Merge tag 'apparmor-pr-2022-08-08' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-block.git] / mm / hugetlb.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * Generic hugetlb support.
6d49e352 4 * (C) Nadia Yvette Chambers, April 2004
1da177e4 5 */
1da177e4
LT
6#include <linux/list.h>
7#include <linux/init.h>
1da177e4 8#include <linux/mm.h>
e1759c21 9#include <linux/seq_file.h>
1da177e4
LT
10#include <linux/sysctl.h>
11#include <linux/highmem.h>
cddb8a5c 12#include <linux/mmu_notifier.h>
1da177e4 13#include <linux/nodemask.h>
63551ae0 14#include <linux/pagemap.h>
5da7ca86 15#include <linux/mempolicy.h>
3b32123d 16#include <linux/compiler.h>
aea47ff3 17#include <linux/cpuset.h>
3935baa9 18#include <linux/mutex.h>
97ad1087 19#include <linux/memblock.h>
a3437870 20#include <linux/sysfs.h>
5a0e3ad6 21#include <linux/slab.h>
bbe88753 22#include <linux/sched/mm.h>
63489f8e 23#include <linux/mmdebug.h>
174cd4b1 24#include <linux/sched/signal.h>
0fe6e20b 25#include <linux/rmap.h>
c6247f72 26#include <linux/string_helpers.h>
fd6a03ed
NH
27#include <linux/swap.h>
28#include <linux/swapops.h>
8382d914 29#include <linux/jhash.h>
98fa15f3 30#include <linux/numa.h>
c77c0a8a 31#include <linux/llist.h>
cf11e85f 32#include <linux/cma.h>
8cc5fcbb 33#include <linux/migrate.h>
f9317f77 34#include <linux/nospec.h>
662ce1dc 35#include <linux/delayacct.h>
d6606683 36
63551ae0 37#include <asm/page.h>
ca15ca40 38#include <asm/pgalloc.h>
24669e58 39#include <asm/tlb.h>
63551ae0 40
24669e58 41#include <linux/io.h>
63551ae0 42#include <linux/hugetlb.h>
9dd540e2 43#include <linux/hugetlb_cgroup.h>
9a305230 44#include <linux/node.h>
ab5ac90a 45#include <linux/page_owner.h>
7835e98b 46#include "internal.h"
f41f2ed4 47#include "hugetlb_vmemmap.h"
1da177e4 48
c3f38a38 49int hugetlb_max_hstate __read_mostly;
e5ff2159
AK
50unsigned int default_hstate_idx;
51struct hstate hstates[HUGE_MAX_HSTATE];
cf11e85f 52
dbda8fea 53#ifdef CONFIG_CMA
cf11e85f 54static struct cma *hugetlb_cma[MAX_NUMNODES];
38e719ab 55static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata;
a01f4390
MK
56static bool hugetlb_cma_page(struct page *page, unsigned int order)
57{
58 return cma_pages_valid(hugetlb_cma[page_to_nid(page)], page,
59 1 << order);
60}
61#else
62static bool hugetlb_cma_page(struct page *page, unsigned int order)
63{
64 return false;
65}
dbda8fea
BS
66#endif
67static unsigned long hugetlb_cma_size __initdata;
cf11e85f 68
53ba51d2
JT
69__initdata LIST_HEAD(huge_boot_pages);
70
e5ff2159
AK
71/* for command line parsing */
72static struct hstate * __initdata parsed_hstate;
73static unsigned long __initdata default_hstate_max_huge_pages;
9fee021d 74static bool __initdata parsed_valid_hugepagesz = true;
282f4214 75static bool __initdata parsed_default_hugepagesz;
b5389086 76static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata;
e5ff2159 77
3935baa9 78/*
31caf665
NH
79 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
80 * free_huge_pages, and surplus_huge_pages.
3935baa9 81 */
c3f38a38 82DEFINE_SPINLOCK(hugetlb_lock);
0bd0f9fb 83
8382d914
DB
84/*
85 * Serializes faults on the same logical page. This is used to
86 * prevent spurious OOMs when the hugepage pool is fully utilized.
87 */
88static int num_fault_mutexes;
c672c7f2 89struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
8382d914 90
7ca02d0a
MK
91/* Forward declaration */
92static int hugetlb_acct_memory(struct hstate *h, long delta);
93
1d88433b 94static inline bool subpool_is_free(struct hugepage_subpool *spool)
90481622 95{
1d88433b
ML
96 if (spool->count)
97 return false;
98 if (spool->max_hpages != -1)
99 return spool->used_hpages == 0;
100 if (spool->min_hpages != -1)
101 return spool->rsv_hpages == spool->min_hpages;
102
103 return true;
104}
90481622 105
db71ef79
MK
106static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
107 unsigned long irq_flags)
1d88433b 108{
db71ef79 109 spin_unlock_irqrestore(&spool->lock, irq_flags);
90481622
DG
110
111 /* If no pages are used, and no other handles to the subpool
7c8de358 112 * remain, give up any reservations based on minimum size and
7ca02d0a 113 * free the subpool */
1d88433b 114 if (subpool_is_free(spool)) {
7ca02d0a
MK
115 if (spool->min_hpages != -1)
116 hugetlb_acct_memory(spool->hstate,
117 -spool->min_hpages);
90481622 118 kfree(spool);
7ca02d0a 119 }
90481622
DG
120}
121
7ca02d0a
MK
122struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
123 long min_hpages)
90481622
DG
124{
125 struct hugepage_subpool *spool;
126
c6a91820 127 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
90481622
DG
128 if (!spool)
129 return NULL;
130
131 spin_lock_init(&spool->lock);
132 spool->count = 1;
7ca02d0a
MK
133 spool->max_hpages = max_hpages;
134 spool->hstate = h;
135 spool->min_hpages = min_hpages;
136
137 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
138 kfree(spool);
139 return NULL;
140 }
141 spool->rsv_hpages = min_hpages;
90481622
DG
142
143 return spool;
144}
145
146void hugepage_put_subpool(struct hugepage_subpool *spool)
147{
db71ef79
MK
148 unsigned long flags;
149
150 spin_lock_irqsave(&spool->lock, flags);
90481622
DG
151 BUG_ON(!spool->count);
152 spool->count--;
db71ef79 153 unlock_or_release_subpool(spool, flags);
90481622
DG
154}
155
1c5ecae3
MK
156/*
157 * Subpool accounting for allocating and reserving pages.
158 * Return -ENOMEM if there are not enough resources to satisfy the
9e7ee400 159 * request. Otherwise, return the number of pages by which the
1c5ecae3
MK
160 * global pools must be adjusted (upward). The returned value may
161 * only be different than the passed value (delta) in the case where
7c8de358 162 * a subpool minimum size must be maintained.
1c5ecae3
MK
163 */
164static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
90481622
DG
165 long delta)
166{
1c5ecae3 167 long ret = delta;
90481622
DG
168
169 if (!spool)
1c5ecae3 170 return ret;
90481622 171
db71ef79 172 spin_lock_irq(&spool->lock);
1c5ecae3
MK
173
174 if (spool->max_hpages != -1) { /* maximum size accounting */
175 if ((spool->used_hpages + delta) <= spool->max_hpages)
176 spool->used_hpages += delta;
177 else {
178 ret = -ENOMEM;
179 goto unlock_ret;
180 }
90481622 181 }
90481622 182
09a95e29
MK
183 /* minimum size accounting */
184 if (spool->min_hpages != -1 && spool->rsv_hpages) {
1c5ecae3
MK
185 if (delta > spool->rsv_hpages) {
186 /*
187 * Asking for more reserves than those already taken on
188 * behalf of subpool. Return difference.
189 */
190 ret = delta - spool->rsv_hpages;
191 spool->rsv_hpages = 0;
192 } else {
193 ret = 0; /* reserves already accounted for */
194 spool->rsv_hpages -= delta;
195 }
196 }
197
198unlock_ret:
db71ef79 199 spin_unlock_irq(&spool->lock);
90481622
DG
200 return ret;
201}
202
1c5ecae3
MK
203/*
204 * Subpool accounting for freeing and unreserving pages.
205 * Return the number of global page reservations that must be dropped.
206 * The return value may only be different than the passed value (delta)
207 * in the case where a subpool minimum size must be maintained.
208 */
209static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
90481622
DG
210 long delta)
211{
1c5ecae3 212 long ret = delta;
db71ef79 213 unsigned long flags;
1c5ecae3 214
90481622 215 if (!spool)
1c5ecae3 216 return delta;
90481622 217
db71ef79 218 spin_lock_irqsave(&spool->lock, flags);
1c5ecae3
MK
219
220 if (spool->max_hpages != -1) /* maximum size accounting */
221 spool->used_hpages -= delta;
222
09a95e29
MK
223 /* minimum size accounting */
224 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
1c5ecae3
MK
225 if (spool->rsv_hpages + delta <= spool->min_hpages)
226 ret = 0;
227 else
228 ret = spool->rsv_hpages + delta - spool->min_hpages;
229
230 spool->rsv_hpages += delta;
231 if (spool->rsv_hpages > spool->min_hpages)
232 spool->rsv_hpages = spool->min_hpages;
233 }
234
235 /*
236 * If hugetlbfs_put_super couldn't free spool due to an outstanding
237 * quota reference, free it now.
238 */
db71ef79 239 unlock_or_release_subpool(spool, flags);
1c5ecae3
MK
240
241 return ret;
90481622
DG
242}
243
244static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
245{
246 return HUGETLBFS_SB(inode->i_sb)->spool;
247}
248
249static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
250{
496ad9aa 251 return subpool_inode(file_inode(vma->vm_file));
90481622
DG
252}
253
0db9d74e
MA
254/* Helper that removes a struct file_region from the resv_map cache and returns
255 * it for use.
256 */
257static struct file_region *
258get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
259{
260 struct file_region *nrg = NULL;
261
262 VM_BUG_ON(resv->region_cache_count <= 0);
263
264 resv->region_cache_count--;
265 nrg = list_first_entry(&resv->region_cache, struct file_region, link);
0db9d74e
MA
266 list_del(&nrg->link);
267
268 nrg->from = from;
269 nrg->to = to;
270
271 return nrg;
272}
273
075a61d0
MA
274static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
275 struct file_region *rg)
276{
277#ifdef CONFIG_CGROUP_HUGETLB
278 nrg->reservation_counter = rg->reservation_counter;
279 nrg->css = rg->css;
280 if (rg->css)
281 css_get(rg->css);
282#endif
283}
284
285/* Helper that records hugetlb_cgroup uncharge info. */
286static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
287 struct hstate *h,
288 struct resv_map *resv,
289 struct file_region *nrg)
290{
291#ifdef CONFIG_CGROUP_HUGETLB
292 if (h_cg) {
293 nrg->reservation_counter =
294 &h_cg->rsvd_hugepage[hstate_index(h)];
295 nrg->css = &h_cg->css;
d85aecf2
ML
296 /*
297 * The caller will hold exactly one h_cg->css reference for the
298 * whole contiguous reservation region. But this area might be
299 * scattered when there are already some file_regions reside in
300 * it. As a result, many file_regions may share only one css
301 * reference. In order to ensure that one file_region must hold
302 * exactly one h_cg->css reference, we should do css_get for
303 * each file_region and leave the reference held by caller
304 * untouched.
305 */
306 css_get(&h_cg->css);
075a61d0
MA
307 if (!resv->pages_per_hpage)
308 resv->pages_per_hpage = pages_per_huge_page(h);
309 /* pages_per_hpage should be the same for all entries in
310 * a resv_map.
311 */
312 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
313 } else {
314 nrg->reservation_counter = NULL;
315 nrg->css = NULL;
316 }
317#endif
318}
319
d85aecf2
ML
320static void put_uncharge_info(struct file_region *rg)
321{
322#ifdef CONFIG_CGROUP_HUGETLB
323 if (rg->css)
324 css_put(rg->css);
325#endif
326}
327
a9b3f867
MA
328static bool has_same_uncharge_info(struct file_region *rg,
329 struct file_region *org)
330{
331#ifdef CONFIG_CGROUP_HUGETLB
0739eb43 332 return rg->reservation_counter == org->reservation_counter &&
a9b3f867
MA
333 rg->css == org->css;
334
335#else
336 return true;
337#endif
338}
339
340static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
341{
342 struct file_region *nrg = NULL, *prg = NULL;
343
344 prg = list_prev_entry(rg, link);
345 if (&prg->link != &resv->regions && prg->to == rg->from &&
346 has_same_uncharge_info(prg, rg)) {
347 prg->to = rg->to;
348
349 list_del(&rg->link);
d85aecf2 350 put_uncharge_info(rg);
a9b3f867
MA
351 kfree(rg);
352
7db5e7b6 353 rg = prg;
a9b3f867
MA
354 }
355
356 nrg = list_next_entry(rg, link);
357 if (&nrg->link != &resv->regions && nrg->from == rg->to &&
358 has_same_uncharge_info(nrg, rg)) {
359 nrg->from = rg->from;
360
361 list_del(&rg->link);
d85aecf2 362 put_uncharge_info(rg);
a9b3f867 363 kfree(rg);
a9b3f867
MA
364 }
365}
366
2103cf9c 367static inline long
84448c8e 368hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from,
2103cf9c
PX
369 long to, struct hstate *h, struct hugetlb_cgroup *cg,
370 long *regions_needed)
371{
372 struct file_region *nrg;
373
374 if (!regions_needed) {
375 nrg = get_file_region_entry_from_cache(map, from, to);
376 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
84448c8e 377 list_add(&nrg->link, rg);
2103cf9c
PX
378 coalesce_file_region(map, nrg);
379 } else
380 *regions_needed += 1;
381
382 return to - from;
383}
384
972a3da3
WY
385/*
386 * Must be called with resv->lock held.
387 *
388 * Calling this with regions_needed != NULL will count the number of pages
389 * to be added but will not modify the linked list. And regions_needed will
390 * indicate the number of file_regions needed in the cache to carry out to add
391 * the regions for this range.
d75c6af9
MA
392 */
393static long add_reservation_in_range(struct resv_map *resv, long f, long t,
075a61d0 394 struct hugetlb_cgroup *h_cg,
972a3da3 395 struct hstate *h, long *regions_needed)
d75c6af9 396{
0db9d74e 397 long add = 0;
d75c6af9 398 struct list_head *head = &resv->regions;
0db9d74e 399 long last_accounted_offset = f;
84448c8e
JK
400 struct file_region *iter, *trg = NULL;
401 struct list_head *rg = NULL;
d75c6af9 402
0db9d74e
MA
403 if (regions_needed)
404 *regions_needed = 0;
d75c6af9 405
0db9d74e 406 /* In this loop, we essentially handle an entry for the range
84448c8e 407 * [last_accounted_offset, iter->from), at every iteration, with some
0db9d74e
MA
408 * bounds checking.
409 */
84448c8e 410 list_for_each_entry_safe(iter, trg, head, link) {
0db9d74e 411 /* Skip irrelevant regions that start before our range. */
84448c8e 412 if (iter->from < f) {
0db9d74e
MA
413 /* If this region ends after the last accounted offset,
414 * then we need to update last_accounted_offset.
415 */
84448c8e
JK
416 if (iter->to > last_accounted_offset)
417 last_accounted_offset = iter->to;
0db9d74e
MA
418 continue;
419 }
d75c6af9 420
0db9d74e
MA
421 /* When we find a region that starts beyond our range, we've
422 * finished.
423 */
84448c8e
JK
424 if (iter->from >= t) {
425 rg = iter->link.prev;
d75c6af9 426 break;
84448c8e 427 }
d75c6af9 428
84448c8e 429 /* Add an entry for last_accounted_offset -> iter->from, and
0db9d74e
MA
430 * update last_accounted_offset.
431 */
84448c8e
JK
432 if (iter->from > last_accounted_offset)
433 add += hugetlb_resv_map_add(resv, iter->link.prev,
2103cf9c 434 last_accounted_offset,
84448c8e 435 iter->from, h, h_cg,
2103cf9c 436 regions_needed);
0db9d74e 437
84448c8e 438 last_accounted_offset = iter->to;
0db9d74e
MA
439 }
440
441 /* Handle the case where our range extends beyond
442 * last_accounted_offset.
443 */
84448c8e
JK
444 if (!rg)
445 rg = head->prev;
2103cf9c
PX
446 if (last_accounted_offset < t)
447 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
448 t, h, h_cg, regions_needed);
0db9d74e 449
0db9d74e
MA
450 return add;
451}
452
453/* Must be called with resv->lock acquired. Will drop lock to allocate entries.
454 */
455static int allocate_file_region_entries(struct resv_map *resv,
456 int regions_needed)
457 __must_hold(&resv->lock)
458{
459 struct list_head allocated_regions;
460 int to_allocate = 0, i = 0;
461 struct file_region *trg = NULL, *rg = NULL;
462
463 VM_BUG_ON(regions_needed < 0);
464
465 INIT_LIST_HEAD(&allocated_regions);
466
467 /*
468 * Check for sufficient descriptors in the cache to accommodate
469 * the number of in progress add operations plus regions_needed.
470 *
471 * This is a while loop because when we drop the lock, some other call
472 * to region_add or region_del may have consumed some region_entries,
473 * so we keep looping here until we finally have enough entries for
474 * (adds_in_progress + regions_needed).
475 */
476 while (resv->region_cache_count <
477 (resv->adds_in_progress + regions_needed)) {
478 to_allocate = resv->adds_in_progress + regions_needed -
479 resv->region_cache_count;
480
481 /* At this point, we should have enough entries in the cache
f0953a1b 482 * for all the existing adds_in_progress. We should only be
0db9d74e 483 * needing to allocate for regions_needed.
d75c6af9 484 */
0db9d74e
MA
485 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
486
487 spin_unlock(&resv->lock);
488 for (i = 0; i < to_allocate; i++) {
489 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
490 if (!trg)
491 goto out_of_memory;
492 list_add(&trg->link, &allocated_regions);
d75c6af9 493 }
d75c6af9 494
0db9d74e
MA
495 spin_lock(&resv->lock);
496
d3ec7b6e
WY
497 list_splice(&allocated_regions, &resv->region_cache);
498 resv->region_cache_count += to_allocate;
d75c6af9
MA
499 }
500
0db9d74e 501 return 0;
d75c6af9 502
0db9d74e
MA
503out_of_memory:
504 list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
505 list_del(&rg->link);
506 kfree(rg);
507 }
508 return -ENOMEM;
d75c6af9
MA
509}
510
1dd308a7
MK
511/*
512 * Add the huge page range represented by [f, t) to the reserve
0db9d74e
MA
513 * map. Regions will be taken from the cache to fill in this range.
514 * Sufficient regions should exist in the cache due to the previous
515 * call to region_chg with the same range, but in some cases the cache will not
516 * have sufficient entries due to races with other code doing region_add or
517 * region_del. The extra needed entries will be allocated.
cf3ad20b 518 *
0db9d74e
MA
519 * regions_needed is the out value provided by a previous call to region_chg.
520 *
521 * Return the number of new huge pages added to the map. This number is greater
522 * than or equal to zero. If file_region entries needed to be allocated for
7c8de358 523 * this operation and we were not able to allocate, it returns -ENOMEM.
0db9d74e
MA
524 * region_add of regions of length 1 never allocate file_regions and cannot
525 * fail; region_chg will always allocate at least 1 entry and a region_add for
526 * 1 page will only require at most 1 entry.
1dd308a7 527 */
0db9d74e 528static long region_add(struct resv_map *resv, long f, long t,
075a61d0
MA
529 long in_regions_needed, struct hstate *h,
530 struct hugetlb_cgroup *h_cg)
96822904 531{
0db9d74e 532 long add = 0, actual_regions_needed = 0;
96822904 533
7b24d861 534 spin_lock(&resv->lock);
0db9d74e
MA
535retry:
536
537 /* Count how many regions are actually needed to execute this add. */
972a3da3
WY
538 add_reservation_in_range(resv, f, t, NULL, NULL,
539 &actual_regions_needed);
96822904 540
5e911373 541 /*
0db9d74e
MA
542 * Check for sufficient descriptors in the cache to accommodate
543 * this add operation. Note that actual_regions_needed may be greater
544 * than in_regions_needed, as the resv_map may have been modified since
545 * the region_chg call. In this case, we need to make sure that we
546 * allocate extra entries, such that we have enough for all the
547 * existing adds_in_progress, plus the excess needed for this
548 * operation.
5e911373 549 */
0db9d74e
MA
550 if (actual_regions_needed > in_regions_needed &&
551 resv->region_cache_count <
552 resv->adds_in_progress +
553 (actual_regions_needed - in_regions_needed)) {
554 /* region_add operation of range 1 should never need to
555 * allocate file_region entries.
556 */
557 VM_BUG_ON(t - f <= 1);
5e911373 558
0db9d74e
MA
559 if (allocate_file_region_entries(
560 resv, actual_regions_needed - in_regions_needed)) {
561 return -ENOMEM;
562 }
5e911373 563
0db9d74e 564 goto retry;
5e911373
MK
565 }
566
972a3da3 567 add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
0db9d74e
MA
568
569 resv->adds_in_progress -= in_regions_needed;
cf3ad20b 570
7b24d861 571 spin_unlock(&resv->lock);
cf3ad20b 572 return add;
96822904
AW
573}
574
1dd308a7
MK
575/*
576 * Examine the existing reserve map and determine how many
577 * huge pages in the specified range [f, t) are NOT currently
578 * represented. This routine is called before a subsequent
579 * call to region_add that will actually modify the reserve
580 * map to add the specified range [f, t). region_chg does
581 * not change the number of huge pages represented by the
0db9d74e
MA
582 * map. A number of new file_region structures is added to the cache as a
583 * placeholder, for the subsequent region_add call to use. At least 1
584 * file_region structure is added.
585 *
586 * out_regions_needed is the number of regions added to the
587 * resv->adds_in_progress. This value needs to be provided to a follow up call
588 * to region_add or region_abort for proper accounting.
5e911373
MK
589 *
590 * Returns the number of huge pages that need to be added to the existing
591 * reservation map for the range [f, t). This number is greater or equal to
592 * zero. -ENOMEM is returned if a new file_region structure or cache entry
593 * is needed and can not be allocated.
1dd308a7 594 */
0db9d74e
MA
595static long region_chg(struct resv_map *resv, long f, long t,
596 long *out_regions_needed)
96822904 597{
96822904
AW
598 long chg = 0;
599
7b24d861 600 spin_lock(&resv->lock);
5e911373 601
972a3da3 602 /* Count how many hugepages in this range are NOT represented. */
075a61d0 603 chg = add_reservation_in_range(resv, f, t, NULL, NULL,
972a3da3 604 out_regions_needed);
5e911373 605
0db9d74e
MA
606 if (*out_regions_needed == 0)
607 *out_regions_needed = 1;
5e911373 608
0db9d74e
MA
609 if (allocate_file_region_entries(resv, *out_regions_needed))
610 return -ENOMEM;
5e911373 611
0db9d74e 612 resv->adds_in_progress += *out_regions_needed;
7b24d861 613
7b24d861 614 spin_unlock(&resv->lock);
96822904
AW
615 return chg;
616}
617
5e911373
MK
618/*
619 * Abort the in progress add operation. The adds_in_progress field
620 * of the resv_map keeps track of the operations in progress between
621 * calls to region_chg and region_add. Operations are sometimes
622 * aborted after the call to region_chg. In such cases, region_abort
0db9d74e
MA
623 * is called to decrement the adds_in_progress counter. regions_needed
624 * is the value returned by the region_chg call, it is used to decrement
625 * the adds_in_progress counter.
5e911373
MK
626 *
627 * NOTE: The range arguments [f, t) are not needed or used in this
628 * routine. They are kept to make reading the calling code easier as
629 * arguments will match the associated region_chg call.
630 */
0db9d74e
MA
631static void region_abort(struct resv_map *resv, long f, long t,
632 long regions_needed)
5e911373
MK
633{
634 spin_lock(&resv->lock);
635 VM_BUG_ON(!resv->region_cache_count);
0db9d74e 636 resv->adds_in_progress -= regions_needed;
5e911373
MK
637 spin_unlock(&resv->lock);
638}
639
1dd308a7 640/*
feba16e2
MK
641 * Delete the specified range [f, t) from the reserve map. If the
642 * t parameter is LONG_MAX, this indicates that ALL regions after f
643 * should be deleted. Locate the regions which intersect [f, t)
644 * and either trim, delete or split the existing regions.
645 *
646 * Returns the number of huge pages deleted from the reserve map.
647 * In the normal case, the return value is zero or more. In the
648 * case where a region must be split, a new region descriptor must
649 * be allocated. If the allocation fails, -ENOMEM will be returned.
650 * NOTE: If the parameter t == LONG_MAX, then we will never split
651 * a region and possibly return -ENOMEM. Callers specifying
652 * t == LONG_MAX do not need to check for -ENOMEM error.
1dd308a7 653 */
feba16e2 654static long region_del(struct resv_map *resv, long f, long t)
96822904 655{
1406ec9b 656 struct list_head *head = &resv->regions;
96822904 657 struct file_region *rg, *trg;
feba16e2
MK
658 struct file_region *nrg = NULL;
659 long del = 0;
96822904 660
feba16e2 661retry:
7b24d861 662 spin_lock(&resv->lock);
feba16e2 663 list_for_each_entry_safe(rg, trg, head, link) {
dbe409e4
MK
664 /*
665 * Skip regions before the range to be deleted. file_region
666 * ranges are normally of the form [from, to). However, there
667 * may be a "placeholder" entry in the map which is of the form
668 * (from, to) with from == to. Check for placeholder entries
669 * at the beginning of the range to be deleted.
670 */
671 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
feba16e2 672 continue;
dbe409e4 673
feba16e2 674 if (rg->from >= t)
96822904 675 break;
96822904 676
feba16e2
MK
677 if (f > rg->from && t < rg->to) { /* Must split region */
678 /*
679 * Check for an entry in the cache before dropping
680 * lock and attempting allocation.
681 */
682 if (!nrg &&
683 resv->region_cache_count > resv->adds_in_progress) {
684 nrg = list_first_entry(&resv->region_cache,
685 struct file_region,
686 link);
687 list_del(&nrg->link);
688 resv->region_cache_count--;
689 }
96822904 690
feba16e2
MK
691 if (!nrg) {
692 spin_unlock(&resv->lock);
693 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
694 if (!nrg)
695 return -ENOMEM;
696 goto retry;
697 }
698
699 del += t - f;
79aa925b 700 hugetlb_cgroup_uncharge_file_region(
d85aecf2 701 resv, rg, t - f, false);
feba16e2
MK
702
703 /* New entry for end of split region */
704 nrg->from = t;
705 nrg->to = rg->to;
075a61d0
MA
706
707 copy_hugetlb_cgroup_uncharge_info(nrg, rg);
708
feba16e2
MK
709 INIT_LIST_HEAD(&nrg->link);
710
711 /* Original entry is trimmed */
712 rg->to = f;
713
714 list_add(&nrg->link, &rg->link);
715 nrg = NULL;
96822904 716 break;
feba16e2
MK
717 }
718
719 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
720 del += rg->to - rg->from;
075a61d0 721 hugetlb_cgroup_uncharge_file_region(resv, rg,
d85aecf2 722 rg->to - rg->from, true);
feba16e2
MK
723 list_del(&rg->link);
724 kfree(rg);
725 continue;
726 }
727
728 if (f <= rg->from) { /* Trim beginning of region */
075a61d0 729 hugetlb_cgroup_uncharge_file_region(resv, rg,
d85aecf2 730 t - rg->from, false);
075a61d0 731
79aa925b
MK
732 del += t - rg->from;
733 rg->from = t;
734 } else { /* Trim end of region */
075a61d0 735 hugetlb_cgroup_uncharge_file_region(resv, rg,
d85aecf2 736 rg->to - f, false);
79aa925b
MK
737
738 del += rg->to - f;
739 rg->to = f;
feba16e2 740 }
96822904 741 }
7b24d861 742
7b24d861 743 spin_unlock(&resv->lock);
feba16e2
MK
744 kfree(nrg);
745 return del;
96822904
AW
746}
747
b5cec28d
MK
748/*
749 * A rare out of memory error was encountered which prevented removal of
750 * the reserve map region for a page. The huge page itself was free'ed
751 * and removed from the page cache. This routine will adjust the subpool
752 * usage count, and the global reserve count if needed. By incrementing
753 * these counts, the reserve map entry which could not be deleted will
754 * appear as a "reserved" entry instead of simply dangling with incorrect
755 * counts.
756 */
72e2936c 757void hugetlb_fix_reserve_counts(struct inode *inode)
b5cec28d
MK
758{
759 struct hugepage_subpool *spool = subpool_inode(inode);
760 long rsv_adjust;
da56388c 761 bool reserved = false;
b5cec28d
MK
762
763 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
da56388c 764 if (rsv_adjust > 0) {
b5cec28d
MK
765 struct hstate *h = hstate_inode(inode);
766
da56388c
ML
767 if (!hugetlb_acct_memory(h, 1))
768 reserved = true;
769 } else if (!rsv_adjust) {
770 reserved = true;
b5cec28d 771 }
da56388c
ML
772
773 if (!reserved)
774 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
b5cec28d
MK
775}
776
1dd308a7
MK
777/*
778 * Count and return the number of huge pages in the reserve map
779 * that intersect with the range [f, t).
780 */
1406ec9b 781static long region_count(struct resv_map *resv, long f, long t)
84afd99b 782{
1406ec9b 783 struct list_head *head = &resv->regions;
84afd99b
AW
784 struct file_region *rg;
785 long chg = 0;
786
7b24d861 787 spin_lock(&resv->lock);
84afd99b
AW
788 /* Locate each segment we overlap with, and count that overlap. */
789 list_for_each_entry(rg, head, link) {
f2135a4a
WSH
790 long seg_from;
791 long seg_to;
84afd99b
AW
792
793 if (rg->to <= f)
794 continue;
795 if (rg->from >= t)
796 break;
797
798 seg_from = max(rg->from, f);
799 seg_to = min(rg->to, t);
800
801 chg += seg_to - seg_from;
802 }
7b24d861 803 spin_unlock(&resv->lock);
84afd99b
AW
804
805 return chg;
806}
807
e7c4b0bf
AW
808/*
809 * Convert the address within this vma to the page offset within
810 * the mapping, in pagecache page units; huge pages here.
811 */
a5516438
AK
812static pgoff_t vma_hugecache_offset(struct hstate *h,
813 struct vm_area_struct *vma, unsigned long address)
e7c4b0bf 814{
a5516438
AK
815 return ((address - vma->vm_start) >> huge_page_shift(h)) +
816 (vma->vm_pgoff >> huge_page_order(h));
e7c4b0bf
AW
817}
818
0fe6e20b
NH
819pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
820 unsigned long address)
821{
822 return vma_hugecache_offset(hstate_vma(vma), vma, address);
823}
dee41079 824EXPORT_SYMBOL_GPL(linear_hugepage_index);
0fe6e20b 825
08fba699
MG
826/*
827 * Return the size of the pages allocated when backing a VMA. In the majority
828 * cases this will be same size as used by the page table entries.
829 */
830unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
831{
05ea8860
DW
832 if (vma->vm_ops && vma->vm_ops->pagesize)
833 return vma->vm_ops->pagesize(vma);
834 return PAGE_SIZE;
08fba699 835}
f340ca0f 836EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
08fba699 837
3340289d
MG
838/*
839 * Return the page size being used by the MMU to back a VMA. In the majority
840 * of cases, the page size used by the kernel matches the MMU size. On
09135cc5
DW
841 * architectures where it differs, an architecture-specific 'strong'
842 * version of this symbol is required.
3340289d 843 */
09135cc5 844__weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
3340289d
MG
845{
846 return vma_kernel_pagesize(vma);
847}
3340289d 848
84afd99b
AW
849/*
850 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
851 * bits of the reservation map pointer, which are always clear due to
852 * alignment.
853 */
854#define HPAGE_RESV_OWNER (1UL << 0)
855#define HPAGE_RESV_UNMAPPED (1UL << 1)
04f2cbe3 856#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
84afd99b 857
a1e78772
MG
858/*
859 * These helpers are used to track how many pages are reserved for
860 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
861 * is guaranteed to have their future faults succeed.
862 *
863 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
864 * the reserve counters are updated with the hugetlb_lock held. It is safe
865 * to reset the VMA at fork() time as it is not in use yet and there is no
866 * chance of the global counters getting corrupted as a result of the values.
84afd99b
AW
867 *
868 * The private mapping reservation is represented in a subtly different
869 * manner to a shared mapping. A shared mapping has a region map associated
870 * with the underlying file, this region map represents the backing file
871 * pages which have ever had a reservation assigned which this persists even
872 * after the page is instantiated. A private mapping has a region map
873 * associated with the original mmap which is attached to all VMAs which
874 * reference it, this region map represents those offsets which have consumed
875 * reservation ie. where pages have been instantiated.
a1e78772 876 */
e7c4b0bf
AW
877static unsigned long get_vma_private_data(struct vm_area_struct *vma)
878{
879 return (unsigned long)vma->vm_private_data;
880}
881
882static void set_vma_private_data(struct vm_area_struct *vma,
883 unsigned long value)
884{
885 vma->vm_private_data = (void *)value;
886}
887
e9fe92ae
MA
888static void
889resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
890 struct hugetlb_cgroup *h_cg,
891 struct hstate *h)
892{
893#ifdef CONFIG_CGROUP_HUGETLB
894 if (!h_cg || !h) {
895 resv_map->reservation_counter = NULL;
896 resv_map->pages_per_hpage = 0;
897 resv_map->css = NULL;
898 } else {
899 resv_map->reservation_counter =
900 &h_cg->rsvd_hugepage[hstate_index(h)];
901 resv_map->pages_per_hpage = pages_per_huge_page(h);
902 resv_map->css = &h_cg->css;
903 }
904#endif
905}
906
9119a41e 907struct resv_map *resv_map_alloc(void)
84afd99b
AW
908{
909 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
5e911373
MK
910 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
911
912 if (!resv_map || !rg) {
913 kfree(resv_map);
914 kfree(rg);
84afd99b 915 return NULL;
5e911373 916 }
84afd99b
AW
917
918 kref_init(&resv_map->refs);
7b24d861 919 spin_lock_init(&resv_map->lock);
84afd99b
AW
920 INIT_LIST_HEAD(&resv_map->regions);
921
5e911373 922 resv_map->adds_in_progress = 0;
e9fe92ae
MA
923 /*
924 * Initialize these to 0. On shared mappings, 0's here indicate these
925 * fields don't do cgroup accounting. On private mappings, these will be
926 * re-initialized to the proper values, to indicate that hugetlb cgroup
927 * reservations are to be un-charged from here.
928 */
929 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
5e911373
MK
930
931 INIT_LIST_HEAD(&resv_map->region_cache);
932 list_add(&rg->link, &resv_map->region_cache);
933 resv_map->region_cache_count = 1;
934
84afd99b
AW
935 return resv_map;
936}
937
9119a41e 938void resv_map_release(struct kref *ref)
84afd99b
AW
939{
940 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
5e911373
MK
941 struct list_head *head = &resv_map->region_cache;
942 struct file_region *rg, *trg;
84afd99b
AW
943
944 /* Clear out any active regions before we release the map. */
feba16e2 945 region_del(resv_map, 0, LONG_MAX);
5e911373
MK
946
947 /* ... and any entries left in the cache */
948 list_for_each_entry_safe(rg, trg, head, link) {
949 list_del(&rg->link);
950 kfree(rg);
951 }
952
953 VM_BUG_ON(resv_map->adds_in_progress);
954
84afd99b
AW
955 kfree(resv_map);
956}
957
4e35f483
JK
958static inline struct resv_map *inode_resv_map(struct inode *inode)
959{
f27a5136
MK
960 /*
961 * At inode evict time, i_mapping may not point to the original
962 * address space within the inode. This original address space
963 * contains the pointer to the resv_map. So, always use the
964 * address space embedded within the inode.
965 * The VERY common case is inode->mapping == &inode->i_data but,
966 * this may not be true for device special inodes.
967 */
968 return (struct resv_map *)(&inode->i_data)->private_data;
4e35f483
JK
969}
970
84afd99b 971static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
a1e78772 972{
81d1b09c 973 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
4e35f483
JK
974 if (vma->vm_flags & VM_MAYSHARE) {
975 struct address_space *mapping = vma->vm_file->f_mapping;
976 struct inode *inode = mapping->host;
977
978 return inode_resv_map(inode);
979
980 } else {
84afd99b
AW
981 return (struct resv_map *)(get_vma_private_data(vma) &
982 ~HPAGE_RESV_MASK);
4e35f483 983 }
a1e78772
MG
984}
985
84afd99b 986static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
a1e78772 987{
81d1b09c
SL
988 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
989 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
a1e78772 990
84afd99b
AW
991 set_vma_private_data(vma, (get_vma_private_data(vma) &
992 HPAGE_RESV_MASK) | (unsigned long)map);
04f2cbe3
MG
993}
994
995static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
996{
81d1b09c
SL
997 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
998 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
e7c4b0bf
AW
999
1000 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
04f2cbe3
MG
1001}
1002
1003static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
1004{
81d1b09c 1005 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
e7c4b0bf
AW
1006
1007 return (get_vma_private_data(vma) & flag) != 0;
a1e78772
MG
1008}
1009
04f2cbe3 1010/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
a1e78772
MG
1011void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
1012{
81d1b09c 1013 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
f83a275d 1014 if (!(vma->vm_flags & VM_MAYSHARE))
a1e78772
MG
1015 vma->vm_private_data = (void *)0;
1016}
1017
550a7d60
MA
1018/*
1019 * Reset and decrement one ref on hugepage private reservation.
1020 * Called with mm->mmap_sem writer semaphore held.
1021 * This function should be only used by move_vma() and operate on
1022 * same sized vma. It should never come here with last ref on the
1023 * reservation.
1024 */
1025void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
1026{
1027 /*
1028 * Clear the old hugetlb private page reservation.
1029 * It has already been transferred to new_vma.
1030 *
1031 * During a mremap() operation of a hugetlb vma we call move_vma()
1032 * which copies vma into new_vma and unmaps vma. After the copy
1033 * operation both new_vma and vma share a reference to the resv_map
1034 * struct, and at that point vma is about to be unmapped. We don't
1035 * want to return the reservation to the pool at unmap of vma because
1036 * the reservation still lives on in new_vma, so simply decrement the
1037 * ref here and remove the resv_map reference from this vma.
1038 */
1039 struct resv_map *reservations = vma_resv_map(vma);
1040
afe041c2
BQM
1041 if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1042 resv_map_put_hugetlb_cgroup_uncharge_info(reservations);
550a7d60 1043 kref_put(&reservations->refs, resv_map_release);
afe041c2 1044 }
550a7d60
MA
1045
1046 reset_vma_resv_huge_pages(vma);
1047}
1048
a1e78772 1049/* Returns true if the VMA has associated reserve pages */
559ec2f8 1050static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
a1e78772 1051{
af0ed73e
JK
1052 if (vma->vm_flags & VM_NORESERVE) {
1053 /*
1054 * This address is already reserved by other process(chg == 0),
1055 * so, we should decrement reserved count. Without decrementing,
1056 * reserve count remains after releasing inode, because this
1057 * allocated page will go into page cache and is regarded as
1058 * coming from reserved pool in releasing step. Currently, we
1059 * don't have any other solution to deal with this situation
1060 * properly, so add work-around here.
1061 */
1062 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
559ec2f8 1063 return true;
af0ed73e 1064 else
559ec2f8 1065 return false;
af0ed73e 1066 }
a63884e9
JK
1067
1068 /* Shared mappings always use reserves */
1fb1b0e9
MK
1069 if (vma->vm_flags & VM_MAYSHARE) {
1070 /*
1071 * We know VM_NORESERVE is not set. Therefore, there SHOULD
1072 * be a region map for all pages. The only situation where
1073 * there is no region map is if a hole was punched via
7c8de358 1074 * fallocate. In this case, there really are no reserves to
1fb1b0e9
MK
1075 * use. This situation is indicated if chg != 0.
1076 */
1077 if (chg)
1078 return false;
1079 else
1080 return true;
1081 }
a63884e9
JK
1082
1083 /*
1084 * Only the process that called mmap() has reserves for
1085 * private mappings.
1086 */
67961f9d
MK
1087 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1088 /*
1089 * Like the shared case above, a hole punch or truncate
1090 * could have been performed on the private mapping.
1091 * Examine the value of chg to determine if reserves
1092 * actually exist or were previously consumed.
1093 * Very Subtle - The value of chg comes from a previous
1094 * call to vma_needs_reserves(). The reserve map for
1095 * private mappings has different (opposite) semantics
1096 * than that of shared mappings. vma_needs_reserves()
1097 * has already taken this difference in semantics into
1098 * account. Therefore, the meaning of chg is the same
1099 * as in the shared case above. Code could easily be
1100 * combined, but keeping it separate draws attention to
1101 * subtle differences.
1102 */
1103 if (chg)
1104 return false;
1105 else
1106 return true;
1107 }
a63884e9 1108
559ec2f8 1109 return false;
a1e78772
MG
1110}
1111
a5516438 1112static void enqueue_huge_page(struct hstate *h, struct page *page)
1da177e4
LT
1113{
1114 int nid = page_to_nid(page);
9487ca60
MK
1115
1116 lockdep_assert_held(&hugetlb_lock);
b65a4eda
MK
1117 VM_BUG_ON_PAGE(page_count(page), page);
1118
0edaecfa 1119 list_move(&page->lru, &h->hugepage_freelists[nid]);
a5516438
AK
1120 h->free_huge_pages++;
1121 h->free_huge_pages_node[nid]++;
6c037149 1122 SetHPageFreed(page);
1da177e4
LT
1123}
1124
94310cbc 1125static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
bf50bab2
NH
1126{
1127 struct page *page;
1a08ae36 1128 bool pin = !!(current->flags & PF_MEMALLOC_PIN);
bbe88753 1129
9487ca60 1130 lockdep_assert_held(&hugetlb_lock);
bbe88753 1131 list_for_each_entry(page, &h->hugepage_freelists[nid], lru) {
6077c943 1132 if (pin && !is_longterm_pinnable_page(page))
bbe88753 1133 continue;
bf50bab2 1134
6664bfc8
WY
1135 if (PageHWPoison(page))
1136 continue;
1137
1138 list_move(&page->lru, &h->hugepage_activelist);
1139 set_page_refcounted(page);
6c037149 1140 ClearHPageFreed(page);
6664bfc8
WY
1141 h->free_huge_pages--;
1142 h->free_huge_pages_node[nid]--;
1143 return page;
bbe88753
JK
1144 }
1145
6664bfc8 1146 return NULL;
bf50bab2
NH
1147}
1148
3e59fcb0
MH
1149static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
1150 nodemask_t *nmask)
94310cbc 1151{
3e59fcb0
MH
1152 unsigned int cpuset_mems_cookie;
1153 struct zonelist *zonelist;
1154 struct zone *zone;
1155 struct zoneref *z;
98fa15f3 1156 int node = NUMA_NO_NODE;
94310cbc 1157
3e59fcb0
MH
1158 zonelist = node_zonelist(nid, gfp_mask);
1159
1160retry_cpuset:
1161 cpuset_mems_cookie = read_mems_allowed_begin();
1162 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1163 struct page *page;
1164
1165 if (!cpuset_zone_allowed(zone, gfp_mask))
1166 continue;
1167 /*
1168 * no need to ask again on the same node. Pool is node rather than
1169 * zone aware
1170 */
1171 if (zone_to_nid(zone) == node)
1172 continue;
1173 node = zone_to_nid(zone);
94310cbc 1174
94310cbc
AK
1175 page = dequeue_huge_page_node_exact(h, node);
1176 if (page)
1177 return page;
1178 }
3e59fcb0
MH
1179 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1180 goto retry_cpuset;
1181
94310cbc
AK
1182 return NULL;
1183}
1184
a5516438
AK
1185static struct page *dequeue_huge_page_vma(struct hstate *h,
1186 struct vm_area_struct *vma,
af0ed73e
JK
1187 unsigned long address, int avoid_reserve,
1188 long chg)
1da177e4 1189{
cfcaa66f 1190 struct page *page = NULL;
480eccf9 1191 struct mempolicy *mpol;
04ec6264 1192 gfp_t gfp_mask;
3e59fcb0 1193 nodemask_t *nodemask;
04ec6264 1194 int nid;
1da177e4 1195
a1e78772
MG
1196 /*
1197 * A child process with MAP_PRIVATE mappings created by their parent
1198 * have no page reserves. This check ensures that reservations are
1199 * not "stolen". The child may still get SIGKILLed
1200 */
af0ed73e 1201 if (!vma_has_reserves(vma, chg) &&
a5516438 1202 h->free_huge_pages - h->resv_huge_pages == 0)
c0ff7453 1203 goto err;
a1e78772 1204
04f2cbe3 1205 /* If reserves cannot be used, ensure enough pages are in the pool */
a5516438 1206 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
6eab04a8 1207 goto err;
04f2cbe3 1208
04ec6264
VB
1209 gfp_mask = htlb_alloc_mask(h);
1210 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
cfcaa66f
BW
1211
1212 if (mpol_is_preferred_many(mpol)) {
1213 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1214
1215 /* Fallback to all nodes if page==NULL */
1216 nodemask = NULL;
1217 }
1218
1219 if (!page)
1220 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1221
3e59fcb0 1222 if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
d6995da3 1223 SetHPageRestoreReserve(page);
3e59fcb0 1224 h->resv_huge_pages--;
1da177e4 1225 }
cc9a6c87 1226
52cd3b07 1227 mpol_cond_put(mpol);
1da177e4 1228 return page;
cc9a6c87
MG
1229
1230err:
cc9a6c87 1231 return NULL;
1da177e4
LT
1232}
1233
1cac6f2c
LC
1234/*
1235 * common helper functions for hstate_next_node_to_{alloc|free}.
1236 * We may have allocated or freed a huge page based on a different
1237 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1238 * be outside of *nodes_allowed. Ensure that we use an allowed
1239 * node for alloc or free.
1240 */
1241static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1242{
0edaf86c 1243 nid = next_node_in(nid, *nodes_allowed);
1cac6f2c
LC
1244 VM_BUG_ON(nid >= MAX_NUMNODES);
1245
1246 return nid;
1247}
1248
1249static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1250{
1251 if (!node_isset(nid, *nodes_allowed))
1252 nid = next_node_allowed(nid, nodes_allowed);
1253 return nid;
1254}
1255
1256/*
1257 * returns the previously saved node ["this node"] from which to
1258 * allocate a persistent huge page for the pool and advance the
1259 * next node from which to allocate, handling wrap at end of node
1260 * mask.
1261 */
1262static int hstate_next_node_to_alloc(struct hstate *h,
1263 nodemask_t *nodes_allowed)
1264{
1265 int nid;
1266
1267 VM_BUG_ON(!nodes_allowed);
1268
1269 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1270 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1271
1272 return nid;
1273}
1274
1275/*
10c6ec49 1276 * helper for remove_pool_huge_page() - return the previously saved
1cac6f2c
LC
1277 * node ["this node"] from which to free a huge page. Advance the
1278 * next node id whether or not we find a free huge page to free so
1279 * that the next attempt to free addresses the next node.
1280 */
1281static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1282{
1283 int nid;
1284
1285 VM_BUG_ON(!nodes_allowed);
1286
1287 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1288 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1289
1290 return nid;
1291}
1292
1293#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
1294 for (nr_nodes = nodes_weight(*mask); \
1295 nr_nodes > 0 && \
1296 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
1297 nr_nodes--)
1298
1299#define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1300 for (nr_nodes = nodes_weight(*mask); \
1301 nr_nodes > 0 && \
1302 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1303 nr_nodes--)
1304
8531fc6f 1305/* used to demote non-gigantic_huge pages as well */
34d9e35b
MK
1306static void __destroy_compound_gigantic_page(struct page *page,
1307 unsigned int order, bool demote)
944d9fec
LC
1308{
1309 int i;
1310 int nr_pages = 1 << order;
1311 struct page *p = page + 1;
1312
c8cc708a 1313 atomic_set(compound_mapcount_ptr(page), 0);
5291c09b 1314 atomic_set(compound_pincount_ptr(page), 0);
47e29d32 1315
944d9fec 1316 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
a01f4390 1317 p->mapping = NULL;
1d798ca3 1318 clear_compound_head(p);
34d9e35b
MK
1319 if (!demote)
1320 set_page_refcounted(p);
944d9fec
LC
1321 }
1322
1323 set_compound_order(page, 0);
5232c63f 1324#ifdef CONFIG_64BIT
ba9c1201 1325 page[1].compound_nr = 0;
5232c63f 1326#endif
944d9fec
LC
1327 __ClearPageHead(page);
1328}
1329
8531fc6f
MK
1330static void destroy_compound_hugetlb_page_for_demote(struct page *page,
1331 unsigned int order)
1332{
1333 __destroy_compound_gigantic_page(page, order, true);
1334}
1335
1336#ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
34d9e35b
MK
1337static void destroy_compound_gigantic_page(struct page *page,
1338 unsigned int order)
1339{
1340 __destroy_compound_gigantic_page(page, order, false);
1341}
1342
d00181b9 1343static void free_gigantic_page(struct page *page, unsigned int order)
944d9fec 1344{
cf11e85f
RG
1345 /*
1346 * If the page isn't allocated using the cma allocator,
1347 * cma_release() returns false.
1348 */
dbda8fea
BS
1349#ifdef CONFIG_CMA
1350 if (cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order))
cf11e85f 1351 return;
dbda8fea 1352#endif
cf11e85f 1353
944d9fec
LC
1354 free_contig_range(page_to_pfn(page), 1 << order);
1355}
1356
4eb0716e 1357#ifdef CONFIG_CONTIG_ALLOC
d9cc948f
MH
1358static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1359 int nid, nodemask_t *nodemask)
944d9fec 1360{
04adbc3f 1361 unsigned long nr_pages = pages_per_huge_page(h);
953f064a
LX
1362 if (nid == NUMA_NO_NODE)
1363 nid = numa_mem_id();
944d9fec 1364
dbda8fea
BS
1365#ifdef CONFIG_CMA
1366 {
cf11e85f
RG
1367 struct page *page;
1368 int node;
1369
953f064a
LX
1370 if (hugetlb_cma[nid]) {
1371 page = cma_alloc(hugetlb_cma[nid], nr_pages,
1372 huge_page_order(h), true);
cf11e85f
RG
1373 if (page)
1374 return page;
1375 }
953f064a
LX
1376
1377 if (!(gfp_mask & __GFP_THISNODE)) {
1378 for_each_node_mask(node, *nodemask) {
1379 if (node == nid || !hugetlb_cma[node])
1380 continue;
1381
1382 page = cma_alloc(hugetlb_cma[node], nr_pages,
1383 huge_page_order(h), true);
1384 if (page)
1385 return page;
1386 }
1387 }
cf11e85f 1388 }
dbda8fea 1389#endif
cf11e85f 1390
5e27a2df 1391 return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
944d9fec
LC
1392}
1393
4eb0716e
AG
1394#else /* !CONFIG_CONTIG_ALLOC */
1395static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1396 int nid, nodemask_t *nodemask)
1397{
1398 return NULL;
1399}
1400#endif /* CONFIG_CONTIG_ALLOC */
944d9fec 1401
e1073d1e 1402#else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
d9cc948f 1403static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
4eb0716e
AG
1404 int nid, nodemask_t *nodemask)
1405{
1406 return NULL;
1407}
d00181b9 1408static inline void free_gigantic_page(struct page *page, unsigned int order) { }
944d9fec 1409static inline void destroy_compound_gigantic_page(struct page *page,
d00181b9 1410 unsigned int order) { }
944d9fec
LC
1411#endif
1412
6eb4e88a
MK
1413/*
1414 * Remove hugetlb page from lists, and update dtor so that page appears
34d9e35b
MK
1415 * as just a compound page.
1416 *
1417 * A reference is held on the page, except in the case of demote.
6eb4e88a
MK
1418 *
1419 * Must be called with hugetlb lock held.
1420 */
34d9e35b
MK
1421static void __remove_hugetlb_page(struct hstate *h, struct page *page,
1422 bool adjust_surplus,
1423 bool demote)
6eb4e88a
MK
1424{
1425 int nid = page_to_nid(page);
1426
1427 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1428 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page);
1429
9487ca60 1430 lockdep_assert_held(&hugetlb_lock);
6eb4e88a
MK
1431 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1432 return;
1433
1434 list_del(&page->lru);
1435
1436 if (HPageFreed(page)) {
1437 h->free_huge_pages--;
1438 h->free_huge_pages_node[nid]--;
1439 }
1440 if (adjust_surplus) {
1441 h->surplus_huge_pages--;
1442 h->surplus_huge_pages_node[nid]--;
1443 }
1444
e32d20c0
MK
1445 /*
1446 * Very subtle
1447 *
1448 * For non-gigantic pages set the destructor to the normal compound
1449 * page dtor. This is needed in case someone takes an additional
1450 * temporary ref to the page, and freeing is delayed until they drop
1451 * their reference.
1452 *
1453 * For gigantic pages set the destructor to the null dtor. This
1454 * destructor will never be called. Before freeing the gigantic
1455 * page destroy_compound_gigantic_page will turn the compound page
1456 * into a simple group of pages. After this the destructor does not
1457 * apply.
1458 *
1459 * This handles the case where more than one ref is held when and
1460 * after update_and_free_page is called.
34d9e35b
MK
1461 *
1462 * In the case of demote we do not ref count the page as it will soon
1463 * be turned into a page of smaller size.
e32d20c0 1464 */
34d9e35b
MK
1465 if (!demote)
1466 set_page_refcounted(page);
e32d20c0
MK
1467 if (hstate_is_gigantic(h))
1468 set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1469 else
1470 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
6eb4e88a
MK
1471
1472 h->nr_huge_pages--;
1473 h->nr_huge_pages_node[nid]--;
1474}
1475
34d9e35b
MK
1476static void remove_hugetlb_page(struct hstate *h, struct page *page,
1477 bool adjust_surplus)
1478{
1479 __remove_hugetlb_page(h, page, adjust_surplus, false);
1480}
1481
8531fc6f
MK
1482static void remove_hugetlb_page_for_demote(struct hstate *h, struct page *page,
1483 bool adjust_surplus)
1484{
1485 __remove_hugetlb_page(h, page, adjust_surplus, true);
1486}
1487
ad2fa371
MS
1488static void add_hugetlb_page(struct hstate *h, struct page *page,
1489 bool adjust_surplus)
1490{
1491 int zeroed;
1492 int nid = page_to_nid(page);
1493
1494 VM_BUG_ON_PAGE(!HPageVmemmapOptimized(page), page);
1495
1496 lockdep_assert_held(&hugetlb_lock);
1497
1498 INIT_LIST_HEAD(&page->lru);
1499 h->nr_huge_pages++;
1500 h->nr_huge_pages_node[nid]++;
1501
1502 if (adjust_surplus) {
1503 h->surplus_huge_pages++;
1504 h->surplus_huge_pages_node[nid]++;
1505 }
1506
1507 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1508 set_page_private(page, 0);
1509 SetHPageVmemmapOptimized(page);
1510
1511 /*
b65a4eda
MK
1512 * This page is about to be managed by the hugetlb allocator and
1513 * should have no users. Drop our reference, and check for others
1514 * just in case.
ad2fa371
MS
1515 */
1516 zeroed = put_page_testzero(page);
b65a4eda
MK
1517 if (!zeroed)
1518 /*
1519 * It is VERY unlikely soneone else has taken a ref on
1520 * the page. In this case, we simply return as the
1521 * hugetlb destructor (free_huge_page) will be called
1522 * when this other ref is dropped.
1523 */
1524 return;
1525
ad2fa371
MS
1526 arch_clear_hugepage_flags(page);
1527 enqueue_huge_page(h, page);
1528}
1529
b65d4adb 1530static void __update_and_free_page(struct hstate *h, struct page *page)
6af2acb6
AL
1531{
1532 int i;
dbfee5ae 1533 struct page *subpage = page;
a5516438 1534
4eb0716e 1535 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
944d9fec 1536 return;
18229df5 1537
5981611d 1538 if (hugetlb_vmemmap_alloc(h, page)) {
ad2fa371
MS
1539 spin_lock_irq(&hugetlb_lock);
1540 /*
1541 * If we cannot allocate vmemmap pages, just refuse to free the
1542 * page and put the page back on the hugetlb free list and treat
1543 * as a surplus page.
1544 */
1545 add_hugetlb_page(h, page, true);
1546 spin_unlock_irq(&hugetlb_lock);
1547 return;
1548 }
1549
dbfee5ae
MK
1550 for (i = 0; i < pages_per_huge_page(h);
1551 i++, subpage = mem_map_next(subpage, page, i)) {
1552 subpage->flags &= ~(1 << PG_locked | 1 << PG_error |
32f84528 1553 1 << PG_referenced | 1 << PG_dirty |
a7407a27
LC
1554 1 << PG_active | 1 << PG_private |
1555 1 << PG_writeback);
6af2acb6 1556 }
a01f4390
MK
1557
1558 /*
1559 * Non-gigantic pages demoted from CMA allocated gigantic pages
1560 * need to be given back to CMA in free_gigantic_page.
1561 */
1562 if (hstate_is_gigantic(h) ||
1563 hugetlb_cma_page(page, huge_page_order(h))) {
944d9fec
LC
1564 destroy_compound_gigantic_page(page, huge_page_order(h));
1565 free_gigantic_page(page, huge_page_order(h));
1566 } else {
944d9fec
LC
1567 __free_pages(page, huge_page_order(h));
1568 }
6af2acb6
AL
1569}
1570
b65d4adb
MS
1571/*
1572 * As update_and_free_page() can be called under any context, so we cannot
1573 * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the
1574 * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate
1575 * the vmemmap pages.
1576 *
1577 * free_hpage_workfn() locklessly retrieves the linked list of pages to be
1578 * freed and frees them one-by-one. As the page->mapping pointer is going
1579 * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node
1580 * structure of a lockless linked list of huge pages to be freed.
1581 */
1582static LLIST_HEAD(hpage_freelist);
1583
1584static void free_hpage_workfn(struct work_struct *work)
1585{
1586 struct llist_node *node;
1587
1588 node = llist_del_all(&hpage_freelist);
1589
1590 while (node) {
1591 struct page *page;
1592 struct hstate *h;
1593
1594 page = container_of((struct address_space **)node,
1595 struct page, mapping);
1596 node = node->next;
1597 page->mapping = NULL;
1598 /*
1599 * The VM_BUG_ON_PAGE(!PageHuge(page), page) in page_hstate()
1600 * is going to trigger because a previous call to
1601 * remove_hugetlb_page() will set_compound_page_dtor(page,
1602 * NULL_COMPOUND_DTOR), so do not use page_hstate() directly.
1603 */
1604 h = size_to_hstate(page_size(page));
1605
1606 __update_and_free_page(h, page);
1607
1608 cond_resched();
1609 }
1610}
1611static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1612
1613static inline void flush_free_hpage_work(struct hstate *h)
1614{
5981611d 1615 if (hugetlb_optimize_vmemmap_pages(h))
b65d4adb
MS
1616 flush_work(&free_hpage_work);
1617}
1618
1619static void update_and_free_page(struct hstate *h, struct page *page,
1620 bool atomic)
1621{
ad2fa371 1622 if (!HPageVmemmapOptimized(page) || !atomic) {
b65d4adb
MS
1623 __update_and_free_page(h, page);
1624 return;
1625 }
1626
1627 /*
1628 * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages.
1629 *
1630 * Only call schedule_work() if hpage_freelist is previously
1631 * empty. Otherwise, schedule_work() had been called but the workfn
1632 * hasn't retrieved the list yet.
1633 */
1634 if (llist_add((struct llist_node *)&page->mapping, &hpage_freelist))
1635 schedule_work(&free_hpage_work);
1636}
1637
10c6ec49
MK
1638static void update_and_free_pages_bulk(struct hstate *h, struct list_head *list)
1639{
1640 struct page *page, *t_page;
1641
1642 list_for_each_entry_safe(page, t_page, list, lru) {
b65d4adb 1643 update_and_free_page(h, page, false);
10c6ec49
MK
1644 cond_resched();
1645 }
1646}
1647
e5ff2159
AK
1648struct hstate *size_to_hstate(unsigned long size)
1649{
1650 struct hstate *h;
1651
1652 for_each_hstate(h) {
1653 if (huge_page_size(h) == size)
1654 return h;
1655 }
1656 return NULL;
1657}
1658
db71ef79 1659void free_huge_page(struct page *page)
27a85ef1 1660{
a5516438
AK
1661 /*
1662 * Can't pass hstate in here because it is called from the
1663 * compound page destructor.
1664 */
e5ff2159 1665 struct hstate *h = page_hstate(page);
7893d1d5 1666 int nid = page_to_nid(page);
d6995da3 1667 struct hugepage_subpool *spool = hugetlb_page_subpool(page);
07443a85 1668 bool restore_reserve;
db71ef79 1669 unsigned long flags;
27a85ef1 1670
b4330afb
MK
1671 VM_BUG_ON_PAGE(page_count(page), page);
1672 VM_BUG_ON_PAGE(page_mapcount(page), page);
8ace22bc 1673
d6995da3 1674 hugetlb_set_page_subpool(page, NULL);
78fbe906
DH
1675 if (PageAnon(page))
1676 __ClearPageAnonExclusive(page);
8ace22bc 1677 page->mapping = NULL;
d6995da3
MK
1678 restore_reserve = HPageRestoreReserve(page);
1679 ClearHPageRestoreReserve(page);
27a85ef1 1680
1c5ecae3 1681 /*
d6995da3 1682 * If HPageRestoreReserve was set on page, page allocation consumed a
0919e1b6
MK
1683 * reservation. If the page was associated with a subpool, there
1684 * would have been a page reserved in the subpool before allocation
1685 * via hugepage_subpool_get_pages(). Since we are 'restoring' the
6c26d310 1686 * reservation, do not call hugepage_subpool_put_pages() as this will
0919e1b6 1687 * remove the reserved page from the subpool.
1c5ecae3 1688 */
0919e1b6
MK
1689 if (!restore_reserve) {
1690 /*
1691 * A return code of zero implies that the subpool will be
1692 * under its minimum size if the reservation is not restored
1693 * after page is free. Therefore, force restore_reserve
1694 * operation.
1695 */
1696 if (hugepage_subpool_put_pages(spool, 1) == 0)
1697 restore_reserve = true;
1698 }
1c5ecae3 1699
db71ef79 1700 spin_lock_irqsave(&hugetlb_lock, flags);
8f251a3d 1701 ClearHPageMigratable(page);
6d76dcf4
AK
1702 hugetlb_cgroup_uncharge_page(hstate_index(h),
1703 pages_per_huge_page(h), page);
08cf9faf
MA
1704 hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
1705 pages_per_huge_page(h), page);
07443a85
JK
1706 if (restore_reserve)
1707 h->resv_huge_pages++;
1708
9157c311 1709 if (HPageTemporary(page)) {
6eb4e88a 1710 remove_hugetlb_page(h, page, false);
db71ef79 1711 spin_unlock_irqrestore(&hugetlb_lock, flags);
b65d4adb 1712 update_and_free_page(h, page, true);
ab5ac90a 1713 } else if (h->surplus_huge_pages_node[nid]) {
0edaecfa 1714 /* remove the page from active list */
6eb4e88a 1715 remove_hugetlb_page(h, page, true);
db71ef79 1716 spin_unlock_irqrestore(&hugetlb_lock, flags);
b65d4adb 1717 update_and_free_page(h, page, true);
7893d1d5 1718 } else {
5d3a551c 1719 arch_clear_hugepage_flags(page);
a5516438 1720 enqueue_huge_page(h, page);
db71ef79 1721 spin_unlock_irqrestore(&hugetlb_lock, flags);
c77c0a8a 1722 }
c77c0a8a
WL
1723}
1724
d3d99fcc
OS
1725/*
1726 * Must be called with the hugetlb lock held
1727 */
1728static void __prep_account_new_huge_page(struct hstate *h, int nid)
1729{
1730 lockdep_assert_held(&hugetlb_lock);
1731 h->nr_huge_pages++;
1732 h->nr_huge_pages_node[nid]++;
1733}
1734
f41f2ed4 1735static void __prep_new_huge_page(struct hstate *h, struct page *page)
b7ba30c6 1736{
5981611d 1737 hugetlb_vmemmap_free(h, page);
0edaecfa 1738 INIT_LIST_HEAD(&page->lru);
f1e61557 1739 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
ff546117 1740 hugetlb_set_page_subpool(page, NULL);
9dd540e2 1741 set_hugetlb_cgroup(page, NULL);
1adc4d41 1742 set_hugetlb_cgroup_rsvd(page, NULL);
d3d99fcc
OS
1743}
1744
1745static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1746{
f41f2ed4 1747 __prep_new_huge_page(h, page);
db71ef79 1748 spin_lock_irq(&hugetlb_lock);
d3d99fcc 1749 __prep_account_new_huge_page(h, nid);
db71ef79 1750 spin_unlock_irq(&hugetlb_lock);
b7ba30c6
AK
1751}
1752
34d9e35b
MK
1753static bool __prep_compound_gigantic_page(struct page *page, unsigned int order,
1754 bool demote)
20a0307c 1755{
7118fc29 1756 int i, j;
20a0307c
WF
1757 int nr_pages = 1 << order;
1758 struct page *p = page + 1;
1759
1760 /* we rely on prep_new_huge_page to set the destructor */
1761 set_compound_order(page, order);
ef5a22be 1762 __ClearPageReserved(page);
de09d31d 1763 __SetPageHead(page);
20a0307c 1764 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
ef5a22be
AA
1765 /*
1766 * For gigantic hugepages allocated through bootmem at
1767 * boot, it's safer to be consistent with the not-gigantic
1768 * hugepages and clear the PG_reserved bit from all tail pages
7c8de358 1769 * too. Otherwise drivers using get_user_pages() to access tail
ef5a22be
AA
1770 * pages may get the reference counting wrong if they see
1771 * PG_reserved set on a tail page (despite the head page not
1772 * having PG_reserved set). Enforcing this consistency between
1773 * head and tail pages allows drivers to optimize away a check
1774 * on the head page when they need know if put_page() is needed
1775 * after get_user_pages().
1776 */
1777 __ClearPageReserved(p);
7118fc29
MK
1778 /*
1779 * Subtle and very unlikely
1780 *
1781 * Gigantic 'page allocators' such as memblock or cma will
1782 * return a set of pages with each page ref counted. We need
1783 * to turn this set of pages into a compound page with tail
1784 * page ref counts set to zero. Code such as speculative page
1785 * cache adding could take a ref on a 'to be' tail page.
1786 * We need to respect any increased ref count, and only set
1787 * the ref count to zero if count is currently 1. If count
416d85ed
MK
1788 * is not 1, we return an error. An error return indicates
1789 * the set of pages can not be converted to a gigantic page.
1790 * The caller who allocated the pages should then discard the
1791 * pages using the appropriate free interface.
34d9e35b
MK
1792 *
1793 * In the case of demote, the ref count will be zero.
7118fc29 1794 */
34d9e35b
MK
1795 if (!demote) {
1796 if (!page_ref_freeze(p, 1)) {
1797 pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n");
1798 goto out_error;
1799 }
1800 } else {
1801 VM_BUG_ON_PAGE(page_count(p), p);
7118fc29 1802 }
1d798ca3 1803 set_compound_head(p, page);
20a0307c 1804 }
b4330afb 1805 atomic_set(compound_mapcount_ptr(page), -1);
5291c09b 1806 atomic_set(compound_pincount_ptr(page), 0);
7118fc29
MK
1807 return true;
1808
1809out_error:
1810 /* undo tail page modifications made above */
1811 p = page + 1;
1812 for (j = 1; j < i; j++, p = mem_map_next(p, page, j)) {
1813 clear_compound_head(p);
1814 set_page_refcounted(p);
1815 }
1816 /* need to clear PG_reserved on remaining tail pages */
1817 for (; j < nr_pages; j++, p = mem_map_next(p, page, j))
1818 __ClearPageReserved(p);
1819 set_compound_order(page, 0);
5232c63f 1820#ifdef CONFIG_64BIT
7118fc29 1821 page[1].compound_nr = 0;
5232c63f 1822#endif
7118fc29
MK
1823 __ClearPageHead(page);
1824 return false;
20a0307c
WF
1825}
1826
34d9e35b
MK
1827static bool prep_compound_gigantic_page(struct page *page, unsigned int order)
1828{
1829 return __prep_compound_gigantic_page(page, order, false);
1830}
1831
8531fc6f
MK
1832static bool prep_compound_gigantic_page_for_demote(struct page *page,
1833 unsigned int order)
1834{
1835 return __prep_compound_gigantic_page(page, order, true);
1836}
1837
7795912c
AM
1838/*
1839 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1840 * transparent huge pages. See the PageTransHuge() documentation for more
1841 * details.
1842 */
20a0307c
WF
1843int PageHuge(struct page *page)
1844{
20a0307c
WF
1845 if (!PageCompound(page))
1846 return 0;
1847
1848 page = compound_head(page);
f1e61557 1849 return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
20a0307c 1850}
43131e14
NH
1851EXPORT_SYMBOL_GPL(PageHuge);
1852
27c73ae7
AA
1853/*
1854 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1855 * normal or transparent huge pages.
1856 */
1857int PageHeadHuge(struct page *page_head)
1858{
27c73ae7
AA
1859 if (!PageHead(page_head))
1860 return 0;
1861
d4af73e3 1862 return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR;
27c73ae7 1863}
4e936ecc 1864EXPORT_SYMBOL_GPL(PageHeadHuge);
27c73ae7 1865
c0d0381a
MK
1866/*
1867 * Find and lock address space (mapping) in write mode.
1868 *
336bf30e
MK
1869 * Upon entry, the page is locked which means that page_mapping() is
1870 * stable. Due to locking order, we can only trylock_write. If we can
1871 * not get the lock, simply return NULL to caller.
c0d0381a
MK
1872 */
1873struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
1874{
336bf30e 1875 struct address_space *mapping = page_mapping(hpage);
c0d0381a 1876
c0d0381a
MK
1877 if (!mapping)
1878 return mapping;
1879
c0d0381a
MK
1880 if (i_mmap_trylock_write(mapping))
1881 return mapping;
1882
336bf30e 1883 return NULL;
c0d0381a
MK
1884}
1885
fe19bd3d 1886pgoff_t hugetlb_basepage_index(struct page *page)
13d60f4b
ZY
1887{
1888 struct page *page_head = compound_head(page);
1889 pgoff_t index = page_index(page_head);
1890 unsigned long compound_idx;
1891
13d60f4b
ZY
1892 if (compound_order(page_head) >= MAX_ORDER)
1893 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1894 else
1895 compound_idx = page - page_head;
1896
1897 return (index << compound_order(page_head)) + compound_idx;
1898}
1899
0c397dae 1900static struct page *alloc_buddy_huge_page(struct hstate *h,
f60858f9
MK
1901 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1902 nodemask_t *node_alloc_noretry)
1da177e4 1903{
af0fb9df 1904 int order = huge_page_order(h);
1da177e4 1905 struct page *page;
f60858f9 1906 bool alloc_try_hard = true;
f96efd58 1907
f60858f9
MK
1908 /*
1909 * By default we always try hard to allocate the page with
1910 * __GFP_RETRY_MAYFAIL flag. However, if we are allocating pages in
1911 * a loop (to adjust global huge page counts) and previous allocation
1912 * failed, do not continue to try hard on the same node. Use the
1913 * node_alloc_noretry bitmap to manage this state information.
1914 */
1915 if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1916 alloc_try_hard = false;
1917 gfp_mask |= __GFP_COMP|__GFP_NOWARN;
1918 if (alloc_try_hard)
1919 gfp_mask |= __GFP_RETRY_MAYFAIL;
af0fb9df
MH
1920 if (nid == NUMA_NO_NODE)
1921 nid = numa_mem_id();
84172f4b 1922 page = __alloc_pages(gfp_mask, order, nid, nmask);
af0fb9df
MH
1923 if (page)
1924 __count_vm_event(HTLB_BUDDY_PGALLOC);
1925 else
1926 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
63b4613c 1927
f60858f9
MK
1928 /*
1929 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
1930 * indicates an overall state change. Clear bit so that we resume
1931 * normal 'try hard' allocations.
1932 */
1933 if (node_alloc_noretry && page && !alloc_try_hard)
1934 node_clear(nid, *node_alloc_noretry);
1935
1936 /*
1937 * If we tried hard to get a page but failed, set bit so that
1938 * subsequent attempts will not try as hard until there is an
1939 * overall state change.
1940 */
1941 if (node_alloc_noretry && !page && alloc_try_hard)
1942 node_set(nid, *node_alloc_noretry);
1943
63b4613c
NA
1944 return page;
1945}
1946
0c397dae
MH
1947/*
1948 * Common helper to allocate a fresh hugetlb page. All specific allocators
1949 * should use this function to get new hugetlb pages
1950 */
1951static struct page *alloc_fresh_huge_page(struct hstate *h,
f60858f9
MK
1952 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1953 nodemask_t *node_alloc_noretry)
0c397dae
MH
1954{
1955 struct page *page;
7118fc29 1956 bool retry = false;
0c397dae 1957
7118fc29 1958retry:
0c397dae
MH
1959 if (hstate_is_gigantic(h))
1960 page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1961 else
1962 page = alloc_buddy_huge_page(h, gfp_mask,
f60858f9 1963 nid, nmask, node_alloc_noretry);
0c397dae
MH
1964 if (!page)
1965 return NULL;
1966
7118fc29
MK
1967 if (hstate_is_gigantic(h)) {
1968 if (!prep_compound_gigantic_page(page, huge_page_order(h))) {
1969 /*
1970 * Rare failure to convert pages to compound page.
1971 * Free pages and try again - ONCE!
1972 */
1973 free_gigantic_page(page, huge_page_order(h));
1974 if (!retry) {
1975 retry = true;
1976 goto retry;
1977 }
7118fc29
MK
1978 return NULL;
1979 }
1980 }
0c397dae
MH
1981 prep_new_huge_page(h, page, page_to_nid(page));
1982
1983 return page;
1984}
1985
af0fb9df
MH
1986/*
1987 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1988 * manner.
1989 */
f60858f9
MK
1990static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1991 nodemask_t *node_alloc_noretry)
b2261026
JK
1992{
1993 struct page *page;
1994 int nr_nodes, node;
af0fb9df 1995 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
b2261026
JK
1996
1997 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
f60858f9
MK
1998 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
1999 node_alloc_noretry);
af0fb9df 2000 if (page)
b2261026 2001 break;
b2261026
JK
2002 }
2003
af0fb9df
MH
2004 if (!page)
2005 return 0;
b2261026 2006
af0fb9df
MH
2007 put_page(page); /* free it into the hugepage allocator */
2008
2009 return 1;
b2261026
JK
2010}
2011
e8c5c824 2012/*
10c6ec49
MK
2013 * Remove huge page from pool from next node to free. Attempt to keep
2014 * persistent huge pages more or less balanced over allowed nodes.
2015 * This routine only 'removes' the hugetlb page. The caller must make
2016 * an additional call to free the page to low level allocators.
e8c5c824
LS
2017 * Called with hugetlb_lock locked.
2018 */
10c6ec49
MK
2019static struct page *remove_pool_huge_page(struct hstate *h,
2020 nodemask_t *nodes_allowed,
2021 bool acct_surplus)
e8c5c824 2022{
b2261026 2023 int nr_nodes, node;
10c6ec49 2024 struct page *page = NULL;
e8c5c824 2025
9487ca60 2026 lockdep_assert_held(&hugetlb_lock);
b2261026 2027 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
685f3457
LS
2028 /*
2029 * If we're returning unused surplus pages, only examine
2030 * nodes with surplus pages.
2031 */
b2261026
JK
2032 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
2033 !list_empty(&h->hugepage_freelists[node])) {
10c6ec49 2034 page = list_entry(h->hugepage_freelists[node].next,
e8c5c824 2035 struct page, lru);
6eb4e88a 2036 remove_hugetlb_page(h, page, acct_surplus);
9a76db09 2037 break;
e8c5c824 2038 }
b2261026 2039 }
e8c5c824 2040
10c6ec49 2041 return page;
e8c5c824
LS
2042}
2043
c8721bbb
NH
2044/*
2045 * Dissolve a given free hugepage into free buddy pages. This function does
faf53def
NH
2046 * nothing for in-use hugepages and non-hugepages.
2047 * This function returns values like below:
2048 *
ad2fa371
MS
2049 * -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages
2050 * when the system is under memory pressure and the feature of
2051 * freeing unused vmemmap pages associated with each hugetlb page
2052 * is enabled.
2053 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
2054 * (allocated or reserved.)
2055 * 0: successfully dissolved free hugepages or the page is not a
2056 * hugepage (considered as already dissolved)
c8721bbb 2057 */
c3114a84 2058int dissolve_free_huge_page(struct page *page)
c8721bbb 2059{
6bc9b564 2060 int rc = -EBUSY;
082d5b6b 2061
7ffddd49 2062retry:
faf53def
NH
2063 /* Not to disrupt normal path by vainly holding hugetlb_lock */
2064 if (!PageHuge(page))
2065 return 0;
2066
db71ef79 2067 spin_lock_irq(&hugetlb_lock);
faf53def
NH
2068 if (!PageHuge(page)) {
2069 rc = 0;
2070 goto out;
2071 }
2072
2073 if (!page_count(page)) {
2247bb33
GS
2074 struct page *head = compound_head(page);
2075 struct hstate *h = page_hstate(head);
6bc9b564 2076 if (h->free_huge_pages - h->resv_huge_pages == 0)
082d5b6b 2077 goto out;
7ffddd49
MS
2078
2079 /*
2080 * We should make sure that the page is already on the free list
2081 * when it is dissolved.
2082 */
6c037149 2083 if (unlikely(!HPageFreed(head))) {
db71ef79 2084 spin_unlock_irq(&hugetlb_lock);
7ffddd49
MS
2085 cond_resched();
2086
2087 /*
2088 * Theoretically, we should return -EBUSY when we
2089 * encounter this race. In fact, we have a chance
2090 * to successfully dissolve the page if we do a
2091 * retry. Because the race window is quite small.
2092 * If we seize this opportunity, it is an optimization
2093 * for increasing the success rate of dissolving page.
2094 */
2095 goto retry;
2096 }
2097
0c5da357 2098 remove_hugetlb_page(h, head, false);
c1470b33 2099 h->max_huge_pages--;
db71ef79 2100 spin_unlock_irq(&hugetlb_lock);
ad2fa371
MS
2101
2102 /*
2103 * Normally update_and_free_page will allocate required vmemmmap
2104 * before freeing the page. update_and_free_page will fail to
2105 * free the page if it can not allocate required vmemmap. We
2106 * need to adjust max_huge_pages if the page is not freed.
2107 * Attempt to allocate vmemmmap here so that we can take
2108 * appropriate action on failure.
2109 */
5981611d 2110 rc = hugetlb_vmemmap_alloc(h, head);
ad2fa371
MS
2111 if (!rc) {
2112 /*
2113 * Move PageHWPoison flag from head page to the raw
2114 * error page, which makes any subpages rather than
2115 * the error page reusable.
2116 */
2117 if (PageHWPoison(head) && page != head) {
2118 SetPageHWPoison(page);
2119 ClearPageHWPoison(head);
2120 }
2121 update_and_free_page(h, head, false);
2122 } else {
2123 spin_lock_irq(&hugetlb_lock);
2124 add_hugetlb_page(h, head, false);
2125 h->max_huge_pages++;
2126 spin_unlock_irq(&hugetlb_lock);
2127 }
2128
2129 return rc;
c8721bbb 2130 }
082d5b6b 2131out:
db71ef79 2132 spin_unlock_irq(&hugetlb_lock);
082d5b6b 2133 return rc;
c8721bbb
NH
2134}
2135
2136/*
2137 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
2138 * make specified memory blocks removable from the system.
2247bb33
GS
2139 * Note that this will dissolve a free gigantic hugepage completely, if any
2140 * part of it lies within the given range.
082d5b6b
GS
2141 * Also note that if dissolve_free_huge_page() returns with an error, all
2142 * free hugepages that were dissolved before that error are lost.
c8721bbb 2143 */
082d5b6b 2144int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
c8721bbb 2145{
c8721bbb 2146 unsigned long pfn;
eb03aa00 2147 struct page *page;
082d5b6b 2148 int rc = 0;
dc2628f3
MS
2149 unsigned int order;
2150 struct hstate *h;
c8721bbb 2151
d0177639 2152 if (!hugepages_supported())
082d5b6b 2153 return rc;
d0177639 2154
dc2628f3
MS
2155 order = huge_page_order(&default_hstate);
2156 for_each_hstate(h)
2157 order = min(order, huge_page_order(h));
2158
2159 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) {
eb03aa00 2160 page = pfn_to_page(pfn);
faf53def
NH
2161 rc = dissolve_free_huge_page(page);
2162 if (rc)
2163 break;
eb03aa00 2164 }
082d5b6b
GS
2165
2166 return rc;
c8721bbb
NH
2167}
2168
ab5ac90a
MH
2169/*
2170 * Allocates a fresh surplus page from the page allocator.
2171 */
0c397dae 2172static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
b65a4eda 2173 int nid, nodemask_t *nmask, bool zero_ref)
7893d1d5 2174{
9980d744 2175 struct page *page = NULL;
b65a4eda 2176 bool retry = false;
7893d1d5 2177
bae7f4ae 2178 if (hstate_is_gigantic(h))
aa888a74
AK
2179 return NULL;
2180
db71ef79 2181 spin_lock_irq(&hugetlb_lock);
9980d744
MH
2182 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
2183 goto out_unlock;
db71ef79 2184 spin_unlock_irq(&hugetlb_lock);
d1c3fb1f 2185
b65a4eda 2186retry:
f60858f9 2187 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
9980d744 2188 if (!page)
0c397dae 2189 return NULL;
d1c3fb1f 2190
db71ef79 2191 spin_lock_irq(&hugetlb_lock);
9980d744
MH
2192 /*
2193 * We could have raced with the pool size change.
2194 * Double check that and simply deallocate the new page
2195 * if we would end up overcommiting the surpluses. Abuse
2196 * temporary page to workaround the nasty free_huge_page
2197 * codeflow
2198 */
2199 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
9157c311 2200 SetHPageTemporary(page);
db71ef79 2201 spin_unlock_irq(&hugetlb_lock);
9980d744 2202 put_page(page);
2bf753e6 2203 return NULL;
7893d1d5 2204 }
9980d744 2205
b65a4eda
MK
2206 if (zero_ref) {
2207 /*
2208 * Caller requires a page with zero ref count.
2209 * We will drop ref count here. If someone else is holding
2210 * a ref, the page will be freed when they drop it. Abuse
2211 * temporary page flag to accomplish this.
2212 */
2213 SetHPageTemporary(page);
2214 if (!put_page_testzero(page)) {
2215 /*
2216 * Unexpected inflated ref count on freshly allocated
2217 * huge. Retry once.
2218 */
2219 pr_info("HugeTLB unexpected inflated ref count on freshly allocated page\n");
2220 spin_unlock_irq(&hugetlb_lock);
2221 if (retry)
2222 return NULL;
2223
2224 retry = true;
2225 goto retry;
2226 }
2227 ClearHPageTemporary(page);
2228 }
2229
2230 h->surplus_huge_pages++;
2231 h->surplus_huge_pages_node[page_to_nid(page)]++;
2232
9980d744 2233out_unlock:
db71ef79 2234 spin_unlock_irq(&hugetlb_lock);
7893d1d5
AL
2235
2236 return page;
2237}
2238
bbe88753 2239static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
9a4e9f3b 2240 int nid, nodemask_t *nmask)
ab5ac90a
MH
2241{
2242 struct page *page;
2243
2244 if (hstate_is_gigantic(h))
2245 return NULL;
2246
f60858f9 2247 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
ab5ac90a
MH
2248 if (!page)
2249 return NULL;
2250
2251 /*
2252 * We do not account these pages as surplus because they are only
2253 * temporary and will be released properly on the last reference
2254 */
9157c311 2255 SetHPageTemporary(page);
ab5ac90a
MH
2256
2257 return page;
2258}
2259
099730d6
DH
2260/*
2261 * Use the VMA's mpolicy to allocate a huge page from the buddy.
2262 */
e0ec90ee 2263static
0c397dae 2264struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
099730d6
DH
2265 struct vm_area_struct *vma, unsigned long addr)
2266{
cfcaa66f 2267 struct page *page = NULL;
aaf14e40
MH
2268 struct mempolicy *mpol;
2269 gfp_t gfp_mask = htlb_alloc_mask(h);
2270 int nid;
2271 nodemask_t *nodemask;
2272
2273 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
cfcaa66f
BW
2274 if (mpol_is_preferred_many(mpol)) {
2275 gfp_t gfp = gfp_mask | __GFP_NOWARN;
2276
2277 gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2278 page = alloc_surplus_huge_page(h, gfp, nid, nodemask, false);
aaf14e40 2279
cfcaa66f
BW
2280 /* Fallback to all nodes if page==NULL */
2281 nodemask = NULL;
2282 }
2283
2284 if (!page)
2285 page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask, false);
2286 mpol_cond_put(mpol);
aaf14e40 2287 return page;
099730d6
DH
2288}
2289
ab5ac90a 2290/* page migration callback function */
3e59fcb0 2291struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
d92bbc27 2292 nodemask_t *nmask, gfp_t gfp_mask)
4db9b2ef 2293{
db71ef79 2294 spin_lock_irq(&hugetlb_lock);
4db9b2ef 2295 if (h->free_huge_pages - h->resv_huge_pages > 0) {
3e59fcb0
MH
2296 struct page *page;
2297
2298 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
2299 if (page) {
db71ef79 2300 spin_unlock_irq(&hugetlb_lock);
3e59fcb0 2301 return page;
4db9b2ef
MH
2302 }
2303 }
db71ef79 2304 spin_unlock_irq(&hugetlb_lock);
4db9b2ef 2305
0c397dae 2306 return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
4db9b2ef
MH
2307}
2308
ebd63723 2309/* mempolicy aware migration callback */
389c8178
MH
2310struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
2311 unsigned long address)
ebd63723
MH
2312{
2313 struct mempolicy *mpol;
2314 nodemask_t *nodemask;
2315 struct page *page;
ebd63723
MH
2316 gfp_t gfp_mask;
2317 int node;
2318
ebd63723
MH
2319 gfp_mask = htlb_alloc_mask(h);
2320 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
d92bbc27 2321 page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask);
ebd63723
MH
2322 mpol_cond_put(mpol);
2323
2324 return page;
2325}
2326
e4e574b7 2327/*
25985edc 2328 * Increase the hugetlb pool such that it can accommodate a reservation
e4e574b7
AL
2329 * of size 'delta'.
2330 */
0a4f3d1b 2331static int gather_surplus_pages(struct hstate *h, long delta)
1b2a1e7b 2332 __must_hold(&hugetlb_lock)
e4e574b7
AL
2333{
2334 struct list_head surplus_list;
2335 struct page *page, *tmp;
0a4f3d1b
LX
2336 int ret;
2337 long i;
2338 long needed, allocated;
28073b02 2339 bool alloc_ok = true;
e4e574b7 2340
9487ca60 2341 lockdep_assert_held(&hugetlb_lock);
a5516438 2342 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
ac09b3a1 2343 if (needed <= 0) {
a5516438 2344 h->resv_huge_pages += delta;
e4e574b7 2345 return 0;
ac09b3a1 2346 }
e4e574b7
AL
2347
2348 allocated = 0;
2349 INIT_LIST_HEAD(&surplus_list);
2350
2351 ret = -ENOMEM;
2352retry:
db71ef79 2353 spin_unlock_irq(&hugetlb_lock);
e4e574b7 2354 for (i = 0; i < needed; i++) {
0c397dae 2355 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
b65a4eda 2356 NUMA_NO_NODE, NULL, true);
28073b02
HD
2357 if (!page) {
2358 alloc_ok = false;
2359 break;
2360 }
e4e574b7 2361 list_add(&page->lru, &surplus_list);
69ed779a 2362 cond_resched();
e4e574b7 2363 }
28073b02 2364 allocated += i;
e4e574b7
AL
2365
2366 /*
2367 * After retaking hugetlb_lock, we need to recalculate 'needed'
2368 * because either resv_huge_pages or free_huge_pages may have changed.
2369 */
db71ef79 2370 spin_lock_irq(&hugetlb_lock);
a5516438
AK
2371 needed = (h->resv_huge_pages + delta) -
2372 (h->free_huge_pages + allocated);
28073b02
HD
2373 if (needed > 0) {
2374 if (alloc_ok)
2375 goto retry;
2376 /*
2377 * We were not able to allocate enough pages to
2378 * satisfy the entire reservation so we free what
2379 * we've allocated so far.
2380 */
2381 goto free;
2382 }
e4e574b7
AL
2383 /*
2384 * The surplus_list now contains _at_least_ the number of extra pages
25985edc 2385 * needed to accommodate the reservation. Add the appropriate number
e4e574b7 2386 * of pages to the hugetlb pool and free the extras back to the buddy
ac09b3a1
AL
2387 * allocator. Commit the entire reservation here to prevent another
2388 * process from stealing the pages as they are added to the pool but
2389 * before they are reserved.
e4e574b7
AL
2390 */
2391 needed += allocated;
a5516438 2392 h->resv_huge_pages += delta;
e4e574b7 2393 ret = 0;
a9869b83 2394
19fc3f0a 2395 /* Free the needed pages to the hugetlb pool */
e4e574b7 2396 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
19fc3f0a
AL
2397 if ((--needed) < 0)
2398 break;
b65a4eda 2399 /* Add the page to the hugetlb allocator */
a5516438 2400 enqueue_huge_page(h, page);
19fc3f0a 2401 }
28073b02 2402free:
db71ef79 2403 spin_unlock_irq(&hugetlb_lock);
19fc3f0a 2404
b65a4eda
MK
2405 /*
2406 * Free unnecessary surplus pages to the buddy allocator.
2407 * Pages have no ref count, call free_huge_page directly.
2408 */
c0d934ba 2409 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
b65a4eda 2410 free_huge_page(page);
db71ef79 2411 spin_lock_irq(&hugetlb_lock);
e4e574b7
AL
2412
2413 return ret;
2414}
2415
2416/*
e5bbc8a6
MK
2417 * This routine has two main purposes:
2418 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2419 * in unused_resv_pages. This corresponds to the prior adjustments made
2420 * to the associated reservation map.
2421 * 2) Free any unused surplus pages that may have been allocated to satisfy
2422 * the reservation. As many as unused_resv_pages may be freed.
e4e574b7 2423 */
a5516438
AK
2424static void return_unused_surplus_pages(struct hstate *h,
2425 unsigned long unused_resv_pages)
e4e574b7 2426{
e4e574b7 2427 unsigned long nr_pages;
10c6ec49
MK
2428 struct page *page;
2429 LIST_HEAD(page_list);
2430
9487ca60 2431 lockdep_assert_held(&hugetlb_lock);
10c6ec49
MK
2432 /* Uncommit the reservation */
2433 h->resv_huge_pages -= unused_resv_pages;
e4e574b7 2434
aa888a74 2435 /* Cannot return gigantic pages currently */
bae7f4ae 2436 if (hstate_is_gigantic(h))
e5bbc8a6 2437 goto out;
aa888a74 2438
e5bbc8a6
MK
2439 /*
2440 * Part (or even all) of the reservation could have been backed
2441 * by pre-allocated pages. Only free surplus pages.
2442 */
a5516438 2443 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
e4e574b7 2444
685f3457
LS
2445 /*
2446 * We want to release as many surplus pages as possible, spread
9b5e5d0f
LS
2447 * evenly across all nodes with memory. Iterate across these nodes
2448 * until we can no longer free unreserved surplus pages. This occurs
2449 * when the nodes with surplus pages have no free pages.
10c6ec49 2450 * remove_pool_huge_page() will balance the freed pages across the
9b5e5d0f 2451 * on-line nodes with memory and will handle the hstate accounting.
685f3457
LS
2452 */
2453 while (nr_pages--) {
10c6ec49
MK
2454 page = remove_pool_huge_page(h, &node_states[N_MEMORY], 1);
2455 if (!page)
e5bbc8a6 2456 goto out;
10c6ec49
MK
2457
2458 list_add(&page->lru, &page_list);
e4e574b7 2459 }
e5bbc8a6
MK
2460
2461out:
db71ef79 2462 spin_unlock_irq(&hugetlb_lock);
10c6ec49 2463 update_and_free_pages_bulk(h, &page_list);
db71ef79 2464 spin_lock_irq(&hugetlb_lock);
e4e574b7
AL
2465}
2466
5e911373 2467
c37f9fb1 2468/*
feba16e2 2469 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
5e911373 2470 * are used by the huge page allocation routines to manage reservations.
cf3ad20b
MK
2471 *
2472 * vma_needs_reservation is called to determine if the huge page at addr
2473 * within the vma has an associated reservation. If a reservation is
2474 * needed, the value 1 is returned. The caller is then responsible for
2475 * managing the global reservation and subpool usage counts. After
2476 * the huge page has been allocated, vma_commit_reservation is called
feba16e2
MK
2477 * to add the page to the reservation map. If the page allocation fails,
2478 * the reservation must be ended instead of committed. vma_end_reservation
2479 * is called in such cases.
cf3ad20b
MK
2480 *
2481 * In the normal case, vma_commit_reservation returns the same value
2482 * as the preceding vma_needs_reservation call. The only time this
2483 * is not the case is if a reserve map was changed between calls. It
2484 * is the responsibility of the caller to notice the difference and
2485 * take appropriate action.
96b96a96
MK
2486 *
2487 * vma_add_reservation is used in error paths where a reservation must
2488 * be restored when a newly allocated huge page must be freed. It is
2489 * to be called after calling vma_needs_reservation to determine if a
2490 * reservation exists.
846be085
MK
2491 *
2492 * vma_del_reservation is used in error paths where an entry in the reserve
2493 * map was created during huge page allocation and must be removed. It is to
2494 * be called after calling vma_needs_reservation to determine if a reservation
2495 * exists.
c37f9fb1 2496 */
5e911373
MK
2497enum vma_resv_mode {
2498 VMA_NEEDS_RESV,
2499 VMA_COMMIT_RESV,
feba16e2 2500 VMA_END_RESV,
96b96a96 2501 VMA_ADD_RESV,
846be085 2502 VMA_DEL_RESV,
5e911373 2503};
cf3ad20b
MK
2504static long __vma_reservation_common(struct hstate *h,
2505 struct vm_area_struct *vma, unsigned long addr,
5e911373 2506 enum vma_resv_mode mode)
c37f9fb1 2507{
4e35f483
JK
2508 struct resv_map *resv;
2509 pgoff_t idx;
cf3ad20b 2510 long ret;
0db9d74e 2511 long dummy_out_regions_needed;
c37f9fb1 2512
4e35f483
JK
2513 resv = vma_resv_map(vma);
2514 if (!resv)
84afd99b 2515 return 1;
c37f9fb1 2516
4e35f483 2517 idx = vma_hugecache_offset(h, vma, addr);
5e911373
MK
2518 switch (mode) {
2519 case VMA_NEEDS_RESV:
0db9d74e
MA
2520 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2521 /* We assume that vma_reservation_* routines always operate on
2522 * 1 page, and that adding to resv map a 1 page entry can only
2523 * ever require 1 region.
2524 */
2525 VM_BUG_ON(dummy_out_regions_needed != 1);
5e911373
MK
2526 break;
2527 case VMA_COMMIT_RESV:
075a61d0 2528 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
0db9d74e
MA
2529 /* region_add calls of range 1 should never fail. */
2530 VM_BUG_ON(ret < 0);
5e911373 2531 break;
feba16e2 2532 case VMA_END_RESV:
0db9d74e 2533 region_abort(resv, idx, idx + 1, 1);
5e911373
MK
2534 ret = 0;
2535 break;
96b96a96 2536 case VMA_ADD_RESV:
0db9d74e 2537 if (vma->vm_flags & VM_MAYSHARE) {
075a61d0 2538 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
0db9d74e
MA
2539 /* region_add calls of range 1 should never fail. */
2540 VM_BUG_ON(ret < 0);
2541 } else {
2542 region_abort(resv, idx, idx + 1, 1);
96b96a96
MK
2543 ret = region_del(resv, idx, idx + 1);
2544 }
2545 break;
846be085
MK
2546 case VMA_DEL_RESV:
2547 if (vma->vm_flags & VM_MAYSHARE) {
2548 region_abort(resv, idx, idx + 1, 1);
2549 ret = region_del(resv, idx, idx + 1);
2550 } else {
2551 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2552 /* region_add calls of range 1 should never fail. */
2553 VM_BUG_ON(ret < 0);
2554 }
2555 break;
5e911373
MK
2556 default:
2557 BUG();
2558 }
84afd99b 2559
846be085 2560 if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV)
cf3ad20b 2561 return ret;
bf3d12b9
ML
2562 /*
2563 * We know private mapping must have HPAGE_RESV_OWNER set.
2564 *
2565 * In most cases, reserves always exist for private mappings.
2566 * However, a file associated with mapping could have been
2567 * hole punched or truncated after reserves were consumed.
2568 * As subsequent fault on such a range will not use reserves.
2569 * Subtle - The reserve map for private mappings has the
2570 * opposite meaning than that of shared mappings. If NO
2571 * entry is in the reserve map, it means a reservation exists.
2572 * If an entry exists in the reserve map, it means the
2573 * reservation has already been consumed. As a result, the
2574 * return value of this routine is the opposite of the
2575 * value returned from reserve map manipulation routines above.
2576 */
2577 if (ret > 0)
2578 return 0;
2579 if (ret == 0)
2580 return 1;
2581 return ret;
c37f9fb1 2582}
cf3ad20b
MK
2583
2584static long vma_needs_reservation(struct hstate *h,
a5516438 2585 struct vm_area_struct *vma, unsigned long addr)
c37f9fb1 2586{
5e911373 2587 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
cf3ad20b 2588}
84afd99b 2589
cf3ad20b
MK
2590static long vma_commit_reservation(struct hstate *h,
2591 struct vm_area_struct *vma, unsigned long addr)
2592{
5e911373
MK
2593 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2594}
2595
feba16e2 2596static void vma_end_reservation(struct hstate *h,
5e911373
MK
2597 struct vm_area_struct *vma, unsigned long addr)
2598{
feba16e2 2599 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
c37f9fb1
AW
2600}
2601
96b96a96
MK
2602static long vma_add_reservation(struct hstate *h,
2603 struct vm_area_struct *vma, unsigned long addr)
2604{
2605 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2606}
2607
846be085
MK
2608static long vma_del_reservation(struct hstate *h,
2609 struct vm_area_struct *vma, unsigned long addr)
2610{
2611 return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV);
2612}
2613
96b96a96 2614/*
846be085
MK
2615 * This routine is called to restore reservation information on error paths.
2616 * It should ONLY be called for pages allocated via alloc_huge_page(), and
2617 * the hugetlb mutex should remain held when calling this routine.
2618 *
2619 * It handles two specific cases:
2620 * 1) A reservation was in place and the page consumed the reservation.
2621 * HPageRestoreReserve is set in the page.
2622 * 2) No reservation was in place for the page, so HPageRestoreReserve is
2623 * not set. However, alloc_huge_page always updates the reserve map.
2624 *
2625 * In case 1, free_huge_page later in the error path will increment the
2626 * global reserve count. But, free_huge_page does not have enough context
2627 * to adjust the reservation map. This case deals primarily with private
2628 * mappings. Adjust the reserve map here to be consistent with global
2629 * reserve count adjustments to be made by free_huge_page. Make sure the
2630 * reserve map indicates there is a reservation present.
2631 *
2632 * In case 2, simply undo reserve map modifications done by alloc_huge_page.
96b96a96 2633 */
846be085
MK
2634void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
2635 unsigned long address, struct page *page)
96b96a96 2636{
846be085 2637 long rc = vma_needs_reservation(h, vma, address);
96b96a96 2638
846be085
MK
2639 if (HPageRestoreReserve(page)) {
2640 if (unlikely(rc < 0))
96b96a96
MK
2641 /*
2642 * Rare out of memory condition in reserve map
d6995da3 2643 * manipulation. Clear HPageRestoreReserve so that
96b96a96
MK
2644 * global reserve count will not be incremented
2645 * by free_huge_page. This will make it appear
2646 * as though the reservation for this page was
2647 * consumed. This may prevent the task from
2648 * faulting in the page at a later time. This
2649 * is better than inconsistent global huge page
2650 * accounting of reserve counts.
2651 */
d6995da3 2652 ClearHPageRestoreReserve(page);
846be085
MK
2653 else if (rc)
2654 (void)vma_add_reservation(h, vma, address);
2655 else
2656 vma_end_reservation(h, vma, address);
2657 } else {
2658 if (!rc) {
2659 /*
2660 * This indicates there is an entry in the reserve map
c7b1850d 2661 * not added by alloc_huge_page. We know it was added
846be085
MK
2662 * before the alloc_huge_page call, otherwise
2663 * HPageRestoreReserve would be set on the page.
2664 * Remove the entry so that a subsequent allocation
2665 * does not consume a reservation.
2666 */
2667 rc = vma_del_reservation(h, vma, address);
2668 if (rc < 0)
96b96a96 2669 /*
846be085
MK
2670 * VERY rare out of memory condition. Since
2671 * we can not delete the entry, set
2672 * HPageRestoreReserve so that the reserve
2673 * count will be incremented when the page
2674 * is freed. This reserve will be consumed
2675 * on a subsequent allocation.
96b96a96 2676 */
846be085
MK
2677 SetHPageRestoreReserve(page);
2678 } else if (rc < 0) {
2679 /*
2680 * Rare out of memory condition from
2681 * vma_needs_reservation call. Memory allocation is
2682 * only attempted if a new entry is needed. Therefore,
2683 * this implies there is not an entry in the
2684 * reserve map.
2685 *
2686 * For shared mappings, no entry in the map indicates
2687 * no reservation. We are done.
2688 */
2689 if (!(vma->vm_flags & VM_MAYSHARE))
2690 /*
2691 * For private mappings, no entry indicates
2692 * a reservation is present. Since we can
2693 * not add an entry, set SetHPageRestoreReserve
2694 * on the page so reserve count will be
2695 * incremented when freed. This reserve will
2696 * be consumed on a subsequent allocation.
2697 */
2698 SetHPageRestoreReserve(page);
96b96a96 2699 } else
846be085
MK
2700 /*
2701 * No reservation present, do nothing
2702 */
2703 vma_end_reservation(h, vma, address);
96b96a96
MK
2704 }
2705}
2706
369fa227
OS
2707/*
2708 * alloc_and_dissolve_huge_page - Allocate a new page and dissolve the old one
2709 * @h: struct hstate old page belongs to
2710 * @old_page: Old page to dissolve
ae37c7ff 2711 * @list: List to isolate the page in case we need to
369fa227
OS
2712 * Returns 0 on success, otherwise negated error.
2713 */
ae37c7ff
OS
2714static int alloc_and_dissolve_huge_page(struct hstate *h, struct page *old_page,
2715 struct list_head *list)
369fa227
OS
2716{
2717 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2718 int nid = page_to_nid(old_page);
b65a4eda 2719 bool alloc_retry = false;
369fa227
OS
2720 struct page *new_page;
2721 int ret = 0;
2722
2723 /*
2724 * Before dissolving the page, we need to allocate a new one for the
f41f2ed4
MS
2725 * pool to remain stable. Here, we allocate the page and 'prep' it
2726 * by doing everything but actually updating counters and adding to
2727 * the pool. This simplifies and let us do most of the processing
2728 * under the lock.
369fa227 2729 */
b65a4eda 2730alloc_retry:
369fa227
OS
2731 new_page = alloc_buddy_huge_page(h, gfp_mask, nid, NULL, NULL);
2732 if (!new_page)
2733 return -ENOMEM;
b65a4eda
MK
2734 /*
2735 * If all goes well, this page will be directly added to the free
2736 * list in the pool. For this the ref count needs to be zero.
2737 * Attempt to drop now, and retry once if needed. It is VERY
2738 * unlikely there is another ref on the page.
2739 *
2740 * If someone else has a reference to the page, it will be freed
2741 * when they drop their ref. Abuse temporary page flag to accomplish
2742 * this. Retry once if there is an inflated ref count.
2743 */
2744 SetHPageTemporary(new_page);
2745 if (!put_page_testzero(new_page)) {
2746 if (alloc_retry)
2747 return -EBUSY;
2748
2749 alloc_retry = true;
2750 goto alloc_retry;
2751 }
2752 ClearHPageTemporary(new_page);
2753
f41f2ed4 2754 __prep_new_huge_page(h, new_page);
369fa227
OS
2755
2756retry:
2757 spin_lock_irq(&hugetlb_lock);
2758 if (!PageHuge(old_page)) {
2759 /*
2760 * Freed from under us. Drop new_page too.
2761 */
2762 goto free_new;
2763 } else if (page_count(old_page)) {
2764 /*
ae37c7ff
OS
2765 * Someone has grabbed the page, try to isolate it here.
2766 * Fail with -EBUSY if not possible.
369fa227 2767 */
ae37c7ff 2768 spin_unlock_irq(&hugetlb_lock);
7ce82f4c 2769 ret = isolate_hugetlb(old_page, list);
ae37c7ff 2770 spin_lock_irq(&hugetlb_lock);
369fa227
OS
2771 goto free_new;
2772 } else if (!HPageFreed(old_page)) {
2773 /*
2774 * Page's refcount is 0 but it has not been enqueued in the
2775 * freelist yet. Race window is small, so we can succeed here if
2776 * we retry.
2777 */
2778 spin_unlock_irq(&hugetlb_lock);
2779 cond_resched();
2780 goto retry;
2781 } else {
2782 /*
2783 * Ok, old_page is still a genuine free hugepage. Remove it from
2784 * the freelist and decrease the counters. These will be
2785 * incremented again when calling __prep_account_new_huge_page()
2786 * and enqueue_huge_page() for new_page. The counters will remain
2787 * stable since this happens under the lock.
2788 */
2789 remove_hugetlb_page(h, old_page, false);
2790
2791 /*
b65a4eda
MK
2792 * Ref count on new page is already zero as it was dropped
2793 * earlier. It can be directly added to the pool free list.
369fa227 2794 */
369fa227 2795 __prep_account_new_huge_page(h, nid);
369fa227
OS
2796 enqueue_huge_page(h, new_page);
2797
2798 /*
2799 * Pages have been replaced, we can safely free the old one.
2800 */
2801 spin_unlock_irq(&hugetlb_lock);
b65d4adb 2802 update_and_free_page(h, old_page, false);
369fa227
OS
2803 }
2804
2805 return ret;
2806
2807free_new:
2808 spin_unlock_irq(&hugetlb_lock);
b65a4eda
MK
2809 /* Page has a zero ref count, but needs a ref to be freed */
2810 set_page_refcounted(new_page);
b65d4adb 2811 update_and_free_page(h, new_page, false);
369fa227
OS
2812
2813 return ret;
2814}
2815
ae37c7ff 2816int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list)
369fa227
OS
2817{
2818 struct hstate *h;
2819 struct page *head;
ae37c7ff 2820 int ret = -EBUSY;
369fa227
OS
2821
2822 /*
2823 * The page might have been dissolved from under our feet, so make sure
2824 * to carefully check the state under the lock.
2825 * Return success when racing as if we dissolved the page ourselves.
2826 */
2827 spin_lock_irq(&hugetlb_lock);
2828 if (PageHuge(page)) {
2829 head = compound_head(page);
2830 h = page_hstate(head);
2831 } else {
2832 spin_unlock_irq(&hugetlb_lock);
2833 return 0;
2834 }
2835 spin_unlock_irq(&hugetlb_lock);
2836
2837 /*
2838 * Fence off gigantic pages as there is a cyclic dependency between
2839 * alloc_contig_range and them. Return -ENOMEM as this has the effect
2840 * of bailing out right away without further retrying.
2841 */
2842 if (hstate_is_gigantic(h))
2843 return -ENOMEM;
2844
7ce82f4c 2845 if (page_count(head) && !isolate_hugetlb(head, list))
ae37c7ff
OS
2846 ret = 0;
2847 else if (!page_count(head))
2848 ret = alloc_and_dissolve_huge_page(h, head, list);
2849
2850 return ret;
369fa227
OS
2851}
2852
70c3547e 2853struct page *alloc_huge_page(struct vm_area_struct *vma,
04f2cbe3 2854 unsigned long addr, int avoid_reserve)
1da177e4 2855{
90481622 2856 struct hugepage_subpool *spool = subpool_vma(vma);
a5516438 2857 struct hstate *h = hstate_vma(vma);
348ea204 2858 struct page *page;
d85f69b0
MK
2859 long map_chg, map_commit;
2860 long gbl_chg;
6d76dcf4
AK
2861 int ret, idx;
2862 struct hugetlb_cgroup *h_cg;
08cf9faf 2863 bool deferred_reserve;
a1e78772 2864
6d76dcf4 2865 idx = hstate_index(h);
a1e78772 2866 /*
d85f69b0
MK
2867 * Examine the region/reserve map to determine if the process
2868 * has a reservation for the page to be allocated. A return
2869 * code of zero indicates a reservation exists (no change).
a1e78772 2870 */
d85f69b0
MK
2871 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2872 if (map_chg < 0)
76dcee75 2873 return ERR_PTR(-ENOMEM);
d85f69b0
MK
2874
2875 /*
2876 * Processes that did not create the mapping will have no
2877 * reserves as indicated by the region/reserve map. Check
2878 * that the allocation will not exceed the subpool limit.
2879 * Allocations for MAP_NORESERVE mappings also need to be
2880 * checked against any subpool limit.
2881 */
2882 if (map_chg || avoid_reserve) {
2883 gbl_chg = hugepage_subpool_get_pages(spool, 1);
2884 if (gbl_chg < 0) {
feba16e2 2885 vma_end_reservation(h, vma, addr);
76dcee75 2886 return ERR_PTR(-ENOSPC);
5e911373 2887 }
1da177e4 2888
d85f69b0
MK
2889 /*
2890 * Even though there was no reservation in the region/reserve
2891 * map, there could be reservations associated with the
2892 * subpool that can be used. This would be indicated if the
2893 * return value of hugepage_subpool_get_pages() is zero.
2894 * However, if avoid_reserve is specified we still avoid even
2895 * the subpool reservations.
2896 */
2897 if (avoid_reserve)
2898 gbl_chg = 1;
2899 }
2900
08cf9faf
MA
2901 /* If this allocation is not consuming a reservation, charge it now.
2902 */
6501fe5f 2903 deferred_reserve = map_chg || avoid_reserve;
08cf9faf
MA
2904 if (deferred_reserve) {
2905 ret = hugetlb_cgroup_charge_cgroup_rsvd(
2906 idx, pages_per_huge_page(h), &h_cg);
2907 if (ret)
2908 goto out_subpool_put;
2909 }
2910
6d76dcf4 2911 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
8f34af6f 2912 if (ret)
08cf9faf 2913 goto out_uncharge_cgroup_reservation;
8f34af6f 2914
db71ef79 2915 spin_lock_irq(&hugetlb_lock);
d85f69b0
MK
2916 /*
2917 * glb_chg is passed to indicate whether or not a page must be taken
2918 * from the global free pool (global change). gbl_chg == 0 indicates
2919 * a reservation exists for the allocation.
2920 */
2921 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
81a6fcae 2922 if (!page) {
db71ef79 2923 spin_unlock_irq(&hugetlb_lock);
0c397dae 2924 page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
8f34af6f
JZ
2925 if (!page)
2926 goto out_uncharge_cgroup;
a88c7695 2927 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
d6995da3 2928 SetHPageRestoreReserve(page);
a88c7695
NH
2929 h->resv_huge_pages--;
2930 }
db71ef79 2931 spin_lock_irq(&hugetlb_lock);
15a8d68e 2932 list_add(&page->lru, &h->hugepage_activelist);
81a6fcae 2933 /* Fall through */
68842c9b 2934 }
81a6fcae 2935 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
08cf9faf
MA
2936 /* If allocation is not consuming a reservation, also store the
2937 * hugetlb_cgroup pointer on the page.
2938 */
2939 if (deferred_reserve) {
2940 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
2941 h_cg, page);
2942 }
2943
db71ef79 2944 spin_unlock_irq(&hugetlb_lock);
348ea204 2945
d6995da3 2946 hugetlb_set_page_subpool(page, spool);
90d8b7e6 2947
d85f69b0
MK
2948 map_commit = vma_commit_reservation(h, vma, addr);
2949 if (unlikely(map_chg > map_commit)) {
33039678
MK
2950 /*
2951 * The page was added to the reservation map between
2952 * vma_needs_reservation and vma_commit_reservation.
2953 * This indicates a race with hugetlb_reserve_pages.
2954 * Adjust for the subpool count incremented above AND
2955 * in hugetlb_reserve_pages for the same page. Also,
2956 * the reservation count added in hugetlb_reserve_pages
2957 * no longer applies.
2958 */
2959 long rsv_adjust;
2960
2961 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2962 hugetlb_acct_memory(h, -rsv_adjust);
79aa925b
MK
2963 if (deferred_reserve)
2964 hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
2965 pages_per_huge_page(h), page);
33039678 2966 }
90d8b7e6 2967 return page;
8f34af6f
JZ
2968
2969out_uncharge_cgroup:
2970 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
08cf9faf
MA
2971out_uncharge_cgroup_reservation:
2972 if (deferred_reserve)
2973 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
2974 h_cg);
8f34af6f 2975out_subpool_put:
d85f69b0 2976 if (map_chg || avoid_reserve)
8f34af6f 2977 hugepage_subpool_put_pages(spool, 1);
feba16e2 2978 vma_end_reservation(h, vma, addr);
8f34af6f 2979 return ERR_PTR(-ENOSPC);
b45b5bd6
DG
2980}
2981
b5389086 2982int alloc_bootmem_huge_page(struct hstate *h, int nid)
e24a1307 2983 __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
b5389086 2984int __alloc_bootmem_huge_page(struct hstate *h, int nid)
aa888a74 2985{
b5389086 2986 struct huge_bootmem_page *m = NULL; /* initialize for clang */
b2261026 2987 int nr_nodes, node;
aa888a74 2988
b5389086
ZY
2989 /* do node specific alloc */
2990 if (nid != NUMA_NO_NODE) {
2991 m = memblock_alloc_try_nid_raw(huge_page_size(h), huge_page_size(h),
2992 0, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
2993 if (!m)
2994 return 0;
2995 goto found;
2996 }
2997 /* allocate from next node when distributing huge pages */
b2261026 2998 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
b5389086 2999 m = memblock_alloc_try_nid_raw(
8b89a116 3000 huge_page_size(h), huge_page_size(h),
97ad1087 3001 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
b5389086
ZY
3002 /*
3003 * Use the beginning of the huge page to store the
3004 * huge_bootmem_page struct (until gather_bootmem
3005 * puts them into the mem_map).
3006 */
3007 if (!m)
3008 return 0;
3009 goto found;
aa888a74 3010 }
aa888a74
AK
3011
3012found:
aa888a74 3013 /* Put them into a private list first because mem_map is not up yet */
330d6e48 3014 INIT_LIST_HEAD(&m->list);
aa888a74
AK
3015 list_add(&m->list, &huge_boot_pages);
3016 m->hstate = h;
3017 return 1;
3018}
3019
48b8d744
MK
3020/*
3021 * Put bootmem huge pages into the standard lists after mem_map is up.
3022 * Note: This only applies to gigantic (order > MAX_ORDER) pages.
3023 */
aa888a74
AK
3024static void __init gather_bootmem_prealloc(void)
3025{
3026 struct huge_bootmem_page *m;
3027
3028 list_for_each_entry(m, &huge_boot_pages, list) {
40d18ebf 3029 struct page *page = virt_to_page(m);
aa888a74 3030 struct hstate *h = m->hstate;
ee8f248d 3031
48b8d744 3032 VM_BUG_ON(!hstate_is_gigantic(h));
aa888a74 3033 WARN_ON(page_count(page) != 1);
7118fc29
MK
3034 if (prep_compound_gigantic_page(page, huge_page_order(h))) {
3035 WARN_ON(PageReserved(page));
3036 prep_new_huge_page(h, page, page_to_nid(page));
3037 put_page(page); /* add to the hugepage allocator */
3038 } else {
416d85ed 3039 /* VERY unlikely inflated ref count on a tail page */
7118fc29 3040 free_gigantic_page(page, huge_page_order(h));
7118fc29 3041 }
af0fb9df 3042
b0320c7b 3043 /*
48b8d744
MK
3044 * We need to restore the 'stolen' pages to totalram_pages
3045 * in order to fix confusing memory reports from free(1) and
3046 * other side-effects, like CommitLimit going negative.
b0320c7b 3047 */
48b8d744 3048 adjust_managed_page_count(page, pages_per_huge_page(h));
520495fe 3049 cond_resched();
aa888a74
AK
3050 }
3051}
b5389086
ZY
3052static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid)
3053{
3054 unsigned long i;
3055 char buf[32];
3056
3057 for (i = 0; i < h->max_huge_pages_node[nid]; ++i) {
3058 if (hstate_is_gigantic(h)) {
3059 if (!alloc_bootmem_huge_page(h, nid))
3060 break;
3061 } else {
3062 struct page *page;
3063 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
3064
3065 page = alloc_fresh_huge_page(h, gfp_mask, nid,
3066 &node_states[N_MEMORY], NULL);
3067 if (!page)
3068 break;
3069 put_page(page); /* free it into the hugepage allocator */
3070 }
3071 cond_resched();
3072 }
3073 if (i == h->max_huge_pages_node[nid])
3074 return;
3075
3076 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3077 pr_warn("HugeTLB: allocating %u of page size %s failed node%d. Only allocated %lu hugepages.\n",
3078 h->max_huge_pages_node[nid], buf, nid, i);
3079 h->max_huge_pages -= (h->max_huge_pages_node[nid] - i);
3080 h->max_huge_pages_node[nid] = i;
3081}
aa888a74 3082
8faa8b07 3083static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1da177e4
LT
3084{
3085 unsigned long i;
f60858f9 3086 nodemask_t *node_alloc_noretry;
b5389086
ZY
3087 bool node_specific_alloc = false;
3088
3089 /* skip gigantic hugepages allocation if hugetlb_cma enabled */
3090 if (hstate_is_gigantic(h) && hugetlb_cma_size) {
3091 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
3092 return;
3093 }
3094
3095 /* do node specific alloc */
0a7a0f6f 3096 for_each_online_node(i) {
b5389086
ZY
3097 if (h->max_huge_pages_node[i] > 0) {
3098 hugetlb_hstate_alloc_pages_onenode(h, i);
3099 node_specific_alloc = true;
3100 }
3101 }
f60858f9 3102
b5389086
ZY
3103 if (node_specific_alloc)
3104 return;
3105
3106 /* below will do all node balanced alloc */
f60858f9
MK
3107 if (!hstate_is_gigantic(h)) {
3108 /*
3109 * Bit mask controlling how hard we retry per-node allocations.
3110 * Ignore errors as lower level routines can deal with
3111 * node_alloc_noretry == NULL. If this kmalloc fails at boot
3112 * time, we are likely in bigger trouble.
3113 */
3114 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
3115 GFP_KERNEL);
3116 } else {
3117 /* allocations done at boot time */
3118 node_alloc_noretry = NULL;
3119 }
3120
3121 /* bit mask controlling how hard we retry per-node allocations */
3122 if (node_alloc_noretry)
3123 nodes_clear(*node_alloc_noretry);
a5516438 3124
e5ff2159 3125 for (i = 0; i < h->max_huge_pages; ++i) {
bae7f4ae 3126 if (hstate_is_gigantic(h)) {
b5389086 3127 if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE))
aa888a74 3128 break;
0c397dae 3129 } else if (!alloc_pool_huge_page(h,
f60858f9
MK
3130 &node_states[N_MEMORY],
3131 node_alloc_noretry))
1da177e4 3132 break;
69ed779a 3133 cond_resched();
1da177e4 3134 }
d715cf80
LH
3135 if (i < h->max_huge_pages) {
3136 char buf[32];
3137
c6247f72 3138 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
d715cf80
LH
3139 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n",
3140 h->max_huge_pages, buf, i);
3141 h->max_huge_pages = i;
3142 }
f60858f9 3143 kfree(node_alloc_noretry);
e5ff2159
AK
3144}
3145
3146static void __init hugetlb_init_hstates(void)
3147{
79dfc695 3148 struct hstate *h, *h2;
e5ff2159
AK
3149
3150 for_each_hstate(h) {
8faa8b07 3151 /* oversize hugepages were init'ed in early boot */
bae7f4ae 3152 if (!hstate_is_gigantic(h))
8faa8b07 3153 hugetlb_hstate_alloc_pages(h);
79dfc695
MK
3154
3155 /*
3156 * Set demote order for each hstate. Note that
3157 * h->demote_order is initially 0.
3158 * - We can not demote gigantic pages if runtime freeing
3159 * is not supported, so skip this.
a01f4390
MK
3160 * - If CMA allocation is possible, we can not demote
3161 * HUGETLB_PAGE_ORDER or smaller size pages.
79dfc695
MK
3162 */
3163 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3164 continue;
a01f4390
MK
3165 if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER)
3166 continue;
79dfc695
MK
3167 for_each_hstate(h2) {
3168 if (h2 == h)
3169 continue;
3170 if (h2->order < h->order &&
3171 h2->order > h->demote_order)
3172 h->demote_order = h2->order;
3173 }
e5ff2159
AK
3174 }
3175}
3176
3177static void __init report_hugepages(void)
3178{
3179 struct hstate *h;
3180
3181 for_each_hstate(h) {
4abd32db 3182 char buf[32];
c6247f72
MW
3183
3184 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
ffb22af5 3185 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
c6247f72 3186 buf, h->free_huge_pages);
e5ff2159
AK
3187 }
3188}
3189
1da177e4 3190#ifdef CONFIG_HIGHMEM
6ae11b27
LS
3191static void try_to_free_low(struct hstate *h, unsigned long count,
3192 nodemask_t *nodes_allowed)
1da177e4 3193{
4415cc8d 3194 int i;
1121828a 3195 LIST_HEAD(page_list);
4415cc8d 3196
9487ca60 3197 lockdep_assert_held(&hugetlb_lock);
bae7f4ae 3198 if (hstate_is_gigantic(h))
aa888a74
AK
3199 return;
3200
1121828a
MK
3201 /*
3202 * Collect pages to be freed on a list, and free after dropping lock
3203 */
6ae11b27 3204 for_each_node_mask(i, *nodes_allowed) {
10c6ec49 3205 struct page *page, *next;
a5516438
AK
3206 struct list_head *freel = &h->hugepage_freelists[i];
3207 list_for_each_entry_safe(page, next, freel, lru) {
3208 if (count >= h->nr_huge_pages)
1121828a 3209 goto out;
1da177e4
LT
3210 if (PageHighMem(page))
3211 continue;
6eb4e88a 3212 remove_hugetlb_page(h, page, false);
1121828a 3213 list_add(&page->lru, &page_list);
1da177e4
LT
3214 }
3215 }
1121828a
MK
3216
3217out:
db71ef79 3218 spin_unlock_irq(&hugetlb_lock);
10c6ec49 3219 update_and_free_pages_bulk(h, &page_list);
db71ef79 3220 spin_lock_irq(&hugetlb_lock);
1da177e4
LT
3221}
3222#else
6ae11b27
LS
3223static inline void try_to_free_low(struct hstate *h, unsigned long count,
3224 nodemask_t *nodes_allowed)
1da177e4
LT
3225{
3226}
3227#endif
3228
20a0307c
WF
3229/*
3230 * Increment or decrement surplus_huge_pages. Keep node-specific counters
3231 * balanced by operating on them in a round-robin fashion.
3232 * Returns 1 if an adjustment was made.
3233 */
6ae11b27
LS
3234static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
3235 int delta)
20a0307c 3236{
b2261026 3237 int nr_nodes, node;
20a0307c 3238
9487ca60 3239 lockdep_assert_held(&hugetlb_lock);
20a0307c 3240 VM_BUG_ON(delta != -1 && delta != 1);
20a0307c 3241
b2261026
JK
3242 if (delta < 0) {
3243 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
3244 if (h->surplus_huge_pages_node[node])
3245 goto found;
e8c5c824 3246 }
b2261026
JK
3247 } else {
3248 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3249 if (h->surplus_huge_pages_node[node] <
3250 h->nr_huge_pages_node[node])
3251 goto found;
e8c5c824 3252 }
b2261026
JK
3253 }
3254 return 0;
20a0307c 3255
b2261026
JK
3256found:
3257 h->surplus_huge_pages += delta;
3258 h->surplus_huge_pages_node[node] += delta;
3259 return 1;
20a0307c
WF
3260}
3261
a5516438 3262#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
fd875dca 3263static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
4eb0716e 3264 nodemask_t *nodes_allowed)
1da177e4 3265{
7893d1d5 3266 unsigned long min_count, ret;
10c6ec49
MK
3267 struct page *page;
3268 LIST_HEAD(page_list);
f60858f9
MK
3269 NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
3270
3271 /*
3272 * Bit mask controlling how hard we retry per-node allocations.
3273 * If we can not allocate the bit mask, do not attempt to allocate
3274 * the requested huge pages.
3275 */
3276 if (node_alloc_noretry)
3277 nodes_clear(*node_alloc_noretry);
3278 else
3279 return -ENOMEM;
1da177e4 3280
29383967
MK
3281 /*
3282 * resize_lock mutex prevents concurrent adjustments to number of
3283 * pages in hstate via the proc/sysfs interfaces.
3284 */
3285 mutex_lock(&h->resize_lock);
b65d4adb 3286 flush_free_hpage_work(h);
db71ef79 3287 spin_lock_irq(&hugetlb_lock);
4eb0716e 3288
fd875dca
MK
3289 /*
3290 * Check for a node specific request.
3291 * Changing node specific huge page count may require a corresponding
3292 * change to the global count. In any case, the passed node mask
3293 * (nodes_allowed) will restrict alloc/free to the specified node.
3294 */
3295 if (nid != NUMA_NO_NODE) {
3296 unsigned long old_count = count;
3297
3298 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
3299 /*
3300 * User may have specified a large count value which caused the
3301 * above calculation to overflow. In this case, they wanted
3302 * to allocate as many huge pages as possible. Set count to
3303 * largest possible value to align with their intention.
3304 */
3305 if (count < old_count)
3306 count = ULONG_MAX;
3307 }
3308
4eb0716e
AG
3309 /*
3310 * Gigantic pages runtime allocation depend on the capability for large
3311 * page range allocation.
3312 * If the system does not provide this feature, return an error when
3313 * the user tries to allocate gigantic pages but let the user free the
3314 * boottime allocated gigantic pages.
3315 */
3316 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
3317 if (count > persistent_huge_pages(h)) {
db71ef79 3318 spin_unlock_irq(&hugetlb_lock);
29383967 3319 mutex_unlock(&h->resize_lock);
f60858f9 3320 NODEMASK_FREE(node_alloc_noretry);
4eb0716e
AG
3321 return -EINVAL;
3322 }
3323 /* Fall through to decrease pool */
3324 }
aa888a74 3325
7893d1d5
AL
3326 /*
3327 * Increase the pool size
3328 * First take pages out of surplus state. Then make up the
3329 * remaining difference by allocating fresh huge pages.
d1c3fb1f 3330 *
0c397dae 3331 * We might race with alloc_surplus_huge_page() here and be unable
d1c3fb1f
NA
3332 * to convert a surplus huge page to a normal huge page. That is
3333 * not critical, though, it just means the overall size of the
3334 * pool might be one hugepage larger than it needs to be, but
3335 * within all the constraints specified by the sysctls.
7893d1d5 3336 */
a5516438 3337 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
6ae11b27 3338 if (!adjust_pool_surplus(h, nodes_allowed, -1))
7893d1d5
AL
3339 break;
3340 }
3341
a5516438 3342 while (count > persistent_huge_pages(h)) {
7893d1d5
AL
3343 /*
3344 * If this allocation races such that we no longer need the
3345 * page, free_huge_page will handle it by freeing the page
3346 * and reducing the surplus.
3347 */
db71ef79 3348 spin_unlock_irq(&hugetlb_lock);
649920c6
JH
3349
3350 /* yield cpu to avoid soft lockup */
3351 cond_resched();
3352
f60858f9
MK
3353 ret = alloc_pool_huge_page(h, nodes_allowed,
3354 node_alloc_noretry);
db71ef79 3355 spin_lock_irq(&hugetlb_lock);
7893d1d5
AL
3356 if (!ret)
3357 goto out;
3358
536240f2
MG
3359 /* Bail for signals. Probably ctrl-c from user */
3360 if (signal_pending(current))
3361 goto out;
7893d1d5 3362 }
7893d1d5
AL
3363
3364 /*
3365 * Decrease the pool size
3366 * First return free pages to the buddy allocator (being careful
3367 * to keep enough around to satisfy reservations). Then place
3368 * pages into surplus state as needed so the pool will shrink
3369 * to the desired size as pages become free.
d1c3fb1f
NA
3370 *
3371 * By placing pages into the surplus state independent of the
3372 * overcommit value, we are allowing the surplus pool size to
3373 * exceed overcommit. There are few sane options here. Since
0c397dae 3374 * alloc_surplus_huge_page() is checking the global counter,
d1c3fb1f
NA
3375 * though, we'll note that we're not allowed to exceed surplus
3376 * and won't grow the pool anywhere else. Not until one of the
3377 * sysctls are changed, or the surplus pages go out of use.
7893d1d5 3378 */
a5516438 3379 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
6b0c880d 3380 min_count = max(count, min_count);
6ae11b27 3381 try_to_free_low(h, min_count, nodes_allowed);
10c6ec49
MK
3382
3383 /*
3384 * Collect pages to be removed on list without dropping lock
3385 */
a5516438 3386 while (min_count < persistent_huge_pages(h)) {
10c6ec49
MK
3387 page = remove_pool_huge_page(h, nodes_allowed, 0);
3388 if (!page)
1da177e4 3389 break;
10c6ec49
MK
3390
3391 list_add(&page->lru, &page_list);
1da177e4 3392 }
10c6ec49 3393 /* free the pages after dropping lock */
db71ef79 3394 spin_unlock_irq(&hugetlb_lock);
10c6ec49 3395 update_and_free_pages_bulk(h, &page_list);
b65d4adb 3396 flush_free_hpage_work(h);
db71ef79 3397 spin_lock_irq(&hugetlb_lock);
10c6ec49 3398
a5516438 3399 while (count < persistent_huge_pages(h)) {
6ae11b27 3400 if (!adjust_pool_surplus(h, nodes_allowed, 1))
7893d1d5
AL
3401 break;
3402 }
3403out:
4eb0716e 3404 h->max_huge_pages = persistent_huge_pages(h);
db71ef79 3405 spin_unlock_irq(&hugetlb_lock);
29383967 3406 mutex_unlock(&h->resize_lock);
4eb0716e 3407
f60858f9
MK
3408 NODEMASK_FREE(node_alloc_noretry);
3409
4eb0716e 3410 return 0;
1da177e4
LT
3411}
3412
8531fc6f
MK
3413static int demote_free_huge_page(struct hstate *h, struct page *page)
3414{
3415 int i, nid = page_to_nid(page);
3416 struct hstate *target_hstate;
3417 int rc = 0;
3418
3419 target_hstate = size_to_hstate(PAGE_SIZE << h->demote_order);
3420
3421 remove_hugetlb_page_for_demote(h, page, false);
3422 spin_unlock_irq(&hugetlb_lock);
3423
5981611d 3424 rc = hugetlb_vmemmap_alloc(h, page);
8531fc6f
MK
3425 if (rc) {
3426 /* Allocation of vmemmmap failed, we can not demote page */
3427 spin_lock_irq(&hugetlb_lock);
3428 set_page_refcounted(page);
3429 add_hugetlb_page(h, page, false);
3430 return rc;
3431 }
3432
3433 /*
3434 * Use destroy_compound_hugetlb_page_for_demote for all huge page
3435 * sizes as it will not ref count pages.
3436 */
3437 destroy_compound_hugetlb_page_for_demote(page, huge_page_order(h));
3438
3439 /*
3440 * Taking target hstate mutex synchronizes with set_max_huge_pages.
3441 * Without the mutex, pages added to target hstate could be marked
3442 * as surplus.
3443 *
3444 * Note that we already hold h->resize_lock. To prevent deadlock,
3445 * use the convention of always taking larger size hstate mutex first.
3446 */
3447 mutex_lock(&target_hstate->resize_lock);
3448 for (i = 0; i < pages_per_huge_page(h);
3449 i += pages_per_huge_page(target_hstate)) {
3450 if (hstate_is_gigantic(target_hstate))
3451 prep_compound_gigantic_page_for_demote(page + i,
3452 target_hstate->order);
3453 else
3454 prep_compound_page(page + i, target_hstate->order);
3455 set_page_private(page + i, 0);
3456 set_page_refcounted(page + i);
3457 prep_new_huge_page(target_hstate, page + i, nid);
3458 put_page(page + i);
3459 }
3460 mutex_unlock(&target_hstate->resize_lock);
3461
3462 spin_lock_irq(&hugetlb_lock);
3463
3464 /*
3465 * Not absolutely necessary, but for consistency update max_huge_pages
3466 * based on pool changes for the demoted page.
3467 */
3468 h->max_huge_pages--;
3469 target_hstate->max_huge_pages += pages_per_huge_page(h);
3470
3471 return rc;
3472}
3473
79dfc695
MK
3474static int demote_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
3475 __must_hold(&hugetlb_lock)
3476{
8531fc6f
MK
3477 int nr_nodes, node;
3478 struct page *page;
79dfc695
MK
3479
3480 lockdep_assert_held(&hugetlb_lock);
3481
3482 /* We should never get here if no demote order */
3483 if (!h->demote_order) {
3484 pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n");
3485 return -EINVAL; /* internal error */
3486 }
3487
8531fc6f 3488 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
5a317412
MK
3489 list_for_each_entry(page, &h->hugepage_freelists[node], lru) {
3490 if (PageHWPoison(page))
3491 continue;
3492
3493 return demote_free_huge_page(h, page);
8531fc6f
MK
3494 }
3495 }
3496
5a317412
MK
3497 /*
3498 * Only way to get here is if all pages on free lists are poisoned.
3499 * Return -EBUSY so that caller will not retry.
3500 */
3501 return -EBUSY;
79dfc695
MK
3502}
3503
a3437870
NA
3504#define HSTATE_ATTR_RO(_name) \
3505 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3506
79dfc695
MK
3507#define HSTATE_ATTR_WO(_name) \
3508 static struct kobj_attribute _name##_attr = __ATTR_WO(_name)
3509
a3437870 3510#define HSTATE_ATTR(_name) \
98bc26ac 3511 static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
a3437870
NA
3512
3513static struct kobject *hugepages_kobj;
3514static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3515
9a305230
LS
3516static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
3517
3518static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
a3437870
NA
3519{
3520 int i;
9a305230 3521
a3437870 3522 for (i = 0; i < HUGE_MAX_HSTATE; i++)
9a305230
LS
3523 if (hstate_kobjs[i] == kobj) {
3524 if (nidp)
3525 *nidp = NUMA_NO_NODE;
a3437870 3526 return &hstates[i];
9a305230
LS
3527 }
3528
3529 return kobj_to_node_hstate(kobj, nidp);
a3437870
NA
3530}
3531
06808b08 3532static ssize_t nr_hugepages_show_common(struct kobject *kobj,
a3437870
NA
3533 struct kobj_attribute *attr, char *buf)
3534{
9a305230
LS
3535 struct hstate *h;
3536 unsigned long nr_huge_pages;
3537 int nid;
3538
3539 h = kobj_to_hstate(kobj, &nid);
3540 if (nid == NUMA_NO_NODE)
3541 nr_huge_pages = h->nr_huge_pages;
3542 else
3543 nr_huge_pages = h->nr_huge_pages_node[nid];
3544
ae7a927d 3545 return sysfs_emit(buf, "%lu\n", nr_huge_pages);
a3437870 3546}
adbe8726 3547
238d3c13
DR
3548static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
3549 struct hstate *h, int nid,
3550 unsigned long count, size_t len)
a3437870
NA
3551{
3552 int err;
2d0adf7e 3553 nodemask_t nodes_allowed, *n_mask;
a3437870 3554
2d0adf7e
OS
3555 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3556 return -EINVAL;
adbe8726 3557
9a305230
LS
3558 if (nid == NUMA_NO_NODE) {
3559 /*
3560 * global hstate attribute
3561 */
3562 if (!(obey_mempolicy &&
2d0adf7e
OS
3563 init_nodemask_of_mempolicy(&nodes_allowed)))
3564 n_mask = &node_states[N_MEMORY];
3565 else
3566 n_mask = &nodes_allowed;
3567 } else {
9a305230 3568 /*
fd875dca
MK
3569 * Node specific request. count adjustment happens in
3570 * set_max_huge_pages() after acquiring hugetlb_lock.
9a305230 3571 */
2d0adf7e
OS
3572 init_nodemask_of_node(&nodes_allowed, nid);
3573 n_mask = &nodes_allowed;
fd875dca 3574 }
9a305230 3575
2d0adf7e 3576 err = set_max_huge_pages(h, count, nid, n_mask);
06808b08 3577
4eb0716e 3578 return err ? err : len;
06808b08
LS
3579}
3580
238d3c13
DR
3581static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
3582 struct kobject *kobj, const char *buf,
3583 size_t len)
3584{
3585 struct hstate *h;
3586 unsigned long count;
3587 int nid;
3588 int err;
3589
3590 err = kstrtoul(buf, 10, &count);
3591 if (err)
3592 return err;
3593
3594 h = kobj_to_hstate(kobj, &nid);
3595 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
3596}
3597
06808b08
LS
3598static ssize_t nr_hugepages_show(struct kobject *kobj,
3599 struct kobj_attribute *attr, char *buf)
3600{
3601 return nr_hugepages_show_common(kobj, attr, buf);
3602}
3603
3604static ssize_t nr_hugepages_store(struct kobject *kobj,
3605 struct kobj_attribute *attr, const char *buf, size_t len)
3606{
238d3c13 3607 return nr_hugepages_store_common(false, kobj, buf, len);
a3437870
NA
3608}
3609HSTATE_ATTR(nr_hugepages);
3610
06808b08
LS
3611#ifdef CONFIG_NUMA
3612
3613/*
3614 * hstate attribute for optionally mempolicy-based constraint on persistent
3615 * huge page alloc/free.
3616 */
3617static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
ae7a927d
JP
3618 struct kobj_attribute *attr,
3619 char *buf)
06808b08
LS
3620{
3621 return nr_hugepages_show_common(kobj, attr, buf);
3622}
3623
3624static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
3625 struct kobj_attribute *attr, const char *buf, size_t len)
3626{
238d3c13 3627 return nr_hugepages_store_common(true, kobj, buf, len);
06808b08
LS
3628}
3629HSTATE_ATTR(nr_hugepages_mempolicy);
3630#endif
3631
3632
a3437870
NA
3633static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
3634 struct kobj_attribute *attr, char *buf)
3635{
9a305230 3636 struct hstate *h = kobj_to_hstate(kobj, NULL);
ae7a927d 3637 return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
a3437870 3638}
adbe8726 3639
a3437870
NA
3640static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
3641 struct kobj_attribute *attr, const char *buf, size_t count)
3642{
3643 int err;
3644 unsigned long input;
9a305230 3645 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870 3646
bae7f4ae 3647 if (hstate_is_gigantic(h))
adbe8726
EM
3648 return -EINVAL;
3649
3dbb95f7 3650 err = kstrtoul(buf, 10, &input);
a3437870 3651 if (err)
73ae31e5 3652 return err;
a3437870 3653
db71ef79 3654 spin_lock_irq(&hugetlb_lock);
a3437870 3655 h->nr_overcommit_huge_pages = input;
db71ef79 3656 spin_unlock_irq(&hugetlb_lock);
a3437870
NA
3657
3658 return count;
3659}
3660HSTATE_ATTR(nr_overcommit_hugepages);
3661
3662static ssize_t free_hugepages_show(struct kobject *kobj,
3663 struct kobj_attribute *attr, char *buf)
3664{
9a305230
LS
3665 struct hstate *h;
3666 unsigned long free_huge_pages;
3667 int nid;
3668
3669 h = kobj_to_hstate(kobj, &nid);
3670 if (nid == NUMA_NO_NODE)
3671 free_huge_pages = h->free_huge_pages;
3672 else
3673 free_huge_pages = h->free_huge_pages_node[nid];
3674
ae7a927d 3675 return sysfs_emit(buf, "%lu\n", free_huge_pages);
a3437870
NA
3676}
3677HSTATE_ATTR_RO(free_hugepages);
3678
3679static ssize_t resv_hugepages_show(struct kobject *kobj,
3680 struct kobj_attribute *attr, char *buf)
3681{
9a305230 3682 struct hstate *h = kobj_to_hstate(kobj, NULL);
ae7a927d 3683 return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
a3437870
NA
3684}
3685HSTATE_ATTR_RO(resv_hugepages);
3686
3687static ssize_t surplus_hugepages_show(struct kobject *kobj,
3688 struct kobj_attribute *attr, char *buf)
3689{
9a305230
LS
3690 struct hstate *h;
3691 unsigned long surplus_huge_pages;
3692 int nid;
3693
3694 h = kobj_to_hstate(kobj, &nid);
3695 if (nid == NUMA_NO_NODE)
3696 surplus_huge_pages = h->surplus_huge_pages;
3697 else
3698 surplus_huge_pages = h->surplus_huge_pages_node[nid];
3699
ae7a927d 3700 return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
a3437870
NA
3701}
3702HSTATE_ATTR_RO(surplus_hugepages);
3703
79dfc695
MK
3704static ssize_t demote_store(struct kobject *kobj,
3705 struct kobj_attribute *attr, const char *buf, size_t len)
3706{
3707 unsigned long nr_demote;
3708 unsigned long nr_available;
3709 nodemask_t nodes_allowed, *n_mask;
3710 struct hstate *h;
3711 int err = 0;
3712 int nid;
3713
3714 err = kstrtoul(buf, 10, &nr_demote);
3715 if (err)
3716 return err;
3717 h = kobj_to_hstate(kobj, &nid);
3718
3719 if (nid != NUMA_NO_NODE) {
3720 init_nodemask_of_node(&nodes_allowed, nid);
3721 n_mask = &nodes_allowed;
3722 } else {
3723 n_mask = &node_states[N_MEMORY];
3724 }
3725
3726 /* Synchronize with other sysfs operations modifying huge pages */
3727 mutex_lock(&h->resize_lock);
3728 spin_lock_irq(&hugetlb_lock);
3729
3730 while (nr_demote) {
3731 /*
3732 * Check for available pages to demote each time thorough the
3733 * loop as demote_pool_huge_page will drop hugetlb_lock.
79dfc695
MK
3734 */
3735 if (nid != NUMA_NO_NODE)
3736 nr_available = h->free_huge_pages_node[nid];
3737 else
3738 nr_available = h->free_huge_pages;
3739 nr_available -= h->resv_huge_pages;
3740 if (!nr_available)
3741 break;
3742
3743 err = demote_pool_huge_page(h, n_mask);
3744 if (err)
3745 break;
3746
3747 nr_demote--;
3748 }
3749
3750 spin_unlock_irq(&hugetlb_lock);
3751 mutex_unlock(&h->resize_lock);
3752
3753 if (err)
3754 return err;
3755 return len;
3756}
3757HSTATE_ATTR_WO(demote);
3758
3759static ssize_t demote_size_show(struct kobject *kobj,
3760 struct kobj_attribute *attr, char *buf)
3761{
3762 int nid;
3763 struct hstate *h = kobj_to_hstate(kobj, &nid);
3764 unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K;
3765
3766 return sysfs_emit(buf, "%lukB\n", demote_size);
3767}
3768
3769static ssize_t demote_size_store(struct kobject *kobj,
3770 struct kobj_attribute *attr,
3771 const char *buf, size_t count)
3772{
3773 struct hstate *h, *demote_hstate;
3774 unsigned long demote_size;
3775 unsigned int demote_order;
3776 int nid;
3777
3778 demote_size = (unsigned long)memparse(buf, NULL);
3779
3780 demote_hstate = size_to_hstate(demote_size);
3781 if (!demote_hstate)
3782 return -EINVAL;
3783 demote_order = demote_hstate->order;
a01f4390
MK
3784 if (demote_order < HUGETLB_PAGE_ORDER)
3785 return -EINVAL;
79dfc695
MK
3786
3787 /* demote order must be smaller than hstate order */
3788 h = kobj_to_hstate(kobj, &nid);
3789 if (demote_order >= h->order)
3790 return -EINVAL;
3791
3792 /* resize_lock synchronizes access to demote size and writes */
3793 mutex_lock(&h->resize_lock);
3794 h->demote_order = demote_order;
3795 mutex_unlock(&h->resize_lock);
3796
3797 return count;
3798}
3799HSTATE_ATTR(demote_size);
3800
a3437870
NA
3801static struct attribute *hstate_attrs[] = {
3802 &nr_hugepages_attr.attr,
3803 &nr_overcommit_hugepages_attr.attr,
3804 &free_hugepages_attr.attr,
3805 &resv_hugepages_attr.attr,
3806 &surplus_hugepages_attr.attr,
06808b08
LS
3807#ifdef CONFIG_NUMA
3808 &nr_hugepages_mempolicy_attr.attr,
3809#endif
a3437870
NA
3810 NULL,
3811};
3812
67e5ed96 3813static const struct attribute_group hstate_attr_group = {
a3437870
NA
3814 .attrs = hstate_attrs,
3815};
3816
79dfc695
MK
3817static struct attribute *hstate_demote_attrs[] = {
3818 &demote_size_attr.attr,
3819 &demote_attr.attr,
3820 NULL,
3821};
3822
3823static const struct attribute_group hstate_demote_attr_group = {
3824 .attrs = hstate_demote_attrs,
3825};
3826
094e9539
JM
3827static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
3828 struct kobject **hstate_kobjs,
67e5ed96 3829 const struct attribute_group *hstate_attr_group)
a3437870
NA
3830{
3831 int retval;
972dc4de 3832 int hi = hstate_index(h);
a3437870 3833
9a305230
LS
3834 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
3835 if (!hstate_kobjs[hi])
a3437870
NA
3836 return -ENOMEM;
3837
9a305230 3838 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
cc2205a6 3839 if (retval) {
9a305230 3840 kobject_put(hstate_kobjs[hi]);
cc2205a6
ML
3841 hstate_kobjs[hi] = NULL;
3842 }
a3437870 3843
79dfc695
MK
3844 if (h->demote_order) {
3845 if (sysfs_create_group(hstate_kobjs[hi],
3846 &hstate_demote_attr_group))
3847 pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name);
3848 }
3849
a3437870
NA
3850 return retval;
3851}
3852
3853static void __init hugetlb_sysfs_init(void)
3854{
3855 struct hstate *h;
3856 int err;
3857
3858 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
3859 if (!hugepages_kobj)
3860 return;
3861
3862 for_each_hstate(h) {
9a305230
LS
3863 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
3864 hstate_kobjs, &hstate_attr_group);
a3437870 3865 if (err)
282f4214 3866 pr_err("HugeTLB: Unable to add hstate %s", h->name);
a3437870
NA
3867 }
3868}
3869
9a305230
LS
3870#ifdef CONFIG_NUMA
3871
3872/*
3873 * node_hstate/s - associate per node hstate attributes, via their kobjects,
10fbcf4c
KS
3874 * with node devices in node_devices[] using a parallel array. The array
3875 * index of a node device or _hstate == node id.
3876 * This is here to avoid any static dependency of the node device driver, in
9a305230
LS
3877 * the base kernel, on the hugetlb module.
3878 */
3879struct node_hstate {
3880 struct kobject *hugepages_kobj;
3881 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3882};
b4e289a6 3883static struct node_hstate node_hstates[MAX_NUMNODES];
9a305230
LS
3884
3885/*
10fbcf4c 3886 * A subset of global hstate attributes for node devices
9a305230
LS
3887 */
3888static struct attribute *per_node_hstate_attrs[] = {
3889 &nr_hugepages_attr.attr,
3890 &free_hugepages_attr.attr,
3891 &surplus_hugepages_attr.attr,
3892 NULL,
3893};
3894
67e5ed96 3895static const struct attribute_group per_node_hstate_attr_group = {
9a305230
LS
3896 .attrs = per_node_hstate_attrs,
3897};
3898
3899/*
10fbcf4c 3900 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
9a305230
LS
3901 * Returns node id via non-NULL nidp.
3902 */
3903static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3904{
3905 int nid;
3906
3907 for (nid = 0; nid < nr_node_ids; nid++) {
3908 struct node_hstate *nhs = &node_hstates[nid];
3909 int i;
3910 for (i = 0; i < HUGE_MAX_HSTATE; i++)
3911 if (nhs->hstate_kobjs[i] == kobj) {
3912 if (nidp)
3913 *nidp = nid;
3914 return &hstates[i];
3915 }
3916 }
3917
3918 BUG();
3919 return NULL;
3920}
3921
3922/*
10fbcf4c 3923 * Unregister hstate attributes from a single node device.
9a305230
LS
3924 * No-op if no hstate attributes attached.
3925 */
3cd8b44f 3926static void hugetlb_unregister_node(struct node *node)
9a305230
LS
3927{
3928 struct hstate *h;
10fbcf4c 3929 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
3930
3931 if (!nhs->hugepages_kobj)
9b5e5d0f 3932 return; /* no hstate attributes */
9a305230 3933
972dc4de
AK
3934 for_each_hstate(h) {
3935 int idx = hstate_index(h);
3936 if (nhs->hstate_kobjs[idx]) {
3937 kobject_put(nhs->hstate_kobjs[idx]);
3938 nhs->hstate_kobjs[idx] = NULL;
9a305230 3939 }
972dc4de 3940 }
9a305230
LS
3941
3942 kobject_put(nhs->hugepages_kobj);
3943 nhs->hugepages_kobj = NULL;
3944}
3945
9a305230
LS
3946
3947/*
10fbcf4c 3948 * Register hstate attributes for a single node device.
9a305230
LS
3949 * No-op if attributes already registered.
3950 */
3cd8b44f 3951static void hugetlb_register_node(struct node *node)
9a305230
LS
3952{
3953 struct hstate *h;
10fbcf4c 3954 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
3955 int err;
3956
3957 if (nhs->hugepages_kobj)
3958 return; /* already allocated */
3959
3960 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
10fbcf4c 3961 &node->dev.kobj);
9a305230
LS
3962 if (!nhs->hugepages_kobj)
3963 return;
3964
3965 for_each_hstate(h) {
3966 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
3967 nhs->hstate_kobjs,
3968 &per_node_hstate_attr_group);
3969 if (err) {
282f4214 3970 pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
ffb22af5 3971 h->name, node->dev.id);
9a305230
LS
3972 hugetlb_unregister_node(node);
3973 break;
3974 }
3975 }
3976}
3977
3978/*
9b5e5d0f 3979 * hugetlb init time: register hstate attributes for all registered node
10fbcf4c
KS
3980 * devices of nodes that have memory. All on-line nodes should have
3981 * registered their associated device by this time.
9a305230 3982 */
7d9ca000 3983static void __init hugetlb_register_all_nodes(void)
9a305230
LS
3984{
3985 int nid;
3986
8cebfcd0 3987 for_each_node_state(nid, N_MEMORY) {
8732794b 3988 struct node *node = node_devices[nid];
10fbcf4c 3989 if (node->dev.id == nid)
9a305230
LS
3990 hugetlb_register_node(node);
3991 }
3992
3993 /*
10fbcf4c 3994 * Let the node device driver know we're here so it can
9a305230
LS
3995 * [un]register hstate attributes on node hotplug.
3996 */
3997 register_hugetlbfs_with_node(hugetlb_register_node,
3998 hugetlb_unregister_node);
3999}
4000#else /* !CONFIG_NUMA */
4001
4002static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4003{
4004 BUG();
4005 if (nidp)
4006 *nidp = -1;
4007 return NULL;
4008}
4009
9a305230
LS
4010static void hugetlb_register_all_nodes(void) { }
4011
4012#endif
4013
a3437870
NA
4014static int __init hugetlb_init(void)
4015{
8382d914
DB
4016 int i;
4017
d6995da3
MK
4018 BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
4019 __NR_HPAGEFLAGS);
4020
c2833a5b
MK
4021 if (!hugepages_supported()) {
4022 if (hugetlb_max_hstate || default_hstate_max_huge_pages)
4023 pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
0ef89d25 4024 return 0;
c2833a5b 4025 }
a3437870 4026
282f4214
MK
4027 /*
4028 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists. Some
4029 * architectures depend on setup being done here.
4030 */
4031 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
4032 if (!parsed_default_hugepagesz) {
4033 /*
4034 * If we did not parse a default huge page size, set
4035 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
4036 * number of huge pages for this default size was implicitly
4037 * specified, set that here as well.
4038 * Note that the implicit setting will overwrite an explicit
4039 * setting. A warning will be printed in this case.
4040 */
4041 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
4042 if (default_hstate_max_huge_pages) {
4043 if (default_hstate.max_huge_pages) {
4044 char buf[32];
4045
4046 string_get_size(huge_page_size(&default_hstate),
4047 1, STRING_UNITS_2, buf, 32);
4048 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
4049 default_hstate.max_huge_pages, buf);
4050 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
4051 default_hstate_max_huge_pages);
4052 }
4053 default_hstate.max_huge_pages =
4054 default_hstate_max_huge_pages;
b5389086 4055
0a7a0f6f 4056 for_each_online_node(i)
b5389086
ZY
4057 default_hstate.max_huge_pages_node[i] =
4058 default_hugepages_in_node[i];
d715cf80 4059 }
f8b74815 4060 }
a3437870 4061
cf11e85f 4062 hugetlb_cma_check();
a3437870 4063 hugetlb_init_hstates();
aa888a74 4064 gather_bootmem_prealloc();
a3437870
NA
4065 report_hugepages();
4066
4067 hugetlb_sysfs_init();
9a305230 4068 hugetlb_register_all_nodes();
7179e7bf 4069 hugetlb_cgroup_file_init();
9a305230 4070
8382d914
DB
4071#ifdef CONFIG_SMP
4072 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
4073#else
4074 num_fault_mutexes = 1;
4075#endif
c672c7f2 4076 hugetlb_fault_mutex_table =
6da2ec56
KC
4077 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
4078 GFP_KERNEL);
c672c7f2 4079 BUG_ON(!hugetlb_fault_mutex_table);
8382d914
DB
4080
4081 for (i = 0; i < num_fault_mutexes; i++)
c672c7f2 4082 mutex_init(&hugetlb_fault_mutex_table[i]);
a3437870
NA
4083 return 0;
4084}
3e89e1c5 4085subsys_initcall(hugetlb_init);
a3437870 4086
ae94da89
MK
4087/* Overwritten by architectures with more huge page sizes */
4088bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
9fee021d 4089{
ae94da89 4090 return size == HPAGE_SIZE;
9fee021d
VT
4091}
4092
d00181b9 4093void __init hugetlb_add_hstate(unsigned int order)
a3437870
NA
4094{
4095 struct hstate *h;
8faa8b07
AK
4096 unsigned long i;
4097
a3437870 4098 if (size_to_hstate(PAGE_SIZE << order)) {
a3437870
NA
4099 return;
4100 }
47d38344 4101 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
a3437870 4102 BUG_ON(order == 0);
47d38344 4103 h = &hstates[hugetlb_max_hstate++];
29383967 4104 mutex_init(&h->resize_lock);
a3437870 4105 h->order = order;
aca78307 4106 h->mask = ~(huge_page_size(h) - 1);
8faa8b07
AK
4107 for (i = 0; i < MAX_NUMNODES; ++i)
4108 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
0edaecfa 4109 INIT_LIST_HEAD(&h->hugepage_activelist);
54f18d35
AM
4110 h->next_nid_to_alloc = first_memory_node;
4111 h->next_nid_to_free = first_memory_node;
a3437870
NA
4112 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
4113 huge_page_size(h)/1024);
77490587 4114 hugetlb_vmemmap_init(h);
8faa8b07 4115
a3437870
NA
4116 parsed_hstate = h;
4117}
4118
b5389086
ZY
4119bool __init __weak hugetlb_node_alloc_supported(void)
4120{
4121 return true;
4122}
f87442f4
PL
4123
4124static void __init hugepages_clear_pages_in_node(void)
4125{
4126 if (!hugetlb_max_hstate) {
4127 default_hstate_max_huge_pages = 0;
4128 memset(default_hugepages_in_node, 0,
4129 MAX_NUMNODES * sizeof(unsigned int));
4130 } else {
4131 parsed_hstate->max_huge_pages = 0;
4132 memset(parsed_hstate->max_huge_pages_node, 0,
4133 MAX_NUMNODES * sizeof(unsigned int));
4134 }
4135}
4136
282f4214
MK
4137/*
4138 * hugepages command line processing
4139 * hugepages normally follows a valid hugepagsz or default_hugepagsz
4140 * specification. If not, ignore the hugepages value. hugepages can also
4141 * be the first huge page command line option in which case it implicitly
4142 * specifies the number of huge pages for the default size.
4143 */
4144static int __init hugepages_setup(char *s)
a3437870
NA
4145{
4146 unsigned long *mhp;
8faa8b07 4147 static unsigned long *last_mhp;
b5389086
ZY
4148 int node = NUMA_NO_NODE;
4149 int count;
4150 unsigned long tmp;
4151 char *p = s;
a3437870 4152
9fee021d 4153 if (!parsed_valid_hugepagesz) {
282f4214 4154 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
9fee021d 4155 parsed_valid_hugepagesz = true;
f81f6e4b 4156 return 1;
9fee021d 4157 }
282f4214 4158
a3437870 4159 /*
282f4214
MK
4160 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
4161 * yet, so this hugepages= parameter goes to the "default hstate".
4162 * Otherwise, it goes with the previously parsed hugepagesz or
4163 * default_hugepagesz.
a3437870 4164 */
9fee021d 4165 else if (!hugetlb_max_hstate)
a3437870
NA
4166 mhp = &default_hstate_max_huge_pages;
4167 else
4168 mhp = &parsed_hstate->max_huge_pages;
4169
8faa8b07 4170 if (mhp == last_mhp) {
282f4214 4171 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
f81f6e4b 4172 return 1;
8faa8b07
AK
4173 }
4174
b5389086
ZY
4175 while (*p) {
4176 count = 0;
4177 if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4178 goto invalid;
4179 /* Parameter is node format */
4180 if (p[count] == ':') {
4181 if (!hugetlb_node_alloc_supported()) {
4182 pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n");
f81f6e4b 4183 return 1;
b5389086 4184 }
0a7a0f6f 4185 if (tmp >= MAX_NUMNODES || !node_online(tmp))
e79ce983 4186 goto invalid;
0a7a0f6f 4187 node = array_index_nospec(tmp, MAX_NUMNODES);
b5389086 4188 p += count + 1;
b5389086
ZY
4189 /* Parse hugepages */
4190 if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4191 goto invalid;
4192 if (!hugetlb_max_hstate)
4193 default_hugepages_in_node[node] = tmp;
4194 else
4195 parsed_hstate->max_huge_pages_node[node] = tmp;
4196 *mhp += tmp;
4197 /* Go to parse next node*/
4198 if (p[count] == ',')
4199 p += count + 1;
4200 else
4201 break;
4202 } else {
4203 if (p != s)
4204 goto invalid;
4205 *mhp = tmp;
4206 break;
4207 }
4208 }
a3437870 4209
8faa8b07
AK
4210 /*
4211 * Global state is always initialized later in hugetlb_init.
04adbc3f 4212 * But we need to allocate gigantic hstates here early to still
8faa8b07
AK
4213 * use the bootmem allocator.
4214 */
04adbc3f 4215 if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
8faa8b07
AK
4216 hugetlb_hstate_alloc_pages(parsed_hstate);
4217
4218 last_mhp = mhp;
4219
a3437870 4220 return 1;
b5389086
ZY
4221
4222invalid:
4223 pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p);
f87442f4 4224 hugepages_clear_pages_in_node();
f81f6e4b 4225 return 1;
a3437870 4226}
282f4214 4227__setup("hugepages=", hugepages_setup);
e11bfbfc 4228
282f4214
MK
4229/*
4230 * hugepagesz command line processing
4231 * A specific huge page size can only be specified once with hugepagesz.
4232 * hugepagesz is followed by hugepages on the command line. The global
4233 * variable 'parsed_valid_hugepagesz' is used to determine if prior
4234 * hugepagesz argument was valid.
4235 */
359f2544 4236static int __init hugepagesz_setup(char *s)
e11bfbfc 4237{
359f2544 4238 unsigned long size;
282f4214
MK
4239 struct hstate *h;
4240
4241 parsed_valid_hugepagesz = false;
359f2544
MK
4242 size = (unsigned long)memparse(s, NULL);
4243
4244 if (!arch_hugetlb_valid_size(size)) {
282f4214 4245 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
f81f6e4b 4246 return 1;
359f2544
MK
4247 }
4248
282f4214
MK
4249 h = size_to_hstate(size);
4250 if (h) {
4251 /*
4252 * hstate for this size already exists. This is normally
4253 * an error, but is allowed if the existing hstate is the
4254 * default hstate. More specifically, it is only allowed if
4255 * the number of huge pages for the default hstate was not
4256 * previously specified.
4257 */
4258 if (!parsed_default_hugepagesz || h != &default_hstate ||
4259 default_hstate.max_huge_pages) {
4260 pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
f81f6e4b 4261 return 1;
282f4214
MK
4262 }
4263
4264 /*
4265 * No need to call hugetlb_add_hstate() as hstate already
4266 * exists. But, do set parsed_hstate so that a following
4267 * hugepages= parameter will be applied to this hstate.
4268 */
4269 parsed_hstate = h;
4270 parsed_valid_hugepagesz = true;
4271 return 1;
38237830
MK
4272 }
4273
359f2544 4274 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
282f4214 4275 parsed_valid_hugepagesz = true;
e11bfbfc
NP
4276 return 1;
4277}
359f2544
MK
4278__setup("hugepagesz=", hugepagesz_setup);
4279
282f4214
MK
4280/*
4281 * default_hugepagesz command line input
4282 * Only one instance of default_hugepagesz allowed on command line.
4283 */
ae94da89 4284static int __init default_hugepagesz_setup(char *s)
e11bfbfc 4285{
ae94da89 4286 unsigned long size;
b5389086 4287 int i;
ae94da89 4288
282f4214 4289 parsed_valid_hugepagesz = false;
282f4214
MK
4290 if (parsed_default_hugepagesz) {
4291 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
f81f6e4b 4292 return 1;
282f4214
MK
4293 }
4294
ae94da89
MK
4295 size = (unsigned long)memparse(s, NULL);
4296
4297 if (!arch_hugetlb_valid_size(size)) {
282f4214 4298 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
f81f6e4b 4299 return 1;
ae94da89
MK
4300 }
4301
282f4214
MK
4302 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4303 parsed_valid_hugepagesz = true;
4304 parsed_default_hugepagesz = true;
4305 default_hstate_idx = hstate_index(size_to_hstate(size));
4306
4307 /*
4308 * The number of default huge pages (for this size) could have been
4309 * specified as the first hugetlb parameter: hugepages=X. If so,
4310 * then default_hstate_max_huge_pages is set. If the default huge
4311 * page size is gigantic (>= MAX_ORDER), then the pages must be
4312 * allocated here from bootmem allocator.
4313 */
4314 if (default_hstate_max_huge_pages) {
4315 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
0a7a0f6f 4316 for_each_online_node(i)
b5389086
ZY
4317 default_hstate.max_huge_pages_node[i] =
4318 default_hugepages_in_node[i];
282f4214
MK
4319 if (hstate_is_gigantic(&default_hstate))
4320 hugetlb_hstate_alloc_pages(&default_hstate);
4321 default_hstate_max_huge_pages = 0;
4322 }
4323
e11bfbfc
NP
4324 return 1;
4325}
ae94da89 4326__setup("default_hugepagesz=", default_hugepagesz_setup);
a3437870 4327
8ca39e68 4328static unsigned int allowed_mems_nr(struct hstate *h)
8a213460
NA
4329{
4330 int node;
4331 unsigned int nr = 0;
8ca39e68
MS
4332 nodemask_t *mpol_allowed;
4333 unsigned int *array = h->free_huge_pages_node;
4334 gfp_t gfp_mask = htlb_alloc_mask(h);
4335
4336 mpol_allowed = policy_nodemask_current(gfp_mask);
8a213460 4337
8ca39e68 4338 for_each_node_mask(node, cpuset_current_mems_allowed) {
c93b0a99 4339 if (!mpol_allowed || node_isset(node, *mpol_allowed))
8ca39e68
MS
4340 nr += array[node];
4341 }
8a213460
NA
4342
4343 return nr;
4344}
4345
4346#ifdef CONFIG_SYSCTL
17743798
MS
4347static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
4348 void *buffer, size_t *length,
4349 loff_t *ppos, unsigned long *out)
4350{
4351 struct ctl_table dup_table;
4352
4353 /*
4354 * In order to avoid races with __do_proc_doulongvec_minmax(), we
4355 * can duplicate the @table and alter the duplicate of it.
4356 */
4357 dup_table = *table;
4358 dup_table.data = out;
4359
4360 return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
4361}
4362
06808b08
LS
4363static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
4364 struct ctl_table *table, int write,
32927393 4365 void *buffer, size_t *length, loff_t *ppos)
1da177e4 4366{
e5ff2159 4367 struct hstate *h = &default_hstate;
238d3c13 4368 unsigned long tmp = h->max_huge_pages;
08d4a246 4369 int ret;
e5ff2159 4370
457c1b27 4371 if (!hugepages_supported())
86613628 4372 return -EOPNOTSUPP;
457c1b27 4373
17743798
MS
4374 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4375 &tmp);
08d4a246
MH
4376 if (ret)
4377 goto out;
e5ff2159 4378
238d3c13
DR
4379 if (write)
4380 ret = __nr_hugepages_store_common(obey_mempolicy, h,
4381 NUMA_NO_NODE, tmp, *length);
08d4a246
MH
4382out:
4383 return ret;
1da177e4 4384}
396faf03 4385
06808b08 4386int hugetlb_sysctl_handler(struct ctl_table *table, int write,
32927393 4387 void *buffer, size_t *length, loff_t *ppos)
06808b08
LS
4388{
4389
4390 return hugetlb_sysctl_handler_common(false, table, write,
4391 buffer, length, ppos);
4392}
4393
4394#ifdef CONFIG_NUMA
4395int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
32927393 4396 void *buffer, size_t *length, loff_t *ppos)
06808b08
LS
4397{
4398 return hugetlb_sysctl_handler_common(true, table, write,
4399 buffer, length, ppos);
4400}
4401#endif /* CONFIG_NUMA */
4402
a3d0c6aa 4403int hugetlb_overcommit_handler(struct ctl_table *table, int write,
32927393 4404 void *buffer, size_t *length, loff_t *ppos)
a3d0c6aa 4405{
a5516438 4406 struct hstate *h = &default_hstate;
e5ff2159 4407 unsigned long tmp;
08d4a246 4408 int ret;
e5ff2159 4409
457c1b27 4410 if (!hugepages_supported())
86613628 4411 return -EOPNOTSUPP;
457c1b27 4412
c033a93c 4413 tmp = h->nr_overcommit_huge_pages;
e5ff2159 4414
bae7f4ae 4415 if (write && hstate_is_gigantic(h))
adbe8726
EM
4416 return -EINVAL;
4417
17743798
MS
4418 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4419 &tmp);
08d4a246
MH
4420 if (ret)
4421 goto out;
e5ff2159
AK
4422
4423 if (write) {
db71ef79 4424 spin_lock_irq(&hugetlb_lock);
e5ff2159 4425 h->nr_overcommit_huge_pages = tmp;
db71ef79 4426 spin_unlock_irq(&hugetlb_lock);
e5ff2159 4427 }
08d4a246
MH
4428out:
4429 return ret;
a3d0c6aa
NA
4430}
4431
1da177e4
LT
4432#endif /* CONFIG_SYSCTL */
4433
e1759c21 4434void hugetlb_report_meminfo(struct seq_file *m)
1da177e4 4435{
fcb2b0c5
RG
4436 struct hstate *h;
4437 unsigned long total = 0;
4438
457c1b27
NA
4439 if (!hugepages_supported())
4440 return;
fcb2b0c5
RG
4441
4442 for_each_hstate(h) {
4443 unsigned long count = h->nr_huge_pages;
4444
aca78307 4445 total += huge_page_size(h) * count;
fcb2b0c5
RG
4446
4447 if (h == &default_hstate)
4448 seq_printf(m,
4449 "HugePages_Total: %5lu\n"
4450 "HugePages_Free: %5lu\n"
4451 "HugePages_Rsvd: %5lu\n"
4452 "HugePages_Surp: %5lu\n"
4453 "Hugepagesize: %8lu kB\n",
4454 count,
4455 h->free_huge_pages,
4456 h->resv_huge_pages,
4457 h->surplus_huge_pages,
aca78307 4458 huge_page_size(h) / SZ_1K);
fcb2b0c5
RG
4459 }
4460
aca78307 4461 seq_printf(m, "Hugetlb: %8lu kB\n", total / SZ_1K);
1da177e4
LT
4462}
4463
7981593b 4464int hugetlb_report_node_meminfo(char *buf, int len, int nid)
1da177e4 4465{
a5516438 4466 struct hstate *h = &default_hstate;
7981593b 4467
457c1b27
NA
4468 if (!hugepages_supported())
4469 return 0;
7981593b
JP
4470
4471 return sysfs_emit_at(buf, len,
4472 "Node %d HugePages_Total: %5u\n"
4473 "Node %d HugePages_Free: %5u\n"
4474 "Node %d HugePages_Surp: %5u\n",
4475 nid, h->nr_huge_pages_node[nid],
4476 nid, h->free_huge_pages_node[nid],
4477 nid, h->surplus_huge_pages_node[nid]);
1da177e4
LT
4478}
4479
dcadcf1c 4480void hugetlb_show_meminfo_node(int nid)
949f7ec5
DR
4481{
4482 struct hstate *h;
949f7ec5 4483
457c1b27
NA
4484 if (!hugepages_supported())
4485 return;
4486
dcadcf1c
GL
4487 for_each_hstate(h)
4488 printk("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
4489 nid,
4490 h->nr_huge_pages_node[nid],
4491 h->free_huge_pages_node[nid],
4492 h->surplus_huge_pages_node[nid],
4493 huge_page_size(h) / SZ_1K);
949f7ec5
DR
4494}
4495
5d317b2b
NH
4496void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
4497{
4498 seq_printf(m, "HugetlbPages:\t%8lu kB\n",
4499 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
4500}
4501
1da177e4
LT
4502/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
4503unsigned long hugetlb_total_pages(void)
4504{
d0028588
WL
4505 struct hstate *h;
4506 unsigned long nr_total_pages = 0;
4507
4508 for_each_hstate(h)
4509 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
4510 return nr_total_pages;
1da177e4 4511}
1da177e4 4512
a5516438 4513static int hugetlb_acct_memory(struct hstate *h, long delta)
fc1b8a73
MG
4514{
4515 int ret = -ENOMEM;
4516
0aa7f354
ML
4517 if (!delta)
4518 return 0;
4519
db71ef79 4520 spin_lock_irq(&hugetlb_lock);
fc1b8a73
MG
4521 /*
4522 * When cpuset is configured, it breaks the strict hugetlb page
4523 * reservation as the accounting is done on a global variable. Such
4524 * reservation is completely rubbish in the presence of cpuset because
4525 * the reservation is not checked against page availability for the
4526 * current cpuset. Application can still potentially OOM'ed by kernel
4527 * with lack of free htlb page in cpuset that the task is in.
4528 * Attempt to enforce strict accounting with cpuset is almost
4529 * impossible (or too ugly) because cpuset is too fluid that
4530 * task or memory node can be dynamically moved between cpusets.
4531 *
4532 * The change of semantics for shared hugetlb mapping with cpuset is
4533 * undesirable. However, in order to preserve some of the semantics,
4534 * we fall back to check against current free page availability as
4535 * a best attempt and hopefully to minimize the impact of changing
4536 * semantics that cpuset has.
8ca39e68
MS
4537 *
4538 * Apart from cpuset, we also have memory policy mechanism that
4539 * also determines from which node the kernel will allocate memory
4540 * in a NUMA system. So similar to cpuset, we also should consider
4541 * the memory policy of the current task. Similar to the description
4542 * above.
fc1b8a73
MG
4543 */
4544 if (delta > 0) {
a5516438 4545 if (gather_surplus_pages(h, delta) < 0)
fc1b8a73
MG
4546 goto out;
4547
8ca39e68 4548 if (delta > allowed_mems_nr(h)) {
a5516438 4549 return_unused_surplus_pages(h, delta);
fc1b8a73
MG
4550 goto out;
4551 }
4552 }
4553
4554 ret = 0;
4555 if (delta < 0)
a5516438 4556 return_unused_surplus_pages(h, (unsigned long) -delta);
fc1b8a73
MG
4557
4558out:
db71ef79 4559 spin_unlock_irq(&hugetlb_lock);
fc1b8a73
MG
4560 return ret;
4561}
4562
84afd99b
AW
4563static void hugetlb_vm_op_open(struct vm_area_struct *vma)
4564{
f522c3ac 4565 struct resv_map *resv = vma_resv_map(vma);
84afd99b
AW
4566
4567 /*
4568 * This new VMA should share its siblings reservation map if present.
4569 * The VMA will only ever have a valid reservation map pointer where
4570 * it is being copied for another still existing VMA. As that VMA
25985edc 4571 * has a reference to the reservation map it cannot disappear until
84afd99b
AW
4572 * after this open call completes. It is therefore safe to take a
4573 * new reference here without additional locking.
4574 */
09a26e83
MK
4575 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
4576 resv_map_dup_hugetlb_cgroup_uncharge_info(resv);
f522c3ac 4577 kref_get(&resv->refs);
09a26e83 4578 }
84afd99b
AW
4579}
4580
a1e78772
MG
4581static void hugetlb_vm_op_close(struct vm_area_struct *vma)
4582{
a5516438 4583 struct hstate *h = hstate_vma(vma);
f522c3ac 4584 struct resv_map *resv = vma_resv_map(vma);
90481622 4585 struct hugepage_subpool *spool = subpool_vma(vma);
4e35f483 4586 unsigned long reserve, start, end;
1c5ecae3 4587 long gbl_reserve;
84afd99b 4588
4e35f483
JK
4589 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4590 return;
84afd99b 4591
4e35f483
JK
4592 start = vma_hugecache_offset(h, vma, vma->vm_start);
4593 end = vma_hugecache_offset(h, vma, vma->vm_end);
84afd99b 4594
4e35f483 4595 reserve = (end - start) - region_count(resv, start, end);
e9fe92ae 4596 hugetlb_cgroup_uncharge_counter(resv, start, end);
4e35f483 4597 if (reserve) {
1c5ecae3
MK
4598 /*
4599 * Decrement reserve counts. The global reserve count may be
4600 * adjusted if the subpool has a minimum size.
4601 */
4602 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
4603 hugetlb_acct_memory(h, -gbl_reserve);
84afd99b 4604 }
e9fe92ae
MA
4605
4606 kref_put(&resv->refs, resv_map_release);
a1e78772
MG
4607}
4608
31383c68
DW
4609static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
4610{
4611 if (addr & ~(huge_page_mask(hstate_vma(vma))))
4612 return -EINVAL;
4613 return 0;
4614}
4615
05ea8860
DW
4616static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
4617{
aca78307 4618 return huge_page_size(hstate_vma(vma));
05ea8860
DW
4619}
4620
1da177e4
LT
4621/*
4622 * We cannot handle pagefaults against hugetlb pages at all. They cause
4623 * handle_mm_fault() to try to instantiate regular-sized pages in the
6c26d310 4624 * hugepage VMA. do_page_fault() is supposed to trap this, so BUG is we get
1da177e4
LT
4625 * this far.
4626 */
b3ec9f33 4627static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
1da177e4
LT
4628{
4629 BUG();
d0217ac0 4630 return 0;
1da177e4
LT
4631}
4632
eec3636a
JC
4633/*
4634 * When a new function is introduced to vm_operations_struct and added
4635 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
4636 * This is because under System V memory model, mappings created via
4637 * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
4638 * their original vm_ops are overwritten with shm_vm_ops.
4639 */
f0f37e2f 4640const struct vm_operations_struct hugetlb_vm_ops = {
d0217ac0 4641 .fault = hugetlb_vm_op_fault,
84afd99b 4642 .open = hugetlb_vm_op_open,
a1e78772 4643 .close = hugetlb_vm_op_close,
dd3b614f 4644 .may_split = hugetlb_vm_op_split,
05ea8860 4645 .pagesize = hugetlb_vm_op_pagesize,
1da177e4
LT
4646};
4647
1e8f889b
DG
4648static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
4649 int writable)
63551ae0
DG
4650{
4651 pte_t entry;
79c1c594 4652 unsigned int shift = huge_page_shift(hstate_vma(vma));
63551ae0 4653
1e8f889b 4654 if (writable) {
106c992a
GS
4655 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
4656 vma->vm_page_prot)));
63551ae0 4657 } else {
106c992a
GS
4658 entry = huge_pte_wrprotect(mk_huge_pte(page,
4659 vma->vm_page_prot));
63551ae0
DG
4660 }
4661 entry = pte_mkyoung(entry);
79c1c594 4662 entry = arch_make_huge_pte(entry, shift, vma->vm_flags);
63551ae0
DG
4663
4664 return entry;
4665}
4666
1e8f889b
DG
4667static void set_huge_ptep_writable(struct vm_area_struct *vma,
4668 unsigned long address, pte_t *ptep)
4669{
4670 pte_t entry;
4671
106c992a 4672 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
32f84528 4673 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4b3073e1 4674 update_mmu_cache(vma, address, ptep);
1e8f889b
DG
4675}
4676
d5ed7444 4677bool is_hugetlb_entry_migration(pte_t pte)
4a705fef
NH
4678{
4679 swp_entry_t swp;
4680
4681 if (huge_pte_none(pte) || pte_present(pte))
d5ed7444 4682 return false;
4a705fef 4683 swp = pte_to_swp_entry(pte);
d79d176a 4684 if (is_migration_entry(swp))
d5ed7444 4685 return true;
4a705fef 4686 else
d5ed7444 4687 return false;
4a705fef
NH
4688}
4689
3e5c3600 4690static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
4a705fef
NH
4691{
4692 swp_entry_t swp;
4693
4694 if (huge_pte_none(pte) || pte_present(pte))
3e5c3600 4695 return false;
4a705fef 4696 swp = pte_to_swp_entry(pte);
d79d176a 4697 if (is_hwpoison_entry(swp))
3e5c3600 4698 return true;
4a705fef 4699 else
3e5c3600 4700 return false;
4a705fef 4701}
1e8f889b 4702
4eae4efa
PX
4703static void
4704hugetlb_install_page(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
4705 struct page *new_page)
4706{
4707 __SetPageUptodate(new_page);
4eae4efa 4708 hugepage_add_new_anon_rmap(new_page, vma, addr);
1eba86c0 4709 set_huge_pte_at(vma->vm_mm, addr, ptep, make_huge_pte(vma, new_page, 1));
4eae4efa
PX
4710 hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
4711 ClearHPageRestoreReserve(new_page);
4712 SetHPageMigratable(new_page);
4713}
4714
63551ae0 4715int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
bc70fbf2
PX
4716 struct vm_area_struct *dst_vma,
4717 struct vm_area_struct *src_vma)
63551ae0 4718{
5e41540c 4719 pte_t *src_pte, *dst_pte, entry, dst_entry;
63551ae0 4720 struct page *ptepage;
1c59827d 4721 unsigned long addr;
bc70fbf2
PX
4722 bool cow = is_cow_mapping(src_vma->vm_flags);
4723 struct hstate *h = hstate_vma(src_vma);
a5516438 4724 unsigned long sz = huge_page_size(h);
4eae4efa 4725 unsigned long npages = pages_per_huge_page(h);
bc70fbf2 4726 struct address_space *mapping = src_vma->vm_file->f_mapping;
ac46d4f3 4727 struct mmu_notifier_range range;
e95a9851 4728 unsigned long last_addr_mask;
e8569dd2 4729 int ret = 0;
1e8f889b 4730
ac46d4f3 4731 if (cow) {
bc70fbf2
PX
4732 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src_vma, src,
4733 src_vma->vm_start,
4734 src_vma->vm_end);
ac46d4f3 4735 mmu_notifier_invalidate_range_start(&range);
623a1ddf
DH
4736 mmap_assert_write_locked(src);
4737 raw_write_seqcount_begin(&src->write_protect_seq);
c0d0381a
MK
4738 } else {
4739 /*
4740 * For shared mappings i_mmap_rwsem must be held to call
4741 * huge_pte_alloc, otherwise the returned ptep could go
4742 * away if part of a shared pmd and another thread calls
4743 * huge_pmd_unshare.
4744 */
4745 i_mmap_lock_read(mapping);
ac46d4f3 4746 }
e8569dd2 4747
e95a9851 4748 last_addr_mask = hugetlb_mask_last_page(h);
bc70fbf2 4749 for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) {
cb900f41 4750 spinlock_t *src_ptl, *dst_ptl;
7868a208 4751 src_pte = huge_pte_offset(src, addr, sz);
e95a9851
MK
4752 if (!src_pte) {
4753 addr |= last_addr_mask;
c74df32c 4754 continue;
e95a9851 4755 }
bc70fbf2 4756 dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz);
e8569dd2
AS
4757 if (!dst_pte) {
4758 ret = -ENOMEM;
4759 break;
4760 }
c5c99429 4761
5e41540c
MK
4762 /*
4763 * If the pagetables are shared don't copy or take references.
4764 * dst_pte == src_pte is the common case of src/dest sharing.
4765 *
4766 * However, src could have 'unshared' and dst shares with
4767 * another vma. If dst_pte !none, this implies sharing.
4768 * Check here before taking page table lock, and once again
4769 * after taking the lock below.
4770 */
4771 dst_entry = huge_ptep_get(dst_pte);
e95a9851
MK
4772 if ((dst_pte == src_pte) || !huge_pte_none(dst_entry)) {
4773 addr |= last_addr_mask;
c5c99429 4774 continue;
e95a9851 4775 }
c5c99429 4776
cb900f41
KS
4777 dst_ptl = huge_pte_lock(h, dst, dst_pte);
4778 src_ptl = huge_pte_lockptr(h, src, src_pte);
4779 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4a705fef 4780 entry = huge_ptep_get(src_pte);
5e41540c 4781 dst_entry = huge_ptep_get(dst_pte);
4eae4efa 4782again:
5e41540c
MK
4783 if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
4784 /*
4785 * Skip if src entry none. Also, skip in the
4786 * unlikely case dst entry !none as this implies
4787 * sharing with another vma.
4788 */
4a705fef 4789 ;
c2cb0dcc
NH
4790 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) {
4791 bool uffd_wp = huge_pte_uffd_wp(entry);
4792
4793 if (!userfaultfd_wp(dst_vma) && uffd_wp)
4794 entry = huge_pte_clear_uffd_wp(entry);
4795 set_huge_pte_at(dst, addr, dst_pte, entry);
4796 } else if (unlikely(is_hugetlb_entry_migration(entry))) {
4a705fef 4797 swp_entry_t swp_entry = pte_to_swp_entry(entry);
bc70fbf2 4798 bool uffd_wp = huge_pte_uffd_wp(entry);
4a705fef 4799
6c287605 4800 if (!is_readable_migration_entry(swp_entry) && cow) {
4a705fef
NH
4801 /*
4802 * COW mappings require pages in both
4803 * parent and child to be set to read.
4804 */
4dd845b5
AP
4805 swp_entry = make_readable_migration_entry(
4806 swp_offset(swp_entry));
4a705fef 4807 entry = swp_entry_to_pte(swp_entry);
bc70fbf2
PX
4808 if (userfaultfd_wp(src_vma) && uffd_wp)
4809 entry = huge_pte_mkuffd_wp(entry);
18f39629 4810 set_huge_pte_at(src, addr, src_pte, entry);
4a705fef 4811 }
bc70fbf2
PX
4812 if (!userfaultfd_wp(dst_vma) && uffd_wp)
4813 entry = huge_pte_clear_uffd_wp(entry);
18f39629 4814 set_huge_pte_at(dst, addr, dst_pte, entry);
bc70fbf2
PX
4815 } else if (unlikely(is_pte_marker(entry))) {
4816 /*
4817 * We copy the pte marker only if the dst vma has
4818 * uffd-wp enabled.
4819 */
4820 if (userfaultfd_wp(dst_vma))
4821 set_huge_pte_at(dst, addr, dst_pte, entry);
4a705fef 4822 } else {
4eae4efa
PX
4823 entry = huge_ptep_get(src_pte);
4824 ptepage = pte_page(entry);
4825 get_page(ptepage);
4826
4827 /*
fb3d824d
DH
4828 * Failing to duplicate the anon rmap is a rare case
4829 * where we see pinned hugetlb pages while they're
4830 * prone to COW. We need to do the COW earlier during
4831 * fork.
4eae4efa
PX
4832 *
4833 * When pre-allocating the page or copying data, we
4834 * need to be without the pgtable locks since we could
4835 * sleep during the process.
4836 */
fb3d824d
DH
4837 if (!PageAnon(ptepage)) {
4838 page_dup_file_rmap(ptepage, true);
bc70fbf2
PX
4839 } else if (page_try_dup_anon_rmap(ptepage, true,
4840 src_vma)) {
4eae4efa
PX
4841 pte_t src_pte_old = entry;
4842 struct page *new;
4843
4844 spin_unlock(src_ptl);
4845 spin_unlock(dst_ptl);
4846 /* Do not use reserve as it's private owned */
bc70fbf2 4847 new = alloc_huge_page(dst_vma, addr, 1);
4eae4efa
PX
4848 if (IS_ERR(new)) {
4849 put_page(ptepage);
4850 ret = PTR_ERR(new);
4851 break;
4852 }
bc70fbf2 4853 copy_user_huge_page(new, ptepage, addr, dst_vma,
4eae4efa
PX
4854 npages);
4855 put_page(ptepage);
4856
4857 /* Install the new huge page if src pte stable */
4858 dst_ptl = huge_pte_lock(h, dst, dst_pte);
4859 src_ptl = huge_pte_lockptr(h, src, src_pte);
4860 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4861 entry = huge_ptep_get(src_pte);
4862 if (!pte_same(src_pte_old, entry)) {
bc70fbf2 4863 restore_reserve_on_error(h, dst_vma, addr,
846be085 4864 new);
4eae4efa
PX
4865 put_page(new);
4866 /* dst_entry won't change as in child */
4867 goto again;
4868 }
bc70fbf2 4869 hugetlb_install_page(dst_vma, dst_pte, addr, new);
4eae4efa
PX
4870 spin_unlock(src_ptl);
4871 spin_unlock(dst_ptl);
4872 continue;
4873 }
4874
34ee645e 4875 if (cow) {
0f10851e
JG
4876 /*
4877 * No need to notify as we are downgrading page
4878 * table protection not changing it to point
4879 * to a new page.
4880 *
ee65728e 4881 * See Documentation/mm/mmu_notifier.rst
0f10851e 4882 */
7f2e9525 4883 huge_ptep_set_wrprotect(src, addr, src_pte);
84894e1c 4884 entry = huge_pte_wrprotect(entry);
34ee645e 4885 }
4eae4efa 4886
1c59827d 4887 set_huge_pte_at(dst, addr, dst_pte, entry);
4eae4efa 4888 hugetlb_count_add(npages, dst);
1c59827d 4889 }
cb900f41
KS
4890 spin_unlock(src_ptl);
4891 spin_unlock(dst_ptl);
63551ae0 4892 }
63551ae0 4893
623a1ddf
DH
4894 if (cow) {
4895 raw_write_seqcount_end(&src->write_protect_seq);
ac46d4f3 4896 mmu_notifier_invalidate_range_end(&range);
623a1ddf 4897 } else {
c0d0381a 4898 i_mmap_unlock_read(mapping);
623a1ddf 4899 }
e8569dd2
AS
4900
4901 return ret;
63551ae0
DG
4902}
4903
550a7d60 4904static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr,
db110a99 4905 unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte)
550a7d60
MA
4906{
4907 struct hstate *h = hstate_vma(vma);
4908 struct mm_struct *mm = vma->vm_mm;
550a7d60 4909 spinlock_t *src_ptl, *dst_ptl;
db110a99 4910 pte_t pte;
550a7d60 4911
550a7d60
MA
4912 dst_ptl = huge_pte_lock(h, mm, dst_pte);
4913 src_ptl = huge_pte_lockptr(h, mm, src_pte);
4914
4915 /*
4916 * We don't have to worry about the ordering of src and dst ptlocks
4917 * because exclusive mmap_sem (or the i_mmap_lock) prevents deadlock.
4918 */
4919 if (src_ptl != dst_ptl)
4920 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4921
4922 pte = huge_ptep_get_and_clear(mm, old_addr, src_pte);
4923 set_huge_pte_at(mm, new_addr, dst_pte, pte);
4924
4925 if (src_ptl != dst_ptl)
4926 spin_unlock(src_ptl);
4927 spin_unlock(dst_ptl);
4928}
4929
4930int move_hugetlb_page_tables(struct vm_area_struct *vma,
4931 struct vm_area_struct *new_vma,
4932 unsigned long old_addr, unsigned long new_addr,
4933 unsigned long len)
4934{
4935 struct hstate *h = hstate_vma(vma);
4936 struct address_space *mapping = vma->vm_file->f_mapping;
4937 unsigned long sz = huge_page_size(h);
4938 struct mm_struct *mm = vma->vm_mm;
4939 unsigned long old_end = old_addr + len;
e95a9851 4940 unsigned long last_addr_mask;
550a7d60
MA
4941 pte_t *src_pte, *dst_pte;
4942 struct mmu_notifier_range range;
3d0b95cd 4943 bool shared_pmd = false;
550a7d60
MA
4944
4945 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, old_addr,
4946 old_end);
4947 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
3d0b95cd
BW
4948 /*
4949 * In case of shared PMDs, we should cover the maximum possible
4950 * range.
4951 */
4952 flush_cache_range(vma, range.start, range.end);
4953
550a7d60 4954 mmu_notifier_invalidate_range_start(&range);
e95a9851 4955 last_addr_mask = hugetlb_mask_last_page(h);
550a7d60
MA
4956 /* Prevent race with file truncation */
4957 i_mmap_lock_write(mapping);
4958 for (; old_addr < old_end; old_addr += sz, new_addr += sz) {
4959 src_pte = huge_pte_offset(mm, old_addr, sz);
e95a9851
MK
4960 if (!src_pte) {
4961 old_addr |= last_addr_mask;
4962 new_addr |= last_addr_mask;
550a7d60 4963 continue;
e95a9851 4964 }
550a7d60
MA
4965 if (huge_pte_none(huge_ptep_get(src_pte)))
4966 continue;
4967
4ddb4d91 4968 if (huge_pmd_unshare(mm, vma, old_addr, src_pte)) {
3d0b95cd 4969 shared_pmd = true;
4ddb4d91
MK
4970 old_addr |= last_addr_mask;
4971 new_addr |= last_addr_mask;
550a7d60 4972 continue;
3d0b95cd 4973 }
550a7d60
MA
4974
4975 dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz);
4976 if (!dst_pte)
4977 break;
4978
db110a99 4979 move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte);
550a7d60 4980 }
3d0b95cd
BW
4981
4982 if (shared_pmd)
4983 flush_tlb_range(vma, range.start, range.end);
4984 else
4985 flush_tlb_range(vma, old_end - len, old_end);
550a7d60 4986 mmu_notifier_invalidate_range_end(&range);
13e4ad2c 4987 i_mmap_unlock_write(mapping);
550a7d60
MA
4988
4989 return len + old_addr - old_end;
4990}
4991
73c54763
PX
4992static void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
4993 unsigned long start, unsigned long end,
05e90bd0 4994 struct page *ref_page, zap_flags_t zap_flags)
63551ae0
DG
4995{
4996 struct mm_struct *mm = vma->vm_mm;
4997 unsigned long address;
c7546f8f 4998 pte_t *ptep;
63551ae0 4999 pte_t pte;
cb900f41 5000 spinlock_t *ptl;
63551ae0 5001 struct page *page;
a5516438
AK
5002 struct hstate *h = hstate_vma(vma);
5003 unsigned long sz = huge_page_size(h);
ac46d4f3 5004 struct mmu_notifier_range range;
e95a9851 5005 unsigned long last_addr_mask;
a4a118f2 5006 bool force_flush = false;
a5516438 5007
63551ae0 5008 WARN_ON(!is_vm_hugetlb_page(vma));
a5516438
AK
5009 BUG_ON(start & ~huge_page_mask(h));
5010 BUG_ON(end & ~huge_page_mask(h));
63551ae0 5011
07e32661
AK
5012 /*
5013 * This is a hugetlb vma, all the pte entries should point
5014 * to huge page.
5015 */
ed6a7935 5016 tlb_change_page_size(tlb, sz);
24669e58 5017 tlb_start_vma(tlb, vma);
dff11abe
MK
5018
5019 /*
5020 * If sharing possible, alert mmu notifiers of worst case.
5021 */
6f4f13e8
JG
5022 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
5023 end);
ac46d4f3
JG
5024 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5025 mmu_notifier_invalidate_range_start(&range);
e95a9851 5026 last_addr_mask = hugetlb_mask_last_page(h);
569f48b8 5027 address = start;
569f48b8 5028 for (; address < end; address += sz) {
7868a208 5029 ptep = huge_pte_offset(mm, address, sz);
e95a9851
MK
5030 if (!ptep) {
5031 address |= last_addr_mask;
c7546f8f 5032 continue;
e95a9851 5033 }
c7546f8f 5034
cb900f41 5035 ptl = huge_pte_lock(h, mm, ptep);
4ddb4d91 5036 if (huge_pmd_unshare(mm, vma, address, ptep)) {
31d49da5 5037 spin_unlock(ptl);
a4a118f2
NA
5038 tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE);
5039 force_flush = true;
4ddb4d91 5040 address |= last_addr_mask;
31d49da5
AK
5041 continue;
5042 }
39dde65c 5043
6629326b 5044 pte = huge_ptep_get(ptep);
31d49da5
AK
5045 if (huge_pte_none(pte)) {
5046 spin_unlock(ptl);
5047 continue;
5048 }
6629326b
HD
5049
5050 /*
9fbc1f63
NH
5051 * Migrating hugepage or HWPoisoned hugepage is already
5052 * unmapped and its refcount is dropped, so just clear pte here.
6629326b 5053 */
9fbc1f63 5054 if (unlikely(!pte_present(pte))) {
05e90bd0
PX
5055 /*
5056 * If the pte was wr-protected by uffd-wp in any of the
5057 * swap forms, meanwhile the caller does not want to
5058 * drop the uffd-wp bit in this zap, then replace the
5059 * pte with a marker.
5060 */
5061 if (pte_swp_uffd_wp_any(pte) &&
5062 !(zap_flags & ZAP_FLAG_DROP_MARKER))
5063 set_huge_pte_at(mm, address, ptep,
5064 make_pte_marker(PTE_MARKER_UFFD_WP));
5065 else
5066 huge_pte_clear(mm, address, ptep, sz);
31d49da5
AK
5067 spin_unlock(ptl);
5068 continue;
8c4894c6 5069 }
6629326b
HD
5070
5071 page = pte_page(pte);
04f2cbe3
MG
5072 /*
5073 * If a reference page is supplied, it is because a specific
5074 * page is being unmapped, not a range. Ensure the page we
5075 * are about to unmap is the actual page of interest.
5076 */
5077 if (ref_page) {
31d49da5
AK
5078 if (page != ref_page) {
5079 spin_unlock(ptl);
5080 continue;
5081 }
04f2cbe3
MG
5082 /*
5083 * Mark the VMA as having unmapped its page so that
5084 * future faults in this VMA will fail rather than
5085 * looking like data was lost
5086 */
5087 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
5088 }
5089
c7546f8f 5090 pte = huge_ptep_get_and_clear(mm, address, ptep);
b528e4b6 5091 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
106c992a 5092 if (huge_pte_dirty(pte))
6649a386 5093 set_page_dirty(page);
05e90bd0
PX
5094 /* Leave a uffd-wp pte marker if needed */
5095 if (huge_pte_uffd_wp(pte) &&
5096 !(zap_flags & ZAP_FLAG_DROP_MARKER))
5097 set_huge_pte_at(mm, address, ptep,
5098 make_pte_marker(PTE_MARKER_UFFD_WP));
5d317b2b 5099 hugetlb_count_sub(pages_per_huge_page(h), mm);
cea86fe2 5100 page_remove_rmap(page, vma, true);
31d49da5 5101
cb900f41 5102 spin_unlock(ptl);
e77b0852 5103 tlb_remove_page_size(tlb, page, huge_page_size(h));
31d49da5
AK
5104 /*
5105 * Bail out after unmapping reference page if supplied
5106 */
5107 if (ref_page)
5108 break;
fe1668ae 5109 }
ac46d4f3 5110 mmu_notifier_invalidate_range_end(&range);
24669e58 5111 tlb_end_vma(tlb, vma);
a4a118f2
NA
5112
5113 /*
5114 * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We
5115 * could defer the flush until now, since by holding i_mmap_rwsem we
5116 * guaranteed that the last refernece would not be dropped. But we must
5117 * do the flushing before we return, as otherwise i_mmap_rwsem will be
5118 * dropped and the last reference to the shared PMDs page might be
5119 * dropped as well.
5120 *
5121 * In theory we could defer the freeing of the PMD pages as well, but
5122 * huge_pmd_unshare() relies on the exact page_count for the PMD page to
5123 * detect sharing, so we cannot defer the release of the page either.
5124 * Instead, do flush now.
5125 */
5126 if (force_flush)
5127 tlb_flush_mmu_tlbonly(tlb);
1da177e4 5128}
63551ae0 5129
d833352a
MG
5130void __unmap_hugepage_range_final(struct mmu_gather *tlb,
5131 struct vm_area_struct *vma, unsigned long start,
05e90bd0
PX
5132 unsigned long end, struct page *ref_page,
5133 zap_flags_t zap_flags)
d833352a 5134{
05e90bd0 5135 __unmap_hugepage_range(tlb, vma, start, end, ref_page, zap_flags);
d833352a
MG
5136
5137 /*
5138 * Clear this flag so that x86's huge_pmd_share page_table_shareable
5139 * test will fail on a vma being torn down, and not grab a page table
5140 * on its way out. We're lucky that the flag has such an appropriate
5141 * name, and can in fact be safely cleared here. We could clear it
5142 * before the __unmap_hugepage_range above, but all that's necessary
c8c06efa 5143 * is to clear it before releasing the i_mmap_rwsem. This works
d833352a 5144 * because in the context this is called, the VMA is about to be
c8c06efa 5145 * destroyed and the i_mmap_rwsem is held.
d833352a
MG
5146 */
5147 vma->vm_flags &= ~VM_MAYSHARE;
5148}
5149
502717f4 5150void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
05e90bd0
PX
5151 unsigned long end, struct page *ref_page,
5152 zap_flags_t zap_flags)
502717f4 5153{
24669e58 5154 struct mmu_gather tlb;
dff11abe 5155
a72afd87 5156 tlb_gather_mmu(&tlb, vma->vm_mm);
05e90bd0 5157 __unmap_hugepage_range(&tlb, vma, start, end, ref_page, zap_flags);
ae8eba8b 5158 tlb_finish_mmu(&tlb);
502717f4
CK
5159}
5160
04f2cbe3
MG
5161/*
5162 * This is called when the original mapper is failing to COW a MAP_PRIVATE
578b7725 5163 * mapping it owns the reserve page for. The intention is to unmap the page
04f2cbe3
MG
5164 * from other VMAs and let the children be SIGKILLed if they are faulting the
5165 * same region.
5166 */
2f4612af
DB
5167static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
5168 struct page *page, unsigned long address)
04f2cbe3 5169{
7526674d 5170 struct hstate *h = hstate_vma(vma);
04f2cbe3
MG
5171 struct vm_area_struct *iter_vma;
5172 struct address_space *mapping;
04f2cbe3
MG
5173 pgoff_t pgoff;
5174
5175 /*
5176 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
5177 * from page cache lookup which is in HPAGE_SIZE units.
5178 */
7526674d 5179 address = address & huge_page_mask(h);
36e4f20a
MH
5180 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
5181 vma->vm_pgoff;
93c76a3d 5182 mapping = vma->vm_file->f_mapping;
04f2cbe3 5183
4eb2b1dc
MG
5184 /*
5185 * Take the mapping lock for the duration of the table walk. As
5186 * this mapping should be shared between all the VMAs,
5187 * __unmap_hugepage_range() is called as the lock is already held
5188 */
83cde9e8 5189 i_mmap_lock_write(mapping);
6b2dbba8 5190 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
04f2cbe3
MG
5191 /* Do not unmap the current VMA */
5192 if (iter_vma == vma)
5193 continue;
5194
2f84a899
MG
5195 /*
5196 * Shared VMAs have their own reserves and do not affect
5197 * MAP_PRIVATE accounting but it is possible that a shared
5198 * VMA is using the same page so check and skip such VMAs.
5199 */
5200 if (iter_vma->vm_flags & VM_MAYSHARE)
5201 continue;
5202
04f2cbe3
MG
5203 /*
5204 * Unmap the page from other VMAs without their own reserves.
5205 * They get marked to be SIGKILLed if they fault in these
5206 * areas. This is because a future no-page fault on this VMA
5207 * could insert a zeroed page instead of the data existing
5208 * from the time of fork. This would look like data corruption
5209 */
5210 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
24669e58 5211 unmap_hugepage_range(iter_vma, address,
05e90bd0 5212 address + huge_page_size(h), page, 0);
04f2cbe3 5213 }
83cde9e8 5214 i_mmap_unlock_write(mapping);
04f2cbe3
MG
5215}
5216
0fe6e20b 5217/*
c89357e2 5218 * hugetlb_wp() should be called with page lock of the original hugepage held.
aa6d2e8c 5219 * Called with hugetlb_fault_mutex_table held and pte_page locked so we
ef009b25
MH
5220 * cannot race with other handlers or page migration.
5221 * Keep the pte_same checks anyway to make transition from the mutex easier.
0fe6e20b 5222 */
c89357e2
DH
5223static vm_fault_t hugetlb_wp(struct mm_struct *mm, struct vm_area_struct *vma,
5224 unsigned long address, pte_t *ptep, unsigned int flags,
3999f52e 5225 struct page *pagecache_page, spinlock_t *ptl)
1e8f889b 5226{
c89357e2 5227 const bool unshare = flags & FAULT_FLAG_UNSHARE;
3999f52e 5228 pte_t pte;
a5516438 5229 struct hstate *h = hstate_vma(vma);
1e8f889b 5230 struct page *old_page, *new_page;
2b740303
SJ
5231 int outside_reserve = 0;
5232 vm_fault_t ret = 0;
974e6d66 5233 unsigned long haddr = address & huge_page_mask(h);
ac46d4f3 5234 struct mmu_notifier_range range;
1e8f889b 5235
c89357e2
DH
5236 VM_BUG_ON(unshare && (flags & FOLL_WRITE));
5237 VM_BUG_ON(!unshare && !(flags & FOLL_WRITE));
5238
3999f52e 5239 pte = huge_ptep_get(ptep);
1e8f889b
DG
5240 old_page = pte_page(pte);
5241
662ce1dc
YY
5242 delayacct_wpcopy_start();
5243
04f2cbe3 5244retry_avoidcopy:
c89357e2
DH
5245 /*
5246 * If no-one else is actually using this page, we're the exclusive
5247 * owner and can reuse this page.
5248 */
37a2140d 5249 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
c89357e2
DH
5250 if (!PageAnonExclusive(old_page))
5251 page_move_anon_rmap(old_page, vma);
5252 if (likely(!unshare))
5253 set_huge_ptep_writable(vma, haddr, ptep);
662ce1dc
YY
5254
5255 delayacct_wpcopy_end();
83c54070 5256 return 0;
1e8f889b 5257 }
6c287605
DH
5258 VM_BUG_ON_PAGE(PageAnon(old_page) && PageAnonExclusive(old_page),
5259 old_page);
1e8f889b 5260
04f2cbe3
MG
5261 /*
5262 * If the process that created a MAP_PRIVATE mapping is about to
5263 * perform a COW due to a shared page count, attempt to satisfy
5264 * the allocation without using the existing reserves. The pagecache
5265 * page is used to determine if the reserve at this address was
5266 * consumed or not. If reserves were used, a partial faulted mapping
5267 * at the time of fork() could consume its reserves on COW instead
5268 * of the full address range.
5269 */
5944d011 5270 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
04f2cbe3
MG
5271 old_page != pagecache_page)
5272 outside_reserve = 1;
5273
09cbfeaf 5274 get_page(old_page);
b76c8cfb 5275
ad4404a2
DB
5276 /*
5277 * Drop page table lock as buddy allocator may be called. It will
5278 * be acquired again before returning to the caller, as expected.
5279 */
cb900f41 5280 spin_unlock(ptl);
5b7a1d40 5281 new_page = alloc_huge_page(vma, haddr, outside_reserve);
1e8f889b 5282
2fc39cec 5283 if (IS_ERR(new_page)) {
04f2cbe3
MG
5284 /*
5285 * If a process owning a MAP_PRIVATE mapping fails to COW,
5286 * it is due to references held by a child and an insufficient
5287 * huge page pool. To guarantee the original mappers
5288 * reliability, unmap the page from child processes. The child
5289 * may get SIGKILLed if it later faults.
5290 */
5291 if (outside_reserve) {
e7dd91c4
MK
5292 struct address_space *mapping = vma->vm_file->f_mapping;
5293 pgoff_t idx;
5294 u32 hash;
5295
09cbfeaf 5296 put_page(old_page);
04f2cbe3 5297 BUG_ON(huge_pte_none(pte));
e7dd91c4
MK
5298 /*
5299 * Drop hugetlb_fault_mutex and i_mmap_rwsem before
5300 * unmapping. unmapping needs to hold i_mmap_rwsem
5301 * in write mode. Dropping i_mmap_rwsem in read mode
5302 * here is OK as COW mappings do not interact with
5303 * PMD sharing.
5304 *
5305 * Reacquire both after unmap operation.
5306 */
5307 idx = vma_hugecache_offset(h, vma, haddr);
5308 hash = hugetlb_fault_mutex_hash(mapping, idx);
5309 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5310 i_mmap_unlock_read(mapping);
5311
5b7a1d40 5312 unmap_ref_private(mm, vma, old_page, haddr);
e7dd91c4
MK
5313
5314 i_mmap_lock_read(mapping);
5315 mutex_lock(&hugetlb_fault_mutex_table[hash]);
2f4612af 5316 spin_lock(ptl);
5b7a1d40 5317 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
2f4612af
DB
5318 if (likely(ptep &&
5319 pte_same(huge_ptep_get(ptep), pte)))
5320 goto retry_avoidcopy;
5321 /*
5322 * race occurs while re-acquiring page table
5323 * lock, and our job is done.
5324 */
662ce1dc 5325 delayacct_wpcopy_end();
2f4612af 5326 return 0;
04f2cbe3
MG
5327 }
5328
2b740303 5329 ret = vmf_error(PTR_ERR(new_page));
ad4404a2 5330 goto out_release_old;
1e8f889b
DG
5331 }
5332
0fe6e20b
NH
5333 /*
5334 * When the original hugepage is shared one, it does not have
5335 * anon_vma prepared.
5336 */
44e2aa93 5337 if (unlikely(anon_vma_prepare(vma))) {
ad4404a2
DB
5338 ret = VM_FAULT_OOM;
5339 goto out_release_all;
44e2aa93 5340 }
0fe6e20b 5341
974e6d66 5342 copy_user_huge_page(new_page, old_page, address, vma,
47ad8475 5343 pages_per_huge_page(h));
0ed361de 5344 __SetPageUptodate(new_page);
1e8f889b 5345
7269f999 5346 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
6f4f13e8 5347 haddr + huge_page_size(h));
ac46d4f3 5348 mmu_notifier_invalidate_range_start(&range);
ad4404a2 5349
b76c8cfb 5350 /*
cb900f41 5351 * Retake the page table lock to check for racing updates
b76c8cfb
LW
5352 * before the page tables are altered
5353 */
cb900f41 5354 spin_lock(ptl);
5b7a1d40 5355 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
a9af0c5d 5356 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
d6995da3 5357 ClearHPageRestoreReserve(new_page);
07443a85 5358
c89357e2 5359 /* Break COW or unshare */
5b7a1d40 5360 huge_ptep_clear_flush(vma, haddr, ptep);
ac46d4f3 5361 mmu_notifier_invalidate_range(mm, range.start, range.end);
cea86fe2 5362 page_remove_rmap(old_page, vma, true);
5b7a1d40 5363 hugepage_add_new_anon_rmap(new_page, vma, haddr);
1eba86c0 5364 set_huge_pte_at(mm, haddr, ptep,
c89357e2 5365 make_huge_pte(vma, new_page, !unshare));
8f251a3d 5366 SetHPageMigratable(new_page);
1e8f889b
DG
5367 /* Make the old page be freed below */
5368 new_page = old_page;
5369 }
cb900f41 5370 spin_unlock(ptl);
ac46d4f3 5371 mmu_notifier_invalidate_range_end(&range);
ad4404a2 5372out_release_all:
c89357e2
DH
5373 /*
5374 * No restore in case of successful pagetable update (Break COW or
5375 * unshare)
5376 */
c7b1850d
MK
5377 if (new_page != old_page)
5378 restore_reserve_on_error(h, vma, haddr, new_page);
09cbfeaf 5379 put_page(new_page);
ad4404a2 5380out_release_old:
09cbfeaf 5381 put_page(old_page);
8312034f 5382
ad4404a2 5383 spin_lock(ptl); /* Caller expects lock to be held */
662ce1dc
YY
5384
5385 delayacct_wpcopy_end();
ad4404a2 5386 return ret;
1e8f889b
DG
5387}
5388
04f2cbe3 5389/* Return the pagecache page at a given address within a VMA */
a5516438
AK
5390static struct page *hugetlbfs_pagecache_page(struct hstate *h,
5391 struct vm_area_struct *vma, unsigned long address)
04f2cbe3
MG
5392{
5393 struct address_space *mapping;
e7c4b0bf 5394 pgoff_t idx;
04f2cbe3
MG
5395
5396 mapping = vma->vm_file->f_mapping;
a5516438 5397 idx = vma_hugecache_offset(h, vma, address);
04f2cbe3
MG
5398
5399 return find_lock_page(mapping, idx);
5400}
5401
3ae77f43
HD
5402/*
5403 * Return whether there is a pagecache page to back given address within VMA.
5404 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
5405 */
5406static bool hugetlbfs_pagecache_present(struct hstate *h,
2a15efc9
HD
5407 struct vm_area_struct *vma, unsigned long address)
5408{
5409 struct address_space *mapping;
5410 pgoff_t idx;
5411 struct page *page;
5412
5413 mapping = vma->vm_file->f_mapping;
5414 idx = vma_hugecache_offset(h, vma, address);
5415
5416 page = find_get_page(mapping, idx);
5417 if (page)
5418 put_page(page);
5419 return page != NULL;
5420}
5421
ab76ad54
MK
5422int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
5423 pgoff_t idx)
5424{
d9ef44de 5425 struct folio *folio = page_folio(page);
ab76ad54
MK
5426 struct inode *inode = mapping->host;
5427 struct hstate *h = hstate_inode(inode);
d9ef44de 5428 int err;
ab76ad54 5429
d9ef44de
MWO
5430 __folio_set_locked(folio);
5431 err = __filemap_add_folio(mapping, folio, idx, GFP_KERNEL, NULL);
5432
5433 if (unlikely(err)) {
5434 __folio_clear_locked(folio);
ab76ad54 5435 return err;
d9ef44de 5436 }
d6995da3 5437 ClearHPageRestoreReserve(page);
ab76ad54 5438
22146c3c 5439 /*
d9ef44de 5440 * mark folio dirty so that it will not be removed from cache/file
22146c3c
MK
5441 * by non-hugetlbfs specific code paths.
5442 */
d9ef44de 5443 folio_mark_dirty(folio);
22146c3c 5444
ab76ad54
MK
5445 spin_lock(&inode->i_lock);
5446 inode->i_blocks += blocks_per_huge_page(h);
5447 spin_unlock(&inode->i_lock);
5448 return 0;
5449}
5450
7677f7fd
AR
5451static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma,
5452 struct address_space *mapping,
5453 pgoff_t idx,
5454 unsigned int flags,
5455 unsigned long haddr,
824ddc60 5456 unsigned long addr,
7677f7fd
AR
5457 unsigned long reason)
5458{
5459 vm_fault_t ret;
5460 u32 hash;
5461 struct vm_fault vmf = {
5462 .vma = vma,
5463 .address = haddr,
824ddc60 5464 .real_address = addr,
7677f7fd
AR
5465 .flags = flags,
5466
5467 /*
5468 * Hard to debug if it ends up being
5469 * used by a callee that assumes
5470 * something about the other
5471 * uninitialized fields... same as in
5472 * memory.c
5473 */
5474 };
5475
5476 /*
5477 * hugetlb_fault_mutex and i_mmap_rwsem must be
5478 * dropped before handling userfault. Reacquire
5479 * after handling fault to make calling code simpler.
5480 */
5481 hash = hugetlb_fault_mutex_hash(mapping, idx);
5482 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5483 i_mmap_unlock_read(mapping);
5484 ret = handle_userfault(&vmf, reason);
5485 i_mmap_lock_read(mapping);
5486 mutex_lock(&hugetlb_fault_mutex_table[hash]);
5487
5488 return ret;
5489}
5490
2b740303
SJ
5491static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
5492 struct vm_area_struct *vma,
5493 struct address_space *mapping, pgoff_t idx,
c64e912c
PX
5494 unsigned long address, pte_t *ptep,
5495 pte_t old_pte, unsigned int flags)
ac9b9c66 5496{
a5516438 5497 struct hstate *h = hstate_vma(vma);
2b740303 5498 vm_fault_t ret = VM_FAULT_SIGBUS;
409eb8c2 5499 int anon_rmap = 0;
4c887265 5500 unsigned long size;
4c887265 5501 struct page *page;
1e8f889b 5502 pte_t new_pte;
cb900f41 5503 spinlock_t *ptl;
285b8dca 5504 unsigned long haddr = address & huge_page_mask(h);
c7b1850d 5505 bool new_page, new_pagecache_page = false;
4c887265 5506
04f2cbe3
MG
5507 /*
5508 * Currently, we are forced to kill the process in the event the
5509 * original mapper has unmapped pages from the child due to a failed
c89357e2
DH
5510 * COW/unsharing. Warn that such a situation has occurred as it may not
5511 * be obvious.
04f2cbe3
MG
5512 */
5513 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
910154d5 5514 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
ffb22af5 5515 current->pid);
04f2cbe3
MG
5516 return ret;
5517 }
5518
4c887265 5519 /*
87bf91d3
MK
5520 * We can not race with truncation due to holding i_mmap_rwsem.
5521 * i_size is modified when holding i_mmap_rwsem, so check here
5522 * once for faults beyond end of file.
4c887265 5523 */
87bf91d3
MK
5524 size = i_size_read(mapping->host) >> huge_page_shift(h);
5525 if (idx >= size)
5526 goto out;
5527
6bda666a 5528retry:
c7b1850d 5529 new_page = false;
6bda666a
CL
5530 page = find_lock_page(mapping, idx);
5531 if (!page) {
7677f7fd 5532 /* Check for page in userfault range */
1a1aad8a 5533 if (userfaultfd_missing(vma)) {
7677f7fd 5534 ret = hugetlb_handle_userfault(vma, mapping, idx,
824ddc60 5535 flags, haddr, address,
7677f7fd 5536 VM_UFFD_MISSING);
1a1aad8a
MK
5537 goto out;
5538 }
5539
285b8dca 5540 page = alloc_huge_page(vma, haddr, 0);
2fc39cec 5541 if (IS_ERR(page)) {
4643d67e
MK
5542 /*
5543 * Returning error will result in faulting task being
5544 * sent SIGBUS. The hugetlb fault mutex prevents two
5545 * tasks from racing to fault in the same page which
5546 * could result in false unable to allocate errors.
5547 * Page migration does not take the fault mutex, but
5548 * does a clear then write of pte's under page table
5549 * lock. Page fault code could race with migration,
5550 * notice the clear pte and try to allocate a page
5551 * here. Before returning error, get ptl and make
5552 * sure there really is no pte entry.
5553 */
5554 ptl = huge_pte_lock(h, mm, ptep);
d83e6c8a
ML
5555 ret = 0;
5556 if (huge_pte_none(huge_ptep_get(ptep)))
5557 ret = vmf_error(PTR_ERR(page));
4643d67e 5558 spin_unlock(ptl);
6bda666a
CL
5559 goto out;
5560 }
47ad8475 5561 clear_huge_page(page, address, pages_per_huge_page(h));
0ed361de 5562 __SetPageUptodate(page);
cb6acd01 5563 new_page = true;
ac9b9c66 5564
f83a275d 5565 if (vma->vm_flags & VM_MAYSHARE) {
ab76ad54 5566 int err = huge_add_to_page_cache(page, mapping, idx);
6bda666a
CL
5567 if (err) {
5568 put_page(page);
6bda666a
CL
5569 if (err == -EEXIST)
5570 goto retry;
5571 goto out;
5572 }
c7b1850d 5573 new_pagecache_page = true;
23be7468 5574 } else {
6bda666a 5575 lock_page(page);
0fe6e20b
NH
5576 if (unlikely(anon_vma_prepare(vma))) {
5577 ret = VM_FAULT_OOM;
5578 goto backout_unlocked;
5579 }
409eb8c2 5580 anon_rmap = 1;
23be7468 5581 }
0fe6e20b 5582 } else {
998b4382
NH
5583 /*
5584 * If memory error occurs between mmap() and fault, some process
5585 * don't have hwpoisoned swap entry for errored virtual address.
5586 * So we need to block hugepage fault by PG_hwpoison bit check.
5587 */
5588 if (unlikely(PageHWPoison(page))) {
0eb98f15 5589 ret = VM_FAULT_HWPOISON_LARGE |
972dc4de 5590 VM_FAULT_SET_HINDEX(hstate_index(h));
998b4382
NH
5591 goto backout_unlocked;
5592 }
7677f7fd
AR
5593
5594 /* Check for page in userfault range. */
5595 if (userfaultfd_minor(vma)) {
5596 unlock_page(page);
5597 put_page(page);
5598 ret = hugetlb_handle_userfault(vma, mapping, idx,
824ddc60 5599 flags, haddr, address,
7677f7fd
AR
5600 VM_UFFD_MINOR);
5601 goto out;
5602 }
6bda666a 5603 }
1e8f889b 5604
57303d80
AW
5605 /*
5606 * If we are going to COW a private mapping later, we examine the
5607 * pending reservations for this page now. This will ensure that
5608 * any allocations necessary to record that reservation occur outside
5609 * the spinlock.
5610 */
5e911373 5611 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
285b8dca 5612 if (vma_needs_reservation(h, vma, haddr) < 0) {
2b26736c
AW
5613 ret = VM_FAULT_OOM;
5614 goto backout_unlocked;
5615 }
5e911373 5616 /* Just decrements count, does not deallocate */
285b8dca 5617 vma_end_reservation(h, vma, haddr);
5e911373 5618 }
57303d80 5619
8bea8052 5620 ptl = huge_pte_lock(h, mm, ptep);
83c54070 5621 ret = 0;
c64e912c
PX
5622 /* If pte changed from under us, retry */
5623 if (!pte_same(huge_ptep_get(ptep), old_pte))
4c887265
AL
5624 goto backout;
5625
07443a85 5626 if (anon_rmap) {
d6995da3 5627 ClearHPageRestoreReserve(page);
285b8dca 5628 hugepage_add_new_anon_rmap(page, vma, haddr);
ac714904 5629 } else
fb3d824d 5630 page_dup_file_rmap(page, true);
1e8f889b
DG
5631 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
5632 && (vma->vm_flags & VM_SHARED)));
c64e912c
PX
5633 /*
5634 * If this pte was previously wr-protected, keep it wr-protected even
5635 * if populated.
5636 */
5637 if (unlikely(pte_marker_uffd_wp(old_pte)))
5638 new_pte = huge_pte_wrprotect(huge_pte_mkuffd_wp(new_pte));
285b8dca 5639 set_huge_pte_at(mm, haddr, ptep, new_pte);
1e8f889b 5640
5d317b2b 5641 hugetlb_count_add(pages_per_huge_page(h), mm);
788c7df4 5642 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
1e8f889b 5643 /* Optimization, do the COW without a second fault */
c89357e2 5644 ret = hugetlb_wp(mm, vma, address, ptep, flags, page, ptl);
1e8f889b
DG
5645 }
5646
cb900f41 5647 spin_unlock(ptl);
cb6acd01
MK
5648
5649 /*
8f251a3d
MK
5650 * Only set HPageMigratable in newly allocated pages. Existing pages
5651 * found in the pagecache may not have HPageMigratableset if they have
5652 * been isolated for migration.
cb6acd01
MK
5653 */
5654 if (new_page)
8f251a3d 5655 SetHPageMigratable(page);
cb6acd01 5656
4c887265
AL
5657 unlock_page(page);
5658out:
ac9b9c66 5659 return ret;
4c887265
AL
5660
5661backout:
cb900f41 5662 spin_unlock(ptl);
2b26736c 5663backout_unlocked:
4c887265 5664 unlock_page(page);
c7b1850d
MK
5665 /* restore reserve for newly allocated pages not in page cache */
5666 if (new_page && !new_pagecache_page)
5667 restore_reserve_on_error(h, vma, haddr, page);
4c887265
AL
5668 put_page(page);
5669 goto out;
ac9b9c66
HD
5670}
5671
8382d914 5672#ifdef CONFIG_SMP
188b04a7 5673u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
8382d914
DB
5674{
5675 unsigned long key[2];
5676 u32 hash;
5677
1b426bac
MK
5678 key[0] = (unsigned long) mapping;
5679 key[1] = idx;
8382d914 5680
55254636 5681 hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
8382d914
DB
5682
5683 return hash & (num_fault_mutexes - 1);
5684}
5685#else
5686/*
6c26d310 5687 * For uniprocessor systems we always use a single mutex, so just
8382d914
DB
5688 * return 0 and avoid the hashing overhead.
5689 */
188b04a7 5690u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
8382d914
DB
5691{
5692 return 0;
5693}
5694#endif
5695
2b740303 5696vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
788c7df4 5697 unsigned long address, unsigned int flags)
86e5216f 5698{
8382d914 5699 pte_t *ptep, entry;
cb900f41 5700 spinlock_t *ptl;
2b740303 5701 vm_fault_t ret;
8382d914
DB
5702 u32 hash;
5703 pgoff_t idx;
0fe6e20b 5704 struct page *page = NULL;
57303d80 5705 struct page *pagecache_page = NULL;
a5516438 5706 struct hstate *h = hstate_vma(vma);
8382d914 5707 struct address_space *mapping;
0f792cf9 5708 int need_wait_lock = 0;
285b8dca 5709 unsigned long haddr = address & huge_page_mask(h);
86e5216f 5710
285b8dca 5711 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
fd6a03ed 5712 if (ptep) {
c0d0381a
MK
5713 /*
5714 * Since we hold no locks, ptep could be stale. That is
5715 * OK as we are only making decisions based on content and
5716 * not actually modifying content here.
5717 */
fd6a03ed 5718 entry = huge_ptep_get(ptep);
290408d4 5719 if (unlikely(is_hugetlb_entry_migration(entry))) {
ad1ac596 5720 migration_entry_wait_huge(vma, ptep);
290408d4
NH
5721 return 0;
5722 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
32f84528 5723 return VM_FAULT_HWPOISON_LARGE |
972dc4de 5724 VM_FAULT_SET_HINDEX(hstate_index(h));
fd6a03ed
NH
5725 }
5726
c0d0381a
MK
5727 /*
5728 * Acquire i_mmap_rwsem before calling huge_pte_alloc and hold
87bf91d3
MK
5729 * until finished with ptep. This serves two purposes:
5730 * 1) It prevents huge_pmd_unshare from being called elsewhere
5731 * and making the ptep no longer valid.
5732 * 2) It synchronizes us with i_size modifications during truncation.
c0d0381a
MK
5733 *
5734 * ptep could have already be assigned via huge_pte_offset. That
5735 * is OK, as huge_pte_alloc will return the same value unless
5736 * something has changed.
5737 */
8382d914 5738 mapping = vma->vm_file->f_mapping;
c0d0381a 5739 i_mmap_lock_read(mapping);
aec44e0f 5740 ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h));
c0d0381a
MK
5741 if (!ptep) {
5742 i_mmap_unlock_read(mapping);
5743 return VM_FAULT_OOM;
5744 }
8382d914 5745
3935baa9
DG
5746 /*
5747 * Serialize hugepage allocation and instantiation, so that we don't
5748 * get spurious allocation failures if two CPUs race to instantiate
5749 * the same page in the page cache.
5750 */
c0d0381a 5751 idx = vma_hugecache_offset(h, vma, haddr);
188b04a7 5752 hash = hugetlb_fault_mutex_hash(mapping, idx);
c672c7f2 5753 mutex_lock(&hugetlb_fault_mutex_table[hash]);
8382d914 5754
7f2e9525 5755 entry = huge_ptep_get(ptep);
c64e912c
PX
5756 /* PTE markers should be handled the same way as none pte */
5757 if (huge_pte_none_mostly(entry)) {
5758 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep,
5759 entry, flags);
b4d1d99f 5760 goto out_mutex;
3935baa9 5761 }
86e5216f 5762
83c54070 5763 ret = 0;
1e8f889b 5764
0f792cf9
NH
5765 /*
5766 * entry could be a migration/hwpoison entry at this point, so this
5767 * check prevents the kernel from going below assuming that we have
7c8de358
EP
5768 * an active hugepage in pagecache. This goto expects the 2nd page
5769 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
5770 * properly handle it.
0f792cf9
NH
5771 */
5772 if (!pte_present(entry))
5773 goto out_mutex;
5774
57303d80 5775 /*
c89357e2
DH
5776 * If we are going to COW/unshare the mapping later, we examine the
5777 * pending reservations for this page now. This will ensure that any
57303d80
AW
5778 * allocations necessary to record that reservation occur outside the
5779 * spinlock. For private mappings, we also lookup the pagecache
5780 * page now as it is used to determine if a reservation has been
5781 * consumed.
5782 */
c89357e2
DH
5783 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
5784 !huge_pte_write(entry)) {
285b8dca 5785 if (vma_needs_reservation(h, vma, haddr) < 0) {
2b26736c 5786 ret = VM_FAULT_OOM;
b4d1d99f 5787 goto out_mutex;
2b26736c 5788 }
5e911373 5789 /* Just decrements count, does not deallocate */
285b8dca 5790 vma_end_reservation(h, vma, haddr);
57303d80 5791
f83a275d 5792 if (!(vma->vm_flags & VM_MAYSHARE))
57303d80 5793 pagecache_page = hugetlbfs_pagecache_page(h,
285b8dca 5794 vma, haddr);
57303d80
AW
5795 }
5796
0f792cf9
NH
5797 ptl = huge_pte_lock(h, mm, ptep);
5798
c89357e2 5799 /* Check for a racing update before calling hugetlb_wp() */
0f792cf9
NH
5800 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
5801 goto out_ptl;
5802
166f3ecc
PX
5803 /* Handle userfault-wp first, before trying to lock more pages */
5804 if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(ptep)) &&
5805 (flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
5806 struct vm_fault vmf = {
5807 .vma = vma,
5808 .address = haddr,
5809 .real_address = address,
5810 .flags = flags,
5811 };
5812
5813 spin_unlock(ptl);
5814 if (pagecache_page) {
5815 unlock_page(pagecache_page);
5816 put_page(pagecache_page);
5817 }
5818 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5819 i_mmap_unlock_read(mapping);
5820 return handle_userfault(&vmf, VM_UFFD_WP);
5821 }
5822
56c9cfb1 5823 /*
c89357e2 5824 * hugetlb_wp() requires page locks of pte_page(entry) and
56c9cfb1
NH
5825 * pagecache_page, so here we need take the former one
5826 * when page != pagecache_page or !pagecache_page.
56c9cfb1
NH
5827 */
5828 page = pte_page(entry);
5829 if (page != pagecache_page)
0f792cf9
NH
5830 if (!trylock_page(page)) {
5831 need_wait_lock = 1;
5832 goto out_ptl;
5833 }
b4d1d99f 5834
0f792cf9 5835 get_page(page);
b4d1d99f 5836
c89357e2 5837 if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
106c992a 5838 if (!huge_pte_write(entry)) {
c89357e2
DH
5839 ret = hugetlb_wp(mm, vma, address, ptep, flags,
5840 pagecache_page, ptl);
0f792cf9 5841 goto out_put_page;
c89357e2
DH
5842 } else if (likely(flags & FAULT_FLAG_WRITE)) {
5843 entry = huge_pte_mkdirty(entry);
b4d1d99f 5844 }
b4d1d99f
DG
5845 }
5846 entry = pte_mkyoung(entry);
285b8dca 5847 if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
788c7df4 5848 flags & FAULT_FLAG_WRITE))
285b8dca 5849 update_mmu_cache(vma, haddr, ptep);
0f792cf9
NH
5850out_put_page:
5851 if (page != pagecache_page)
5852 unlock_page(page);
5853 put_page(page);
cb900f41
KS
5854out_ptl:
5855 spin_unlock(ptl);
57303d80
AW
5856
5857 if (pagecache_page) {
5858 unlock_page(pagecache_page);
5859 put_page(pagecache_page);
5860 }
b4d1d99f 5861out_mutex:
c672c7f2 5862 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
c0d0381a 5863 i_mmap_unlock_read(mapping);
0f792cf9
NH
5864 /*
5865 * Generally it's safe to hold refcount during waiting page lock. But
5866 * here we just wait to defer the next page fault to avoid busy loop and
5867 * the page is not used after unlocked before returning from the current
5868 * page fault. So we are safe from accessing freed page, even if we wait
5869 * here without taking refcount.
5870 */
5871 if (need_wait_lock)
5872 wait_on_page_locked(page);
1e8f889b 5873 return ret;
86e5216f
AL
5874}
5875
714c1891 5876#ifdef CONFIG_USERFAULTFD
8fb5debc
MK
5877/*
5878 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with
5879 * modifications for huge pages.
5880 */
5881int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
5882 pte_t *dst_pte,
5883 struct vm_area_struct *dst_vma,
5884 unsigned long dst_addr,
5885 unsigned long src_addr,
f6191471 5886 enum mcopy_atomic_mode mode,
6041c691
PX
5887 struct page **pagep,
5888 bool wp_copy)
8fb5debc 5889{
f6191471 5890 bool is_continue = (mode == MCOPY_ATOMIC_CONTINUE);
8cc5fcbb
MA
5891 struct hstate *h = hstate_vma(dst_vma);
5892 struct address_space *mapping = dst_vma->vm_file->f_mapping;
5893 pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
1e392147 5894 unsigned long size;
1c9e8def 5895 int vm_shared = dst_vma->vm_flags & VM_SHARED;
8fb5debc
MK
5896 pte_t _dst_pte;
5897 spinlock_t *ptl;
8cc5fcbb 5898 int ret = -ENOMEM;
8fb5debc 5899 struct page *page;
f6191471 5900 int writable;
cc30042d 5901 bool page_in_pagecache = false;
8fb5debc 5902
f6191471
AR
5903 if (is_continue) {
5904 ret = -EFAULT;
5905 page = find_lock_page(mapping, idx);
5906 if (!page)
5907 goto out;
cc30042d 5908 page_in_pagecache = true;
f6191471 5909 } else if (!*pagep) {
d84cf06e
MA
5910 /* If a page already exists, then it's UFFDIO_COPY for
5911 * a non-missing case. Return -EEXIST.
5912 */
5913 if (vm_shared &&
5914 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
5915 ret = -EEXIST;
5916 goto out;
5917 }
5918
8fb5debc 5919 page = alloc_huge_page(dst_vma, dst_addr, 0);
d84cf06e
MA
5920 if (IS_ERR(page)) {
5921 ret = -ENOMEM;
8fb5debc 5922 goto out;
d84cf06e 5923 }
8fb5debc
MK
5924
5925 ret = copy_huge_page_from_user(page,
5926 (const void __user *) src_addr,
810a56b9 5927 pages_per_huge_page(h), false);
8fb5debc 5928
c1e8d7c6 5929 /* fallback to copy_from_user outside mmap_lock */
8fb5debc 5930 if (unlikely(ret)) {
9e368259 5931 ret = -ENOENT;
8cc5fcbb
MA
5932 /* Free the allocated page which may have
5933 * consumed a reservation.
5934 */
5935 restore_reserve_on_error(h, dst_vma, dst_addr, page);
5936 put_page(page);
5937
5938 /* Allocate a temporary page to hold the copied
5939 * contents.
5940 */
5941 page = alloc_huge_page_vma(h, dst_vma, dst_addr);
5942 if (!page) {
5943 ret = -ENOMEM;
5944 goto out;
5945 }
8fb5debc 5946 *pagep = page;
8cc5fcbb
MA
5947 /* Set the outparam pagep and return to the caller to
5948 * copy the contents outside the lock. Don't free the
5949 * page.
5950 */
8fb5debc
MK
5951 goto out;
5952 }
5953 } else {
8cc5fcbb
MA
5954 if (vm_shared &&
5955 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
5956 put_page(*pagep);
5957 ret = -EEXIST;
5958 *pagep = NULL;
5959 goto out;
5960 }
5961
5962 page = alloc_huge_page(dst_vma, dst_addr, 0);
5963 if (IS_ERR(page)) {
da9a298f 5964 put_page(*pagep);
8cc5fcbb
MA
5965 ret = -ENOMEM;
5966 *pagep = NULL;
5967 goto out;
5968 }
34892366
MS
5969 copy_user_huge_page(page, *pagep, dst_addr, dst_vma,
5970 pages_per_huge_page(h));
8cc5fcbb 5971 put_page(*pagep);
8fb5debc
MK
5972 *pagep = NULL;
5973 }
5974
5975 /*
5976 * The memory barrier inside __SetPageUptodate makes sure that
5977 * preceding stores to the page contents become visible before
5978 * the set_pte_at() write.
5979 */
5980 __SetPageUptodate(page);
8fb5debc 5981
f6191471
AR
5982 /* Add shared, newly allocated pages to the page cache. */
5983 if (vm_shared && !is_continue) {
1e392147
AA
5984 size = i_size_read(mapping->host) >> huge_page_shift(h);
5985 ret = -EFAULT;
5986 if (idx >= size)
5987 goto out_release_nounlock;
1c9e8def 5988
1e392147
AA
5989 /*
5990 * Serialization between remove_inode_hugepages() and
5991 * huge_add_to_page_cache() below happens through the
5992 * hugetlb_fault_mutex_table that here must be hold by
5993 * the caller.
5994 */
1c9e8def
MK
5995 ret = huge_add_to_page_cache(page, mapping, idx);
5996 if (ret)
5997 goto out_release_nounlock;
cc30042d 5998 page_in_pagecache = true;
1c9e8def
MK
5999 }
6000
8fb5debc
MK
6001 ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
6002 spin_lock(ptl);
6003
1e392147
AA
6004 /*
6005 * Recheck the i_size after holding PT lock to make sure not
6006 * to leave any page mapped (as page_mapped()) beyond the end
6007 * of the i_size (remove_inode_hugepages() is strict about
6008 * enforcing that). If we bail out here, we'll also leave a
6009 * page in the radix tree in the vm_shared case beyond the end
6010 * of the i_size, but remove_inode_hugepages() will take care
6011 * of it as soon as we drop the hugetlb_fault_mutex_table.
6012 */
6013 size = i_size_read(mapping->host) >> huge_page_shift(h);
6014 ret = -EFAULT;
6015 if (idx >= size)
6016 goto out_release_unlock;
6017
8fb5debc 6018 ret = -EEXIST;
6041c691
PX
6019 /*
6020 * We allow to overwrite a pte marker: consider when both MISSING|WP
6021 * registered, we firstly wr-protect a none pte which has no page cache
6022 * page backing it, then access the page.
6023 */
6024 if (!huge_pte_none_mostly(huge_ptep_get(dst_pte)))
8fb5debc
MK
6025 goto out_release_unlock;
6026
1c9e8def 6027 if (vm_shared) {
fb3d824d 6028 page_dup_file_rmap(page, true);
1c9e8def 6029 } else {
d6995da3 6030 ClearHPageRestoreReserve(page);
1c9e8def
MK
6031 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
6032 }
8fb5debc 6033
6041c691
PX
6034 /*
6035 * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY
6036 * with wp flag set, don't set pte write bit.
6037 */
6038 if (wp_copy || (is_continue && !vm_shared))
f6191471
AR
6039 writable = 0;
6040 else
6041 writable = dst_vma->vm_flags & VM_WRITE;
6042
6043 _dst_pte = make_huge_pte(dst_vma, page, writable);
6041c691
PX
6044 /*
6045 * Always mark UFFDIO_COPY page dirty; note that this may not be
6046 * extremely important for hugetlbfs for now since swapping is not
6047 * supported, but we should still be clear in that this page cannot be
6048 * thrown away at will, even if write bit not set.
6049 */
6050 _dst_pte = huge_pte_mkdirty(_dst_pte);
8fb5debc
MK
6051 _dst_pte = pte_mkyoung(_dst_pte);
6052
6041c691
PX
6053 if (wp_copy)
6054 _dst_pte = huge_pte_mkuffd_wp(_dst_pte);
6055
8fb5debc
MK
6056 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
6057
8fb5debc
MK
6058 hugetlb_count_add(pages_per_huge_page(h), dst_mm);
6059
6060 /* No need to invalidate - it was non-present before */
6061 update_mmu_cache(dst_vma, dst_addr, dst_pte);
6062
6063 spin_unlock(ptl);
f6191471
AR
6064 if (!is_continue)
6065 SetHPageMigratable(page);
6066 if (vm_shared || is_continue)
1c9e8def 6067 unlock_page(page);
8fb5debc
MK
6068 ret = 0;
6069out:
6070 return ret;
6071out_release_unlock:
6072 spin_unlock(ptl);
f6191471 6073 if (vm_shared || is_continue)
1c9e8def 6074 unlock_page(page);
5af10dfd 6075out_release_nounlock:
cc30042d 6076 if (!page_in_pagecache)
c7b1850d 6077 restore_reserve_on_error(h, dst_vma, dst_addr, page);
8fb5debc
MK
6078 put_page(page);
6079 goto out;
6080}
714c1891 6081#endif /* CONFIG_USERFAULTFD */
8fb5debc 6082
82e5d378
JM
6083static void record_subpages_vmas(struct page *page, struct vm_area_struct *vma,
6084 int refs, struct page **pages,
6085 struct vm_area_struct **vmas)
6086{
6087 int nr;
6088
6089 for (nr = 0; nr < refs; nr++) {
6090 if (likely(pages))
6091 pages[nr] = mem_map_offset(page, nr);
6092 if (vmas)
6093 vmas[nr] = vma;
6094 }
6095}
6096
a7f22660
DH
6097static inline bool __follow_hugetlb_must_fault(unsigned int flags, pte_t *pte,
6098 bool *unshare)
6099{
6100 pte_t pteval = huge_ptep_get(pte);
6101
6102 *unshare = false;
6103 if (is_swap_pte(pteval))
6104 return true;
6105 if (huge_pte_write(pteval))
6106 return false;
6107 if (flags & FOLL_WRITE)
6108 return true;
6109 if (gup_must_unshare(flags, pte_page(pteval))) {
6110 *unshare = true;
6111 return true;
6112 }
6113 return false;
6114}
6115
28a35716
ML
6116long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
6117 struct page **pages, struct vm_area_struct **vmas,
6118 unsigned long *position, unsigned long *nr_pages,
4f6da934 6119 long i, unsigned int flags, int *locked)
63551ae0 6120{
d5d4b0aa
CK
6121 unsigned long pfn_offset;
6122 unsigned long vaddr = *position;
28a35716 6123 unsigned long remainder = *nr_pages;
a5516438 6124 struct hstate *h = hstate_vma(vma);
0fa5bc40 6125 int err = -EFAULT, refs;
63551ae0 6126
63551ae0 6127 while (vaddr < vma->vm_end && remainder) {
4c887265 6128 pte_t *pte;
cb900f41 6129 spinlock_t *ptl = NULL;
a7f22660 6130 bool unshare = false;
2a15efc9 6131 int absent;
4c887265 6132 struct page *page;
63551ae0 6133
02057967
DR
6134 /*
6135 * If we have a pending SIGKILL, don't keep faulting pages and
6136 * potentially allocating memory.
6137 */
fa45f116 6138 if (fatal_signal_pending(current)) {
02057967
DR
6139 remainder = 0;
6140 break;
6141 }
6142
4c887265
AL
6143 /*
6144 * Some archs (sparc64, sh*) have multiple pte_ts to
2a15efc9 6145 * each hugepage. We have to make sure we get the
4c887265 6146 * first, for the page indexing below to work.
cb900f41
KS
6147 *
6148 * Note that page table lock is not held when pte is null.
4c887265 6149 */
7868a208
PA
6150 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
6151 huge_page_size(h));
cb900f41
KS
6152 if (pte)
6153 ptl = huge_pte_lock(h, mm, pte);
2a15efc9
HD
6154 absent = !pte || huge_pte_none(huge_ptep_get(pte));
6155
6156 /*
6157 * When coredumping, it suits get_dump_page if we just return
3ae77f43
HD
6158 * an error where there's an empty slot with no huge pagecache
6159 * to back it. This way, we avoid allocating a hugepage, and
6160 * the sparse dumpfile avoids allocating disk blocks, but its
6161 * huge holes still show up with zeroes where they need to be.
2a15efc9 6162 */
3ae77f43
HD
6163 if (absent && (flags & FOLL_DUMP) &&
6164 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
cb900f41
KS
6165 if (pte)
6166 spin_unlock(ptl);
2a15efc9
HD
6167 remainder = 0;
6168 break;
6169 }
63551ae0 6170
9cc3a5bd
NH
6171 /*
6172 * We need call hugetlb_fault for both hugepages under migration
6173 * (in which case hugetlb_fault waits for the migration,) and
6174 * hwpoisoned hugepages (in which case we need to prevent the
6175 * caller from accessing to them.) In order to do this, we use
6176 * here is_swap_pte instead of is_hugetlb_entry_migration and
6177 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
6178 * both cases, and because we can't follow correct pages
6179 * directly from any kind of swap entries.
6180 */
a7f22660
DH
6181 if (absent ||
6182 __follow_hugetlb_must_fault(flags, pte, &unshare)) {
2b740303 6183 vm_fault_t ret;
87ffc118 6184 unsigned int fault_flags = 0;
63551ae0 6185
cb900f41
KS
6186 if (pte)
6187 spin_unlock(ptl);
87ffc118
AA
6188 if (flags & FOLL_WRITE)
6189 fault_flags |= FAULT_FLAG_WRITE;
a7f22660
DH
6190 else if (unshare)
6191 fault_flags |= FAULT_FLAG_UNSHARE;
4f6da934 6192 if (locked)
71335f37
PX
6193 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
6194 FAULT_FLAG_KILLABLE;
87ffc118
AA
6195 if (flags & FOLL_NOWAIT)
6196 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
6197 FAULT_FLAG_RETRY_NOWAIT;
6198 if (flags & FOLL_TRIED) {
4426e945
PX
6199 /*
6200 * Note: FAULT_FLAG_ALLOW_RETRY and
6201 * FAULT_FLAG_TRIED can co-exist
6202 */
87ffc118
AA
6203 fault_flags |= FAULT_FLAG_TRIED;
6204 }
6205 ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
6206 if (ret & VM_FAULT_ERROR) {
2be7cfed 6207 err = vm_fault_to_errno(ret, flags);
87ffc118
AA
6208 remainder = 0;
6209 break;
6210 }
6211 if (ret & VM_FAULT_RETRY) {
4f6da934 6212 if (locked &&
1ac25013 6213 !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
4f6da934 6214 *locked = 0;
87ffc118
AA
6215 *nr_pages = 0;
6216 /*
6217 * VM_FAULT_RETRY must not return an
6218 * error, it will return zero
6219 * instead.
6220 *
6221 * No need to update "position" as the
6222 * caller will not check it after
6223 * *nr_pages is set to 0.
6224 */
6225 return i;
6226 }
6227 continue;
4c887265
AL
6228 }
6229
a5516438 6230 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
7f2e9525 6231 page = pte_page(huge_ptep_get(pte));
8fde12ca 6232
b6a2619c
DH
6233 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
6234 !PageAnonExclusive(page), page);
6235
acbfb087
ZL
6236 /*
6237 * If subpage information not requested, update counters
6238 * and skip the same_page loop below.
6239 */
6240 if (!pages && !vmas && !pfn_offset &&
6241 (vaddr + huge_page_size(h) < vma->vm_end) &&
6242 (remainder >= pages_per_huge_page(h))) {
6243 vaddr += huge_page_size(h);
6244 remainder -= pages_per_huge_page(h);
6245 i += pages_per_huge_page(h);
6246 spin_unlock(ptl);
6247 continue;
6248 }
6249
d08af0a5
JM
6250 /* vaddr may not be aligned to PAGE_SIZE */
6251 refs = min3(pages_per_huge_page(h) - pfn_offset, remainder,
6252 (vma->vm_end - ALIGN_DOWN(vaddr, PAGE_SIZE)) >> PAGE_SHIFT);
0fa5bc40 6253
82e5d378
JM
6254 if (pages || vmas)
6255 record_subpages_vmas(mem_map_offset(page, pfn_offset),
6256 vma, refs,
6257 likely(pages) ? pages + i : NULL,
6258 vmas ? vmas + i : NULL);
63551ae0 6259
82e5d378 6260 if (pages) {
0fa5bc40 6261 /*
822951d8 6262 * try_grab_folio() should always succeed here,
0fa5bc40
JM
6263 * because: a) we hold the ptl lock, and b) we've just
6264 * checked that the huge page is present in the page
6265 * tables. If the huge page is present, then the tail
6266 * pages must also be present. The ptl prevents the
6267 * head page and tail pages from being rearranged in
6268 * any way. So this page must be available at this
6269 * point, unless the page refcount overflowed:
6270 */
822951d8
MWO
6271 if (WARN_ON_ONCE(!try_grab_folio(pages[i], refs,
6272 flags))) {
0fa5bc40
JM
6273 spin_unlock(ptl);
6274 remainder = 0;
6275 err = -ENOMEM;
6276 break;
6277 }
d5d4b0aa 6278 }
82e5d378
JM
6279
6280 vaddr += (refs << PAGE_SHIFT);
6281 remainder -= refs;
6282 i += refs;
6283
cb900f41 6284 spin_unlock(ptl);
63551ae0 6285 }
28a35716 6286 *nr_pages = remainder;
87ffc118
AA
6287 /*
6288 * setting position is actually required only if remainder is
6289 * not zero but it's faster not to add a "if (remainder)"
6290 * branch.
6291 */
63551ae0
DG
6292 *position = vaddr;
6293
2be7cfed 6294 return i ? i : err;
63551ae0 6295}
8f860591 6296
7da4d641 6297unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
5a90d5a1
PX
6298 unsigned long address, unsigned long end,
6299 pgprot_t newprot, unsigned long cp_flags)
8f860591
ZY
6300{
6301 struct mm_struct *mm = vma->vm_mm;
6302 unsigned long start = address;
6303 pte_t *ptep;
6304 pte_t pte;
a5516438 6305 struct hstate *h = hstate_vma(vma);
60dfaad6 6306 unsigned long pages = 0, psize = huge_page_size(h);
dff11abe 6307 bool shared_pmd = false;
ac46d4f3 6308 struct mmu_notifier_range range;
e95a9851 6309 unsigned long last_addr_mask;
5a90d5a1
PX
6310 bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
6311 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
dff11abe
MK
6312
6313 /*
6314 * In the case of shared PMDs, the area to flush could be beyond
ac46d4f3 6315 * start/end. Set range.start/range.end to cover the maximum possible
dff11abe
MK
6316 * range if PMD sharing is possible.
6317 */
7269f999
JG
6318 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
6319 0, vma, mm, start, end);
ac46d4f3 6320 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
8f860591
ZY
6321
6322 BUG_ON(address >= end);
ac46d4f3 6323 flush_cache_range(vma, range.start, range.end);
8f860591 6324
ac46d4f3 6325 mmu_notifier_invalidate_range_start(&range);
e95a9851 6326 last_addr_mask = hugetlb_mask_last_page(h);
83cde9e8 6327 i_mmap_lock_write(vma->vm_file->f_mapping);
60dfaad6 6328 for (; address < end; address += psize) {
cb900f41 6329 spinlock_t *ptl;
60dfaad6 6330 ptep = huge_pte_offset(mm, address, psize);
e95a9851
MK
6331 if (!ptep) {
6332 address |= last_addr_mask;
8f860591 6333 continue;
e95a9851 6334 }
cb900f41 6335 ptl = huge_pte_lock(h, mm, ptep);
4ddb4d91 6336 if (huge_pmd_unshare(mm, vma, address, ptep)) {
60dfaad6
PX
6337 /*
6338 * When uffd-wp is enabled on the vma, unshare
6339 * shouldn't happen at all. Warn about it if it
6340 * happened due to some reason.
6341 */
6342 WARN_ON_ONCE(uffd_wp || uffd_wp_resolve);
7da4d641 6343 pages++;
cb900f41 6344 spin_unlock(ptl);
dff11abe 6345 shared_pmd = true;
4ddb4d91 6346 address |= last_addr_mask;
39dde65c 6347 continue;
7da4d641 6348 }
a8bda28d
NH
6349 pte = huge_ptep_get(ptep);
6350 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
6351 spin_unlock(ptl);
6352 continue;
6353 }
6354 if (unlikely(is_hugetlb_entry_migration(pte))) {
6355 swp_entry_t entry = pte_to_swp_entry(pte);
6c287605 6356 struct page *page = pfn_swap_entry_to_page(entry);
a8bda28d 6357
6c287605 6358 if (!is_readable_migration_entry(entry)) {
a8bda28d
NH
6359 pte_t newpte;
6360
6c287605
DH
6361 if (PageAnon(page))
6362 entry = make_readable_exclusive_migration_entry(
6363 swp_offset(entry));
6364 else
6365 entry = make_readable_migration_entry(
6366 swp_offset(entry));
a8bda28d 6367 newpte = swp_entry_to_pte(entry);
5a90d5a1
PX
6368 if (uffd_wp)
6369 newpte = pte_swp_mkuffd_wp(newpte);
6370 else if (uffd_wp_resolve)
6371 newpte = pte_swp_clear_uffd_wp(newpte);
18f39629 6372 set_huge_pte_at(mm, address, ptep, newpte);
a8bda28d
NH
6373 pages++;
6374 }
6375 spin_unlock(ptl);
6376 continue;
6377 }
60dfaad6
PX
6378 if (unlikely(pte_marker_uffd_wp(pte))) {
6379 /*
6380 * This is changing a non-present pte into a none pte,
6381 * no need for huge_ptep_modify_prot_start/commit().
6382 */
6383 if (uffd_wp_resolve)
6384 huge_pte_clear(mm, address, ptep, psize);
6385 }
a8bda28d 6386 if (!huge_pte_none(pte)) {
023bdd00 6387 pte_t old_pte;
79c1c594 6388 unsigned int shift = huge_page_shift(hstate_vma(vma));
023bdd00
AK
6389
6390 old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
16785bd7 6391 pte = huge_pte_modify(old_pte, newprot);
79c1c594 6392 pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
5a90d5a1
PX
6393 if (uffd_wp)
6394 pte = huge_pte_mkuffd_wp(huge_pte_wrprotect(pte));
6395 else if (uffd_wp_resolve)
6396 pte = huge_pte_clear_uffd_wp(pte);
023bdd00 6397 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
7da4d641 6398 pages++;
60dfaad6
PX
6399 } else {
6400 /* None pte */
6401 if (unlikely(uffd_wp))
6402 /* Safe to modify directly (none->non-present). */
6403 set_huge_pte_at(mm, address, ptep,
6404 make_pte_marker(PTE_MARKER_UFFD_WP));
8f860591 6405 }
cb900f41 6406 spin_unlock(ptl);
8f860591 6407 }
d833352a 6408 /*
c8c06efa 6409 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
d833352a 6410 * may have cleared our pud entry and done put_page on the page table:
c8c06efa 6411 * once we release i_mmap_rwsem, another task can do the final put_page
dff11abe
MK
6412 * and that page table be reused and filled with junk. If we actually
6413 * did unshare a page of pmds, flush the range corresponding to the pud.
d833352a 6414 */
dff11abe 6415 if (shared_pmd)
ac46d4f3 6416 flush_hugetlb_tlb_range(vma, range.start, range.end);
dff11abe
MK
6417 else
6418 flush_hugetlb_tlb_range(vma, start, end);
0f10851e
JG
6419 /*
6420 * No need to call mmu_notifier_invalidate_range() we are downgrading
6421 * page table protection not changing it to point to a new page.
6422 *
ee65728e 6423 * See Documentation/mm/mmu_notifier.rst
0f10851e 6424 */
83cde9e8 6425 i_mmap_unlock_write(vma->vm_file->f_mapping);
ac46d4f3 6426 mmu_notifier_invalidate_range_end(&range);
7da4d641
PZ
6427
6428 return pages << h->order;
8f860591
ZY
6429}
6430
33b8f84a
MK
6431/* Return true if reservation was successful, false otherwise. */
6432bool hugetlb_reserve_pages(struct inode *inode,
a1e78772 6433 long from, long to,
5a6fe125 6434 struct vm_area_struct *vma,
ca16d140 6435 vm_flags_t vm_flags)
e4e574b7 6436{
33b8f84a 6437 long chg, add = -1;
a5516438 6438 struct hstate *h = hstate_inode(inode);
90481622 6439 struct hugepage_subpool *spool = subpool_inode(inode);
9119a41e 6440 struct resv_map *resv_map;
075a61d0 6441 struct hugetlb_cgroup *h_cg = NULL;
0db9d74e 6442 long gbl_reserve, regions_needed = 0;
e4e574b7 6443
63489f8e
MK
6444 /* This should never happen */
6445 if (from > to) {
6446 VM_WARN(1, "%s called with a negative range\n", __func__);
33b8f84a 6447 return false;
63489f8e
MK
6448 }
6449
17c9d12e
MG
6450 /*
6451 * Only apply hugepage reservation if asked. At fault time, an
6452 * attempt will be made for VM_NORESERVE to allocate a page
90481622 6453 * without using reserves
17c9d12e 6454 */
ca16d140 6455 if (vm_flags & VM_NORESERVE)
33b8f84a 6456 return true;
17c9d12e 6457
a1e78772
MG
6458 /*
6459 * Shared mappings base their reservation on the number of pages that
6460 * are already allocated on behalf of the file. Private mappings need
6461 * to reserve the full area even if read-only as mprotect() may be
6462 * called to make the mapping read-write. Assume !vma is a shm mapping
6463 */
9119a41e 6464 if (!vma || vma->vm_flags & VM_MAYSHARE) {
f27a5136
MK
6465 /*
6466 * resv_map can not be NULL as hugetlb_reserve_pages is only
6467 * called for inodes for which resv_maps were created (see
6468 * hugetlbfs_get_inode).
6469 */
4e35f483 6470 resv_map = inode_resv_map(inode);
9119a41e 6471
0db9d74e 6472 chg = region_chg(resv_map, from, to, &regions_needed);
9119a41e
JK
6473
6474 } else {
e9fe92ae 6475 /* Private mapping. */
9119a41e 6476 resv_map = resv_map_alloc();
17c9d12e 6477 if (!resv_map)
33b8f84a 6478 return false;
17c9d12e 6479
a1e78772 6480 chg = to - from;
84afd99b 6481
17c9d12e
MG
6482 set_vma_resv_map(vma, resv_map);
6483 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
6484 }
6485
33b8f84a 6486 if (chg < 0)
c50ac050 6487 goto out_err;
8a630112 6488
33b8f84a
MK
6489 if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
6490 chg * pages_per_huge_page(h), &h_cg) < 0)
075a61d0 6491 goto out_err;
075a61d0
MA
6492
6493 if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
6494 /* For private mappings, the hugetlb_cgroup uncharge info hangs
6495 * of the resv_map.
6496 */
6497 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
6498 }
6499
1c5ecae3
MK
6500 /*
6501 * There must be enough pages in the subpool for the mapping. If
6502 * the subpool has a minimum size, there may be some global
6503 * reservations already in place (gbl_reserve).
6504 */
6505 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
33b8f84a 6506 if (gbl_reserve < 0)
075a61d0 6507 goto out_uncharge_cgroup;
5a6fe125
MG
6508
6509 /*
17c9d12e 6510 * Check enough hugepages are available for the reservation.
90481622 6511 * Hand the pages back to the subpool if there are not
5a6fe125 6512 */
33b8f84a 6513 if (hugetlb_acct_memory(h, gbl_reserve) < 0)
075a61d0 6514 goto out_put_pages;
17c9d12e
MG
6515
6516 /*
6517 * Account for the reservations made. Shared mappings record regions
6518 * that have reservations as they are shared by multiple VMAs.
6519 * When the last VMA disappears, the region map says how much
6520 * the reservation was and the page cache tells how much of
6521 * the reservation was consumed. Private mappings are per-VMA and
6522 * only the consumed reservations are tracked. When the VMA
6523 * disappears, the original reservation is the VMA size and the
6524 * consumed reservations are stored in the map. Hence, nothing
6525 * else has to be done for private mappings here
6526 */
33039678 6527 if (!vma || vma->vm_flags & VM_MAYSHARE) {
075a61d0 6528 add = region_add(resv_map, from, to, regions_needed, h, h_cg);
0db9d74e
MA
6529
6530 if (unlikely(add < 0)) {
6531 hugetlb_acct_memory(h, -gbl_reserve);
075a61d0 6532 goto out_put_pages;
0db9d74e 6533 } else if (unlikely(chg > add)) {
33039678
MK
6534 /*
6535 * pages in this range were added to the reserve
6536 * map between region_chg and region_add. This
6537 * indicates a race with alloc_huge_page. Adjust
6538 * the subpool and reserve counts modified above
6539 * based on the difference.
6540 */
6541 long rsv_adjust;
6542
d85aecf2
ML
6543 /*
6544 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
6545 * reference to h_cg->css. See comment below for detail.
6546 */
075a61d0
MA
6547 hugetlb_cgroup_uncharge_cgroup_rsvd(
6548 hstate_index(h),
6549 (chg - add) * pages_per_huge_page(h), h_cg);
6550
33039678
MK
6551 rsv_adjust = hugepage_subpool_put_pages(spool,
6552 chg - add);
6553 hugetlb_acct_memory(h, -rsv_adjust);
d85aecf2
ML
6554 } else if (h_cg) {
6555 /*
6556 * The file_regions will hold their own reference to
6557 * h_cg->css. So we should release the reference held
6558 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
6559 * done.
6560 */
6561 hugetlb_cgroup_put_rsvd_cgroup(h_cg);
33039678
MK
6562 }
6563 }
33b8f84a
MK
6564 return true;
6565
075a61d0
MA
6566out_put_pages:
6567 /* put back original number of pages, chg */
6568 (void)hugepage_subpool_put_pages(spool, chg);
6569out_uncharge_cgroup:
6570 hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
6571 chg * pages_per_huge_page(h), h_cg);
c50ac050 6572out_err:
5e911373 6573 if (!vma || vma->vm_flags & VM_MAYSHARE)
0db9d74e
MA
6574 /* Only call region_abort if the region_chg succeeded but the
6575 * region_add failed or didn't run.
6576 */
6577 if (chg >= 0 && add < 0)
6578 region_abort(resv_map, from, to, regions_needed);
f031dd27
JK
6579 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
6580 kref_put(&resv_map->refs, resv_map_release);
33b8f84a 6581 return false;
a43a8c39
CK
6582}
6583
b5cec28d
MK
6584long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
6585 long freed)
a43a8c39 6586{
a5516438 6587 struct hstate *h = hstate_inode(inode);
4e35f483 6588 struct resv_map *resv_map = inode_resv_map(inode);
9119a41e 6589 long chg = 0;
90481622 6590 struct hugepage_subpool *spool = subpool_inode(inode);
1c5ecae3 6591 long gbl_reserve;
45c682a6 6592
f27a5136
MK
6593 /*
6594 * Since this routine can be called in the evict inode path for all
6595 * hugetlbfs inodes, resv_map could be NULL.
6596 */
b5cec28d
MK
6597 if (resv_map) {
6598 chg = region_del(resv_map, start, end);
6599 /*
6600 * region_del() can fail in the rare case where a region
6601 * must be split and another region descriptor can not be
6602 * allocated. If end == LONG_MAX, it will not fail.
6603 */
6604 if (chg < 0)
6605 return chg;
6606 }
6607
45c682a6 6608 spin_lock(&inode->i_lock);
e4c6f8be 6609 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
45c682a6
KC
6610 spin_unlock(&inode->i_lock);
6611
1c5ecae3
MK
6612 /*
6613 * If the subpool has a minimum size, the number of global
6614 * reservations to be released may be adjusted.
dddf31a4
ML
6615 *
6616 * Note that !resv_map implies freed == 0. So (chg - freed)
6617 * won't go negative.
1c5ecae3
MK
6618 */
6619 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
6620 hugetlb_acct_memory(h, -gbl_reserve);
b5cec28d
MK
6621
6622 return 0;
a43a8c39 6623}
93f70f90 6624
3212b535
SC
6625#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
6626static unsigned long page_table_shareable(struct vm_area_struct *svma,
6627 struct vm_area_struct *vma,
6628 unsigned long addr, pgoff_t idx)
6629{
6630 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
6631 svma->vm_start;
6632 unsigned long sbase = saddr & PUD_MASK;
6633 unsigned long s_end = sbase + PUD_SIZE;
6634
6635 /* Allow segments to share if only one is marked locked */
de60f5f1
EM
6636 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
6637 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
3212b535
SC
6638
6639 /*
6640 * match the virtual addresses, permission and the alignment of the
6641 * page table page.
6642 */
6643 if (pmd_index(addr) != pmd_index(saddr) ||
6644 vm_flags != svm_flags ||
07e51edf 6645 !range_in_vma(svma, sbase, s_end))
3212b535
SC
6646 return 0;
6647
6648 return saddr;
6649}
6650
31aafb45 6651static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
3212b535
SC
6652{
6653 unsigned long base = addr & PUD_MASK;
6654 unsigned long end = base + PUD_SIZE;
6655
6656 /*
6657 * check on proper vm_flags and page table alignment
6658 */
017b1660 6659 if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
31aafb45
NK
6660 return true;
6661 return false;
3212b535
SC
6662}
6663
c1991e07
PX
6664bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
6665{
6666#ifdef CONFIG_USERFAULTFD
6667 if (uffd_disable_huge_pmd_share(vma))
6668 return false;
6669#endif
6670 return vma_shareable(vma, addr);
6671}
6672
017b1660
MK
6673/*
6674 * Determine if start,end range within vma could be mapped by shared pmd.
6675 * If yes, adjust start and end to cover range associated with possible
6676 * shared pmd mappings.
6677 */
6678void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
6679 unsigned long *start, unsigned long *end)
6680{
a1ba9da8
LX
6681 unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
6682 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
017b1660 6683
a1ba9da8 6684 /*
f0953a1b
IM
6685 * vma needs to span at least one aligned PUD size, and the range
6686 * must be at least partially within in.
a1ba9da8
LX
6687 */
6688 if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
6689 (*end <= v_start) || (*start >= v_end))
017b1660
MK
6690 return;
6691
75802ca6 6692 /* Extend the range to be PUD aligned for a worst case scenario */
a1ba9da8
LX
6693 if (*start > v_start)
6694 *start = ALIGN_DOWN(*start, PUD_SIZE);
017b1660 6695
a1ba9da8
LX
6696 if (*end < v_end)
6697 *end = ALIGN(*end, PUD_SIZE);
017b1660
MK
6698}
6699
3212b535
SC
6700/*
6701 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
6702 * and returns the corresponding pte. While this is not necessary for the
6703 * !shared pmd case because we can allocate the pmd later as well, it makes the
c0d0381a
MK
6704 * code much cleaner.
6705 *
0bf7b64e
MK
6706 * This routine must be called with i_mmap_rwsem held in at least read mode if
6707 * sharing is possible. For hugetlbfs, this prevents removal of any page
6708 * table entries associated with the address space. This is important as we
6709 * are setting up sharing based on existing page table entries (mappings).
3212b535 6710 */
aec44e0f
PX
6711pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
6712 unsigned long addr, pud_t *pud)
3212b535 6713{
3212b535
SC
6714 struct address_space *mapping = vma->vm_file->f_mapping;
6715 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
6716 vma->vm_pgoff;
6717 struct vm_area_struct *svma;
6718 unsigned long saddr;
6719 pte_t *spte = NULL;
6720 pte_t *pte;
cb900f41 6721 spinlock_t *ptl;
3212b535 6722
0bf7b64e 6723 i_mmap_assert_locked(mapping);
3212b535
SC
6724 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
6725 if (svma == vma)
6726 continue;
6727
6728 saddr = page_table_shareable(svma, vma, addr, idx);
6729 if (saddr) {
7868a208
PA
6730 spte = huge_pte_offset(svma->vm_mm, saddr,
6731 vma_mmu_pagesize(svma));
3212b535
SC
6732 if (spte) {
6733 get_page(virt_to_page(spte));
6734 break;
6735 }
6736 }
6737 }
6738
6739 if (!spte)
6740 goto out;
6741
8bea8052 6742 ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
dc6c9a35 6743 if (pud_none(*pud)) {
3212b535
SC
6744 pud_populate(mm, pud,
6745 (pmd_t *)((unsigned long)spte & PAGE_MASK));
c17b1f42 6746 mm_inc_nr_pmds(mm);
dc6c9a35 6747 } else {
3212b535 6748 put_page(virt_to_page(spte));
dc6c9a35 6749 }
cb900f41 6750 spin_unlock(ptl);
3212b535
SC
6751out:
6752 pte = (pte_t *)pmd_alloc(mm, pud, addr);
3212b535
SC
6753 return pte;
6754}
6755
6756/*
6757 * unmap huge page backed by shared pte.
6758 *
6759 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
6760 * indicated by page_count > 1, unmap is achieved by clearing pud and
6761 * decrementing the ref count. If count == 1, the pte page is not shared.
6762 *
c0d0381a 6763 * Called with page table lock held and i_mmap_rwsem held in write mode.
3212b535
SC
6764 *
6765 * returns: 1 successfully unmapped a shared pte page
6766 * 0 the underlying pte page is not shared, or it is the last user
6767 */
34ae204f 6768int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
4ddb4d91 6769 unsigned long addr, pte_t *ptep)
3212b535 6770{
4ddb4d91
MK
6771 pgd_t *pgd = pgd_offset(mm, addr);
6772 p4d_t *p4d = p4d_offset(pgd, addr);
6773 pud_t *pud = pud_offset(p4d, addr);
3212b535 6774
34ae204f 6775 i_mmap_assert_write_locked(vma->vm_file->f_mapping);
3212b535
SC
6776 BUG_ON(page_count(virt_to_page(ptep)) == 0);
6777 if (page_count(virt_to_page(ptep)) == 1)
6778 return 0;
6779
6780 pud_clear(pud);
6781 put_page(virt_to_page(ptep));
dc6c9a35 6782 mm_dec_nr_pmds(mm);
3212b535
SC
6783 return 1;
6784}
c1991e07 6785
9e5fc74c 6786#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
aec44e0f
PX
6787pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
6788 unsigned long addr, pud_t *pud)
9e5fc74c
SC
6789{
6790 return NULL;
6791}
e81f2d22 6792
34ae204f 6793int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
4ddb4d91 6794 unsigned long addr, pte_t *ptep)
e81f2d22
ZZ
6795{
6796 return 0;
6797}
017b1660
MK
6798
6799void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
6800 unsigned long *start, unsigned long *end)
6801{
6802}
c1991e07
PX
6803
6804bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
6805{
6806 return false;
6807}
3212b535
SC
6808#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
6809
9e5fc74c 6810#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
aec44e0f 6811pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
9e5fc74c
SC
6812 unsigned long addr, unsigned long sz)
6813{
6814 pgd_t *pgd;
c2febafc 6815 p4d_t *p4d;
9e5fc74c
SC
6816 pud_t *pud;
6817 pte_t *pte = NULL;
6818
6819 pgd = pgd_offset(mm, addr);
f4f0a3d8
KS
6820 p4d = p4d_alloc(mm, pgd, addr);
6821 if (!p4d)
6822 return NULL;
c2febafc 6823 pud = pud_alloc(mm, p4d, addr);
9e5fc74c
SC
6824 if (pud) {
6825 if (sz == PUD_SIZE) {
6826 pte = (pte_t *)pud;
6827 } else {
6828 BUG_ON(sz != PMD_SIZE);
c1991e07 6829 if (want_pmd_share(vma, addr) && pud_none(*pud))
aec44e0f 6830 pte = huge_pmd_share(mm, vma, addr, pud);
9e5fc74c
SC
6831 else
6832 pte = (pte_t *)pmd_alloc(mm, pud, addr);
6833 }
6834 }
4e666314 6835 BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
9e5fc74c
SC
6836
6837 return pte;
6838}
6839
9b19df29
PA
6840/*
6841 * huge_pte_offset() - Walk the page table to resolve the hugepage
6842 * entry at address @addr
6843 *
8ac0b81a
LX
6844 * Return: Pointer to page table entry (PUD or PMD) for
6845 * address @addr, or NULL if a !p*d_present() entry is encountered and the
9b19df29
PA
6846 * size @sz doesn't match the hugepage size at this level of the page
6847 * table.
6848 */
7868a208
PA
6849pte_t *huge_pte_offset(struct mm_struct *mm,
6850 unsigned long addr, unsigned long sz)
9e5fc74c
SC
6851{
6852 pgd_t *pgd;
c2febafc 6853 p4d_t *p4d;
8ac0b81a
LX
6854 pud_t *pud;
6855 pmd_t *pmd;
9e5fc74c
SC
6856
6857 pgd = pgd_offset(mm, addr);
c2febafc
KS
6858 if (!pgd_present(*pgd))
6859 return NULL;
6860 p4d = p4d_offset(pgd, addr);
6861 if (!p4d_present(*p4d))
6862 return NULL;
9b19df29 6863
c2febafc 6864 pud = pud_offset(p4d, addr);
8ac0b81a
LX
6865 if (sz == PUD_SIZE)
6866 /* must be pud huge, non-present or none */
c2febafc 6867 return (pte_t *)pud;
8ac0b81a 6868 if (!pud_present(*pud))
9b19df29 6869 return NULL;
8ac0b81a 6870 /* must have a valid entry and size to go further */
9b19df29 6871
8ac0b81a
LX
6872 pmd = pmd_offset(pud, addr);
6873 /* must be pmd huge, non-present or none */
6874 return (pte_t *)pmd;
9e5fc74c
SC
6875}
6876
e95a9851
MK
6877/*
6878 * Return a mask that can be used to update an address to the last huge
6879 * page in a page table page mapping size. Used to skip non-present
6880 * page table entries when linearly scanning address ranges. Architectures
6881 * with unique huge page to page table relationships can define their own
6882 * version of this routine.
6883 */
6884unsigned long hugetlb_mask_last_page(struct hstate *h)
6885{
6886 unsigned long hp_size = huge_page_size(h);
6887
6888 if (hp_size == PUD_SIZE)
6889 return P4D_SIZE - PUD_SIZE;
6890 else if (hp_size == PMD_SIZE)
6891 return PUD_SIZE - PMD_SIZE;
6892 else
6893 return 0UL;
6894}
6895
6896#else
6897
6898/* See description above. Architectures can provide their own version. */
6899__weak unsigned long hugetlb_mask_last_page(struct hstate *h)
6900{
4ddb4d91
MK
6901#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
6902 if (huge_page_size(h) == PMD_SIZE)
6903 return PUD_SIZE - PMD_SIZE;
6904#endif
e95a9851
MK
6905 return 0UL;
6906}
6907
61f77eda
NH
6908#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
6909
6910/*
6911 * These functions are overwritable if your architecture needs its own
6912 * behavior.
6913 */
6914struct page * __weak
6915follow_huge_addr(struct mm_struct *mm, unsigned long address,
6916 int write)
6917{
6918 return ERR_PTR(-EINVAL);
6919}
6920
4dc71451
AK
6921struct page * __weak
6922follow_huge_pd(struct vm_area_struct *vma,
6923 unsigned long address, hugepd_t hpd, int flags, int pdshift)
6924{
6925 WARN(1, "hugepd follow called with no support for hugepage directory format\n");
6926 return NULL;
6927}
6928
61f77eda 6929struct page * __weak
9e5fc74c 6930follow_huge_pmd(struct mm_struct *mm, unsigned long address,
e66f17ff 6931 pmd_t *pmd, int flags)
9e5fc74c 6932{
e66f17ff
NH
6933 struct page *page = NULL;
6934 spinlock_t *ptl;
c9d398fa 6935 pte_t pte;
3faa52c0 6936
8909691b
DH
6937 /*
6938 * FOLL_PIN is not supported for follow_page(). Ordinary GUP goes via
6939 * follow_hugetlb_page().
6940 */
6941 if (WARN_ON_ONCE(flags & FOLL_PIN))
3faa52c0
JH
6942 return NULL;
6943
e66f17ff
NH
6944retry:
6945 ptl = pmd_lockptr(mm, pmd);
6946 spin_lock(ptl);
6947 /*
6948 * make sure that the address range covered by this pmd is not
6949 * unmapped from other threads.
6950 */
6951 if (!pmd_huge(*pmd))
6952 goto out;
c9d398fa
NH
6953 pte = huge_ptep_get((pte_t *)pmd);
6954 if (pte_present(pte)) {
97534127 6955 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
3faa52c0
JH
6956 /*
6957 * try_grab_page() should always succeed here, because: a) we
6958 * hold the pmd (ptl) lock, and b) we've just checked that the
6959 * huge pmd (head) page is present in the page tables. The ptl
6960 * prevents the head page and tail pages from being rearranged
6961 * in any way. So this page must be available at this point,
6962 * unless the page refcount overflowed:
6963 */
6964 if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
6965 page = NULL;
6966 goto out;
6967 }
e66f17ff 6968 } else {
c9d398fa 6969 if (is_hugetlb_entry_migration(pte)) {
e66f17ff 6970 spin_unlock(ptl);
ad1ac596 6971 __migration_entry_wait_huge((pte_t *)pmd, ptl);
e66f17ff
NH
6972 goto retry;
6973 }
6974 /*
6975 * hwpoisoned entry is treated as no_page_table in
6976 * follow_page_mask().
6977 */
6978 }
6979out:
6980 spin_unlock(ptl);
9e5fc74c
SC
6981 return page;
6982}
6983
61f77eda 6984struct page * __weak
9e5fc74c 6985follow_huge_pud(struct mm_struct *mm, unsigned long address,
e66f17ff 6986 pud_t *pud, int flags)
9e5fc74c 6987{
3faa52c0 6988 if (flags & (FOLL_GET | FOLL_PIN))
e66f17ff 6989 return NULL;
9e5fc74c 6990
e66f17ff 6991 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
9e5fc74c
SC
6992}
6993
faaa5b62
AK
6994struct page * __weak
6995follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
6996{
3faa52c0 6997 if (flags & (FOLL_GET | FOLL_PIN))
faaa5b62
AK
6998 return NULL;
6999
7000 return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
7001}
7002
7ce82f4c 7003int isolate_hugetlb(struct page *page, struct list_head *list)
31caf665 7004{
7ce82f4c 7005 int ret = 0;
bcc54222 7006
db71ef79 7007 spin_lock_irq(&hugetlb_lock);
8f251a3d
MK
7008 if (!PageHeadHuge(page) ||
7009 !HPageMigratable(page) ||
0eb2df2b 7010 !get_page_unless_zero(page)) {
7ce82f4c 7011 ret = -EBUSY;
bcc54222
NH
7012 goto unlock;
7013 }
8f251a3d 7014 ClearHPageMigratable(page);
31caf665 7015 list_move_tail(&page->lru, list);
bcc54222 7016unlock:
db71ef79 7017 spin_unlock_irq(&hugetlb_lock);
bcc54222 7018 return ret;
31caf665
NH
7019}
7020
25182f05
NH
7021int get_hwpoison_huge_page(struct page *page, bool *hugetlb)
7022{
7023 int ret = 0;
7024
7025 *hugetlb = false;
7026 spin_lock_irq(&hugetlb_lock);
7027 if (PageHeadHuge(page)) {
7028 *hugetlb = true;
b283d983
NH
7029 if (HPageFreed(page))
7030 ret = 0;
7031 else if (HPageMigratable(page))
25182f05 7032 ret = get_page_unless_zero(page);
0ed950d1
NH
7033 else
7034 ret = -EBUSY;
25182f05
NH
7035 }
7036 spin_unlock_irq(&hugetlb_lock);
7037 return ret;
7038}
7039
405ce051
NH
7040int get_huge_page_for_hwpoison(unsigned long pfn, int flags)
7041{
7042 int ret;
7043
7044 spin_lock_irq(&hugetlb_lock);
7045 ret = __get_huge_page_for_hwpoison(pfn, flags);
7046 spin_unlock_irq(&hugetlb_lock);
7047 return ret;
7048}
7049
31caf665
NH
7050void putback_active_hugepage(struct page *page)
7051{
db71ef79 7052 spin_lock_irq(&hugetlb_lock);
8f251a3d 7053 SetHPageMigratable(page);
31caf665 7054 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
db71ef79 7055 spin_unlock_irq(&hugetlb_lock);
31caf665
NH
7056 put_page(page);
7057}
ab5ac90a
MH
7058
7059void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
7060{
7061 struct hstate *h = page_hstate(oldpage);
7062
7063 hugetlb_cgroup_migrate(oldpage, newpage);
7064 set_page_owner_migrate_reason(newpage, reason);
7065
7066 /*
7067 * transfer temporary state of the new huge page. This is
7068 * reverse to other transitions because the newpage is going to
7069 * be final while the old one will be freed so it takes over
7070 * the temporary status.
7071 *
7072 * Also note that we have to transfer the per-node surplus state
7073 * here as well otherwise the global surplus count will not match
7074 * the per-node's.
7075 */
9157c311 7076 if (HPageTemporary(newpage)) {
ab5ac90a
MH
7077 int old_nid = page_to_nid(oldpage);
7078 int new_nid = page_to_nid(newpage);
7079
9157c311
MK
7080 SetHPageTemporary(oldpage);
7081 ClearHPageTemporary(newpage);
ab5ac90a 7082
5af1ab1d
ML
7083 /*
7084 * There is no need to transfer the per-node surplus state
7085 * when we do not cross the node.
7086 */
7087 if (new_nid == old_nid)
7088 return;
db71ef79 7089 spin_lock_irq(&hugetlb_lock);
ab5ac90a
MH
7090 if (h->surplus_huge_pages_node[old_nid]) {
7091 h->surplus_huge_pages_node[old_nid]--;
7092 h->surplus_huge_pages_node[new_nid]++;
7093 }
db71ef79 7094 spin_unlock_irq(&hugetlb_lock);
ab5ac90a
MH
7095 }
7096}
cf11e85f 7097
6dfeaff9
PX
7098/*
7099 * This function will unconditionally remove all the shared pmd pgtable entries
7100 * within the specific vma for a hugetlbfs memory range.
7101 */
7102void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
7103{
7104 struct hstate *h = hstate_vma(vma);
7105 unsigned long sz = huge_page_size(h);
7106 struct mm_struct *mm = vma->vm_mm;
7107 struct mmu_notifier_range range;
7108 unsigned long address, start, end;
7109 spinlock_t *ptl;
7110 pte_t *ptep;
7111
7112 if (!(vma->vm_flags & VM_MAYSHARE))
7113 return;
7114
7115 start = ALIGN(vma->vm_start, PUD_SIZE);
7116 end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
7117
7118 if (start >= end)
7119 return;
7120
9c8bbfac 7121 flush_cache_range(vma, start, end);
6dfeaff9
PX
7122 /*
7123 * No need to call adjust_range_if_pmd_sharing_possible(), because
7124 * we have already done the PUD_SIZE alignment.
7125 */
7126 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
7127 start, end);
7128 mmu_notifier_invalidate_range_start(&range);
7129 i_mmap_lock_write(vma->vm_file->f_mapping);
7130 for (address = start; address < end; address += PUD_SIZE) {
6dfeaff9
PX
7131 ptep = huge_pte_offset(mm, address, sz);
7132 if (!ptep)
7133 continue;
7134 ptl = huge_pte_lock(h, mm, ptep);
4ddb4d91 7135 huge_pmd_unshare(mm, vma, address, ptep);
6dfeaff9
PX
7136 spin_unlock(ptl);
7137 }
7138 flush_hugetlb_tlb_range(vma, start, end);
7139 i_mmap_unlock_write(vma->vm_file->f_mapping);
7140 /*
7141 * No need to call mmu_notifier_invalidate_range(), see
ee65728e 7142 * Documentation/mm/mmu_notifier.rst.
6dfeaff9
PX
7143 */
7144 mmu_notifier_invalidate_range_end(&range);
7145}
7146
cf11e85f 7147#ifdef CONFIG_CMA
cf11e85f
RG
7148static bool cma_reserve_called __initdata;
7149
7150static int __init cmdline_parse_hugetlb_cma(char *p)
7151{
38e719ab
BW
7152 int nid, count = 0;
7153 unsigned long tmp;
7154 char *s = p;
7155
7156 while (*s) {
7157 if (sscanf(s, "%lu%n", &tmp, &count) != 1)
7158 break;
7159
7160 if (s[count] == ':') {
f9317f77 7161 if (tmp >= MAX_NUMNODES)
38e719ab 7162 break;
f9317f77 7163 nid = array_index_nospec(tmp, MAX_NUMNODES);
38e719ab
BW
7164
7165 s += count + 1;
7166 tmp = memparse(s, &s);
7167 hugetlb_cma_size_in_node[nid] = tmp;
7168 hugetlb_cma_size += tmp;
7169
7170 /*
7171 * Skip the separator if have one, otherwise
7172 * break the parsing.
7173 */
7174 if (*s == ',')
7175 s++;
7176 else
7177 break;
7178 } else {
7179 hugetlb_cma_size = memparse(p, &p);
7180 break;
7181 }
7182 }
7183
cf11e85f
RG
7184 return 0;
7185}
7186
7187early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
7188
7189void __init hugetlb_cma_reserve(int order)
7190{
7191 unsigned long size, reserved, per_node;
38e719ab 7192 bool node_specific_cma_alloc = false;
cf11e85f
RG
7193 int nid;
7194
7195 cma_reserve_called = true;
7196
38e719ab
BW
7197 if (!hugetlb_cma_size)
7198 return;
7199
7200 for (nid = 0; nid < MAX_NUMNODES; nid++) {
7201 if (hugetlb_cma_size_in_node[nid] == 0)
7202 continue;
7203
30a51400 7204 if (!node_online(nid)) {
38e719ab
BW
7205 pr_warn("hugetlb_cma: invalid node %d specified\n", nid);
7206 hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7207 hugetlb_cma_size_in_node[nid] = 0;
7208 continue;
7209 }
7210
7211 if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) {
7212 pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n",
7213 nid, (PAGE_SIZE << order) / SZ_1M);
7214 hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7215 hugetlb_cma_size_in_node[nid] = 0;
7216 } else {
7217 node_specific_cma_alloc = true;
7218 }
7219 }
7220
7221 /* Validate the CMA size again in case some invalid nodes specified. */
cf11e85f
RG
7222 if (!hugetlb_cma_size)
7223 return;
7224
7225 if (hugetlb_cma_size < (PAGE_SIZE << order)) {
7226 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
7227 (PAGE_SIZE << order) / SZ_1M);
a01f4390 7228 hugetlb_cma_size = 0;
cf11e85f
RG
7229 return;
7230 }
7231
38e719ab
BW
7232 if (!node_specific_cma_alloc) {
7233 /*
7234 * If 3 GB area is requested on a machine with 4 numa nodes,
7235 * let's allocate 1 GB on first three nodes and ignore the last one.
7236 */
7237 per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
7238 pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
7239 hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
7240 }
cf11e85f
RG
7241
7242 reserved = 0;
30a51400 7243 for_each_online_node(nid) {
cf11e85f 7244 int res;
2281f797 7245 char name[CMA_MAX_NAME];
cf11e85f 7246
38e719ab
BW
7247 if (node_specific_cma_alloc) {
7248 if (hugetlb_cma_size_in_node[nid] == 0)
7249 continue;
7250
7251 size = hugetlb_cma_size_in_node[nid];
7252 } else {
7253 size = min(per_node, hugetlb_cma_size - reserved);
7254 }
7255
cf11e85f
RG
7256 size = round_up(size, PAGE_SIZE << order);
7257
2281f797 7258 snprintf(name, sizeof(name), "hugetlb%d", nid);
a01f4390
MK
7259 /*
7260 * Note that 'order per bit' is based on smallest size that
7261 * may be returned to CMA allocator in the case of
7262 * huge page demotion.
7263 */
7264 res = cma_declare_contiguous_nid(0, size, 0,
7265 PAGE_SIZE << HUGETLB_PAGE_ORDER,
29d0f41d 7266 0, false, name,
cf11e85f
RG
7267 &hugetlb_cma[nid], nid);
7268 if (res) {
7269 pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
7270 res, nid);
7271 continue;
7272 }
7273
7274 reserved += size;
7275 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
7276 size / SZ_1M, nid);
7277
7278 if (reserved >= hugetlb_cma_size)
7279 break;
7280 }
a01f4390
MK
7281
7282 if (!reserved)
7283 /*
7284 * hugetlb_cma_size is used to determine if allocations from
7285 * cma are possible. Set to zero if no cma regions are set up.
7286 */
7287 hugetlb_cma_size = 0;
cf11e85f
RG
7288}
7289
7290void __init hugetlb_cma_check(void)
7291{
7292 if (!hugetlb_cma_size || cma_reserve_called)
7293 return;
7294
7295 pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
7296}
7297
7298#endif /* CONFIG_CMA */