Merge tag 'armsoc-soc' of git://git.kernel.org/pub/scm/linux/kernel/git/soc/soc
[linux-2.6-block.git] / mm / hugetlb.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * Generic hugetlb support.
6d49e352 4 * (C) Nadia Yvette Chambers, April 2004
1da177e4 5 */
1da177e4
LT
6#include <linux/list.h>
7#include <linux/init.h>
1da177e4 8#include <linux/mm.h>
e1759c21 9#include <linux/seq_file.h>
1da177e4
LT
10#include <linux/sysctl.h>
11#include <linux/highmem.h>
cddb8a5c 12#include <linux/mmu_notifier.h>
1da177e4 13#include <linux/nodemask.h>
63551ae0 14#include <linux/pagemap.h>
5da7ca86 15#include <linux/mempolicy.h>
3b32123d 16#include <linux/compiler.h>
aea47ff3 17#include <linux/cpuset.h>
3935baa9 18#include <linux/mutex.h>
97ad1087 19#include <linux/memblock.h>
a3437870 20#include <linux/sysfs.h>
5a0e3ad6 21#include <linux/slab.h>
63489f8e 22#include <linux/mmdebug.h>
174cd4b1 23#include <linux/sched/signal.h>
0fe6e20b 24#include <linux/rmap.h>
c6247f72 25#include <linux/string_helpers.h>
fd6a03ed
NH
26#include <linux/swap.h>
27#include <linux/swapops.h>
8382d914 28#include <linux/jhash.h>
98fa15f3 29#include <linux/numa.h>
d6606683 30
63551ae0
DG
31#include <asm/page.h>
32#include <asm/pgtable.h>
24669e58 33#include <asm/tlb.h>
63551ae0 34
24669e58 35#include <linux/io.h>
63551ae0 36#include <linux/hugetlb.h>
9dd540e2 37#include <linux/hugetlb_cgroup.h>
9a305230 38#include <linux/node.h>
1a1aad8a 39#include <linux/userfaultfd_k.h>
ab5ac90a 40#include <linux/page_owner.h>
7835e98b 41#include "internal.h"
1da177e4 42
c3f38a38 43int hugetlb_max_hstate __read_mostly;
e5ff2159
AK
44unsigned int default_hstate_idx;
45struct hstate hstates[HUGE_MAX_HSTATE];
641844f5
NH
46/*
47 * Minimum page order among possible hugepage sizes, set to a proper value
48 * at boot time.
49 */
50static unsigned int minimum_order __read_mostly = UINT_MAX;
e5ff2159 51
53ba51d2
JT
52__initdata LIST_HEAD(huge_boot_pages);
53
e5ff2159
AK
54/* for command line parsing */
55static struct hstate * __initdata parsed_hstate;
56static unsigned long __initdata default_hstate_max_huge_pages;
e11bfbfc 57static unsigned long __initdata default_hstate_size;
9fee021d 58static bool __initdata parsed_valid_hugepagesz = true;
e5ff2159 59
3935baa9 60/*
31caf665
NH
61 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
62 * free_huge_pages, and surplus_huge_pages.
3935baa9 63 */
c3f38a38 64DEFINE_SPINLOCK(hugetlb_lock);
0bd0f9fb 65
8382d914
DB
66/*
67 * Serializes faults on the same logical page. This is used to
68 * prevent spurious OOMs when the hugepage pool is fully utilized.
69 */
70static int num_fault_mutexes;
c672c7f2 71struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
8382d914 72
7ca02d0a
MK
73/* Forward declaration */
74static int hugetlb_acct_memory(struct hstate *h, long delta);
75
90481622
DG
76static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
77{
78 bool free = (spool->count == 0) && (spool->used_hpages == 0);
79
80 spin_unlock(&spool->lock);
81
82 /* If no pages are used, and no other handles to the subpool
7ca02d0a
MK
83 * remain, give up any reservations mased on minimum size and
84 * free the subpool */
85 if (free) {
86 if (spool->min_hpages != -1)
87 hugetlb_acct_memory(spool->hstate,
88 -spool->min_hpages);
90481622 89 kfree(spool);
7ca02d0a 90 }
90481622
DG
91}
92
7ca02d0a
MK
93struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
94 long min_hpages)
90481622
DG
95{
96 struct hugepage_subpool *spool;
97
c6a91820 98 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
90481622
DG
99 if (!spool)
100 return NULL;
101
102 spin_lock_init(&spool->lock);
103 spool->count = 1;
7ca02d0a
MK
104 spool->max_hpages = max_hpages;
105 spool->hstate = h;
106 spool->min_hpages = min_hpages;
107
108 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
109 kfree(spool);
110 return NULL;
111 }
112 spool->rsv_hpages = min_hpages;
90481622
DG
113
114 return spool;
115}
116
117void hugepage_put_subpool(struct hugepage_subpool *spool)
118{
119 spin_lock(&spool->lock);
120 BUG_ON(!spool->count);
121 spool->count--;
122 unlock_or_release_subpool(spool);
123}
124
1c5ecae3
MK
125/*
126 * Subpool accounting for allocating and reserving pages.
127 * Return -ENOMEM if there are not enough resources to satisfy the
128 * the request. Otherwise, return the number of pages by which the
129 * global pools must be adjusted (upward). The returned value may
130 * only be different than the passed value (delta) in the case where
131 * a subpool minimum size must be manitained.
132 */
133static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
90481622
DG
134 long delta)
135{
1c5ecae3 136 long ret = delta;
90481622
DG
137
138 if (!spool)
1c5ecae3 139 return ret;
90481622
DG
140
141 spin_lock(&spool->lock);
1c5ecae3
MK
142
143 if (spool->max_hpages != -1) { /* maximum size accounting */
144 if ((spool->used_hpages + delta) <= spool->max_hpages)
145 spool->used_hpages += delta;
146 else {
147 ret = -ENOMEM;
148 goto unlock_ret;
149 }
90481622 150 }
90481622 151
09a95e29
MK
152 /* minimum size accounting */
153 if (spool->min_hpages != -1 && spool->rsv_hpages) {
1c5ecae3
MK
154 if (delta > spool->rsv_hpages) {
155 /*
156 * Asking for more reserves than those already taken on
157 * behalf of subpool. Return difference.
158 */
159 ret = delta - spool->rsv_hpages;
160 spool->rsv_hpages = 0;
161 } else {
162 ret = 0; /* reserves already accounted for */
163 spool->rsv_hpages -= delta;
164 }
165 }
166
167unlock_ret:
168 spin_unlock(&spool->lock);
90481622
DG
169 return ret;
170}
171
1c5ecae3
MK
172/*
173 * Subpool accounting for freeing and unreserving pages.
174 * Return the number of global page reservations that must be dropped.
175 * The return value may only be different than the passed value (delta)
176 * in the case where a subpool minimum size must be maintained.
177 */
178static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
90481622
DG
179 long delta)
180{
1c5ecae3
MK
181 long ret = delta;
182
90481622 183 if (!spool)
1c5ecae3 184 return delta;
90481622
DG
185
186 spin_lock(&spool->lock);
1c5ecae3
MK
187
188 if (spool->max_hpages != -1) /* maximum size accounting */
189 spool->used_hpages -= delta;
190
09a95e29
MK
191 /* minimum size accounting */
192 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
1c5ecae3
MK
193 if (spool->rsv_hpages + delta <= spool->min_hpages)
194 ret = 0;
195 else
196 ret = spool->rsv_hpages + delta - spool->min_hpages;
197
198 spool->rsv_hpages += delta;
199 if (spool->rsv_hpages > spool->min_hpages)
200 spool->rsv_hpages = spool->min_hpages;
201 }
202
203 /*
204 * If hugetlbfs_put_super couldn't free spool due to an outstanding
205 * quota reference, free it now.
206 */
90481622 207 unlock_or_release_subpool(spool);
1c5ecae3
MK
208
209 return ret;
90481622
DG
210}
211
212static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
213{
214 return HUGETLBFS_SB(inode->i_sb)->spool;
215}
216
217static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
218{
496ad9aa 219 return subpool_inode(file_inode(vma->vm_file));
90481622
DG
220}
221
96822904
AW
222/*
223 * Region tracking -- allows tracking of reservations and instantiated pages
224 * across the pages in a mapping.
84afd99b 225 *
1dd308a7
MK
226 * The region data structures are embedded into a resv_map and protected
227 * by a resv_map's lock. The set of regions within the resv_map represent
228 * reservations for huge pages, or huge pages that have already been
229 * instantiated within the map. The from and to elements are huge page
230 * indicies into the associated mapping. from indicates the starting index
231 * of the region. to represents the first index past the end of the region.
232 *
233 * For example, a file region structure with from == 0 and to == 4 represents
234 * four huge pages in a mapping. It is important to note that the to element
235 * represents the first element past the end of the region. This is used in
236 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
237 *
238 * Interval notation of the form [from, to) will be used to indicate that
239 * the endpoint from is inclusive and to is exclusive.
96822904
AW
240 */
241struct file_region {
242 struct list_head link;
243 long from;
244 long to;
245};
246
1dd308a7
MK
247/*
248 * Add the huge page range represented by [f, t) to the reserve
5e911373
MK
249 * map. In the normal case, existing regions will be expanded
250 * to accommodate the specified range. Sufficient regions should
251 * exist for expansion due to the previous call to region_chg
252 * with the same range. However, it is possible that region_del
253 * could have been called after region_chg and modifed the map
254 * in such a way that no region exists to be expanded. In this
255 * case, pull a region descriptor from the cache associated with
256 * the map and use that for the new range.
cf3ad20b
MK
257 *
258 * Return the number of new huge pages added to the map. This
259 * number is greater than or equal to zero.
1dd308a7 260 */
1406ec9b 261static long region_add(struct resv_map *resv, long f, long t)
96822904 262{
1406ec9b 263 struct list_head *head = &resv->regions;
96822904 264 struct file_region *rg, *nrg, *trg;
cf3ad20b 265 long add = 0;
96822904 266
7b24d861 267 spin_lock(&resv->lock);
96822904
AW
268 /* Locate the region we are either in or before. */
269 list_for_each_entry(rg, head, link)
270 if (f <= rg->to)
271 break;
272
5e911373
MK
273 /*
274 * If no region exists which can be expanded to include the
275 * specified range, the list must have been modified by an
276 * interleving call to region_del(). Pull a region descriptor
277 * from the cache and use it for this range.
278 */
279 if (&rg->link == head || t < rg->from) {
280 VM_BUG_ON(resv->region_cache_count <= 0);
281
282 resv->region_cache_count--;
283 nrg = list_first_entry(&resv->region_cache, struct file_region,
284 link);
285 list_del(&nrg->link);
286
287 nrg->from = f;
288 nrg->to = t;
289 list_add(&nrg->link, rg->link.prev);
290
291 add += t - f;
292 goto out_locked;
293 }
294
96822904
AW
295 /* Round our left edge to the current segment if it encloses us. */
296 if (f > rg->from)
297 f = rg->from;
298
299 /* Check for and consume any regions we now overlap with. */
300 nrg = rg;
301 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
302 if (&rg->link == head)
303 break;
304 if (rg->from > t)
305 break;
306
307 /* If this area reaches higher then extend our area to
308 * include it completely. If this is not the first area
309 * which we intend to reuse, free it. */
310 if (rg->to > t)
311 t = rg->to;
312 if (rg != nrg) {
cf3ad20b
MK
313 /* Decrement return value by the deleted range.
314 * Another range will span this area so that by
315 * end of routine add will be >= zero
316 */
317 add -= (rg->to - rg->from);
96822904
AW
318 list_del(&rg->link);
319 kfree(rg);
320 }
321 }
cf3ad20b
MK
322
323 add += (nrg->from - f); /* Added to beginning of region */
96822904 324 nrg->from = f;
cf3ad20b 325 add += t - nrg->to; /* Added to end of region */
96822904 326 nrg->to = t;
cf3ad20b 327
5e911373
MK
328out_locked:
329 resv->adds_in_progress--;
7b24d861 330 spin_unlock(&resv->lock);
cf3ad20b
MK
331 VM_BUG_ON(add < 0);
332 return add;
96822904
AW
333}
334
1dd308a7
MK
335/*
336 * Examine the existing reserve map and determine how many
337 * huge pages in the specified range [f, t) are NOT currently
338 * represented. This routine is called before a subsequent
339 * call to region_add that will actually modify the reserve
340 * map to add the specified range [f, t). region_chg does
341 * not change the number of huge pages represented by the
342 * map. However, if the existing regions in the map can not
343 * be expanded to represent the new range, a new file_region
344 * structure is added to the map as a placeholder. This is
345 * so that the subsequent region_add call will have all the
346 * regions it needs and will not fail.
347 *
5e911373
MK
348 * Upon entry, region_chg will also examine the cache of region descriptors
349 * associated with the map. If there are not enough descriptors cached, one
350 * will be allocated for the in progress add operation.
351 *
352 * Returns the number of huge pages that need to be added to the existing
353 * reservation map for the range [f, t). This number is greater or equal to
354 * zero. -ENOMEM is returned if a new file_region structure or cache entry
355 * is needed and can not be allocated.
1dd308a7 356 */
1406ec9b 357static long region_chg(struct resv_map *resv, long f, long t)
96822904 358{
1406ec9b 359 struct list_head *head = &resv->regions;
7b24d861 360 struct file_region *rg, *nrg = NULL;
96822904
AW
361 long chg = 0;
362
7b24d861
DB
363retry:
364 spin_lock(&resv->lock);
5e911373
MK
365retry_locked:
366 resv->adds_in_progress++;
367
368 /*
369 * Check for sufficient descriptors in the cache to accommodate
370 * the number of in progress add operations.
371 */
372 if (resv->adds_in_progress > resv->region_cache_count) {
373 struct file_region *trg;
374
375 VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
376 /* Must drop lock to allocate a new descriptor. */
377 resv->adds_in_progress--;
378 spin_unlock(&resv->lock);
379
380 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
dbe409e4
MK
381 if (!trg) {
382 kfree(nrg);
5e911373 383 return -ENOMEM;
dbe409e4 384 }
5e911373
MK
385
386 spin_lock(&resv->lock);
387 list_add(&trg->link, &resv->region_cache);
388 resv->region_cache_count++;
389 goto retry_locked;
390 }
391
96822904
AW
392 /* Locate the region we are before or in. */
393 list_for_each_entry(rg, head, link)
394 if (f <= rg->to)
395 break;
396
397 /* If we are below the current region then a new region is required.
398 * Subtle, allocate a new region at the position but make it zero
399 * size such that we can guarantee to record the reservation. */
400 if (&rg->link == head || t < rg->from) {
7b24d861 401 if (!nrg) {
5e911373 402 resv->adds_in_progress--;
7b24d861
DB
403 spin_unlock(&resv->lock);
404 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
405 if (!nrg)
406 return -ENOMEM;
407
408 nrg->from = f;
409 nrg->to = f;
410 INIT_LIST_HEAD(&nrg->link);
411 goto retry;
412 }
96822904 413
7b24d861
DB
414 list_add(&nrg->link, rg->link.prev);
415 chg = t - f;
416 goto out_nrg;
96822904
AW
417 }
418
419 /* Round our left edge to the current segment if it encloses us. */
420 if (f > rg->from)
421 f = rg->from;
422 chg = t - f;
423
424 /* Check for and consume any regions we now overlap with. */
425 list_for_each_entry(rg, rg->link.prev, link) {
426 if (&rg->link == head)
427 break;
428 if (rg->from > t)
7b24d861 429 goto out;
96822904 430
25985edc 431 /* We overlap with this area, if it extends further than
96822904
AW
432 * us then we must extend ourselves. Account for its
433 * existing reservation. */
434 if (rg->to > t) {
435 chg += rg->to - t;
436 t = rg->to;
437 }
438 chg -= rg->to - rg->from;
439 }
7b24d861
DB
440
441out:
442 spin_unlock(&resv->lock);
443 /* We already know we raced and no longer need the new region */
444 kfree(nrg);
445 return chg;
446out_nrg:
447 spin_unlock(&resv->lock);
96822904
AW
448 return chg;
449}
450
5e911373
MK
451/*
452 * Abort the in progress add operation. The adds_in_progress field
453 * of the resv_map keeps track of the operations in progress between
454 * calls to region_chg and region_add. Operations are sometimes
455 * aborted after the call to region_chg. In such cases, region_abort
456 * is called to decrement the adds_in_progress counter.
457 *
458 * NOTE: The range arguments [f, t) are not needed or used in this
459 * routine. They are kept to make reading the calling code easier as
460 * arguments will match the associated region_chg call.
461 */
462static void region_abort(struct resv_map *resv, long f, long t)
463{
464 spin_lock(&resv->lock);
465 VM_BUG_ON(!resv->region_cache_count);
466 resv->adds_in_progress--;
467 spin_unlock(&resv->lock);
468}
469
1dd308a7 470/*
feba16e2
MK
471 * Delete the specified range [f, t) from the reserve map. If the
472 * t parameter is LONG_MAX, this indicates that ALL regions after f
473 * should be deleted. Locate the regions which intersect [f, t)
474 * and either trim, delete or split the existing regions.
475 *
476 * Returns the number of huge pages deleted from the reserve map.
477 * In the normal case, the return value is zero or more. In the
478 * case where a region must be split, a new region descriptor must
479 * be allocated. If the allocation fails, -ENOMEM will be returned.
480 * NOTE: If the parameter t == LONG_MAX, then we will never split
481 * a region and possibly return -ENOMEM. Callers specifying
482 * t == LONG_MAX do not need to check for -ENOMEM error.
1dd308a7 483 */
feba16e2 484static long region_del(struct resv_map *resv, long f, long t)
96822904 485{
1406ec9b 486 struct list_head *head = &resv->regions;
96822904 487 struct file_region *rg, *trg;
feba16e2
MK
488 struct file_region *nrg = NULL;
489 long del = 0;
96822904 490
feba16e2 491retry:
7b24d861 492 spin_lock(&resv->lock);
feba16e2 493 list_for_each_entry_safe(rg, trg, head, link) {
dbe409e4
MK
494 /*
495 * Skip regions before the range to be deleted. file_region
496 * ranges are normally of the form [from, to). However, there
497 * may be a "placeholder" entry in the map which is of the form
498 * (from, to) with from == to. Check for placeholder entries
499 * at the beginning of the range to be deleted.
500 */
501 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
feba16e2 502 continue;
dbe409e4 503
feba16e2 504 if (rg->from >= t)
96822904 505 break;
96822904 506
feba16e2
MK
507 if (f > rg->from && t < rg->to) { /* Must split region */
508 /*
509 * Check for an entry in the cache before dropping
510 * lock and attempting allocation.
511 */
512 if (!nrg &&
513 resv->region_cache_count > resv->adds_in_progress) {
514 nrg = list_first_entry(&resv->region_cache,
515 struct file_region,
516 link);
517 list_del(&nrg->link);
518 resv->region_cache_count--;
519 }
96822904 520
feba16e2
MK
521 if (!nrg) {
522 spin_unlock(&resv->lock);
523 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
524 if (!nrg)
525 return -ENOMEM;
526 goto retry;
527 }
528
529 del += t - f;
530
531 /* New entry for end of split region */
532 nrg->from = t;
533 nrg->to = rg->to;
534 INIT_LIST_HEAD(&nrg->link);
535
536 /* Original entry is trimmed */
537 rg->to = f;
538
539 list_add(&nrg->link, &rg->link);
540 nrg = NULL;
96822904 541 break;
feba16e2
MK
542 }
543
544 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
545 del += rg->to - rg->from;
546 list_del(&rg->link);
547 kfree(rg);
548 continue;
549 }
550
551 if (f <= rg->from) { /* Trim beginning of region */
552 del += t - rg->from;
553 rg->from = t;
554 } else { /* Trim end of region */
555 del += rg->to - f;
556 rg->to = f;
557 }
96822904 558 }
7b24d861 559
7b24d861 560 spin_unlock(&resv->lock);
feba16e2
MK
561 kfree(nrg);
562 return del;
96822904
AW
563}
564
b5cec28d
MK
565/*
566 * A rare out of memory error was encountered which prevented removal of
567 * the reserve map region for a page. The huge page itself was free'ed
568 * and removed from the page cache. This routine will adjust the subpool
569 * usage count, and the global reserve count if needed. By incrementing
570 * these counts, the reserve map entry which could not be deleted will
571 * appear as a "reserved" entry instead of simply dangling with incorrect
572 * counts.
573 */
72e2936c 574void hugetlb_fix_reserve_counts(struct inode *inode)
b5cec28d
MK
575{
576 struct hugepage_subpool *spool = subpool_inode(inode);
577 long rsv_adjust;
578
579 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
72e2936c 580 if (rsv_adjust) {
b5cec28d
MK
581 struct hstate *h = hstate_inode(inode);
582
583 hugetlb_acct_memory(h, 1);
584 }
585}
586
1dd308a7
MK
587/*
588 * Count and return the number of huge pages in the reserve map
589 * that intersect with the range [f, t).
590 */
1406ec9b 591static long region_count(struct resv_map *resv, long f, long t)
84afd99b 592{
1406ec9b 593 struct list_head *head = &resv->regions;
84afd99b
AW
594 struct file_region *rg;
595 long chg = 0;
596
7b24d861 597 spin_lock(&resv->lock);
84afd99b
AW
598 /* Locate each segment we overlap with, and count that overlap. */
599 list_for_each_entry(rg, head, link) {
f2135a4a
WSH
600 long seg_from;
601 long seg_to;
84afd99b
AW
602
603 if (rg->to <= f)
604 continue;
605 if (rg->from >= t)
606 break;
607
608 seg_from = max(rg->from, f);
609 seg_to = min(rg->to, t);
610
611 chg += seg_to - seg_from;
612 }
7b24d861 613 spin_unlock(&resv->lock);
84afd99b
AW
614
615 return chg;
616}
617
e7c4b0bf
AW
618/*
619 * Convert the address within this vma to the page offset within
620 * the mapping, in pagecache page units; huge pages here.
621 */
a5516438
AK
622static pgoff_t vma_hugecache_offset(struct hstate *h,
623 struct vm_area_struct *vma, unsigned long address)
e7c4b0bf 624{
a5516438
AK
625 return ((address - vma->vm_start) >> huge_page_shift(h)) +
626 (vma->vm_pgoff >> huge_page_order(h));
e7c4b0bf
AW
627}
628
0fe6e20b
NH
629pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
630 unsigned long address)
631{
632 return vma_hugecache_offset(hstate_vma(vma), vma, address);
633}
dee41079 634EXPORT_SYMBOL_GPL(linear_hugepage_index);
0fe6e20b 635
08fba699
MG
636/*
637 * Return the size of the pages allocated when backing a VMA. In the majority
638 * cases this will be same size as used by the page table entries.
639 */
640unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
641{
05ea8860
DW
642 if (vma->vm_ops && vma->vm_ops->pagesize)
643 return vma->vm_ops->pagesize(vma);
644 return PAGE_SIZE;
08fba699 645}
f340ca0f 646EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
08fba699 647
3340289d
MG
648/*
649 * Return the page size being used by the MMU to back a VMA. In the majority
650 * of cases, the page size used by the kernel matches the MMU size. On
09135cc5
DW
651 * architectures where it differs, an architecture-specific 'strong'
652 * version of this symbol is required.
3340289d 653 */
09135cc5 654__weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
3340289d
MG
655{
656 return vma_kernel_pagesize(vma);
657}
3340289d 658
84afd99b
AW
659/*
660 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
661 * bits of the reservation map pointer, which are always clear due to
662 * alignment.
663 */
664#define HPAGE_RESV_OWNER (1UL << 0)
665#define HPAGE_RESV_UNMAPPED (1UL << 1)
04f2cbe3 666#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
84afd99b 667
a1e78772
MG
668/*
669 * These helpers are used to track how many pages are reserved for
670 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
671 * is guaranteed to have their future faults succeed.
672 *
673 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
674 * the reserve counters are updated with the hugetlb_lock held. It is safe
675 * to reset the VMA at fork() time as it is not in use yet and there is no
676 * chance of the global counters getting corrupted as a result of the values.
84afd99b
AW
677 *
678 * The private mapping reservation is represented in a subtly different
679 * manner to a shared mapping. A shared mapping has a region map associated
680 * with the underlying file, this region map represents the backing file
681 * pages which have ever had a reservation assigned which this persists even
682 * after the page is instantiated. A private mapping has a region map
683 * associated with the original mmap which is attached to all VMAs which
684 * reference it, this region map represents those offsets which have consumed
685 * reservation ie. where pages have been instantiated.
a1e78772 686 */
e7c4b0bf
AW
687static unsigned long get_vma_private_data(struct vm_area_struct *vma)
688{
689 return (unsigned long)vma->vm_private_data;
690}
691
692static void set_vma_private_data(struct vm_area_struct *vma,
693 unsigned long value)
694{
695 vma->vm_private_data = (void *)value;
696}
697
9119a41e 698struct resv_map *resv_map_alloc(void)
84afd99b
AW
699{
700 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
5e911373
MK
701 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
702
703 if (!resv_map || !rg) {
704 kfree(resv_map);
705 kfree(rg);
84afd99b 706 return NULL;
5e911373 707 }
84afd99b
AW
708
709 kref_init(&resv_map->refs);
7b24d861 710 spin_lock_init(&resv_map->lock);
84afd99b
AW
711 INIT_LIST_HEAD(&resv_map->regions);
712
5e911373
MK
713 resv_map->adds_in_progress = 0;
714
715 INIT_LIST_HEAD(&resv_map->region_cache);
716 list_add(&rg->link, &resv_map->region_cache);
717 resv_map->region_cache_count = 1;
718
84afd99b
AW
719 return resv_map;
720}
721
9119a41e 722void resv_map_release(struct kref *ref)
84afd99b
AW
723{
724 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
5e911373
MK
725 struct list_head *head = &resv_map->region_cache;
726 struct file_region *rg, *trg;
84afd99b
AW
727
728 /* Clear out any active regions before we release the map. */
feba16e2 729 region_del(resv_map, 0, LONG_MAX);
5e911373
MK
730
731 /* ... and any entries left in the cache */
732 list_for_each_entry_safe(rg, trg, head, link) {
733 list_del(&rg->link);
734 kfree(rg);
735 }
736
737 VM_BUG_ON(resv_map->adds_in_progress);
738
84afd99b
AW
739 kfree(resv_map);
740}
741
4e35f483
JK
742static inline struct resv_map *inode_resv_map(struct inode *inode)
743{
f27a5136
MK
744 /*
745 * At inode evict time, i_mapping may not point to the original
746 * address space within the inode. This original address space
747 * contains the pointer to the resv_map. So, always use the
748 * address space embedded within the inode.
749 * The VERY common case is inode->mapping == &inode->i_data but,
750 * this may not be true for device special inodes.
751 */
752 return (struct resv_map *)(&inode->i_data)->private_data;
4e35f483
JK
753}
754
84afd99b 755static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
a1e78772 756{
81d1b09c 757 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
4e35f483
JK
758 if (vma->vm_flags & VM_MAYSHARE) {
759 struct address_space *mapping = vma->vm_file->f_mapping;
760 struct inode *inode = mapping->host;
761
762 return inode_resv_map(inode);
763
764 } else {
84afd99b
AW
765 return (struct resv_map *)(get_vma_private_data(vma) &
766 ~HPAGE_RESV_MASK);
4e35f483 767 }
a1e78772
MG
768}
769
84afd99b 770static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
a1e78772 771{
81d1b09c
SL
772 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
773 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
a1e78772 774
84afd99b
AW
775 set_vma_private_data(vma, (get_vma_private_data(vma) &
776 HPAGE_RESV_MASK) | (unsigned long)map);
04f2cbe3
MG
777}
778
779static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
780{
81d1b09c
SL
781 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
782 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
e7c4b0bf
AW
783
784 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
04f2cbe3
MG
785}
786
787static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
788{
81d1b09c 789 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
e7c4b0bf
AW
790
791 return (get_vma_private_data(vma) & flag) != 0;
a1e78772
MG
792}
793
04f2cbe3 794/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
a1e78772
MG
795void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
796{
81d1b09c 797 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
f83a275d 798 if (!(vma->vm_flags & VM_MAYSHARE))
a1e78772
MG
799 vma->vm_private_data = (void *)0;
800}
801
802/* Returns true if the VMA has associated reserve pages */
559ec2f8 803static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
a1e78772 804{
af0ed73e
JK
805 if (vma->vm_flags & VM_NORESERVE) {
806 /*
807 * This address is already reserved by other process(chg == 0),
808 * so, we should decrement reserved count. Without decrementing,
809 * reserve count remains after releasing inode, because this
810 * allocated page will go into page cache and is regarded as
811 * coming from reserved pool in releasing step. Currently, we
812 * don't have any other solution to deal with this situation
813 * properly, so add work-around here.
814 */
815 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
559ec2f8 816 return true;
af0ed73e 817 else
559ec2f8 818 return false;
af0ed73e 819 }
a63884e9
JK
820
821 /* Shared mappings always use reserves */
1fb1b0e9
MK
822 if (vma->vm_flags & VM_MAYSHARE) {
823 /*
824 * We know VM_NORESERVE is not set. Therefore, there SHOULD
825 * be a region map for all pages. The only situation where
826 * there is no region map is if a hole was punched via
827 * fallocate. In this case, there really are no reverves to
828 * use. This situation is indicated if chg != 0.
829 */
830 if (chg)
831 return false;
832 else
833 return true;
834 }
a63884e9
JK
835
836 /*
837 * Only the process that called mmap() has reserves for
838 * private mappings.
839 */
67961f9d
MK
840 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
841 /*
842 * Like the shared case above, a hole punch or truncate
843 * could have been performed on the private mapping.
844 * Examine the value of chg to determine if reserves
845 * actually exist or were previously consumed.
846 * Very Subtle - The value of chg comes from a previous
847 * call to vma_needs_reserves(). The reserve map for
848 * private mappings has different (opposite) semantics
849 * than that of shared mappings. vma_needs_reserves()
850 * has already taken this difference in semantics into
851 * account. Therefore, the meaning of chg is the same
852 * as in the shared case above. Code could easily be
853 * combined, but keeping it separate draws attention to
854 * subtle differences.
855 */
856 if (chg)
857 return false;
858 else
859 return true;
860 }
a63884e9 861
559ec2f8 862 return false;
a1e78772
MG
863}
864
a5516438 865static void enqueue_huge_page(struct hstate *h, struct page *page)
1da177e4
LT
866{
867 int nid = page_to_nid(page);
0edaecfa 868 list_move(&page->lru, &h->hugepage_freelists[nid]);
a5516438
AK
869 h->free_huge_pages++;
870 h->free_huge_pages_node[nid]++;
1da177e4
LT
871}
872
94310cbc 873static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
bf50bab2
NH
874{
875 struct page *page;
876
c8721bbb 877 list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
243abd5b 878 if (!PageHWPoison(page))
c8721bbb
NH
879 break;
880 /*
881 * if 'non-isolated free hugepage' not found on the list,
882 * the allocation fails.
883 */
884 if (&h->hugepage_freelists[nid] == &page->lru)
bf50bab2 885 return NULL;
0edaecfa 886 list_move(&page->lru, &h->hugepage_activelist);
a9869b83 887 set_page_refcounted(page);
bf50bab2
NH
888 h->free_huge_pages--;
889 h->free_huge_pages_node[nid]--;
890 return page;
891}
892
3e59fcb0
MH
893static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
894 nodemask_t *nmask)
94310cbc 895{
3e59fcb0
MH
896 unsigned int cpuset_mems_cookie;
897 struct zonelist *zonelist;
898 struct zone *zone;
899 struct zoneref *z;
98fa15f3 900 int node = NUMA_NO_NODE;
94310cbc 901
3e59fcb0
MH
902 zonelist = node_zonelist(nid, gfp_mask);
903
904retry_cpuset:
905 cpuset_mems_cookie = read_mems_allowed_begin();
906 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
907 struct page *page;
908
909 if (!cpuset_zone_allowed(zone, gfp_mask))
910 continue;
911 /*
912 * no need to ask again on the same node. Pool is node rather than
913 * zone aware
914 */
915 if (zone_to_nid(zone) == node)
916 continue;
917 node = zone_to_nid(zone);
94310cbc 918
94310cbc
AK
919 page = dequeue_huge_page_node_exact(h, node);
920 if (page)
921 return page;
922 }
3e59fcb0
MH
923 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
924 goto retry_cpuset;
925
94310cbc
AK
926 return NULL;
927}
928
86cdb465
NH
929/* Movability of hugepages depends on migration support. */
930static inline gfp_t htlb_alloc_mask(struct hstate *h)
931{
7ed2c31d 932 if (hugepage_movable_supported(h))
86cdb465
NH
933 return GFP_HIGHUSER_MOVABLE;
934 else
935 return GFP_HIGHUSER;
936}
937
a5516438
AK
938static struct page *dequeue_huge_page_vma(struct hstate *h,
939 struct vm_area_struct *vma,
af0ed73e
JK
940 unsigned long address, int avoid_reserve,
941 long chg)
1da177e4 942{
3e59fcb0 943 struct page *page;
480eccf9 944 struct mempolicy *mpol;
04ec6264 945 gfp_t gfp_mask;
3e59fcb0 946 nodemask_t *nodemask;
04ec6264 947 int nid;
1da177e4 948
a1e78772
MG
949 /*
950 * A child process with MAP_PRIVATE mappings created by their parent
951 * have no page reserves. This check ensures that reservations are
952 * not "stolen". The child may still get SIGKILLed
953 */
af0ed73e 954 if (!vma_has_reserves(vma, chg) &&
a5516438 955 h->free_huge_pages - h->resv_huge_pages == 0)
c0ff7453 956 goto err;
a1e78772 957
04f2cbe3 958 /* If reserves cannot be used, ensure enough pages are in the pool */
a5516438 959 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
6eab04a8 960 goto err;
04f2cbe3 961
04ec6264
VB
962 gfp_mask = htlb_alloc_mask(h);
963 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
3e59fcb0
MH
964 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
965 if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
966 SetPagePrivate(page);
967 h->resv_huge_pages--;
1da177e4 968 }
cc9a6c87 969
52cd3b07 970 mpol_cond_put(mpol);
1da177e4 971 return page;
cc9a6c87
MG
972
973err:
cc9a6c87 974 return NULL;
1da177e4
LT
975}
976
1cac6f2c
LC
977/*
978 * common helper functions for hstate_next_node_to_{alloc|free}.
979 * We may have allocated or freed a huge page based on a different
980 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
981 * be outside of *nodes_allowed. Ensure that we use an allowed
982 * node for alloc or free.
983 */
984static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
985{
0edaf86c 986 nid = next_node_in(nid, *nodes_allowed);
1cac6f2c
LC
987 VM_BUG_ON(nid >= MAX_NUMNODES);
988
989 return nid;
990}
991
992static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
993{
994 if (!node_isset(nid, *nodes_allowed))
995 nid = next_node_allowed(nid, nodes_allowed);
996 return nid;
997}
998
999/*
1000 * returns the previously saved node ["this node"] from which to
1001 * allocate a persistent huge page for the pool and advance the
1002 * next node from which to allocate, handling wrap at end of node
1003 * mask.
1004 */
1005static int hstate_next_node_to_alloc(struct hstate *h,
1006 nodemask_t *nodes_allowed)
1007{
1008 int nid;
1009
1010 VM_BUG_ON(!nodes_allowed);
1011
1012 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1013 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1014
1015 return nid;
1016}
1017
1018/*
1019 * helper for free_pool_huge_page() - return the previously saved
1020 * node ["this node"] from which to free a huge page. Advance the
1021 * next node id whether or not we find a free huge page to free so
1022 * that the next attempt to free addresses the next node.
1023 */
1024static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1025{
1026 int nid;
1027
1028 VM_BUG_ON(!nodes_allowed);
1029
1030 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1031 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1032
1033 return nid;
1034}
1035
1036#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
1037 for (nr_nodes = nodes_weight(*mask); \
1038 nr_nodes > 0 && \
1039 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
1040 nr_nodes--)
1041
1042#define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1043 for (nr_nodes = nodes_weight(*mask); \
1044 nr_nodes > 0 && \
1045 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1046 nr_nodes--)
1047
e1073d1e 1048#ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
944d9fec 1049static void destroy_compound_gigantic_page(struct page *page,
d00181b9 1050 unsigned int order)
944d9fec
LC
1051{
1052 int i;
1053 int nr_pages = 1 << order;
1054 struct page *p = page + 1;
1055
c8cc708a 1056 atomic_set(compound_mapcount_ptr(page), 0);
944d9fec 1057 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1d798ca3 1058 clear_compound_head(p);
944d9fec 1059 set_page_refcounted(p);
944d9fec
LC
1060 }
1061
1062 set_compound_order(page, 0);
1063 __ClearPageHead(page);
1064}
1065
d00181b9 1066static void free_gigantic_page(struct page *page, unsigned int order)
944d9fec
LC
1067{
1068 free_contig_range(page_to_pfn(page), 1 << order);
1069}
1070
4eb0716e 1071#ifdef CONFIG_CONTIG_ALLOC
944d9fec 1072static int __alloc_gigantic_page(unsigned long start_pfn,
79b63f12 1073 unsigned long nr_pages, gfp_t gfp_mask)
944d9fec
LC
1074{
1075 unsigned long end_pfn = start_pfn + nr_pages;
ca96b625 1076 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
79b63f12 1077 gfp_mask);
944d9fec
LC
1078}
1079
f44b2dda
JK
1080static bool pfn_range_valid_gigantic(struct zone *z,
1081 unsigned long start_pfn, unsigned long nr_pages)
944d9fec
LC
1082{
1083 unsigned long i, end_pfn = start_pfn + nr_pages;
1084 struct page *page;
1085
1086 for (i = start_pfn; i < end_pfn; i++) {
1087 if (!pfn_valid(i))
1088 return false;
1089
1090 page = pfn_to_page(i);
1091
f44b2dda
JK
1092 if (page_zone(page) != z)
1093 return false;
1094
944d9fec
LC
1095 if (PageReserved(page))
1096 return false;
1097
1098 if (page_count(page) > 0)
1099 return false;
1100
1101 if (PageHuge(page))
1102 return false;
1103 }
1104
1105 return true;
1106}
1107
1108static bool zone_spans_last_pfn(const struct zone *zone,
1109 unsigned long start_pfn, unsigned long nr_pages)
1110{
1111 unsigned long last_pfn = start_pfn + nr_pages - 1;
1112 return zone_spans_pfn(zone, last_pfn);
1113}
1114
d9cc948f
MH
1115static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1116 int nid, nodemask_t *nodemask)
944d9fec 1117{
79b63f12 1118 unsigned int order = huge_page_order(h);
944d9fec
LC
1119 unsigned long nr_pages = 1 << order;
1120 unsigned long ret, pfn, flags;
79b63f12
MH
1121 struct zonelist *zonelist;
1122 struct zone *zone;
1123 struct zoneref *z;
944d9fec 1124
79b63f12 1125 zonelist = node_zonelist(nid, gfp_mask);
d9cc948f 1126 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nodemask) {
79b63f12 1127 spin_lock_irqsave(&zone->lock, flags);
944d9fec 1128
79b63f12
MH
1129 pfn = ALIGN(zone->zone_start_pfn, nr_pages);
1130 while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
1131 if (pfn_range_valid_gigantic(zone, pfn, nr_pages)) {
944d9fec
LC
1132 /*
1133 * We release the zone lock here because
1134 * alloc_contig_range() will also lock the zone
1135 * at some point. If there's an allocation
1136 * spinning on this lock, it may win the race
1137 * and cause alloc_contig_range() to fail...
1138 */
79b63f12
MH
1139 spin_unlock_irqrestore(&zone->lock, flags);
1140 ret = __alloc_gigantic_page(pfn, nr_pages, gfp_mask);
944d9fec
LC
1141 if (!ret)
1142 return pfn_to_page(pfn);
79b63f12 1143 spin_lock_irqsave(&zone->lock, flags);
944d9fec
LC
1144 }
1145 pfn += nr_pages;
1146 }
1147
79b63f12 1148 spin_unlock_irqrestore(&zone->lock, flags);
944d9fec
LC
1149 }
1150
1151 return NULL;
1152}
1153
1154static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
d00181b9 1155static void prep_compound_gigantic_page(struct page *page, unsigned int order);
4eb0716e
AG
1156#else /* !CONFIG_CONTIG_ALLOC */
1157static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1158 int nid, nodemask_t *nodemask)
1159{
1160 return NULL;
1161}
1162#endif /* CONFIG_CONTIG_ALLOC */
944d9fec 1163
e1073d1e 1164#else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
d9cc948f 1165static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
4eb0716e
AG
1166 int nid, nodemask_t *nodemask)
1167{
1168 return NULL;
1169}
d00181b9 1170static inline void free_gigantic_page(struct page *page, unsigned int order) { }
944d9fec 1171static inline void destroy_compound_gigantic_page(struct page *page,
d00181b9 1172 unsigned int order) { }
944d9fec
LC
1173#endif
1174
a5516438 1175static void update_and_free_page(struct hstate *h, struct page *page)
6af2acb6
AL
1176{
1177 int i;
a5516438 1178
4eb0716e 1179 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
944d9fec 1180 return;
18229df5 1181
a5516438
AK
1182 h->nr_huge_pages--;
1183 h->nr_huge_pages_node[page_to_nid(page)]--;
1184 for (i = 0; i < pages_per_huge_page(h); i++) {
32f84528
CF
1185 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1186 1 << PG_referenced | 1 << PG_dirty |
a7407a27
LC
1187 1 << PG_active | 1 << PG_private |
1188 1 << PG_writeback);
6af2acb6 1189 }
309381fe 1190 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
f1e61557 1191 set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
6af2acb6 1192 set_page_refcounted(page);
944d9fec
LC
1193 if (hstate_is_gigantic(h)) {
1194 destroy_compound_gigantic_page(page, huge_page_order(h));
1195 free_gigantic_page(page, huge_page_order(h));
1196 } else {
944d9fec
LC
1197 __free_pages(page, huge_page_order(h));
1198 }
6af2acb6
AL
1199}
1200
e5ff2159
AK
1201struct hstate *size_to_hstate(unsigned long size)
1202{
1203 struct hstate *h;
1204
1205 for_each_hstate(h) {
1206 if (huge_page_size(h) == size)
1207 return h;
1208 }
1209 return NULL;
1210}
1211
bcc54222
NH
1212/*
1213 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1214 * to hstate->hugepage_activelist.)
1215 *
1216 * This function can be called for tail pages, but never returns true for them.
1217 */
1218bool page_huge_active(struct page *page)
1219{
1220 VM_BUG_ON_PAGE(!PageHuge(page), page);
1221 return PageHead(page) && PagePrivate(&page[1]);
1222}
1223
1224/* never called for tail page */
1225static void set_page_huge_active(struct page *page)
1226{
1227 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1228 SetPagePrivate(&page[1]);
1229}
1230
1231static void clear_page_huge_active(struct page *page)
1232{
1233 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1234 ClearPagePrivate(&page[1]);
1235}
1236
ab5ac90a
MH
1237/*
1238 * Internal hugetlb specific page flag. Do not use outside of the hugetlb
1239 * code
1240 */
1241static inline bool PageHugeTemporary(struct page *page)
1242{
1243 if (!PageHuge(page))
1244 return false;
1245
1246 return (unsigned long)page[2].mapping == -1U;
1247}
1248
1249static inline void SetPageHugeTemporary(struct page *page)
1250{
1251 page[2].mapping = (void *)-1U;
1252}
1253
1254static inline void ClearPageHugeTemporary(struct page *page)
1255{
1256 page[2].mapping = NULL;
1257}
1258
8f1d26d0 1259void free_huge_page(struct page *page)
27a85ef1 1260{
a5516438
AK
1261 /*
1262 * Can't pass hstate in here because it is called from the
1263 * compound page destructor.
1264 */
e5ff2159 1265 struct hstate *h = page_hstate(page);
7893d1d5 1266 int nid = page_to_nid(page);
90481622
DG
1267 struct hugepage_subpool *spool =
1268 (struct hugepage_subpool *)page_private(page);
07443a85 1269 bool restore_reserve;
27a85ef1 1270
b4330afb
MK
1271 VM_BUG_ON_PAGE(page_count(page), page);
1272 VM_BUG_ON_PAGE(page_mapcount(page), page);
8ace22bc
YW
1273
1274 set_page_private(page, 0);
1275 page->mapping = NULL;
07443a85 1276 restore_reserve = PagePrivate(page);
16c794b4 1277 ClearPagePrivate(page);
27a85ef1 1278
1c5ecae3 1279 /*
0919e1b6
MK
1280 * If PagePrivate() was set on page, page allocation consumed a
1281 * reservation. If the page was associated with a subpool, there
1282 * would have been a page reserved in the subpool before allocation
1283 * via hugepage_subpool_get_pages(). Since we are 'restoring' the
1284 * reservtion, do not call hugepage_subpool_put_pages() as this will
1285 * remove the reserved page from the subpool.
1c5ecae3 1286 */
0919e1b6
MK
1287 if (!restore_reserve) {
1288 /*
1289 * A return code of zero implies that the subpool will be
1290 * under its minimum size if the reservation is not restored
1291 * after page is free. Therefore, force restore_reserve
1292 * operation.
1293 */
1294 if (hugepage_subpool_put_pages(spool, 1) == 0)
1295 restore_reserve = true;
1296 }
1c5ecae3 1297
27a85ef1 1298 spin_lock(&hugetlb_lock);
bcc54222 1299 clear_page_huge_active(page);
6d76dcf4
AK
1300 hugetlb_cgroup_uncharge_page(hstate_index(h),
1301 pages_per_huge_page(h), page);
07443a85
JK
1302 if (restore_reserve)
1303 h->resv_huge_pages++;
1304
ab5ac90a
MH
1305 if (PageHugeTemporary(page)) {
1306 list_del(&page->lru);
1307 ClearPageHugeTemporary(page);
1308 update_and_free_page(h, page);
1309 } else if (h->surplus_huge_pages_node[nid]) {
0edaecfa
AK
1310 /* remove the page from active list */
1311 list_del(&page->lru);
a5516438
AK
1312 update_and_free_page(h, page);
1313 h->surplus_huge_pages--;
1314 h->surplus_huge_pages_node[nid]--;
7893d1d5 1315 } else {
5d3a551c 1316 arch_clear_hugepage_flags(page);
a5516438 1317 enqueue_huge_page(h, page);
7893d1d5 1318 }
27a85ef1
DG
1319 spin_unlock(&hugetlb_lock);
1320}
1321
a5516438 1322static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
b7ba30c6 1323{
0edaecfa 1324 INIT_LIST_HEAD(&page->lru);
f1e61557 1325 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
b7ba30c6 1326 spin_lock(&hugetlb_lock);
9dd540e2 1327 set_hugetlb_cgroup(page, NULL);
a5516438
AK
1328 h->nr_huge_pages++;
1329 h->nr_huge_pages_node[nid]++;
b7ba30c6 1330 spin_unlock(&hugetlb_lock);
b7ba30c6
AK
1331}
1332
d00181b9 1333static void prep_compound_gigantic_page(struct page *page, unsigned int order)
20a0307c
WF
1334{
1335 int i;
1336 int nr_pages = 1 << order;
1337 struct page *p = page + 1;
1338
1339 /* we rely on prep_new_huge_page to set the destructor */
1340 set_compound_order(page, order);
ef5a22be 1341 __ClearPageReserved(page);
de09d31d 1342 __SetPageHead(page);
20a0307c 1343 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
ef5a22be
AA
1344 /*
1345 * For gigantic hugepages allocated through bootmem at
1346 * boot, it's safer to be consistent with the not-gigantic
1347 * hugepages and clear the PG_reserved bit from all tail pages
1348 * too. Otherwse drivers using get_user_pages() to access tail
1349 * pages may get the reference counting wrong if they see
1350 * PG_reserved set on a tail page (despite the head page not
1351 * having PG_reserved set). Enforcing this consistency between
1352 * head and tail pages allows drivers to optimize away a check
1353 * on the head page when they need know if put_page() is needed
1354 * after get_user_pages().
1355 */
1356 __ClearPageReserved(p);
58a84aa9 1357 set_page_count(p, 0);
1d798ca3 1358 set_compound_head(p, page);
20a0307c 1359 }
b4330afb 1360 atomic_set(compound_mapcount_ptr(page), -1);
20a0307c
WF
1361}
1362
7795912c
AM
1363/*
1364 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1365 * transparent huge pages. See the PageTransHuge() documentation for more
1366 * details.
1367 */
20a0307c
WF
1368int PageHuge(struct page *page)
1369{
20a0307c
WF
1370 if (!PageCompound(page))
1371 return 0;
1372
1373 page = compound_head(page);
f1e61557 1374 return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
20a0307c 1375}
43131e14
NH
1376EXPORT_SYMBOL_GPL(PageHuge);
1377
27c73ae7
AA
1378/*
1379 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1380 * normal or transparent huge pages.
1381 */
1382int PageHeadHuge(struct page *page_head)
1383{
27c73ae7
AA
1384 if (!PageHead(page_head))
1385 return 0;
1386
758f66a2 1387 return get_compound_page_dtor(page_head) == free_huge_page;
27c73ae7 1388}
27c73ae7 1389
13d60f4b
ZY
1390pgoff_t __basepage_index(struct page *page)
1391{
1392 struct page *page_head = compound_head(page);
1393 pgoff_t index = page_index(page_head);
1394 unsigned long compound_idx;
1395
1396 if (!PageHuge(page_head))
1397 return page_index(page);
1398
1399 if (compound_order(page_head) >= MAX_ORDER)
1400 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1401 else
1402 compound_idx = page - page_head;
1403
1404 return (index << compound_order(page_head)) + compound_idx;
1405}
1406
0c397dae 1407static struct page *alloc_buddy_huge_page(struct hstate *h,
af0fb9df 1408 gfp_t gfp_mask, int nid, nodemask_t *nmask)
1da177e4 1409{
af0fb9df 1410 int order = huge_page_order(h);
1da177e4 1411 struct page *page;
f96efd58 1412
af0fb9df
MH
1413 gfp_mask |= __GFP_COMP|__GFP_RETRY_MAYFAIL|__GFP_NOWARN;
1414 if (nid == NUMA_NO_NODE)
1415 nid = numa_mem_id();
1416 page = __alloc_pages_nodemask(gfp_mask, order, nid, nmask);
1417 if (page)
1418 __count_vm_event(HTLB_BUDDY_PGALLOC);
1419 else
1420 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
63b4613c
NA
1421
1422 return page;
1423}
1424
0c397dae
MH
1425/*
1426 * Common helper to allocate a fresh hugetlb page. All specific allocators
1427 * should use this function to get new hugetlb pages
1428 */
1429static struct page *alloc_fresh_huge_page(struct hstate *h,
1430 gfp_t gfp_mask, int nid, nodemask_t *nmask)
1431{
1432 struct page *page;
1433
1434 if (hstate_is_gigantic(h))
1435 page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1436 else
1437 page = alloc_buddy_huge_page(h, gfp_mask,
1438 nid, nmask);
1439 if (!page)
1440 return NULL;
1441
1442 if (hstate_is_gigantic(h))
1443 prep_compound_gigantic_page(page, huge_page_order(h));
1444 prep_new_huge_page(h, page, page_to_nid(page));
1445
1446 return page;
1447}
1448
af0fb9df
MH
1449/*
1450 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1451 * manner.
1452 */
0c397dae 1453static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
b2261026
JK
1454{
1455 struct page *page;
1456 int nr_nodes, node;
af0fb9df 1457 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
b2261026
JK
1458
1459 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
0c397dae 1460 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed);
af0fb9df 1461 if (page)
b2261026 1462 break;
b2261026
JK
1463 }
1464
af0fb9df
MH
1465 if (!page)
1466 return 0;
b2261026 1467
af0fb9df
MH
1468 put_page(page); /* free it into the hugepage allocator */
1469
1470 return 1;
b2261026
JK
1471}
1472
e8c5c824
LS
1473/*
1474 * Free huge page from pool from next node to free.
1475 * Attempt to keep persistent huge pages more or less
1476 * balanced over allowed nodes.
1477 * Called with hugetlb_lock locked.
1478 */
6ae11b27
LS
1479static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1480 bool acct_surplus)
e8c5c824 1481{
b2261026 1482 int nr_nodes, node;
e8c5c824
LS
1483 int ret = 0;
1484
b2261026 1485 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
685f3457
LS
1486 /*
1487 * If we're returning unused surplus pages, only examine
1488 * nodes with surplus pages.
1489 */
b2261026
JK
1490 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1491 !list_empty(&h->hugepage_freelists[node])) {
e8c5c824 1492 struct page *page =
b2261026 1493 list_entry(h->hugepage_freelists[node].next,
e8c5c824
LS
1494 struct page, lru);
1495 list_del(&page->lru);
1496 h->free_huge_pages--;
b2261026 1497 h->free_huge_pages_node[node]--;
685f3457
LS
1498 if (acct_surplus) {
1499 h->surplus_huge_pages--;
b2261026 1500 h->surplus_huge_pages_node[node]--;
685f3457 1501 }
e8c5c824
LS
1502 update_and_free_page(h, page);
1503 ret = 1;
9a76db09 1504 break;
e8c5c824 1505 }
b2261026 1506 }
e8c5c824
LS
1507
1508 return ret;
1509}
1510
c8721bbb
NH
1511/*
1512 * Dissolve a given free hugepage into free buddy pages. This function does
faf53def
NH
1513 * nothing for in-use hugepages and non-hugepages.
1514 * This function returns values like below:
1515 *
1516 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
1517 * (allocated or reserved.)
1518 * 0: successfully dissolved free hugepages or the page is not a
1519 * hugepage (considered as already dissolved)
c8721bbb 1520 */
c3114a84 1521int dissolve_free_huge_page(struct page *page)
c8721bbb 1522{
6bc9b564 1523 int rc = -EBUSY;
082d5b6b 1524
faf53def
NH
1525 /* Not to disrupt normal path by vainly holding hugetlb_lock */
1526 if (!PageHuge(page))
1527 return 0;
1528
c8721bbb 1529 spin_lock(&hugetlb_lock);
faf53def
NH
1530 if (!PageHuge(page)) {
1531 rc = 0;
1532 goto out;
1533 }
1534
1535 if (!page_count(page)) {
2247bb33
GS
1536 struct page *head = compound_head(page);
1537 struct hstate *h = page_hstate(head);
1538 int nid = page_to_nid(head);
6bc9b564 1539 if (h->free_huge_pages - h->resv_huge_pages == 0)
082d5b6b 1540 goto out;
c3114a84
AK
1541 /*
1542 * Move PageHWPoison flag from head page to the raw error page,
1543 * which makes any subpages rather than the error page reusable.
1544 */
1545 if (PageHWPoison(head) && page != head) {
1546 SetPageHWPoison(page);
1547 ClearPageHWPoison(head);
1548 }
2247bb33 1549 list_del(&head->lru);
c8721bbb
NH
1550 h->free_huge_pages--;
1551 h->free_huge_pages_node[nid]--;
c1470b33 1552 h->max_huge_pages--;
2247bb33 1553 update_and_free_page(h, head);
6bc9b564 1554 rc = 0;
c8721bbb 1555 }
082d5b6b 1556out:
c8721bbb 1557 spin_unlock(&hugetlb_lock);
082d5b6b 1558 return rc;
c8721bbb
NH
1559}
1560
1561/*
1562 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1563 * make specified memory blocks removable from the system.
2247bb33
GS
1564 * Note that this will dissolve a free gigantic hugepage completely, if any
1565 * part of it lies within the given range.
082d5b6b
GS
1566 * Also note that if dissolve_free_huge_page() returns with an error, all
1567 * free hugepages that were dissolved before that error are lost.
c8721bbb 1568 */
082d5b6b 1569int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
c8721bbb 1570{
c8721bbb 1571 unsigned long pfn;
eb03aa00 1572 struct page *page;
082d5b6b 1573 int rc = 0;
c8721bbb 1574
d0177639 1575 if (!hugepages_supported())
082d5b6b 1576 return rc;
d0177639 1577
eb03aa00
GS
1578 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1579 page = pfn_to_page(pfn);
faf53def
NH
1580 rc = dissolve_free_huge_page(page);
1581 if (rc)
1582 break;
eb03aa00 1583 }
082d5b6b
GS
1584
1585 return rc;
c8721bbb
NH
1586}
1587
ab5ac90a
MH
1588/*
1589 * Allocates a fresh surplus page from the page allocator.
1590 */
0c397dae 1591static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
aaf14e40 1592 int nid, nodemask_t *nmask)
7893d1d5 1593{
9980d744 1594 struct page *page = NULL;
7893d1d5 1595
bae7f4ae 1596 if (hstate_is_gigantic(h))
aa888a74
AK
1597 return NULL;
1598
d1c3fb1f 1599 spin_lock(&hugetlb_lock);
9980d744
MH
1600 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
1601 goto out_unlock;
d1c3fb1f
NA
1602 spin_unlock(&hugetlb_lock);
1603
0c397dae 1604 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask);
9980d744 1605 if (!page)
0c397dae 1606 return NULL;
d1c3fb1f
NA
1607
1608 spin_lock(&hugetlb_lock);
9980d744
MH
1609 /*
1610 * We could have raced with the pool size change.
1611 * Double check that and simply deallocate the new page
1612 * if we would end up overcommiting the surpluses. Abuse
1613 * temporary page to workaround the nasty free_huge_page
1614 * codeflow
1615 */
1616 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1617 SetPageHugeTemporary(page);
2bf753e6 1618 spin_unlock(&hugetlb_lock);
9980d744 1619 put_page(page);
2bf753e6 1620 return NULL;
9980d744 1621 } else {
9980d744 1622 h->surplus_huge_pages++;
4704dea3 1623 h->surplus_huge_pages_node[page_to_nid(page)]++;
7893d1d5 1624 }
9980d744
MH
1625
1626out_unlock:
d1c3fb1f 1627 spin_unlock(&hugetlb_lock);
7893d1d5
AL
1628
1629 return page;
1630}
1631
9a4e9f3b
AK
1632struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
1633 int nid, nodemask_t *nmask)
ab5ac90a
MH
1634{
1635 struct page *page;
1636
1637 if (hstate_is_gigantic(h))
1638 return NULL;
1639
0c397dae 1640 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask);
ab5ac90a
MH
1641 if (!page)
1642 return NULL;
1643
1644 /*
1645 * We do not account these pages as surplus because they are only
1646 * temporary and will be released properly on the last reference
1647 */
ab5ac90a
MH
1648 SetPageHugeTemporary(page);
1649
1650 return page;
1651}
1652
099730d6
DH
1653/*
1654 * Use the VMA's mpolicy to allocate a huge page from the buddy.
1655 */
e0ec90ee 1656static
0c397dae 1657struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
099730d6
DH
1658 struct vm_area_struct *vma, unsigned long addr)
1659{
aaf14e40
MH
1660 struct page *page;
1661 struct mempolicy *mpol;
1662 gfp_t gfp_mask = htlb_alloc_mask(h);
1663 int nid;
1664 nodemask_t *nodemask;
1665
1666 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
0c397dae 1667 page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
aaf14e40
MH
1668 mpol_cond_put(mpol);
1669
1670 return page;
099730d6
DH
1671}
1672
ab5ac90a 1673/* page migration callback function */
bf50bab2
NH
1674struct page *alloc_huge_page_node(struct hstate *h, int nid)
1675{
aaf14e40 1676 gfp_t gfp_mask = htlb_alloc_mask(h);
4ef91848 1677 struct page *page = NULL;
bf50bab2 1678
aaf14e40
MH
1679 if (nid != NUMA_NO_NODE)
1680 gfp_mask |= __GFP_THISNODE;
1681
bf50bab2 1682 spin_lock(&hugetlb_lock);
4ef91848 1683 if (h->free_huge_pages - h->resv_huge_pages > 0)
3e59fcb0 1684 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, NULL);
bf50bab2
NH
1685 spin_unlock(&hugetlb_lock);
1686
94ae8ba7 1687 if (!page)
0c397dae 1688 page = alloc_migrate_huge_page(h, gfp_mask, nid, NULL);
bf50bab2
NH
1689
1690 return page;
1691}
1692
ab5ac90a 1693/* page migration callback function */
3e59fcb0
MH
1694struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
1695 nodemask_t *nmask)
4db9b2ef 1696{
aaf14e40 1697 gfp_t gfp_mask = htlb_alloc_mask(h);
4db9b2ef
MH
1698
1699 spin_lock(&hugetlb_lock);
1700 if (h->free_huge_pages - h->resv_huge_pages > 0) {
3e59fcb0
MH
1701 struct page *page;
1702
1703 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
1704 if (page) {
1705 spin_unlock(&hugetlb_lock);
1706 return page;
4db9b2ef
MH
1707 }
1708 }
1709 spin_unlock(&hugetlb_lock);
4db9b2ef 1710
0c397dae 1711 return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
4db9b2ef
MH
1712}
1713
ebd63723 1714/* mempolicy aware migration callback */
389c8178
MH
1715struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
1716 unsigned long address)
ebd63723
MH
1717{
1718 struct mempolicy *mpol;
1719 nodemask_t *nodemask;
1720 struct page *page;
ebd63723
MH
1721 gfp_t gfp_mask;
1722 int node;
1723
ebd63723
MH
1724 gfp_mask = htlb_alloc_mask(h);
1725 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1726 page = alloc_huge_page_nodemask(h, node, nodemask);
1727 mpol_cond_put(mpol);
1728
1729 return page;
1730}
1731
e4e574b7 1732/*
25985edc 1733 * Increase the hugetlb pool such that it can accommodate a reservation
e4e574b7
AL
1734 * of size 'delta'.
1735 */
a5516438 1736static int gather_surplus_pages(struct hstate *h, int delta)
e4e574b7
AL
1737{
1738 struct list_head surplus_list;
1739 struct page *page, *tmp;
1740 int ret, i;
1741 int needed, allocated;
28073b02 1742 bool alloc_ok = true;
e4e574b7 1743
a5516438 1744 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
ac09b3a1 1745 if (needed <= 0) {
a5516438 1746 h->resv_huge_pages += delta;
e4e574b7 1747 return 0;
ac09b3a1 1748 }
e4e574b7
AL
1749
1750 allocated = 0;
1751 INIT_LIST_HEAD(&surplus_list);
1752
1753 ret = -ENOMEM;
1754retry:
1755 spin_unlock(&hugetlb_lock);
1756 for (i = 0; i < needed; i++) {
0c397dae 1757 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
aaf14e40 1758 NUMA_NO_NODE, NULL);
28073b02
HD
1759 if (!page) {
1760 alloc_ok = false;
1761 break;
1762 }
e4e574b7 1763 list_add(&page->lru, &surplus_list);
69ed779a 1764 cond_resched();
e4e574b7 1765 }
28073b02 1766 allocated += i;
e4e574b7
AL
1767
1768 /*
1769 * After retaking hugetlb_lock, we need to recalculate 'needed'
1770 * because either resv_huge_pages or free_huge_pages may have changed.
1771 */
1772 spin_lock(&hugetlb_lock);
a5516438
AK
1773 needed = (h->resv_huge_pages + delta) -
1774 (h->free_huge_pages + allocated);
28073b02
HD
1775 if (needed > 0) {
1776 if (alloc_ok)
1777 goto retry;
1778 /*
1779 * We were not able to allocate enough pages to
1780 * satisfy the entire reservation so we free what
1781 * we've allocated so far.
1782 */
1783 goto free;
1784 }
e4e574b7
AL
1785 /*
1786 * The surplus_list now contains _at_least_ the number of extra pages
25985edc 1787 * needed to accommodate the reservation. Add the appropriate number
e4e574b7 1788 * of pages to the hugetlb pool and free the extras back to the buddy
ac09b3a1
AL
1789 * allocator. Commit the entire reservation here to prevent another
1790 * process from stealing the pages as they are added to the pool but
1791 * before they are reserved.
e4e574b7
AL
1792 */
1793 needed += allocated;
a5516438 1794 h->resv_huge_pages += delta;
e4e574b7 1795 ret = 0;
a9869b83 1796
19fc3f0a 1797 /* Free the needed pages to the hugetlb pool */
e4e574b7 1798 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
19fc3f0a
AL
1799 if ((--needed) < 0)
1800 break;
a9869b83
NH
1801 /*
1802 * This page is now managed by the hugetlb allocator and has
1803 * no users -- drop the buddy allocator's reference.
1804 */
1805 put_page_testzero(page);
309381fe 1806 VM_BUG_ON_PAGE(page_count(page), page);
a5516438 1807 enqueue_huge_page(h, page);
19fc3f0a 1808 }
28073b02 1809free:
b0365c8d 1810 spin_unlock(&hugetlb_lock);
19fc3f0a
AL
1811
1812 /* Free unnecessary surplus pages to the buddy allocator */
c0d934ba
JK
1813 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1814 put_page(page);
a9869b83 1815 spin_lock(&hugetlb_lock);
e4e574b7
AL
1816
1817 return ret;
1818}
1819
1820/*
e5bbc8a6
MK
1821 * This routine has two main purposes:
1822 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
1823 * in unused_resv_pages. This corresponds to the prior adjustments made
1824 * to the associated reservation map.
1825 * 2) Free any unused surplus pages that may have been allocated to satisfy
1826 * the reservation. As many as unused_resv_pages may be freed.
1827 *
1828 * Called with hugetlb_lock held. However, the lock could be dropped (and
1829 * reacquired) during calls to cond_resched_lock. Whenever dropping the lock,
1830 * we must make sure nobody else can claim pages we are in the process of
1831 * freeing. Do this by ensuring resv_huge_page always is greater than the
1832 * number of huge pages we plan to free when dropping the lock.
e4e574b7 1833 */
a5516438
AK
1834static void return_unused_surplus_pages(struct hstate *h,
1835 unsigned long unused_resv_pages)
e4e574b7 1836{
e4e574b7
AL
1837 unsigned long nr_pages;
1838
aa888a74 1839 /* Cannot return gigantic pages currently */
bae7f4ae 1840 if (hstate_is_gigantic(h))
e5bbc8a6 1841 goto out;
aa888a74 1842
e5bbc8a6
MK
1843 /*
1844 * Part (or even all) of the reservation could have been backed
1845 * by pre-allocated pages. Only free surplus pages.
1846 */
a5516438 1847 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
e4e574b7 1848
685f3457
LS
1849 /*
1850 * We want to release as many surplus pages as possible, spread
9b5e5d0f
LS
1851 * evenly across all nodes with memory. Iterate across these nodes
1852 * until we can no longer free unreserved surplus pages. This occurs
1853 * when the nodes with surplus pages have no free pages.
1854 * free_pool_huge_page() will balance the the freed pages across the
1855 * on-line nodes with memory and will handle the hstate accounting.
e5bbc8a6
MK
1856 *
1857 * Note that we decrement resv_huge_pages as we free the pages. If
1858 * we drop the lock, resv_huge_pages will still be sufficiently large
1859 * to cover subsequent pages we may free.
685f3457
LS
1860 */
1861 while (nr_pages--) {
e5bbc8a6
MK
1862 h->resv_huge_pages--;
1863 unused_resv_pages--;
8cebfcd0 1864 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
e5bbc8a6 1865 goto out;
7848a4bf 1866 cond_resched_lock(&hugetlb_lock);
e4e574b7 1867 }
e5bbc8a6
MK
1868
1869out:
1870 /* Fully uncommit the reservation */
1871 h->resv_huge_pages -= unused_resv_pages;
e4e574b7
AL
1872}
1873
5e911373 1874
c37f9fb1 1875/*
feba16e2 1876 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
5e911373 1877 * are used by the huge page allocation routines to manage reservations.
cf3ad20b
MK
1878 *
1879 * vma_needs_reservation is called to determine if the huge page at addr
1880 * within the vma has an associated reservation. If a reservation is
1881 * needed, the value 1 is returned. The caller is then responsible for
1882 * managing the global reservation and subpool usage counts. After
1883 * the huge page has been allocated, vma_commit_reservation is called
feba16e2
MK
1884 * to add the page to the reservation map. If the page allocation fails,
1885 * the reservation must be ended instead of committed. vma_end_reservation
1886 * is called in such cases.
cf3ad20b
MK
1887 *
1888 * In the normal case, vma_commit_reservation returns the same value
1889 * as the preceding vma_needs_reservation call. The only time this
1890 * is not the case is if a reserve map was changed between calls. It
1891 * is the responsibility of the caller to notice the difference and
1892 * take appropriate action.
96b96a96
MK
1893 *
1894 * vma_add_reservation is used in error paths where a reservation must
1895 * be restored when a newly allocated huge page must be freed. It is
1896 * to be called after calling vma_needs_reservation to determine if a
1897 * reservation exists.
c37f9fb1 1898 */
5e911373
MK
1899enum vma_resv_mode {
1900 VMA_NEEDS_RESV,
1901 VMA_COMMIT_RESV,
feba16e2 1902 VMA_END_RESV,
96b96a96 1903 VMA_ADD_RESV,
5e911373 1904};
cf3ad20b
MK
1905static long __vma_reservation_common(struct hstate *h,
1906 struct vm_area_struct *vma, unsigned long addr,
5e911373 1907 enum vma_resv_mode mode)
c37f9fb1 1908{
4e35f483
JK
1909 struct resv_map *resv;
1910 pgoff_t idx;
cf3ad20b 1911 long ret;
c37f9fb1 1912
4e35f483
JK
1913 resv = vma_resv_map(vma);
1914 if (!resv)
84afd99b 1915 return 1;
c37f9fb1 1916
4e35f483 1917 idx = vma_hugecache_offset(h, vma, addr);
5e911373
MK
1918 switch (mode) {
1919 case VMA_NEEDS_RESV:
cf3ad20b 1920 ret = region_chg(resv, idx, idx + 1);
5e911373
MK
1921 break;
1922 case VMA_COMMIT_RESV:
1923 ret = region_add(resv, idx, idx + 1);
1924 break;
feba16e2 1925 case VMA_END_RESV:
5e911373
MK
1926 region_abort(resv, idx, idx + 1);
1927 ret = 0;
1928 break;
96b96a96
MK
1929 case VMA_ADD_RESV:
1930 if (vma->vm_flags & VM_MAYSHARE)
1931 ret = region_add(resv, idx, idx + 1);
1932 else {
1933 region_abort(resv, idx, idx + 1);
1934 ret = region_del(resv, idx, idx + 1);
1935 }
1936 break;
5e911373
MK
1937 default:
1938 BUG();
1939 }
84afd99b 1940
4e35f483 1941 if (vma->vm_flags & VM_MAYSHARE)
cf3ad20b 1942 return ret;
67961f9d
MK
1943 else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
1944 /*
1945 * In most cases, reserves always exist for private mappings.
1946 * However, a file associated with mapping could have been
1947 * hole punched or truncated after reserves were consumed.
1948 * As subsequent fault on such a range will not use reserves.
1949 * Subtle - The reserve map for private mappings has the
1950 * opposite meaning than that of shared mappings. If NO
1951 * entry is in the reserve map, it means a reservation exists.
1952 * If an entry exists in the reserve map, it means the
1953 * reservation has already been consumed. As a result, the
1954 * return value of this routine is the opposite of the
1955 * value returned from reserve map manipulation routines above.
1956 */
1957 if (ret)
1958 return 0;
1959 else
1960 return 1;
1961 }
4e35f483 1962 else
cf3ad20b 1963 return ret < 0 ? ret : 0;
c37f9fb1 1964}
cf3ad20b
MK
1965
1966static long vma_needs_reservation(struct hstate *h,
a5516438 1967 struct vm_area_struct *vma, unsigned long addr)
c37f9fb1 1968{
5e911373 1969 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
cf3ad20b 1970}
84afd99b 1971
cf3ad20b
MK
1972static long vma_commit_reservation(struct hstate *h,
1973 struct vm_area_struct *vma, unsigned long addr)
1974{
5e911373
MK
1975 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
1976}
1977
feba16e2 1978static void vma_end_reservation(struct hstate *h,
5e911373
MK
1979 struct vm_area_struct *vma, unsigned long addr)
1980{
feba16e2 1981 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
c37f9fb1
AW
1982}
1983
96b96a96
MK
1984static long vma_add_reservation(struct hstate *h,
1985 struct vm_area_struct *vma, unsigned long addr)
1986{
1987 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
1988}
1989
1990/*
1991 * This routine is called to restore a reservation on error paths. In the
1992 * specific error paths, a huge page was allocated (via alloc_huge_page)
1993 * and is about to be freed. If a reservation for the page existed,
1994 * alloc_huge_page would have consumed the reservation and set PagePrivate
1995 * in the newly allocated page. When the page is freed via free_huge_page,
1996 * the global reservation count will be incremented if PagePrivate is set.
1997 * However, free_huge_page can not adjust the reserve map. Adjust the
1998 * reserve map here to be consistent with global reserve count adjustments
1999 * to be made by free_huge_page.
2000 */
2001static void restore_reserve_on_error(struct hstate *h,
2002 struct vm_area_struct *vma, unsigned long address,
2003 struct page *page)
2004{
2005 if (unlikely(PagePrivate(page))) {
2006 long rc = vma_needs_reservation(h, vma, address);
2007
2008 if (unlikely(rc < 0)) {
2009 /*
2010 * Rare out of memory condition in reserve map
2011 * manipulation. Clear PagePrivate so that
2012 * global reserve count will not be incremented
2013 * by free_huge_page. This will make it appear
2014 * as though the reservation for this page was
2015 * consumed. This may prevent the task from
2016 * faulting in the page at a later time. This
2017 * is better than inconsistent global huge page
2018 * accounting of reserve counts.
2019 */
2020 ClearPagePrivate(page);
2021 } else if (rc) {
2022 rc = vma_add_reservation(h, vma, address);
2023 if (unlikely(rc < 0))
2024 /*
2025 * See above comment about rare out of
2026 * memory condition.
2027 */
2028 ClearPagePrivate(page);
2029 } else
2030 vma_end_reservation(h, vma, address);
2031 }
2032}
2033
70c3547e 2034struct page *alloc_huge_page(struct vm_area_struct *vma,
04f2cbe3 2035 unsigned long addr, int avoid_reserve)
1da177e4 2036{
90481622 2037 struct hugepage_subpool *spool = subpool_vma(vma);
a5516438 2038 struct hstate *h = hstate_vma(vma);
348ea204 2039 struct page *page;
d85f69b0
MK
2040 long map_chg, map_commit;
2041 long gbl_chg;
6d76dcf4
AK
2042 int ret, idx;
2043 struct hugetlb_cgroup *h_cg;
a1e78772 2044
6d76dcf4 2045 idx = hstate_index(h);
a1e78772 2046 /*
d85f69b0
MK
2047 * Examine the region/reserve map to determine if the process
2048 * has a reservation for the page to be allocated. A return
2049 * code of zero indicates a reservation exists (no change).
a1e78772 2050 */
d85f69b0
MK
2051 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2052 if (map_chg < 0)
76dcee75 2053 return ERR_PTR(-ENOMEM);
d85f69b0
MK
2054
2055 /*
2056 * Processes that did not create the mapping will have no
2057 * reserves as indicated by the region/reserve map. Check
2058 * that the allocation will not exceed the subpool limit.
2059 * Allocations for MAP_NORESERVE mappings also need to be
2060 * checked against any subpool limit.
2061 */
2062 if (map_chg || avoid_reserve) {
2063 gbl_chg = hugepage_subpool_get_pages(spool, 1);
2064 if (gbl_chg < 0) {
feba16e2 2065 vma_end_reservation(h, vma, addr);
76dcee75 2066 return ERR_PTR(-ENOSPC);
5e911373 2067 }
1da177e4 2068
d85f69b0
MK
2069 /*
2070 * Even though there was no reservation in the region/reserve
2071 * map, there could be reservations associated with the
2072 * subpool that can be used. This would be indicated if the
2073 * return value of hugepage_subpool_get_pages() is zero.
2074 * However, if avoid_reserve is specified we still avoid even
2075 * the subpool reservations.
2076 */
2077 if (avoid_reserve)
2078 gbl_chg = 1;
2079 }
2080
6d76dcf4 2081 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
8f34af6f
JZ
2082 if (ret)
2083 goto out_subpool_put;
2084
1da177e4 2085 spin_lock(&hugetlb_lock);
d85f69b0
MK
2086 /*
2087 * glb_chg is passed to indicate whether or not a page must be taken
2088 * from the global free pool (global change). gbl_chg == 0 indicates
2089 * a reservation exists for the allocation.
2090 */
2091 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
81a6fcae 2092 if (!page) {
94ae8ba7 2093 spin_unlock(&hugetlb_lock);
0c397dae 2094 page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
8f34af6f
JZ
2095 if (!page)
2096 goto out_uncharge_cgroup;
a88c7695
NH
2097 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2098 SetPagePrivate(page);
2099 h->resv_huge_pages--;
2100 }
79dbb236
AK
2101 spin_lock(&hugetlb_lock);
2102 list_move(&page->lru, &h->hugepage_activelist);
81a6fcae 2103 /* Fall through */
68842c9b 2104 }
81a6fcae
JK
2105 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2106 spin_unlock(&hugetlb_lock);
348ea204 2107
90481622 2108 set_page_private(page, (unsigned long)spool);
90d8b7e6 2109
d85f69b0
MK
2110 map_commit = vma_commit_reservation(h, vma, addr);
2111 if (unlikely(map_chg > map_commit)) {
33039678
MK
2112 /*
2113 * The page was added to the reservation map between
2114 * vma_needs_reservation and vma_commit_reservation.
2115 * This indicates a race with hugetlb_reserve_pages.
2116 * Adjust for the subpool count incremented above AND
2117 * in hugetlb_reserve_pages for the same page. Also,
2118 * the reservation count added in hugetlb_reserve_pages
2119 * no longer applies.
2120 */
2121 long rsv_adjust;
2122
2123 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2124 hugetlb_acct_memory(h, -rsv_adjust);
2125 }
90d8b7e6 2126 return page;
8f34af6f
JZ
2127
2128out_uncharge_cgroup:
2129 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2130out_subpool_put:
d85f69b0 2131 if (map_chg || avoid_reserve)
8f34af6f 2132 hugepage_subpool_put_pages(spool, 1);
feba16e2 2133 vma_end_reservation(h, vma, addr);
8f34af6f 2134 return ERR_PTR(-ENOSPC);
b45b5bd6
DG
2135}
2136
e24a1307
AK
2137int alloc_bootmem_huge_page(struct hstate *h)
2138 __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2139int __alloc_bootmem_huge_page(struct hstate *h)
aa888a74
AK
2140{
2141 struct huge_bootmem_page *m;
b2261026 2142 int nr_nodes, node;
aa888a74 2143
b2261026 2144 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
aa888a74
AK
2145 void *addr;
2146
eb31d559 2147 addr = memblock_alloc_try_nid_raw(
8b89a116 2148 huge_page_size(h), huge_page_size(h),
97ad1087 2149 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
aa888a74
AK
2150 if (addr) {
2151 /*
2152 * Use the beginning of the huge page to store the
2153 * huge_bootmem_page struct (until gather_bootmem
2154 * puts them into the mem_map).
2155 */
2156 m = addr;
91f47662 2157 goto found;
aa888a74 2158 }
aa888a74
AK
2159 }
2160 return 0;
2161
2162found:
df994ead 2163 BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
aa888a74 2164 /* Put them into a private list first because mem_map is not up yet */
330d6e48 2165 INIT_LIST_HEAD(&m->list);
aa888a74
AK
2166 list_add(&m->list, &huge_boot_pages);
2167 m->hstate = h;
2168 return 1;
2169}
2170
d00181b9
KS
2171static void __init prep_compound_huge_page(struct page *page,
2172 unsigned int order)
18229df5
AW
2173{
2174 if (unlikely(order > (MAX_ORDER - 1)))
2175 prep_compound_gigantic_page(page, order);
2176 else
2177 prep_compound_page(page, order);
2178}
2179
aa888a74
AK
2180/* Put bootmem huge pages into the standard lists after mem_map is up */
2181static void __init gather_bootmem_prealloc(void)
2182{
2183 struct huge_bootmem_page *m;
2184
2185 list_for_each_entry(m, &huge_boot_pages, list) {
40d18ebf 2186 struct page *page = virt_to_page(m);
aa888a74 2187 struct hstate *h = m->hstate;
ee8f248d 2188
aa888a74 2189 WARN_ON(page_count(page) != 1);
18229df5 2190 prep_compound_huge_page(page, h->order);
ef5a22be 2191 WARN_ON(PageReserved(page));
aa888a74 2192 prep_new_huge_page(h, page, page_to_nid(page));
af0fb9df
MH
2193 put_page(page); /* free it into the hugepage allocator */
2194
b0320c7b
RA
2195 /*
2196 * If we had gigantic hugepages allocated at boot time, we need
2197 * to restore the 'stolen' pages to totalram_pages in order to
2198 * fix confusing memory reports from free(1) and another
2199 * side-effects, like CommitLimit going negative.
2200 */
bae7f4ae 2201 if (hstate_is_gigantic(h))
3dcc0571 2202 adjust_managed_page_count(page, 1 << h->order);
520495fe 2203 cond_resched();
aa888a74
AK
2204 }
2205}
2206
8faa8b07 2207static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1da177e4
LT
2208{
2209 unsigned long i;
a5516438 2210
e5ff2159 2211 for (i = 0; i < h->max_huge_pages; ++i) {
bae7f4ae 2212 if (hstate_is_gigantic(h)) {
aa888a74
AK
2213 if (!alloc_bootmem_huge_page(h))
2214 break;
0c397dae 2215 } else if (!alloc_pool_huge_page(h,
8cebfcd0 2216 &node_states[N_MEMORY]))
1da177e4 2217 break;
69ed779a 2218 cond_resched();
1da177e4 2219 }
d715cf80
LH
2220 if (i < h->max_huge_pages) {
2221 char buf[32];
2222
c6247f72 2223 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
d715cf80
LH
2224 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n",
2225 h->max_huge_pages, buf, i);
2226 h->max_huge_pages = i;
2227 }
e5ff2159
AK
2228}
2229
2230static void __init hugetlb_init_hstates(void)
2231{
2232 struct hstate *h;
2233
2234 for_each_hstate(h) {
641844f5
NH
2235 if (minimum_order > huge_page_order(h))
2236 minimum_order = huge_page_order(h);
2237
8faa8b07 2238 /* oversize hugepages were init'ed in early boot */
bae7f4ae 2239 if (!hstate_is_gigantic(h))
8faa8b07 2240 hugetlb_hstate_alloc_pages(h);
e5ff2159 2241 }
641844f5 2242 VM_BUG_ON(minimum_order == UINT_MAX);
e5ff2159
AK
2243}
2244
2245static void __init report_hugepages(void)
2246{
2247 struct hstate *h;
2248
2249 for_each_hstate(h) {
4abd32db 2250 char buf[32];
c6247f72
MW
2251
2252 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
ffb22af5 2253 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
c6247f72 2254 buf, h->free_huge_pages);
e5ff2159
AK
2255 }
2256}
2257
1da177e4 2258#ifdef CONFIG_HIGHMEM
6ae11b27
LS
2259static void try_to_free_low(struct hstate *h, unsigned long count,
2260 nodemask_t *nodes_allowed)
1da177e4 2261{
4415cc8d
CL
2262 int i;
2263
bae7f4ae 2264 if (hstate_is_gigantic(h))
aa888a74
AK
2265 return;
2266
6ae11b27 2267 for_each_node_mask(i, *nodes_allowed) {
1da177e4 2268 struct page *page, *next;
a5516438
AK
2269 struct list_head *freel = &h->hugepage_freelists[i];
2270 list_for_each_entry_safe(page, next, freel, lru) {
2271 if (count >= h->nr_huge_pages)
6b0c880d 2272 return;
1da177e4
LT
2273 if (PageHighMem(page))
2274 continue;
2275 list_del(&page->lru);
e5ff2159 2276 update_and_free_page(h, page);
a5516438
AK
2277 h->free_huge_pages--;
2278 h->free_huge_pages_node[page_to_nid(page)]--;
1da177e4
LT
2279 }
2280 }
2281}
2282#else
6ae11b27
LS
2283static inline void try_to_free_low(struct hstate *h, unsigned long count,
2284 nodemask_t *nodes_allowed)
1da177e4
LT
2285{
2286}
2287#endif
2288
20a0307c
WF
2289/*
2290 * Increment or decrement surplus_huge_pages. Keep node-specific counters
2291 * balanced by operating on them in a round-robin fashion.
2292 * Returns 1 if an adjustment was made.
2293 */
6ae11b27
LS
2294static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2295 int delta)
20a0307c 2296{
b2261026 2297 int nr_nodes, node;
20a0307c
WF
2298
2299 VM_BUG_ON(delta != -1 && delta != 1);
20a0307c 2300
b2261026
JK
2301 if (delta < 0) {
2302 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2303 if (h->surplus_huge_pages_node[node])
2304 goto found;
e8c5c824 2305 }
b2261026
JK
2306 } else {
2307 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2308 if (h->surplus_huge_pages_node[node] <
2309 h->nr_huge_pages_node[node])
2310 goto found;
e8c5c824 2311 }
b2261026
JK
2312 }
2313 return 0;
20a0307c 2314
b2261026
JK
2315found:
2316 h->surplus_huge_pages += delta;
2317 h->surplus_huge_pages_node[node] += delta;
2318 return 1;
20a0307c
WF
2319}
2320
a5516438 2321#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
fd875dca 2322static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
4eb0716e 2323 nodemask_t *nodes_allowed)
1da177e4 2324{
7893d1d5 2325 unsigned long min_count, ret;
1da177e4 2326
4eb0716e
AG
2327 spin_lock(&hugetlb_lock);
2328
fd875dca
MK
2329 /*
2330 * Check for a node specific request.
2331 * Changing node specific huge page count may require a corresponding
2332 * change to the global count. In any case, the passed node mask
2333 * (nodes_allowed) will restrict alloc/free to the specified node.
2334 */
2335 if (nid != NUMA_NO_NODE) {
2336 unsigned long old_count = count;
2337
2338 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2339 /*
2340 * User may have specified a large count value which caused the
2341 * above calculation to overflow. In this case, they wanted
2342 * to allocate as many huge pages as possible. Set count to
2343 * largest possible value to align with their intention.
2344 */
2345 if (count < old_count)
2346 count = ULONG_MAX;
2347 }
2348
4eb0716e
AG
2349 /*
2350 * Gigantic pages runtime allocation depend on the capability for large
2351 * page range allocation.
2352 * If the system does not provide this feature, return an error when
2353 * the user tries to allocate gigantic pages but let the user free the
2354 * boottime allocated gigantic pages.
2355 */
2356 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
2357 if (count > persistent_huge_pages(h)) {
2358 spin_unlock(&hugetlb_lock);
2359 return -EINVAL;
2360 }
2361 /* Fall through to decrease pool */
2362 }
aa888a74 2363
7893d1d5
AL
2364 /*
2365 * Increase the pool size
2366 * First take pages out of surplus state. Then make up the
2367 * remaining difference by allocating fresh huge pages.
d1c3fb1f 2368 *
0c397dae 2369 * We might race with alloc_surplus_huge_page() here and be unable
d1c3fb1f
NA
2370 * to convert a surplus huge page to a normal huge page. That is
2371 * not critical, though, it just means the overall size of the
2372 * pool might be one hugepage larger than it needs to be, but
2373 * within all the constraints specified by the sysctls.
7893d1d5 2374 */
a5516438 2375 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
6ae11b27 2376 if (!adjust_pool_surplus(h, nodes_allowed, -1))
7893d1d5
AL
2377 break;
2378 }
2379
a5516438 2380 while (count > persistent_huge_pages(h)) {
7893d1d5
AL
2381 /*
2382 * If this allocation races such that we no longer need the
2383 * page, free_huge_page will handle it by freeing the page
2384 * and reducing the surplus.
2385 */
2386 spin_unlock(&hugetlb_lock);
649920c6
JH
2387
2388 /* yield cpu to avoid soft lockup */
2389 cond_resched();
2390
0c397dae 2391 ret = alloc_pool_huge_page(h, nodes_allowed);
7893d1d5
AL
2392 spin_lock(&hugetlb_lock);
2393 if (!ret)
2394 goto out;
2395
536240f2
MG
2396 /* Bail for signals. Probably ctrl-c from user */
2397 if (signal_pending(current))
2398 goto out;
7893d1d5 2399 }
7893d1d5
AL
2400
2401 /*
2402 * Decrease the pool size
2403 * First return free pages to the buddy allocator (being careful
2404 * to keep enough around to satisfy reservations). Then place
2405 * pages into surplus state as needed so the pool will shrink
2406 * to the desired size as pages become free.
d1c3fb1f
NA
2407 *
2408 * By placing pages into the surplus state independent of the
2409 * overcommit value, we are allowing the surplus pool size to
2410 * exceed overcommit. There are few sane options here. Since
0c397dae 2411 * alloc_surplus_huge_page() is checking the global counter,
d1c3fb1f
NA
2412 * though, we'll note that we're not allowed to exceed surplus
2413 * and won't grow the pool anywhere else. Not until one of the
2414 * sysctls are changed, or the surplus pages go out of use.
7893d1d5 2415 */
a5516438 2416 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
6b0c880d 2417 min_count = max(count, min_count);
6ae11b27 2418 try_to_free_low(h, min_count, nodes_allowed);
a5516438 2419 while (min_count < persistent_huge_pages(h)) {
6ae11b27 2420 if (!free_pool_huge_page(h, nodes_allowed, 0))
1da177e4 2421 break;
55f67141 2422 cond_resched_lock(&hugetlb_lock);
1da177e4 2423 }
a5516438 2424 while (count < persistent_huge_pages(h)) {
6ae11b27 2425 if (!adjust_pool_surplus(h, nodes_allowed, 1))
7893d1d5
AL
2426 break;
2427 }
2428out:
4eb0716e 2429 h->max_huge_pages = persistent_huge_pages(h);
1da177e4 2430 spin_unlock(&hugetlb_lock);
4eb0716e
AG
2431
2432 return 0;
1da177e4
LT
2433}
2434
a3437870
NA
2435#define HSTATE_ATTR_RO(_name) \
2436 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2437
2438#define HSTATE_ATTR(_name) \
2439 static struct kobj_attribute _name##_attr = \
2440 __ATTR(_name, 0644, _name##_show, _name##_store)
2441
2442static struct kobject *hugepages_kobj;
2443static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2444
9a305230
LS
2445static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2446
2447static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
a3437870
NA
2448{
2449 int i;
9a305230 2450
a3437870 2451 for (i = 0; i < HUGE_MAX_HSTATE; i++)
9a305230
LS
2452 if (hstate_kobjs[i] == kobj) {
2453 if (nidp)
2454 *nidp = NUMA_NO_NODE;
a3437870 2455 return &hstates[i];
9a305230
LS
2456 }
2457
2458 return kobj_to_node_hstate(kobj, nidp);
a3437870
NA
2459}
2460
06808b08 2461static ssize_t nr_hugepages_show_common(struct kobject *kobj,
a3437870
NA
2462 struct kobj_attribute *attr, char *buf)
2463{
9a305230
LS
2464 struct hstate *h;
2465 unsigned long nr_huge_pages;
2466 int nid;
2467
2468 h = kobj_to_hstate(kobj, &nid);
2469 if (nid == NUMA_NO_NODE)
2470 nr_huge_pages = h->nr_huge_pages;
2471 else
2472 nr_huge_pages = h->nr_huge_pages_node[nid];
2473
2474 return sprintf(buf, "%lu\n", nr_huge_pages);
a3437870 2475}
adbe8726 2476
238d3c13
DR
2477static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2478 struct hstate *h, int nid,
2479 unsigned long count, size_t len)
a3437870
NA
2480{
2481 int err;
2d0adf7e 2482 nodemask_t nodes_allowed, *n_mask;
a3437870 2483
2d0adf7e
OS
2484 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2485 return -EINVAL;
adbe8726 2486
9a305230
LS
2487 if (nid == NUMA_NO_NODE) {
2488 /*
2489 * global hstate attribute
2490 */
2491 if (!(obey_mempolicy &&
2d0adf7e
OS
2492 init_nodemask_of_mempolicy(&nodes_allowed)))
2493 n_mask = &node_states[N_MEMORY];
2494 else
2495 n_mask = &nodes_allowed;
2496 } else {
9a305230 2497 /*
fd875dca
MK
2498 * Node specific request. count adjustment happens in
2499 * set_max_huge_pages() after acquiring hugetlb_lock.
9a305230 2500 */
2d0adf7e
OS
2501 init_nodemask_of_node(&nodes_allowed, nid);
2502 n_mask = &nodes_allowed;
fd875dca 2503 }
9a305230 2504
2d0adf7e 2505 err = set_max_huge_pages(h, count, nid, n_mask);
06808b08 2506
4eb0716e 2507 return err ? err : len;
06808b08
LS
2508}
2509
238d3c13
DR
2510static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2511 struct kobject *kobj, const char *buf,
2512 size_t len)
2513{
2514 struct hstate *h;
2515 unsigned long count;
2516 int nid;
2517 int err;
2518
2519 err = kstrtoul(buf, 10, &count);
2520 if (err)
2521 return err;
2522
2523 h = kobj_to_hstate(kobj, &nid);
2524 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2525}
2526
06808b08
LS
2527static ssize_t nr_hugepages_show(struct kobject *kobj,
2528 struct kobj_attribute *attr, char *buf)
2529{
2530 return nr_hugepages_show_common(kobj, attr, buf);
2531}
2532
2533static ssize_t nr_hugepages_store(struct kobject *kobj,
2534 struct kobj_attribute *attr, const char *buf, size_t len)
2535{
238d3c13 2536 return nr_hugepages_store_common(false, kobj, buf, len);
a3437870
NA
2537}
2538HSTATE_ATTR(nr_hugepages);
2539
06808b08
LS
2540#ifdef CONFIG_NUMA
2541
2542/*
2543 * hstate attribute for optionally mempolicy-based constraint on persistent
2544 * huge page alloc/free.
2545 */
2546static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2547 struct kobj_attribute *attr, char *buf)
2548{
2549 return nr_hugepages_show_common(kobj, attr, buf);
2550}
2551
2552static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2553 struct kobj_attribute *attr, const char *buf, size_t len)
2554{
238d3c13 2555 return nr_hugepages_store_common(true, kobj, buf, len);
06808b08
LS
2556}
2557HSTATE_ATTR(nr_hugepages_mempolicy);
2558#endif
2559
2560
a3437870
NA
2561static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2562 struct kobj_attribute *attr, char *buf)
2563{
9a305230 2564 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870
NA
2565 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2566}
adbe8726 2567
a3437870
NA
2568static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2569 struct kobj_attribute *attr, const char *buf, size_t count)
2570{
2571 int err;
2572 unsigned long input;
9a305230 2573 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870 2574
bae7f4ae 2575 if (hstate_is_gigantic(h))
adbe8726
EM
2576 return -EINVAL;
2577
3dbb95f7 2578 err = kstrtoul(buf, 10, &input);
a3437870 2579 if (err)
73ae31e5 2580 return err;
a3437870
NA
2581
2582 spin_lock(&hugetlb_lock);
2583 h->nr_overcommit_huge_pages = input;
2584 spin_unlock(&hugetlb_lock);
2585
2586 return count;
2587}
2588HSTATE_ATTR(nr_overcommit_hugepages);
2589
2590static ssize_t free_hugepages_show(struct kobject *kobj,
2591 struct kobj_attribute *attr, char *buf)
2592{
9a305230
LS
2593 struct hstate *h;
2594 unsigned long free_huge_pages;
2595 int nid;
2596
2597 h = kobj_to_hstate(kobj, &nid);
2598 if (nid == NUMA_NO_NODE)
2599 free_huge_pages = h->free_huge_pages;
2600 else
2601 free_huge_pages = h->free_huge_pages_node[nid];
2602
2603 return sprintf(buf, "%lu\n", free_huge_pages);
a3437870
NA
2604}
2605HSTATE_ATTR_RO(free_hugepages);
2606
2607static ssize_t resv_hugepages_show(struct kobject *kobj,
2608 struct kobj_attribute *attr, char *buf)
2609{
9a305230 2610 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870
NA
2611 return sprintf(buf, "%lu\n", h->resv_huge_pages);
2612}
2613HSTATE_ATTR_RO(resv_hugepages);
2614
2615static ssize_t surplus_hugepages_show(struct kobject *kobj,
2616 struct kobj_attribute *attr, char *buf)
2617{
9a305230
LS
2618 struct hstate *h;
2619 unsigned long surplus_huge_pages;
2620 int nid;
2621
2622 h = kobj_to_hstate(kobj, &nid);
2623 if (nid == NUMA_NO_NODE)
2624 surplus_huge_pages = h->surplus_huge_pages;
2625 else
2626 surplus_huge_pages = h->surplus_huge_pages_node[nid];
2627
2628 return sprintf(buf, "%lu\n", surplus_huge_pages);
a3437870
NA
2629}
2630HSTATE_ATTR_RO(surplus_hugepages);
2631
2632static struct attribute *hstate_attrs[] = {
2633 &nr_hugepages_attr.attr,
2634 &nr_overcommit_hugepages_attr.attr,
2635 &free_hugepages_attr.attr,
2636 &resv_hugepages_attr.attr,
2637 &surplus_hugepages_attr.attr,
06808b08
LS
2638#ifdef CONFIG_NUMA
2639 &nr_hugepages_mempolicy_attr.attr,
2640#endif
a3437870
NA
2641 NULL,
2642};
2643
67e5ed96 2644static const struct attribute_group hstate_attr_group = {
a3437870
NA
2645 .attrs = hstate_attrs,
2646};
2647
094e9539
JM
2648static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2649 struct kobject **hstate_kobjs,
67e5ed96 2650 const struct attribute_group *hstate_attr_group)
a3437870
NA
2651{
2652 int retval;
972dc4de 2653 int hi = hstate_index(h);
a3437870 2654
9a305230
LS
2655 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2656 if (!hstate_kobjs[hi])
a3437870
NA
2657 return -ENOMEM;
2658
9a305230 2659 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
a3437870 2660 if (retval)
9a305230 2661 kobject_put(hstate_kobjs[hi]);
a3437870
NA
2662
2663 return retval;
2664}
2665
2666static void __init hugetlb_sysfs_init(void)
2667{
2668 struct hstate *h;
2669 int err;
2670
2671 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2672 if (!hugepages_kobj)
2673 return;
2674
2675 for_each_hstate(h) {
9a305230
LS
2676 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2677 hstate_kobjs, &hstate_attr_group);
a3437870 2678 if (err)
ffb22af5 2679 pr_err("Hugetlb: Unable to add hstate %s", h->name);
a3437870
NA
2680 }
2681}
2682
9a305230
LS
2683#ifdef CONFIG_NUMA
2684
2685/*
2686 * node_hstate/s - associate per node hstate attributes, via their kobjects,
10fbcf4c
KS
2687 * with node devices in node_devices[] using a parallel array. The array
2688 * index of a node device or _hstate == node id.
2689 * This is here to avoid any static dependency of the node device driver, in
9a305230
LS
2690 * the base kernel, on the hugetlb module.
2691 */
2692struct node_hstate {
2693 struct kobject *hugepages_kobj;
2694 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2695};
b4e289a6 2696static struct node_hstate node_hstates[MAX_NUMNODES];
9a305230
LS
2697
2698/*
10fbcf4c 2699 * A subset of global hstate attributes for node devices
9a305230
LS
2700 */
2701static struct attribute *per_node_hstate_attrs[] = {
2702 &nr_hugepages_attr.attr,
2703 &free_hugepages_attr.attr,
2704 &surplus_hugepages_attr.attr,
2705 NULL,
2706};
2707
67e5ed96 2708static const struct attribute_group per_node_hstate_attr_group = {
9a305230
LS
2709 .attrs = per_node_hstate_attrs,
2710};
2711
2712/*
10fbcf4c 2713 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
9a305230
LS
2714 * Returns node id via non-NULL nidp.
2715 */
2716static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2717{
2718 int nid;
2719
2720 for (nid = 0; nid < nr_node_ids; nid++) {
2721 struct node_hstate *nhs = &node_hstates[nid];
2722 int i;
2723 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2724 if (nhs->hstate_kobjs[i] == kobj) {
2725 if (nidp)
2726 *nidp = nid;
2727 return &hstates[i];
2728 }
2729 }
2730
2731 BUG();
2732 return NULL;
2733}
2734
2735/*
10fbcf4c 2736 * Unregister hstate attributes from a single node device.
9a305230
LS
2737 * No-op if no hstate attributes attached.
2738 */
3cd8b44f 2739static void hugetlb_unregister_node(struct node *node)
9a305230
LS
2740{
2741 struct hstate *h;
10fbcf4c 2742 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
2743
2744 if (!nhs->hugepages_kobj)
9b5e5d0f 2745 return; /* no hstate attributes */
9a305230 2746
972dc4de
AK
2747 for_each_hstate(h) {
2748 int idx = hstate_index(h);
2749 if (nhs->hstate_kobjs[idx]) {
2750 kobject_put(nhs->hstate_kobjs[idx]);
2751 nhs->hstate_kobjs[idx] = NULL;
9a305230 2752 }
972dc4de 2753 }
9a305230
LS
2754
2755 kobject_put(nhs->hugepages_kobj);
2756 nhs->hugepages_kobj = NULL;
2757}
2758
9a305230
LS
2759
2760/*
10fbcf4c 2761 * Register hstate attributes for a single node device.
9a305230
LS
2762 * No-op if attributes already registered.
2763 */
3cd8b44f 2764static void hugetlb_register_node(struct node *node)
9a305230
LS
2765{
2766 struct hstate *h;
10fbcf4c 2767 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
2768 int err;
2769
2770 if (nhs->hugepages_kobj)
2771 return; /* already allocated */
2772
2773 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
10fbcf4c 2774 &node->dev.kobj);
9a305230
LS
2775 if (!nhs->hugepages_kobj)
2776 return;
2777
2778 for_each_hstate(h) {
2779 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2780 nhs->hstate_kobjs,
2781 &per_node_hstate_attr_group);
2782 if (err) {
ffb22af5
AM
2783 pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2784 h->name, node->dev.id);
9a305230
LS
2785 hugetlb_unregister_node(node);
2786 break;
2787 }
2788 }
2789}
2790
2791/*
9b5e5d0f 2792 * hugetlb init time: register hstate attributes for all registered node
10fbcf4c
KS
2793 * devices of nodes that have memory. All on-line nodes should have
2794 * registered their associated device by this time.
9a305230 2795 */
7d9ca000 2796static void __init hugetlb_register_all_nodes(void)
9a305230
LS
2797{
2798 int nid;
2799
8cebfcd0 2800 for_each_node_state(nid, N_MEMORY) {
8732794b 2801 struct node *node = node_devices[nid];
10fbcf4c 2802 if (node->dev.id == nid)
9a305230
LS
2803 hugetlb_register_node(node);
2804 }
2805
2806 /*
10fbcf4c 2807 * Let the node device driver know we're here so it can
9a305230
LS
2808 * [un]register hstate attributes on node hotplug.
2809 */
2810 register_hugetlbfs_with_node(hugetlb_register_node,
2811 hugetlb_unregister_node);
2812}
2813#else /* !CONFIG_NUMA */
2814
2815static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2816{
2817 BUG();
2818 if (nidp)
2819 *nidp = -1;
2820 return NULL;
2821}
2822
9a305230
LS
2823static void hugetlb_register_all_nodes(void) { }
2824
2825#endif
2826
a3437870
NA
2827static int __init hugetlb_init(void)
2828{
8382d914
DB
2829 int i;
2830
457c1b27 2831 if (!hugepages_supported())
0ef89d25 2832 return 0;
a3437870 2833
e11bfbfc 2834 if (!size_to_hstate(default_hstate_size)) {
d715cf80
LH
2835 if (default_hstate_size != 0) {
2836 pr_err("HugeTLB: unsupported default_hugepagesz %lu. Reverting to %lu\n",
2837 default_hstate_size, HPAGE_SIZE);
2838 }
2839
e11bfbfc
NP
2840 default_hstate_size = HPAGE_SIZE;
2841 if (!size_to_hstate(default_hstate_size))
2842 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
a3437870 2843 }
972dc4de 2844 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
f8b74815
VT
2845 if (default_hstate_max_huge_pages) {
2846 if (!default_hstate.max_huge_pages)
2847 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2848 }
a3437870
NA
2849
2850 hugetlb_init_hstates();
aa888a74 2851 gather_bootmem_prealloc();
a3437870
NA
2852 report_hugepages();
2853
2854 hugetlb_sysfs_init();
9a305230 2855 hugetlb_register_all_nodes();
7179e7bf 2856 hugetlb_cgroup_file_init();
9a305230 2857
8382d914
DB
2858#ifdef CONFIG_SMP
2859 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2860#else
2861 num_fault_mutexes = 1;
2862#endif
c672c7f2 2863 hugetlb_fault_mutex_table =
6da2ec56
KC
2864 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
2865 GFP_KERNEL);
c672c7f2 2866 BUG_ON(!hugetlb_fault_mutex_table);
8382d914
DB
2867
2868 for (i = 0; i < num_fault_mutexes; i++)
c672c7f2 2869 mutex_init(&hugetlb_fault_mutex_table[i]);
a3437870
NA
2870 return 0;
2871}
3e89e1c5 2872subsys_initcall(hugetlb_init);
a3437870
NA
2873
2874/* Should be called on processing a hugepagesz=... option */
9fee021d
VT
2875void __init hugetlb_bad_size(void)
2876{
2877 parsed_valid_hugepagesz = false;
2878}
2879
d00181b9 2880void __init hugetlb_add_hstate(unsigned int order)
a3437870
NA
2881{
2882 struct hstate *h;
8faa8b07
AK
2883 unsigned long i;
2884
a3437870 2885 if (size_to_hstate(PAGE_SIZE << order)) {
598d8091 2886 pr_warn("hugepagesz= specified twice, ignoring\n");
a3437870
NA
2887 return;
2888 }
47d38344 2889 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
a3437870 2890 BUG_ON(order == 0);
47d38344 2891 h = &hstates[hugetlb_max_hstate++];
a3437870
NA
2892 h->order = order;
2893 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
8faa8b07
AK
2894 h->nr_huge_pages = 0;
2895 h->free_huge_pages = 0;
2896 for (i = 0; i < MAX_NUMNODES; ++i)
2897 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
0edaecfa 2898 INIT_LIST_HEAD(&h->hugepage_activelist);
54f18d35
AM
2899 h->next_nid_to_alloc = first_memory_node;
2900 h->next_nid_to_free = first_memory_node;
a3437870
NA
2901 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2902 huge_page_size(h)/1024);
8faa8b07 2903
a3437870
NA
2904 parsed_hstate = h;
2905}
2906
e11bfbfc 2907static int __init hugetlb_nrpages_setup(char *s)
a3437870
NA
2908{
2909 unsigned long *mhp;
8faa8b07 2910 static unsigned long *last_mhp;
a3437870 2911
9fee021d
VT
2912 if (!parsed_valid_hugepagesz) {
2913 pr_warn("hugepages = %s preceded by "
2914 "an unsupported hugepagesz, ignoring\n", s);
2915 parsed_valid_hugepagesz = true;
2916 return 1;
2917 }
a3437870 2918 /*
47d38344 2919 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
a3437870
NA
2920 * so this hugepages= parameter goes to the "default hstate".
2921 */
9fee021d 2922 else if (!hugetlb_max_hstate)
a3437870
NA
2923 mhp = &default_hstate_max_huge_pages;
2924 else
2925 mhp = &parsed_hstate->max_huge_pages;
2926
8faa8b07 2927 if (mhp == last_mhp) {
598d8091 2928 pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
8faa8b07
AK
2929 return 1;
2930 }
2931
a3437870
NA
2932 if (sscanf(s, "%lu", mhp) <= 0)
2933 *mhp = 0;
2934
8faa8b07
AK
2935 /*
2936 * Global state is always initialized later in hugetlb_init.
2937 * But we need to allocate >= MAX_ORDER hstates here early to still
2938 * use the bootmem allocator.
2939 */
47d38344 2940 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
8faa8b07
AK
2941 hugetlb_hstate_alloc_pages(parsed_hstate);
2942
2943 last_mhp = mhp;
2944
a3437870
NA
2945 return 1;
2946}
e11bfbfc
NP
2947__setup("hugepages=", hugetlb_nrpages_setup);
2948
2949static int __init hugetlb_default_setup(char *s)
2950{
2951 default_hstate_size = memparse(s, &s);
2952 return 1;
2953}
2954__setup("default_hugepagesz=", hugetlb_default_setup);
a3437870 2955
8a213460
NA
2956static unsigned int cpuset_mems_nr(unsigned int *array)
2957{
2958 int node;
2959 unsigned int nr = 0;
2960
2961 for_each_node_mask(node, cpuset_current_mems_allowed)
2962 nr += array[node];
2963
2964 return nr;
2965}
2966
2967#ifdef CONFIG_SYSCTL
06808b08
LS
2968static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2969 struct ctl_table *table, int write,
2970 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 2971{
e5ff2159 2972 struct hstate *h = &default_hstate;
238d3c13 2973 unsigned long tmp = h->max_huge_pages;
08d4a246 2974 int ret;
e5ff2159 2975
457c1b27 2976 if (!hugepages_supported())
86613628 2977 return -EOPNOTSUPP;
457c1b27 2978
e5ff2159
AK
2979 table->data = &tmp;
2980 table->maxlen = sizeof(unsigned long);
08d4a246
MH
2981 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2982 if (ret)
2983 goto out;
e5ff2159 2984
238d3c13
DR
2985 if (write)
2986 ret = __nr_hugepages_store_common(obey_mempolicy, h,
2987 NUMA_NO_NODE, tmp, *length);
08d4a246
MH
2988out:
2989 return ret;
1da177e4 2990}
396faf03 2991
06808b08
LS
2992int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2993 void __user *buffer, size_t *length, loff_t *ppos)
2994{
2995
2996 return hugetlb_sysctl_handler_common(false, table, write,
2997 buffer, length, ppos);
2998}
2999
3000#ifdef CONFIG_NUMA
3001int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
3002 void __user *buffer, size_t *length, loff_t *ppos)
3003{
3004 return hugetlb_sysctl_handler_common(true, table, write,
3005 buffer, length, ppos);
3006}
3007#endif /* CONFIG_NUMA */
3008
a3d0c6aa 3009int hugetlb_overcommit_handler(struct ctl_table *table, int write,
8d65af78 3010 void __user *buffer,
a3d0c6aa
NA
3011 size_t *length, loff_t *ppos)
3012{
a5516438 3013 struct hstate *h = &default_hstate;
e5ff2159 3014 unsigned long tmp;
08d4a246 3015 int ret;
e5ff2159 3016
457c1b27 3017 if (!hugepages_supported())
86613628 3018 return -EOPNOTSUPP;
457c1b27 3019
c033a93c 3020 tmp = h->nr_overcommit_huge_pages;
e5ff2159 3021
bae7f4ae 3022 if (write && hstate_is_gigantic(h))
adbe8726
EM
3023 return -EINVAL;
3024
e5ff2159
AK
3025 table->data = &tmp;
3026 table->maxlen = sizeof(unsigned long);
08d4a246
MH
3027 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
3028 if (ret)
3029 goto out;
e5ff2159
AK
3030
3031 if (write) {
3032 spin_lock(&hugetlb_lock);
3033 h->nr_overcommit_huge_pages = tmp;
3034 spin_unlock(&hugetlb_lock);
3035 }
08d4a246
MH
3036out:
3037 return ret;
a3d0c6aa
NA
3038}
3039
1da177e4
LT
3040#endif /* CONFIG_SYSCTL */
3041
e1759c21 3042void hugetlb_report_meminfo(struct seq_file *m)
1da177e4 3043{
fcb2b0c5
RG
3044 struct hstate *h;
3045 unsigned long total = 0;
3046
457c1b27
NA
3047 if (!hugepages_supported())
3048 return;
fcb2b0c5
RG
3049
3050 for_each_hstate(h) {
3051 unsigned long count = h->nr_huge_pages;
3052
3053 total += (PAGE_SIZE << huge_page_order(h)) * count;
3054
3055 if (h == &default_hstate)
3056 seq_printf(m,
3057 "HugePages_Total: %5lu\n"
3058 "HugePages_Free: %5lu\n"
3059 "HugePages_Rsvd: %5lu\n"
3060 "HugePages_Surp: %5lu\n"
3061 "Hugepagesize: %8lu kB\n",
3062 count,
3063 h->free_huge_pages,
3064 h->resv_huge_pages,
3065 h->surplus_huge_pages,
3066 (PAGE_SIZE << huge_page_order(h)) / 1024);
3067 }
3068
3069 seq_printf(m, "Hugetlb: %8lu kB\n", total / 1024);
1da177e4
LT
3070}
3071
3072int hugetlb_report_node_meminfo(int nid, char *buf)
3073{
a5516438 3074 struct hstate *h = &default_hstate;
457c1b27
NA
3075 if (!hugepages_supported())
3076 return 0;
1da177e4
LT
3077 return sprintf(buf,
3078 "Node %d HugePages_Total: %5u\n"
a1de0919
NA
3079 "Node %d HugePages_Free: %5u\n"
3080 "Node %d HugePages_Surp: %5u\n",
a5516438
AK
3081 nid, h->nr_huge_pages_node[nid],
3082 nid, h->free_huge_pages_node[nid],
3083 nid, h->surplus_huge_pages_node[nid]);
1da177e4
LT
3084}
3085
949f7ec5
DR
3086void hugetlb_show_meminfo(void)
3087{
3088 struct hstate *h;
3089 int nid;
3090
457c1b27
NA
3091 if (!hugepages_supported())
3092 return;
3093
949f7ec5
DR
3094 for_each_node_state(nid, N_MEMORY)
3095 for_each_hstate(h)
3096 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3097 nid,
3098 h->nr_huge_pages_node[nid],
3099 h->free_huge_pages_node[nid],
3100 h->surplus_huge_pages_node[nid],
3101 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3102}
3103
5d317b2b
NH
3104void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3105{
3106 seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3107 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3108}
3109
1da177e4
LT
3110/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3111unsigned long hugetlb_total_pages(void)
3112{
d0028588
WL
3113 struct hstate *h;
3114 unsigned long nr_total_pages = 0;
3115
3116 for_each_hstate(h)
3117 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3118 return nr_total_pages;
1da177e4 3119}
1da177e4 3120
a5516438 3121static int hugetlb_acct_memory(struct hstate *h, long delta)
fc1b8a73
MG
3122{
3123 int ret = -ENOMEM;
3124
3125 spin_lock(&hugetlb_lock);
3126 /*
3127 * When cpuset is configured, it breaks the strict hugetlb page
3128 * reservation as the accounting is done on a global variable. Such
3129 * reservation is completely rubbish in the presence of cpuset because
3130 * the reservation is not checked against page availability for the
3131 * current cpuset. Application can still potentially OOM'ed by kernel
3132 * with lack of free htlb page in cpuset that the task is in.
3133 * Attempt to enforce strict accounting with cpuset is almost
3134 * impossible (or too ugly) because cpuset is too fluid that
3135 * task or memory node can be dynamically moved between cpusets.
3136 *
3137 * The change of semantics for shared hugetlb mapping with cpuset is
3138 * undesirable. However, in order to preserve some of the semantics,
3139 * we fall back to check against current free page availability as
3140 * a best attempt and hopefully to minimize the impact of changing
3141 * semantics that cpuset has.
3142 */
3143 if (delta > 0) {
a5516438 3144 if (gather_surplus_pages(h, delta) < 0)
fc1b8a73
MG
3145 goto out;
3146
a5516438
AK
3147 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
3148 return_unused_surplus_pages(h, delta);
fc1b8a73
MG
3149 goto out;
3150 }
3151 }
3152
3153 ret = 0;
3154 if (delta < 0)
a5516438 3155 return_unused_surplus_pages(h, (unsigned long) -delta);
fc1b8a73
MG
3156
3157out:
3158 spin_unlock(&hugetlb_lock);
3159 return ret;
3160}
3161
84afd99b
AW
3162static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3163{
f522c3ac 3164 struct resv_map *resv = vma_resv_map(vma);
84afd99b
AW
3165
3166 /*
3167 * This new VMA should share its siblings reservation map if present.
3168 * The VMA will only ever have a valid reservation map pointer where
3169 * it is being copied for another still existing VMA. As that VMA
25985edc 3170 * has a reference to the reservation map it cannot disappear until
84afd99b
AW
3171 * after this open call completes. It is therefore safe to take a
3172 * new reference here without additional locking.
3173 */
4e35f483 3174 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
f522c3ac 3175 kref_get(&resv->refs);
84afd99b
AW
3176}
3177
a1e78772
MG
3178static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3179{
a5516438 3180 struct hstate *h = hstate_vma(vma);
f522c3ac 3181 struct resv_map *resv = vma_resv_map(vma);
90481622 3182 struct hugepage_subpool *spool = subpool_vma(vma);
4e35f483 3183 unsigned long reserve, start, end;
1c5ecae3 3184 long gbl_reserve;
84afd99b 3185
4e35f483
JK
3186 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3187 return;
84afd99b 3188
4e35f483
JK
3189 start = vma_hugecache_offset(h, vma, vma->vm_start);
3190 end = vma_hugecache_offset(h, vma, vma->vm_end);
84afd99b 3191
4e35f483 3192 reserve = (end - start) - region_count(resv, start, end);
84afd99b 3193
4e35f483
JK
3194 kref_put(&resv->refs, resv_map_release);
3195
3196 if (reserve) {
1c5ecae3
MK
3197 /*
3198 * Decrement reserve counts. The global reserve count may be
3199 * adjusted if the subpool has a minimum size.
3200 */
3201 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3202 hugetlb_acct_memory(h, -gbl_reserve);
84afd99b 3203 }
a1e78772
MG
3204}
3205
31383c68
DW
3206static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
3207{
3208 if (addr & ~(huge_page_mask(hstate_vma(vma))))
3209 return -EINVAL;
3210 return 0;
3211}
3212
05ea8860
DW
3213static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
3214{
3215 struct hstate *hstate = hstate_vma(vma);
3216
3217 return 1UL << huge_page_shift(hstate);
3218}
3219
1da177e4
LT
3220/*
3221 * We cannot handle pagefaults against hugetlb pages at all. They cause
3222 * handle_mm_fault() to try to instantiate regular-sized pages in the
3223 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
3224 * this far.
3225 */
b3ec9f33 3226static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
1da177e4
LT
3227{
3228 BUG();
d0217ac0 3229 return 0;
1da177e4
LT
3230}
3231
eec3636a
JC
3232/*
3233 * When a new function is introduced to vm_operations_struct and added
3234 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
3235 * This is because under System V memory model, mappings created via
3236 * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
3237 * their original vm_ops are overwritten with shm_vm_ops.
3238 */
f0f37e2f 3239const struct vm_operations_struct hugetlb_vm_ops = {
d0217ac0 3240 .fault = hugetlb_vm_op_fault,
84afd99b 3241 .open = hugetlb_vm_op_open,
a1e78772 3242 .close = hugetlb_vm_op_close,
31383c68 3243 .split = hugetlb_vm_op_split,
05ea8860 3244 .pagesize = hugetlb_vm_op_pagesize,
1da177e4
LT
3245};
3246
1e8f889b
DG
3247static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3248 int writable)
63551ae0
DG
3249{
3250 pte_t entry;
3251
1e8f889b 3252 if (writable) {
106c992a
GS
3253 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3254 vma->vm_page_prot)));
63551ae0 3255 } else {
106c992a
GS
3256 entry = huge_pte_wrprotect(mk_huge_pte(page,
3257 vma->vm_page_prot));
63551ae0
DG
3258 }
3259 entry = pte_mkyoung(entry);
3260 entry = pte_mkhuge(entry);
d9ed9faa 3261 entry = arch_make_huge_pte(entry, vma, page, writable);
63551ae0
DG
3262
3263 return entry;
3264}
3265
1e8f889b
DG
3266static void set_huge_ptep_writable(struct vm_area_struct *vma,
3267 unsigned long address, pte_t *ptep)
3268{
3269 pte_t entry;
3270
106c992a 3271 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
32f84528 3272 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4b3073e1 3273 update_mmu_cache(vma, address, ptep);
1e8f889b
DG
3274}
3275
d5ed7444 3276bool is_hugetlb_entry_migration(pte_t pte)
4a705fef
NH
3277{
3278 swp_entry_t swp;
3279
3280 if (huge_pte_none(pte) || pte_present(pte))
d5ed7444 3281 return false;
4a705fef
NH
3282 swp = pte_to_swp_entry(pte);
3283 if (non_swap_entry(swp) && is_migration_entry(swp))
d5ed7444 3284 return true;
4a705fef 3285 else
d5ed7444 3286 return false;
4a705fef
NH
3287}
3288
3289static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3290{
3291 swp_entry_t swp;
3292
3293 if (huge_pte_none(pte) || pte_present(pte))
3294 return 0;
3295 swp = pte_to_swp_entry(pte);
3296 if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3297 return 1;
3298 else
3299 return 0;
3300}
1e8f889b 3301
63551ae0
DG
3302int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3303 struct vm_area_struct *vma)
3304{
5e41540c 3305 pte_t *src_pte, *dst_pte, entry, dst_entry;
63551ae0 3306 struct page *ptepage;
1c59827d 3307 unsigned long addr;
1e8f889b 3308 int cow;
a5516438
AK
3309 struct hstate *h = hstate_vma(vma);
3310 unsigned long sz = huge_page_size(h);
ac46d4f3 3311 struct mmu_notifier_range range;
e8569dd2 3312 int ret = 0;
1e8f889b
DG
3313
3314 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
63551ae0 3315
ac46d4f3 3316 if (cow) {
7269f999 3317 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src,
6f4f13e8 3318 vma->vm_start,
ac46d4f3
JG
3319 vma->vm_end);
3320 mmu_notifier_invalidate_range_start(&range);
3321 }
e8569dd2 3322
a5516438 3323 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
cb900f41 3324 spinlock_t *src_ptl, *dst_ptl;
7868a208 3325 src_pte = huge_pte_offset(src, addr, sz);
c74df32c
HD
3326 if (!src_pte)
3327 continue;
a5516438 3328 dst_pte = huge_pte_alloc(dst, addr, sz);
e8569dd2
AS
3329 if (!dst_pte) {
3330 ret = -ENOMEM;
3331 break;
3332 }
c5c99429 3333
5e41540c
MK
3334 /*
3335 * If the pagetables are shared don't copy or take references.
3336 * dst_pte == src_pte is the common case of src/dest sharing.
3337 *
3338 * However, src could have 'unshared' and dst shares with
3339 * another vma. If dst_pte !none, this implies sharing.
3340 * Check here before taking page table lock, and once again
3341 * after taking the lock below.
3342 */
3343 dst_entry = huge_ptep_get(dst_pte);
3344 if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
c5c99429
LW
3345 continue;
3346
cb900f41
KS
3347 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3348 src_ptl = huge_pte_lockptr(h, src, src_pte);
3349 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4a705fef 3350 entry = huge_ptep_get(src_pte);
5e41540c
MK
3351 dst_entry = huge_ptep_get(dst_pte);
3352 if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
3353 /*
3354 * Skip if src entry none. Also, skip in the
3355 * unlikely case dst entry !none as this implies
3356 * sharing with another vma.
3357 */
4a705fef
NH
3358 ;
3359 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3360 is_hugetlb_entry_hwpoisoned(entry))) {
3361 swp_entry_t swp_entry = pte_to_swp_entry(entry);
3362
3363 if (is_write_migration_entry(swp_entry) && cow) {
3364 /*
3365 * COW mappings require pages in both
3366 * parent and child to be set to read.
3367 */
3368 make_migration_entry_read(&swp_entry);
3369 entry = swp_entry_to_pte(swp_entry);
e5251fd4
PA
3370 set_huge_swap_pte_at(src, addr, src_pte,
3371 entry, sz);
4a705fef 3372 }
e5251fd4 3373 set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
4a705fef 3374 } else {
34ee645e 3375 if (cow) {
0f10851e
JG
3376 /*
3377 * No need to notify as we are downgrading page
3378 * table protection not changing it to point
3379 * to a new page.
3380 *
ad56b738 3381 * See Documentation/vm/mmu_notifier.rst
0f10851e 3382 */
7f2e9525 3383 huge_ptep_set_wrprotect(src, addr, src_pte);
34ee645e 3384 }
0253d634 3385 entry = huge_ptep_get(src_pte);
1c59827d
HD
3386 ptepage = pte_page(entry);
3387 get_page(ptepage);
53f9263b 3388 page_dup_rmap(ptepage, true);
1c59827d 3389 set_huge_pte_at(dst, addr, dst_pte, entry);
5d317b2b 3390 hugetlb_count_add(pages_per_huge_page(h), dst);
1c59827d 3391 }
cb900f41
KS
3392 spin_unlock(src_ptl);
3393 spin_unlock(dst_ptl);
63551ae0 3394 }
63551ae0 3395
e8569dd2 3396 if (cow)
ac46d4f3 3397 mmu_notifier_invalidate_range_end(&range);
e8569dd2
AS
3398
3399 return ret;
63551ae0
DG
3400}
3401
24669e58
AK
3402void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3403 unsigned long start, unsigned long end,
3404 struct page *ref_page)
63551ae0
DG
3405{
3406 struct mm_struct *mm = vma->vm_mm;
3407 unsigned long address;
c7546f8f 3408 pte_t *ptep;
63551ae0 3409 pte_t pte;
cb900f41 3410 spinlock_t *ptl;
63551ae0 3411 struct page *page;
a5516438
AK
3412 struct hstate *h = hstate_vma(vma);
3413 unsigned long sz = huge_page_size(h);
ac46d4f3 3414 struct mmu_notifier_range range;
a5516438 3415
63551ae0 3416 WARN_ON(!is_vm_hugetlb_page(vma));
a5516438
AK
3417 BUG_ON(start & ~huge_page_mask(h));
3418 BUG_ON(end & ~huge_page_mask(h));
63551ae0 3419
07e32661
AK
3420 /*
3421 * This is a hugetlb vma, all the pte entries should point
3422 * to huge page.
3423 */
ed6a7935 3424 tlb_change_page_size(tlb, sz);
24669e58 3425 tlb_start_vma(tlb, vma);
dff11abe
MK
3426
3427 /*
3428 * If sharing possible, alert mmu notifiers of worst case.
3429 */
6f4f13e8
JG
3430 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
3431 end);
ac46d4f3
JG
3432 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
3433 mmu_notifier_invalidate_range_start(&range);
569f48b8 3434 address = start;
569f48b8 3435 for (; address < end; address += sz) {
7868a208 3436 ptep = huge_pte_offset(mm, address, sz);
4c887265 3437 if (!ptep)
c7546f8f
DG
3438 continue;
3439
cb900f41 3440 ptl = huge_pte_lock(h, mm, ptep);
31d49da5
AK
3441 if (huge_pmd_unshare(mm, &address, ptep)) {
3442 spin_unlock(ptl);
dff11abe
MK
3443 /*
3444 * We just unmapped a page of PMDs by clearing a PUD.
3445 * The caller's TLB flush range should cover this area.
3446 */
31d49da5
AK
3447 continue;
3448 }
39dde65c 3449
6629326b 3450 pte = huge_ptep_get(ptep);
31d49da5
AK
3451 if (huge_pte_none(pte)) {
3452 spin_unlock(ptl);
3453 continue;
3454 }
6629326b
HD
3455
3456 /*
9fbc1f63
NH
3457 * Migrating hugepage or HWPoisoned hugepage is already
3458 * unmapped and its refcount is dropped, so just clear pte here.
6629326b 3459 */
9fbc1f63 3460 if (unlikely(!pte_present(pte))) {
9386fac3 3461 huge_pte_clear(mm, address, ptep, sz);
31d49da5
AK
3462 spin_unlock(ptl);
3463 continue;
8c4894c6 3464 }
6629326b
HD
3465
3466 page = pte_page(pte);
04f2cbe3
MG
3467 /*
3468 * If a reference page is supplied, it is because a specific
3469 * page is being unmapped, not a range. Ensure the page we
3470 * are about to unmap is the actual page of interest.
3471 */
3472 if (ref_page) {
31d49da5
AK
3473 if (page != ref_page) {
3474 spin_unlock(ptl);
3475 continue;
3476 }
04f2cbe3
MG
3477 /*
3478 * Mark the VMA as having unmapped its page so that
3479 * future faults in this VMA will fail rather than
3480 * looking like data was lost
3481 */
3482 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3483 }
3484
c7546f8f 3485 pte = huge_ptep_get_and_clear(mm, address, ptep);
b528e4b6 3486 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
106c992a 3487 if (huge_pte_dirty(pte))
6649a386 3488 set_page_dirty(page);
9e81130b 3489
5d317b2b 3490 hugetlb_count_sub(pages_per_huge_page(h), mm);
d281ee61 3491 page_remove_rmap(page, true);
31d49da5 3492
cb900f41 3493 spin_unlock(ptl);
e77b0852 3494 tlb_remove_page_size(tlb, page, huge_page_size(h));
31d49da5
AK
3495 /*
3496 * Bail out after unmapping reference page if supplied
3497 */
3498 if (ref_page)
3499 break;
fe1668ae 3500 }
ac46d4f3 3501 mmu_notifier_invalidate_range_end(&range);
24669e58 3502 tlb_end_vma(tlb, vma);
1da177e4 3503}
63551ae0 3504
d833352a
MG
3505void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3506 struct vm_area_struct *vma, unsigned long start,
3507 unsigned long end, struct page *ref_page)
3508{
3509 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
3510
3511 /*
3512 * Clear this flag so that x86's huge_pmd_share page_table_shareable
3513 * test will fail on a vma being torn down, and not grab a page table
3514 * on its way out. We're lucky that the flag has such an appropriate
3515 * name, and can in fact be safely cleared here. We could clear it
3516 * before the __unmap_hugepage_range above, but all that's necessary
c8c06efa 3517 * is to clear it before releasing the i_mmap_rwsem. This works
d833352a 3518 * because in the context this is called, the VMA is about to be
c8c06efa 3519 * destroyed and the i_mmap_rwsem is held.
d833352a
MG
3520 */
3521 vma->vm_flags &= ~VM_MAYSHARE;
3522}
3523
502717f4 3524void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
04f2cbe3 3525 unsigned long end, struct page *ref_page)
502717f4 3526{
24669e58
AK
3527 struct mm_struct *mm;
3528 struct mmu_gather tlb;
dff11abe
MK
3529 unsigned long tlb_start = start;
3530 unsigned long tlb_end = end;
3531
3532 /*
3533 * If shared PMDs were possibly used within this vma range, adjust
3534 * start/end for worst case tlb flushing.
3535 * Note that we can not be sure if PMDs are shared until we try to
3536 * unmap pages. However, we want to make sure TLB flushing covers
3537 * the largest possible range.
3538 */
3539 adjust_range_if_pmd_sharing_possible(vma, &tlb_start, &tlb_end);
24669e58
AK
3540
3541 mm = vma->vm_mm;
3542
dff11abe 3543 tlb_gather_mmu(&tlb, mm, tlb_start, tlb_end);
24669e58 3544 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
dff11abe 3545 tlb_finish_mmu(&tlb, tlb_start, tlb_end);
502717f4
CK
3546}
3547
04f2cbe3
MG
3548/*
3549 * This is called when the original mapper is failing to COW a MAP_PRIVATE
3550 * mappping it owns the reserve page for. The intention is to unmap the page
3551 * from other VMAs and let the children be SIGKILLed if they are faulting the
3552 * same region.
3553 */
2f4612af
DB
3554static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3555 struct page *page, unsigned long address)
04f2cbe3 3556{
7526674d 3557 struct hstate *h = hstate_vma(vma);
04f2cbe3
MG
3558 struct vm_area_struct *iter_vma;
3559 struct address_space *mapping;
04f2cbe3
MG
3560 pgoff_t pgoff;
3561
3562 /*
3563 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3564 * from page cache lookup which is in HPAGE_SIZE units.
3565 */
7526674d 3566 address = address & huge_page_mask(h);
36e4f20a
MH
3567 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3568 vma->vm_pgoff;
93c76a3d 3569 mapping = vma->vm_file->f_mapping;
04f2cbe3 3570
4eb2b1dc
MG
3571 /*
3572 * Take the mapping lock for the duration of the table walk. As
3573 * this mapping should be shared between all the VMAs,
3574 * __unmap_hugepage_range() is called as the lock is already held
3575 */
83cde9e8 3576 i_mmap_lock_write(mapping);
6b2dbba8 3577 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
04f2cbe3
MG
3578 /* Do not unmap the current VMA */
3579 if (iter_vma == vma)
3580 continue;
3581
2f84a899
MG
3582 /*
3583 * Shared VMAs have their own reserves and do not affect
3584 * MAP_PRIVATE accounting but it is possible that a shared
3585 * VMA is using the same page so check and skip such VMAs.
3586 */
3587 if (iter_vma->vm_flags & VM_MAYSHARE)
3588 continue;
3589
04f2cbe3
MG
3590 /*
3591 * Unmap the page from other VMAs without their own reserves.
3592 * They get marked to be SIGKILLed if they fault in these
3593 * areas. This is because a future no-page fault on this VMA
3594 * could insert a zeroed page instead of the data existing
3595 * from the time of fork. This would look like data corruption
3596 */
3597 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
24669e58
AK
3598 unmap_hugepage_range(iter_vma, address,
3599 address + huge_page_size(h), page);
04f2cbe3 3600 }
83cde9e8 3601 i_mmap_unlock_write(mapping);
04f2cbe3
MG
3602}
3603
0fe6e20b
NH
3604/*
3605 * Hugetlb_cow() should be called with page lock of the original hugepage held.
ef009b25
MH
3606 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3607 * cannot race with other handlers or page migration.
3608 * Keep the pte_same checks anyway to make transition from the mutex easier.
0fe6e20b 3609 */
2b740303 3610static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
974e6d66 3611 unsigned long address, pte_t *ptep,
3999f52e 3612 struct page *pagecache_page, spinlock_t *ptl)
1e8f889b 3613{
3999f52e 3614 pte_t pte;
a5516438 3615 struct hstate *h = hstate_vma(vma);
1e8f889b 3616 struct page *old_page, *new_page;
2b740303
SJ
3617 int outside_reserve = 0;
3618 vm_fault_t ret = 0;
974e6d66 3619 unsigned long haddr = address & huge_page_mask(h);
ac46d4f3 3620 struct mmu_notifier_range range;
1e8f889b 3621
3999f52e 3622 pte = huge_ptep_get(ptep);
1e8f889b
DG
3623 old_page = pte_page(pte);
3624
04f2cbe3 3625retry_avoidcopy:
1e8f889b
DG
3626 /* If no-one else is actually using this page, avoid the copy
3627 * and just make the page writable */
37a2140d 3628 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
5a49973d 3629 page_move_anon_rmap(old_page, vma);
5b7a1d40 3630 set_huge_ptep_writable(vma, haddr, ptep);
83c54070 3631 return 0;
1e8f889b
DG
3632 }
3633
04f2cbe3
MG
3634 /*
3635 * If the process that created a MAP_PRIVATE mapping is about to
3636 * perform a COW due to a shared page count, attempt to satisfy
3637 * the allocation without using the existing reserves. The pagecache
3638 * page is used to determine if the reserve at this address was
3639 * consumed or not. If reserves were used, a partial faulted mapping
3640 * at the time of fork() could consume its reserves on COW instead
3641 * of the full address range.
3642 */
5944d011 3643 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
04f2cbe3
MG
3644 old_page != pagecache_page)
3645 outside_reserve = 1;
3646
09cbfeaf 3647 get_page(old_page);
b76c8cfb 3648
ad4404a2
DB
3649 /*
3650 * Drop page table lock as buddy allocator may be called. It will
3651 * be acquired again before returning to the caller, as expected.
3652 */
cb900f41 3653 spin_unlock(ptl);
5b7a1d40 3654 new_page = alloc_huge_page(vma, haddr, outside_reserve);
1e8f889b 3655
2fc39cec 3656 if (IS_ERR(new_page)) {
04f2cbe3
MG
3657 /*
3658 * If a process owning a MAP_PRIVATE mapping fails to COW,
3659 * it is due to references held by a child and an insufficient
3660 * huge page pool. To guarantee the original mappers
3661 * reliability, unmap the page from child processes. The child
3662 * may get SIGKILLed if it later faults.
3663 */
3664 if (outside_reserve) {
09cbfeaf 3665 put_page(old_page);
04f2cbe3 3666 BUG_ON(huge_pte_none(pte));
5b7a1d40 3667 unmap_ref_private(mm, vma, old_page, haddr);
2f4612af
DB
3668 BUG_ON(huge_pte_none(pte));
3669 spin_lock(ptl);
5b7a1d40 3670 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
2f4612af
DB
3671 if (likely(ptep &&
3672 pte_same(huge_ptep_get(ptep), pte)))
3673 goto retry_avoidcopy;
3674 /*
3675 * race occurs while re-acquiring page table
3676 * lock, and our job is done.
3677 */
3678 return 0;
04f2cbe3
MG
3679 }
3680
2b740303 3681 ret = vmf_error(PTR_ERR(new_page));
ad4404a2 3682 goto out_release_old;
1e8f889b
DG
3683 }
3684
0fe6e20b
NH
3685 /*
3686 * When the original hugepage is shared one, it does not have
3687 * anon_vma prepared.
3688 */
44e2aa93 3689 if (unlikely(anon_vma_prepare(vma))) {
ad4404a2
DB
3690 ret = VM_FAULT_OOM;
3691 goto out_release_all;
44e2aa93 3692 }
0fe6e20b 3693
974e6d66 3694 copy_user_huge_page(new_page, old_page, address, vma,
47ad8475 3695 pages_per_huge_page(h));
0ed361de 3696 __SetPageUptodate(new_page);
1e8f889b 3697
7269f999 3698 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
6f4f13e8 3699 haddr + huge_page_size(h));
ac46d4f3 3700 mmu_notifier_invalidate_range_start(&range);
ad4404a2 3701
b76c8cfb 3702 /*
cb900f41 3703 * Retake the page table lock to check for racing updates
b76c8cfb
LW
3704 * before the page tables are altered
3705 */
cb900f41 3706 spin_lock(ptl);
5b7a1d40 3707 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
a9af0c5d 3708 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
07443a85
JK
3709 ClearPagePrivate(new_page);
3710
1e8f889b 3711 /* Break COW */
5b7a1d40 3712 huge_ptep_clear_flush(vma, haddr, ptep);
ac46d4f3 3713 mmu_notifier_invalidate_range(mm, range.start, range.end);
5b7a1d40 3714 set_huge_pte_at(mm, haddr, ptep,
1e8f889b 3715 make_huge_pte(vma, new_page, 1));
d281ee61 3716 page_remove_rmap(old_page, true);
5b7a1d40 3717 hugepage_add_new_anon_rmap(new_page, vma, haddr);
cb6acd01 3718 set_page_huge_active(new_page);
1e8f889b
DG
3719 /* Make the old page be freed below */
3720 new_page = old_page;
3721 }
cb900f41 3722 spin_unlock(ptl);
ac46d4f3 3723 mmu_notifier_invalidate_range_end(&range);
ad4404a2 3724out_release_all:
5b7a1d40 3725 restore_reserve_on_error(h, vma, haddr, new_page);
09cbfeaf 3726 put_page(new_page);
ad4404a2 3727out_release_old:
09cbfeaf 3728 put_page(old_page);
8312034f 3729
ad4404a2
DB
3730 spin_lock(ptl); /* Caller expects lock to be held */
3731 return ret;
1e8f889b
DG
3732}
3733
04f2cbe3 3734/* Return the pagecache page at a given address within a VMA */
a5516438
AK
3735static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3736 struct vm_area_struct *vma, unsigned long address)
04f2cbe3
MG
3737{
3738 struct address_space *mapping;
e7c4b0bf 3739 pgoff_t idx;
04f2cbe3
MG
3740
3741 mapping = vma->vm_file->f_mapping;
a5516438 3742 idx = vma_hugecache_offset(h, vma, address);
04f2cbe3
MG
3743
3744 return find_lock_page(mapping, idx);
3745}
3746
3ae77f43
HD
3747/*
3748 * Return whether there is a pagecache page to back given address within VMA.
3749 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3750 */
3751static bool hugetlbfs_pagecache_present(struct hstate *h,
2a15efc9
HD
3752 struct vm_area_struct *vma, unsigned long address)
3753{
3754 struct address_space *mapping;
3755 pgoff_t idx;
3756 struct page *page;
3757
3758 mapping = vma->vm_file->f_mapping;
3759 idx = vma_hugecache_offset(h, vma, address);
3760
3761 page = find_get_page(mapping, idx);
3762 if (page)
3763 put_page(page);
3764 return page != NULL;
3765}
3766
ab76ad54
MK
3767int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
3768 pgoff_t idx)
3769{
3770 struct inode *inode = mapping->host;
3771 struct hstate *h = hstate_inode(inode);
3772 int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3773
3774 if (err)
3775 return err;
3776 ClearPagePrivate(page);
3777
22146c3c
MK
3778 /*
3779 * set page dirty so that it will not be removed from cache/file
3780 * by non-hugetlbfs specific code paths.
3781 */
3782 set_page_dirty(page);
3783
ab76ad54
MK
3784 spin_lock(&inode->i_lock);
3785 inode->i_blocks += blocks_per_huge_page(h);
3786 spin_unlock(&inode->i_lock);
3787 return 0;
3788}
3789
2b740303
SJ
3790static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
3791 struct vm_area_struct *vma,
3792 struct address_space *mapping, pgoff_t idx,
3793 unsigned long address, pte_t *ptep, unsigned int flags)
ac9b9c66 3794{
a5516438 3795 struct hstate *h = hstate_vma(vma);
2b740303 3796 vm_fault_t ret = VM_FAULT_SIGBUS;
409eb8c2 3797 int anon_rmap = 0;
4c887265 3798 unsigned long size;
4c887265 3799 struct page *page;
1e8f889b 3800 pte_t new_pte;
cb900f41 3801 spinlock_t *ptl;
285b8dca 3802 unsigned long haddr = address & huge_page_mask(h);
cb6acd01 3803 bool new_page = false;
4c887265 3804
04f2cbe3
MG
3805 /*
3806 * Currently, we are forced to kill the process in the event the
3807 * original mapper has unmapped pages from the child due to a failed
25985edc 3808 * COW. Warn that such a situation has occurred as it may not be obvious
04f2cbe3
MG
3809 */
3810 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
910154d5 3811 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
ffb22af5 3812 current->pid);
04f2cbe3
MG
3813 return ret;
3814 }
3815
4c887265 3816 /*
e7c58097
MK
3817 * Use page lock to guard against racing truncation
3818 * before we get page_table_lock.
4c887265 3819 */
6bda666a
CL
3820retry:
3821 page = find_lock_page(mapping, idx);
3822 if (!page) {
e7c58097
MK
3823 size = i_size_read(mapping->host) >> huge_page_shift(h);
3824 if (idx >= size)
3825 goto out;
3826
1a1aad8a
MK
3827 /*
3828 * Check for page in userfault range
3829 */
3830 if (userfaultfd_missing(vma)) {
3831 u32 hash;
3832 struct vm_fault vmf = {
3833 .vma = vma,
285b8dca 3834 .address = haddr,
1a1aad8a
MK
3835 .flags = flags,
3836 /*
3837 * Hard to debug if it ends up being
3838 * used by a callee that assumes
3839 * something about the other
3840 * uninitialized fields... same as in
3841 * memory.c
3842 */
3843 };
3844
3845 /*
ddeaab32
MK
3846 * hugetlb_fault_mutex must be dropped before
3847 * handling userfault. Reacquire after handling
3848 * fault to make calling code simpler.
1a1aad8a 3849 */
1b426bac 3850 hash = hugetlb_fault_mutex_hash(h, mapping, idx, haddr);
1a1aad8a
MK
3851 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3852 ret = handle_userfault(&vmf, VM_UFFD_MISSING);
3853 mutex_lock(&hugetlb_fault_mutex_table[hash]);
3854 goto out;
3855 }
3856
285b8dca 3857 page = alloc_huge_page(vma, haddr, 0);
2fc39cec 3858 if (IS_ERR(page)) {
2b740303 3859 ret = vmf_error(PTR_ERR(page));
6bda666a
CL
3860 goto out;
3861 }
47ad8475 3862 clear_huge_page(page, address, pages_per_huge_page(h));
0ed361de 3863 __SetPageUptodate(page);
cb6acd01 3864 new_page = true;
ac9b9c66 3865
f83a275d 3866 if (vma->vm_flags & VM_MAYSHARE) {
ab76ad54 3867 int err = huge_add_to_page_cache(page, mapping, idx);
6bda666a
CL
3868 if (err) {
3869 put_page(page);
6bda666a
CL
3870 if (err == -EEXIST)
3871 goto retry;
3872 goto out;
3873 }
23be7468 3874 } else {
6bda666a 3875 lock_page(page);
0fe6e20b
NH
3876 if (unlikely(anon_vma_prepare(vma))) {
3877 ret = VM_FAULT_OOM;
3878 goto backout_unlocked;
3879 }
409eb8c2 3880 anon_rmap = 1;
23be7468 3881 }
0fe6e20b 3882 } else {
998b4382
NH
3883 /*
3884 * If memory error occurs between mmap() and fault, some process
3885 * don't have hwpoisoned swap entry for errored virtual address.
3886 * So we need to block hugepage fault by PG_hwpoison bit check.
3887 */
3888 if (unlikely(PageHWPoison(page))) {
32f84528 3889 ret = VM_FAULT_HWPOISON |
972dc4de 3890 VM_FAULT_SET_HINDEX(hstate_index(h));
998b4382
NH
3891 goto backout_unlocked;
3892 }
6bda666a 3893 }
1e8f889b 3894
57303d80
AW
3895 /*
3896 * If we are going to COW a private mapping later, we examine the
3897 * pending reservations for this page now. This will ensure that
3898 * any allocations necessary to record that reservation occur outside
3899 * the spinlock.
3900 */
5e911373 3901 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
285b8dca 3902 if (vma_needs_reservation(h, vma, haddr) < 0) {
2b26736c
AW
3903 ret = VM_FAULT_OOM;
3904 goto backout_unlocked;
3905 }
5e911373 3906 /* Just decrements count, does not deallocate */
285b8dca 3907 vma_end_reservation(h, vma, haddr);
5e911373 3908 }
57303d80 3909
8bea8052 3910 ptl = huge_pte_lock(h, mm, ptep);
e7c58097
MK
3911 size = i_size_read(mapping->host) >> huge_page_shift(h);
3912 if (idx >= size)
3913 goto backout;
4c887265 3914
83c54070 3915 ret = 0;
7f2e9525 3916 if (!huge_pte_none(huge_ptep_get(ptep)))
4c887265
AL
3917 goto backout;
3918
07443a85
JK
3919 if (anon_rmap) {
3920 ClearPagePrivate(page);
285b8dca 3921 hugepage_add_new_anon_rmap(page, vma, haddr);
ac714904 3922 } else
53f9263b 3923 page_dup_rmap(page, true);
1e8f889b
DG
3924 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3925 && (vma->vm_flags & VM_SHARED)));
285b8dca 3926 set_huge_pte_at(mm, haddr, ptep, new_pte);
1e8f889b 3927
5d317b2b 3928 hugetlb_count_add(pages_per_huge_page(h), mm);
788c7df4 3929 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
1e8f889b 3930 /* Optimization, do the COW without a second fault */
974e6d66 3931 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
1e8f889b
DG
3932 }
3933
cb900f41 3934 spin_unlock(ptl);
cb6acd01
MK
3935
3936 /*
3937 * Only make newly allocated pages active. Existing pages found
3938 * in the pagecache could be !page_huge_active() if they have been
3939 * isolated for migration.
3940 */
3941 if (new_page)
3942 set_page_huge_active(page);
3943
4c887265
AL
3944 unlock_page(page);
3945out:
ac9b9c66 3946 return ret;
4c887265
AL
3947
3948backout:
cb900f41 3949 spin_unlock(ptl);
2b26736c 3950backout_unlocked:
4c887265 3951 unlock_page(page);
285b8dca 3952 restore_reserve_on_error(h, vma, haddr, page);
4c887265
AL
3953 put_page(page);
3954 goto out;
ac9b9c66
HD
3955}
3956
8382d914 3957#ifdef CONFIG_SMP
1b426bac 3958u32 hugetlb_fault_mutex_hash(struct hstate *h, struct address_space *mapping,
8382d914
DB
3959 pgoff_t idx, unsigned long address)
3960{
3961 unsigned long key[2];
3962 u32 hash;
3963
1b426bac
MK
3964 key[0] = (unsigned long) mapping;
3965 key[1] = idx;
8382d914
DB
3966
3967 hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
3968
3969 return hash & (num_fault_mutexes - 1);
3970}
3971#else
3972/*
3973 * For uniprocesor systems we always use a single mutex, so just
3974 * return 0 and avoid the hashing overhead.
3975 */
1b426bac 3976u32 hugetlb_fault_mutex_hash(struct hstate *h, struct address_space *mapping,
8382d914
DB
3977 pgoff_t idx, unsigned long address)
3978{
3979 return 0;
3980}
3981#endif
3982
2b740303 3983vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
788c7df4 3984 unsigned long address, unsigned int flags)
86e5216f 3985{
8382d914 3986 pte_t *ptep, entry;
cb900f41 3987 spinlock_t *ptl;
2b740303 3988 vm_fault_t ret;
8382d914
DB
3989 u32 hash;
3990 pgoff_t idx;
0fe6e20b 3991 struct page *page = NULL;
57303d80 3992 struct page *pagecache_page = NULL;
a5516438 3993 struct hstate *h = hstate_vma(vma);
8382d914 3994 struct address_space *mapping;
0f792cf9 3995 int need_wait_lock = 0;
285b8dca 3996 unsigned long haddr = address & huge_page_mask(h);
86e5216f 3997
285b8dca 3998 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
fd6a03ed
NH
3999 if (ptep) {
4000 entry = huge_ptep_get(ptep);
290408d4 4001 if (unlikely(is_hugetlb_entry_migration(entry))) {
cb900f41 4002 migration_entry_wait_huge(vma, mm, ptep);
290408d4
NH
4003 return 0;
4004 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
32f84528 4005 return VM_FAULT_HWPOISON_LARGE |
972dc4de 4006 VM_FAULT_SET_HINDEX(hstate_index(h));
ddeaab32
MK
4007 } else {
4008 ptep = huge_pte_alloc(mm, haddr, huge_page_size(h));
4009 if (!ptep)
4010 return VM_FAULT_OOM;
fd6a03ed
NH
4011 }
4012
8382d914 4013 mapping = vma->vm_file->f_mapping;
ddeaab32 4014 idx = vma_hugecache_offset(h, vma, haddr);
8382d914 4015
3935baa9
DG
4016 /*
4017 * Serialize hugepage allocation and instantiation, so that we don't
4018 * get spurious allocation failures if two CPUs race to instantiate
4019 * the same page in the page cache.
4020 */
1b426bac 4021 hash = hugetlb_fault_mutex_hash(h, mapping, idx, haddr);
c672c7f2 4022 mutex_lock(&hugetlb_fault_mutex_table[hash]);
8382d914 4023
7f2e9525
GS
4024 entry = huge_ptep_get(ptep);
4025 if (huge_pte_none(entry)) {
8382d914 4026 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
b4d1d99f 4027 goto out_mutex;
3935baa9 4028 }
86e5216f 4029
83c54070 4030 ret = 0;
1e8f889b 4031
0f792cf9
NH
4032 /*
4033 * entry could be a migration/hwpoison entry at this point, so this
4034 * check prevents the kernel from going below assuming that we have
4035 * a active hugepage in pagecache. This goto expects the 2nd page fault,
4036 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
4037 * handle it.
4038 */
4039 if (!pte_present(entry))
4040 goto out_mutex;
4041
57303d80
AW
4042 /*
4043 * If we are going to COW the mapping later, we examine the pending
4044 * reservations for this page now. This will ensure that any
4045 * allocations necessary to record that reservation occur outside the
4046 * spinlock. For private mappings, we also lookup the pagecache
4047 * page now as it is used to determine if a reservation has been
4048 * consumed.
4049 */
106c992a 4050 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
285b8dca 4051 if (vma_needs_reservation(h, vma, haddr) < 0) {
2b26736c 4052 ret = VM_FAULT_OOM;
b4d1d99f 4053 goto out_mutex;
2b26736c 4054 }
5e911373 4055 /* Just decrements count, does not deallocate */
285b8dca 4056 vma_end_reservation(h, vma, haddr);
57303d80 4057
f83a275d 4058 if (!(vma->vm_flags & VM_MAYSHARE))
57303d80 4059 pagecache_page = hugetlbfs_pagecache_page(h,
285b8dca 4060 vma, haddr);
57303d80
AW
4061 }
4062
0f792cf9
NH
4063 ptl = huge_pte_lock(h, mm, ptep);
4064
4065 /* Check for a racing update before calling hugetlb_cow */
4066 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
4067 goto out_ptl;
4068
56c9cfb1
NH
4069 /*
4070 * hugetlb_cow() requires page locks of pte_page(entry) and
4071 * pagecache_page, so here we need take the former one
4072 * when page != pagecache_page or !pagecache_page.
56c9cfb1
NH
4073 */
4074 page = pte_page(entry);
4075 if (page != pagecache_page)
0f792cf9
NH
4076 if (!trylock_page(page)) {
4077 need_wait_lock = 1;
4078 goto out_ptl;
4079 }
b4d1d99f 4080
0f792cf9 4081 get_page(page);
b4d1d99f 4082
788c7df4 4083 if (flags & FAULT_FLAG_WRITE) {
106c992a 4084 if (!huge_pte_write(entry)) {
974e6d66 4085 ret = hugetlb_cow(mm, vma, address, ptep,
3999f52e 4086 pagecache_page, ptl);
0f792cf9 4087 goto out_put_page;
b4d1d99f 4088 }
106c992a 4089 entry = huge_pte_mkdirty(entry);
b4d1d99f
DG
4090 }
4091 entry = pte_mkyoung(entry);
285b8dca 4092 if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
788c7df4 4093 flags & FAULT_FLAG_WRITE))
285b8dca 4094 update_mmu_cache(vma, haddr, ptep);
0f792cf9
NH
4095out_put_page:
4096 if (page != pagecache_page)
4097 unlock_page(page);
4098 put_page(page);
cb900f41
KS
4099out_ptl:
4100 spin_unlock(ptl);
57303d80
AW
4101
4102 if (pagecache_page) {
4103 unlock_page(pagecache_page);
4104 put_page(pagecache_page);
4105 }
b4d1d99f 4106out_mutex:
c672c7f2 4107 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
0f792cf9
NH
4108 /*
4109 * Generally it's safe to hold refcount during waiting page lock. But
4110 * here we just wait to defer the next page fault to avoid busy loop and
4111 * the page is not used after unlocked before returning from the current
4112 * page fault. So we are safe from accessing freed page, even if we wait
4113 * here without taking refcount.
4114 */
4115 if (need_wait_lock)
4116 wait_on_page_locked(page);
1e8f889b 4117 return ret;
86e5216f
AL
4118}
4119
8fb5debc
MK
4120/*
4121 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with
4122 * modifications for huge pages.
4123 */
4124int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
4125 pte_t *dst_pte,
4126 struct vm_area_struct *dst_vma,
4127 unsigned long dst_addr,
4128 unsigned long src_addr,
4129 struct page **pagep)
4130{
1e392147
AA
4131 struct address_space *mapping;
4132 pgoff_t idx;
4133 unsigned long size;
1c9e8def 4134 int vm_shared = dst_vma->vm_flags & VM_SHARED;
8fb5debc
MK
4135 struct hstate *h = hstate_vma(dst_vma);
4136 pte_t _dst_pte;
4137 spinlock_t *ptl;
4138 int ret;
4139 struct page *page;
4140
4141 if (!*pagep) {
4142 ret = -ENOMEM;
4143 page = alloc_huge_page(dst_vma, dst_addr, 0);
4144 if (IS_ERR(page))
4145 goto out;
4146
4147 ret = copy_huge_page_from_user(page,
4148 (const void __user *) src_addr,
810a56b9 4149 pages_per_huge_page(h), false);
8fb5debc
MK
4150
4151 /* fallback to copy_from_user outside mmap_sem */
4152 if (unlikely(ret)) {
9e368259 4153 ret = -ENOENT;
8fb5debc
MK
4154 *pagep = page;
4155 /* don't free the page */
4156 goto out;
4157 }
4158 } else {
4159 page = *pagep;
4160 *pagep = NULL;
4161 }
4162
4163 /*
4164 * The memory barrier inside __SetPageUptodate makes sure that
4165 * preceding stores to the page contents become visible before
4166 * the set_pte_at() write.
4167 */
4168 __SetPageUptodate(page);
8fb5debc 4169
1e392147
AA
4170 mapping = dst_vma->vm_file->f_mapping;
4171 idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4172
1c9e8def
MK
4173 /*
4174 * If shared, add to page cache
4175 */
4176 if (vm_shared) {
1e392147
AA
4177 size = i_size_read(mapping->host) >> huge_page_shift(h);
4178 ret = -EFAULT;
4179 if (idx >= size)
4180 goto out_release_nounlock;
1c9e8def 4181
1e392147
AA
4182 /*
4183 * Serialization between remove_inode_hugepages() and
4184 * huge_add_to_page_cache() below happens through the
4185 * hugetlb_fault_mutex_table that here must be hold by
4186 * the caller.
4187 */
1c9e8def
MK
4188 ret = huge_add_to_page_cache(page, mapping, idx);
4189 if (ret)
4190 goto out_release_nounlock;
4191 }
4192
8fb5debc
MK
4193 ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4194 spin_lock(ptl);
4195
1e392147
AA
4196 /*
4197 * Recheck the i_size after holding PT lock to make sure not
4198 * to leave any page mapped (as page_mapped()) beyond the end
4199 * of the i_size (remove_inode_hugepages() is strict about
4200 * enforcing that). If we bail out here, we'll also leave a
4201 * page in the radix tree in the vm_shared case beyond the end
4202 * of the i_size, but remove_inode_hugepages() will take care
4203 * of it as soon as we drop the hugetlb_fault_mutex_table.
4204 */
4205 size = i_size_read(mapping->host) >> huge_page_shift(h);
4206 ret = -EFAULT;
4207 if (idx >= size)
4208 goto out_release_unlock;
4209
8fb5debc
MK
4210 ret = -EEXIST;
4211 if (!huge_pte_none(huge_ptep_get(dst_pte)))
4212 goto out_release_unlock;
4213
1c9e8def
MK
4214 if (vm_shared) {
4215 page_dup_rmap(page, true);
4216 } else {
4217 ClearPagePrivate(page);
4218 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4219 }
8fb5debc
MK
4220
4221 _dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4222 if (dst_vma->vm_flags & VM_WRITE)
4223 _dst_pte = huge_pte_mkdirty(_dst_pte);
4224 _dst_pte = pte_mkyoung(_dst_pte);
4225
4226 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4227
4228 (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4229 dst_vma->vm_flags & VM_WRITE);
4230 hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4231
4232 /* No need to invalidate - it was non-present before */
4233 update_mmu_cache(dst_vma, dst_addr, dst_pte);
4234
4235 spin_unlock(ptl);
cb6acd01 4236 set_page_huge_active(page);
1c9e8def
MK
4237 if (vm_shared)
4238 unlock_page(page);
8fb5debc
MK
4239 ret = 0;
4240out:
4241 return ret;
4242out_release_unlock:
4243 spin_unlock(ptl);
1c9e8def
MK
4244 if (vm_shared)
4245 unlock_page(page);
5af10dfd 4246out_release_nounlock:
8fb5debc
MK
4247 put_page(page);
4248 goto out;
4249}
4250
28a35716
ML
4251long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4252 struct page **pages, struct vm_area_struct **vmas,
4253 unsigned long *position, unsigned long *nr_pages,
87ffc118 4254 long i, unsigned int flags, int *nonblocking)
63551ae0 4255{
d5d4b0aa
CK
4256 unsigned long pfn_offset;
4257 unsigned long vaddr = *position;
28a35716 4258 unsigned long remainder = *nr_pages;
a5516438 4259 struct hstate *h = hstate_vma(vma);
2be7cfed 4260 int err = -EFAULT;
63551ae0 4261
63551ae0 4262 while (vaddr < vma->vm_end && remainder) {
4c887265 4263 pte_t *pte;
cb900f41 4264 spinlock_t *ptl = NULL;
2a15efc9 4265 int absent;
4c887265 4266 struct page *page;
63551ae0 4267
02057967
DR
4268 /*
4269 * If we have a pending SIGKILL, don't keep faulting pages and
4270 * potentially allocating memory.
4271 */
fa45f116 4272 if (fatal_signal_pending(current)) {
02057967
DR
4273 remainder = 0;
4274 break;
4275 }
4276
4c887265
AL
4277 /*
4278 * Some archs (sparc64, sh*) have multiple pte_ts to
2a15efc9 4279 * each hugepage. We have to make sure we get the
4c887265 4280 * first, for the page indexing below to work.
cb900f41
KS
4281 *
4282 * Note that page table lock is not held when pte is null.
4c887265 4283 */
7868a208
PA
4284 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
4285 huge_page_size(h));
cb900f41
KS
4286 if (pte)
4287 ptl = huge_pte_lock(h, mm, pte);
2a15efc9
HD
4288 absent = !pte || huge_pte_none(huge_ptep_get(pte));
4289
4290 /*
4291 * When coredumping, it suits get_dump_page if we just return
3ae77f43
HD
4292 * an error where there's an empty slot with no huge pagecache
4293 * to back it. This way, we avoid allocating a hugepage, and
4294 * the sparse dumpfile avoids allocating disk blocks, but its
4295 * huge holes still show up with zeroes where they need to be.
2a15efc9 4296 */
3ae77f43
HD
4297 if (absent && (flags & FOLL_DUMP) &&
4298 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
cb900f41
KS
4299 if (pte)
4300 spin_unlock(ptl);
2a15efc9
HD
4301 remainder = 0;
4302 break;
4303 }
63551ae0 4304
9cc3a5bd
NH
4305 /*
4306 * We need call hugetlb_fault for both hugepages under migration
4307 * (in which case hugetlb_fault waits for the migration,) and
4308 * hwpoisoned hugepages (in which case we need to prevent the
4309 * caller from accessing to them.) In order to do this, we use
4310 * here is_swap_pte instead of is_hugetlb_entry_migration and
4311 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4312 * both cases, and because we can't follow correct pages
4313 * directly from any kind of swap entries.
4314 */
4315 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
106c992a
GS
4316 ((flags & FOLL_WRITE) &&
4317 !huge_pte_write(huge_ptep_get(pte)))) {
2b740303 4318 vm_fault_t ret;
87ffc118 4319 unsigned int fault_flags = 0;
63551ae0 4320
cb900f41
KS
4321 if (pte)
4322 spin_unlock(ptl);
87ffc118
AA
4323 if (flags & FOLL_WRITE)
4324 fault_flags |= FAULT_FLAG_WRITE;
4325 if (nonblocking)
4326 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
4327 if (flags & FOLL_NOWAIT)
4328 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4329 FAULT_FLAG_RETRY_NOWAIT;
4330 if (flags & FOLL_TRIED) {
4331 VM_WARN_ON_ONCE(fault_flags &
4332 FAULT_FLAG_ALLOW_RETRY);
4333 fault_flags |= FAULT_FLAG_TRIED;
4334 }
4335 ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4336 if (ret & VM_FAULT_ERROR) {
2be7cfed 4337 err = vm_fault_to_errno(ret, flags);
87ffc118
AA
4338 remainder = 0;
4339 break;
4340 }
4341 if (ret & VM_FAULT_RETRY) {
1ac25013
AA
4342 if (nonblocking &&
4343 !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
87ffc118
AA
4344 *nonblocking = 0;
4345 *nr_pages = 0;
4346 /*
4347 * VM_FAULT_RETRY must not return an
4348 * error, it will return zero
4349 * instead.
4350 *
4351 * No need to update "position" as the
4352 * caller will not check it after
4353 * *nr_pages is set to 0.
4354 */
4355 return i;
4356 }
4357 continue;
4c887265
AL
4358 }
4359
a5516438 4360 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
7f2e9525 4361 page = pte_page(huge_ptep_get(pte));
8fde12ca
LT
4362
4363 /*
4364 * Instead of doing 'try_get_page()' below in the same_page
4365 * loop, just check the count once here.
4366 */
4367 if (unlikely(page_count(page) <= 0)) {
4368 if (pages) {
4369 spin_unlock(ptl);
4370 remainder = 0;
4371 err = -ENOMEM;
4372 break;
4373 }
4374 }
d5d4b0aa 4375same_page:
d6692183 4376 if (pages) {
2a15efc9 4377 pages[i] = mem_map_offset(page, pfn_offset);
ddc58f27 4378 get_page(pages[i]);
d6692183 4379 }
63551ae0
DG
4380
4381 if (vmas)
4382 vmas[i] = vma;
4383
4384 vaddr += PAGE_SIZE;
d5d4b0aa 4385 ++pfn_offset;
63551ae0
DG
4386 --remainder;
4387 ++i;
d5d4b0aa 4388 if (vaddr < vma->vm_end && remainder &&
a5516438 4389 pfn_offset < pages_per_huge_page(h)) {
d5d4b0aa
CK
4390 /*
4391 * We use pfn_offset to avoid touching the pageframes
4392 * of this compound page.
4393 */
4394 goto same_page;
4395 }
cb900f41 4396 spin_unlock(ptl);
63551ae0 4397 }
28a35716 4398 *nr_pages = remainder;
87ffc118
AA
4399 /*
4400 * setting position is actually required only if remainder is
4401 * not zero but it's faster not to add a "if (remainder)"
4402 * branch.
4403 */
63551ae0
DG
4404 *position = vaddr;
4405
2be7cfed 4406 return i ? i : err;
63551ae0 4407}
8f860591 4408
5491ae7b
AK
4409#ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4410/*
4411 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4412 * implement this.
4413 */
4414#define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
4415#endif
4416
7da4d641 4417unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
8f860591
ZY
4418 unsigned long address, unsigned long end, pgprot_t newprot)
4419{
4420 struct mm_struct *mm = vma->vm_mm;
4421 unsigned long start = address;
4422 pte_t *ptep;
4423 pte_t pte;
a5516438 4424 struct hstate *h = hstate_vma(vma);
7da4d641 4425 unsigned long pages = 0;
dff11abe 4426 bool shared_pmd = false;
ac46d4f3 4427 struct mmu_notifier_range range;
dff11abe
MK
4428
4429 /*
4430 * In the case of shared PMDs, the area to flush could be beyond
ac46d4f3 4431 * start/end. Set range.start/range.end to cover the maximum possible
dff11abe
MK
4432 * range if PMD sharing is possible.
4433 */
7269f999
JG
4434 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
4435 0, vma, mm, start, end);
ac46d4f3 4436 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
8f860591
ZY
4437
4438 BUG_ON(address >= end);
ac46d4f3 4439 flush_cache_range(vma, range.start, range.end);
8f860591 4440
ac46d4f3 4441 mmu_notifier_invalidate_range_start(&range);
83cde9e8 4442 i_mmap_lock_write(vma->vm_file->f_mapping);
a5516438 4443 for (; address < end; address += huge_page_size(h)) {
cb900f41 4444 spinlock_t *ptl;
7868a208 4445 ptep = huge_pte_offset(mm, address, huge_page_size(h));
8f860591
ZY
4446 if (!ptep)
4447 continue;
cb900f41 4448 ptl = huge_pte_lock(h, mm, ptep);
7da4d641
PZ
4449 if (huge_pmd_unshare(mm, &address, ptep)) {
4450 pages++;
cb900f41 4451 spin_unlock(ptl);
dff11abe 4452 shared_pmd = true;
39dde65c 4453 continue;
7da4d641 4454 }
a8bda28d
NH
4455 pte = huge_ptep_get(ptep);
4456 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
4457 spin_unlock(ptl);
4458 continue;
4459 }
4460 if (unlikely(is_hugetlb_entry_migration(pte))) {
4461 swp_entry_t entry = pte_to_swp_entry(pte);
4462
4463 if (is_write_migration_entry(entry)) {
4464 pte_t newpte;
4465
4466 make_migration_entry_read(&entry);
4467 newpte = swp_entry_to_pte(entry);
e5251fd4
PA
4468 set_huge_swap_pte_at(mm, address, ptep,
4469 newpte, huge_page_size(h));
a8bda28d
NH
4470 pages++;
4471 }
4472 spin_unlock(ptl);
4473 continue;
4474 }
4475 if (!huge_pte_none(pte)) {
023bdd00
AK
4476 pte_t old_pte;
4477
4478 old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
4479 pte = pte_mkhuge(huge_pte_modify(old_pte, newprot));
be7517d6 4480 pte = arch_make_huge_pte(pte, vma, NULL, 0);
023bdd00 4481 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
7da4d641 4482 pages++;
8f860591 4483 }
cb900f41 4484 spin_unlock(ptl);
8f860591 4485 }
d833352a 4486 /*
c8c06efa 4487 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
d833352a 4488 * may have cleared our pud entry and done put_page on the page table:
c8c06efa 4489 * once we release i_mmap_rwsem, another task can do the final put_page
dff11abe
MK
4490 * and that page table be reused and filled with junk. If we actually
4491 * did unshare a page of pmds, flush the range corresponding to the pud.
d833352a 4492 */
dff11abe 4493 if (shared_pmd)
ac46d4f3 4494 flush_hugetlb_tlb_range(vma, range.start, range.end);
dff11abe
MK
4495 else
4496 flush_hugetlb_tlb_range(vma, start, end);
0f10851e
JG
4497 /*
4498 * No need to call mmu_notifier_invalidate_range() we are downgrading
4499 * page table protection not changing it to point to a new page.
4500 *
ad56b738 4501 * See Documentation/vm/mmu_notifier.rst
0f10851e 4502 */
83cde9e8 4503 i_mmap_unlock_write(vma->vm_file->f_mapping);
ac46d4f3 4504 mmu_notifier_invalidate_range_end(&range);
7da4d641
PZ
4505
4506 return pages << h->order;
8f860591
ZY
4507}
4508
a1e78772
MG
4509int hugetlb_reserve_pages(struct inode *inode,
4510 long from, long to,
5a6fe125 4511 struct vm_area_struct *vma,
ca16d140 4512 vm_flags_t vm_flags)
e4e574b7 4513{
17c9d12e 4514 long ret, chg;
a5516438 4515 struct hstate *h = hstate_inode(inode);
90481622 4516 struct hugepage_subpool *spool = subpool_inode(inode);
9119a41e 4517 struct resv_map *resv_map;
1c5ecae3 4518 long gbl_reserve;
e4e574b7 4519
63489f8e
MK
4520 /* This should never happen */
4521 if (from > to) {
4522 VM_WARN(1, "%s called with a negative range\n", __func__);
4523 return -EINVAL;
4524 }
4525
17c9d12e
MG
4526 /*
4527 * Only apply hugepage reservation if asked. At fault time, an
4528 * attempt will be made for VM_NORESERVE to allocate a page
90481622 4529 * without using reserves
17c9d12e 4530 */
ca16d140 4531 if (vm_flags & VM_NORESERVE)
17c9d12e
MG
4532 return 0;
4533
a1e78772
MG
4534 /*
4535 * Shared mappings base their reservation on the number of pages that
4536 * are already allocated on behalf of the file. Private mappings need
4537 * to reserve the full area even if read-only as mprotect() may be
4538 * called to make the mapping read-write. Assume !vma is a shm mapping
4539 */
9119a41e 4540 if (!vma || vma->vm_flags & VM_MAYSHARE) {
f27a5136
MK
4541 /*
4542 * resv_map can not be NULL as hugetlb_reserve_pages is only
4543 * called for inodes for which resv_maps were created (see
4544 * hugetlbfs_get_inode).
4545 */
4e35f483 4546 resv_map = inode_resv_map(inode);
9119a41e 4547
1406ec9b 4548 chg = region_chg(resv_map, from, to);
9119a41e
JK
4549
4550 } else {
4551 resv_map = resv_map_alloc();
17c9d12e
MG
4552 if (!resv_map)
4553 return -ENOMEM;
4554
a1e78772 4555 chg = to - from;
84afd99b 4556
17c9d12e
MG
4557 set_vma_resv_map(vma, resv_map);
4558 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
4559 }
4560
c50ac050
DH
4561 if (chg < 0) {
4562 ret = chg;
4563 goto out_err;
4564 }
8a630112 4565
1c5ecae3
MK
4566 /*
4567 * There must be enough pages in the subpool for the mapping. If
4568 * the subpool has a minimum size, there may be some global
4569 * reservations already in place (gbl_reserve).
4570 */
4571 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
4572 if (gbl_reserve < 0) {
c50ac050
DH
4573 ret = -ENOSPC;
4574 goto out_err;
4575 }
5a6fe125
MG
4576
4577 /*
17c9d12e 4578 * Check enough hugepages are available for the reservation.
90481622 4579 * Hand the pages back to the subpool if there are not
5a6fe125 4580 */
1c5ecae3 4581 ret = hugetlb_acct_memory(h, gbl_reserve);
68842c9b 4582 if (ret < 0) {
1c5ecae3
MK
4583 /* put back original number of pages, chg */
4584 (void)hugepage_subpool_put_pages(spool, chg);
c50ac050 4585 goto out_err;
68842c9b 4586 }
17c9d12e
MG
4587
4588 /*
4589 * Account for the reservations made. Shared mappings record regions
4590 * that have reservations as they are shared by multiple VMAs.
4591 * When the last VMA disappears, the region map says how much
4592 * the reservation was and the page cache tells how much of
4593 * the reservation was consumed. Private mappings are per-VMA and
4594 * only the consumed reservations are tracked. When the VMA
4595 * disappears, the original reservation is the VMA size and the
4596 * consumed reservations are stored in the map. Hence, nothing
4597 * else has to be done for private mappings here
4598 */
33039678
MK
4599 if (!vma || vma->vm_flags & VM_MAYSHARE) {
4600 long add = region_add(resv_map, from, to);
4601
4602 if (unlikely(chg > add)) {
4603 /*
4604 * pages in this range were added to the reserve
4605 * map between region_chg and region_add. This
4606 * indicates a race with alloc_huge_page. Adjust
4607 * the subpool and reserve counts modified above
4608 * based on the difference.
4609 */
4610 long rsv_adjust;
4611
4612 rsv_adjust = hugepage_subpool_put_pages(spool,
4613 chg - add);
4614 hugetlb_acct_memory(h, -rsv_adjust);
4615 }
4616 }
a43a8c39 4617 return 0;
c50ac050 4618out_err:
5e911373 4619 if (!vma || vma->vm_flags & VM_MAYSHARE)
ff8c0c53
MK
4620 /* Don't call region_abort if region_chg failed */
4621 if (chg >= 0)
4622 region_abort(resv_map, from, to);
f031dd27
JK
4623 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4624 kref_put(&resv_map->refs, resv_map_release);
c50ac050 4625 return ret;
a43a8c39
CK
4626}
4627
b5cec28d
MK
4628long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
4629 long freed)
a43a8c39 4630{
a5516438 4631 struct hstate *h = hstate_inode(inode);
4e35f483 4632 struct resv_map *resv_map = inode_resv_map(inode);
9119a41e 4633 long chg = 0;
90481622 4634 struct hugepage_subpool *spool = subpool_inode(inode);
1c5ecae3 4635 long gbl_reserve;
45c682a6 4636
f27a5136
MK
4637 /*
4638 * Since this routine can be called in the evict inode path for all
4639 * hugetlbfs inodes, resv_map could be NULL.
4640 */
b5cec28d
MK
4641 if (resv_map) {
4642 chg = region_del(resv_map, start, end);
4643 /*
4644 * region_del() can fail in the rare case where a region
4645 * must be split and another region descriptor can not be
4646 * allocated. If end == LONG_MAX, it will not fail.
4647 */
4648 if (chg < 0)
4649 return chg;
4650 }
4651
45c682a6 4652 spin_lock(&inode->i_lock);
e4c6f8be 4653 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
45c682a6
KC
4654 spin_unlock(&inode->i_lock);
4655
1c5ecae3
MK
4656 /*
4657 * If the subpool has a minimum size, the number of global
4658 * reservations to be released may be adjusted.
4659 */
4660 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
4661 hugetlb_acct_memory(h, -gbl_reserve);
b5cec28d
MK
4662
4663 return 0;
a43a8c39 4664}
93f70f90 4665
3212b535
SC
4666#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
4667static unsigned long page_table_shareable(struct vm_area_struct *svma,
4668 struct vm_area_struct *vma,
4669 unsigned long addr, pgoff_t idx)
4670{
4671 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
4672 svma->vm_start;
4673 unsigned long sbase = saddr & PUD_MASK;
4674 unsigned long s_end = sbase + PUD_SIZE;
4675
4676 /* Allow segments to share if only one is marked locked */
de60f5f1
EM
4677 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
4678 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
3212b535
SC
4679
4680 /*
4681 * match the virtual addresses, permission and the alignment of the
4682 * page table page.
4683 */
4684 if (pmd_index(addr) != pmd_index(saddr) ||
4685 vm_flags != svm_flags ||
4686 sbase < svma->vm_start || svma->vm_end < s_end)
4687 return 0;
4688
4689 return saddr;
4690}
4691
31aafb45 4692static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
3212b535
SC
4693{
4694 unsigned long base = addr & PUD_MASK;
4695 unsigned long end = base + PUD_SIZE;
4696
4697 /*
4698 * check on proper vm_flags and page table alignment
4699 */
017b1660 4700 if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
31aafb45
NK
4701 return true;
4702 return false;
3212b535
SC
4703}
4704
017b1660
MK
4705/*
4706 * Determine if start,end range within vma could be mapped by shared pmd.
4707 * If yes, adjust start and end to cover range associated with possible
4708 * shared pmd mappings.
4709 */
4710void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
4711 unsigned long *start, unsigned long *end)
4712{
4713 unsigned long check_addr = *start;
4714
4715 if (!(vma->vm_flags & VM_MAYSHARE))
4716 return;
4717
4718 for (check_addr = *start; check_addr < *end; check_addr += PUD_SIZE) {
4719 unsigned long a_start = check_addr & PUD_MASK;
4720 unsigned long a_end = a_start + PUD_SIZE;
4721
4722 /*
4723 * If sharing is possible, adjust start/end if necessary.
4724 */
4725 if (range_in_vma(vma, a_start, a_end)) {
4726 if (a_start < *start)
4727 *start = a_start;
4728 if (a_end > *end)
4729 *end = a_end;
4730 }
4731 }
4732}
4733
3212b535
SC
4734/*
4735 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4736 * and returns the corresponding pte. While this is not necessary for the
4737 * !shared pmd case because we can allocate the pmd later as well, it makes the
ddeaab32
MK
4738 * code much cleaner. pmd allocation is essential for the shared case because
4739 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
4740 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4741 * bad pmd for sharing.
3212b535
SC
4742 */
4743pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4744{
4745 struct vm_area_struct *vma = find_vma(mm, addr);
4746 struct address_space *mapping = vma->vm_file->f_mapping;
4747 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
4748 vma->vm_pgoff;
4749 struct vm_area_struct *svma;
4750 unsigned long saddr;
4751 pte_t *spte = NULL;
4752 pte_t *pte;
cb900f41 4753 spinlock_t *ptl;
3212b535
SC
4754
4755 if (!vma_shareable(vma, addr))
4756 return (pte_t *)pmd_alloc(mm, pud, addr);
4757
ddeaab32 4758 i_mmap_lock_write(mapping);
3212b535
SC
4759 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
4760 if (svma == vma)
4761 continue;
4762
4763 saddr = page_table_shareable(svma, vma, addr, idx);
4764 if (saddr) {
7868a208
PA
4765 spte = huge_pte_offset(svma->vm_mm, saddr,
4766 vma_mmu_pagesize(svma));
3212b535
SC
4767 if (spte) {
4768 get_page(virt_to_page(spte));
4769 break;
4770 }
4771 }
4772 }
4773
4774 if (!spte)
4775 goto out;
4776
8bea8052 4777 ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
dc6c9a35 4778 if (pud_none(*pud)) {
3212b535
SC
4779 pud_populate(mm, pud,
4780 (pmd_t *)((unsigned long)spte & PAGE_MASK));
c17b1f42 4781 mm_inc_nr_pmds(mm);
dc6c9a35 4782 } else {
3212b535 4783 put_page(virt_to_page(spte));
dc6c9a35 4784 }
cb900f41 4785 spin_unlock(ptl);
3212b535
SC
4786out:
4787 pte = (pte_t *)pmd_alloc(mm, pud, addr);
ddeaab32 4788 i_mmap_unlock_write(mapping);
3212b535
SC
4789 return pte;
4790}
4791
4792/*
4793 * unmap huge page backed by shared pte.
4794 *
4795 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
4796 * indicated by page_count > 1, unmap is achieved by clearing pud and
4797 * decrementing the ref count. If count == 1, the pte page is not shared.
4798 *
ddeaab32 4799 * called with page table lock held.
3212b535
SC
4800 *
4801 * returns: 1 successfully unmapped a shared pte page
4802 * 0 the underlying pte page is not shared, or it is the last user
4803 */
4804int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4805{
4806 pgd_t *pgd = pgd_offset(mm, *addr);
c2febafc
KS
4807 p4d_t *p4d = p4d_offset(pgd, *addr);
4808 pud_t *pud = pud_offset(p4d, *addr);
3212b535
SC
4809
4810 BUG_ON(page_count(virt_to_page(ptep)) == 0);
4811 if (page_count(virt_to_page(ptep)) == 1)
4812 return 0;
4813
4814 pud_clear(pud);
4815 put_page(virt_to_page(ptep));
dc6c9a35 4816 mm_dec_nr_pmds(mm);
3212b535
SC
4817 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
4818 return 1;
4819}
9e5fc74c
SC
4820#define want_pmd_share() (1)
4821#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4822pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4823{
4824 return NULL;
4825}
e81f2d22
ZZ
4826
4827int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4828{
4829 return 0;
4830}
017b1660
MK
4831
4832void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
4833 unsigned long *start, unsigned long *end)
4834{
4835}
9e5fc74c 4836#define want_pmd_share() (0)
3212b535
SC
4837#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4838
9e5fc74c
SC
4839#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
4840pte_t *huge_pte_alloc(struct mm_struct *mm,
4841 unsigned long addr, unsigned long sz)
4842{
4843 pgd_t *pgd;
c2febafc 4844 p4d_t *p4d;
9e5fc74c
SC
4845 pud_t *pud;
4846 pte_t *pte = NULL;
4847
4848 pgd = pgd_offset(mm, addr);
f4f0a3d8
KS
4849 p4d = p4d_alloc(mm, pgd, addr);
4850 if (!p4d)
4851 return NULL;
c2febafc 4852 pud = pud_alloc(mm, p4d, addr);
9e5fc74c
SC
4853 if (pud) {
4854 if (sz == PUD_SIZE) {
4855 pte = (pte_t *)pud;
4856 } else {
4857 BUG_ON(sz != PMD_SIZE);
4858 if (want_pmd_share() && pud_none(*pud))
4859 pte = huge_pmd_share(mm, addr, pud);
4860 else
4861 pte = (pte_t *)pmd_alloc(mm, pud, addr);
4862 }
4863 }
4e666314 4864 BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
9e5fc74c
SC
4865
4866 return pte;
4867}
4868
9b19df29
PA
4869/*
4870 * huge_pte_offset() - Walk the page table to resolve the hugepage
4871 * entry at address @addr
4872 *
4873 * Return: Pointer to page table or swap entry (PUD or PMD) for
4874 * address @addr, or NULL if a p*d_none() entry is encountered and the
4875 * size @sz doesn't match the hugepage size at this level of the page
4876 * table.
4877 */
7868a208
PA
4878pte_t *huge_pte_offset(struct mm_struct *mm,
4879 unsigned long addr, unsigned long sz)
9e5fc74c
SC
4880{
4881 pgd_t *pgd;
c2febafc 4882 p4d_t *p4d;
9e5fc74c 4883 pud_t *pud;
c2febafc 4884 pmd_t *pmd;
9e5fc74c
SC
4885
4886 pgd = pgd_offset(mm, addr);
c2febafc
KS
4887 if (!pgd_present(*pgd))
4888 return NULL;
4889 p4d = p4d_offset(pgd, addr);
4890 if (!p4d_present(*p4d))
4891 return NULL;
9b19df29 4892
c2febafc 4893 pud = pud_offset(p4d, addr);
9b19df29 4894 if (sz != PUD_SIZE && pud_none(*pud))
c2febafc 4895 return NULL;
9b19df29
PA
4896 /* hugepage or swap? */
4897 if (pud_huge(*pud) || !pud_present(*pud))
c2febafc 4898 return (pte_t *)pud;
9b19df29 4899
c2febafc 4900 pmd = pmd_offset(pud, addr);
9b19df29
PA
4901 if (sz != PMD_SIZE && pmd_none(*pmd))
4902 return NULL;
4903 /* hugepage or swap? */
4904 if (pmd_huge(*pmd) || !pmd_present(*pmd))
4905 return (pte_t *)pmd;
4906
4907 return NULL;
9e5fc74c
SC
4908}
4909
61f77eda
NH
4910#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4911
4912/*
4913 * These functions are overwritable if your architecture needs its own
4914 * behavior.
4915 */
4916struct page * __weak
4917follow_huge_addr(struct mm_struct *mm, unsigned long address,
4918 int write)
4919{
4920 return ERR_PTR(-EINVAL);
4921}
4922
4dc71451
AK
4923struct page * __weak
4924follow_huge_pd(struct vm_area_struct *vma,
4925 unsigned long address, hugepd_t hpd, int flags, int pdshift)
4926{
4927 WARN(1, "hugepd follow called with no support for hugepage directory format\n");
4928 return NULL;
4929}
4930
61f77eda 4931struct page * __weak
9e5fc74c 4932follow_huge_pmd(struct mm_struct *mm, unsigned long address,
e66f17ff 4933 pmd_t *pmd, int flags)
9e5fc74c 4934{
e66f17ff
NH
4935 struct page *page = NULL;
4936 spinlock_t *ptl;
c9d398fa 4937 pte_t pte;
e66f17ff
NH
4938retry:
4939 ptl = pmd_lockptr(mm, pmd);
4940 spin_lock(ptl);
4941 /*
4942 * make sure that the address range covered by this pmd is not
4943 * unmapped from other threads.
4944 */
4945 if (!pmd_huge(*pmd))
4946 goto out;
c9d398fa
NH
4947 pte = huge_ptep_get((pte_t *)pmd);
4948 if (pte_present(pte)) {
97534127 4949 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
e66f17ff
NH
4950 if (flags & FOLL_GET)
4951 get_page(page);
4952 } else {
c9d398fa 4953 if (is_hugetlb_entry_migration(pte)) {
e66f17ff
NH
4954 spin_unlock(ptl);
4955 __migration_entry_wait(mm, (pte_t *)pmd, ptl);
4956 goto retry;
4957 }
4958 /*
4959 * hwpoisoned entry is treated as no_page_table in
4960 * follow_page_mask().
4961 */
4962 }
4963out:
4964 spin_unlock(ptl);
9e5fc74c
SC
4965 return page;
4966}
4967
61f77eda 4968struct page * __weak
9e5fc74c 4969follow_huge_pud(struct mm_struct *mm, unsigned long address,
e66f17ff 4970 pud_t *pud, int flags)
9e5fc74c 4971{
e66f17ff
NH
4972 if (flags & FOLL_GET)
4973 return NULL;
9e5fc74c 4974
e66f17ff 4975 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
9e5fc74c
SC
4976}
4977
faaa5b62
AK
4978struct page * __weak
4979follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
4980{
4981 if (flags & FOLL_GET)
4982 return NULL;
4983
4984 return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
4985}
4986
31caf665
NH
4987bool isolate_huge_page(struct page *page, struct list_head *list)
4988{
bcc54222
NH
4989 bool ret = true;
4990
309381fe 4991 VM_BUG_ON_PAGE(!PageHead(page), page);
31caf665 4992 spin_lock(&hugetlb_lock);
bcc54222
NH
4993 if (!page_huge_active(page) || !get_page_unless_zero(page)) {
4994 ret = false;
4995 goto unlock;
4996 }
4997 clear_page_huge_active(page);
31caf665 4998 list_move_tail(&page->lru, list);
bcc54222 4999unlock:
31caf665 5000 spin_unlock(&hugetlb_lock);
bcc54222 5001 return ret;
31caf665
NH
5002}
5003
5004void putback_active_hugepage(struct page *page)
5005{
309381fe 5006 VM_BUG_ON_PAGE(!PageHead(page), page);
31caf665 5007 spin_lock(&hugetlb_lock);
bcc54222 5008 set_page_huge_active(page);
31caf665
NH
5009 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
5010 spin_unlock(&hugetlb_lock);
5011 put_page(page);
5012}
ab5ac90a
MH
5013
5014void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
5015{
5016 struct hstate *h = page_hstate(oldpage);
5017
5018 hugetlb_cgroup_migrate(oldpage, newpage);
5019 set_page_owner_migrate_reason(newpage, reason);
5020
5021 /*
5022 * transfer temporary state of the new huge page. This is
5023 * reverse to other transitions because the newpage is going to
5024 * be final while the old one will be freed so it takes over
5025 * the temporary status.
5026 *
5027 * Also note that we have to transfer the per-node surplus state
5028 * here as well otherwise the global surplus count will not match
5029 * the per-node's.
5030 */
5031 if (PageHugeTemporary(newpage)) {
5032 int old_nid = page_to_nid(oldpage);
5033 int new_nid = page_to_nid(newpage);
5034
5035 SetPageHugeTemporary(oldpage);
5036 ClearPageHugeTemporary(newpage);
5037
5038 spin_lock(&hugetlb_lock);
5039 if (h->surplus_huge_pages_node[old_nid]) {
5040 h->surplus_huge_pages_node[old_nid]--;
5041 h->surplus_huge_pages_node[new_nid]++;
5042 }
5043 spin_unlock(&hugetlb_lock);
5044 }
5045}