347 * and won't grow the pool anywhere else. Not until one of the
2348 * sysctls are changed, or the surplus pages go out of use.
7893d1d5 2349 */
a5516438 2350 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
6b0c880d 2351 min_count = max(count, min_count);
6ae11b27 2352 try_to_free_low(h, min_count, nodes_allowed);
a5516438 2353 while (min_count < persistent_huge_pages(h)) {
6ae11b27 2354 if (!free_pool_huge_page(h, nodes_allowed, 0))
1da177e4 2355 break;
55f67141 2356 cond_resched_lock(&hugetlb_lock);
1da177e4 2357 }
a5516438 2358 while (count < persistent_huge_pages(h)) {
6ae11b27 2359 if (!adjust_pool_surplus(h, nodes_allowed, 1))
7893d1d5
AL
2360 break;
2361 }
2362out:
a5516438 2363 ret = persistent_huge_pages(h);
1da177e4 2364 spin_unlock(&hugetlb_lock);
7893d1d5 2365 return ret;
1da177e4
LT
2366}
2367
a3437870
NA
2368#define HSTATE_ATTR_RO(_name) \
2369 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2370
2371#define HSTATE_ATTR(_name) \
2372 static struct kobj_attribute _name##_attr = \
2373 __ATTR(_name, 0644, _name##_show, _name##_store)
2374
2375static struct kobject *hugepages_kobj;
2376static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2377
9a305230
LS
2378static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2379
2380static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
a3437870
NA
2381{
2382 int i;
9a305230 2383
a3437870 2384 for (i = 0; i < HUGE_MAX_HSTATE; i++)
9a305230
LS
2385 if (hstate_kobjs[i] == kobj) {
2386 if (nidp)
2387 *nidp = NUMA_NO_NODE;
a3437870 2388 return &hstates[i];
9a305230
LS
2389 }
2390
2391 return kobj_to_node_hstate(kobj, nidp);
a3437870
NA
2392}
2393
06808b08 2394static ssize_t nr_hugepages_show_common(struct kobject *kobj,
a3437870
NA
2395 struct kobj_attribute *attr, char *buf)
2396{
9a305230
LS
2397 struct hstate *h;
2398 unsigned long nr_huge_pages;
2399 int nid;
2400
2401 h = kobj_to_hstate(kobj, &nid);
2402 if (nid == NUMA_NO_NODE)
2403 nr_huge_pages = h->nr_huge_pages;
2404 else
2405 nr_huge_pages = h->nr_huge_pages_node[nid];
2406
2407 return sprintf(buf, "%lu\n", nr_huge_pages);
a3437870 2408}
adbe8726 2409
238d3c13
DR
2410static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2411 struct hstate *h, int nid,
2412 unsigned long count, size_t len)
a3437870
NA
2413{
2414 int err;
bad44b5b 2415 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
a3437870 2416
944d9fec 2417 if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
adbe8726
EM
2418 err = -EINVAL;
2419 goto out;
2420 }
2421
9a305230
LS
2422 if (nid == NUMA_NO_NODE) {
2423 /*
2424 * global hstate attribute
2425 */
2426 if (!(obey_mempolicy &&
2427 init_nodemask_of_mempolicy(nodes_allowed))) {
2428 NODEMASK_FREE(nodes_allowed);
8cebfcd0 2429 nodes_allowed = &node_states[N_MEMORY];
9a305230
LS
2430 }
2431 } else if (nodes_allowed) {
2432 /*
2433 * per node hstate attribute: adjust count to global,
2434 * but restrict alloc/free to the specified node.
2435 */
2436 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2437 init_nodemask_of_node(nodes_allowed, nid);
2438 } else
8cebfcd0 2439 nodes_allowed = &node_states[N_MEMORY];
9a305230 2440
06808b08 2441 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
a3437870 2442
8cebfcd0 2443 if (nodes_allowed != &node_states[N_MEMORY])
06808b08
LS
2444 NODEMASK_FREE(nodes_allowed);
2445
2446 return len;
adbe8726
EM
2447out:
2448 NODEMASK_FREE(nodes_allowed);
2449 return err;
06808b08
LS
2450}
2451
238d3c13
DR
2452static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2453 struct kobject *kobj, const char *buf,
2454 size_t len)
2455{
2456 struct hstate *h;
2457 unsigned long count;
2458 int nid;
2459 int err;
2460
2461 err = kstrtoul(buf, 10, &count);
2462 if (err)
2463 return err;
2464
2465 h = kobj_to_hstate(kobj, &nid);
2466 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2467}
2468
06808b08
LS
2469static ssize_t nr_hugepages_show(struct kobject *kobj,
2470 struct kobj_attribute *attr, char *buf)
2471{
2472 return nr_hugepages_show_common(kobj, attr, buf);
2473}
2474
2475static ssize_t nr_hugepages_store(struct kobject *kobj,
2476 struct kobj_attribute *attr, const char *buf, size_t len)
2477{
238d3c13 2478 return nr_hugepages_store_common(false, kobj, buf, len);
a3437870
NA
2479}
2480HSTATE_ATTR(nr_hugepages);
2481
06808b08
LS
2482#ifdef CONFIG_NUMA
2483
2484/*
2485 * hstate attribute for optionally mempolicy-based constraint on persistent
2486 * huge page alloc/free.
2487 */
2488static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2489 struct kobj_attribute *attr, char *buf)
2490{
2491 return nr_hugepages_show_common(kobj, attr, buf);
2492}
2493
2494static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2495 struct kobj_attribute *attr, const char *buf, size_t len)
2496{
238d3c13 2497 return nr_hugepages_store_common(true, kobj, buf, len);
06808b08
LS
2498}
2499HSTATE_ATTR(nr_hugepages_mempolicy);
2500#endif
2501
2502
a3437870
NA
2503static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2504 struct kobj_attribute *attr, char *buf)
2505{
9a305230 2506 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870
NA
2507 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2508}
adbe8726 2509
a3437870
NA
2510static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2511 struct kobj_attribute *attr, const char *buf, size_t count)
2512{
2513 int err;
2514 unsigned long input;
9a305230 2515 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870 2516
bae7f4ae 2517 if (hstate_is_gigantic(h))
adbe8726
EM
2518 return -EINVAL;
2519
3dbb95f7 2520 err = kstrtoul(buf, 10, &input);
a3437870 2521 if (err)
73ae31e5 2522 return err;
a3437870
NA
2523
2524 spin_lock(&hugetlb_lock);
2525 h->nr_overcommit_huge_pages = input;
2526 spin_unlock(&hugetlb_lock);
2527
2528 return count;
2529}
2530HSTATE_ATTR(nr_overcommit_hugepages);
2531
2532static ssize_t free_hugepages_show(struct kobject *kobj,
2533 struct kobj_attribute *attr, char *buf)
2534{
9a305230
LS
2535 struct hstate *h;
2536 unsigned long free_huge_pages;
2537 int nid;
2538
2539 h = kobj_to_hstate(kobj, &nid);
2540 if (nid == NUMA_NO_NODE)
2541 free_huge_pages = h->free_huge_pages;
2542 else
2543 free_huge_pages = h->free_huge_pages_node[nid];
2544
2545 return sprintf(buf, "%lu\n", free_huge_pages);
a3437870
NA
2546}
2547HSTATE_ATTR_RO(free_hugepages);
2548
2549static ssize_t resv_hugepages_show(struct kobject *kobj,
2550 struct kobj_attribute *attr, char *buf)
2551{
9a305230 2552 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870
NA
2553 return sprintf(buf, "%lu\n", h->resv_huge_pages);
2554}
2555HSTATE_ATTR_RO(resv_hugepages);
2556
2557static ssize_t surplus_hugepages_show(struct kobject *kobj,
2558 struct kobj_attribute *attr, char *buf)
2559{
9a305230
LS
2560 struct hstate *h;
2561 unsigned long surplus_huge_pages;
2562 int nid;
2563
2564 h = kobj_to_hstate(kobj, &nid);
2565 if (nid == NUMA_NO_NODE)
2566 surplus_huge_pages = h->surplus_huge_pages;
2567 else
2568 surplus_huge_pages = h->surplus_huge_pages_node[nid];
2569
2570 return sprintf(buf, "%lu\n", surplus_huge_pages);
a3437870
NA
2571}
2572HSTATE_ATTR_RO(surplus_hugepages);
2573
2574static struct attribute *hstate_attrs[] = {
2575 &nr_hugepages_attr.attr,
2576 &nr_overcommit_hugepages_attr.attr,
2577 &free_hugepages_attr.attr,
2578 &resv_hugepages_attr.attr,
2579 &surplus_hugepages_attr.attr,
06808b08
LS
2580#ifdef CONFIG_NUMA
2581 &nr_hugepages_mempolicy_attr.attr,
2582#endif
a3437870
NA
2583 NULL,
2584};
2585
67e5ed96 2586static const struct attribute_group hstate_attr_group = {
a3437870
NA
2587 .attrs = hstate_attrs,
2588};
2589
094e9539
JM
2590static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2591 struct kobject **hstate_kobjs,
67e5ed96 2592 const struct attribute_group *hstate_attr_group)
a3437870
NA
2593{
2594 int retval;
972dc4de 2595 int hi = hstate_index(h);
a3437870 2596
9a305230
LS
2597 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2598 if (!hstate_kobjs[hi])
a3437870
NA
2599 return -ENOMEM;
2600
9a305230 2601 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
a3437870 2602 if (retval)
9a305230 2603 kobject_put(hstate_kobjs[hi]);
a3437870
NA
2604
2605 return retval;
2606}
2607
2608static void __init hugetlb_sysfs_init(void)
2609{
2610 struct hstate *h;
2611 int err;
2612
2613 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2614 if (!hugepages_kobj)
2615 return;
2616
2617 for_each_hstate(h) {
9a305230
LS
2618 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2619 hstate_kobjs, &hstate_attr_group);
a3437870 2620 if (err)
ffb22af5 2621 pr_err("Hugetlb: Unable to add hstate %s", h->name);
a3437870
NA
2622 }
2623}
2624
9a305230
LS
2625#ifdef CONFIG_NUMA
2626
2627/*
2628 * node_hstate/s - associate per node hstate attributes, via their kobjects,
10fbcf4c
KS
2629 * with node devices in node_devices[] using a parallel array. The array
2630 * index of a node device or _hstate == node id.
2631 * This is here to avoid any static dependency of the node device driver, in
9a305230
LS
2632 * the base kernel, on the hugetlb module.
2633 */
2634struct node_hstate {
2635 struct kobject *hugepages_kobj;
2636 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2637};
b4e289a6 2638static struct node_hstate node_hstates[MAX_NUMNODES];
9a305230
LS
2639
2640/*
10fbcf4c 2641 * A subset of global hstate attributes for node devices
9a305230
LS
2642 */
2643static struct attribute *per_node_hstate_attrs[] = {
2644 &nr_hugepages_attr.attr,
2645 &free_hugepages_attr.attr,
2646 &surplus_hugepages_attr.attr,
2647 NULL,
2648};
2649
67e5ed96 2650static const struct attribute_group per_node_hstate_attr_group = {
9a305230
LS
2651 .attrs = per_node_hstate_attrs,
2652};
2653
2654/*
10fbcf4c 2655 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
9a305230
LS
2656 * Returns node id via non-NULL nidp.
2657 */
2658static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2659{
2660 int nid;
2661
2662 for (nid = 0; nid < nr_node_ids; nid++) {
2663 struct node_hstate *nhs = &node_hstates[nid];
2664 int i;
2665 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2666 if (nhs->hstate_kobjs[i] == kobj) {
2667 if (nidp)
2668 *nidp = nid;
2669 return &hstates[i];
2670 }
2671 }
2672
2673 BUG();
2674 return NULL;
2675}
2676
2677/*
10fbcf4c 2678 * Unregister hstate attributes from a single node device.
9a305230
LS
2679 * No-op if no hstate attributes attached.
2680 */
3cd8b44f 2681static void hugetlb_unregister_node(struct node *node)
9a305230
LS
2682{
2683 struct hstate *h;
10fbcf4c 2684 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
2685
2686 if (!nhs->hugepages_kobj)
9b5e5d0f 2687 return; /* no hstate attributes */
9a305230 2688
972dc4de
AK
2689 for_each_hstate(h) {
2690 int idx = hstate_index(h);
2691 if (nhs->hstate_kobjs[idx]) {
2692 kobject_put(nhs->hstate_kobjs[idx]);
2693 nhs->hstate_kobjs[idx] = NULL;
9a305230 2694 }
972dc4de 2695 }
9a305230
LS
2696
2697 kobject_put(nhs->hugepages_kobj);
2698 nhs->hugepages_kobj = NULL;
2699}
2700
9a305230
LS
2701
2702/*
10fbcf4c 2703 * Register hstate attributes for a single node device.
9a305230
LS
2704 * No-op if attributes already registered.
2705 */
3cd8b44f 2706static void hugetlb_register_node(struct node *node)
9a305230
LS
2707{
2708 struct hstate *h;
10fbcf4c 2709 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
2710 int err;
2711
2712 if (nhs->hugepages_kobj)
2713 return; /* already allocated */
2714
2715 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
10fbcf4c 2716 &node->dev.kobj);
9a305230
LS
2717 if (!nhs->hugepages_kobj)
2718 return;
2719
2720 for_each_hstate(h) {
2721 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2722 nhs->hstate_kobjs,
2723 &per_node_hstate_attr_group);
2724 if (err) {
ffb22af5
AM
2725 pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2726 h->name, node->dev.id);
9a305230
LS
2727 hugetlb_unregister_node(node);
2728 break;
2729 }
2730 }
2731}
2732
2733/*
9b5e5d0f 2734 * hugetlb init time: register hstate attributes for all registered node
10fbcf4c
KS
2735 * devices of nodes that have memory. All on-line nodes should have
2736 * registered their associated device by this time.
9a305230 2737 */
7d9ca000 2738static void __init hugetlb_register_all_nodes(void)
9a305230
LS
2739{
2740 int nid;
2741
8cebfcd0 2742 for_each_node_state(nid, N_MEMORY) {
8732794b 2743 struct node *node = node_devices[nid];
10fbcf4c 2744 if (node->dev.id == nid)
9a305230
LS
2745 hugetlb_register_node(node);
2746 }
2747
2748 /*
10fbcf4c 2749 * Let the node device driver know we're here so it can
9a305230
LS
2750 * [un]register hstate attributes on node hotplug.
2751 */
2752 register_hugetlbfs_with_node(hugetlb_register_node,
2753 hugetlb_unregister_node);
2754}
2755#else /* !CONFIG_NUMA */
2756
2757static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2758{
2759 BUG();
2760 if (nidp)
2761 *nidp = -1;
2762 return NULL;
2763}
2764
9a305230
LS
2765static void hugetlb_register_all_nodes(void) { }
2766
2767#endif
2768
a3437870
NA
2769static int __init hugetlb_init(void)
2770{
8382d914
DB
2771 int i;
2772
457c1b27 2773 if (!hugepages_supported())
0ef89d25 2774 return 0;
a3437870 2775
e11bfbfc 2776 if (!size_to_hstate(default_hstate_size)) {
d715cf80
LH
2777 if (default_hstate_size != 0) {
2778 pr_err("HugeTLB: unsupported default_hugepagesz %lu. Reverting to %lu\n",
2779 default_hstate_size, HPAGE_SIZE);
2780 }
2781
e11bfbfc
NP
2782 default_hstate_size = HPAGE_SIZE;
2783 if (!size_to_hstate(default_hstate_size))
2784 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
a3437870 2785 }
972dc4de 2786 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
f8b74815
VT
2787 if (default_hstate_max_huge_pages) {
2788 if (!default_hstate.max_huge_pages)
2789 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2790 }
a3437870
NA
2791
2792 hugetlb_init_hstates();
aa888a74 2793 gather_bootmem_prealloc();
a3437870
NA
2794 report_hugepages();
2795
2796 hugetlb_sysfs_init();
9a305230 2797 hugetlb_register_all_nodes();
7179e7bf 2798 hugetlb_cgroup_file_init();
9a305230 2799
8382d914
DB
2800#ifdef CONFIG_SMP
2801 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2802#else
2803 num_fault_mutexes = 1;
2804#endif
c672c7f2 2805 hugetlb_fault_mutex_table =
8382d914 2806 kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
c672c7f2 2807 BUG_ON(!hugetlb_fault_mutex_table);
8382d914
DB
2808
2809 for (i = 0; i < num_fault_mutexes; i++)
c672c7f2 2810 mutex_init(&hugetlb_fault_mutex_table[i]);
a3437870
NA
2811 return 0;
2812}
3e89e1c5 2813subsys_initcall(hugetlb_init);
a3437870
NA
2814
2815/* Should be called on processing a hugepagesz=... option */
9fee021d
VT
2816void __init hugetlb_bad_size(void)
2817{
2818 parsed_valid_hugepagesz = false;
2819}
2820
d00181b9 2821void __init hugetlb_add_hstate(unsigned int order)
a3437870
NA
2822{
2823 struct hstate *h;
8faa8b07
AK
2824 unsigned long i;
2825
a3437870 2826 if (size_to_hstate(PAGE_SIZE << order)) {
598d8091 2827 pr_warn("hugepagesz= specified twice, ignoring\n");
a3437870
NA
2828 return;
2829 }
47d38344 2830 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
a3437870 2831 BUG_ON(order == 0);
47d38344 2832 h = &hstates[hugetlb_max_hstate++];
a3437870
NA
2833 h->order = order;
2834 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
8faa8b07
AK
2835 h->nr_huge_pages = 0;
2836 h->free_huge_pages = 0;
2837 for (i = 0; i < MAX_NUMNODES; ++i)
2838 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
0edaecfa 2839 INIT_LIST_HEAD(&h->hugepage_activelist);
54f18d35
AM
2840 h->next_nid_to_alloc = first_memory_node;
2841 h->next_nid_to_free = first_memory_node;
a3437870
NA
2842 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2843 huge_page_size(h)/1024);
8faa8b07 2844
a3437870
NA
2845 parsed_hstate = h;
2846}
2847
e11bfbfc 2848static int __init hugetlb_nrpages_setup(char *s)
a3437870
NA
2849{
2850 unsigned long *mhp;
8faa8b07 2851 static unsigned long *last_mhp;
a3437870 2852
9fee021d
VT
2853 if (!parsed_valid_hugepagesz) {
2854 pr_warn("hugepages = %s preceded by "
2855 "an unsupported hugepagesz, ignoring\n", s);
2856 parsed_valid_hugepagesz = true;
2857 return 1;
2858 }
a3437870 2859 /*
47d38344 2860 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
a3437870
NA
2861 * so this hugepages= parameter goes to the "default hstate".
2862 */
9fee021d 2863 else if (!hugetlb_max_hstate)
a3437870
NA
2864 mhp = &default_hstate_max_huge_pages;
2865 else
2866 mhp = &parsed_hstate->max_huge_pages;
2867
8faa8b07 2868 if (mhp == last_mhp) {
598d8091 2869 pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
8faa8b07
AK
2870 return 1;
2871 }
2872
a3437870
NA
2873 if (sscanf(s, "%lu", mhp) <= 0)
2874 *mhp = 0;
2875
8faa8b07
AK
2876 /*
2877 * Global state is always initialized later in hugetlb_init.
2878 * But we need to allocate >= MAX_ORDER hstates here early to still
2879 * use the bootmem allocator.
2880 */
47d38344 2881 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
8faa8b07
AK
2882 hugetlb_hstate_alloc_pages(parsed_hstate);
2883
2884 last_mhp = mhp;
2885
a3437870
NA
2886 return 1;
2887}
e11bfbfc
NP
2888__setup("hugepages=", hugetlb_nrpages_setup);
2889
2890static int __init hugetlb_default_setup(char *s)
2891{
2892 default_hstate_size = memparse(s, &s);
2893 return 1;
2894}
2895__setup("default_hugepagesz=", hugetlb_default_setup);
a3437870 2896
8a213460
NA
2897static unsigned int cpuset_mems_nr(unsigned int *array)
2898{
2899 int node;
2900 unsigned int nr = 0;
2901
2902 for_each_node_mask(node, cpuset_current_mems_allowed)
2903 nr += array[node];
2904
2905 return nr;
2906}
2907
2908#ifdef CONFIG_SYSCTL
06808b08
LS
2909static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2910 struct ctl_table *table, int write,
2911 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 2912{
e5ff2159 2913 struct hstate *h = &default_hstate;
238d3c13 2914 unsigned long tmp = h->max_huge_pages;
08d4a246 2915 int ret;
e5ff2159 2916
457c1b27 2917 if (!hugepages_supported())
86613628 2918 return -EOPNOTSUPP;
457c1b27 2919
e5ff2159
AK
2920 table->data = &tmp;
2921 table->maxlen = sizeof(unsigned long);
08d4a246
MH
2922 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2923 if (ret)
2924 goto out;
e5ff2159 2925
238d3c13
DR
2926 if (write)
2927 ret = __nr_hugepages_store_common(obey_mempolicy, h,
2928 NUMA_NO_NODE, tmp, *length);
08d4a246
MH
2929out:
2930 return ret;
1da177e4 2931}
396faf03 2932
06808b08
LS
2933int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2934 void __user *buffer, size_t *length, loff_t *ppos)
2935{
2936
2937 return hugetlb_sysctl_handler_common(false, table, write,
2938 buffer, length, ppos);
2939}
2940
2941#ifdef CONFIG_NUMA
2942int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2943 void __user *buffer, size_t *length, loff_t *ppos)
2944{
2945 return hugetlb_sysctl_handler_common(true, table, write,
2946 buffer, length, ppos);
2947}
2948#endif /* CONFIG_NUMA */
2949
a3d0c6aa 2950int hugetlb_overcommit_handler(struct ctl_table *table, int write,
8d65af78 2951 void __user *buffer,
a3d0c6aa
NA
2952 size_t *length, loff_t *ppos)
2953{
a5516438 2954 struct hstate *h = &default_hstate;
e5ff2159 2955 unsigned long tmp;
08d4a246 2956 int ret;
e5ff2159 2957
457c1b27 2958 if (!hugepages_supported())
86613628 2959 return -EOPNOTSUPP;
457c1b27 2960
c033a93c 2961 tmp = h->nr_overcommit_huge_pages;
e5ff2159 2962
bae7f4ae 2963 if (write && hstate_is_gigantic(h))
adbe8726
EM
2964 return -EINVAL;
2965
e5ff2159
AK
2966 table->data = &tmp;
2967 table->maxlen = sizeof(unsigned long);
08d4a246
MH
2968 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2969 if (ret)
2970 goto out;
e5ff2159
AK
2971
2972 if (write) {
2973 spin_lock(&hugetlb_lock);
2974 h->nr_overcommit_huge_pages = tmp;
2975 spin_unlock(&hugetlb_lock);
2976 }
08d4a246
MH
2977out:
2978 return ret;
a3d0c6aa
NA
2979}
2980
1da177e4
LT
2981#endif /* CONFIG_SYSCTL */
2982
e1759c21 2983void hugetlb_report_meminfo(struct seq_file *m)
1da177e4 2984{
fcb2b0c5
RG
2985 struct hstate *h;
2986 unsigned long total = 0;
2987
457c1b27
NA
2988 if (!hugepages_supported())
2989 return;
fcb2b0c5
RG
2990
2991 for_each_hstate(h) {
2992 unsigned long count = h->nr_huge_pages;
2993
2994 total += (PAGE_SIZE << huge_page_order(h)) * count;
2995
2996 if (h == &default_hstate)
2997 seq_printf(m,
2998 "HugePages_Total: %5lu\n"
2999 "HugePages_Free: %5lu\n"
3000 "HugePages_Rsvd: %5lu\n"
3001 "HugePages_Surp: %5lu\n"
3002 "Hugepagesize: %8lu kB\n",
3003 count,
3004 h->free_huge_pages,
3005 h->resv_huge_pages,
3006 h->surplus_huge_pages,
3007 (PAGE_SIZE << huge_page_order(h)) / 1024);
3008 }
3009
3010 seq_printf(m, "Hugetlb: %8lu kB\n", total / 1024);
1da177e4
LT
3011}
3012
3013int hugetlb_report_node_meminfo(int nid, char *buf)
3014{
a5516438 3015 struct hstate *h = &default_hstate;
457c1b27
NA
3016 if (!hugepages_supported())
3017 return 0;
1da177e4
LT
3018 return sprintf(buf,
3019 "Node %d HugePages_Total: %5u\n"
a1de0919
NA
3020 "Node %d HugePages_Free: %5u\n"
3021 "Node %d HugePages_Surp: %5u\n",
a5516438
AK
3022 nid, h->nr_huge_pages_node[nid],
3023 nid, h->free_huge_pages_node[nid],
3024 nid, h->surplus_huge_pages_node[nid]);
1da177e4
LT
3025}
3026
949f7ec5
DR
3027void hugetlb_show_meminfo(void)
3028{
3029 struct hstate *h;
3030 int nid;
3031
457c1b27
NA
3032 if (!hugepages_supported())
3033 return;
3034
949f7ec5
DR
3035 for_each_node_state(nid, N_MEMORY)
3036 for_each_hstate(h)
3037 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3038 nid,
3039 h->nr_huge_pages_node[nid],
3040 h->free_huge_pages_node[nid],
3041 h->surplus_huge_pages_node[nid],
3042 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3043}
3044
5d317b2b
NH
3045void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3046{
3047 seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3048 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3049}
3050
1da177e4
LT
3051/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3052unsigned long hugetlb_total_pages(void)
3053{
d0028588
WL
3054 struct hstate *h;
3055 unsigned long nr_total_pages = 0;
3056
3057 for_each_hstate(h)
3058 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3059 return nr_total_pages;
1da177e4 3060}
1da177e4 3061
a5516438 3062static int hugetlb_acct_memory(struct hstate *h, long delta)
fc1b8a73
MG
3063{
3064 int ret = -ENOMEM;
3065
3066 spin_lock(&hugetlb_lock);
3067 /*
3068 * When cpuset is configured, it breaks the strict hugetlb page
3069 * reservation as the accounting is done on a global variable. Such
3070 * reservation is completely rubbish in the presence of cpuset because
3071 * the reservation is not checked against page availability for the
3072 * current cpuset. Application can still potentially OOM'ed by kernel
3073 * with lack of free htlb page in cpuset that the task is in.
3074 * Attempt to enforce strict accounting with cpuset is almost
3075 * impossible (or too ugly) because cpuset is too fluid that
3076 * task or memory node can be dynamically moved between cpusets.
3077 *
3078 * The change of semantics for shared hugetlb mapping with cpuset is
3079 * undesirable. However, in order to preserve some of the semantics,
3080 * we fall back to check against current free page availability as
3081 * a best attempt and hopefully to minimize the impact of changing
3082 * semantics that cpuset has.
3083 */
3084 if (delta > 0) {
a5516438 3085 if (gather_surplus_pages(h, delta) < 0)
fc1b8a73
MG
3086 goto out;
3087
a5516438
AK
3088 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
3089 return_unused_surplus_pages(h, delta);
fc1b8a73
MG
3090 goto out;
3091 }
3092 }
3093
3094 ret = 0;
3095 if (delta < 0)
a5516438 3096 return_unused_surplus_pages(h, (unsigned long) -delta);
fc1b8a73
MG
3097
3098out:
3099 spin_unlock(&hugetlb_lock);
3100 return ret;
3101}
3102
84afd99b
AW
3103static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3104{
f522c3ac 3105 struct resv_map *resv = vma_resv_map(vma);
84afd99b
AW
3106
3107 /*
3108 * This new VMA should share its siblings reservation map if present.
3109 * The VMA will only ever have a valid reservation map pointer where
3110 * it is being copied for another still existing VMA. As that VMA
25985edc 3111 * has a reference to the reservation map it cannot disappear until
84afd99b
AW
3112 * after this open call completes. It is therefore safe to take a
3113 * new reference here without additional locking.
3114 */
4e35f483 3115 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
f522c3ac 3116 kref_get(&resv->refs);
84afd99b
AW
3117}
3118
a1e78772
MG
3119static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3120{
a5516438 3121 struct hstate *h = hstate_vma(vma);
f522c3ac 3122 struct resv_map *resv = vma_resv_map(vma);
90481622 3123 struct hugepage_subpool *spool = subpool_vma(vma);
4e35f483 3124 unsigned long reserve, start, end;
1c5ecae3 3125 long gbl_reserve;
84afd99b 3126
4e35f483
JK
3127 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3128 return;
84afd99b 3129
4e35f483
JK
3130 start = vma_hugecache_offset(h, vma, vma->vm_start);
3131 end = vma_hugecache_offset(h, vma, vma->vm_end);
84afd99b 3132
4e35f483 3133 reserve = (end - start) - region_count(resv, start, end);
84afd99b 3134
4e35f483
JK
3135 kref_put(&resv->refs, resv_map_release);
3136
3137 if (reserve) {
1c5ecae3
MK
3138 /*
3139 * Decrement reserve counts. The global reserve count may be
3140 * adjusted if the subpool has a minimum size.
3141 */
3142 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3143 hugetlb_acct_memory(h, -gbl_reserve);
84afd99b 3144 }
a1e78772
MG
3145}
3146
31383c68
DW
3147static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
3148{
3149 if (addr & ~(huge_page_mask(hstate_vma(vma))))
3150 return -EINVAL;
3151 return 0;
3152}
3153
1da177e4
LT
3154/*
3155 * We cannot handle pagefaults against hugetlb pages at all. They cause
3156 * handle_mm_fault() to try to instantiate regular-sized pages in the
3157 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
3158 * this far.
3159 */
11bac800 3160static int hugetlb_vm_op_fault(struct vm_fault *vmf)
1da177e4
LT
3161{
3162 BUG();
d0217ac0 3163 return 0;
1da177e4
LT
3164}
3165
f0f37e2f 3166const struct vm_operations_struct hugetlb_vm_ops = {
d0217ac0 3167 .fault = hugetlb_vm_op_fault,
84afd99b 3168 .open = hugetlb_vm_op_open,
a1e78772 3169 .close = hugetlb_vm_op_close,
31383c68 3170 .split = hugetlb_vm_op_split,
1da177e4
LT
3171};
3172
1e8f889b
DG
3173static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3174 int writable)
63551ae0
DG
3175{
3176 pte_t entry;
3177
1e8f889b 3178 if (writable) {
106c992a
GS
3179 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3180 vma->vm_page_prot)));
63551ae0 3181 } else {
106c992a
GS
3182 entry = huge_pte_wrprotect(mk_huge_pte(page,
3183 vma->vm_page_prot));
63551ae0
DG
3184 }
3185 entry = pte_mkyoung(entry);
3186 entry = pte_mkhuge(entry);
d9ed9faa 3187 entry = arch_make_huge_pte(entry, vma, page, writable);
63551ae0
DG
3188
3189 return entry;
3190}
3191
1e8f889b
DG
3192static void set_huge_ptep_writable(struct vm_area_struct *vma,
3193 unsigned long address, pte_t *ptep)
3194{
3195 pte_t entry;
3196
106c992a 3197 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
32f84528 3198 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4b3073e1 3199 update_mmu_cache(vma, address, ptep);
1e8f889b
DG
3200}
3201
d5ed7444 3202bool is_hugetlb_entry_migration(pte_t pte)
4a705fef
NH
3203{
3204 swp_entry_t swp;
3205
3206 if (huge_pte_none(pte) || pte_present(pte))
d5ed7444 3207 return false;
4a705fef
NH
3208 swp = pte_to_swp_entry(pte);
3209 if (non_swap_entry(swp) && is_migration_entry(swp))
d5ed7444 3210 return true;
4a705fef 3211 else
d5ed7444 3212 return false;
4a705fef
NH
3213}
3214
3215static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3216{
3217 swp_entry_t swp;
3218
3219 if (huge_pte_none(pte) || pte_present(pte))
3220 return 0;
3221 swp = pte_to_swp_entry(pte);
3222 if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3223 return 1;
3224 else
3225 return 0;
3226}
1e8f889b 3227
63551ae0
DG
3228int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3229 struct vm_area_struct *vma)
3230{
3231 pte_t *src_pte, *dst_pte, entry;
3232 struct page *ptepage;
1c59827d 3233 unsigned long addr;
1e8f889b 3234 int cow;
a5516438
AK
3235 struct hstate *h = hstate_vma(vma);
3236 unsigned long sz = huge_page_size(h);
e8569dd2
AS
3237 unsigned long mmun_start; /* For mmu_notifiers */
3238 unsigned long mmun_end; /* For mmu_notifiers */
3239 int ret = 0;
1e8f889b
DG
3240
3241 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
63551ae0 3242
e8569dd2
AS
3243 mmun_start = vma->vm_start;
3244 mmun_end = vma->vm_end;
3245 if (cow)
3246 mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
3247
a5516438 3248 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
cb900f41 3249 spinlock_t *src_ptl, *dst_ptl;
7868a208 3250 src_pte = huge_pte_offset(src, addr, sz);
c74df32c
HD
3251 if (!src_pte)
3252 continue;
a5516438 3253 dst_pte = huge_pte_alloc(dst, addr, sz);
e8569dd2
AS
3254 if (!dst_pte) {
3255 ret = -ENOMEM;
3256 break;
3257 }
c5c99429
LW
3258
3259 /* If the pagetables are shared don't copy or take references */
3260 if (dst_pte == src_pte)
3261 continue;
3262
cb900f41
KS
3263 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3264 src_ptl = huge_pte_lockptr(h, src, src_pte);
3265 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4a705fef
NH
3266 entry = huge_ptep_get(src_pte);
3267 if (huge_pte_none(entry)) { /* skip none entry */
3268 ;
3269 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3270 is_hugetlb_entry_hwpoisoned(entry))) {
3271 swp_entry_t swp_entry = pte_to_swp_entry(entry);
3272
3273 if (is_write_migration_entry(swp_entry) && cow) {
3274 /*
3275 * COW mappings require pages in both
3276 * parent and child to be set to read.
3277 */
3278 make_migration_entry_read(&swp_entry);
3279 entry = swp_entry_to_pte(swp_entry);
e5251fd4
PA
3280 set_huge_swap_pte_at(src, addr, src_pte,
3281 entry, sz);
4a705fef 3282 }
e5251fd4 3283 set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
4a705fef 3284 } else {
34ee645e 3285 if (cow) {
0f10851e
JG
3286 /*
3287 * No need to notify as we are downgrading page
3288 * table protection not changing it to point
3289 * to a new page.
3290 *
3291 * See Documentation/vm/mmu_notifier.txt
3292 */
7f2e9525 3293 huge_ptep_set_wrprotect(src, addr, src_pte);
34ee645e 3294 }
0253d634 3295 entry = huge_ptep_get(src_pte);
1c59827d
HD
3296 ptepage = pte_page(entry);
3297 get_page(ptepage);
53f9263b 3298 page_dup_rmap(ptepage, true);
1c59827d 3299 set_huge_pte_at(dst, addr, dst_pte, entry);
5d317b2b 3300 hugetlb_count_add(pages_per_huge_page(h), dst);
1c59827d 3301 }
cb900f41
KS
3302 spin_unlock(src_ptl);
3303 spin_unlock(dst_ptl);
63551ae0 3304 }
63551ae0 3305
e8569dd2
AS
3306 if (cow)
3307 mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
3308
3309 return ret;
63551ae0
DG
3310}
3311
24669e58
AK
3312void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3313 unsigned long start, unsigned long end,
3314 struct page *ref_page)
63551ae0
DG
3315{
3316 struct mm_struct *mm = vma->vm_mm;
3317 unsigned long address;
c7546f8f 3318 pte_t *ptep;
63551ae0 3319 pte_t pte;
cb900f41 3320 spinlock_t *ptl;
63551ae0 3321 struct page *page;
a5516438
AK
3322 struct hstate *h = hstate_vma(vma);
3323 unsigned long sz = huge_page_size(h);
2ec74c3e
SG
3324 const unsigned long mmun_start = start; /* For mmu_notifiers */
3325 const unsigned long mmun_end = end; /* For mmu_notifiers */
a5516438 3326
63551ae0 3327 WARN_ON(!is_vm_hugetlb_page(vma));
a5516438
AK
3328 BUG_ON(start & ~huge_page_mask(h));
3329 BUG_ON(end & ~huge_page_mask(h));
63551ae0 3330
07e32661
AK
3331 /*
3332 * This is a hugetlb vma, all the pte entries should point
3333 * to huge page.
3334 */
3335 tlb_remove_check_page_size_change(tlb, sz);
24669e58 3336 tlb_start_vma(tlb, vma);
2ec74c3e 3337 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
569f48b8 3338 address = start;
569f48b8 3339 for (; address < end; address += sz) {
7868a208 3340 ptep = huge_pte_offset(mm, address, sz);
4c887265 3341 if (!ptep)
c7546f8f
DG
3342 continue;
3343
cb900f41 3344 ptl = huge_pte_lock(h, mm, ptep);
31d49da5
AK
3345 if (huge_pmd_unshare(mm, &address, ptep)) {
3346 spin_unlock(ptl);
3347 continue;
3348 }
39dde65c 3349
6629326b 3350 pte = huge_ptep_get(ptep);
31d49da5
AK
3351 if (huge_pte_none(pte)) {
3352 spin_unlock(ptl);
3353 continue;
3354 }
6629326b
HD
3355
3356 /*
9fbc1f63
NH
3357 * Migrating hugepage or HWPoisoned hugepage is already
3358 * unmapped and its refcount is dropped, so just clear pte here.
6629326b 3359 */
9fbc1f63 3360 if (unlikely(!pte_present(pte))) {
9386fac3 3361 huge_pte_clear(mm, address, ptep, sz);
31d49da5
AK
3362 spin_unlock(ptl);
3363 continue;
8c4894c6 3364 }
6629326b
HD
3365
3366 page = pte_page(pte);
04f2cbe3
MG
3367 /*
3368 * If a reference page is supplied, it is because a specific
3369 * page is being unmapped, not a range. Ensure the page we
3370 * are about to unmap is the actual page of interest.
3371 */
3372 if (ref_page) {
31d49da5
AK
3373 if (page != ref_page) {
3374 spin_unlock(ptl);
3375 continue;
3376 }
04f2cbe3
MG
3377 /*
3378 * Mark the VMA as having unmapped its page so that
3379 * future faults in this VMA will fail rather than
3380 * looking like data was lost
3381 */
3382 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3383 }
3384
c7546f8f 3385 pte = huge_ptep_get_and_clear(mm, address, ptep);
b528e4b6 3386 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
106c992a 3387 if (huge_pte_dirty(pte))
6649a386 3388 set_page_dirty(page);
9e81130b 3389
5d317b2b 3390 hugetlb_count_sub(pages_per_huge_page(h), mm);
d281ee61 3391 page_remove_rmap(page, true);
31d49da5 3392
cb900f41 3393 spin_unlock(ptl);
e77b0852 3394 tlb_remove_page_size(tlb, page, huge_page_size(h));
31d49da5
AK
3395 /*
3396 * Bail out after unmapping reference page if supplied
3397 */
3398 if (ref_page)
3399 break;
fe1668ae 3400 }
2ec74c3e 3401 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
24669e58 3402 tlb_end_vma(tlb, vma);
1da177e4 3403}
63551ae0 3404
d833352a
MG
3405void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3406 struct vm_area_struct *vma, unsigned long start,
3407 unsigned long end, struct page *ref_page)
3408{
3409 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
3410
3411 /*
3412 * Clear this flag so that x86's huge_pmd_share page_table_shareable
3413 * test will fail on a vma being torn down, and not grab a page table
3414 * on its way out. We're lucky that the flag has such an appropriate
3415 * name, and can in fact be safely cleared here. We could clear it
3416 * before the __unmap_hugepage_range above, but all that's necessary
c8c06efa 3417 * is to clear it before releasing the i_mmap_rwsem. This works
d833352a 3418 * because in the context this is called, the VMA is about to be
c8c06efa 3419 * destroyed and the i_mmap_rwsem is held.
d833352a
MG
3420 */
3421 vma->vm_flags &= ~VM_MAYSHARE;
3422}
3423
502717f4 3424void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
04f2cbe3 3425 unsigned long end, struct page *ref_page)
502717f4 3426{
24669e58
AK
3427 struct mm_struct *mm;
3428 struct mmu_gather tlb;
3429
3430 mm = vma->vm_mm;
3431
2b047252 3432 tlb_gather_mmu(&tlb, mm, start, end);
24669e58
AK
3433 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
3434 tlb_finish_mmu(&tlb, start, end);
502717f4
CK
3435}
3436
04f2cbe3
MG
3437/*
3438 * This is called when the original mapper is failing to COW a MAP_PRIVATE
3439 * mappping it owns the reserve page for. The intention is to unmap the page
3440 * from other VMAs and let the children be SIGKILLed if they are faulting the
3441 * same region.
3442 */
2f4612af
DB
3443static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3444 struct page *page, unsigned long address)
04f2cbe3 3445{
7526674d 3446 struct hstate *h = hstate_vma(vma);
04f2cbe3
MG
3447 struct vm_area_struct *iter_vma;
3448 struct address_space *mapping;
04f2cbe3
MG
3449 pgoff_t pgoff;
3450
3451 /*
3452 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3453 * from page cache lookup which is in HPAGE_SIZE units.
3454 */
7526674d 3455 address = address & huge_page_mask(h);
36e4f20a
MH
3456 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3457 vma->vm_pgoff;
93c76a3d 3458 mapping = vma->vm_file->f_mapping;
04f2cbe3 3459
4eb2b1dc
MG
3460 /*
3461 * Take the mapping lock for the duration of the table walk. As
3462 * this mapping should be shared between all the VMAs,
3463 * __unmap_hugepage_range() is called as the lock is already held
3464 */
83cde9e8 3465 i_mmap_lock_write(mapping);
6b2dbba8 3466 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
04f2cbe3
MG
3467 /* Do not unmap the current VMA */
3468 if (iter_vma == vma)
3469 continue;
3470
2f84a899
MG
3471 /*
3472 * Shared VMAs have their own reserves and do not affect
3473 * MAP_PRIVATE accounting but it is possible that a shared
3474 * VMA is using the same page so check and skip such VMAs.
3475 */
3476 if (iter_vma->vm_flags & VM_MAYSHARE)
3477 continue;
3478
04f2cbe3
MG
3479 /*
3480 * Unmap the page from other VMAs without their own reserves.
3481 * They get marked to be SIGKILLed if they fault in these
3482 * areas. This is because a future no-page fault on this VMA
3483 * could insert a zeroed page instead of the data existing
3484 * from the time of fork. This would look like data corruption
3485 */
3486 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
24669e58
AK
3487 unmap_hugepage_range(iter_vma, address,
3488 address + huge_page_size(h), page);
04f2cbe3 3489 }
83cde9e8 3490 i_mmap_unlock_write(mapping);
04f2cbe3
MG
3491}
3492
0fe6e20b
NH
3493/*
3494 * Hugetlb_cow() should be called with page lock of the original hugepage held.
ef009b25
MH
3495 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3496 * cannot race with other handlers or page migration.
3497 * Keep the pte_same checks anyway to make transition from the mutex easier.
0fe6e20b 3498 */
1e8f889b 3499static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
3999f52e
AK
3500 unsigned long address, pte_t *ptep,
3501 struct page *pagecache_page, spinlock_t *ptl)
1e8f889b 3502{
3999f52e 3503 pte_t pte;
a5516438 3504 struct hstate *h = hstate_vma(vma);
1e8f889b 3505 struct page *old_page, *new_page;
ad4404a2 3506 int ret = 0, outside_reserve = 0;
2ec74c3e
SG
3507 unsigned long mmun_start; /* For mmu_notifiers */
3508 unsigned long mmun_end; /* For mmu_notifiers */
1e8f889b 3509
3999f52e 3510 pte = huge_ptep_get(ptep);
1e8f889b
DG
3511 old_page = pte_page(pte);
3512
04f2cbe3 3513retry_avoidcopy:
1e8f889b
DG
3514 /* If no-one else is actually using this page, avoid the copy
3515 * and just make the page writable */
37a2140d 3516 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
5a49973d 3517 page_move_anon_rmap(old_page, vma);
1e8f889b 3518 set_huge_ptep_writable(vma, address, ptep);
83c54070 3519 return 0;
1e8f889b
DG
3520 }
3521
04f2cbe3
MG
3522 /*
3523 * If the process that created a MAP_PRIVATE mapping is about to
3524 * perform a COW due to a shared page count, attempt to satisfy
3525 * the allocation without using the existing reserves. The pagecache
3526 * page is used to determine if the reserve at this address was
3527 * consumed or not. If reserves were used, a partial faulted mapping
3528 * at the time of fork() could consume its reserves on COW instead
3529 * of the full address range.
3530 */
5944d011 3531 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
04f2cbe3
MG
3532 old_page != pagecache_page)
3533 outside_reserve = 1;
3534
09cbfeaf 3535 get_page(old_page);
b76c8cfb 3536
ad4404a2
DB
3537 /*
3538 * Drop page table lock as buddy allocator may be called. It will
3539 * be acquired again before returning to the caller, as expected.
3540 */
cb900f41 3541 spin_unlock(ptl);
04f2cbe3 3542 new_page = alloc_huge_page(vma, address, outside_reserve);
1e8f889b 3543
2fc39cec 3544 if (IS_ERR(new_page)) {
04f2cbe3
MG
3545 /*
3546 * If a process owning a MAP_PRIVATE mapping fails to COW,
3547 * it is due to references held by a child and an insufficient
3548 * huge page pool. To guarantee the original mappers
3549 * reliability, unmap the page from child processes. The child
3550 * may get SIGKILLed if it later faults.
3551 */
3552 if (outside_reserve) {
09cbfeaf 3553 put_page(old_page);
04f2cbe3 3554 BUG_ON(huge_pte_none(pte));
2f4612af
DB
3555 unmap_ref_private(mm, vma, old_page, address);
3556 BUG_ON(huge_pte_none(pte));
3557 spin_lock(ptl);
7868a208
PA
3558 ptep = huge_pte_offset(mm, address & huge_page_mask(h),
3559 huge_page_size(h));
2f4612af
DB
3560 if (likely(ptep &&
3561 pte_same(huge_ptep_get(ptep), pte)))
3562 goto retry_avoidcopy;
3563 /*
3564 * race occurs while re-acquiring page table
3565 * lock, and our job is done.
3566 */
3567 return 0;
04f2cbe3
MG
3568 }
3569
ad4404a2
DB
3570 ret = (PTR_ERR(new_page) == -ENOMEM) ?
3571 VM_FAULT_OOM : VM_FAULT_SIGBUS;
3572 goto out_release_old;
1e8f889b
DG
3573 }
3574
0fe6e20b
NH
3575 /*
3576 * When the original hugepage is shared one, it does not have
3577 * anon_vma prepared.
3578 */
44e2aa93 3579 if (unlikely(anon_vma_prepare(vma))) {
ad4404a2
DB
3580 ret = VM_FAULT_OOM;
3581 goto out_release_all;
44e2aa93 3582 }
0fe6e20b 3583
47ad8475
AA
3584 copy_user_huge_page(new_page, old_page, address, vma,
3585 pages_per_huge_page(h));
0ed361de 3586 __SetPageUptodate(new_page);
bcc54222 3587 set_page_huge_active(new_page);
1e8f889b 3588
2ec74c3e
SG
3589 mmun_start = address & huge_page_mask(h);
3590 mmun_end = mmun_start + huge_page_size(h);
3591 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
ad4404a2 3592
b76c8cfb 3593 /*
cb900f41 3594 * Retake the page table lock to check for racing updates
b76c8cfb
LW
3595 * before the page tables are altered
3596 */
cb900f41 3597 spin_lock(ptl);
7868a208
PA
3598 ptep = huge_pte_offset(mm, address & huge_page_mask(h),
3599 huge_page_size(h));
a9af0c5d 3600 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
07443a85
JK
3601 ClearPagePrivate(new_page);
3602
1e8f889b 3603 /* Break COW */
8fe627ec 3604 huge_ptep_clear_flush(vma, address, ptep);
34ee645e 3605 mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
1e8f889b
DG
3606 set_huge_pte_at(mm, address, ptep,
3607 make_huge_pte(vma, new_page, 1));
d281ee61 3608 page_remove_rmap(old_page, true);
cd67f0d2 3609 hugepage_add_new_anon_rmap(new_page, vma, address);
1e8f889b
DG
3610 /* Make the old page be freed below */
3611 new_page = old_page;
3612 }
cb900f41 3613 spin_unlock(ptl);
2ec74c3e 3614 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
ad4404a2 3615out_release_all:
96b96a96 3616 restore_reserve_on_error(h, vma, address, new_page);
09cbfeaf 3617 put_page(new_page);
ad4404a2 3618out_release_old:
09cbfeaf 3619 put_page(old_page);
8312034f 3620
ad4404a2
DB
3621 spin_lock(ptl); /* Caller expects lock to be held */
3622 return ret;
1e8f889b
DG
3623}
3624
04f2cbe3 3625/* Return the pagecache page at a given address within a VMA */
a5516438
AK
3626static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3627 struct vm_area_struct *vma, unsigned long address)
04f2cbe3
MG
3628{
3629 struct address_space *mapping;
e7c4b0bf 3630 pgoff_t idx;
04f2cbe3
MG
3631
3632 mapping = vma->vm_file->f_mapping;
a5516438 3633 idx = vma_hugecache_offset(h, vma, address);
04f2cbe3
MG
3634
3635 return find_lock_page(mapping, idx);
3636}
3637
3ae77f43
HD
3638/*
3639 * Return whether there is a pagecache page to back given address within VMA.
3640 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3641 */
3642static bool hugetlbfs_pagecache_present(struct hstate *h,
2a15efc9
HD
3643 struct vm_area_struct *vma, unsigned long address)
3644{
3645 struct address_space *mapping;
3646 pgoff_t idx;
3647 struct page *page;
3648
3649 mapping = vma->vm_file->f_mapping;
3650 idx = vma_hugecache_offset(h, vma, address);
3651
3652 page = find_get_page(mapping, idx);
3653 if (page)
3654 put_page(page);
3655 return page != NULL;
3656}
3657
ab76ad54
MK
3658int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
3659 pgoff_t idx)
3660{
3661 struct inode *inode = mapping->host;
3662 struct hstate *h = hstate_inode(inode);
3663 int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3664
3665 if (err)
3666 return err;
3667 ClearPagePrivate(page);
3668
3669 spin_lock(&inode->i_lock);
3670 inode->i_blocks += blocks_per_huge_page(h);
3671 spin_unlock(&inode->i_lock);
3672 return 0;
3673}
3674
a1ed3dda 3675static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
8382d914
DB
3676 struct address_space *mapping, pgoff_t idx,
3677 unsigned long address, pte_t *ptep, unsigned int flags)
ac9b9c66 3678{
a5516438 3679 struct hstate *h = hstate_vma(vma);
ac9b9c66 3680 int ret = VM_FAULT_SIGBUS;
409eb8c2 3681 int anon_rmap = 0;
4c887265 3682 unsigned long size;
4c887265 3683 struct page *page;
1e8f889b 3684 pte_t new_pte;
cb900f41 3685 spinlock_t *ptl;
4c887265 3686
04f2cbe3
MG
3687 /*
3688 * Currently, we are forced to kill the process in the event the
3689 * original mapper has unmapped pages from the child due to a failed
25985edc 3690 * COW. Warn that such a situation has occurred as it may not be obvious
04f2cbe3
MG
3691 */
3692 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
910154d5 3693 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
ffb22af5 3694 current->pid);
04f2cbe3
MG
3695 return ret;
3696 }
3697
4c887265
AL
3698 /*
3699 * Use page lock to guard against racing truncation
3700 * before we get page_table_lock.
3701 */
6bda666a
CL
3702retry:
3703 page = find_lock_page(mapping, idx);
3704 if (!page) {
a5516438 3705 size = i_size_read(mapping->host) >> huge_page_shift(h);
ebed4bfc
HD
3706 if (idx >= size)
3707 goto out;
1a1aad8a
MK
3708
3709 /*
3710 * Check for page in userfault range
3711 */
3712 if (userfaultfd_missing(vma)) {
3713 u32 hash;
3714 struct vm_fault vmf = {
3715 .vma = vma,
3716 .address = address,
3717 .flags = flags,
3718 /*
3719 * Hard to debug if it ends up being
3720 * used by a callee that assumes
3721 * something about the other
3722 * uninitialized fields... same as in
3723 * memory.c
3724 */
3725 };
3726
3727 /*
3728 * hugetlb_fault_mutex must be dropped before
3729 * handling userfault. Reacquire after handling
3730 * fault to make calling code simpler.
3731 */
3732 hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping,
3733 idx, address);
3734 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3735 ret = handle_userfault(&vmf, VM_UFFD_MISSING);
3736 mutex_lock(&hugetlb_fault_mutex_table[hash]);
3737 goto out;
3738 }
3739
04f2cbe3 3740 page = alloc_huge_page(vma, address, 0);
2fc39cec 3741 if (IS_ERR(page)) {
76dcee75
AK
3742 ret = PTR_ERR(page);
3743 if (ret == -ENOMEM)
3744 ret = VM_FAULT_OOM;
3745 else
3746 ret = VM_FAULT_SIGBUS;
6bda666a
CL
3747 goto out;
3748 }
47ad8475 3749 clear_huge_page(page, address, pages_per_huge_page(h));
0ed361de 3750 __SetPageUptodate(page);
bcc54222 3751 set_page_huge_active(page);
ac9b9c66 3752
f83a275d 3753 if (vma->vm_flags & VM_MAYSHARE) {
ab76ad54 3754 int err = huge_add_to_page_cache(page, mapping, idx);
6bda666a
CL
3755 if (err) {
3756 put_page(page);
6bda666a
CL
3757 if (err == -EEXIST)
3758 goto retry;
3759 goto out;
3760 }
23be7468 3761 } else {
6bda666a 3762 lock_page(page);
0fe6e20b
NH
3763 if (unlikely(anon_vma_prepare(vma))) {
3764 ret = VM_FAULT_OOM;
3765 goto backout_unlocked;
3766 }
409eb8c2 3767 anon_rmap = 1;
23be7468 3768 }
0fe6e20b 3769 } else {
998b4382
NH
3770 /*
3771 * If memory error occurs between mmap() and fault, some process
3772 * don't have hwpoisoned swap entry for errored virtual address.
3773 * So we need to block hugepage fault by PG_hwpoison bit check.
3774 */
3775 if (unlikely(PageHWPoison(page))) {
32f84528 3776 ret = VM_FAULT_HWPOISON |
972dc4de 3777 VM_FAULT_SET_HINDEX(hstate_index(h));
998b4382
NH
3778 goto backout_unlocked;
3779 }
6bda666a 3780 }
1e8f889b 3781
57303d80
AW
3782 /*
3783 * If we are going to COW a private mapping later, we examine the
3784 * pending reservations for this page now. This will ensure that
3785 * any allocations necessary to record that reservation occur outside
3786 * the spinlock.
3787 */
5e911373 3788 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2b26736c
AW
3789 if (vma_needs_reservation(h, vma, address) < 0) {
3790 ret = VM_FAULT_OOM;
3791 goto backout_unlocked;
3792 }
5e911373 3793 /* Just decrements count, does not deallocate */
feba16e2 3794 vma_end_reservation(h, vma, address);
5e911373 3795 }
57303d80 3796
8bea8052 3797 ptl = huge_pte_lock(h, mm, ptep);
a5516438 3798 size = i_size_read(mapping->host) >> huge_page_shift(h);
4c887265
AL
3799 if (idx >= size)
3800 goto backout;
3801
83c54070 3802 ret = 0;
7f2e9525 3803 if (!huge_pte_none(huge_ptep_get(ptep)))
4c887265
AL
3804 goto backout;
3805
07443a85
JK
3806 if (anon_rmap) {
3807 ClearPagePrivate(page);
409eb8c2 3808 hugepage_add_new_anon_rmap(page, vma, address);
ac714904 3809 } else
53f9263b 3810 page_dup_rmap(page, true);
1e8f889b
DG
3811 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3812 && (vma->vm_flags & VM_SHARED)));
3813 set_huge_pte_at(mm, address, ptep, new_pte);
3814
5d317b2b 3815 hugetlb_count_add(pages_per_huge_page(h), mm);
788c7df4 3816 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
1e8f889b 3817 /* Optimization, do the COW without a second fault */
3999f52e 3818 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
1e8f889b
DG
3819 }
3820
cb900f41 3821 spin_unlock(ptl);
4c887265
AL
3822 unlock_page(page);
3823out:
ac9b9c66 3824 return ret;
4c887265
AL
3825
3826backout:
cb900f41 3827 spin_unlock(ptl);
2b26736c 3828backout_unlocked:
4c887265 3829 unlock_page(page);
96b96a96 3830 restore_reserve_on_error(h, vma, address, page);
4c887265
AL
3831 put_page(page);
3832 goto out;
ac9b9c66
HD
3833}
3834
8382d914 3835#ifdef CONFIG_SMP
c672c7f2 3836u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
8382d914
DB
3837 struct vm_area_struct *vma,
3838 struct address_space *mapping,
3839 pgoff_t idx, unsigned long address)
3840{
3841 unsigned long key[2];
3842 u32 hash;
3843
3844 if (vma->vm_flags & VM_SHARED) {
3845 key[0] = (unsigned long) mapping;
3846 key[1] = idx;
3847 } else {
3848 key[0] = (unsigned long) mm;
3849 key[1] = address >> huge_page_shift(h);
3850 }
3851
3852 hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
3853
3854 return hash & (num_fault_mutexes - 1);
3855}
3856#else
3857/*
3858 * For uniprocesor systems we always use a single mutex, so just
3859 * return 0 and avoid the hashing overhead.
3860 */
c672c7f2 3861u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
8382d914
DB
3862 struct vm_area_struct *vma,
3863 struct address_space *mapping,
3864 pgoff_t idx, unsigned long address)
3865{
3866 return 0;
3867}
3868#endif
3869
86e5216f 3870int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
788c7df4 3871 unsigned long address, unsigned int flags)
86e5216f 3872{
8382d914 3873 pte_t *ptep, entry;
cb900f41 3874 spinlock_t *ptl;
1e8f889b 3875 int ret;
8382d914
DB
3876 u32 hash;
3877 pgoff_t idx;
0fe6e20b 3878 struct page *page = NULL;
57303d80 3879 struct page *pagecache_page = NULL;
a5516438 3880 struct hstate *h = hstate_vma(vma);
8382d914 3881 struct address_space *mapping;
0f792cf9 3882 int need_wait_lock = 0;
86e5216f 3883
1e16a539
KH
3884 address &= huge_page_mask(h);
3885
7868a208 3886 ptep = huge_pte_offset(mm, address, huge_page_size(h));
fd6a03ed
NH
3887 if (ptep) {
3888 entry = huge_ptep_get(ptep);
290408d4 3889 if (unlikely(is_hugetlb_entry_migration(entry))) {
cb900f41 3890 migration_entry_wait_huge(vma, mm, ptep);
290408d4
NH
3891 return 0;
3892 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
32f84528 3893 return VM_FAULT_HWPOISON_LARGE |
972dc4de 3894 VM_FAULT_SET_HINDEX(hstate_index(h));
0d777df5
NH
3895 } else {
3896 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
3897 if (!ptep)
3898 return VM_FAULT_OOM;
fd6a03ed
NH
3899 }
3900
8382d914
DB
3901 mapping = vma->vm_file->f_mapping;
3902 idx = vma_hugecache_offset(h, vma, address);
3903
3935baa9
DG
3904 /*
3905 * Serialize hugepage allocation and instantiation, so that we don't
3906 * get spurious allocation failures if two CPUs race to instantiate
3907 * the same page in the page cache.
3908 */
c672c7f2
MK
3909 hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, idx, address);
3910 mutex_lock(&hugetlb_fault_mutex_table[hash]);
8382d914 3911
7f2e9525
GS
3912 entry = huge_ptep_get(ptep);
3913 if (huge_pte_none(entry)) {
8382d914 3914 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
b4d1d99f 3915 goto out_mutex;
3935baa9 3916 }
86e5216f 3917
83c54070 3918 ret = 0;
1e8f889b 3919
0f792cf9
NH
3920 /*
3921 * entry could be a migration/hwpoison entry at this point, so this
3922 * check prevents the kernel from going below assuming that we have
3923 * a active hugepage in pagecache. This goto expects the 2nd page fault,
3924 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
3925 * handle it.
3926 */
3927 if (!pte_present(entry))
3928 goto out_mutex;
3929
57303d80
AW
3930 /*
3931 * If we are going to COW the mapping later, we examine the pending
3932 * reservations for this page now. This will ensure that any
3933 * allocations necessary to record that reservation occur outside the
3934 * spinlock. For private mappings, we also lookup the pagecache
3935 * page now as it is used to determine if a reservation has been
3936 * consumed.
3937 */
106c992a 3938 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
2b26736c
AW
3939 if (vma_needs_reservation(h, vma, address) < 0) {
3940 ret = VM_FAULT_OOM;
b4d1d99f 3941 goto out_mutex;
2b26736c 3942 }
5e911373 3943 /* Just decrements count, does not deallocate */
feba16e2 3944 vma_end_reservation(h, vma, address);
57303d80 3945
f83a275d 3946 if (!(vma->vm_flags & VM_MAYSHARE))
57303d80
AW
3947 pagecache_page = hugetlbfs_pagecache_page(h,
3948 vma, address);
3949 }
3950
0f792cf9
NH
3951 ptl = huge_pte_lock(h, mm, ptep);
3952
3953 /* Check for a racing update before calling hugetlb_cow */
3954 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
3955 goto out_ptl;
3956
56c9cfb1
NH
3957 /*
3958 * hugetlb_cow() requires page locks of pte_page(entry) and
3959 * pagecache_page, so here we need take the former one
3960 * when page != pagecache_page or !pagecache_page.
56c9cfb1
NH
3961 */
3962 page = pte_page(entry);
3963 if (page != pagecache_page)
0f792cf9
NH
3964 if (!trylock_page(page)) {
3965 need_wait_lock = 1;
3966 goto out_ptl;
3967 }
b4d1d99f 3968
0f792cf9 3969 get_page(page);
b4d1d99f 3970
788c7df4 3971 if (flags & FAULT_FLAG_WRITE) {
106c992a 3972 if (!huge_pte_write(entry)) {
3999f52e
AK
3973 ret = hugetlb_cow(mm, vma, address, ptep,
3974 pagecache_page, ptl);
0f792cf9 3975 goto out_put_page;
b4d1d99f 3976 }
106c992a 3977 entry = huge_pte_mkdirty(entry);
b4d1d99f
DG
3978 }
3979 entry = pte_mkyoung(entry);
788c7df4
HD
3980 if (huge_ptep_set_access_flags(vma, address, ptep, entry,
3981 flags & FAULT_FLAG_WRITE))
4b3073e1 3982 update_mmu_cache(vma, address, ptep);
0f792cf9
NH
3983out_put_page:
3984 if (page != pagecache_page)
3985 unlock_page(page);
3986 put_page(page);
cb900f41
KS
3987out_ptl:
3988 spin_unlock(ptl);
57303d80
AW
3989
3990 if (pagecache_page) {
3991 unlock_page(pagecache_page);
3992 put_page(pagecache_page);
3993 }
b4d1d99f 3994out_mutex:
c672c7f2 3995 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
0f792cf9
NH
3996 /*
3997 * Generally it's safe to hold refcount during waiting page lock. But
3998 * here we just wait to defer the next page fault to avoid busy loop and
3999 * the page is not used after unlocked before returning from the current
4000 * page fault. So we are safe from accessing freed page, even if we wait
4001 * here without taking refcount.
4002 */
4003 if (need_wait_lock)
4004 wait_on_page_locked(page);
1e8f889b 4005 return ret;
86e5216f
AL
4006}
4007
8fb5debc
MK
4008/*
4009 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with
4010 * modifications for huge pages.
4011 */
4012int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
4013 pte_t *dst_pte,
4014 struct vm_area_struct *dst_vma,
4015 unsigned long dst_addr,
4016 unsigned long src_addr,
4017 struct page **pagep)
4018{
1e392147
AA
4019 struct address_space *mapping;
4020 pgoff_t idx;
4021 unsigned long size;
1c9e8def 4022 int vm_shared = dst_vma->vm_flags & VM_SHARED;
8fb5debc
MK
4023 struct hstate *h = hstate_vma(dst_vma);
4024 pte_t _dst_pte;
4025 spinlock_t *ptl;
4026 int ret;
4027 struct page *page;
4028
4029 if (!*pagep) {
4030 ret = -ENOMEM;
4031 page = alloc_huge_page(dst_vma, dst_addr, 0);
4032 if (IS_ERR(page))
4033 goto out;
4034
4035 ret = copy_huge_page_from_user(page,
4036 (const void __user *) src_addr,
810a56b9 4037 pages_per_huge_page(h), false);
8fb5debc
MK
4038
4039 /* fallback to copy_from_user outside mmap_sem */
4040 if (unlikely(ret)) {
4041 ret = -EFAULT;
4042 *pagep = page;
4043 /* don't free the page */
4044 goto out;
4045 }
4046 } else {
4047 page = *pagep;
4048 *pagep = NULL;
4049 }
4050
4051 /*
4052 * The memory barrier inside __SetPageUptodate makes sure that
4053 * preceding stores to the page contents become visible before
4054 * the set_pte_at() write.
4055 */
4056 __SetPageUptodate(page);
4057 set_page_huge_active(page);
4058
1e392147
AA
4059 mapping = dst_vma->vm_file->f_mapping;
4060 idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4061
1c9e8def
MK
4062 /*
4063 * If shared, add to page cache
4064 */
4065 if (vm_shared) {
1e392147
AA
4066 size = i_size_read(mapping->host) >> huge_page_shift(h);
4067 ret = -EFAULT;
4068 if (idx >= size)
4069 goto out_release_nounlock;
1c9e8def 4070
1e392147
AA
4071 /*
4072 * Serialization between remove_inode_hugepages() and
4073 * huge_add_to_page_cache() below happens through the
4074 * hugetlb_fault_mutex_table that here must be hold by
4075 * the caller.
4076 */
1c9e8def
MK
4077 ret = huge_add_to_page_cache(page, mapping, idx);
4078 if (ret)
4079 goto out_release_nounlock;
4080 }
4081
8fb5debc
MK
4082 ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4083 spin_lock(ptl);
4084
1e392147
AA
4085 /*
4086 * Recheck the i_size after holding PT lock to make sure not
4087 * to leave any page mapped (as page_mapped()) beyond the end
4088 * of the i_size (remove_inode_hugepages() is strict about
4089 * enforcing that). If we bail out here, we'll also leave a
4090 * page in the radix tree in the vm_shared case beyond the end
4091 * of the i_size, but remove_inode_hugepages() will take care
4092 * of it as soon as we drop the hugetlb_fault_mutex_table.
4093 */
4094 size = i_size_read(mapping->host) >> huge_page_shift(h);
4095 ret = -EFAULT;
4096 if (idx >= size)
4097 goto out_release_unlock;
4098
8fb5debc
MK
4099 ret = -EEXIST;
4100 if (!huge_pte_none(huge_ptep_get(dst_pte)))
4101 goto out_release_unlock;
4102
1c9e8def
MK
4103 if (vm_shared) {
4104 page_dup_rmap(page, true);
4105 } else {
4106 ClearPagePrivate(page);
4107 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4108 }
8fb5debc
MK
4109
4110 _dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4111 if (dst_vma->vm_flags & VM_WRITE)
4112 _dst_pte = huge_pte_mkdirty(_dst_pte);
4113 _dst_pte = pte_mkyoung(_dst_pte);
4114
4115 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4116
4117 (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4118 dst_vma->vm_flags & VM_WRITE);
4119 hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4120
4121 /* No need to invalidate - it was non-present before */
4122 update_mmu_cache(dst_vma, dst_addr, dst_pte);
4123
4124 spin_unlock(ptl);
1c9e8def
MK
4125 if (vm_shared)
4126 unlock_page(page);
8fb5debc
MK
4127 ret = 0;
4128out:
4129 return ret;
4130out_release_unlock:
4131 spin_unlock(ptl);
1c9e8def
MK
4132 if (vm_shared)
4133 unlock_page(page);
5af10dfd 4134out_release_nounlock:
8fb5debc
MK
4135 put_page(page);
4136 goto out;
4137}
4138
28a35716
ML
4139long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4140 struct page **pages, struct vm_area_struct **vmas,
4141 unsigned long *position, unsigned long *nr_pages,
87ffc118 4142 long i, unsigned int flags, int *nonblocking)
63551ae0 4143{
d5d4b0aa
CK
4144 unsigned long pfn_offset;
4145 unsigned long vaddr = *position;
28a35716 4146 unsigned long remainder = *nr_pages;
a5516438 4147 struct hstate *h = hstate_vma(vma);
2be7cfed 4148 int err = -EFAULT;
63551ae0 4149
63551ae0 4150 while (vaddr < vma->vm_end && remainder) {
4c887265 4151 pte_t *pte;
cb900f41 4152 spinlock_t *ptl = NULL;
2a15efc9 4153 int absent;
4c887265 4154 struct page *page;
63551ae0 4155
02057967
DR
4156 /*
4157 * If we have a pending SIGKILL, don't keep faulting pages and
4158 * potentially allocating memory.
4159 */
4160 if (unlikely(fatal_signal_pending(current))) {
4161 remainder = 0;
4162 break;
4163 }
4164
4c887265
AL
4165 /*
4166 * Some archs (sparc64, sh*) have multiple pte_ts to
2a15efc9 4167 * each hugepage. We have to make sure we get the
4c887265 4168 * first, for the page indexing below to work.
cb900f41
KS
4169 *
4170 * Note that page table lock is not held when pte is null.
4c887265 4171 */
7868a208
PA
4172 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
4173 huge_page_size(h));
cb900f41
KS
4174 if (pte)
4175 ptl = huge_pte_lock(h, mm, pte);
2a15efc9
HD
4176 absent = !pte || huge_pte_none(huge_ptep_get(pte));
4177
4178 /*
4179 * When coredumping, it suits get_dump_page if we just return
3ae77f43
HD
4180 * an error where there's an empty slot with no huge pagecache
4181 * to back it. This way, we avoid allocating a hugepage, and
4182 * the sparse dumpfile avoids allocating disk blocks, but its
4183 * huge holes still show up with zeroes where they need to be.
2a15efc9 4184 */
3ae77f43
HD
4185 if (absent && (flags & FOLL_DUMP) &&
4186 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
cb900f41
KS
4187 if (pte)
4188 spin_unlock(ptl);
2a15efc9
HD
4189 remainder = 0;
4190 break;
4191 }
63551ae0 4192
9cc3a5bd
NH
4193 /*
4194 * We need call hugetlb_fault for both hugepages under migration
4195 * (in which case hugetlb_fault waits for the migration,) and
4196 * hwpoisoned hugepages (in which case we need to prevent the
4197 * caller from accessing to them.) In order to do this, we use
4198 * here is_swap_pte instead of is_hugetlb_entry_migration and
4199 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4200 * both cases, and because we can't follow correct pages
4201 * directly from any kind of swap entries.
4202 */
4203 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
106c992a
GS
4204 ((flags & FOLL_WRITE) &&
4205 !huge_pte_write(huge_ptep_get(pte)))) {
4c887265 4206 int ret;
87ffc118 4207 unsigned int fault_flags = 0;
63551ae0 4208
cb900f41
KS
4209 if (pte)
4210 spin_unlock(ptl);
87ffc118
AA
4211 if (flags & FOLL_WRITE)
4212 fault_flags |= FAULT_FLAG_WRITE;
4213 if (nonblocking)
4214 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
4215 if (flags & FOLL_NOWAIT)
4216 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4217 FAULT_FLAG_RETRY_NOWAIT;
4218 if (flags & FOLL_TRIED) {
4219 VM_WARN_ON_ONCE(fault_flags &
4220 FAULT_FLAG_ALLOW_RETRY);
4221 fault_flags |= FAULT_FLAG_TRIED;
4222 }
4223 ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4224 if (ret & VM_FAULT_ERROR) {
2be7cfed 4225 err = vm_fault_to_errno(ret, flags);
87ffc118
AA
4226 remainder = 0;
4227 break;
4228 }
4229 if (ret & VM_FAULT_RETRY) {
4230 if (nonblocking)
4231 *nonblocking = 0;
4232 *nr_pages = 0;
4233 /*
4234 * VM_FAULT_RETRY must not return an
4235 * error, it will return zero
4236 * instead.
4237 *
4238 * No need to update "position" as the
4239 * caller will not check it after
4240 * *nr_pages is set to 0.
4241 */
4242 return i;
4243 }
4244 continue;
4c887265
AL
4245 }
4246
a5516438 4247 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
7f2e9525 4248 page = pte_page(huge_ptep_get(pte));
d5d4b0aa 4249same_page:
d6692183 4250 if (pages) {
2a15efc9 4251 pages[i] = mem_map_offset(page, pfn_offset);
ddc58f27 4252 get_page(pages[i]);
d6692183 4253 }
63551ae0
DG
4254
4255 if (vmas)
4256 vmas[i] = vma;
4257
4258 vaddr += PAGE_SIZE;
d5d4b0aa 4259 ++pfn_offset;
63551ae0
DG
4260 --remainder;
4261 ++i;
d5d4b0aa 4262 if (vaddr < vma->vm_end && remainder &&
a5516438 4263 pfn_offset < pages_per_huge_page(h)) {
d5d4b0aa
CK
4264 /*
4265 * We use pfn_offset to avoid touching the pageframes
4266 * of this compound page.
4267 */
4268 goto same_page;
4269 }
cb900f41 4270 spin_unlock(ptl);
63551ae0 4271 }
28a35716 4272 *nr_pages = remainder;
87ffc118
AA
4273 /*
4274 * setting position is actually required only if remainder is
4275 * not zero but it's faster not to add a "if (remainder)"
4276 * branch.
4277 */
63551ae0
DG
4278 *position = vaddr;
4279
2be7cfed 4280 return i ? i : err;
63551ae0 4281}
8f860591 4282
5491ae7b
AK
4283#ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4284/*
4285 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4286 * implement this.
4287 */
4288#define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
4289#endif
4290
7da4d641 4291unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
8f860591
ZY
4292 unsigned long address, unsigned long end, pgprot_t newprot)
4293{
4294 struct mm_struct *mm = vma->vm_mm;
4295 unsigned long start = address;
4296 pte_t *ptep;
4297 pte_t pte;
a5516438 4298 struct hstate *h = hstate_vma(vma);
7da4d641 4299 unsigned long pages = 0;
8f860591
ZY
4300
4301 BUG_ON(address >= end);
4302 flush_cache_range(vma, address, end);
4303
a5338093 4304 mmu_notifier_invalidate_range_start(mm, start, end);
83cde9e8 4305 i_mmap_lock_write(vma->vm_file->f_mapping);
a5516438 4306 for (; address < end; address += huge_page_size(h)) {
cb900f41 4307 spinlock_t *ptl;
7868a208 4308 ptep = huge_pte_offset(mm, address, huge_page_size(h));
8f860591
ZY
4309 if (!ptep)
4310 continue;
cb900f41 4311 ptl = huge_pte_lock(h, mm, ptep);
7da4d641
PZ
4312 if (huge_pmd_unshare(mm, &address, ptep)) {
4313 pages++;
cb900f41 4314 spin_unlock(ptl);
39dde65c 4315 continue;
7da4d641 4316 }
a8bda28d
NH
4317 pte = huge_ptep_get(ptep);
4318 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
4319 spin_unlock(ptl);
4320 continue;
4321 }
4322 if (unlikely(is_hugetlb_entry_migration(pte))) {
4323 swp_entry_t entry = pte_to_swp_entry(pte);
4324
4325 if (is_write_migration_entry(entry)) {
4326 pte_t newpte;
4327
4328 make_migration_entry_read(&entry);
4329 newpte = swp_entry_to_pte(entry);
e5251fd4
PA
4330 set_huge_swap_pte_at(mm, address, ptep,
4331 newpte, huge_page_size(h));
a8bda28d
NH
4332 pages++;
4333 }
4334 spin_unlock(ptl);
4335 continue;
4336 }
4337 if (!huge_pte_none(pte)) {
8f860591 4338 pte = huge_ptep_get_and_clear(mm, address, ptep);
106c992a 4339 pte = pte_mkhuge(huge_pte_modify(pte, newprot));
be7517d6 4340 pte = arch_make_huge_pte(pte, vma, NULL, 0);
8f860591 4341 set_huge_pte_at(mm, address, ptep, pte);
7da4d641 4342 pages++;
8f860591 4343 }
cb900f41 4344 spin_unlock(ptl);
8f860591 4345 }
d833352a 4346 /*
c8c06efa 4347 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
d833352a 4348 * may have cleared our pud entry and done put_page on the page table:
c8c06efa 4349 * once we release i_mmap_rwsem, another task can do the final put_page
d833352a
MG
4350 * and that page table be reused and filled with junk.
4351 */
5491ae7b 4352 flush_hugetlb_tlb_range(vma, start, end);
0f10851e
JG
4353 /*
4354 * No need to call mmu_notifier_invalidate_range() we are downgrading
4355 * page table protection not changing it to point to a new page.
4356 *
4357 * See Documentation/vm/mmu_notifier.txt
4358 */
83cde9e8 4359 i_mmap_unlock_write(vma->vm_file->f_mapping);
a5338093 4360 mmu_notifier_invalidate_range_end(mm, start, end);
7da4d641
PZ
4361
4362 return pages << h->order;
8f860591
ZY
4363}
4364
a1e78772
MG
4365int hugetlb_reserve_pages(struct inode *inode,
4366 long from, long to,
5a6fe125 4367 struct vm_area_struct *vma,
ca16d140 4368 vm_flags_t vm_flags)
e4e574b7 4369{
17c9d12e 4370 long ret, chg;
a5516438 4371 struct hstate *h = hstate_inode(inode);
90481622 4372 struct hugepage_subpool *spool = subpool_inode(inode);
9119a41e 4373 struct resv_map *resv_map;
1c5ecae3 4374 long gbl_reserve;
e4e574b7 4375
63489f8e
MK
4376 /* This should never happen */
4377 if (from > to) {
4378 VM_WARN(1, "%s called with a negative range\n", __func__);
4379 return -EINVAL;
4380 }
4381
17c9d12e
MG
4382 /*
4383 * Only apply hugepage reservation if asked. At fault time, an
4384 * attempt will be made for VM_NORESERVE to allocate a page
90481622 4385 * without using reserves
17c9d12e 4386 */
ca16d140 4387 if (vm_flags & VM_NORESERVE)
17c9d12e
MG
4388 return 0;
4389
a1e78772
MG
4390 /*
4391 * Shared mappings base their reservation on the number of pages that
4392 * are already allocated on behalf of the file. Private mappings need
4393 * to reserve the full area even if read-only as mprotect() may be
4394 * called to make the mapping read-write. Assume !vma is a shm mapping
4395 */
9119a41e 4396 if (!vma || vma->vm_flags & VM_MAYSHARE) {
4e35f483 4397 resv_map = inode_resv_map(inode);
9119a41e 4398
1406ec9b 4399 chg = region_chg(resv_map, from, to);
9119a41e
JK
4400
4401 } else {
4402 resv_map = resv_map_alloc();
17c9d12e
MG
4403 if (!resv_map)
4404 return -ENOMEM;
4405
a1e78772 4406 chg = to - from;
84afd99b 4407
17c9d12e
MG
4408 set_vma_resv_map(vma, resv_map);
4409 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
4410 }
4411
c50ac050
DH
4412 if (chg < 0) {
4413 ret = chg;
4414 goto out_err;
4415 }
8a630112 4416
1c5ecae3
MK
4417 /*
4418 * There must be enough pages in the subpool for the mapping. If
4419 * the subpool has a minimum size, there may be some global
4420 * reservations already in place (gbl_reserve).
4421 */
4422 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
4423 if (gbl_reserve < 0) {
c50ac050
DH
4424 ret = -ENOSPC;
4425 goto out_err;
4426 }
5a6fe125
MG
4427
4428 /*
17c9d12e 4429 * Check enough hugepages are available for the reservation.
90481622 4430 * Hand the pages back to the subpool if there are not
5a6fe125 4431 */
1c5ecae3 4432 ret = hugetlb_acct_memory(h, gbl_reserve);
68842c9b 4433 if (ret < 0) {
1c5ecae3
MK
4434 /* put back original number of pages, chg */
4435 (void)hugepage_subpool_put_pages(spool, chg);
c50ac050 4436 goto out_err;
68842c9b 4437 }
17c9d12e
MG
4438
4439 /*
4440 * Account for the reservations made. Shared mappings record regions
4441 * that have reservations as they are shared by multiple VMAs.
4442 * When the last VMA disappears, the region map says how much
4443 * the reservation was and the page cache tells how much of
4444 * the reservation was consumed. Private mappings are per-VMA and
4445 * only the consumed reservations are tracked. When the VMA
4446 * disappears, the original reservation is the VMA size and the
4447 * consumed reservations are stored in the map. Hence, nothing
4448 * else has to be done for private mappings here
4449 */
33039678
MK
4450 if (!vma || vma->vm_flags & VM_MAYSHARE) {
4451 long add = region_add(resv_map, from, to);
4452
4453 if (unlikely(chg > add)) {
4454 /*
4455 * pages in this range were added to the reserve
4456 * map between region_chg and region_add. This
4457 * indicates a race with alloc_huge_page. Adjust
4458 * the subpool and reserve counts modified above
4459 * based on the difference.
4460 */
4461 long rsv_adjust;
4462
4463 rsv_adjust = hugepage_subpool_put_pages(spool,
4464 chg - add);
4465 hugetlb_acct_memory(h, -rsv_adjust);
4466 }
4467 }
a43a8c39 4468 return 0;
c50ac050 4469out_err:
5e911373 4470 if (!vma || vma->vm_flags & VM_MAYSHARE)
ff8c0c53
MK
4471 /* Don't call region_abort if region_chg failed */
4472 if (chg >= 0)
4473 region_abort(resv_map, from, to);
f031dd27
JK
4474 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4475 kref_put(&resv_map->refs, resv_map_release);
c50ac050 4476 return ret;
a43a8c39
CK
4477}
4478
b5cec28d
MK
4479long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
4480 long freed)
a43a8c39 4481{
a5516438 4482 struct hstate *h = hstate_inode(inode);
4e35f483 4483 struct resv_map *resv_map = inode_resv_map(inode);
9119a41e 4484 long chg = 0;
90481622 4485 struct hugepage_subpool *spool = subpool_inode(inode);
1c5ecae3 4486 long gbl_reserve;
45c682a6 4487
b5cec28d
MK
4488 if (resv_map) {
4489 chg = region_del(resv_map, start, end);
4490 /*
4491 * region_del() can fail in the rare case where a region
4492 * must be split and another region descriptor can not be
4493 * allocated. If end == LONG_MAX, it will not fail.
4494 */
4495 if (chg < 0)
4496 return chg;
4497 }
4498
45c682a6 4499 spin_lock(&inode->i_lock);
e4c6f8be 4500 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
45c682a6
KC
4501 spin_unlock(&inode->i_lock);
4502
1c5ecae3
MK
4503 /*
4504 * If the subpool has a minimum size, the number of global
4505 * reservations to be released may be adjusted.
4506 */
4507 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
4508 hugetlb_acct_memory(h, -gbl_reserve);
b5cec28d
MK
4509
4510 return 0;
a43a8c39 4511}
93f70f90 4512
3212b535
SC
4513#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
4514static unsigned long page_table_shareable(struct vm_area_struct *svma,
4515 struct vm_area_struct *vma,
4516 unsigned long addr, pgoff_t idx)
4517{
4518 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
4519 svma->vm_start;
4520 unsigned long sbase = saddr & PUD_MASK;
4521 unsigned long s_end = sbase + PUD_SIZE;
4522
4523 /* Allow segments to share if only one is marked locked */
de60f5f1
EM
4524 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
4525 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
3212b535
SC
4526
4527 /*
4528 * match the virtual addresses, permission and the alignment of the
4529 * page table page.
4530 */
4531 if (pmd_index(addr) != pmd_index(saddr) ||
4532 vm_flags != svm_flags ||
4533 sbase < svma->vm_start || svma->vm_end < s_end)
4534 return 0;
4535
4536 return saddr;
4537}
4538
31aafb45 4539static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
3212b535
SC
4540{
4541 unsigned long base = addr & PUD_MASK;
4542 unsigned long end = base + PUD_SIZE;
4543
4544 /*
4545 * check on proper vm_flags and page table alignment
4546 */
4547 if (vma->vm_flags & VM_MAYSHARE &&
4548 vma->vm_start <= base && end <= vma->vm_end)
31aafb45
NK
4549 return true;
4550 return false;
3212b535
SC
4551}
4552
4553/*
4554 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4555 * and returns the corresponding pte. While this is not necessary for the
4556 * !shared pmd case because we can allocate the pmd later as well, it makes the
4557 * code much cleaner. pmd allocation is essential for the shared case because
c8c06efa 4558 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
3212b535
SC
4559 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4560 * bad pmd for sharing.
4561 */
4562pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4563{
4564 struct vm_area_struct *vma = find_vma(mm, addr);
4565 struct address_space *mapping = vma->vm_file->f_mapping;
4566 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
4567 vma->vm_pgoff;
4568 struct vm_area_struct *svma;
4569 unsigned long saddr;
4570 pte_t *spte = NULL;
4571 pte_t *pte;
cb900f41 4572 spinlock_t *ptl;
3212b535
SC
4573
4574 if (!vma_shareable(vma, addr))
4575 return (pte_t *)pmd_alloc(mm, pud, addr);
4576
83cde9e8 4577 i_mmap_lock_write(mapping);
3212b535
SC
4578 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
4579 if (svma == vma)
4580 continue;
4581
4582 saddr = page_table_shareable(svma, vma, addr, idx);
4583 if (saddr) {
7868a208
PA
4584 spte = huge_pte_offset(svma->vm_mm, saddr,
4585 vma_mmu_pagesize(svma));
3212b535
SC
4586 if (spte) {
4587 get_page(virt_to_page(spte));
4588 break;
4589 }
4590 }
4591 }
4592
4593 if (!spte)
4594 goto out;
4595
8bea8052 4596 ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
dc6c9a35 4597 if (pud_none(*pud)) {
3212b535
SC
4598 pud_populate(mm, pud,
4599 (pmd_t *)((unsigned long)spte & PAGE_MASK));
c17b1f42 4600 mm_inc_nr_pmds(mm);
dc6c9a35 4601 } else {
3212b535 4602 put_page(virt_to_page(spte));
dc6c9a35 4603 }
cb900f41 4604 spin_unlock(ptl);
3212b535
SC
4605out:
4606 pte = (pte_t *)pmd_alloc(mm, pud, addr);
83cde9e8 4607 i_mmap_unlock_write(mapping);
3212b535
SC
4608 return pte;
4609}
4610
4611/*
4612 * unmap huge page backed by shared pte.
4613 *
4614 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
4615 * indicated by page_count > 1, unmap is achieved by clearing pud and
4616 * decrementing the ref count. If count == 1, the pte page is not shared.
4617 *
cb900f41 4618 * called with page table lock held.
3212b535
SC
4619 *
4620 * returns: 1 successfully unmapped a shared pte page
4621 * 0 the underlying pte page is not shared, or it is the last user
4622 */
4623int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4624{
4625 pgd_t *pgd = pgd_offset(mm, *addr);
c2febafc
KS
4626 p4d_t *p4d = p4d_offset(pgd, *addr);
4627 pud_t *pud = pud_offset(p4d, *addr);
3212b535
SC
4628
4629 BUG_ON(page_count(virt_to_page(ptep)) == 0);
4630 if (page_count(virt_to_page(ptep)) == 1)
4631 return 0;
4632
4633 pud_clear(pud);
4634 put_page(virt_to_page(ptep));
dc6c9a35 4635 mm_dec_nr_pmds(mm);
3212b535
SC
4636 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
4637 return 1;
4638}
9e5fc74c
SC
4639#define want_pmd_share() (1)
4640#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4641pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4642{
4643 return NULL;
4644}
e81f2d22
ZZ
4645
4646int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4647{
4648 return 0;
4649}
9e5fc74c 4650#define want_pmd_share() (0)
3212b535
SC
4651#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4652
9e5fc74c
SC
4653#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
4654pte_t *huge_pte_alloc(struct mm_struct *mm,
4655 unsigned long addr, unsigned long sz)
4656{
4657 pgd_t *pgd;
c2febafc 4658 p4d_t *p4d;
9e5fc74c
SC
4659 pud_t *pud;
4660 pte_t *pte = NULL;
4661
4662 pgd = pgd_offset(mm, addr);
f4f0a3d8
KS
4663 p4d = p4d_alloc(mm, pgd, addr);
4664 if (!p4d)
4665 return NULL;
c2febafc 4666 pud = pud_alloc(mm, p4d, addr);
9e5fc74c
SC
4667 if (pud) {
4668 if (sz == PUD_SIZE) {
4669 pte = (pte_t *)pud;
4670 } else {
4671 BUG_ON(sz != PMD_SIZE);
4672 if (want_pmd_share() && pud_none(*pud))
4673 pte = huge_pmd_share(mm, addr, pud);
4674 else
4675 pte = (pte_t *)pmd_alloc(mm, pud, addr);
4676 }
4677 }
4e666314 4678 BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
9e5fc74c
SC
4679
4680 return pte;
4681}
4682
9b19df29
PA
4683/*
4684 * huge_pte_offset() - Walk the page table to resolve the hugepage
4685 * entry at address @addr
4686 *
4687 * Return: Pointer to page table or swap entry (PUD or PMD) for
4688 * address @addr, or NULL if a p*d_none() entry is encountered and the
4689 * size @sz doesn't match the hugepage size at this level of the page
4690 * table.
4691 */
7868a208
PA
4692pte_t *huge_pte_offset(struct mm_struct *mm,
4693 unsigned long addr, unsigned long sz)
9e5fc74c
SC
4694{
4695 pgd_t *pgd;
c2febafc 4696 p4d_t *p4d;
9e5fc74c 4697 pud_t *pud;
c2febafc 4698 pmd_t *pmd;
9e5fc74c
SC
4699
4700 pgd = pgd_offset(mm, addr);
c2febafc
KS
4701 if (!pgd_present(*pgd))
4702 return NULL;
4703 p4d = p4d_offset(pgd, addr);
4704 if (!p4d_present(*p4d))
4705 return NULL;
9b19df29 4706
c2febafc 4707 pud = pud_offset(p4d, addr);
9b19df29 4708 if (sz != PUD_SIZE && pud_none(*pud))
c2febafc 4709 return NULL;
9b19df29
PA
4710 /* hugepage or swap? */
4711 if (pud_huge(*pud) || !pud_present(*pud))
c2febafc 4712 return (pte_t *)pud;
9b19df29 4713
c2febafc 4714 pmd = pmd_offset(pud, addr);
9b19df29
PA
4715 if (sz != PMD_SIZE && pmd_none(*pmd))
4716 return NULL;
4717 /* hugepage or swap? */
4718 if (pmd_huge(*pmd) || !pmd_present(*pmd))
4719 return (pte_t *)pmd;
4720
4721 return NULL;
9e5fc74c
SC
4722}
4723
61f77eda
NH
4724#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4725
4726/*
4727 * These functions are overwritable if your architecture needs its own
4728 * behavior.
4729 */
4730struct page * __weak
4731follow_huge_addr(struct mm_struct *mm, unsigned long address,
4732 int write)
4733{
4734 return ERR_PTR(-EINVAL);
4735}
4736
4dc71451
AK
4737struct page * __weak
4738follow_huge_pd(struct vm_area_struct *vma,
4739 unsigned long address, hugepd_t hpd, int flags, int pdshift)
4740{
4741 WARN(1, "hugepd follow called with no support for hugepage directory format\n");
4742 return NULL;
4743}
4744
61f77eda 4745struct page * __weak
9e5fc74c 4746follow_huge_pmd(struct mm_struct *mm, unsigned long address,
e66f17ff 4747 pmd_t *pmd, int flags)
9e5fc74c 4748{
e66f17ff
NH
4749 struct page *page = NULL;
4750 spinlock_t *ptl;
c9d398fa 4751 pte_t pte;
e66f17ff
NH
4752retry:
4753 ptl = pmd_lockptr(mm, pmd);
4754 spin_lock(ptl);
4755 /*
4756 * make sure that the address range covered by this pmd is not
4757 * unmapped from other threads.
4758 */
4759 if (!pmd_huge(*pmd))
4760 goto out;
c9d398fa
NH
4761 pte = huge_ptep_get((pte_t *)pmd);
4762 if (pte_present(pte)) {
97534127 4763 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
e66f17ff
NH
4764 if (flags & FOLL_GET)
4765 get_page(page);
4766 } else {
c9d398fa 4767 if (is_hugetlb_entry_migration(pte)) {
e66f17ff
NH
4768 spin_unlock(ptl);
4769 __migration_entry_wait(mm, (pte_t *)pmd, ptl);
4770 goto retry;
4771 }
4772 /*
4773 * hwpoisoned entry is treated as no_page_table in
4774 * follow_page_mask().
4775 */
4776 }
4777out:
4778 spin_unlock(ptl);
9e5fc74c
SC
4779 return page;
4780}
4781
61f77eda 4782struct page * __weak
9e5fc74c 4783follow_huge_pud(struct mm_struct *mm, unsigned long address,
e66f17ff 4784 pud_t *pud, int flags)
9e5fc74c 4785{
e66f17ff
NH
4786 if (flags & FOLL_GET)
4787 return NULL;
9e5fc74c 4788
e66f17ff 4789 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
9e5fc74c
SC
4790}
4791
faaa5b62
AK
4792struct page * __weak
4793follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
4794{
4795 if (flags & FOLL_GET)
4796 return NULL;
4797
4798 return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
4799}
4800
31caf665
NH
4801bool isolate_huge_page(struct page *page, struct list_head *list)
4802{
bcc54222
NH
4803 bool ret = true;
4804
309381fe 4805 VM_BUG_ON_PAGE(!PageHead(page), page);
31caf665 4806 spin_lock(&hugetlb_lock);
bcc54222
NH
4807 if (!page_huge_active(page) || !get_page_unless_zero(page)) {
4808 ret = false;
4809 goto unlock;
4810 }
4811 clear_page_huge_active(page);
31caf665 4812 list_move_tail(&page->lru, list);
bcc54222 4813unlock:
31caf665 4814 spin_unlock(&hugetlb_lock);
bcc54222 4815 return ret;
31caf665
NH
4816}
4817
4818void putback_active_hugepage(struct page *page)
4819{
309381fe 4820 VM_BUG_ON_PAGE(!PageHead(page), page);
31caf665 4821 spin_lock(&hugetlb_lock);
bcc54222 4822 set_page_huge_active(page);
31caf665
NH
4823 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
4824 spin_unlock(&hugetlb_lock);
4825 put_page(page);
4826}
ab5ac90a
MH
4827
4828void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
4829{
4830 struct hstate *h = page_hstate(oldpage);
4831
4832 hugetlb_cgroup_migrate(oldpage, newpage);
4833 set_page_owner_migrate_reason(newpage, reason);
4834
4835 /*
4836 * transfer temporary state of the new huge page. This is
4837 * reverse to other transitions because the newpage is going to
4838 * be final while the old one will be freed so it takes over
4839 * the temporary status.
4840 *
4841 * Also note that we have to transfer the per-node surplus state
4842 * here as well otherwise the global surplus count will not match
4843 * the per-node's.
4844 */
4845 if (PageHugeTemporary(newpage)) {
4846 int old_nid = page_to_nid(oldpage);
4847 int new_nid = page_to_nid(newpage);
4848
4849 SetPageHugeTemporary(oldpage);
4850 ClearPageHugeTemporary(newpage);
4851
4852 spin_lock(&hugetlb_lock);
4853 if (h->surplus_huge_pages_node[old_nid]) {
4854 h->surplus_huge_pages_node[old_nid]--;
4855 h->surplus_huge_pages_node[new_nid]++;
4856 }
4857 spin_unlock(&hugetlb_lock);
4858 }
4859}