Merge tag 'for-netdev' of https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf
[linux-block.git] / mm / hugetlb.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * Generic hugetlb support.
6d49e352 4 * (C) Nadia Yvette Chambers, April 2004
1da177e4 5 */
1da177e4
LT
6#include <linux/list.h>
7#include <linux/init.h>
1da177e4 8#include <linux/mm.h>
e1759c21 9#include <linux/seq_file.h>
1da177e4
LT
10#include <linux/sysctl.h>
11#include <linux/highmem.h>
cddb8a5c 12#include <linux/mmu_notifier.h>
1da177e4 13#include <linux/nodemask.h>
63551ae0 14#include <linux/pagemap.h>
5da7ca86 15#include <linux/mempolicy.h>
3b32123d 16#include <linux/compiler.h>
aea47ff3 17#include <linux/cpuset.h>
3935baa9 18#include <linux/mutex.h>
97ad1087 19#include <linux/memblock.h>
a3437870 20#include <linux/sysfs.h>
5a0e3ad6 21#include <linux/slab.h>
bbe88753 22#include <linux/sched/mm.h>
63489f8e 23#include <linux/mmdebug.h>
174cd4b1 24#include <linux/sched/signal.h>
0fe6e20b 25#include <linux/rmap.h>
c6247f72 26#include <linux/string_helpers.h>
fd6a03ed
NH
27#include <linux/swap.h>
28#include <linux/swapops.h>
8382d914 29#include <linux/jhash.h>
98fa15f3 30#include <linux/numa.h>
c77c0a8a 31#include <linux/llist.h>
cf11e85f 32#include <linux/cma.h>
8cc5fcbb 33#include <linux/migrate.h>
f9317f77 34#include <linux/nospec.h>
662ce1dc 35#include <linux/delayacct.h>
b958d4d0 36#include <linux/memory.h>
d6606683 37
63551ae0 38#include <asm/page.h>
ca15ca40 39#include <asm/pgalloc.h>
24669e58 40#include <asm/tlb.h>
63551ae0 41
24669e58 42#include <linux/io.h>
63551ae0 43#include <linux/hugetlb.h>
9dd540e2 44#include <linux/hugetlb_cgroup.h>
9a305230 45#include <linux/node.h>
ab5ac90a 46#include <linux/page_owner.h>
7835e98b 47#include "internal.h"
f41f2ed4 48#include "hugetlb_vmemmap.h"
1da177e4 49
c3f38a38 50int hugetlb_max_hstate __read_mostly;
e5ff2159
AK
51unsigned int default_hstate_idx;
52struct hstate hstates[HUGE_MAX_HSTATE];
cf11e85f 53
dbda8fea 54#ifdef CONFIG_CMA
cf11e85f 55static struct cma *hugetlb_cma[MAX_NUMNODES];
38e719ab 56static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata;
2f6c57d6 57static bool hugetlb_cma_folio(struct folio *folio, unsigned int order)
a01f4390 58{
2f6c57d6 59 return cma_pages_valid(hugetlb_cma[folio_nid(folio)], &folio->page,
a01f4390
MK
60 1 << order);
61}
62#else
2f6c57d6 63static bool hugetlb_cma_folio(struct folio *folio, unsigned int order)
a01f4390
MK
64{
65 return false;
66}
dbda8fea
BS
67#endif
68static unsigned long hugetlb_cma_size __initdata;
cf11e85f 69
53ba51d2
JT
70__initdata LIST_HEAD(huge_boot_pages);
71
e5ff2159
AK
72/* for command line parsing */
73static struct hstate * __initdata parsed_hstate;
74static unsigned long __initdata default_hstate_max_huge_pages;
9fee021d 75static bool __initdata parsed_valid_hugepagesz = true;
282f4214 76static bool __initdata parsed_default_hugepagesz;
b5389086 77static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata;
e5ff2159 78
3935baa9 79/*
31caf665
NH
80 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
81 * free_huge_pages, and surplus_huge_pages.
3935baa9 82 */
c3f38a38 83DEFINE_SPINLOCK(hugetlb_lock);
0bd0f9fb 84
8382d914
DB
85/*
86 * Serializes faults on the same logical page. This is used to
87 * prevent spurious OOMs when the hugepage pool is fully utilized.
88 */
89static int num_fault_mutexes;
c672c7f2 90struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
8382d914 91
7ca02d0a
MK
92/* Forward declaration */
93static int hugetlb_acct_memory(struct hstate *h, long delta);
8d9bfb26
MK
94static void hugetlb_vma_lock_free(struct vm_area_struct *vma);
95static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma);
ecfbd733 96static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma);
7ca02d0a 97
1d88433b 98static inline bool subpool_is_free(struct hugepage_subpool *spool)
90481622 99{
1d88433b
ML
100 if (spool->count)
101 return false;
102 if (spool->max_hpages != -1)
103 return spool->used_hpages == 0;
104 if (spool->min_hpages != -1)
105 return spool->rsv_hpages == spool->min_hpages;
106
107 return true;
108}
90481622 109
db71ef79
MK
110static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
111 unsigned long irq_flags)
1d88433b 112{
db71ef79 113 spin_unlock_irqrestore(&spool->lock, irq_flags);
90481622
DG
114
115 /* If no pages are used, and no other handles to the subpool
7c8de358 116 * remain, give up any reservations based on minimum size and
7ca02d0a 117 * free the subpool */
1d88433b 118 if (subpool_is_free(spool)) {
7ca02d0a
MK
119 if (spool->min_hpages != -1)
120 hugetlb_acct_memory(spool->hstate,
121 -spool->min_hpages);
90481622 122 kfree(spool);
7ca02d0a 123 }
90481622
DG
124}
125
7ca02d0a
MK
126struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
127 long min_hpages)
90481622
DG
128{
129 struct hugepage_subpool *spool;
130
c6a91820 131 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
90481622
DG
132 if (!spool)
133 return NULL;
134
135 spin_lock_init(&spool->lock);
136 spool->count = 1;
7ca02d0a
MK
137 spool->max_hpages = max_hpages;
138 spool->hstate = h;
139 spool->min_hpages = min_hpages;
140
141 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
142 kfree(spool);
143 return NULL;
144 }
145 spool->rsv_hpages = min_hpages;
90481622
DG
146
147 return spool;
148}
149
150void hugepage_put_subpool(struct hugepage_subpool *spool)
151{
db71ef79
MK
152 unsigned long flags;
153
154 spin_lock_irqsave(&spool->lock, flags);
90481622
DG
155 BUG_ON(!spool->count);
156 spool->count--;
db71ef79 157 unlock_or_release_subpool(spool, flags);
90481622
DG
158}
159
1c5ecae3
MK
160/*
161 * Subpool accounting for allocating and reserving pages.
162 * Return -ENOMEM if there are not enough resources to satisfy the
9e7ee400 163 * request. Otherwise, return the number of pages by which the
1c5ecae3
MK
164 * global pools must be adjusted (upward). The returned value may
165 * only be different than the passed value (delta) in the case where
7c8de358 166 * a subpool minimum size must be maintained.
1c5ecae3
MK
167 */
168static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
90481622
DG
169 long delta)
170{
1c5ecae3 171 long ret = delta;
90481622
DG
172
173 if (!spool)
1c5ecae3 174 return ret;
90481622 175
db71ef79 176 spin_lock_irq(&spool->lock);
1c5ecae3
MK
177
178 if (spool->max_hpages != -1) { /* maximum size accounting */
179 if ((spool->used_hpages + delta) <= spool->max_hpages)
180 spool->used_hpages += delta;
181 else {
182 ret = -ENOMEM;
183 goto unlock_ret;
184 }
90481622 185 }
90481622 186
09a95e29
MK
187 /* minimum size accounting */
188 if (spool->min_hpages != -1 && spool->rsv_hpages) {
1c5ecae3
MK
189 if (delta > spool->rsv_hpages) {
190 /*
191 * Asking for more reserves than those already taken on
192 * behalf of subpool. Return difference.
193 */
194 ret = delta - spool->rsv_hpages;
195 spool->rsv_hpages = 0;
196 } else {
197 ret = 0; /* reserves already accounted for */
198 spool->rsv_hpages -= delta;
199 }
200 }
201
202unlock_ret:
db71ef79 203 spin_unlock_irq(&spool->lock);
90481622
DG
204 return ret;
205}
206
1c5ecae3
MK
207/*
208 * Subpool accounting for freeing and unreserving pages.
209 * Return the number of global page reservations that must be dropped.
210 * The return value may only be different than the passed value (delta)
211 * in the case where a subpool minimum size must be maintained.
212 */
213static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
90481622
DG
214 long delta)
215{
1c5ecae3 216 long ret = delta;
db71ef79 217 unsigned long flags;
1c5ecae3 218
90481622 219 if (!spool)
1c5ecae3 220 return delta;
90481622 221
db71ef79 222 spin_lock_irqsave(&spool->lock, flags);
1c5ecae3
MK
223
224 if (spool->max_hpages != -1) /* maximum size accounting */
225 spool->used_hpages -= delta;
226
09a95e29
MK
227 /* minimum size accounting */
228 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
1c5ecae3
MK
229 if (spool->rsv_hpages + delta <= spool->min_hpages)
230 ret = 0;
231 else
232 ret = spool->rsv_hpages + delta - spool->min_hpages;
233
234 spool->rsv_hpages += delta;
235 if (spool->rsv_hpages > spool->min_hpages)
236 spool->rsv_hpages = spool->min_hpages;
237 }
238
239 /*
240 * If hugetlbfs_put_super couldn't free spool due to an outstanding
241 * quota reference, free it now.
242 */
db71ef79 243 unlock_or_release_subpool(spool, flags);
1c5ecae3
MK
244
245 return ret;
90481622
DG
246}
247
248static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
249{
250 return HUGETLBFS_SB(inode->i_sb)->spool;
251}
252
253static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
254{
496ad9aa 255 return subpool_inode(file_inode(vma->vm_file));
90481622
DG
256}
257
e700898f
MK
258/*
259 * hugetlb vma_lock helper routines
260 */
261static bool __vma_shareable_lock(struct vm_area_struct *vma)
262{
263 return vma->vm_flags & (VM_MAYSHARE | VM_SHARED) &&
264 vma->vm_private_data;
265}
266
267void hugetlb_vma_lock_read(struct vm_area_struct *vma)
268{
269 if (__vma_shareable_lock(vma)) {
270 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
271
272 down_read(&vma_lock->rw_sema);
273 }
274}
275
276void hugetlb_vma_unlock_read(struct vm_area_struct *vma)
277{
278 if (__vma_shareable_lock(vma)) {
279 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
280
281 up_read(&vma_lock->rw_sema);
282 }
283}
284
285void hugetlb_vma_lock_write(struct vm_area_struct *vma)
286{
287 if (__vma_shareable_lock(vma)) {
288 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
289
290 down_write(&vma_lock->rw_sema);
291 }
292}
293
294void hugetlb_vma_unlock_write(struct vm_area_struct *vma)
295{
296 if (__vma_shareable_lock(vma)) {
297 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
298
299 up_write(&vma_lock->rw_sema);
300 }
301}
302
303int hugetlb_vma_trylock_write(struct vm_area_struct *vma)
304{
305 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
306
307 if (!__vma_shareable_lock(vma))
308 return 1;
309
310 return down_write_trylock(&vma_lock->rw_sema);
311}
312
313void hugetlb_vma_assert_locked(struct vm_area_struct *vma)
314{
315 if (__vma_shareable_lock(vma)) {
316 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
317
318 lockdep_assert_held(&vma_lock->rw_sema);
319 }
320}
321
322void hugetlb_vma_lock_release(struct kref *kref)
323{
324 struct hugetlb_vma_lock *vma_lock = container_of(kref,
325 struct hugetlb_vma_lock, refs);
326
327 kfree(vma_lock);
328}
329
330static void __hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock *vma_lock)
331{
332 struct vm_area_struct *vma = vma_lock->vma;
333
334 /*
335 * vma_lock structure may or not be released as a result of put,
336 * it certainly will no longer be attached to vma so clear pointer.
337 * Semaphore synchronizes access to vma_lock->vma field.
338 */
339 vma_lock->vma = NULL;
340 vma->vm_private_data = NULL;
341 up_write(&vma_lock->rw_sema);
342 kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
343}
344
345static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma)
346{
347 if (__vma_shareable_lock(vma)) {
348 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
349
350 __hugetlb_vma_unlock_write_put(vma_lock);
351 }
352}
353
354static void hugetlb_vma_lock_free(struct vm_area_struct *vma)
355{
356 /*
357 * Only present in sharable vmas.
358 */
359 if (!vma || !__vma_shareable_lock(vma))
360 return;
361
362 if (vma->vm_private_data) {
363 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
364
365 down_write(&vma_lock->rw_sema);
366 __hugetlb_vma_unlock_write_put(vma_lock);
367 }
368}
369
370static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma)
371{
372 struct hugetlb_vma_lock *vma_lock;
373
374 /* Only establish in (flags) sharable vmas */
375 if (!vma || !(vma->vm_flags & VM_MAYSHARE))
376 return;
377
378 /* Should never get here with non-NULL vm_private_data */
379 if (vma->vm_private_data)
380 return;
381
382 vma_lock = kmalloc(sizeof(*vma_lock), GFP_KERNEL);
383 if (!vma_lock) {
384 /*
385 * If we can not allocate structure, then vma can not
386 * participate in pmd sharing. This is only a possible
387 * performance enhancement and memory saving issue.
388 * However, the lock is also used to synchronize page
389 * faults with truncation. If the lock is not present,
390 * unlikely races could leave pages in a file past i_size
391 * until the file is removed. Warn in the unlikely case of
392 * allocation failure.
393 */
394 pr_warn_once("HugeTLB: unable to allocate vma specific lock\n");
395 return;
396 }
397
398 kref_init(&vma_lock->refs);
399 init_rwsem(&vma_lock->rw_sema);
400 vma_lock->vma = vma;
401 vma->vm_private_data = vma_lock;
402}
403
0db9d74e
MA
404/* Helper that removes a struct file_region from the resv_map cache and returns
405 * it for use.
406 */
407static struct file_region *
408get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
409{
3259914f 410 struct file_region *nrg;
0db9d74e
MA
411
412 VM_BUG_ON(resv->region_cache_count <= 0);
413
414 resv->region_cache_count--;
415 nrg = list_first_entry(&resv->region_cache, struct file_region, link);
0db9d74e
MA
416 list_del(&nrg->link);
417
418 nrg->from = from;
419 nrg->to = to;
420
421 return nrg;
422}
423
075a61d0
MA
424static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
425 struct file_region *rg)
426{
427#ifdef CONFIG_CGROUP_HUGETLB
428 nrg->reservation_counter = rg->reservation_counter;
429 nrg->css = rg->css;
430 if (rg->css)
431 css_get(rg->css);
432#endif
433}
434
435/* Helper that records hugetlb_cgroup uncharge info. */
436static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
437 struct hstate *h,
438 struct resv_map *resv,
439 struct file_region *nrg)
440{
441#ifdef CONFIG_CGROUP_HUGETLB
442 if (h_cg) {
443 nrg->reservation_counter =
444 &h_cg->rsvd_hugepage[hstate_index(h)];
445 nrg->css = &h_cg->css;
d85aecf2
ML
446 /*
447 * The caller will hold exactly one h_cg->css reference for the
448 * whole contiguous reservation region. But this area might be
449 * scattered when there are already some file_regions reside in
450 * it. As a result, many file_regions may share only one css
451 * reference. In order to ensure that one file_region must hold
452 * exactly one h_cg->css reference, we should do css_get for
453 * each file_region and leave the reference held by caller
454 * untouched.
455 */
456 css_get(&h_cg->css);
075a61d0
MA
457 if (!resv->pages_per_hpage)
458 resv->pages_per_hpage = pages_per_huge_page(h);
459 /* pages_per_hpage should be the same for all entries in
460 * a resv_map.
461 */
462 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
463 } else {
464 nrg->reservation_counter = NULL;
465 nrg->css = NULL;
466 }
467#endif
468}
469
d85aecf2
ML
470static void put_uncharge_info(struct file_region *rg)
471{
472#ifdef CONFIG_CGROUP_HUGETLB
473 if (rg->css)
474 css_put(rg->css);
475#endif
476}
477
a9b3f867
MA
478static bool has_same_uncharge_info(struct file_region *rg,
479 struct file_region *org)
480{
481#ifdef CONFIG_CGROUP_HUGETLB
0739eb43 482 return rg->reservation_counter == org->reservation_counter &&
a9b3f867
MA
483 rg->css == org->css;
484
485#else
486 return true;
487#endif
488}
489
490static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
491{
3259914f 492 struct file_region *nrg, *prg;
a9b3f867
MA
493
494 prg = list_prev_entry(rg, link);
495 if (&prg->link != &resv->regions && prg->to == rg->from &&
496 has_same_uncharge_info(prg, rg)) {
497 prg->to = rg->to;
498
499 list_del(&rg->link);
d85aecf2 500 put_uncharge_info(rg);
a9b3f867
MA
501 kfree(rg);
502
7db5e7b6 503 rg = prg;
a9b3f867
MA
504 }
505
506 nrg = list_next_entry(rg, link);
507 if (&nrg->link != &resv->regions && nrg->from == rg->to &&
508 has_same_uncharge_info(nrg, rg)) {
509 nrg->from = rg->from;
510
511 list_del(&rg->link);
d85aecf2 512 put_uncharge_info(rg);
a9b3f867 513 kfree(rg);
a9b3f867
MA
514 }
515}
516
2103cf9c 517static inline long
84448c8e 518hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from,
2103cf9c
PX
519 long to, struct hstate *h, struct hugetlb_cgroup *cg,
520 long *regions_needed)
521{
522 struct file_region *nrg;
523
524 if (!regions_needed) {
525 nrg = get_file_region_entry_from_cache(map, from, to);
526 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
84448c8e 527 list_add(&nrg->link, rg);
2103cf9c
PX
528 coalesce_file_region(map, nrg);
529 } else
530 *regions_needed += 1;
531
532 return to - from;
533}
534
972a3da3
WY
535/*
536 * Must be called with resv->lock held.
537 *
538 * Calling this with regions_needed != NULL will count the number of pages
539 * to be added but will not modify the linked list. And regions_needed will
540 * indicate the number of file_regions needed in the cache to carry out to add
541 * the regions for this range.
d75c6af9
MA
542 */
543static long add_reservation_in_range(struct resv_map *resv, long f, long t,
075a61d0 544 struct hugetlb_cgroup *h_cg,
972a3da3 545 struct hstate *h, long *regions_needed)
d75c6af9 546{
0db9d74e 547 long add = 0;
d75c6af9 548 struct list_head *head = &resv->regions;
0db9d74e 549 long last_accounted_offset = f;
84448c8e
JK
550 struct file_region *iter, *trg = NULL;
551 struct list_head *rg = NULL;
d75c6af9 552
0db9d74e
MA
553 if (regions_needed)
554 *regions_needed = 0;
d75c6af9 555
0db9d74e 556 /* In this loop, we essentially handle an entry for the range
84448c8e 557 * [last_accounted_offset, iter->from), at every iteration, with some
0db9d74e
MA
558 * bounds checking.
559 */
84448c8e 560 list_for_each_entry_safe(iter, trg, head, link) {
0db9d74e 561 /* Skip irrelevant regions that start before our range. */
84448c8e 562 if (iter->from < f) {
0db9d74e
MA
563 /* If this region ends after the last accounted offset,
564 * then we need to update last_accounted_offset.
565 */
84448c8e
JK
566 if (iter->to > last_accounted_offset)
567 last_accounted_offset = iter->to;
0db9d74e
MA
568 continue;
569 }
d75c6af9 570
0db9d74e
MA
571 /* When we find a region that starts beyond our range, we've
572 * finished.
573 */
84448c8e
JK
574 if (iter->from >= t) {
575 rg = iter->link.prev;
d75c6af9 576 break;
84448c8e 577 }
d75c6af9 578
84448c8e 579 /* Add an entry for last_accounted_offset -> iter->from, and
0db9d74e
MA
580 * update last_accounted_offset.
581 */
84448c8e
JK
582 if (iter->from > last_accounted_offset)
583 add += hugetlb_resv_map_add(resv, iter->link.prev,
2103cf9c 584 last_accounted_offset,
84448c8e 585 iter->from, h, h_cg,
2103cf9c 586 regions_needed);
0db9d74e 587
84448c8e 588 last_accounted_offset = iter->to;
0db9d74e
MA
589 }
590
591 /* Handle the case where our range extends beyond
592 * last_accounted_offset.
593 */
84448c8e
JK
594 if (!rg)
595 rg = head->prev;
2103cf9c
PX
596 if (last_accounted_offset < t)
597 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
598 t, h, h_cg, regions_needed);
0db9d74e 599
0db9d74e
MA
600 return add;
601}
602
603/* Must be called with resv->lock acquired. Will drop lock to allocate entries.
604 */
605static int allocate_file_region_entries(struct resv_map *resv,
606 int regions_needed)
607 __must_hold(&resv->lock)
608{
34665341 609 LIST_HEAD(allocated_regions);
0db9d74e
MA
610 int to_allocate = 0, i = 0;
611 struct file_region *trg = NULL, *rg = NULL;
612
613 VM_BUG_ON(regions_needed < 0);
614
0db9d74e
MA
615 /*
616 * Check for sufficient descriptors in the cache to accommodate
617 * the number of in progress add operations plus regions_needed.
618 *
619 * This is a while loop because when we drop the lock, some other call
620 * to region_add or region_del may have consumed some region_entries,
621 * so we keep looping here until we finally have enough entries for
622 * (adds_in_progress + regions_needed).
623 */
624 while (resv->region_cache_count <
625 (resv->adds_in_progress + regions_needed)) {
626 to_allocate = resv->adds_in_progress + regions_needed -
627 resv->region_cache_count;
628
629 /* At this point, we should have enough entries in the cache
f0953a1b 630 * for all the existing adds_in_progress. We should only be
0db9d74e 631 * needing to allocate for regions_needed.
d75c6af9 632 */
0db9d74e
MA
633 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
634
635 spin_unlock(&resv->lock);
636 for (i = 0; i < to_allocate; i++) {
637 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
638 if (!trg)
639 goto out_of_memory;
640 list_add(&trg->link, &allocated_regions);
d75c6af9 641 }
d75c6af9 642
0db9d74e
MA
643 spin_lock(&resv->lock);
644
d3ec7b6e
WY
645 list_splice(&allocated_regions, &resv->region_cache);
646 resv->region_cache_count += to_allocate;
d75c6af9
MA
647 }
648
0db9d74e 649 return 0;
d75c6af9 650
0db9d74e
MA
651out_of_memory:
652 list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
653 list_del(&rg->link);
654 kfree(rg);
655 }
656 return -ENOMEM;
d75c6af9
MA
657}
658
1dd308a7
MK
659/*
660 * Add the huge page range represented by [f, t) to the reserve
0db9d74e
MA
661 * map. Regions will be taken from the cache to fill in this range.
662 * Sufficient regions should exist in the cache due to the previous
663 * call to region_chg with the same range, but in some cases the cache will not
664 * have sufficient entries due to races with other code doing region_add or
665 * region_del. The extra needed entries will be allocated.
cf3ad20b 666 *
0db9d74e
MA
667 * regions_needed is the out value provided by a previous call to region_chg.
668 *
669 * Return the number of new huge pages added to the map. This number is greater
670 * than or equal to zero. If file_region entries needed to be allocated for
7c8de358 671 * this operation and we were not able to allocate, it returns -ENOMEM.
0db9d74e
MA
672 * region_add of regions of length 1 never allocate file_regions and cannot
673 * fail; region_chg will always allocate at least 1 entry and a region_add for
674 * 1 page will only require at most 1 entry.
1dd308a7 675 */
0db9d74e 676static long region_add(struct resv_map *resv, long f, long t,
075a61d0
MA
677 long in_regions_needed, struct hstate *h,
678 struct hugetlb_cgroup *h_cg)
96822904 679{
0db9d74e 680 long add = 0, actual_regions_needed = 0;
96822904 681
7b24d861 682 spin_lock(&resv->lock);
0db9d74e
MA
683retry:
684
685 /* Count how many regions are actually needed to execute this add. */
972a3da3
WY
686 add_reservation_in_range(resv, f, t, NULL, NULL,
687 &actual_regions_needed);
96822904 688
5e911373 689 /*
0db9d74e
MA
690 * Check for sufficient descriptors in the cache to accommodate
691 * this add operation. Note that actual_regions_needed may be greater
692 * than in_regions_needed, as the resv_map may have been modified since
693 * the region_chg call. In this case, we need to make sure that we
694 * allocate extra entries, such that we have enough for all the
695 * existing adds_in_progress, plus the excess needed for this
696 * operation.
5e911373 697 */
0db9d74e
MA
698 if (actual_regions_needed > in_regions_needed &&
699 resv->region_cache_count <
700 resv->adds_in_progress +
701 (actual_regions_needed - in_regions_needed)) {
702 /* region_add operation of range 1 should never need to
703 * allocate file_region entries.
704 */
705 VM_BUG_ON(t - f <= 1);
5e911373 706
0db9d74e
MA
707 if (allocate_file_region_entries(
708 resv, actual_regions_needed - in_regions_needed)) {
709 return -ENOMEM;
710 }
5e911373 711
0db9d74e 712 goto retry;
5e911373
MK
713 }
714
972a3da3 715 add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
0db9d74e
MA
716
717 resv->adds_in_progress -= in_regions_needed;
cf3ad20b 718
7b24d861 719 spin_unlock(&resv->lock);
cf3ad20b 720 return add;
96822904
AW
721}
722
1dd308a7
MK
723/*
724 * Examine the existing reserve map and determine how many
725 * huge pages in the specified range [f, t) are NOT currently
726 * represented. This routine is called before a subsequent
727 * call to region_add that will actually modify the reserve
728 * map to add the specified range [f, t). region_chg does
729 * not change the number of huge pages represented by the
0db9d74e
MA
730 * map. A number of new file_region structures is added to the cache as a
731 * placeholder, for the subsequent region_add call to use. At least 1
732 * file_region structure is added.
733 *
734 * out_regions_needed is the number of regions added to the
735 * resv->adds_in_progress. This value needs to be provided to a follow up call
736 * to region_add or region_abort for proper accounting.
5e911373
MK
737 *
738 * Returns the number of huge pages that need to be added to the existing
739 * reservation map for the range [f, t). This number is greater or equal to
740 * zero. -ENOMEM is returned if a new file_region structure or cache entry
741 * is needed and can not be allocated.
1dd308a7 742 */
0db9d74e
MA
743static long region_chg(struct resv_map *resv, long f, long t,
744 long *out_regions_needed)
96822904 745{
96822904
AW
746 long chg = 0;
747
7b24d861 748 spin_lock(&resv->lock);
5e911373 749
972a3da3 750 /* Count how many hugepages in this range are NOT represented. */
075a61d0 751 chg = add_reservation_in_range(resv, f, t, NULL, NULL,
972a3da3 752 out_regions_needed);
5e911373 753
0db9d74e
MA
754 if (*out_regions_needed == 0)
755 *out_regions_needed = 1;
5e911373 756
0db9d74e
MA
757 if (allocate_file_region_entries(resv, *out_regions_needed))
758 return -ENOMEM;
5e911373 759
0db9d74e 760 resv->adds_in_progress += *out_regions_needed;
7b24d861 761
7b24d861 762 spin_unlock(&resv->lock);
96822904
AW
763 return chg;
764}
765
5e911373
MK
766/*
767 * Abort the in progress add operation. The adds_in_progress field
768 * of the resv_map keeps track of the operations in progress between
769 * calls to region_chg and region_add. Operations are sometimes
770 * aborted after the call to region_chg. In such cases, region_abort
0db9d74e
MA
771 * is called to decrement the adds_in_progress counter. regions_needed
772 * is the value returned by the region_chg call, it is used to decrement
773 * the adds_in_progress counter.
5e911373
MK
774 *
775 * NOTE: The range arguments [f, t) are not needed or used in this
776 * routine. They are kept to make reading the calling code easier as
777 * arguments will match the associated region_chg call.
778 */
0db9d74e
MA
779static void region_abort(struct resv_map *resv, long f, long t,
780 long regions_needed)
5e911373
MK
781{
782 spin_lock(&resv->lock);
783 VM_BUG_ON(!resv->region_cache_count);
0db9d74e 784 resv->adds_in_progress -= regions_needed;
5e911373
MK
785 spin_unlock(&resv->lock);
786}
787
1dd308a7 788/*
feba16e2
MK
789 * Delete the specified range [f, t) from the reserve map. If the
790 * t parameter is LONG_MAX, this indicates that ALL regions after f
791 * should be deleted. Locate the regions which intersect [f, t)
792 * and either trim, delete or split the existing regions.
793 *
794 * Returns the number of huge pages deleted from the reserve map.
795 * In the normal case, the return value is zero or more. In the
796 * case where a region must be split, a new region descriptor must
797 * be allocated. If the allocation fails, -ENOMEM will be returned.
798 * NOTE: If the parameter t == LONG_MAX, then we will never split
799 * a region and possibly return -ENOMEM. Callers specifying
800 * t == LONG_MAX do not need to check for -ENOMEM error.
1dd308a7 801 */
feba16e2 802static long region_del(struct resv_map *resv, long f, long t)
96822904 803{
1406ec9b 804 struct list_head *head = &resv->regions;
96822904 805 struct file_region *rg, *trg;
feba16e2
MK
806 struct file_region *nrg = NULL;
807 long del = 0;
96822904 808
feba16e2 809retry:
7b24d861 810 spin_lock(&resv->lock);
feba16e2 811 list_for_each_entry_safe(rg, trg, head, link) {
dbe409e4
MK
812 /*
813 * Skip regions before the range to be deleted. file_region
814 * ranges are normally of the form [from, to). However, there
815 * may be a "placeholder" entry in the map which is of the form
816 * (from, to) with from == to. Check for placeholder entries
817 * at the beginning of the range to be deleted.
818 */
819 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
feba16e2 820 continue;
dbe409e4 821
feba16e2 822 if (rg->from >= t)
96822904 823 break;
96822904 824
feba16e2
MK
825 if (f > rg->from && t < rg->to) { /* Must split region */
826 /*
827 * Check for an entry in the cache before dropping
828 * lock and attempting allocation.
829 */
830 if (!nrg &&
831 resv->region_cache_count > resv->adds_in_progress) {
832 nrg = list_first_entry(&resv->region_cache,
833 struct file_region,
834 link);
835 list_del(&nrg->link);
836 resv->region_cache_count--;
837 }
96822904 838
feba16e2
MK
839 if (!nrg) {
840 spin_unlock(&resv->lock);
841 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
842 if (!nrg)
843 return -ENOMEM;
844 goto retry;
845 }
846
847 del += t - f;
79aa925b 848 hugetlb_cgroup_uncharge_file_region(
d85aecf2 849 resv, rg, t - f, false);
feba16e2
MK
850
851 /* New entry for end of split region */
852 nrg->from = t;
853 nrg->to = rg->to;
075a61d0
MA
854
855 copy_hugetlb_cgroup_uncharge_info(nrg, rg);
856
feba16e2
MK
857 INIT_LIST_HEAD(&nrg->link);
858
859 /* Original entry is trimmed */
860 rg->to = f;
861
862 list_add(&nrg->link, &rg->link);
863 nrg = NULL;
96822904 864 break;
feba16e2
MK
865 }
866
867 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
868 del += rg->to - rg->from;
075a61d0 869 hugetlb_cgroup_uncharge_file_region(resv, rg,
d85aecf2 870 rg->to - rg->from, true);
feba16e2
MK
871 list_del(&rg->link);
872 kfree(rg);
873 continue;
874 }
875
876 if (f <= rg->from) { /* Trim beginning of region */
075a61d0 877 hugetlb_cgroup_uncharge_file_region(resv, rg,
d85aecf2 878 t - rg->from, false);
075a61d0 879
79aa925b
MK
880 del += t - rg->from;
881 rg->from = t;
882 } else { /* Trim end of region */
075a61d0 883 hugetlb_cgroup_uncharge_file_region(resv, rg,
d85aecf2 884 rg->to - f, false);
79aa925b
MK
885
886 del += rg->to - f;
887 rg->to = f;
feba16e2 888 }
96822904 889 }
7b24d861 890
7b24d861 891 spin_unlock(&resv->lock);
feba16e2
MK
892 kfree(nrg);
893 return del;
96822904
AW
894}
895
b5cec28d
MK
896/*
897 * A rare out of memory error was encountered which prevented removal of
898 * the reserve map region for a page. The huge page itself was free'ed
899 * and removed from the page cache. This routine will adjust the subpool
900 * usage count, and the global reserve count if needed. By incrementing
901 * these counts, the reserve map entry which could not be deleted will
902 * appear as a "reserved" entry instead of simply dangling with incorrect
903 * counts.
904 */
72e2936c 905void hugetlb_fix_reserve_counts(struct inode *inode)
b5cec28d
MK
906{
907 struct hugepage_subpool *spool = subpool_inode(inode);
908 long rsv_adjust;
da56388c 909 bool reserved = false;
b5cec28d
MK
910
911 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
da56388c 912 if (rsv_adjust > 0) {
b5cec28d
MK
913 struct hstate *h = hstate_inode(inode);
914
da56388c
ML
915 if (!hugetlb_acct_memory(h, 1))
916 reserved = true;
917 } else if (!rsv_adjust) {
918 reserved = true;
b5cec28d 919 }
da56388c
ML
920
921 if (!reserved)
922 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
b5cec28d
MK
923}
924
1dd308a7
MK
925/*
926 * Count and return the number of huge pages in the reserve map
927 * that intersect with the range [f, t).
928 */
1406ec9b 929static long region_count(struct resv_map *resv, long f, long t)
84afd99b 930{
1406ec9b 931 struct list_head *head = &resv->regions;
84afd99b
AW
932 struct file_region *rg;
933 long chg = 0;
934
7b24d861 935 spin_lock(&resv->lock);
84afd99b
AW
936 /* Locate each segment we overlap with, and count that overlap. */
937 list_for_each_entry(rg, head, link) {
f2135a4a
WSH
938 long seg_from;
939 long seg_to;
84afd99b
AW
940
941 if (rg->to <= f)
942 continue;
943 if (rg->from >= t)
944 break;
945
946 seg_from = max(rg->from, f);
947 seg_to = min(rg->to, t);
948
949 chg += seg_to - seg_from;
950 }
7b24d861 951 spin_unlock(&resv->lock);
84afd99b
AW
952
953 return chg;
954}
955
e7c4b0bf
AW
956/*
957 * Convert the address within this vma to the page offset within
958 * the mapping, in pagecache page units; huge pages here.
959 */
a5516438
AK
960static pgoff_t vma_hugecache_offset(struct hstate *h,
961 struct vm_area_struct *vma, unsigned long address)
e7c4b0bf 962{
a5516438
AK
963 return ((address - vma->vm_start) >> huge_page_shift(h)) +
964 (vma->vm_pgoff >> huge_page_order(h));
e7c4b0bf
AW
965}
966
0fe6e20b
NH
967pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
968 unsigned long address)
969{
970 return vma_hugecache_offset(hstate_vma(vma), vma, address);
971}
dee41079 972EXPORT_SYMBOL_GPL(linear_hugepage_index);
0fe6e20b 973
08fba699
MG
974/*
975 * Return the size of the pages allocated when backing a VMA. In the majority
976 * cases this will be same size as used by the page table entries.
977 */
978unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
979{
05ea8860
DW
980 if (vma->vm_ops && vma->vm_ops->pagesize)
981 return vma->vm_ops->pagesize(vma);
982 return PAGE_SIZE;
08fba699 983}
f340ca0f 984EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
08fba699 985
3340289d
MG
986/*
987 * Return the page size being used by the MMU to back a VMA. In the majority
988 * of cases, the page size used by the kernel matches the MMU size. On
09135cc5
DW
989 * architectures where it differs, an architecture-specific 'strong'
990 * version of this symbol is required.
3340289d 991 */
09135cc5 992__weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
3340289d
MG
993{
994 return vma_kernel_pagesize(vma);
995}
3340289d 996
84afd99b
AW
997/*
998 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
999 * bits of the reservation map pointer, which are always clear due to
1000 * alignment.
1001 */
1002#define HPAGE_RESV_OWNER (1UL << 0)
1003#define HPAGE_RESV_UNMAPPED (1UL << 1)
04f2cbe3 1004#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
84afd99b 1005
a1e78772
MG
1006/*
1007 * These helpers are used to track how many pages are reserved for
1008 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
1009 * is guaranteed to have their future faults succeed.
1010 *
8d9bfb26 1011 * With the exception of hugetlb_dup_vma_private() which is called at fork(),
a1e78772
MG
1012 * the reserve counters are updated with the hugetlb_lock held. It is safe
1013 * to reset the VMA at fork() time as it is not in use yet and there is no
1014 * chance of the global counters getting corrupted as a result of the values.
84afd99b
AW
1015 *
1016 * The private mapping reservation is represented in a subtly different
1017 * manner to a shared mapping. A shared mapping has a region map associated
1018 * with the underlying file, this region map represents the backing file
1019 * pages which have ever had a reservation assigned which this persists even
1020 * after the page is instantiated. A private mapping has a region map
1021 * associated with the original mmap which is attached to all VMAs which
1022 * reference it, this region map represents those offsets which have consumed
1023 * reservation ie. where pages have been instantiated.
a1e78772 1024 */
e7c4b0bf
AW
1025static unsigned long get_vma_private_data(struct vm_area_struct *vma)
1026{
1027 return (unsigned long)vma->vm_private_data;
1028}
1029
1030static void set_vma_private_data(struct vm_area_struct *vma,
1031 unsigned long value)
1032{
1033 vma->vm_private_data = (void *)value;
1034}
1035
e9fe92ae
MA
1036static void
1037resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
1038 struct hugetlb_cgroup *h_cg,
1039 struct hstate *h)
1040{
1041#ifdef CONFIG_CGROUP_HUGETLB
1042 if (!h_cg || !h) {
1043 resv_map->reservation_counter = NULL;
1044 resv_map->pages_per_hpage = 0;
1045 resv_map->css = NULL;
1046 } else {
1047 resv_map->reservation_counter =
1048 &h_cg->rsvd_hugepage[hstate_index(h)];
1049 resv_map->pages_per_hpage = pages_per_huge_page(h);
1050 resv_map->css = &h_cg->css;
1051 }
1052#endif
1053}
1054
9119a41e 1055struct resv_map *resv_map_alloc(void)
84afd99b
AW
1056{
1057 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
5e911373
MK
1058 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
1059
1060 if (!resv_map || !rg) {
1061 kfree(resv_map);
1062 kfree(rg);
84afd99b 1063 return NULL;
5e911373 1064 }
84afd99b
AW
1065
1066 kref_init(&resv_map->refs);
7b24d861 1067 spin_lock_init(&resv_map->lock);
84afd99b
AW
1068 INIT_LIST_HEAD(&resv_map->regions);
1069
5e911373 1070 resv_map->adds_in_progress = 0;
e9fe92ae
MA
1071 /*
1072 * Initialize these to 0. On shared mappings, 0's here indicate these
1073 * fields don't do cgroup accounting. On private mappings, these will be
1074 * re-initialized to the proper values, to indicate that hugetlb cgroup
1075 * reservations are to be un-charged from here.
1076 */
1077 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
5e911373
MK
1078
1079 INIT_LIST_HEAD(&resv_map->region_cache);
1080 list_add(&rg->link, &resv_map->region_cache);
1081 resv_map->region_cache_count = 1;
1082
84afd99b
AW
1083 return resv_map;
1084}
1085
9119a41e 1086void resv_map_release(struct kref *ref)
84afd99b
AW
1087{
1088 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
5e911373
MK
1089 struct list_head *head = &resv_map->region_cache;
1090 struct file_region *rg, *trg;
84afd99b
AW
1091
1092 /* Clear out any active regions before we release the map. */
feba16e2 1093 region_del(resv_map, 0, LONG_MAX);
5e911373
MK
1094
1095 /* ... and any entries left in the cache */
1096 list_for_each_entry_safe(rg, trg, head, link) {
1097 list_del(&rg->link);
1098 kfree(rg);
1099 }
1100
1101 VM_BUG_ON(resv_map->adds_in_progress);
1102
84afd99b
AW
1103 kfree(resv_map);
1104}
1105
4e35f483
JK
1106static inline struct resv_map *inode_resv_map(struct inode *inode)
1107{
f27a5136
MK
1108 /*
1109 * At inode evict time, i_mapping may not point to the original
1110 * address space within the inode. This original address space
1111 * contains the pointer to the resv_map. So, always use the
1112 * address space embedded within the inode.
1113 * The VERY common case is inode->mapping == &inode->i_data but,
1114 * this may not be true for device special inodes.
1115 */
1116 return (struct resv_map *)(&inode->i_data)->private_data;
4e35f483
JK
1117}
1118
84afd99b 1119static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
a1e78772 1120{
81d1b09c 1121 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
4e35f483
JK
1122 if (vma->vm_flags & VM_MAYSHARE) {
1123 struct address_space *mapping = vma->vm_file->f_mapping;
1124 struct inode *inode = mapping->host;
1125
1126 return inode_resv_map(inode);
1127
1128 } else {
84afd99b
AW
1129 return (struct resv_map *)(get_vma_private_data(vma) &
1130 ~HPAGE_RESV_MASK);
4e35f483 1131 }
a1e78772
MG
1132}
1133
84afd99b 1134static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
a1e78772 1135{
81d1b09c
SL
1136 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1137 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
a1e78772 1138
84afd99b
AW
1139 set_vma_private_data(vma, (get_vma_private_data(vma) &
1140 HPAGE_RESV_MASK) | (unsigned long)map);
04f2cbe3
MG
1141}
1142
1143static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
1144{
81d1b09c
SL
1145 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1146 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
e7c4b0bf
AW
1147
1148 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
04f2cbe3
MG
1149}
1150
1151static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
1152{
81d1b09c 1153 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
e7c4b0bf
AW
1154
1155 return (get_vma_private_data(vma) & flag) != 0;
a1e78772
MG
1156}
1157
8d9bfb26 1158void hugetlb_dup_vma_private(struct vm_area_struct *vma)
a1e78772 1159{
81d1b09c 1160 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
8d9bfb26
MK
1161 /*
1162 * Clear vm_private_data
612b8a31
MK
1163 * - For shared mappings this is a per-vma semaphore that may be
1164 * allocated in a subsequent call to hugetlb_vm_op_open.
1165 * Before clearing, make sure pointer is not associated with vma
1166 * as this will leak the structure. This is the case when called
1167 * via clear_vma_resv_huge_pages() and hugetlb_vm_op_open has already
1168 * been called to allocate a new structure.
8d9bfb26
MK
1169 * - For MAP_PRIVATE mappings, this is the reserve map which does
1170 * not apply to children. Faults generated by the children are
1171 * not guaranteed to succeed, even if read-only.
8d9bfb26 1172 */
612b8a31
MK
1173 if (vma->vm_flags & VM_MAYSHARE) {
1174 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
1175
1176 if (vma_lock && vma_lock->vma != vma)
1177 vma->vm_private_data = NULL;
1178 } else
1179 vma->vm_private_data = NULL;
a1e78772
MG
1180}
1181
550a7d60
MA
1182/*
1183 * Reset and decrement one ref on hugepage private reservation.
1184 * Called with mm->mmap_sem writer semaphore held.
1185 * This function should be only used by move_vma() and operate on
1186 * same sized vma. It should never come here with last ref on the
1187 * reservation.
1188 */
1189void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
1190{
1191 /*
1192 * Clear the old hugetlb private page reservation.
1193 * It has already been transferred to new_vma.
1194 *
1195 * During a mremap() operation of a hugetlb vma we call move_vma()
1196 * which copies vma into new_vma and unmaps vma. After the copy
1197 * operation both new_vma and vma share a reference to the resv_map
1198 * struct, and at that point vma is about to be unmapped. We don't
1199 * want to return the reservation to the pool at unmap of vma because
1200 * the reservation still lives on in new_vma, so simply decrement the
1201 * ref here and remove the resv_map reference from this vma.
1202 */
1203 struct resv_map *reservations = vma_resv_map(vma);
1204
afe041c2
BQM
1205 if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1206 resv_map_put_hugetlb_cgroup_uncharge_info(reservations);
550a7d60 1207 kref_put(&reservations->refs, resv_map_release);
afe041c2 1208 }
550a7d60 1209
8d9bfb26 1210 hugetlb_dup_vma_private(vma);
550a7d60
MA
1211}
1212
a1e78772 1213/* Returns true if the VMA has associated reserve pages */
559ec2f8 1214static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
a1e78772 1215{
af0ed73e
JK
1216 if (vma->vm_flags & VM_NORESERVE) {
1217 /*
1218 * This address is already reserved by other process(chg == 0),
1219 * so, we should decrement reserved count. Without decrementing,
1220 * reserve count remains after releasing inode, because this
1221 * allocated page will go into page cache and is regarded as
1222 * coming from reserved pool in releasing step. Currently, we
1223 * don't have any other solution to deal with this situation
1224 * properly, so add work-around here.
1225 */
1226 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
559ec2f8 1227 return true;
af0ed73e 1228 else
559ec2f8 1229 return false;
af0ed73e 1230 }
a63884e9
JK
1231
1232 /* Shared mappings always use reserves */
1fb1b0e9
MK
1233 if (vma->vm_flags & VM_MAYSHARE) {
1234 /*
1235 * We know VM_NORESERVE is not set. Therefore, there SHOULD
1236 * be a region map for all pages. The only situation where
1237 * there is no region map is if a hole was punched via
7c8de358 1238 * fallocate. In this case, there really are no reserves to
1fb1b0e9
MK
1239 * use. This situation is indicated if chg != 0.
1240 */
1241 if (chg)
1242 return false;
1243 else
1244 return true;
1245 }
a63884e9
JK
1246
1247 /*
1248 * Only the process that called mmap() has reserves for
1249 * private mappings.
1250 */
67961f9d
MK
1251 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1252 /*
1253 * Like the shared case above, a hole punch or truncate
1254 * could have been performed on the private mapping.
1255 * Examine the value of chg to determine if reserves
1256 * actually exist or were previously consumed.
1257 * Very Subtle - The value of chg comes from a previous
1258 * call to vma_needs_reserves(). The reserve map for
1259 * private mappings has different (opposite) semantics
1260 * than that of shared mappings. vma_needs_reserves()
1261 * has already taken this difference in semantics into
1262 * account. Therefore, the meaning of chg is the same
1263 * as in the shared case above. Code could easily be
1264 * combined, but keeping it separate draws attention to
1265 * subtle differences.
1266 */
1267 if (chg)
1268 return false;
1269 else
1270 return true;
1271 }
a63884e9 1272
559ec2f8 1273 return false;
a1e78772
MG
1274}
1275
240d67a8 1276static void enqueue_hugetlb_folio(struct hstate *h, struct folio *folio)
1da177e4 1277{
240d67a8 1278 int nid = folio_nid(folio);
9487ca60
MK
1279
1280 lockdep_assert_held(&hugetlb_lock);
240d67a8 1281 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
b65a4eda 1282
240d67a8 1283 list_move(&folio->lru, &h->hugepage_freelists[nid]);
a5516438
AK
1284 h->free_huge_pages++;
1285 h->free_huge_pages_node[nid]++;
240d67a8 1286 folio_set_hugetlb_freed(folio);
1da177e4
LT
1287}
1288
94310cbc 1289static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
bf50bab2
NH
1290{
1291 struct page *page;
1a08ae36 1292 bool pin = !!(current->flags & PF_MEMALLOC_PIN);
bbe88753 1293
9487ca60 1294 lockdep_assert_held(&hugetlb_lock);
bbe88753 1295 list_for_each_entry(page, &h->hugepage_freelists[nid], lru) {
6077c943 1296 if (pin && !is_longterm_pinnable_page(page))
bbe88753 1297 continue;
bf50bab2 1298
6664bfc8
WY
1299 if (PageHWPoison(page))
1300 continue;
1301
1302 list_move(&page->lru, &h->hugepage_activelist);
1303 set_page_refcounted(page);
6c037149 1304 ClearHPageFreed(page);
6664bfc8
WY
1305 h->free_huge_pages--;
1306 h->free_huge_pages_node[nid]--;
1307 return page;
bbe88753
JK
1308 }
1309
6664bfc8 1310 return NULL;
bf50bab2
NH
1311}
1312
3e59fcb0
MH
1313static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
1314 nodemask_t *nmask)
94310cbc 1315{
3e59fcb0
MH
1316 unsigned int cpuset_mems_cookie;
1317 struct zonelist *zonelist;
1318 struct zone *zone;
1319 struct zoneref *z;
98fa15f3 1320 int node = NUMA_NO_NODE;
94310cbc 1321
3e59fcb0
MH
1322 zonelist = node_zonelist(nid, gfp_mask);
1323
1324retry_cpuset:
1325 cpuset_mems_cookie = read_mems_allowed_begin();
1326 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1327 struct page *page;
1328
1329 if (!cpuset_zone_allowed(zone, gfp_mask))
1330 continue;
1331 /*
1332 * no need to ask again on the same node. Pool is node rather than
1333 * zone aware
1334 */
1335 if (zone_to_nid(zone) == node)
1336 continue;
1337 node = zone_to_nid(zone);
94310cbc 1338
94310cbc
AK
1339 page = dequeue_huge_page_node_exact(h, node);
1340 if (page)
1341 return page;
1342 }
3e59fcb0
MH
1343 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1344 goto retry_cpuset;
1345
94310cbc
AK
1346 return NULL;
1347}
1348
8346d69d
XH
1349static unsigned long available_huge_pages(struct hstate *h)
1350{
1351 return h->free_huge_pages - h->resv_huge_pages;
1352}
1353
a5516438
AK
1354static struct page *dequeue_huge_page_vma(struct hstate *h,
1355 struct vm_area_struct *vma,
af0ed73e
JK
1356 unsigned long address, int avoid_reserve,
1357 long chg)
1da177e4 1358{
cfcaa66f 1359 struct page *page = NULL;
480eccf9 1360 struct mempolicy *mpol;
04ec6264 1361 gfp_t gfp_mask;
3e59fcb0 1362 nodemask_t *nodemask;
04ec6264 1363 int nid;
1da177e4 1364
a1e78772
MG
1365 /*
1366 * A child process with MAP_PRIVATE mappings created by their parent
1367 * have no page reserves. This check ensures that reservations are
1368 * not "stolen". The child may still get SIGKILLed
1369 */
8346d69d 1370 if (!vma_has_reserves(vma, chg) && !available_huge_pages(h))
c0ff7453 1371 goto err;
a1e78772 1372
04f2cbe3 1373 /* If reserves cannot be used, ensure enough pages are in the pool */
8346d69d 1374 if (avoid_reserve && !available_huge_pages(h))
6eab04a8 1375 goto err;
04f2cbe3 1376
04ec6264
VB
1377 gfp_mask = htlb_alloc_mask(h);
1378 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
cfcaa66f
BW
1379
1380 if (mpol_is_preferred_many(mpol)) {
1381 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1382
1383 /* Fallback to all nodes if page==NULL */
1384 nodemask = NULL;
1385 }
1386
1387 if (!page)
1388 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1389
3e59fcb0 1390 if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
d6995da3 1391 SetHPageRestoreReserve(page);
3e59fcb0 1392 h->resv_huge_pages--;
1da177e4 1393 }
cc9a6c87 1394
52cd3b07 1395 mpol_cond_put(mpol);
1da177e4 1396 return page;
cc9a6c87
MG
1397
1398err:
cc9a6c87 1399 return NULL;
1da177e4
LT
1400}
1401
1cac6f2c
LC
1402/*
1403 * common helper functions for hstate_next_node_to_{alloc|free}.
1404 * We may have allocated or freed a huge page based on a different
1405 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1406 * be outside of *nodes_allowed. Ensure that we use an allowed
1407 * node for alloc or free.
1408 */
1409static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1410{
0edaf86c 1411 nid = next_node_in(nid, *nodes_allowed);
1cac6f2c
LC
1412 VM_BUG_ON(nid >= MAX_NUMNODES);
1413
1414 return nid;
1415}
1416
1417static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1418{
1419 if (!node_isset(nid, *nodes_allowed))
1420 nid = next_node_allowed(nid, nodes_allowed);
1421 return nid;
1422}
1423
1424/*
1425 * returns the previously saved node ["this node"] from which to
1426 * allocate a persistent huge page for the pool and advance the
1427 * next node from which to allocate, handling wrap at end of node
1428 * mask.
1429 */
1430static int hstate_next_node_to_alloc(struct hstate *h,
1431 nodemask_t *nodes_allowed)
1432{
1433 int nid;
1434
1435 VM_BUG_ON(!nodes_allowed);
1436
1437 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1438 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1439
1440 return nid;
1441}
1442
1443/*
10c6ec49 1444 * helper for remove_pool_huge_page() - return the previously saved
1cac6f2c
LC
1445 * node ["this node"] from which to free a huge page. Advance the
1446 * next node id whether or not we find a free huge page to free so
1447 * that the next attempt to free addresses the next node.
1448 */
1449static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1450{
1451 int nid;
1452
1453 VM_BUG_ON(!nodes_allowed);
1454
1455 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1456 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1457
1458 return nid;
1459}
1460
1461#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
1462 for (nr_nodes = nodes_weight(*mask); \
1463 nr_nodes > 0 && \
1464 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
1465 nr_nodes--)
1466
1467#define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1468 for (nr_nodes = nodes_weight(*mask); \
1469 nr_nodes > 0 && \
1470 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1471 nr_nodes--)
1472
8531fc6f 1473/* used to demote non-gigantic_huge pages as well */
911565b8 1474static void __destroy_compound_gigantic_folio(struct folio *folio,
34d9e35b 1475 unsigned int order, bool demote)
944d9fec
LC
1476{
1477 int i;
1478 int nr_pages = 1 << order;
14455eab 1479 struct page *p;
944d9fec 1480
911565b8
SK
1481 atomic_set(folio_mapcount_ptr(folio), 0);
1482 atomic_set(folio_subpages_mapcount_ptr(folio), 0);
1483 atomic_set(folio_pincount_ptr(folio), 0);
47e29d32 1484
14455eab 1485 for (i = 1; i < nr_pages; i++) {
911565b8 1486 p = folio_page(folio, i);
a01f4390 1487 p->mapping = NULL;
1d798ca3 1488 clear_compound_head(p);
34d9e35b
MK
1489 if (!demote)
1490 set_page_refcounted(p);
944d9fec
LC
1491 }
1492
911565b8
SK
1493 folio_set_compound_order(folio, 0);
1494 __folio_clear_head(folio);
944d9fec
LC
1495}
1496
911565b8 1497static void destroy_compound_hugetlb_folio_for_demote(struct folio *folio,
8531fc6f
MK
1498 unsigned int order)
1499{
911565b8 1500 __destroy_compound_gigantic_folio(folio, order, true);
8531fc6f
MK
1501}
1502
1503#ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
911565b8 1504static void destroy_compound_gigantic_folio(struct folio *folio,
34d9e35b
MK
1505 unsigned int order)
1506{
911565b8 1507 __destroy_compound_gigantic_folio(folio, order, false);
34d9e35b
MK
1508}
1509
7f325a8d 1510static void free_gigantic_folio(struct folio *folio, unsigned int order)
944d9fec 1511{
cf11e85f
RG
1512 /*
1513 * If the page isn't allocated using the cma allocator,
1514 * cma_release() returns false.
1515 */
dbda8fea 1516#ifdef CONFIG_CMA
7f325a8d
SK
1517 int nid = folio_nid(folio);
1518
1519 if (cma_release(hugetlb_cma[nid], &folio->page, 1 << order))
cf11e85f 1520 return;
dbda8fea 1521#endif
cf11e85f 1522
7f325a8d 1523 free_contig_range(folio_pfn(folio), 1 << order);
944d9fec
LC
1524}
1525
4eb0716e 1526#ifdef CONFIG_CONTIG_ALLOC
19fc1a7e 1527static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
d9cc948f 1528 int nid, nodemask_t *nodemask)
944d9fec 1529{
19fc1a7e 1530 struct page *page;
04adbc3f 1531 unsigned long nr_pages = pages_per_huge_page(h);
953f064a
LX
1532 if (nid == NUMA_NO_NODE)
1533 nid = numa_mem_id();
944d9fec 1534
dbda8fea
BS
1535#ifdef CONFIG_CMA
1536 {
cf11e85f
RG
1537 int node;
1538
953f064a
LX
1539 if (hugetlb_cma[nid]) {
1540 page = cma_alloc(hugetlb_cma[nid], nr_pages,
1541 huge_page_order(h), true);
cf11e85f 1542 if (page)
19fc1a7e 1543 return page_folio(page);
cf11e85f 1544 }
953f064a
LX
1545
1546 if (!(gfp_mask & __GFP_THISNODE)) {
1547 for_each_node_mask(node, *nodemask) {
1548 if (node == nid || !hugetlb_cma[node])
1549 continue;
1550
1551 page = cma_alloc(hugetlb_cma[node], nr_pages,
1552 huge_page_order(h), true);
1553 if (page)
19fc1a7e 1554 return page_folio(page);
953f064a
LX
1555 }
1556 }
cf11e85f 1557 }
dbda8fea 1558#endif
cf11e85f 1559
19fc1a7e
SK
1560 page = alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1561 return page ? page_folio(page) : NULL;
944d9fec
LC
1562}
1563
4eb0716e 1564#else /* !CONFIG_CONTIG_ALLOC */
19fc1a7e 1565static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
4eb0716e
AG
1566 int nid, nodemask_t *nodemask)
1567{
1568 return NULL;
1569}
1570#endif /* CONFIG_CONTIG_ALLOC */
944d9fec 1571
e1073d1e 1572#else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
19fc1a7e 1573static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
4eb0716e
AG
1574 int nid, nodemask_t *nodemask)
1575{
1576 return NULL;
1577}
7f325a8d
SK
1578static inline void free_gigantic_folio(struct folio *folio,
1579 unsigned int order) { }
911565b8 1580static inline void destroy_compound_gigantic_folio(struct folio *folio,
d00181b9 1581 unsigned int order) { }
944d9fec
LC
1582#endif
1583
6eb4e88a 1584/*
cfd5082b 1585 * Remove hugetlb folio from lists, and update dtor so that the folio appears
34d9e35b
MK
1586 * as just a compound page.
1587 *
cfd5082b 1588 * A reference is held on the folio, except in the case of demote.
6eb4e88a
MK
1589 *
1590 * Must be called with hugetlb lock held.
1591 */
cfd5082b 1592static void __remove_hugetlb_folio(struct hstate *h, struct folio *folio,
34d9e35b
MK
1593 bool adjust_surplus,
1594 bool demote)
6eb4e88a 1595{
cfd5082b 1596 int nid = folio_nid(folio);
6eb4e88a 1597
f074732d
SK
1598 VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio(folio), folio);
1599 VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio_rsvd(folio), folio);
6eb4e88a 1600
9487ca60 1601 lockdep_assert_held(&hugetlb_lock);
6eb4e88a
MK
1602 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1603 return;
1604
cfd5082b 1605 list_del(&folio->lru);
6eb4e88a 1606
cfd5082b 1607 if (folio_test_hugetlb_freed(folio)) {
6eb4e88a
MK
1608 h->free_huge_pages--;
1609 h->free_huge_pages_node[nid]--;
1610 }
1611 if (adjust_surplus) {
1612 h->surplus_huge_pages--;
1613 h->surplus_huge_pages_node[nid]--;
1614 }
1615
e32d20c0
MK
1616 /*
1617 * Very subtle
1618 *
1619 * For non-gigantic pages set the destructor to the normal compound
1620 * page dtor. This is needed in case someone takes an additional
1621 * temporary ref to the page, and freeing is delayed until they drop
1622 * their reference.
1623 *
1624 * For gigantic pages set the destructor to the null dtor. This
1625 * destructor will never be called. Before freeing the gigantic
911565b8
SK
1626 * page destroy_compound_gigantic_folio will turn the folio into a
1627 * simple group of pages. After this the destructor does not
e32d20c0
MK
1628 * apply.
1629 *
1630 * This handles the case where more than one ref is held when and
d6ef19e2 1631 * after update_and_free_hugetlb_folio is called.
34d9e35b
MK
1632 *
1633 * In the case of demote we do not ref count the page as it will soon
1634 * be turned into a page of smaller size.
e32d20c0 1635 */
34d9e35b 1636 if (!demote)
cfd5082b 1637 folio_ref_unfreeze(folio, 1);
e32d20c0 1638 if (hstate_is_gigantic(h))
cfd5082b 1639 folio_set_compound_dtor(folio, NULL_COMPOUND_DTOR);
e32d20c0 1640 else
cfd5082b 1641 folio_set_compound_dtor(folio, COMPOUND_PAGE_DTOR);
6eb4e88a
MK
1642
1643 h->nr_huge_pages--;
1644 h->nr_huge_pages_node[nid]--;
1645}
1646
cfd5082b 1647static void remove_hugetlb_folio(struct hstate *h, struct folio *folio,
34d9e35b
MK
1648 bool adjust_surplus)
1649{
cfd5082b 1650 __remove_hugetlb_folio(h, folio, adjust_surplus, false);
34d9e35b
MK
1651}
1652
cfd5082b 1653static void remove_hugetlb_folio_for_demote(struct hstate *h, struct folio *folio,
8531fc6f
MK
1654 bool adjust_surplus)
1655{
cfd5082b 1656 __remove_hugetlb_folio(h, folio, adjust_surplus, true);
8531fc6f
MK
1657}
1658
2f6c57d6 1659static void add_hugetlb_folio(struct hstate *h, struct folio *folio,
ad2fa371
MS
1660 bool adjust_surplus)
1661{
1662 int zeroed;
2f6c57d6 1663 int nid = folio_nid(folio);
ad2fa371 1664
2f6c57d6 1665 VM_BUG_ON_FOLIO(!folio_test_hugetlb_vmemmap_optimized(folio), folio);
ad2fa371
MS
1666
1667 lockdep_assert_held(&hugetlb_lock);
1668
2f6c57d6 1669 INIT_LIST_HEAD(&folio->lru);
ad2fa371
MS
1670 h->nr_huge_pages++;
1671 h->nr_huge_pages_node[nid]++;
1672
1673 if (adjust_surplus) {
1674 h->surplus_huge_pages++;
1675 h->surplus_huge_pages_node[nid]++;
1676 }
1677
2f6c57d6
SK
1678 folio_set_compound_dtor(folio, HUGETLB_PAGE_DTOR);
1679 folio_change_private(folio, NULL);
a9e1eab2 1680 /*
2f6c57d6
SK
1681 * We have to set hugetlb_vmemmap_optimized again as above
1682 * folio_change_private(folio, NULL) cleared it.
a9e1eab2 1683 */
2f6c57d6 1684 folio_set_hugetlb_vmemmap_optimized(folio);
ad2fa371
MS
1685
1686 /*
2f6c57d6 1687 * This folio is about to be managed by the hugetlb allocator and
b65a4eda
MK
1688 * should have no users. Drop our reference, and check for others
1689 * just in case.
ad2fa371 1690 */
2f6c57d6
SK
1691 zeroed = folio_put_testzero(folio);
1692 if (unlikely(!zeroed))
b65a4eda
MK
1693 /*
1694 * It is VERY unlikely soneone else has taken a ref on
1695 * the page. In this case, we simply return as the
1696 * hugetlb destructor (free_huge_page) will be called
1697 * when this other ref is dropped.
1698 */
1699 return;
1700
2f6c57d6 1701 arch_clear_hugepage_flags(&folio->page);
240d67a8 1702 enqueue_hugetlb_folio(h, folio);
ad2fa371
MS
1703}
1704
b65d4adb 1705static void __update_and_free_page(struct hstate *h, struct page *page)
6af2acb6
AL
1706{
1707 int i;
911565b8 1708 struct folio *folio = page_folio(page);
14455eab 1709 struct page *subpage;
a5516438 1710
4eb0716e 1711 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
944d9fec 1712 return;
18229df5 1713
161df60e
NH
1714 /*
1715 * If we don't know which subpages are hwpoisoned, we can't free
1716 * the hugepage, so it's leaked intentionally.
1717 */
7f325a8d 1718 if (folio_test_hugetlb_raw_hwp_unreliable(folio))
161df60e
NH
1719 return;
1720
6213834c 1721 if (hugetlb_vmemmap_restore(h, page)) {
ad2fa371
MS
1722 spin_lock_irq(&hugetlb_lock);
1723 /*
1724 * If we cannot allocate vmemmap pages, just refuse to free the
1725 * page and put the page back on the hugetlb free list and treat
1726 * as a surplus page.
1727 */
7f325a8d 1728 add_hugetlb_folio(h, folio, true);
ad2fa371
MS
1729 spin_unlock_irq(&hugetlb_lock);
1730 return;
1731 }
1732
161df60e
NH
1733 /*
1734 * Move PageHWPoison flag from head page to the raw error pages,
1735 * which makes any healthy subpages reusable.
1736 */
911565b8
SK
1737 if (unlikely(folio_test_hwpoison(folio)))
1738 hugetlb_clear_page_hwpoison(&folio->page);
161df60e 1739
14455eab 1740 for (i = 0; i < pages_per_huge_page(h); i++) {
7f325a8d 1741 subpage = folio_page(folio, i);
dbfee5ae 1742 subpage->flags &= ~(1 << PG_locked | 1 << PG_error |
32f84528 1743 1 << PG_referenced | 1 << PG_dirty |
a7407a27
LC
1744 1 << PG_active | 1 << PG_private |
1745 1 << PG_writeback);
6af2acb6 1746 }
a01f4390
MK
1747
1748 /*
1749 * Non-gigantic pages demoted from CMA allocated gigantic pages
7f325a8d 1750 * need to be given back to CMA in free_gigantic_folio.
a01f4390
MK
1751 */
1752 if (hstate_is_gigantic(h) ||
2f6c57d6 1753 hugetlb_cma_folio(folio, huge_page_order(h))) {
911565b8 1754 destroy_compound_gigantic_folio(folio, huge_page_order(h));
7f325a8d 1755 free_gigantic_folio(folio, huge_page_order(h));
944d9fec 1756 } else {
944d9fec
LC
1757 __free_pages(page, huge_page_order(h));
1758 }
6af2acb6
AL
1759}
1760
b65d4adb 1761/*
d6ef19e2 1762 * As update_and_free_hugetlb_folio() can be called under any context, so we cannot
b65d4adb
MS
1763 * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the
1764 * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate
1765 * the vmemmap pages.
1766 *
1767 * free_hpage_workfn() locklessly retrieves the linked list of pages to be
1768 * freed and frees them one-by-one. As the page->mapping pointer is going
1769 * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node
1770 * structure of a lockless linked list of huge pages to be freed.
1771 */
1772static LLIST_HEAD(hpage_freelist);
1773
1774static void free_hpage_workfn(struct work_struct *work)
1775{
1776 struct llist_node *node;
1777
1778 node = llist_del_all(&hpage_freelist);
1779
1780 while (node) {
1781 struct page *page;
1782 struct hstate *h;
1783
1784 page = container_of((struct address_space **)node,
1785 struct page, mapping);
1786 node = node->next;
1787 page->mapping = NULL;
1788 /*
1789 * The VM_BUG_ON_PAGE(!PageHuge(page), page) in page_hstate()
1790 * is going to trigger because a previous call to
cfd5082b
SK
1791 * remove_hugetlb_folio() will call folio_set_compound_dtor
1792 * (folio, NULL_COMPOUND_DTOR), so do not use page_hstate()
1793 * directly.
b65d4adb
MS
1794 */
1795 h = size_to_hstate(page_size(page));
1796
1797 __update_and_free_page(h, page);
1798
1799 cond_resched();
1800 }
1801}
1802static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1803
1804static inline void flush_free_hpage_work(struct hstate *h)
1805{
6213834c 1806 if (hugetlb_vmemmap_optimizable(h))
b65d4adb
MS
1807 flush_work(&free_hpage_work);
1808}
1809
d6ef19e2 1810static void update_and_free_hugetlb_folio(struct hstate *h, struct folio *folio,
b65d4adb
MS
1811 bool atomic)
1812{
d6ef19e2
SK
1813 if (!folio_test_hugetlb_vmemmap_optimized(folio) || !atomic) {
1814 __update_and_free_page(h, &folio->page);
b65d4adb
MS
1815 return;
1816 }
1817
1818 /*
1819 * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages.
1820 *
1821 * Only call schedule_work() if hpage_freelist is previously
1822 * empty. Otherwise, schedule_work() had been called but the workfn
1823 * hasn't retrieved the list yet.
1824 */
d6ef19e2 1825 if (llist_add((struct llist_node *)&folio->mapping, &hpage_freelist))
b65d4adb
MS
1826 schedule_work(&free_hpage_work);
1827}
1828
10c6ec49
MK
1829static void update_and_free_pages_bulk(struct hstate *h, struct list_head *list)
1830{
1831 struct page *page, *t_page;
d6ef19e2 1832 struct folio *folio;
10c6ec49
MK
1833
1834 list_for_each_entry_safe(page, t_page, list, lru) {
d6ef19e2
SK
1835 folio = page_folio(page);
1836 update_and_free_hugetlb_folio(h, folio, false);
10c6ec49
MK
1837 cond_resched();
1838 }
1839}
1840
e5ff2159
AK
1841struct hstate *size_to_hstate(unsigned long size)
1842{
1843 struct hstate *h;
1844
1845 for_each_hstate(h) {
1846 if (huge_page_size(h) == size)
1847 return h;
1848 }
1849 return NULL;
1850}
1851
db71ef79 1852void free_huge_page(struct page *page)
27a85ef1 1853{
a5516438
AK
1854 /*
1855 * Can't pass hstate in here because it is called from the
1856 * compound page destructor.
1857 */
0356c4b9
SK
1858 struct folio *folio = page_folio(page);
1859 struct hstate *h = folio_hstate(folio);
1860 int nid = folio_nid(folio);
1861 struct hugepage_subpool *spool = hugetlb_folio_subpool(folio);
07443a85 1862 bool restore_reserve;
db71ef79 1863 unsigned long flags;
27a85ef1 1864
0356c4b9
SK
1865 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1866 VM_BUG_ON_FOLIO(folio_mapcount(folio), folio);
8ace22bc 1867
0356c4b9
SK
1868 hugetlb_set_folio_subpool(folio, NULL);
1869 if (folio_test_anon(folio))
1870 __ClearPageAnonExclusive(&folio->page);
1871 folio->mapping = NULL;
1872 restore_reserve = folio_test_hugetlb_restore_reserve(folio);
1873 folio_clear_hugetlb_restore_reserve(folio);
27a85ef1 1874
1c5ecae3 1875 /*
d6995da3 1876 * If HPageRestoreReserve was set on page, page allocation consumed a
0919e1b6
MK
1877 * reservation. If the page was associated with a subpool, there
1878 * would have been a page reserved in the subpool before allocation
1879 * via hugepage_subpool_get_pages(). Since we are 'restoring' the
6c26d310 1880 * reservation, do not call hugepage_subpool_put_pages() as this will
0919e1b6 1881 * remove the reserved page from the subpool.
1c5ecae3 1882 */
0919e1b6
MK
1883 if (!restore_reserve) {
1884 /*
1885 * A return code of zero implies that the subpool will be
1886 * under its minimum size if the reservation is not restored
1887 * after page is free. Therefore, force restore_reserve
1888 * operation.
1889 */
1890 if (hugepage_subpool_put_pages(spool, 1) == 0)
1891 restore_reserve = true;
1892 }
1c5ecae3 1893
db71ef79 1894 spin_lock_irqsave(&hugetlb_lock, flags);
0356c4b9 1895 folio_clear_hugetlb_migratable(folio);
d4ab0316
SK
1896 hugetlb_cgroup_uncharge_folio(hstate_index(h),
1897 pages_per_huge_page(h), folio);
1898 hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
1899 pages_per_huge_page(h), folio);
07443a85
JK
1900 if (restore_reserve)
1901 h->resv_huge_pages++;
1902
0356c4b9 1903 if (folio_test_hugetlb_temporary(folio)) {
cfd5082b 1904 remove_hugetlb_folio(h, folio, false);
db71ef79 1905 spin_unlock_irqrestore(&hugetlb_lock, flags);
d6ef19e2 1906 update_and_free_hugetlb_folio(h, folio, true);
ab5ac90a 1907 } else if (h->surplus_huge_pages_node[nid]) {
0edaecfa 1908 /* remove the page from active list */
cfd5082b 1909 remove_hugetlb_folio(h, folio, true);
db71ef79 1910 spin_unlock_irqrestore(&hugetlb_lock, flags);
d6ef19e2 1911 update_and_free_hugetlb_folio(h, folio, true);
7893d1d5 1912 } else {
5d3a551c 1913 arch_clear_hugepage_flags(page);
240d67a8 1914 enqueue_hugetlb_folio(h, folio);
db71ef79 1915 spin_unlock_irqrestore(&hugetlb_lock, flags);
c77c0a8a 1916 }
c77c0a8a
WL
1917}
1918
d3d99fcc
OS
1919/*
1920 * Must be called with the hugetlb lock held
1921 */
1922static void __prep_account_new_huge_page(struct hstate *h, int nid)
1923{
1924 lockdep_assert_held(&hugetlb_lock);
1925 h->nr_huge_pages++;
1926 h->nr_huge_pages_node[nid]++;
1927}
1928
de656ed3 1929static void __prep_new_hugetlb_folio(struct hstate *h, struct folio *folio)
b7ba30c6 1930{
de656ed3
SK
1931 hugetlb_vmemmap_optimize(h, &folio->page);
1932 INIT_LIST_HEAD(&folio->lru);
9fd33058 1933 folio_set_compound_dtor(folio, HUGETLB_PAGE_DTOR);
de656ed3
SK
1934 hugetlb_set_folio_subpool(folio, NULL);
1935 set_hugetlb_cgroup(folio, NULL);
1936 set_hugetlb_cgroup_rsvd(folio, NULL);
d3d99fcc
OS
1937}
1938
d1c60955 1939static void prep_new_hugetlb_folio(struct hstate *h, struct folio *folio, int nid)
d3d99fcc 1940{
de656ed3 1941 __prep_new_hugetlb_folio(h, folio);
db71ef79 1942 spin_lock_irq(&hugetlb_lock);
d3d99fcc 1943 __prep_account_new_huge_page(h, nid);
db71ef79 1944 spin_unlock_irq(&hugetlb_lock);
b7ba30c6
AK
1945}
1946
d1c60955
SK
1947static bool __prep_compound_gigantic_folio(struct folio *folio,
1948 unsigned int order, bool demote)
20a0307c 1949{
7118fc29 1950 int i, j;
20a0307c 1951 int nr_pages = 1 << order;
14455eab 1952 struct page *p;
20a0307c 1953
d1c60955
SK
1954 __folio_clear_reserved(folio);
1955 __folio_set_head(folio);
c45bc55a
SK
1956 /* we rely on prep_new_hugetlb_folio to set the destructor */
1957 folio_set_compound_order(folio, order);
2b21624f 1958 for (i = 0; i < nr_pages; i++) {
d1c60955 1959 p = folio_page(folio, i);
14455eab 1960
ef5a22be
AA
1961 /*
1962 * For gigantic hugepages allocated through bootmem at
1963 * boot, it's safer to be consistent with the not-gigantic
1964 * hugepages and clear the PG_reserved bit from all tail pages
7c8de358 1965 * too. Otherwise drivers using get_user_pages() to access tail
ef5a22be
AA
1966 * pages may get the reference counting wrong if they see
1967 * PG_reserved set on a tail page (despite the head page not
1968 * having PG_reserved set). Enforcing this consistency between
1969 * head and tail pages allows drivers to optimize away a check
1970 * on the head page when they need know if put_page() is needed
1971 * after get_user_pages().
1972 */
7fb0728a
MK
1973 if (i != 0) /* head page cleared above */
1974 __ClearPageReserved(p);
7118fc29
MK
1975 /*
1976 * Subtle and very unlikely
1977 *
1978 * Gigantic 'page allocators' such as memblock or cma will
1979 * return a set of pages with each page ref counted. We need
1980 * to turn this set of pages into a compound page with tail
1981 * page ref counts set to zero. Code such as speculative page
1982 * cache adding could take a ref on a 'to be' tail page.
1983 * We need to respect any increased ref count, and only set
1984 * the ref count to zero if count is currently 1. If count
416d85ed
MK
1985 * is not 1, we return an error. An error return indicates
1986 * the set of pages can not be converted to a gigantic page.
1987 * The caller who allocated the pages should then discard the
1988 * pages using the appropriate free interface.
34d9e35b
MK
1989 *
1990 * In the case of demote, the ref count will be zero.
7118fc29 1991 */
34d9e35b
MK
1992 if (!demote) {
1993 if (!page_ref_freeze(p, 1)) {
1994 pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n");
1995 goto out_error;
1996 }
1997 } else {
1998 VM_BUG_ON_PAGE(page_count(p), p);
7118fc29 1999 }
2b21624f 2000 if (i != 0)
d1c60955 2001 set_compound_head(p, &folio->page);
20a0307c 2002 }
d1c60955
SK
2003 atomic_set(folio_mapcount_ptr(folio), -1);
2004 atomic_set(folio_subpages_mapcount_ptr(folio), 0);
2005 atomic_set(folio_pincount_ptr(folio), 0);
7118fc29
MK
2006 return true;
2007
2008out_error:
2b21624f
MK
2009 /* undo page modifications made above */
2010 for (j = 0; j < i; j++) {
d1c60955 2011 p = folio_page(folio, j);
2b21624f
MK
2012 if (j != 0)
2013 clear_compound_head(p);
7118fc29
MK
2014 set_page_refcounted(p);
2015 }
2016 /* need to clear PG_reserved on remaining tail pages */
14455eab 2017 for (; j < nr_pages; j++) {
d1c60955 2018 p = folio_page(folio, j);
7118fc29 2019 __ClearPageReserved(p);
14455eab 2020 }
d1c60955
SK
2021 folio_set_compound_order(folio, 0);
2022 __folio_clear_head(folio);
7118fc29 2023 return false;
20a0307c
WF
2024}
2025
d1c60955
SK
2026static bool prep_compound_gigantic_folio(struct folio *folio,
2027 unsigned int order)
34d9e35b 2028{
d1c60955 2029 return __prep_compound_gigantic_folio(folio, order, false);
34d9e35b
MK
2030}
2031
d1c60955 2032static bool prep_compound_gigantic_folio_for_demote(struct folio *folio,
8531fc6f
MK
2033 unsigned int order)
2034{
d1c60955 2035 return __prep_compound_gigantic_folio(folio, order, true);
8531fc6f
MK
2036}
2037
7795912c
AM
2038/*
2039 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
2040 * transparent huge pages. See the PageTransHuge() documentation for more
2041 * details.
2042 */
20a0307c
WF
2043int PageHuge(struct page *page)
2044{
20a0307c
WF
2045 if (!PageCompound(page))
2046 return 0;
2047
2048 page = compound_head(page);
f1e61557 2049 return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
20a0307c 2050}
43131e14
NH
2051EXPORT_SYMBOL_GPL(PageHuge);
2052
27c73ae7
AA
2053/*
2054 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
2055 * normal or transparent huge pages.
2056 */
2057int PageHeadHuge(struct page *page_head)
2058{
27c73ae7
AA
2059 if (!PageHead(page_head))
2060 return 0;
2061
d4af73e3 2062 return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR;
27c73ae7 2063}
4e936ecc 2064EXPORT_SYMBOL_GPL(PageHeadHuge);
27c73ae7 2065
c0d0381a
MK
2066/*
2067 * Find and lock address space (mapping) in write mode.
2068 *
336bf30e
MK
2069 * Upon entry, the page is locked which means that page_mapping() is
2070 * stable. Due to locking order, we can only trylock_write. If we can
2071 * not get the lock, simply return NULL to caller.
c0d0381a
MK
2072 */
2073struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
2074{
336bf30e 2075 struct address_space *mapping = page_mapping(hpage);
c0d0381a 2076
c0d0381a
MK
2077 if (!mapping)
2078 return mapping;
2079
c0d0381a
MK
2080 if (i_mmap_trylock_write(mapping))
2081 return mapping;
2082
336bf30e 2083 return NULL;
c0d0381a
MK
2084}
2085
fe19bd3d 2086pgoff_t hugetlb_basepage_index(struct page *page)
13d60f4b
ZY
2087{
2088 struct page *page_head = compound_head(page);
2089 pgoff_t index = page_index(page_head);
2090 unsigned long compound_idx;
2091
13d60f4b
ZY
2092 if (compound_order(page_head) >= MAX_ORDER)
2093 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
2094 else
2095 compound_idx = page - page_head;
2096
2097 return (index << compound_order(page_head)) + compound_idx;
2098}
2099
19fc1a7e 2100static struct folio *alloc_buddy_hugetlb_folio(struct hstate *h,
f60858f9
MK
2101 gfp_t gfp_mask, int nid, nodemask_t *nmask,
2102 nodemask_t *node_alloc_noretry)
1da177e4 2103{
af0fb9df 2104 int order = huge_page_order(h);
1da177e4 2105 struct page *page;
f60858f9 2106 bool alloc_try_hard = true;
2b21624f 2107 bool retry = true;
f96efd58 2108
f60858f9
MK
2109 /*
2110 * By default we always try hard to allocate the page with
2111 * __GFP_RETRY_MAYFAIL flag. However, if we are allocating pages in
2112 * a loop (to adjust global huge page counts) and previous allocation
2113 * failed, do not continue to try hard on the same node. Use the
2114 * node_alloc_noretry bitmap to manage this state information.
2115 */
2116 if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
2117 alloc_try_hard = false;
2118 gfp_mask |= __GFP_COMP|__GFP_NOWARN;
2119 if (alloc_try_hard)
2120 gfp_mask |= __GFP_RETRY_MAYFAIL;
af0fb9df
MH
2121 if (nid == NUMA_NO_NODE)
2122 nid = numa_mem_id();
2b21624f 2123retry:
84172f4b 2124 page = __alloc_pages(gfp_mask, order, nid, nmask);
2b21624f
MK
2125
2126 /* Freeze head page */
2127 if (page && !page_ref_freeze(page, 1)) {
2128 __free_pages(page, order);
2129 if (retry) { /* retry once */
2130 retry = false;
2131 goto retry;
2132 }
2133 /* WOW! twice in a row. */
2134 pr_warn("HugeTLB head page unexpected inflated ref count\n");
2135 page = NULL;
2136 }
2137
f60858f9
MK
2138 /*
2139 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
2140 * indicates an overall state change. Clear bit so that we resume
2141 * normal 'try hard' allocations.
2142 */
2143 if (node_alloc_noretry && page && !alloc_try_hard)
2144 node_clear(nid, *node_alloc_noretry);
2145
2146 /*
2147 * If we tried hard to get a page but failed, set bit so that
2148 * subsequent attempts will not try as hard until there is an
2149 * overall state change.
2150 */
2151 if (node_alloc_noretry && !page && alloc_try_hard)
2152 node_set(nid, *node_alloc_noretry);
2153
19fc1a7e
SK
2154 if (!page) {
2155 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
2156 return NULL;
2157 }
2158
2159 __count_vm_event(HTLB_BUDDY_PGALLOC);
2160 return page_folio(page);
63b4613c
NA
2161}
2162
0c397dae
MH
2163/*
2164 * Common helper to allocate a fresh hugetlb page. All specific allocators
2165 * should use this function to get new hugetlb pages
2b21624f
MK
2166 *
2167 * Note that returned page is 'frozen': ref count of head page and all tail
2168 * pages is zero.
0c397dae 2169 */
19fc1a7e 2170static struct folio *alloc_fresh_hugetlb_folio(struct hstate *h,
f60858f9
MK
2171 gfp_t gfp_mask, int nid, nodemask_t *nmask,
2172 nodemask_t *node_alloc_noretry)
0c397dae 2173{
7f325a8d 2174 struct folio *folio;
7118fc29 2175 bool retry = false;
0c397dae 2176
7118fc29 2177retry:
0c397dae 2178 if (hstate_is_gigantic(h))
19fc1a7e 2179 folio = alloc_gigantic_folio(h, gfp_mask, nid, nmask);
0c397dae 2180 else
19fc1a7e 2181 folio = alloc_buddy_hugetlb_folio(h, gfp_mask,
f60858f9 2182 nid, nmask, node_alloc_noretry);
19fc1a7e 2183 if (!folio)
0c397dae 2184 return NULL;
7118fc29 2185 if (hstate_is_gigantic(h)) {
d1c60955 2186 if (!prep_compound_gigantic_folio(folio, huge_page_order(h))) {
7118fc29
MK
2187 /*
2188 * Rare failure to convert pages to compound page.
2189 * Free pages and try again - ONCE!
2190 */
7f325a8d 2191 free_gigantic_folio(folio, huge_page_order(h));
7118fc29
MK
2192 if (!retry) {
2193 retry = true;
2194 goto retry;
2195 }
7118fc29
MK
2196 return NULL;
2197 }
2198 }
d1c60955 2199 prep_new_hugetlb_folio(h, folio, folio_nid(folio));
0c397dae 2200
19fc1a7e 2201 return folio;
0c397dae
MH
2202}
2203
af0fb9df
MH
2204/*
2205 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
2206 * manner.
2207 */
f60858f9
MK
2208static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
2209 nodemask_t *node_alloc_noretry)
b2261026 2210{
19fc1a7e 2211 struct folio *folio;
b2261026 2212 int nr_nodes, node;
af0fb9df 2213 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
b2261026
JK
2214
2215 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
19fc1a7e
SK
2216 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, node,
2217 nodes_allowed, node_alloc_noretry);
2218 if (folio) {
2219 free_huge_page(&folio->page); /* free it into the hugepage allocator */
2220 return 1;
2221 }
b2261026
JK
2222 }
2223
19fc1a7e 2224 return 0;
b2261026
JK
2225}
2226
e8c5c824 2227/*
10c6ec49
MK
2228 * Remove huge page from pool from next node to free. Attempt to keep
2229 * persistent huge pages more or less balanced over allowed nodes.
2230 * This routine only 'removes' the hugetlb page. The caller must make
2231 * an additional call to free the page to low level allocators.
e8c5c824
LS
2232 * Called with hugetlb_lock locked.
2233 */
10c6ec49
MK
2234static struct page *remove_pool_huge_page(struct hstate *h,
2235 nodemask_t *nodes_allowed,
2236 bool acct_surplus)
e8c5c824 2237{
b2261026 2238 int nr_nodes, node;
10c6ec49 2239 struct page *page = NULL;
cfd5082b 2240 struct folio *folio;
e8c5c824 2241
9487ca60 2242 lockdep_assert_held(&hugetlb_lock);
b2261026 2243 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
685f3457
LS
2244 /*
2245 * If we're returning unused surplus pages, only examine
2246 * nodes with surplus pages.
2247 */
b2261026
JK
2248 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
2249 !list_empty(&h->hugepage_freelists[node])) {
10c6ec49 2250 page = list_entry(h->hugepage_freelists[node].next,
e8c5c824 2251 struct page, lru);
cfd5082b
SK
2252 folio = page_folio(page);
2253 remove_hugetlb_folio(h, folio, acct_surplus);
9a76db09 2254 break;
e8c5c824 2255 }
b2261026 2256 }
e8c5c824 2257
10c6ec49 2258 return page;
e8c5c824
LS
2259}
2260
c8721bbb
NH
2261/*
2262 * Dissolve a given free hugepage into free buddy pages. This function does
faf53def
NH
2263 * nothing for in-use hugepages and non-hugepages.
2264 * This function returns values like below:
2265 *
ad2fa371
MS
2266 * -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages
2267 * when the system is under memory pressure and the feature of
2268 * freeing unused vmemmap pages associated with each hugetlb page
2269 * is enabled.
2270 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
2271 * (allocated or reserved.)
2272 * 0: successfully dissolved free hugepages or the page is not a
2273 * hugepage (considered as already dissolved)
c8721bbb 2274 */
c3114a84 2275int dissolve_free_huge_page(struct page *page)
c8721bbb 2276{
6bc9b564 2277 int rc = -EBUSY;
1a7cdab5 2278 struct folio *folio = page_folio(page);
082d5b6b 2279
7ffddd49 2280retry:
faf53def 2281 /* Not to disrupt normal path by vainly holding hugetlb_lock */
1a7cdab5 2282 if (!folio_test_hugetlb(folio))
faf53def
NH
2283 return 0;
2284
db71ef79 2285 spin_lock_irq(&hugetlb_lock);
1a7cdab5 2286 if (!folio_test_hugetlb(folio)) {
faf53def
NH
2287 rc = 0;
2288 goto out;
2289 }
2290
1a7cdab5
SK
2291 if (!folio_ref_count(folio)) {
2292 struct hstate *h = folio_hstate(folio);
8346d69d 2293 if (!available_huge_pages(h))
082d5b6b 2294 goto out;
7ffddd49
MS
2295
2296 /*
2297 * We should make sure that the page is already on the free list
2298 * when it is dissolved.
2299 */
1a7cdab5 2300 if (unlikely(!folio_test_hugetlb_freed(folio))) {
db71ef79 2301 spin_unlock_irq(&hugetlb_lock);
7ffddd49
MS
2302 cond_resched();
2303
2304 /*
2305 * Theoretically, we should return -EBUSY when we
2306 * encounter this race. In fact, we have a chance
2307 * to successfully dissolve the page if we do a
2308 * retry. Because the race window is quite small.
2309 * If we seize this opportunity, it is an optimization
2310 * for increasing the success rate of dissolving page.
2311 */
2312 goto retry;
2313 }
2314
cfd5082b 2315 remove_hugetlb_folio(h, folio, false);
c1470b33 2316 h->max_huge_pages--;
db71ef79 2317 spin_unlock_irq(&hugetlb_lock);
ad2fa371
MS
2318
2319 /*
d6ef19e2
SK
2320 * Normally update_and_free_hugtlb_folio will allocate required vmemmmap
2321 * before freeing the page. update_and_free_hugtlb_folio will fail to
ad2fa371
MS
2322 * free the page if it can not allocate required vmemmap. We
2323 * need to adjust max_huge_pages if the page is not freed.
2324 * Attempt to allocate vmemmmap here so that we can take
2325 * appropriate action on failure.
2326 */
1a7cdab5 2327 rc = hugetlb_vmemmap_restore(h, &folio->page);
ad2fa371 2328 if (!rc) {
d6ef19e2 2329 update_and_free_hugetlb_folio(h, folio, false);
ad2fa371
MS
2330 } else {
2331 spin_lock_irq(&hugetlb_lock);
2f6c57d6 2332 add_hugetlb_folio(h, folio, false);
ad2fa371
MS
2333 h->max_huge_pages++;
2334 spin_unlock_irq(&hugetlb_lock);
2335 }
2336
2337 return rc;
c8721bbb 2338 }
082d5b6b 2339out:
db71ef79 2340 spin_unlock_irq(&hugetlb_lock);
082d5b6b 2341 return rc;
c8721bbb
NH
2342}
2343
2344/*
2345 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
2346 * make specified memory blocks removable from the system.
2247bb33
GS
2347 * Note that this will dissolve a free gigantic hugepage completely, if any
2348 * part of it lies within the given range.
082d5b6b
GS
2349 * Also note that if dissolve_free_huge_page() returns with an error, all
2350 * free hugepages that were dissolved before that error are lost.
c8721bbb 2351 */
082d5b6b 2352int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
c8721bbb 2353{
c8721bbb 2354 unsigned long pfn;
eb03aa00 2355 struct page *page;
082d5b6b 2356 int rc = 0;
dc2628f3
MS
2357 unsigned int order;
2358 struct hstate *h;
c8721bbb 2359
d0177639 2360 if (!hugepages_supported())
082d5b6b 2361 return rc;
d0177639 2362
dc2628f3
MS
2363 order = huge_page_order(&default_hstate);
2364 for_each_hstate(h)
2365 order = min(order, huge_page_order(h));
2366
2367 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) {
eb03aa00 2368 page = pfn_to_page(pfn);
faf53def
NH
2369 rc = dissolve_free_huge_page(page);
2370 if (rc)
2371 break;
eb03aa00 2372 }
082d5b6b
GS
2373
2374 return rc;
c8721bbb
NH
2375}
2376
ab5ac90a
MH
2377/*
2378 * Allocates a fresh surplus page from the page allocator.
2379 */
0c397dae 2380static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
2b21624f 2381 int nid, nodemask_t *nmask)
7893d1d5 2382{
19fc1a7e 2383 struct folio *folio = NULL;
7893d1d5 2384
bae7f4ae 2385 if (hstate_is_gigantic(h))
aa888a74
AK
2386 return NULL;
2387
db71ef79 2388 spin_lock_irq(&hugetlb_lock);
9980d744
MH
2389 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
2390 goto out_unlock;
db71ef79 2391 spin_unlock_irq(&hugetlb_lock);
d1c3fb1f 2392
19fc1a7e
SK
2393 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2394 if (!folio)
0c397dae 2395 return NULL;
d1c3fb1f 2396
db71ef79 2397 spin_lock_irq(&hugetlb_lock);
9980d744
MH
2398 /*
2399 * We could have raced with the pool size change.
2400 * Double check that and simply deallocate the new page
2401 * if we would end up overcommiting the surpluses. Abuse
2402 * temporary page to workaround the nasty free_huge_page
2403 * codeflow
2404 */
2405 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
19fc1a7e 2406 folio_set_hugetlb_temporary(folio);
db71ef79 2407 spin_unlock_irq(&hugetlb_lock);
19fc1a7e 2408 free_huge_page(&folio->page);
2bf753e6 2409 return NULL;
7893d1d5 2410 }
9980d744 2411
b65a4eda 2412 h->surplus_huge_pages++;
19fc1a7e 2413 h->surplus_huge_pages_node[folio_nid(folio)]++;
b65a4eda 2414
9980d744 2415out_unlock:
db71ef79 2416 spin_unlock_irq(&hugetlb_lock);
7893d1d5 2417
19fc1a7e 2418 return &folio->page;
7893d1d5
AL
2419}
2420
bbe88753 2421static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
9a4e9f3b 2422 int nid, nodemask_t *nmask)
ab5ac90a 2423{
19fc1a7e 2424 struct folio *folio;
ab5ac90a
MH
2425
2426 if (hstate_is_gigantic(h))
2427 return NULL;
2428
19fc1a7e
SK
2429 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2430 if (!folio)
ab5ac90a
MH
2431 return NULL;
2432
2b21624f 2433 /* fresh huge pages are frozen */
19fc1a7e 2434 folio_ref_unfreeze(folio, 1);
ab5ac90a
MH
2435 /*
2436 * We do not account these pages as surplus because they are only
2437 * temporary and will be released properly on the last reference
2438 */
19fc1a7e 2439 folio_set_hugetlb_temporary(folio);
ab5ac90a 2440
19fc1a7e 2441 return &folio->page;
ab5ac90a
MH
2442}
2443
099730d6
DH
2444/*
2445 * Use the VMA's mpolicy to allocate a huge page from the buddy.
2446 */
e0ec90ee 2447static
0c397dae 2448struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
099730d6
DH
2449 struct vm_area_struct *vma, unsigned long addr)
2450{
cfcaa66f 2451 struct page *page = NULL;
aaf14e40
MH
2452 struct mempolicy *mpol;
2453 gfp_t gfp_mask = htlb_alloc_mask(h);
2454 int nid;
2455 nodemask_t *nodemask;
2456
2457 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
cfcaa66f
BW
2458 if (mpol_is_preferred_many(mpol)) {
2459 gfp_t gfp = gfp_mask | __GFP_NOWARN;
2460
2461 gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2b21624f 2462 page = alloc_surplus_huge_page(h, gfp, nid, nodemask);
aaf14e40 2463
cfcaa66f
BW
2464 /* Fallback to all nodes if page==NULL */
2465 nodemask = NULL;
2466 }
2467
2468 if (!page)
2b21624f 2469 page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
cfcaa66f 2470 mpol_cond_put(mpol);
aaf14e40 2471 return page;
099730d6
DH
2472}
2473
ab5ac90a 2474/* page migration callback function */
3e59fcb0 2475struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
d92bbc27 2476 nodemask_t *nmask, gfp_t gfp_mask)
4db9b2ef 2477{
db71ef79 2478 spin_lock_irq(&hugetlb_lock);
8346d69d 2479 if (available_huge_pages(h)) {
3e59fcb0
MH
2480 struct page *page;
2481
2482 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
2483 if (page) {
db71ef79 2484 spin_unlock_irq(&hugetlb_lock);
3e59fcb0 2485 return page;
4db9b2ef
MH
2486 }
2487 }
db71ef79 2488 spin_unlock_irq(&hugetlb_lock);
4db9b2ef 2489
0c397dae 2490 return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
4db9b2ef
MH
2491}
2492
ebd63723 2493/* mempolicy aware migration callback */
389c8178
MH
2494struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
2495 unsigned long address)
ebd63723
MH
2496{
2497 struct mempolicy *mpol;
2498 nodemask_t *nodemask;
2499 struct page *page;
ebd63723
MH
2500 gfp_t gfp_mask;
2501 int node;
2502
ebd63723
MH
2503 gfp_mask = htlb_alloc_mask(h);
2504 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
d92bbc27 2505 page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask);
ebd63723
MH
2506 mpol_cond_put(mpol);
2507
2508 return page;
2509}
2510
e4e574b7 2511/*
25985edc 2512 * Increase the hugetlb pool such that it can accommodate a reservation
e4e574b7
AL
2513 * of size 'delta'.
2514 */
0a4f3d1b 2515static int gather_surplus_pages(struct hstate *h, long delta)
1b2a1e7b 2516 __must_hold(&hugetlb_lock)
e4e574b7 2517{
34665341 2518 LIST_HEAD(surplus_list);
e4e574b7 2519 struct page *page, *tmp;
0a4f3d1b
LX
2520 int ret;
2521 long i;
2522 long needed, allocated;
28073b02 2523 bool alloc_ok = true;
e4e574b7 2524
9487ca60 2525 lockdep_assert_held(&hugetlb_lock);
a5516438 2526 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
ac09b3a1 2527 if (needed <= 0) {
a5516438 2528 h->resv_huge_pages += delta;
e4e574b7 2529 return 0;
ac09b3a1 2530 }
e4e574b7
AL
2531
2532 allocated = 0;
e4e574b7
AL
2533
2534 ret = -ENOMEM;
2535retry:
db71ef79 2536 spin_unlock_irq(&hugetlb_lock);
e4e574b7 2537 for (i = 0; i < needed; i++) {
0c397dae 2538 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
2b21624f 2539 NUMA_NO_NODE, NULL);
28073b02
HD
2540 if (!page) {
2541 alloc_ok = false;
2542 break;
2543 }
e4e574b7 2544 list_add(&page->lru, &surplus_list);
69ed779a 2545 cond_resched();
e4e574b7 2546 }
28073b02 2547 allocated += i;
e4e574b7
AL
2548
2549 /*
2550 * After retaking hugetlb_lock, we need to recalculate 'needed'
2551 * because either resv_huge_pages or free_huge_pages may have changed.
2552 */
db71ef79 2553 spin_lock_irq(&hugetlb_lock);
a5516438
AK
2554 needed = (h->resv_huge_pages + delta) -
2555 (h->free_huge_pages + allocated);
28073b02
HD
2556 if (needed > 0) {
2557 if (alloc_ok)
2558 goto retry;
2559 /*
2560 * We were not able to allocate enough pages to
2561 * satisfy the entire reservation so we free what
2562 * we've allocated so far.
2563 */
2564 goto free;
2565 }
e4e574b7
AL
2566 /*
2567 * The surplus_list now contains _at_least_ the number of extra pages
25985edc 2568 * needed to accommodate the reservation. Add the appropriate number
e4e574b7 2569 * of pages to the hugetlb pool and free the extras back to the buddy
ac09b3a1
AL
2570 * allocator. Commit the entire reservation here to prevent another
2571 * process from stealing the pages as they are added to the pool but
2572 * before they are reserved.
e4e574b7
AL
2573 */
2574 needed += allocated;
a5516438 2575 h->resv_huge_pages += delta;
e4e574b7 2576 ret = 0;
a9869b83 2577
19fc3f0a 2578 /* Free the needed pages to the hugetlb pool */
e4e574b7 2579 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
19fc3f0a
AL
2580 if ((--needed) < 0)
2581 break;
b65a4eda 2582 /* Add the page to the hugetlb allocator */
240d67a8 2583 enqueue_hugetlb_folio(h, page_folio(page));
19fc3f0a 2584 }
28073b02 2585free:
db71ef79 2586 spin_unlock_irq(&hugetlb_lock);
19fc3f0a 2587
b65a4eda
MK
2588 /*
2589 * Free unnecessary surplus pages to the buddy allocator.
2590 * Pages have no ref count, call free_huge_page directly.
2591 */
c0d934ba 2592 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
b65a4eda 2593 free_huge_page(page);
db71ef79 2594 spin_lock_irq(&hugetlb_lock);
e4e574b7
AL
2595
2596 return ret;
2597}
2598
2599/*
e5bbc8a6
MK
2600 * This routine has two main purposes:
2601 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2602 * in unused_resv_pages. This corresponds to the prior adjustments made
2603 * to the associated reservation map.
2604 * 2) Free any unused surplus pages that may have been allocated to satisfy
2605 * the reservation. As many as unused_resv_pages may be freed.
e4e574b7 2606 */
a5516438
AK
2607static void return_unused_surplus_pages(struct hstate *h,
2608 unsigned long unused_resv_pages)
e4e574b7 2609{
e4e574b7 2610 unsigned long nr_pages;
10c6ec49
MK
2611 struct page *page;
2612 LIST_HEAD(page_list);
2613
9487ca60 2614 lockdep_assert_held(&hugetlb_lock);
10c6ec49
MK
2615 /* Uncommit the reservation */
2616 h->resv_huge_pages -= unused_resv_pages;
e4e574b7 2617
c0531714 2618 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
e5bbc8a6 2619 goto out;
aa888a74 2620
e5bbc8a6
MK
2621 /*
2622 * Part (or even all) of the reservation could have been backed
2623 * by pre-allocated pages. Only free surplus pages.
2624 */
a5516438 2625 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
e4e574b7 2626
685f3457
LS
2627 /*
2628 * We want to release as many surplus pages as possible, spread
9b5e5d0f
LS
2629 * evenly across all nodes with memory. Iterate across these nodes
2630 * until we can no longer free unreserved surplus pages. This occurs
2631 * when the nodes with surplus pages have no free pages.
10c6ec49 2632 * remove_pool_huge_page() will balance the freed pages across the
9b5e5d0f 2633 * on-line nodes with memory and will handle the hstate accounting.
685f3457
LS
2634 */
2635 while (nr_pages--) {
10c6ec49
MK
2636 page = remove_pool_huge_page(h, &node_states[N_MEMORY], 1);
2637 if (!page)
e5bbc8a6 2638 goto out;
10c6ec49
MK
2639
2640 list_add(&page->lru, &page_list);
e4e574b7 2641 }
e5bbc8a6
MK
2642
2643out:
db71ef79 2644 spin_unlock_irq(&hugetlb_lock);
10c6ec49 2645 update_and_free_pages_bulk(h, &page_list);
db71ef79 2646 spin_lock_irq(&hugetlb_lock);
e4e574b7
AL
2647}
2648
5e911373 2649
c37f9fb1 2650/*
feba16e2 2651 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
5e911373 2652 * are used by the huge page allocation routines to manage reservations.
cf3ad20b
MK
2653 *
2654 * vma_needs_reservation is called to determine if the huge page at addr
2655 * within the vma has an associated reservation. If a reservation is
2656 * needed, the value 1 is returned. The caller is then responsible for
2657 * managing the global reservation and subpool usage counts. After
2658 * the huge page has been allocated, vma_commit_reservation is called
feba16e2
MK
2659 * to add the page to the reservation map. If the page allocation fails,
2660 * the reservation must be ended instead of committed. vma_end_reservation
2661 * is called in such cases.
cf3ad20b
MK
2662 *
2663 * In the normal case, vma_commit_reservation returns the same value
2664 * as the preceding vma_needs_reservation call. The only time this
2665 * is not the case is if a reserve map was changed between calls. It
2666 * is the responsibility of the caller to notice the difference and
2667 * take appropriate action.
96b96a96
MK
2668 *
2669 * vma_add_reservation is used in error paths where a reservation must
2670 * be restored when a newly allocated huge page must be freed. It is
2671 * to be called after calling vma_needs_reservation to determine if a
2672 * reservation exists.
846be085
MK
2673 *
2674 * vma_del_reservation is used in error paths where an entry in the reserve
2675 * map was created during huge page allocation and must be removed. It is to
2676 * be called after calling vma_needs_reservation to determine if a reservation
2677 * exists.
c37f9fb1 2678 */
5e911373
MK
2679enum vma_resv_mode {
2680 VMA_NEEDS_RESV,
2681 VMA_COMMIT_RESV,
feba16e2 2682 VMA_END_RESV,
96b96a96 2683 VMA_ADD_RESV,
846be085 2684 VMA_DEL_RESV,
5e911373 2685};
cf3ad20b
MK
2686static long __vma_reservation_common(struct hstate *h,
2687 struct vm_area_struct *vma, unsigned long addr,
5e911373 2688 enum vma_resv_mode mode)
c37f9fb1 2689{
4e35f483
JK
2690 struct resv_map *resv;
2691 pgoff_t idx;
cf3ad20b 2692 long ret;
0db9d74e 2693 long dummy_out_regions_needed;
c37f9fb1 2694
4e35f483
JK
2695 resv = vma_resv_map(vma);
2696 if (!resv)
84afd99b 2697 return 1;
c37f9fb1 2698
4e35f483 2699 idx = vma_hugecache_offset(h, vma, addr);
5e911373
MK
2700 switch (mode) {
2701 case VMA_NEEDS_RESV:
0db9d74e
MA
2702 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2703 /* We assume that vma_reservation_* routines always operate on
2704 * 1 page, and that adding to resv map a 1 page entry can only
2705 * ever require 1 region.
2706 */
2707 VM_BUG_ON(dummy_out_regions_needed != 1);
5e911373
MK
2708 break;
2709 case VMA_COMMIT_RESV:
075a61d0 2710 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
0db9d74e
MA
2711 /* region_add calls of range 1 should never fail. */
2712 VM_BUG_ON(ret < 0);
5e911373 2713 break;
feba16e2 2714 case VMA_END_RESV:
0db9d74e 2715 region_abort(resv, idx, idx + 1, 1);
5e911373
MK
2716 ret = 0;
2717 break;
96b96a96 2718 case VMA_ADD_RESV:
0db9d74e 2719 if (vma->vm_flags & VM_MAYSHARE) {
075a61d0 2720 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
0db9d74e
MA
2721 /* region_add calls of range 1 should never fail. */
2722 VM_BUG_ON(ret < 0);
2723 } else {
2724 region_abort(resv, idx, idx + 1, 1);
96b96a96
MK
2725 ret = region_del(resv, idx, idx + 1);
2726 }
2727 break;
846be085
MK
2728 case VMA_DEL_RESV:
2729 if (vma->vm_flags & VM_MAYSHARE) {
2730 region_abort(resv, idx, idx + 1, 1);
2731 ret = region_del(resv, idx, idx + 1);
2732 } else {
2733 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2734 /* region_add calls of range 1 should never fail. */
2735 VM_BUG_ON(ret < 0);
2736 }
2737 break;
5e911373
MK
2738 default:
2739 BUG();
2740 }
84afd99b 2741
846be085 2742 if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV)
cf3ad20b 2743 return ret;
bf3d12b9
ML
2744 /*
2745 * We know private mapping must have HPAGE_RESV_OWNER set.
2746 *
2747 * In most cases, reserves always exist for private mappings.
2748 * However, a file associated with mapping could have been
2749 * hole punched or truncated after reserves were consumed.
2750 * As subsequent fault on such a range will not use reserves.
2751 * Subtle - The reserve map for private mappings has the
2752 * opposite meaning than that of shared mappings. If NO
2753 * entry is in the reserve map, it means a reservation exists.
2754 * If an entry exists in the reserve map, it means the
2755 * reservation has already been consumed. As a result, the
2756 * return value of this routine is the opposite of the
2757 * value returned from reserve map manipulation routines above.
2758 */
2759 if (ret > 0)
2760 return 0;
2761 if (ret == 0)
2762 return 1;
2763 return ret;
c37f9fb1 2764}
cf3ad20b
MK
2765
2766static long vma_needs_reservation(struct hstate *h,
a5516438 2767 struct vm_area_struct *vma, unsigned long addr)
c37f9fb1 2768{
5e911373 2769 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
cf3ad20b 2770}
84afd99b 2771
cf3ad20b
MK
2772static long vma_commit_reservation(struct hstate *h,
2773 struct vm_area_struct *vma, unsigned long addr)
2774{
5e911373
MK
2775 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2776}
2777
feba16e2 2778static void vma_end_reservation(struct hstate *h,
5e911373
MK
2779 struct vm_area_struct *vma, unsigned long addr)
2780{
feba16e2 2781 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
c37f9fb1
AW
2782}
2783
96b96a96
MK
2784static long vma_add_reservation(struct hstate *h,
2785 struct vm_area_struct *vma, unsigned long addr)
2786{
2787 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2788}
2789
846be085
MK
2790static long vma_del_reservation(struct hstate *h,
2791 struct vm_area_struct *vma, unsigned long addr)
2792{
2793 return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV);
2794}
2795
96b96a96 2796/*
846be085
MK
2797 * This routine is called to restore reservation information on error paths.
2798 * It should ONLY be called for pages allocated via alloc_huge_page(), and
2799 * the hugetlb mutex should remain held when calling this routine.
2800 *
2801 * It handles two specific cases:
2802 * 1) A reservation was in place and the page consumed the reservation.
2803 * HPageRestoreReserve is set in the page.
2804 * 2) No reservation was in place for the page, so HPageRestoreReserve is
2805 * not set. However, alloc_huge_page always updates the reserve map.
2806 *
2807 * In case 1, free_huge_page later in the error path will increment the
2808 * global reserve count. But, free_huge_page does not have enough context
2809 * to adjust the reservation map. This case deals primarily with private
2810 * mappings. Adjust the reserve map here to be consistent with global
2811 * reserve count adjustments to be made by free_huge_page. Make sure the
2812 * reserve map indicates there is a reservation present.
2813 *
2814 * In case 2, simply undo reserve map modifications done by alloc_huge_page.
96b96a96 2815 */
846be085
MK
2816void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
2817 unsigned long address, struct page *page)
96b96a96 2818{
846be085 2819 long rc = vma_needs_reservation(h, vma, address);
96b96a96 2820
846be085
MK
2821 if (HPageRestoreReserve(page)) {
2822 if (unlikely(rc < 0))
96b96a96
MK
2823 /*
2824 * Rare out of memory condition in reserve map
d6995da3 2825 * manipulation. Clear HPageRestoreReserve so that
96b96a96
MK
2826 * global reserve count will not be incremented
2827 * by free_huge_page. This will make it appear
2828 * as though the reservation for this page was
2829 * consumed. This may prevent the task from
2830 * faulting in the page at a later time. This
2831 * is better than inconsistent global huge page
2832 * accounting of reserve counts.
2833 */
d6995da3 2834 ClearHPageRestoreReserve(page);
846be085
MK
2835 else if (rc)
2836 (void)vma_add_reservation(h, vma, address);
2837 else
2838 vma_end_reservation(h, vma, address);
2839 } else {
2840 if (!rc) {
2841 /*
2842 * This indicates there is an entry in the reserve map
c7b1850d 2843 * not added by alloc_huge_page. We know it was added
846be085
MK
2844 * before the alloc_huge_page call, otherwise
2845 * HPageRestoreReserve would be set on the page.
2846 * Remove the entry so that a subsequent allocation
2847 * does not consume a reservation.
2848 */
2849 rc = vma_del_reservation(h, vma, address);
2850 if (rc < 0)
96b96a96 2851 /*
846be085
MK
2852 * VERY rare out of memory condition. Since
2853 * we can not delete the entry, set
2854 * HPageRestoreReserve so that the reserve
2855 * count will be incremented when the page
2856 * is freed. This reserve will be consumed
2857 * on a subsequent allocation.
96b96a96 2858 */
846be085
MK
2859 SetHPageRestoreReserve(page);
2860 } else if (rc < 0) {
2861 /*
2862 * Rare out of memory condition from
2863 * vma_needs_reservation call. Memory allocation is
2864 * only attempted if a new entry is needed. Therefore,
2865 * this implies there is not an entry in the
2866 * reserve map.
2867 *
2868 * For shared mappings, no entry in the map indicates
2869 * no reservation. We are done.
2870 */
2871 if (!(vma->vm_flags & VM_MAYSHARE))
2872 /*
2873 * For private mappings, no entry indicates
2874 * a reservation is present. Since we can
2875 * not add an entry, set SetHPageRestoreReserve
2876 * on the page so reserve count will be
2877 * incremented when freed. This reserve will
2878 * be consumed on a subsequent allocation.
2879 */
2880 SetHPageRestoreReserve(page);
96b96a96 2881 } else
846be085
MK
2882 /*
2883 * No reservation present, do nothing
2884 */
2885 vma_end_reservation(h, vma, address);
96b96a96
MK
2886 }
2887}
2888
369fa227 2889/*
19fc1a7e
SK
2890 * alloc_and_dissolve_hugetlb_folio - Allocate a new folio and dissolve
2891 * the old one
369fa227 2892 * @h: struct hstate old page belongs to
19fc1a7e 2893 * @old_folio: Old folio to dissolve
ae37c7ff 2894 * @list: List to isolate the page in case we need to
369fa227
OS
2895 * Returns 0 on success, otherwise negated error.
2896 */
19fc1a7e
SK
2897static int alloc_and_dissolve_hugetlb_folio(struct hstate *h,
2898 struct folio *old_folio, struct list_head *list)
369fa227
OS
2899{
2900 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
de656ed3 2901 int nid = folio_nid(old_folio);
de656ed3 2902 struct folio *new_folio;
369fa227
OS
2903 int ret = 0;
2904
2905 /*
19fc1a7e
SK
2906 * Before dissolving the folio, we need to allocate a new one for the
2907 * pool to remain stable. Here, we allocate the folio and 'prep' it
f41f2ed4
MS
2908 * by doing everything but actually updating counters and adding to
2909 * the pool. This simplifies and let us do most of the processing
2910 * under the lock.
369fa227 2911 */
19fc1a7e
SK
2912 new_folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid, NULL, NULL);
2913 if (!new_folio)
369fa227 2914 return -ENOMEM;
de656ed3 2915 __prep_new_hugetlb_folio(h, new_folio);
369fa227
OS
2916
2917retry:
2918 spin_lock_irq(&hugetlb_lock);
de656ed3 2919 if (!folio_test_hugetlb(old_folio)) {
369fa227 2920 /*
19fc1a7e 2921 * Freed from under us. Drop new_folio too.
369fa227
OS
2922 */
2923 goto free_new;
de656ed3 2924 } else if (folio_ref_count(old_folio)) {
369fa227 2925 /*
19fc1a7e 2926 * Someone has grabbed the folio, try to isolate it here.
ae37c7ff 2927 * Fail with -EBUSY if not possible.
369fa227 2928 */
ae37c7ff 2929 spin_unlock_irq(&hugetlb_lock);
19fc1a7e 2930 ret = isolate_hugetlb(&old_folio->page, list);
ae37c7ff 2931 spin_lock_irq(&hugetlb_lock);
369fa227 2932 goto free_new;
de656ed3 2933 } else if (!folio_test_hugetlb_freed(old_folio)) {
369fa227 2934 /*
19fc1a7e 2935 * Folio's refcount is 0 but it has not been enqueued in the
369fa227
OS
2936 * freelist yet. Race window is small, so we can succeed here if
2937 * we retry.
2938 */
2939 spin_unlock_irq(&hugetlb_lock);
2940 cond_resched();
2941 goto retry;
2942 } else {
2943 /*
19fc1a7e 2944 * Ok, old_folio is still a genuine free hugepage. Remove it from
369fa227
OS
2945 * the freelist and decrease the counters. These will be
2946 * incremented again when calling __prep_account_new_huge_page()
240d67a8
SK
2947 * and enqueue_hugetlb_folio() for new_folio. The counters will
2948 * remain stable since this happens under the lock.
369fa227 2949 */
cfd5082b 2950 remove_hugetlb_folio(h, old_folio, false);
369fa227
OS
2951
2952 /*
19fc1a7e 2953 * Ref count on new_folio is already zero as it was dropped
b65a4eda 2954 * earlier. It can be directly added to the pool free list.
369fa227 2955 */
369fa227 2956 __prep_account_new_huge_page(h, nid);
240d67a8 2957 enqueue_hugetlb_folio(h, new_folio);
369fa227
OS
2958
2959 /*
19fc1a7e 2960 * Folio has been replaced, we can safely free the old one.
369fa227
OS
2961 */
2962 spin_unlock_irq(&hugetlb_lock);
d6ef19e2 2963 update_and_free_hugetlb_folio(h, old_folio, false);
369fa227
OS
2964 }
2965
2966 return ret;
2967
2968free_new:
2969 spin_unlock_irq(&hugetlb_lock);
19fc1a7e 2970 /* Folio has a zero ref count, but needs a ref to be freed */
de656ed3 2971 folio_ref_unfreeze(new_folio, 1);
d6ef19e2 2972 update_and_free_hugetlb_folio(h, new_folio, false);
369fa227
OS
2973
2974 return ret;
2975}
2976
ae37c7ff 2977int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list)
369fa227
OS
2978{
2979 struct hstate *h;
d5e33bd8 2980 struct folio *folio = page_folio(page);
ae37c7ff 2981 int ret = -EBUSY;
369fa227
OS
2982
2983 /*
2984 * The page might have been dissolved from under our feet, so make sure
2985 * to carefully check the state under the lock.
2986 * Return success when racing as if we dissolved the page ourselves.
2987 */
2988 spin_lock_irq(&hugetlb_lock);
d5e33bd8
SK
2989 if (folio_test_hugetlb(folio)) {
2990 h = folio_hstate(folio);
369fa227
OS
2991 } else {
2992 spin_unlock_irq(&hugetlb_lock);
2993 return 0;
2994 }
2995 spin_unlock_irq(&hugetlb_lock);
2996
2997 /*
2998 * Fence off gigantic pages as there is a cyclic dependency between
2999 * alloc_contig_range and them. Return -ENOMEM as this has the effect
3000 * of bailing out right away without further retrying.
3001 */
3002 if (hstate_is_gigantic(h))
3003 return -ENOMEM;
3004
d5e33bd8 3005 if (folio_ref_count(folio) && !isolate_hugetlb(&folio->page, list))
ae37c7ff 3006 ret = 0;
d5e33bd8 3007 else if (!folio_ref_count(folio))
19fc1a7e 3008 ret = alloc_and_dissolve_hugetlb_folio(h, folio, list);
ae37c7ff
OS
3009
3010 return ret;
369fa227
OS
3011}
3012
70c3547e 3013struct page *alloc_huge_page(struct vm_area_struct *vma,
04f2cbe3 3014 unsigned long addr, int avoid_reserve)
1da177e4 3015{
90481622 3016 struct hugepage_subpool *spool = subpool_vma(vma);
a5516438 3017 struct hstate *h = hstate_vma(vma);
348ea204 3018 struct page *page;
d4ab0316 3019 struct folio *folio;
d85f69b0
MK
3020 long map_chg, map_commit;
3021 long gbl_chg;
6d76dcf4
AK
3022 int ret, idx;
3023 struct hugetlb_cgroup *h_cg;
08cf9faf 3024 bool deferred_reserve;
a1e78772 3025
6d76dcf4 3026 idx = hstate_index(h);
a1e78772 3027 /*
d85f69b0
MK
3028 * Examine the region/reserve map to determine if the process
3029 * has a reservation for the page to be allocated. A return
3030 * code of zero indicates a reservation exists (no change).
a1e78772 3031 */
d85f69b0
MK
3032 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
3033 if (map_chg < 0)
76dcee75 3034 return ERR_PTR(-ENOMEM);
d85f69b0
MK
3035
3036 /*
3037 * Processes that did not create the mapping will have no
3038 * reserves as indicated by the region/reserve map. Check
3039 * that the allocation will not exceed the subpool limit.
3040 * Allocations for MAP_NORESERVE mappings also need to be
3041 * checked against any subpool limit.
3042 */
3043 if (map_chg || avoid_reserve) {
3044 gbl_chg = hugepage_subpool_get_pages(spool, 1);
3045 if (gbl_chg < 0) {
feba16e2 3046 vma_end_reservation(h, vma, addr);
76dcee75 3047 return ERR_PTR(-ENOSPC);
5e911373 3048 }
1da177e4 3049
d85f69b0
MK
3050 /*
3051 * Even though there was no reservation in the region/reserve
3052 * map, there could be reservations associated with the
3053 * subpool that can be used. This would be indicated if the
3054 * return value of hugepage_subpool_get_pages() is zero.
3055 * However, if avoid_reserve is specified we still avoid even
3056 * the subpool reservations.
3057 */
3058 if (avoid_reserve)
3059 gbl_chg = 1;
3060 }
3061
08cf9faf
MA
3062 /* If this allocation is not consuming a reservation, charge it now.
3063 */
6501fe5f 3064 deferred_reserve = map_chg || avoid_reserve;
08cf9faf
MA
3065 if (deferred_reserve) {
3066 ret = hugetlb_cgroup_charge_cgroup_rsvd(
3067 idx, pages_per_huge_page(h), &h_cg);
3068 if (ret)
3069 goto out_subpool_put;
3070 }
3071
6d76dcf4 3072 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
8f34af6f 3073 if (ret)
08cf9faf 3074 goto out_uncharge_cgroup_reservation;
8f34af6f 3075
db71ef79 3076 spin_lock_irq(&hugetlb_lock);
d85f69b0
MK
3077 /*
3078 * glb_chg is passed to indicate whether or not a page must be taken
3079 * from the global free pool (global change). gbl_chg == 0 indicates
3080 * a reservation exists for the allocation.
3081 */
3082 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
81a6fcae 3083 if (!page) {
db71ef79 3084 spin_unlock_irq(&hugetlb_lock);
0c397dae 3085 page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
8f34af6f
JZ
3086 if (!page)
3087 goto out_uncharge_cgroup;
12df140f 3088 spin_lock_irq(&hugetlb_lock);
a88c7695 3089 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
d6995da3 3090 SetHPageRestoreReserve(page);
a88c7695
NH
3091 h->resv_huge_pages--;
3092 }
15a8d68e 3093 list_add(&page->lru, &h->hugepage_activelist);
2b21624f 3094 set_page_refcounted(page);
81a6fcae 3095 /* Fall through */
68842c9b 3096 }
d4ab0316 3097 folio = page_folio(page);
81a6fcae 3098 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
08cf9faf
MA
3099 /* If allocation is not consuming a reservation, also store the
3100 * hugetlb_cgroup pointer on the page.
3101 */
3102 if (deferred_reserve) {
3103 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
3104 h_cg, page);
3105 }
3106
db71ef79 3107 spin_unlock_irq(&hugetlb_lock);
348ea204 3108
d6995da3 3109 hugetlb_set_page_subpool(page, spool);
90d8b7e6 3110
d85f69b0
MK
3111 map_commit = vma_commit_reservation(h, vma, addr);
3112 if (unlikely(map_chg > map_commit)) {
33039678
MK
3113 /*
3114 * The page was added to the reservation map between
3115 * vma_needs_reservation and vma_commit_reservation.
3116 * This indicates a race with hugetlb_reserve_pages.
3117 * Adjust for the subpool count incremented above AND
3118 * in hugetlb_reserve_pages for the same page. Also,
3119 * the reservation count added in hugetlb_reserve_pages
3120 * no longer applies.
3121 */
3122 long rsv_adjust;
3123
3124 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
3125 hugetlb_acct_memory(h, -rsv_adjust);
79aa925b 3126 if (deferred_reserve)
d4ab0316
SK
3127 hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
3128 pages_per_huge_page(h), folio);
33039678 3129 }
90d8b7e6 3130 return page;
8f34af6f
JZ
3131
3132out_uncharge_cgroup:
3133 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
08cf9faf
MA
3134out_uncharge_cgroup_reservation:
3135 if (deferred_reserve)
3136 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
3137 h_cg);
8f34af6f 3138out_subpool_put:
d85f69b0 3139 if (map_chg || avoid_reserve)
8f34af6f 3140 hugepage_subpool_put_pages(spool, 1);
feba16e2 3141 vma_end_reservation(h, vma, addr);
8f34af6f 3142 return ERR_PTR(-ENOSPC);
b45b5bd6
DG
3143}
3144
b5389086 3145int alloc_bootmem_huge_page(struct hstate *h, int nid)
e24a1307 3146 __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
b5389086 3147int __alloc_bootmem_huge_page(struct hstate *h, int nid)
aa888a74 3148{
b5389086 3149 struct huge_bootmem_page *m = NULL; /* initialize for clang */
b2261026 3150 int nr_nodes, node;
aa888a74 3151
b5389086
ZY
3152 /* do node specific alloc */
3153 if (nid != NUMA_NO_NODE) {
3154 m = memblock_alloc_try_nid_raw(huge_page_size(h), huge_page_size(h),
3155 0, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
3156 if (!m)
3157 return 0;
3158 goto found;
3159 }
3160 /* allocate from next node when distributing huge pages */
b2261026 3161 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
b5389086 3162 m = memblock_alloc_try_nid_raw(
8b89a116 3163 huge_page_size(h), huge_page_size(h),
97ad1087 3164 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
b5389086
ZY
3165 /*
3166 * Use the beginning of the huge page to store the
3167 * huge_bootmem_page struct (until gather_bootmem
3168 * puts them into the mem_map).
3169 */
3170 if (!m)
3171 return 0;
3172 goto found;
aa888a74 3173 }
aa888a74
AK
3174
3175found:
aa888a74 3176 /* Put them into a private list first because mem_map is not up yet */
330d6e48 3177 INIT_LIST_HEAD(&m->list);
aa888a74
AK
3178 list_add(&m->list, &huge_boot_pages);
3179 m->hstate = h;
3180 return 1;
3181}
3182
48b8d744
MK
3183/*
3184 * Put bootmem huge pages into the standard lists after mem_map is up.
3185 * Note: This only applies to gigantic (order > MAX_ORDER) pages.
3186 */
aa888a74
AK
3187static void __init gather_bootmem_prealloc(void)
3188{
3189 struct huge_bootmem_page *m;
3190
3191 list_for_each_entry(m, &huge_boot_pages, list) {
40d18ebf 3192 struct page *page = virt_to_page(m);
7f325a8d 3193 struct folio *folio = page_folio(page);
aa888a74 3194 struct hstate *h = m->hstate;
ee8f248d 3195
48b8d744 3196 VM_BUG_ON(!hstate_is_gigantic(h));
d1c60955
SK
3197 WARN_ON(folio_ref_count(folio) != 1);
3198 if (prep_compound_gigantic_folio(folio, huge_page_order(h))) {
3199 WARN_ON(folio_test_reserved(folio));
3200 prep_new_hugetlb_folio(h, folio, folio_nid(folio));
2b21624f 3201 free_huge_page(page); /* add to the hugepage allocator */
7118fc29 3202 } else {
416d85ed 3203 /* VERY unlikely inflated ref count on a tail page */
7f325a8d 3204 free_gigantic_folio(folio, huge_page_order(h));
7118fc29 3205 }
af0fb9df 3206
b0320c7b 3207 /*
48b8d744
MK
3208 * We need to restore the 'stolen' pages to totalram_pages
3209 * in order to fix confusing memory reports from free(1) and
3210 * other side-effects, like CommitLimit going negative.
b0320c7b 3211 */
48b8d744 3212 adjust_managed_page_count(page, pages_per_huge_page(h));
520495fe 3213 cond_resched();
aa888a74
AK
3214 }
3215}
b5389086
ZY
3216static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid)
3217{
3218 unsigned long i;
3219 char buf[32];
3220
3221 for (i = 0; i < h->max_huge_pages_node[nid]; ++i) {
3222 if (hstate_is_gigantic(h)) {
3223 if (!alloc_bootmem_huge_page(h, nid))
3224 break;
3225 } else {
19fc1a7e 3226 struct folio *folio;
b5389086
ZY
3227 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
3228
19fc1a7e 3229 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid,
b5389086 3230 &node_states[N_MEMORY], NULL);
19fc1a7e 3231 if (!folio)
b5389086 3232 break;
19fc1a7e 3233 free_huge_page(&folio->page); /* free it into the hugepage allocator */
b5389086
ZY
3234 }
3235 cond_resched();
3236 }
3237 if (i == h->max_huge_pages_node[nid])
3238 return;
3239
3240 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3241 pr_warn("HugeTLB: allocating %u of page size %s failed node%d. Only allocated %lu hugepages.\n",
3242 h->max_huge_pages_node[nid], buf, nid, i);
3243 h->max_huge_pages -= (h->max_huge_pages_node[nid] - i);
3244 h->max_huge_pages_node[nid] = i;
3245}
aa888a74 3246
8faa8b07 3247static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1da177e4
LT
3248{
3249 unsigned long i;
f60858f9 3250 nodemask_t *node_alloc_noretry;
b5389086
ZY
3251 bool node_specific_alloc = false;
3252
3253 /* skip gigantic hugepages allocation if hugetlb_cma enabled */
3254 if (hstate_is_gigantic(h) && hugetlb_cma_size) {
3255 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
3256 return;
3257 }
3258
3259 /* do node specific alloc */
0a7a0f6f 3260 for_each_online_node(i) {
b5389086
ZY
3261 if (h->max_huge_pages_node[i] > 0) {
3262 hugetlb_hstate_alloc_pages_onenode(h, i);
3263 node_specific_alloc = true;
3264 }
3265 }
f60858f9 3266
b5389086
ZY
3267 if (node_specific_alloc)
3268 return;
3269
3270 /* below will do all node balanced alloc */
f60858f9
MK
3271 if (!hstate_is_gigantic(h)) {
3272 /*
3273 * Bit mask controlling how hard we retry per-node allocations.
3274 * Ignore errors as lower level routines can deal with
3275 * node_alloc_noretry == NULL. If this kmalloc fails at boot
3276 * time, we are likely in bigger trouble.
3277 */
3278 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
3279 GFP_KERNEL);
3280 } else {
3281 /* allocations done at boot time */
3282 node_alloc_noretry = NULL;
3283 }
3284
3285 /* bit mask controlling how hard we retry per-node allocations */
3286 if (node_alloc_noretry)
3287 nodes_clear(*node_alloc_noretry);
a5516438 3288
e5ff2159 3289 for (i = 0; i < h->max_huge_pages; ++i) {
bae7f4ae 3290 if (hstate_is_gigantic(h)) {
b5389086 3291 if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE))
aa888a74 3292 break;
0c397dae 3293 } else if (!alloc_pool_huge_page(h,
f60858f9
MK
3294 &node_states[N_MEMORY],
3295 node_alloc_noretry))
1da177e4 3296 break;
69ed779a 3297 cond_resched();
1da177e4 3298 }
d715cf80
LH
3299 if (i < h->max_huge_pages) {
3300 char buf[32];
3301
c6247f72 3302 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
d715cf80
LH
3303 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n",
3304 h->max_huge_pages, buf, i);
3305 h->max_huge_pages = i;
3306 }
f60858f9 3307 kfree(node_alloc_noretry);
e5ff2159
AK
3308}
3309
3310static void __init hugetlb_init_hstates(void)
3311{
79dfc695 3312 struct hstate *h, *h2;
e5ff2159
AK
3313
3314 for_each_hstate(h) {
8faa8b07 3315 /* oversize hugepages were init'ed in early boot */
bae7f4ae 3316 if (!hstate_is_gigantic(h))
8faa8b07 3317 hugetlb_hstate_alloc_pages(h);
79dfc695
MK
3318
3319 /*
3320 * Set demote order for each hstate. Note that
3321 * h->demote_order is initially 0.
3322 * - We can not demote gigantic pages if runtime freeing
3323 * is not supported, so skip this.
a01f4390
MK
3324 * - If CMA allocation is possible, we can not demote
3325 * HUGETLB_PAGE_ORDER or smaller size pages.
79dfc695
MK
3326 */
3327 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3328 continue;
a01f4390
MK
3329 if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER)
3330 continue;
79dfc695
MK
3331 for_each_hstate(h2) {
3332 if (h2 == h)
3333 continue;
3334 if (h2->order < h->order &&
3335 h2->order > h->demote_order)
3336 h->demote_order = h2->order;
3337 }
e5ff2159
AK
3338 }
3339}
3340
3341static void __init report_hugepages(void)
3342{
3343 struct hstate *h;
3344
3345 for_each_hstate(h) {
4abd32db 3346 char buf[32];
c6247f72
MW
3347
3348 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
6213834c 3349 pr_info("HugeTLB: registered %s page size, pre-allocated %ld pages\n",
c6247f72 3350 buf, h->free_huge_pages);
6213834c
MS
3351 pr_info("HugeTLB: %d KiB vmemmap can be freed for a %s page\n",
3352 hugetlb_vmemmap_optimizable_size(h) / SZ_1K, buf);
e5ff2159
AK
3353 }
3354}
3355
1da177e4 3356#ifdef CONFIG_HIGHMEM
6ae11b27
LS
3357static void try_to_free_low(struct hstate *h, unsigned long count,
3358 nodemask_t *nodes_allowed)
1da177e4 3359{
4415cc8d 3360 int i;
1121828a 3361 LIST_HEAD(page_list);
4415cc8d 3362
9487ca60 3363 lockdep_assert_held(&hugetlb_lock);
bae7f4ae 3364 if (hstate_is_gigantic(h))
aa888a74
AK
3365 return;
3366
1121828a
MK
3367 /*
3368 * Collect pages to be freed on a list, and free after dropping lock
3369 */
6ae11b27 3370 for_each_node_mask(i, *nodes_allowed) {
10c6ec49 3371 struct page *page, *next;
a5516438
AK
3372 struct list_head *freel = &h->hugepage_freelists[i];
3373 list_for_each_entry_safe(page, next, freel, lru) {
3374 if (count >= h->nr_huge_pages)
1121828a 3375 goto out;
1da177e4
LT
3376 if (PageHighMem(page))
3377 continue;
cfd5082b 3378 remove_hugetlb_folio(h, page_folio(page), false);
1121828a 3379 list_add(&page->lru, &page_list);
1da177e4
LT
3380 }
3381 }
1121828a
MK
3382
3383out:
db71ef79 3384 spin_unlock_irq(&hugetlb_lock);
10c6ec49 3385 update_and_free_pages_bulk(h, &page_list);
db71ef79 3386 spin_lock_irq(&hugetlb_lock);
1da177e4
LT
3387}
3388#else
6ae11b27
LS
3389static inline void try_to_free_low(struct hstate *h, unsigned long count,
3390 nodemask_t *nodes_allowed)
1da177e4
LT
3391{
3392}
3393#endif
3394
20a0307c
WF
3395/*
3396 * Increment or decrement surplus_huge_pages. Keep node-specific counters
3397 * balanced by operating on them in a round-robin fashion.
3398 * Returns 1 if an adjustment was made.
3399 */
6ae11b27
LS
3400static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
3401 int delta)
20a0307c 3402{
b2261026 3403 int nr_nodes, node;
20a0307c 3404
9487ca60 3405 lockdep_assert_held(&hugetlb_lock);
20a0307c 3406 VM_BUG_ON(delta != -1 && delta != 1);
20a0307c 3407
b2261026
JK
3408 if (delta < 0) {
3409 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
3410 if (h->surplus_huge_pages_node[node])
3411 goto found;
e8c5c824 3412 }
b2261026
JK
3413 } else {
3414 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3415 if (h->surplus_huge_pages_node[node] <
3416 h->nr_huge_pages_node[node])
3417 goto found;
e8c5c824 3418 }
b2261026
JK
3419 }
3420 return 0;
20a0307c 3421
b2261026
JK
3422found:
3423 h->surplus_huge_pages += delta;
3424 h->surplus_huge_pages_node[node] += delta;
3425 return 1;
20a0307c
WF
3426}
3427
a5516438 3428#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
fd875dca 3429static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
4eb0716e 3430 nodemask_t *nodes_allowed)
1da177e4 3431{
7893d1d5 3432 unsigned long min_count, ret;
10c6ec49
MK
3433 struct page *page;
3434 LIST_HEAD(page_list);
f60858f9
MK
3435 NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
3436
3437 /*
3438 * Bit mask controlling how hard we retry per-node allocations.
3439 * If we can not allocate the bit mask, do not attempt to allocate
3440 * the requested huge pages.
3441 */
3442 if (node_alloc_noretry)
3443 nodes_clear(*node_alloc_noretry);
3444 else
3445 return -ENOMEM;
1da177e4 3446
29383967
MK
3447 /*
3448 * resize_lock mutex prevents concurrent adjustments to number of
3449 * pages in hstate via the proc/sysfs interfaces.
3450 */
3451 mutex_lock(&h->resize_lock);
b65d4adb 3452 flush_free_hpage_work(h);
db71ef79 3453 spin_lock_irq(&hugetlb_lock);
4eb0716e 3454
fd875dca
MK
3455 /*
3456 * Check for a node specific request.
3457 * Changing node specific huge page count may require a corresponding
3458 * change to the global count. In any case, the passed node mask
3459 * (nodes_allowed) will restrict alloc/free to the specified node.
3460 */
3461 if (nid != NUMA_NO_NODE) {
3462 unsigned long old_count = count;
3463
3464 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
3465 /*
3466 * User may have specified a large count value which caused the
3467 * above calculation to overflow. In this case, they wanted
3468 * to allocate as many huge pages as possible. Set count to
3469 * largest possible value to align with their intention.
3470 */
3471 if (count < old_count)
3472 count = ULONG_MAX;
3473 }
3474
4eb0716e
AG
3475 /*
3476 * Gigantic pages runtime allocation depend on the capability for large
3477 * page range allocation.
3478 * If the system does not provide this feature, return an error when
3479 * the user tries to allocate gigantic pages but let the user free the
3480 * boottime allocated gigantic pages.
3481 */
3482 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
3483 if (count > persistent_huge_pages(h)) {
db71ef79 3484 spin_unlock_irq(&hugetlb_lock);
29383967 3485 mutex_unlock(&h->resize_lock);
f60858f9 3486 NODEMASK_FREE(node_alloc_noretry);
4eb0716e
AG
3487 return -EINVAL;
3488 }
3489 /* Fall through to decrease pool */
3490 }
aa888a74 3491
7893d1d5
AL
3492 /*
3493 * Increase the pool size
3494 * First take pages out of surplus state. Then make up the
3495 * remaining difference by allocating fresh huge pages.
d1c3fb1f 3496 *
0c397dae 3497 * We might race with alloc_surplus_huge_page() here and be unable
d1c3fb1f
NA
3498 * to convert a surplus huge page to a normal huge page. That is
3499 * not critical, though, it just means the overall size of the
3500 * pool might be one hugepage larger than it needs to be, but
3501 * within all the constraints specified by the sysctls.
7893d1d5 3502 */
a5516438 3503 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
6ae11b27 3504 if (!adjust_pool_surplus(h, nodes_allowed, -1))
7893d1d5
AL
3505 break;
3506 }
3507
a5516438 3508 while (count > persistent_huge_pages(h)) {
7893d1d5
AL
3509 /*
3510 * If this allocation races such that we no longer need the
3511 * page, free_huge_page will handle it by freeing the page
3512 * and reducing the surplus.
3513 */
db71ef79 3514 spin_unlock_irq(&hugetlb_lock);
649920c6
JH
3515
3516 /* yield cpu to avoid soft lockup */
3517 cond_resched();
3518
f60858f9
MK
3519 ret = alloc_pool_huge_page(h, nodes_allowed,
3520 node_alloc_noretry);
db71ef79 3521 spin_lock_irq(&hugetlb_lock);
7893d1d5
AL
3522 if (!ret)
3523 goto out;
3524
536240f2
MG
3525 /* Bail for signals. Probably ctrl-c from user */
3526 if (signal_pending(current))
3527 goto out;
7893d1d5 3528 }
7893d1d5
AL
3529
3530 /*
3531 * Decrease the pool size
3532 * First return free pages to the buddy allocator (being careful
3533 * to keep enough around to satisfy reservations). Then place
3534 * pages into surplus state as needed so the pool will shrink
3535 * to the desired size as pages become free.
d1c3fb1f
NA
3536 *
3537 * By placing pages into the surplus state independent of the
3538 * overcommit value, we are allowing the surplus pool size to
3539 * exceed overcommit. There are few sane options here. Since
0c397dae 3540 * alloc_surplus_huge_page() is checking the global counter,
d1c3fb1f
NA
3541 * though, we'll note that we're not allowed to exceed surplus
3542 * and won't grow the pool anywhere else. Not until one of the
3543 * sysctls are changed, or the surplus pages go out of use.
7893d1d5 3544 */
a5516438 3545 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
6b0c880d 3546 min_count = max(count, min_count);
6ae11b27 3547 try_to_free_low(h, min_count, nodes_allowed);
10c6ec49
MK
3548
3549 /*
3550 * Collect pages to be removed on list without dropping lock
3551 */
a5516438 3552 while (min_count < persistent_huge_pages(h)) {
10c6ec49
MK
3553 page = remove_pool_huge_page(h, nodes_allowed, 0);
3554 if (!page)
1da177e4 3555 break;
10c6ec49
MK
3556
3557 list_add(&page->lru, &page_list);
1da177e4 3558 }
10c6ec49 3559 /* free the pages after dropping lock */
db71ef79 3560 spin_unlock_irq(&hugetlb_lock);
10c6ec49 3561 update_and_free_pages_bulk(h, &page_list);
b65d4adb 3562 flush_free_hpage_work(h);
db71ef79 3563 spin_lock_irq(&hugetlb_lock);
10c6ec49 3564
a5516438 3565 while (count < persistent_huge_pages(h)) {
6ae11b27 3566 if (!adjust_pool_surplus(h, nodes_allowed, 1))
7893d1d5
AL
3567 break;
3568 }
3569out:
4eb0716e 3570 h->max_huge_pages = persistent_huge_pages(h);
db71ef79 3571 spin_unlock_irq(&hugetlb_lock);
29383967 3572 mutex_unlock(&h->resize_lock);
4eb0716e 3573
f60858f9
MK
3574 NODEMASK_FREE(node_alloc_noretry);
3575
4eb0716e 3576 return 0;
1da177e4
LT
3577}
3578
8531fc6f
MK
3579static int demote_free_huge_page(struct hstate *h, struct page *page)
3580{
3581 int i, nid = page_to_nid(page);
3582 struct hstate *target_hstate;
911565b8 3583 struct folio *folio = page_folio(page);
31731452 3584 struct page *subpage;
8531fc6f
MK
3585 int rc = 0;
3586
3587 target_hstate = size_to_hstate(PAGE_SIZE << h->demote_order);
3588
cfd5082b 3589 remove_hugetlb_folio_for_demote(h, folio, false);
8531fc6f
MK
3590 spin_unlock_irq(&hugetlb_lock);
3591
6213834c 3592 rc = hugetlb_vmemmap_restore(h, page);
8531fc6f
MK
3593 if (rc) {
3594 /* Allocation of vmemmmap failed, we can not demote page */
3595 spin_lock_irq(&hugetlb_lock);
3596 set_page_refcounted(page);
2f6c57d6 3597 add_hugetlb_folio(h, page_folio(page), false);
8531fc6f
MK
3598 return rc;
3599 }
3600
3601 /*
911565b8 3602 * Use destroy_compound_hugetlb_folio_for_demote for all huge page
8531fc6f
MK
3603 * sizes as it will not ref count pages.
3604 */
911565b8 3605 destroy_compound_hugetlb_folio_for_demote(folio, huge_page_order(h));
8531fc6f
MK
3606
3607 /*
3608 * Taking target hstate mutex synchronizes with set_max_huge_pages.
3609 * Without the mutex, pages added to target hstate could be marked
3610 * as surplus.
3611 *
3612 * Note that we already hold h->resize_lock. To prevent deadlock,
3613 * use the convention of always taking larger size hstate mutex first.
3614 */
3615 mutex_lock(&target_hstate->resize_lock);
3616 for (i = 0; i < pages_per_huge_page(h);
3617 i += pages_per_huge_page(target_hstate)) {
31731452 3618 subpage = nth_page(page, i);
d1c60955 3619 folio = page_folio(subpage);
8531fc6f 3620 if (hstate_is_gigantic(target_hstate))
d1c60955 3621 prep_compound_gigantic_folio_for_demote(folio,
8531fc6f
MK
3622 target_hstate->order);
3623 else
31731452
DB
3624 prep_compound_page(subpage, target_hstate->order);
3625 set_page_private(subpage, 0);
d1c60955 3626 prep_new_hugetlb_folio(target_hstate, folio, nid);
2b21624f 3627 free_huge_page(subpage);
8531fc6f
MK
3628 }
3629 mutex_unlock(&target_hstate->resize_lock);
3630
3631 spin_lock_irq(&hugetlb_lock);
3632
3633 /*
3634 * Not absolutely necessary, but for consistency update max_huge_pages
3635 * based on pool changes for the demoted page.
3636 */
3637 h->max_huge_pages--;
a43a83c7
ML
3638 target_hstate->max_huge_pages +=
3639 pages_per_huge_page(h) / pages_per_huge_page(target_hstate);
8531fc6f
MK
3640
3641 return rc;
3642}
3643
79dfc695
MK
3644static int demote_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
3645 __must_hold(&hugetlb_lock)
3646{
8531fc6f
MK
3647 int nr_nodes, node;
3648 struct page *page;
79dfc695
MK
3649
3650 lockdep_assert_held(&hugetlb_lock);
3651
3652 /* We should never get here if no demote order */
3653 if (!h->demote_order) {
3654 pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n");
3655 return -EINVAL; /* internal error */
3656 }
3657
8531fc6f 3658 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
5a317412
MK
3659 list_for_each_entry(page, &h->hugepage_freelists[node], lru) {
3660 if (PageHWPoison(page))
3661 continue;
3662
3663 return demote_free_huge_page(h, page);
8531fc6f
MK
3664 }
3665 }
3666
5a317412
MK
3667 /*
3668 * Only way to get here is if all pages on free lists are poisoned.
3669 * Return -EBUSY so that caller will not retry.
3670 */
3671 return -EBUSY;
79dfc695
MK
3672}
3673
a3437870
NA
3674#define HSTATE_ATTR_RO(_name) \
3675 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3676
79dfc695
MK
3677#define HSTATE_ATTR_WO(_name) \
3678 static struct kobj_attribute _name##_attr = __ATTR_WO(_name)
3679
a3437870 3680#define HSTATE_ATTR(_name) \
98bc26ac 3681 static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
a3437870
NA
3682
3683static struct kobject *hugepages_kobj;
3684static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3685
9a305230
LS
3686static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
3687
3688static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
a3437870
NA
3689{
3690 int i;
9a305230 3691
a3437870 3692 for (i = 0; i < HUGE_MAX_HSTATE; i++)
9a305230
LS
3693 if (hstate_kobjs[i] == kobj) {
3694 if (nidp)
3695 *nidp = NUMA_NO_NODE;
a3437870 3696 return &hstates[i];
9a305230
LS
3697 }
3698
3699 return kobj_to_node_hstate(kobj, nidp);
a3437870
NA
3700}
3701
06808b08 3702static ssize_t nr_hugepages_show_common(struct kobject *kobj,
a3437870
NA
3703 struct kobj_attribute *attr, char *buf)
3704{
9a305230
LS
3705 struct hstate *h;
3706 unsigned long nr_huge_pages;
3707 int nid;
3708
3709 h = kobj_to_hstate(kobj, &nid);
3710 if (nid == NUMA_NO_NODE)
3711 nr_huge_pages = h->nr_huge_pages;
3712 else
3713 nr_huge_pages = h->nr_huge_pages_node[nid];
3714
ae7a927d 3715 return sysfs_emit(buf, "%lu\n", nr_huge_pages);
a3437870 3716}
adbe8726 3717
238d3c13
DR
3718static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
3719 struct hstate *h, int nid,
3720 unsigned long count, size_t len)
a3437870
NA
3721{
3722 int err;
2d0adf7e 3723 nodemask_t nodes_allowed, *n_mask;
a3437870 3724
2d0adf7e
OS
3725 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3726 return -EINVAL;
adbe8726 3727
9a305230
LS
3728 if (nid == NUMA_NO_NODE) {
3729 /*
3730 * global hstate attribute
3731 */
3732 if (!(obey_mempolicy &&
2d0adf7e
OS
3733 init_nodemask_of_mempolicy(&nodes_allowed)))
3734 n_mask = &node_states[N_MEMORY];
3735 else
3736 n_mask = &nodes_allowed;
3737 } else {
9a305230 3738 /*
fd875dca
MK
3739 * Node specific request. count adjustment happens in
3740 * set_max_huge_pages() after acquiring hugetlb_lock.
9a305230 3741 */
2d0adf7e
OS
3742 init_nodemask_of_node(&nodes_allowed, nid);
3743 n_mask = &nodes_allowed;
fd875dca 3744 }
9a305230 3745
2d0adf7e 3746 err = set_max_huge_pages(h, count, nid, n_mask);
06808b08 3747
4eb0716e 3748 return err ? err : len;
06808b08
LS
3749}
3750
238d3c13
DR
3751static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
3752 struct kobject *kobj, const char *buf,
3753 size_t len)
3754{
3755 struct hstate *h;
3756 unsigned long count;
3757 int nid;
3758 int err;
3759
3760 err = kstrtoul(buf, 10, &count);
3761 if (err)
3762 return err;
3763
3764 h = kobj_to_hstate(kobj, &nid);
3765 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
3766}
3767
06808b08
LS
3768static ssize_t nr_hugepages_show(struct kobject *kobj,
3769 struct kobj_attribute *attr, char *buf)
3770{
3771 return nr_hugepages_show_common(kobj, attr, buf);
3772}
3773
3774static ssize_t nr_hugepages_store(struct kobject *kobj,
3775 struct kobj_attribute *attr, const char *buf, size_t len)
3776{
238d3c13 3777 return nr_hugepages_store_common(false, kobj, buf, len);
a3437870
NA
3778}
3779HSTATE_ATTR(nr_hugepages);
3780
06808b08
LS
3781#ifdef CONFIG_NUMA
3782
3783/*
3784 * hstate attribute for optionally mempolicy-based constraint on persistent
3785 * huge page alloc/free.
3786 */
3787static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
ae7a927d
JP
3788 struct kobj_attribute *attr,
3789 char *buf)
06808b08
LS
3790{
3791 return nr_hugepages_show_common(kobj, attr, buf);
3792}
3793
3794static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
3795 struct kobj_attribute *attr, const char *buf, size_t len)
3796{
238d3c13 3797 return nr_hugepages_store_common(true, kobj, buf, len);
06808b08
LS
3798}
3799HSTATE_ATTR(nr_hugepages_mempolicy);
3800#endif
3801
3802
a3437870
NA
3803static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
3804 struct kobj_attribute *attr, char *buf)
3805{
9a305230 3806 struct hstate *h = kobj_to_hstate(kobj, NULL);
ae7a927d 3807 return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
a3437870 3808}
adbe8726 3809
a3437870
NA
3810static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
3811 struct kobj_attribute *attr, const char *buf, size_t count)
3812{
3813 int err;
3814 unsigned long input;
9a305230 3815 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870 3816
bae7f4ae 3817 if (hstate_is_gigantic(h))
adbe8726
EM
3818 return -EINVAL;
3819
3dbb95f7 3820 err = kstrtoul(buf, 10, &input);
a3437870 3821 if (err)
73ae31e5 3822 return err;
a3437870 3823
db71ef79 3824 spin_lock_irq(&hugetlb_lock);
a3437870 3825 h->nr_overcommit_huge_pages = input;
db71ef79 3826 spin_unlock_irq(&hugetlb_lock);
a3437870
NA
3827
3828 return count;
3829}
3830HSTATE_ATTR(nr_overcommit_hugepages);
3831
3832static ssize_t free_hugepages_show(struct kobject *kobj,
3833 struct kobj_attribute *attr, char *buf)
3834{
9a305230
LS
3835 struct hstate *h;
3836 unsigned long free_huge_pages;
3837 int nid;
3838
3839 h = kobj_to_hstate(kobj, &nid);
3840 if (nid == NUMA_NO_NODE)
3841 free_huge_pages = h->free_huge_pages;
3842 else
3843 free_huge_pages = h->free_huge_pages_node[nid];
3844
ae7a927d 3845 return sysfs_emit(buf, "%lu\n", free_huge_pages);
a3437870
NA
3846}
3847HSTATE_ATTR_RO(free_hugepages);
3848
3849static ssize_t resv_hugepages_show(struct kobject *kobj,
3850 struct kobj_attribute *attr, char *buf)
3851{
9a305230 3852 struct hstate *h = kobj_to_hstate(kobj, NULL);
ae7a927d 3853 return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
a3437870
NA
3854}
3855HSTATE_ATTR_RO(resv_hugepages);
3856
3857static ssize_t surplus_hugepages_show(struct kobject *kobj,
3858 struct kobj_attribute *attr, char *buf)
3859{
9a305230
LS
3860 struct hstate *h;
3861 unsigned long surplus_huge_pages;
3862 int nid;
3863
3864 h = kobj_to_hstate(kobj, &nid);
3865 if (nid == NUMA_NO_NODE)
3866 surplus_huge_pages = h->surplus_huge_pages;
3867 else
3868 surplus_huge_pages = h->surplus_huge_pages_node[nid];
3869
ae7a927d 3870 return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
a3437870
NA
3871}
3872HSTATE_ATTR_RO(surplus_hugepages);
3873
79dfc695
MK
3874static ssize_t demote_store(struct kobject *kobj,
3875 struct kobj_attribute *attr, const char *buf, size_t len)
3876{
3877 unsigned long nr_demote;
3878 unsigned long nr_available;
3879 nodemask_t nodes_allowed, *n_mask;
3880 struct hstate *h;
8eeda55f 3881 int err;
79dfc695
MK
3882 int nid;
3883
3884 err = kstrtoul(buf, 10, &nr_demote);
3885 if (err)
3886 return err;
3887 h = kobj_to_hstate(kobj, &nid);
3888
3889 if (nid != NUMA_NO_NODE) {
3890 init_nodemask_of_node(&nodes_allowed, nid);
3891 n_mask = &nodes_allowed;
3892 } else {
3893 n_mask = &node_states[N_MEMORY];
3894 }
3895
3896 /* Synchronize with other sysfs operations modifying huge pages */
3897 mutex_lock(&h->resize_lock);
3898 spin_lock_irq(&hugetlb_lock);
3899
3900 while (nr_demote) {
3901 /*
3902 * Check for available pages to demote each time thorough the
3903 * loop as demote_pool_huge_page will drop hugetlb_lock.
79dfc695
MK
3904 */
3905 if (nid != NUMA_NO_NODE)
3906 nr_available = h->free_huge_pages_node[nid];
3907 else
3908 nr_available = h->free_huge_pages;
3909 nr_available -= h->resv_huge_pages;
3910 if (!nr_available)
3911 break;
3912
3913 err = demote_pool_huge_page(h, n_mask);
3914 if (err)
3915 break;
3916
3917 nr_demote--;
3918 }
3919
3920 spin_unlock_irq(&hugetlb_lock);
3921 mutex_unlock(&h->resize_lock);
3922
3923 if (err)
3924 return err;
3925 return len;
3926}
3927HSTATE_ATTR_WO(demote);
3928
3929static ssize_t demote_size_show(struct kobject *kobj,
3930 struct kobj_attribute *attr, char *buf)
3931{
12658abf 3932 struct hstate *h = kobj_to_hstate(kobj, NULL);
79dfc695
MK
3933 unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K;
3934
3935 return sysfs_emit(buf, "%lukB\n", demote_size);
3936}
3937
3938static ssize_t demote_size_store(struct kobject *kobj,
3939 struct kobj_attribute *attr,
3940 const char *buf, size_t count)
3941{
3942 struct hstate *h, *demote_hstate;
3943 unsigned long demote_size;
3944 unsigned int demote_order;
79dfc695
MK
3945
3946 demote_size = (unsigned long)memparse(buf, NULL);
3947
3948 demote_hstate = size_to_hstate(demote_size);
3949 if (!demote_hstate)
3950 return -EINVAL;
3951 demote_order = demote_hstate->order;
a01f4390
MK
3952 if (demote_order < HUGETLB_PAGE_ORDER)
3953 return -EINVAL;
79dfc695
MK
3954
3955 /* demote order must be smaller than hstate order */
12658abf 3956 h = kobj_to_hstate(kobj, NULL);
79dfc695
MK
3957 if (demote_order >= h->order)
3958 return -EINVAL;
3959
3960 /* resize_lock synchronizes access to demote size and writes */
3961 mutex_lock(&h->resize_lock);
3962 h->demote_order = demote_order;
3963 mutex_unlock(&h->resize_lock);
3964
3965 return count;
3966}
3967HSTATE_ATTR(demote_size);
3968
a3437870
NA
3969static struct attribute *hstate_attrs[] = {
3970 &nr_hugepages_attr.attr,
3971 &nr_overcommit_hugepages_attr.attr,
3972 &free_hugepages_attr.attr,
3973 &resv_hugepages_attr.attr,
3974 &surplus_hugepages_attr.attr,
06808b08
LS
3975#ifdef CONFIG_NUMA
3976 &nr_hugepages_mempolicy_attr.attr,
3977#endif
a3437870
NA
3978 NULL,
3979};
3980
67e5ed96 3981static const struct attribute_group hstate_attr_group = {
a3437870
NA
3982 .attrs = hstate_attrs,
3983};
3984
79dfc695
MK
3985static struct attribute *hstate_demote_attrs[] = {
3986 &demote_size_attr.attr,
3987 &demote_attr.attr,
3988 NULL,
3989};
3990
3991static const struct attribute_group hstate_demote_attr_group = {
3992 .attrs = hstate_demote_attrs,
3993};
3994
094e9539
JM
3995static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
3996 struct kobject **hstate_kobjs,
67e5ed96 3997 const struct attribute_group *hstate_attr_group)
a3437870
NA
3998{
3999 int retval;
972dc4de 4000 int hi = hstate_index(h);
a3437870 4001
9a305230
LS
4002 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
4003 if (!hstate_kobjs[hi])
a3437870
NA
4004 return -ENOMEM;
4005
9a305230 4006 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
cc2205a6 4007 if (retval) {
9a305230 4008 kobject_put(hstate_kobjs[hi]);
cc2205a6 4009 hstate_kobjs[hi] = NULL;
3a6bdda0 4010 return retval;
cc2205a6 4011 }
a3437870 4012
79dfc695 4013 if (h->demote_order) {
01088a60
ML
4014 retval = sysfs_create_group(hstate_kobjs[hi],
4015 &hstate_demote_attr_group);
4016 if (retval) {
79dfc695 4017 pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name);
01088a60
ML
4018 sysfs_remove_group(hstate_kobjs[hi], hstate_attr_group);
4019 kobject_put(hstate_kobjs[hi]);
4020 hstate_kobjs[hi] = NULL;
4021 return retval;
4022 }
79dfc695
MK
4023 }
4024
01088a60 4025 return 0;
a3437870
NA
4026}
4027
9a305230 4028#ifdef CONFIG_NUMA
a4a00b45 4029static bool hugetlb_sysfs_initialized __ro_after_init;
9a305230
LS
4030
4031/*
4032 * node_hstate/s - associate per node hstate attributes, via their kobjects,
10fbcf4c
KS
4033 * with node devices in node_devices[] using a parallel array. The array
4034 * index of a node device or _hstate == node id.
4035 * This is here to avoid any static dependency of the node device driver, in
9a305230
LS
4036 * the base kernel, on the hugetlb module.
4037 */
4038struct node_hstate {
4039 struct kobject *hugepages_kobj;
4040 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
4041};
b4e289a6 4042static struct node_hstate node_hstates[MAX_NUMNODES];
9a305230
LS
4043
4044/*
10fbcf4c 4045 * A subset of global hstate attributes for node devices
9a305230
LS
4046 */
4047static struct attribute *per_node_hstate_attrs[] = {
4048 &nr_hugepages_attr.attr,
4049 &free_hugepages_attr.attr,
4050 &surplus_hugepages_attr.attr,
4051 NULL,
4052};
4053
67e5ed96 4054static const struct attribute_group per_node_hstate_attr_group = {
9a305230
LS
4055 .attrs = per_node_hstate_attrs,
4056};
4057
4058/*
10fbcf4c 4059 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
9a305230
LS
4060 * Returns node id via non-NULL nidp.
4061 */
4062static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4063{
4064 int nid;
4065
4066 for (nid = 0; nid < nr_node_ids; nid++) {
4067 struct node_hstate *nhs = &node_hstates[nid];
4068 int i;
4069 for (i = 0; i < HUGE_MAX_HSTATE; i++)
4070 if (nhs->hstate_kobjs[i] == kobj) {
4071 if (nidp)
4072 *nidp = nid;
4073 return &hstates[i];
4074 }
4075 }
4076
4077 BUG();
4078 return NULL;
4079}
4080
4081/*
10fbcf4c 4082 * Unregister hstate attributes from a single node device.
9a305230
LS
4083 * No-op if no hstate attributes attached.
4084 */
a4a00b45 4085void hugetlb_unregister_node(struct node *node)
9a305230
LS
4086{
4087 struct hstate *h;
10fbcf4c 4088 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
4089
4090 if (!nhs->hugepages_kobj)
9b5e5d0f 4091 return; /* no hstate attributes */
9a305230 4092
972dc4de
AK
4093 for_each_hstate(h) {
4094 int idx = hstate_index(h);
01088a60
ML
4095 struct kobject *hstate_kobj = nhs->hstate_kobjs[idx];
4096
4097 if (!hstate_kobj)
4098 continue;
4099 if (h->demote_order)
4100 sysfs_remove_group(hstate_kobj, &hstate_demote_attr_group);
4101 sysfs_remove_group(hstate_kobj, &per_node_hstate_attr_group);
4102 kobject_put(hstate_kobj);
4103 nhs->hstate_kobjs[idx] = NULL;
972dc4de 4104 }
9a305230
LS
4105
4106 kobject_put(nhs->hugepages_kobj);
4107 nhs->hugepages_kobj = NULL;
4108}
4109
9a305230
LS
4110
4111/*
10fbcf4c 4112 * Register hstate attributes for a single node device.
9a305230
LS
4113 * No-op if attributes already registered.
4114 */
a4a00b45 4115void hugetlb_register_node(struct node *node)
9a305230
LS
4116{
4117 struct hstate *h;
10fbcf4c 4118 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
4119 int err;
4120
a4a00b45
MS
4121 if (!hugetlb_sysfs_initialized)
4122 return;
4123
9a305230
LS
4124 if (nhs->hugepages_kobj)
4125 return; /* already allocated */
4126
4127 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
10fbcf4c 4128 &node->dev.kobj);
9a305230
LS
4129 if (!nhs->hugepages_kobj)
4130 return;
4131
4132 for_each_hstate(h) {
4133 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
4134 nhs->hstate_kobjs,
4135 &per_node_hstate_attr_group);
4136 if (err) {
282f4214 4137 pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
ffb22af5 4138 h->name, node->dev.id);
9a305230
LS
4139 hugetlb_unregister_node(node);
4140 break;
4141 }
4142 }
4143}
4144
4145/*
9b5e5d0f 4146 * hugetlb init time: register hstate attributes for all registered node
10fbcf4c
KS
4147 * devices of nodes that have memory. All on-line nodes should have
4148 * registered their associated device by this time.
9a305230 4149 */
7d9ca000 4150static void __init hugetlb_register_all_nodes(void)
9a305230
LS
4151{
4152 int nid;
4153
a4a00b45 4154 for_each_online_node(nid)
b958d4d0 4155 hugetlb_register_node(node_devices[nid]);
9a305230
LS
4156}
4157#else /* !CONFIG_NUMA */
4158
4159static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4160{
4161 BUG();
4162 if (nidp)
4163 *nidp = -1;
4164 return NULL;
4165}
4166
9a305230
LS
4167static void hugetlb_register_all_nodes(void) { }
4168
4169#endif
4170
263b8998
ML
4171#ifdef CONFIG_CMA
4172static void __init hugetlb_cma_check(void);
4173#else
4174static inline __init void hugetlb_cma_check(void)
4175{
4176}
4177#endif
4178
a4a00b45
MS
4179static void __init hugetlb_sysfs_init(void)
4180{
4181 struct hstate *h;
4182 int err;
4183
4184 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
4185 if (!hugepages_kobj)
4186 return;
4187
4188 for_each_hstate(h) {
4189 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
4190 hstate_kobjs, &hstate_attr_group);
4191 if (err)
4192 pr_err("HugeTLB: Unable to add hstate %s", h->name);
4193 }
4194
4195#ifdef CONFIG_NUMA
4196 hugetlb_sysfs_initialized = true;
4197#endif
4198 hugetlb_register_all_nodes();
4199}
4200
a3437870
NA
4201static int __init hugetlb_init(void)
4202{
8382d914
DB
4203 int i;
4204
d6995da3
MK
4205 BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
4206 __NR_HPAGEFLAGS);
4207
c2833a5b
MK
4208 if (!hugepages_supported()) {
4209 if (hugetlb_max_hstate || default_hstate_max_huge_pages)
4210 pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
0ef89d25 4211 return 0;
c2833a5b 4212 }
a3437870 4213
282f4214
MK
4214 /*
4215 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists. Some
4216 * architectures depend on setup being done here.
4217 */
4218 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
4219 if (!parsed_default_hugepagesz) {
4220 /*
4221 * If we did not parse a default huge page size, set
4222 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
4223 * number of huge pages for this default size was implicitly
4224 * specified, set that here as well.
4225 * Note that the implicit setting will overwrite an explicit
4226 * setting. A warning will be printed in this case.
4227 */
4228 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
4229 if (default_hstate_max_huge_pages) {
4230 if (default_hstate.max_huge_pages) {
4231 char buf[32];
4232
4233 string_get_size(huge_page_size(&default_hstate),
4234 1, STRING_UNITS_2, buf, 32);
4235 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
4236 default_hstate.max_huge_pages, buf);
4237 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
4238 default_hstate_max_huge_pages);
4239 }
4240 default_hstate.max_huge_pages =
4241 default_hstate_max_huge_pages;
b5389086 4242
0a7a0f6f 4243 for_each_online_node(i)
b5389086
ZY
4244 default_hstate.max_huge_pages_node[i] =
4245 default_hugepages_in_node[i];
d715cf80 4246 }
f8b74815 4247 }
a3437870 4248
cf11e85f 4249 hugetlb_cma_check();
a3437870 4250 hugetlb_init_hstates();
aa888a74 4251 gather_bootmem_prealloc();
a3437870
NA
4252 report_hugepages();
4253
4254 hugetlb_sysfs_init();
7179e7bf 4255 hugetlb_cgroup_file_init();
9a305230 4256
8382d914
DB
4257#ifdef CONFIG_SMP
4258 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
4259#else
4260 num_fault_mutexes = 1;
4261#endif
c672c7f2 4262 hugetlb_fault_mutex_table =
6da2ec56
KC
4263 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
4264 GFP_KERNEL);
c672c7f2 4265 BUG_ON(!hugetlb_fault_mutex_table);
8382d914
DB
4266
4267 for (i = 0; i < num_fault_mutexes; i++)
c672c7f2 4268 mutex_init(&hugetlb_fault_mutex_table[i]);
a3437870
NA
4269 return 0;
4270}
3e89e1c5 4271subsys_initcall(hugetlb_init);
a3437870 4272
ae94da89
MK
4273/* Overwritten by architectures with more huge page sizes */
4274bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
9fee021d 4275{
ae94da89 4276 return size == HPAGE_SIZE;
9fee021d
VT
4277}
4278
d00181b9 4279void __init hugetlb_add_hstate(unsigned int order)
a3437870
NA
4280{
4281 struct hstate *h;
8faa8b07
AK
4282 unsigned long i;
4283
a3437870 4284 if (size_to_hstate(PAGE_SIZE << order)) {
a3437870
NA
4285 return;
4286 }
47d38344 4287 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
a3437870 4288 BUG_ON(order == 0);
47d38344 4289 h = &hstates[hugetlb_max_hstate++];
29383967 4290 mutex_init(&h->resize_lock);
a3437870 4291 h->order = order;
aca78307 4292 h->mask = ~(huge_page_size(h) - 1);
8faa8b07
AK
4293 for (i = 0; i < MAX_NUMNODES; ++i)
4294 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
0edaecfa 4295 INIT_LIST_HEAD(&h->hugepage_activelist);
54f18d35
AM
4296 h->next_nid_to_alloc = first_memory_node;
4297 h->next_nid_to_free = first_memory_node;
a3437870 4298 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
c2c3a60a 4299 huge_page_size(h)/SZ_1K);
8faa8b07 4300
a3437870
NA
4301 parsed_hstate = h;
4302}
4303
b5389086
ZY
4304bool __init __weak hugetlb_node_alloc_supported(void)
4305{
4306 return true;
4307}
f87442f4
PL
4308
4309static void __init hugepages_clear_pages_in_node(void)
4310{
4311 if (!hugetlb_max_hstate) {
4312 default_hstate_max_huge_pages = 0;
4313 memset(default_hugepages_in_node, 0,
10395680 4314 sizeof(default_hugepages_in_node));
f87442f4
PL
4315 } else {
4316 parsed_hstate->max_huge_pages = 0;
4317 memset(parsed_hstate->max_huge_pages_node, 0,
10395680 4318 sizeof(parsed_hstate->max_huge_pages_node));
f87442f4
PL
4319 }
4320}
4321
282f4214
MK
4322/*
4323 * hugepages command line processing
4324 * hugepages normally follows a valid hugepagsz or default_hugepagsz
4325 * specification. If not, ignore the hugepages value. hugepages can also
4326 * be the first huge page command line option in which case it implicitly
4327 * specifies the number of huge pages for the default size.
4328 */
4329static int __init hugepages_setup(char *s)
a3437870
NA
4330{
4331 unsigned long *mhp;
8faa8b07 4332 static unsigned long *last_mhp;
b5389086
ZY
4333 int node = NUMA_NO_NODE;
4334 int count;
4335 unsigned long tmp;
4336 char *p = s;
a3437870 4337
9fee021d 4338 if (!parsed_valid_hugepagesz) {
282f4214 4339 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
9fee021d 4340 parsed_valid_hugepagesz = true;
f81f6e4b 4341 return 1;
9fee021d 4342 }
282f4214 4343
a3437870 4344 /*
282f4214
MK
4345 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
4346 * yet, so this hugepages= parameter goes to the "default hstate".
4347 * Otherwise, it goes with the previously parsed hugepagesz or
4348 * default_hugepagesz.
a3437870 4349 */
9fee021d 4350 else if (!hugetlb_max_hstate)
a3437870
NA
4351 mhp = &default_hstate_max_huge_pages;
4352 else
4353 mhp = &parsed_hstate->max_huge_pages;
4354
8faa8b07 4355 if (mhp == last_mhp) {
282f4214 4356 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
f81f6e4b 4357 return 1;
8faa8b07
AK
4358 }
4359
b5389086
ZY
4360 while (*p) {
4361 count = 0;
4362 if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4363 goto invalid;
4364 /* Parameter is node format */
4365 if (p[count] == ':') {
4366 if (!hugetlb_node_alloc_supported()) {
4367 pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n");
f81f6e4b 4368 return 1;
b5389086 4369 }
0a7a0f6f 4370 if (tmp >= MAX_NUMNODES || !node_online(tmp))
e79ce983 4371 goto invalid;
0a7a0f6f 4372 node = array_index_nospec(tmp, MAX_NUMNODES);
b5389086 4373 p += count + 1;
b5389086
ZY
4374 /* Parse hugepages */
4375 if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4376 goto invalid;
4377 if (!hugetlb_max_hstate)
4378 default_hugepages_in_node[node] = tmp;
4379 else
4380 parsed_hstate->max_huge_pages_node[node] = tmp;
4381 *mhp += tmp;
4382 /* Go to parse next node*/
4383 if (p[count] == ',')
4384 p += count + 1;
4385 else
4386 break;
4387 } else {
4388 if (p != s)
4389 goto invalid;
4390 *mhp = tmp;
4391 break;
4392 }
4393 }
a3437870 4394
8faa8b07
AK
4395 /*
4396 * Global state is always initialized later in hugetlb_init.
04adbc3f 4397 * But we need to allocate gigantic hstates here early to still
8faa8b07
AK
4398 * use the bootmem allocator.
4399 */
04adbc3f 4400 if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
8faa8b07
AK
4401 hugetlb_hstate_alloc_pages(parsed_hstate);
4402
4403 last_mhp = mhp;
4404
a3437870 4405 return 1;
b5389086
ZY
4406
4407invalid:
4408 pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p);
f87442f4 4409 hugepages_clear_pages_in_node();
f81f6e4b 4410 return 1;
a3437870 4411}
282f4214 4412__setup("hugepages=", hugepages_setup);
e11bfbfc 4413
282f4214
MK
4414/*
4415 * hugepagesz command line processing
4416 * A specific huge page size can only be specified once with hugepagesz.
4417 * hugepagesz is followed by hugepages on the command line. The global
4418 * variable 'parsed_valid_hugepagesz' is used to determine if prior
4419 * hugepagesz argument was valid.
4420 */
359f2544 4421static int __init hugepagesz_setup(char *s)
e11bfbfc 4422{
359f2544 4423 unsigned long size;
282f4214
MK
4424 struct hstate *h;
4425
4426 parsed_valid_hugepagesz = false;
359f2544
MK
4427 size = (unsigned long)memparse(s, NULL);
4428
4429 if (!arch_hugetlb_valid_size(size)) {
282f4214 4430 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
f81f6e4b 4431 return 1;
359f2544
MK
4432 }
4433
282f4214
MK
4434 h = size_to_hstate(size);
4435 if (h) {
4436 /*
4437 * hstate for this size already exists. This is normally
4438 * an error, but is allowed if the existing hstate is the
4439 * default hstate. More specifically, it is only allowed if
4440 * the number of huge pages for the default hstate was not
4441 * previously specified.
4442 */
4443 if (!parsed_default_hugepagesz || h != &default_hstate ||
4444 default_hstate.max_huge_pages) {
4445 pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
f81f6e4b 4446 return 1;
282f4214
MK
4447 }
4448
4449 /*
4450 * No need to call hugetlb_add_hstate() as hstate already
4451 * exists. But, do set parsed_hstate so that a following
4452 * hugepages= parameter will be applied to this hstate.
4453 */
4454 parsed_hstate = h;
4455 parsed_valid_hugepagesz = true;
4456 return 1;
38237830
MK
4457 }
4458
359f2544 4459 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
282f4214 4460 parsed_valid_hugepagesz = true;
e11bfbfc
NP
4461 return 1;
4462}
359f2544
MK
4463__setup("hugepagesz=", hugepagesz_setup);
4464
282f4214
MK
4465/*
4466 * default_hugepagesz command line input
4467 * Only one instance of default_hugepagesz allowed on command line.
4468 */
ae94da89 4469static int __init default_hugepagesz_setup(char *s)
e11bfbfc 4470{
ae94da89 4471 unsigned long size;
b5389086 4472 int i;
ae94da89 4473
282f4214 4474 parsed_valid_hugepagesz = false;
282f4214
MK
4475 if (parsed_default_hugepagesz) {
4476 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
f81f6e4b 4477 return 1;
282f4214
MK
4478 }
4479
ae94da89
MK
4480 size = (unsigned long)memparse(s, NULL);
4481
4482 if (!arch_hugetlb_valid_size(size)) {
282f4214 4483 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
f81f6e4b 4484 return 1;
ae94da89
MK
4485 }
4486
282f4214
MK
4487 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4488 parsed_valid_hugepagesz = true;
4489 parsed_default_hugepagesz = true;
4490 default_hstate_idx = hstate_index(size_to_hstate(size));
4491
4492 /*
4493 * The number of default huge pages (for this size) could have been
4494 * specified as the first hugetlb parameter: hugepages=X. If so,
4495 * then default_hstate_max_huge_pages is set. If the default huge
4496 * page size is gigantic (>= MAX_ORDER), then the pages must be
4497 * allocated here from bootmem allocator.
4498 */
4499 if (default_hstate_max_huge_pages) {
4500 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
0a7a0f6f 4501 for_each_online_node(i)
b5389086
ZY
4502 default_hstate.max_huge_pages_node[i] =
4503 default_hugepages_in_node[i];
282f4214
MK
4504 if (hstate_is_gigantic(&default_hstate))
4505 hugetlb_hstate_alloc_pages(&default_hstate);
4506 default_hstate_max_huge_pages = 0;
4507 }
4508
e11bfbfc
NP
4509 return 1;
4510}
ae94da89 4511__setup("default_hugepagesz=", default_hugepagesz_setup);
a3437870 4512
d2226ebd
FT
4513static nodemask_t *policy_mbind_nodemask(gfp_t gfp)
4514{
4515#ifdef CONFIG_NUMA
4516 struct mempolicy *mpol = get_task_policy(current);
4517
4518 /*
4519 * Only enforce MPOL_BIND policy which overlaps with cpuset policy
4520 * (from policy_nodemask) specifically for hugetlb case
4521 */
4522 if (mpol->mode == MPOL_BIND &&
4523 (apply_policy_zone(mpol, gfp_zone(gfp)) &&
4524 cpuset_nodemask_valid_mems_allowed(&mpol->nodes)))
4525 return &mpol->nodes;
4526#endif
4527 return NULL;
4528}
4529
8ca39e68 4530static unsigned int allowed_mems_nr(struct hstate *h)
8a213460
NA
4531{
4532 int node;
4533 unsigned int nr = 0;
d2226ebd 4534 nodemask_t *mbind_nodemask;
8ca39e68
MS
4535 unsigned int *array = h->free_huge_pages_node;
4536 gfp_t gfp_mask = htlb_alloc_mask(h);
4537
d2226ebd 4538 mbind_nodemask = policy_mbind_nodemask(gfp_mask);
8ca39e68 4539 for_each_node_mask(node, cpuset_current_mems_allowed) {
d2226ebd 4540 if (!mbind_nodemask || node_isset(node, *mbind_nodemask))
8ca39e68
MS
4541 nr += array[node];
4542 }
8a213460
NA
4543
4544 return nr;
4545}
4546
4547#ifdef CONFIG_SYSCTL
17743798
MS
4548static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
4549 void *buffer, size_t *length,
4550 loff_t *ppos, unsigned long *out)
4551{
4552 struct ctl_table dup_table;
4553
4554 /*
4555 * In order to avoid races with __do_proc_doulongvec_minmax(), we
4556 * can duplicate the @table and alter the duplicate of it.
4557 */
4558 dup_table = *table;
4559 dup_table.data = out;
4560
4561 return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
4562}
4563
06808b08
LS
4564static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
4565 struct ctl_table *table, int write,
32927393 4566 void *buffer, size_t *length, loff_t *ppos)
1da177e4 4567{
e5ff2159 4568 struct hstate *h = &default_hstate;
238d3c13 4569 unsigned long tmp = h->max_huge_pages;
08d4a246 4570 int ret;
e5ff2159 4571
457c1b27 4572 if (!hugepages_supported())
86613628 4573 return -EOPNOTSUPP;
457c1b27 4574
17743798
MS
4575 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4576 &tmp);
08d4a246
MH
4577 if (ret)
4578 goto out;
e5ff2159 4579
238d3c13
DR
4580 if (write)
4581 ret = __nr_hugepages_store_common(obey_mempolicy, h,
4582 NUMA_NO_NODE, tmp, *length);
08d4a246
MH
4583out:
4584 return ret;
1da177e4 4585}
396faf03 4586
06808b08 4587int hugetlb_sysctl_handler(struct ctl_table *table, int write,
32927393 4588 void *buffer, size_t *length, loff_t *ppos)
06808b08
LS
4589{
4590
4591 return hugetlb_sysctl_handler_common(false, table, write,
4592 buffer, length, ppos);
4593}
4594
4595#ifdef CONFIG_NUMA
4596int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
32927393 4597 void *buffer, size_t *length, loff_t *ppos)
06808b08
LS
4598{
4599 return hugetlb_sysctl_handler_common(true, table, write,
4600 buffer, length, ppos);
4601}
4602#endif /* CONFIG_NUMA */
4603
a3d0c6aa 4604int hugetlb_overcommit_handler(struct ctl_table *table, int write,
32927393 4605 void *buffer, size_t *length, loff_t *ppos)
a3d0c6aa 4606{
a5516438 4607 struct hstate *h = &default_hstate;
e5ff2159 4608 unsigned long tmp;
08d4a246 4609 int ret;
e5ff2159 4610
457c1b27 4611 if (!hugepages_supported())
86613628 4612 return -EOPNOTSUPP;
457c1b27 4613
c033a93c 4614 tmp = h->nr_overcommit_huge_pages;
e5ff2159 4615
bae7f4ae 4616 if (write && hstate_is_gigantic(h))
adbe8726
EM
4617 return -EINVAL;
4618
17743798
MS
4619 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4620 &tmp);
08d4a246
MH
4621 if (ret)
4622 goto out;
e5ff2159
AK
4623
4624 if (write) {
db71ef79 4625 spin_lock_irq(&hugetlb_lock);
e5ff2159 4626 h->nr_overcommit_huge_pages = tmp;
db71ef79 4627 spin_unlock_irq(&hugetlb_lock);
e5ff2159 4628 }
08d4a246
MH
4629out:
4630 return ret;
a3d0c6aa
NA
4631}
4632
1da177e4
LT
4633#endif /* CONFIG_SYSCTL */
4634
e1759c21 4635void hugetlb_report_meminfo(struct seq_file *m)
1da177e4 4636{
fcb2b0c5
RG
4637 struct hstate *h;
4638 unsigned long total = 0;
4639
457c1b27
NA
4640 if (!hugepages_supported())
4641 return;
fcb2b0c5
RG
4642
4643 for_each_hstate(h) {
4644 unsigned long count = h->nr_huge_pages;
4645
aca78307 4646 total += huge_page_size(h) * count;
fcb2b0c5
RG
4647
4648 if (h == &default_hstate)
4649 seq_printf(m,
4650 "HugePages_Total: %5lu\n"
4651 "HugePages_Free: %5lu\n"
4652 "HugePages_Rsvd: %5lu\n"
4653 "HugePages_Surp: %5lu\n"
4654 "Hugepagesize: %8lu kB\n",
4655 count,
4656 h->free_huge_pages,
4657 h->resv_huge_pages,
4658 h->surplus_huge_pages,
aca78307 4659 huge_page_size(h) / SZ_1K);
fcb2b0c5
RG
4660 }
4661
aca78307 4662 seq_printf(m, "Hugetlb: %8lu kB\n", total / SZ_1K);
1da177e4
LT
4663}
4664
7981593b 4665int hugetlb_report_node_meminfo(char *buf, int len, int nid)
1da177e4 4666{
a5516438 4667 struct hstate *h = &default_hstate;
7981593b 4668
457c1b27
NA
4669 if (!hugepages_supported())
4670 return 0;
7981593b
JP
4671
4672 return sysfs_emit_at(buf, len,
4673 "Node %d HugePages_Total: %5u\n"
4674 "Node %d HugePages_Free: %5u\n"
4675 "Node %d HugePages_Surp: %5u\n",
4676 nid, h->nr_huge_pages_node[nid],
4677 nid, h->free_huge_pages_node[nid],
4678 nid, h->surplus_huge_pages_node[nid]);
1da177e4
LT
4679}
4680
dcadcf1c 4681void hugetlb_show_meminfo_node(int nid)
949f7ec5
DR
4682{
4683 struct hstate *h;
949f7ec5 4684
457c1b27
NA
4685 if (!hugepages_supported())
4686 return;
4687
dcadcf1c
GL
4688 for_each_hstate(h)
4689 printk("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
4690 nid,
4691 h->nr_huge_pages_node[nid],
4692 h->free_huge_pages_node[nid],
4693 h->surplus_huge_pages_node[nid],
4694 huge_page_size(h) / SZ_1K);
949f7ec5
DR
4695}
4696
5d317b2b
NH
4697void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
4698{
4699 seq_printf(m, "HugetlbPages:\t%8lu kB\n",
4700 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
4701}
4702
1da177e4
LT
4703/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
4704unsigned long hugetlb_total_pages(void)
4705{
d0028588
WL
4706 struct hstate *h;
4707 unsigned long nr_total_pages = 0;
4708
4709 for_each_hstate(h)
4710 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
4711 return nr_total_pages;
1da177e4 4712}
1da177e4 4713
a5516438 4714static int hugetlb_acct_memory(struct hstate *h, long delta)
fc1b8a73
MG
4715{
4716 int ret = -ENOMEM;
4717
0aa7f354
ML
4718 if (!delta)
4719 return 0;
4720
db71ef79 4721 spin_lock_irq(&hugetlb_lock);
fc1b8a73
MG
4722 /*
4723 * When cpuset is configured, it breaks the strict hugetlb page
4724 * reservation as the accounting is done on a global variable. Such
4725 * reservation is completely rubbish in the presence of cpuset because
4726 * the reservation is not checked against page availability for the
4727 * current cpuset. Application can still potentially OOM'ed by kernel
4728 * with lack of free htlb page in cpuset that the task is in.
4729 * Attempt to enforce strict accounting with cpuset is almost
4730 * impossible (or too ugly) because cpuset is too fluid that
4731 * task or memory node can be dynamically moved between cpusets.
4732 *
4733 * The change of semantics for shared hugetlb mapping with cpuset is
4734 * undesirable. However, in order to preserve some of the semantics,
4735 * we fall back to check against current free page availability as
4736 * a best attempt and hopefully to minimize the impact of changing
4737 * semantics that cpuset has.
8ca39e68
MS
4738 *
4739 * Apart from cpuset, we also have memory policy mechanism that
4740 * also determines from which node the kernel will allocate memory
4741 * in a NUMA system. So similar to cpuset, we also should consider
4742 * the memory policy of the current task. Similar to the description
4743 * above.
fc1b8a73
MG
4744 */
4745 if (delta > 0) {
a5516438 4746 if (gather_surplus_pages(h, delta) < 0)
fc1b8a73
MG
4747 goto out;
4748
8ca39e68 4749 if (delta > allowed_mems_nr(h)) {
a5516438 4750 return_unused_surplus_pages(h, delta);
fc1b8a73
MG
4751 goto out;
4752 }
4753 }
4754
4755 ret = 0;
4756 if (delta < 0)
a5516438 4757 return_unused_surplus_pages(h, (unsigned long) -delta);
fc1b8a73
MG
4758
4759out:
db71ef79 4760 spin_unlock_irq(&hugetlb_lock);
fc1b8a73
MG
4761 return ret;
4762}
4763
84afd99b
AW
4764static void hugetlb_vm_op_open(struct vm_area_struct *vma)
4765{
f522c3ac 4766 struct resv_map *resv = vma_resv_map(vma);
84afd99b
AW
4767
4768 /*
612b8a31 4769 * HPAGE_RESV_OWNER indicates a private mapping.
84afd99b
AW
4770 * This new VMA should share its siblings reservation map if present.
4771 * The VMA will only ever have a valid reservation map pointer where
4772 * it is being copied for another still existing VMA. As that VMA
25985edc 4773 * has a reference to the reservation map it cannot disappear until
84afd99b
AW
4774 * after this open call completes. It is therefore safe to take a
4775 * new reference here without additional locking.
4776 */
09a26e83
MK
4777 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
4778 resv_map_dup_hugetlb_cgroup_uncharge_info(resv);
f522c3ac 4779 kref_get(&resv->refs);
09a26e83 4780 }
8d9bfb26 4781
131a79b4
MK
4782 /*
4783 * vma_lock structure for sharable mappings is vma specific.
612b8a31
MK
4784 * Clear old pointer (if copied via vm_area_dup) and allocate
4785 * new structure. Before clearing, make sure vma_lock is not
4786 * for this vma.
131a79b4
MK
4787 */
4788 if (vma->vm_flags & VM_MAYSHARE) {
612b8a31
MK
4789 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
4790
4791 if (vma_lock) {
4792 if (vma_lock->vma != vma) {
4793 vma->vm_private_data = NULL;
4794 hugetlb_vma_lock_alloc(vma);
4795 } else
4796 pr_warn("HugeTLB: vma_lock already exists in %s.\n", __func__);
4797 } else
4798 hugetlb_vma_lock_alloc(vma);
131a79b4 4799 }
84afd99b
AW
4800}
4801
a1e78772
MG
4802static void hugetlb_vm_op_close(struct vm_area_struct *vma)
4803{
a5516438 4804 struct hstate *h = hstate_vma(vma);
8d9bfb26 4805 struct resv_map *resv;
90481622 4806 struct hugepage_subpool *spool = subpool_vma(vma);
4e35f483 4807 unsigned long reserve, start, end;
1c5ecae3 4808 long gbl_reserve;
84afd99b 4809
8d9bfb26
MK
4810 hugetlb_vma_lock_free(vma);
4811
4812 resv = vma_resv_map(vma);
4e35f483
JK
4813 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4814 return;
84afd99b 4815
4e35f483
JK
4816 start = vma_hugecache_offset(h, vma, vma->vm_start);
4817 end = vma_hugecache_offset(h, vma, vma->vm_end);
84afd99b 4818
4e35f483 4819 reserve = (end - start) - region_count(resv, start, end);
e9fe92ae 4820 hugetlb_cgroup_uncharge_counter(resv, start, end);
4e35f483 4821 if (reserve) {
1c5ecae3
MK
4822 /*
4823 * Decrement reserve counts. The global reserve count may be
4824 * adjusted if the subpool has a minimum size.
4825 */
4826 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
4827 hugetlb_acct_memory(h, -gbl_reserve);
84afd99b 4828 }
e9fe92ae
MA
4829
4830 kref_put(&resv->refs, resv_map_release);
a1e78772
MG
4831}
4832
31383c68
DW
4833static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
4834{
4835 if (addr & ~(huge_page_mask(hstate_vma(vma))))
4836 return -EINVAL;
4837 return 0;
4838}
4839
05ea8860
DW
4840static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
4841{
aca78307 4842 return huge_page_size(hstate_vma(vma));
05ea8860
DW
4843}
4844
1da177e4
LT
4845/*
4846 * We cannot handle pagefaults against hugetlb pages at all. They cause
4847 * handle_mm_fault() to try to instantiate regular-sized pages in the
6c26d310 4848 * hugepage VMA. do_page_fault() is supposed to trap this, so BUG is we get
1da177e4
LT
4849 * this far.
4850 */
b3ec9f33 4851static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
1da177e4
LT
4852{
4853 BUG();
d0217ac0 4854 return 0;
1da177e4
LT
4855}
4856
eec3636a
JC
4857/*
4858 * When a new function is introduced to vm_operations_struct and added
4859 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
4860 * This is because under System V memory model, mappings created via
4861 * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
4862 * their original vm_ops are overwritten with shm_vm_ops.
4863 */
f0f37e2f 4864const struct vm_operations_struct hugetlb_vm_ops = {
d0217ac0 4865 .fault = hugetlb_vm_op_fault,
84afd99b 4866 .open = hugetlb_vm_op_open,
a1e78772 4867 .close = hugetlb_vm_op_close,
dd3b614f 4868 .may_split = hugetlb_vm_op_split,
05ea8860 4869 .pagesize = hugetlb_vm_op_pagesize,
1da177e4
LT
4870};
4871
1e8f889b
DG
4872static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
4873 int writable)
63551ae0
DG
4874{
4875 pte_t entry;
79c1c594 4876 unsigned int shift = huge_page_shift(hstate_vma(vma));
63551ae0 4877
1e8f889b 4878 if (writable) {
106c992a
GS
4879 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
4880 vma->vm_page_prot)));
63551ae0 4881 } else {
106c992a
GS
4882 entry = huge_pte_wrprotect(mk_huge_pte(page,
4883 vma->vm_page_prot));
63551ae0
DG
4884 }
4885 entry = pte_mkyoung(entry);
79c1c594 4886 entry = arch_make_huge_pte(entry, shift, vma->vm_flags);
63551ae0
DG
4887
4888 return entry;
4889}
4890
1e8f889b
DG
4891static void set_huge_ptep_writable(struct vm_area_struct *vma,
4892 unsigned long address, pte_t *ptep)
4893{
4894 pte_t entry;
4895
106c992a 4896 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
32f84528 4897 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4b3073e1 4898 update_mmu_cache(vma, address, ptep);
1e8f889b
DG
4899}
4900
d5ed7444 4901bool is_hugetlb_entry_migration(pte_t pte)
4a705fef
NH
4902{
4903 swp_entry_t swp;
4904
4905 if (huge_pte_none(pte) || pte_present(pte))
d5ed7444 4906 return false;
4a705fef 4907 swp = pte_to_swp_entry(pte);
d79d176a 4908 if (is_migration_entry(swp))
d5ed7444 4909 return true;
4a705fef 4910 else
d5ed7444 4911 return false;
4a705fef
NH
4912}
4913
3e5c3600 4914static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
4a705fef
NH
4915{
4916 swp_entry_t swp;
4917
4918 if (huge_pte_none(pte) || pte_present(pte))
3e5c3600 4919 return false;
4a705fef 4920 swp = pte_to_swp_entry(pte);
d79d176a 4921 if (is_hwpoison_entry(swp))
3e5c3600 4922 return true;
4a705fef 4923 else
3e5c3600 4924 return false;
4a705fef 4925}
1e8f889b 4926
4eae4efa
PX
4927static void
4928hugetlb_install_page(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
4929 struct page *new_page)
4930{
4931 __SetPageUptodate(new_page);
4eae4efa 4932 hugepage_add_new_anon_rmap(new_page, vma, addr);
1eba86c0 4933 set_huge_pte_at(vma->vm_mm, addr, ptep, make_huge_pte(vma, new_page, 1));
4eae4efa 4934 hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
4eae4efa
PX
4935 SetHPageMigratable(new_page);
4936}
4937
63551ae0 4938int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
bc70fbf2
PX
4939 struct vm_area_struct *dst_vma,
4940 struct vm_area_struct *src_vma)
63551ae0 4941{
3aa4ed80 4942 pte_t *src_pte, *dst_pte, entry;
63551ae0 4943 struct page *ptepage;
1c59827d 4944 unsigned long addr;
bc70fbf2
PX
4945 bool cow = is_cow_mapping(src_vma->vm_flags);
4946 struct hstate *h = hstate_vma(src_vma);
a5516438 4947 unsigned long sz = huge_page_size(h);
4eae4efa 4948 unsigned long npages = pages_per_huge_page(h);
ac46d4f3 4949 struct mmu_notifier_range range;
e95a9851 4950 unsigned long last_addr_mask;
e8569dd2 4951 int ret = 0;
1e8f889b 4952
ac46d4f3 4953 if (cow) {
bc70fbf2
PX
4954 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src_vma, src,
4955 src_vma->vm_start,
4956 src_vma->vm_end);
ac46d4f3 4957 mmu_notifier_invalidate_range_start(&range);
623a1ddf
DH
4958 mmap_assert_write_locked(src);
4959 raw_write_seqcount_begin(&src->write_protect_seq);
40549ba8
MK
4960 } else {
4961 /*
4962 * For shared mappings the vma lock must be held before
4963 * calling huge_pte_offset in the src vma. Otherwise, the
4964 * returned ptep could go away if part of a shared pmd and
4965 * another thread calls huge_pmd_unshare.
4966 */
4967 hugetlb_vma_lock_read(src_vma);
ac46d4f3 4968 }
e8569dd2 4969
e95a9851 4970 last_addr_mask = hugetlb_mask_last_page(h);
bc70fbf2 4971 for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) {
cb900f41 4972 spinlock_t *src_ptl, *dst_ptl;
7868a208 4973 src_pte = huge_pte_offset(src, addr, sz);
e95a9851
MK
4974 if (!src_pte) {
4975 addr |= last_addr_mask;
c74df32c 4976 continue;
e95a9851 4977 }
bc70fbf2 4978 dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz);
e8569dd2
AS
4979 if (!dst_pte) {
4980 ret = -ENOMEM;
4981 break;
4982 }
c5c99429 4983
5e41540c
MK
4984 /*
4985 * If the pagetables are shared don't copy or take references.
5e41540c 4986 *
3aa4ed80 4987 * dst_pte == src_pte is the common case of src/dest sharing.
5e41540c 4988 * However, src could have 'unshared' and dst shares with
3aa4ed80
ML
4989 * another vma. So page_count of ptep page is checked instead
4990 * to reliably determine whether pte is shared.
5e41540c 4991 */
3aa4ed80 4992 if (page_count(virt_to_page(dst_pte)) > 1) {
e95a9851 4993 addr |= last_addr_mask;
c5c99429 4994 continue;
e95a9851 4995 }
c5c99429 4996
cb900f41
KS
4997 dst_ptl = huge_pte_lock(h, dst, dst_pte);
4998 src_ptl = huge_pte_lockptr(h, src, src_pte);
4999 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4a705fef 5000 entry = huge_ptep_get(src_pte);
4eae4efa 5001again:
3aa4ed80 5002 if (huge_pte_none(entry)) {
5e41540c 5003 /*
3aa4ed80 5004 * Skip if src entry none.
5e41540c 5005 */
4a705fef 5006 ;
c2cb0dcc
NH
5007 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) {
5008 bool uffd_wp = huge_pte_uffd_wp(entry);
5009
5010 if (!userfaultfd_wp(dst_vma) && uffd_wp)
5011 entry = huge_pte_clear_uffd_wp(entry);
5012 set_huge_pte_at(dst, addr, dst_pte, entry);
5013 } else if (unlikely(is_hugetlb_entry_migration(entry))) {
4a705fef 5014 swp_entry_t swp_entry = pte_to_swp_entry(entry);
bc70fbf2 5015 bool uffd_wp = huge_pte_uffd_wp(entry);
4a705fef 5016
6c287605 5017 if (!is_readable_migration_entry(swp_entry) && cow) {
4a705fef
NH
5018 /*
5019 * COW mappings require pages in both
5020 * parent and child to be set to read.
5021 */
4dd845b5
AP
5022 swp_entry = make_readable_migration_entry(
5023 swp_offset(swp_entry));
4a705fef 5024 entry = swp_entry_to_pte(swp_entry);
bc70fbf2
PX
5025 if (userfaultfd_wp(src_vma) && uffd_wp)
5026 entry = huge_pte_mkuffd_wp(entry);
18f39629 5027 set_huge_pte_at(src, addr, src_pte, entry);
4a705fef 5028 }
bc70fbf2
PX
5029 if (!userfaultfd_wp(dst_vma) && uffd_wp)
5030 entry = huge_pte_clear_uffd_wp(entry);
18f39629 5031 set_huge_pte_at(dst, addr, dst_pte, entry);
bc70fbf2
PX
5032 } else if (unlikely(is_pte_marker(entry))) {
5033 /*
5034 * We copy the pte marker only if the dst vma has
5035 * uffd-wp enabled.
5036 */
5037 if (userfaultfd_wp(dst_vma))
5038 set_huge_pte_at(dst, addr, dst_pte, entry);
4a705fef 5039 } else {
4eae4efa
PX
5040 entry = huge_ptep_get(src_pte);
5041 ptepage = pte_page(entry);
5042 get_page(ptepage);
5043
5044 /*
fb3d824d
DH
5045 * Failing to duplicate the anon rmap is a rare case
5046 * where we see pinned hugetlb pages while they're
5047 * prone to COW. We need to do the COW earlier during
5048 * fork.
4eae4efa
PX
5049 *
5050 * When pre-allocating the page or copying data, we
5051 * need to be without the pgtable locks since we could
5052 * sleep during the process.
5053 */
fb3d824d
DH
5054 if (!PageAnon(ptepage)) {
5055 page_dup_file_rmap(ptepage, true);
bc70fbf2
PX
5056 } else if (page_try_dup_anon_rmap(ptepage, true,
5057 src_vma)) {
4eae4efa
PX
5058 pte_t src_pte_old = entry;
5059 struct page *new;
5060
5061 spin_unlock(src_ptl);
5062 spin_unlock(dst_ptl);
5063 /* Do not use reserve as it's private owned */
bc70fbf2 5064 new = alloc_huge_page(dst_vma, addr, 1);
4eae4efa
PX
5065 if (IS_ERR(new)) {
5066 put_page(ptepage);
5067 ret = PTR_ERR(new);
5068 break;
5069 }
bc70fbf2 5070 copy_user_huge_page(new, ptepage, addr, dst_vma,
4eae4efa
PX
5071 npages);
5072 put_page(ptepage);
5073
5074 /* Install the new huge page if src pte stable */
5075 dst_ptl = huge_pte_lock(h, dst, dst_pte);
5076 src_ptl = huge_pte_lockptr(h, src, src_pte);
5077 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5078 entry = huge_ptep_get(src_pte);
5079 if (!pte_same(src_pte_old, entry)) {
bc70fbf2 5080 restore_reserve_on_error(h, dst_vma, addr,
846be085 5081 new);
4eae4efa 5082 put_page(new);
3aa4ed80 5083 /* huge_ptep of dst_pte won't change as in child */
4eae4efa
PX
5084 goto again;
5085 }
bc70fbf2 5086 hugetlb_install_page(dst_vma, dst_pte, addr, new);
4eae4efa
PX
5087 spin_unlock(src_ptl);
5088 spin_unlock(dst_ptl);
5089 continue;
5090 }
5091
34ee645e 5092 if (cow) {
0f10851e
JG
5093 /*
5094 * No need to notify as we are downgrading page
5095 * table protection not changing it to point
5096 * to a new page.
5097 *
ee65728e 5098 * See Documentation/mm/mmu_notifier.rst
0f10851e 5099 */
7f2e9525 5100 huge_ptep_set_wrprotect(src, addr, src_pte);
84894e1c 5101 entry = huge_pte_wrprotect(entry);
34ee645e 5102 }
4eae4efa 5103
1c59827d 5104 set_huge_pte_at(dst, addr, dst_pte, entry);
4eae4efa 5105 hugetlb_count_add(npages, dst);
1c59827d 5106 }
cb900f41
KS
5107 spin_unlock(src_ptl);
5108 spin_unlock(dst_ptl);
63551ae0 5109 }
63551ae0 5110
623a1ddf
DH
5111 if (cow) {
5112 raw_write_seqcount_end(&src->write_protect_seq);
ac46d4f3 5113 mmu_notifier_invalidate_range_end(&range);
40549ba8
MK
5114 } else {
5115 hugetlb_vma_unlock_read(src_vma);
623a1ddf 5116 }
e8569dd2
AS
5117
5118 return ret;
63551ae0
DG
5119}
5120
550a7d60 5121static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr,
db110a99 5122 unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte)
550a7d60
MA
5123{
5124 struct hstate *h = hstate_vma(vma);
5125 struct mm_struct *mm = vma->vm_mm;
550a7d60 5126 spinlock_t *src_ptl, *dst_ptl;
db110a99 5127 pte_t pte;
550a7d60 5128
550a7d60
MA
5129 dst_ptl = huge_pte_lock(h, mm, dst_pte);
5130 src_ptl = huge_pte_lockptr(h, mm, src_pte);
5131
5132 /*
5133 * We don't have to worry about the ordering of src and dst ptlocks
5134 * because exclusive mmap_sem (or the i_mmap_lock) prevents deadlock.
5135 */
5136 if (src_ptl != dst_ptl)
5137 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5138
5139 pte = huge_ptep_get_and_clear(mm, old_addr, src_pte);
5140 set_huge_pte_at(mm, new_addr, dst_pte, pte);
5141
5142 if (src_ptl != dst_ptl)
5143 spin_unlock(src_ptl);
5144 spin_unlock(dst_ptl);
5145}
5146
5147int move_hugetlb_page_tables(struct vm_area_struct *vma,
5148 struct vm_area_struct *new_vma,
5149 unsigned long old_addr, unsigned long new_addr,
5150 unsigned long len)
5151{
5152 struct hstate *h = hstate_vma(vma);
5153 struct address_space *mapping = vma->vm_file->f_mapping;
5154 unsigned long sz = huge_page_size(h);
5155 struct mm_struct *mm = vma->vm_mm;
5156 unsigned long old_end = old_addr + len;
e95a9851 5157 unsigned long last_addr_mask;
550a7d60
MA
5158 pte_t *src_pte, *dst_pte;
5159 struct mmu_notifier_range range;
3d0b95cd 5160 bool shared_pmd = false;
550a7d60
MA
5161
5162 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, old_addr,
5163 old_end);
5164 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
3d0b95cd
BW
5165 /*
5166 * In case of shared PMDs, we should cover the maximum possible
5167 * range.
5168 */
5169 flush_cache_range(vma, range.start, range.end);
5170
550a7d60 5171 mmu_notifier_invalidate_range_start(&range);
e95a9851 5172 last_addr_mask = hugetlb_mask_last_page(h);
550a7d60 5173 /* Prevent race with file truncation */
40549ba8 5174 hugetlb_vma_lock_write(vma);
550a7d60
MA
5175 i_mmap_lock_write(mapping);
5176 for (; old_addr < old_end; old_addr += sz, new_addr += sz) {
5177 src_pte = huge_pte_offset(mm, old_addr, sz);
e95a9851
MK
5178 if (!src_pte) {
5179 old_addr |= last_addr_mask;
5180 new_addr |= last_addr_mask;
550a7d60 5181 continue;
e95a9851 5182 }
550a7d60
MA
5183 if (huge_pte_none(huge_ptep_get(src_pte)))
5184 continue;
5185
4ddb4d91 5186 if (huge_pmd_unshare(mm, vma, old_addr, src_pte)) {
3d0b95cd 5187 shared_pmd = true;
4ddb4d91
MK
5188 old_addr |= last_addr_mask;
5189 new_addr |= last_addr_mask;
550a7d60 5190 continue;
3d0b95cd 5191 }
550a7d60
MA
5192
5193 dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz);
5194 if (!dst_pte)
5195 break;
5196
db110a99 5197 move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte);
550a7d60 5198 }
3d0b95cd
BW
5199
5200 if (shared_pmd)
5201 flush_tlb_range(vma, range.start, range.end);
5202 else
5203 flush_tlb_range(vma, old_end - len, old_end);
550a7d60 5204 mmu_notifier_invalidate_range_end(&range);
13e4ad2c 5205 i_mmap_unlock_write(mapping);
40549ba8 5206 hugetlb_vma_unlock_write(vma);
550a7d60
MA
5207
5208 return len + old_addr - old_end;
5209}
5210
73c54763
PX
5211static void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
5212 unsigned long start, unsigned long end,
05e90bd0 5213 struct page *ref_page, zap_flags_t zap_flags)
63551ae0
DG
5214{
5215 struct mm_struct *mm = vma->vm_mm;
5216 unsigned long address;
c7546f8f 5217 pte_t *ptep;
63551ae0 5218 pte_t pte;
cb900f41 5219 spinlock_t *ptl;
63551ae0 5220 struct page *page;
a5516438
AK
5221 struct hstate *h = hstate_vma(vma);
5222 unsigned long sz = huge_page_size(h);
e95a9851 5223 unsigned long last_addr_mask;
a4a118f2 5224 bool force_flush = false;
a5516438 5225
63551ae0 5226 WARN_ON(!is_vm_hugetlb_page(vma));
a5516438
AK
5227 BUG_ON(start & ~huge_page_mask(h));
5228 BUG_ON(end & ~huge_page_mask(h));
63551ae0 5229
07e32661
AK
5230 /*
5231 * This is a hugetlb vma, all the pte entries should point
5232 * to huge page.
5233 */
ed6a7935 5234 tlb_change_page_size(tlb, sz);
24669e58 5235 tlb_start_vma(tlb, vma);
dff11abe 5236
e95a9851 5237 last_addr_mask = hugetlb_mask_last_page(h);
569f48b8 5238 address = start;
569f48b8 5239 for (; address < end; address += sz) {
7868a208 5240 ptep = huge_pte_offset(mm, address, sz);
e95a9851
MK
5241 if (!ptep) {
5242 address |= last_addr_mask;
c7546f8f 5243 continue;
e95a9851 5244 }
c7546f8f 5245
cb900f41 5246 ptl = huge_pte_lock(h, mm, ptep);
4ddb4d91 5247 if (huge_pmd_unshare(mm, vma, address, ptep)) {
31d49da5 5248 spin_unlock(ptl);
a4a118f2
NA
5249 tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE);
5250 force_flush = true;
4ddb4d91 5251 address |= last_addr_mask;
31d49da5
AK
5252 continue;
5253 }
39dde65c 5254
6629326b 5255 pte = huge_ptep_get(ptep);
31d49da5
AK
5256 if (huge_pte_none(pte)) {
5257 spin_unlock(ptl);
5258 continue;
5259 }
6629326b
HD
5260
5261 /*
9fbc1f63
NH
5262 * Migrating hugepage or HWPoisoned hugepage is already
5263 * unmapped and its refcount is dropped, so just clear pte here.
6629326b 5264 */
9fbc1f63 5265 if (unlikely(!pte_present(pte))) {
05e90bd0
PX
5266 /*
5267 * If the pte was wr-protected by uffd-wp in any of the
5268 * swap forms, meanwhile the caller does not want to
5269 * drop the uffd-wp bit in this zap, then replace the
5270 * pte with a marker.
5271 */
5272 if (pte_swp_uffd_wp_any(pte) &&
5273 !(zap_flags & ZAP_FLAG_DROP_MARKER))
5274 set_huge_pte_at(mm, address, ptep,
5275 make_pte_marker(PTE_MARKER_UFFD_WP));
5276 else
5277 huge_pte_clear(mm, address, ptep, sz);
31d49da5
AK
5278 spin_unlock(ptl);
5279 continue;
8c4894c6 5280 }
6629326b
HD
5281
5282 page = pte_page(pte);
04f2cbe3
MG
5283 /*
5284 * If a reference page is supplied, it is because a specific
5285 * page is being unmapped, not a range. Ensure the page we
5286 * are about to unmap is the actual page of interest.
5287 */
5288 if (ref_page) {
31d49da5
AK
5289 if (page != ref_page) {
5290 spin_unlock(ptl);
5291 continue;
5292 }
04f2cbe3
MG
5293 /*
5294 * Mark the VMA as having unmapped its page so that
5295 * future faults in this VMA will fail rather than
5296 * looking like data was lost
5297 */
5298 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
5299 }
5300
c7546f8f 5301 pte = huge_ptep_get_and_clear(mm, address, ptep);
b528e4b6 5302 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
106c992a 5303 if (huge_pte_dirty(pte))
6649a386 5304 set_page_dirty(page);
05e90bd0
PX
5305 /* Leave a uffd-wp pte marker if needed */
5306 if (huge_pte_uffd_wp(pte) &&
5307 !(zap_flags & ZAP_FLAG_DROP_MARKER))
5308 set_huge_pte_at(mm, address, ptep,
5309 make_pte_marker(PTE_MARKER_UFFD_WP));
5d317b2b 5310 hugetlb_count_sub(pages_per_huge_page(h), mm);
cea86fe2 5311 page_remove_rmap(page, vma, true);
31d49da5 5312
cb900f41 5313 spin_unlock(ptl);
e77b0852 5314 tlb_remove_page_size(tlb, page, huge_page_size(h));
31d49da5
AK
5315 /*
5316 * Bail out after unmapping reference page if supplied
5317 */
5318 if (ref_page)
5319 break;
fe1668ae 5320 }
24669e58 5321 tlb_end_vma(tlb, vma);
a4a118f2
NA
5322
5323 /*
5324 * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We
5325 * could defer the flush until now, since by holding i_mmap_rwsem we
5326 * guaranteed that the last refernece would not be dropped. But we must
5327 * do the flushing before we return, as otherwise i_mmap_rwsem will be
5328 * dropped and the last reference to the shared PMDs page might be
5329 * dropped as well.
5330 *
5331 * In theory we could defer the freeing of the PMD pages as well, but
5332 * huge_pmd_unshare() relies on the exact page_count for the PMD page to
5333 * detect sharing, so we cannot defer the release of the page either.
5334 * Instead, do flush now.
5335 */
5336 if (force_flush)
5337 tlb_flush_mmu_tlbonly(tlb);
1da177e4 5338}
63551ae0 5339
d833352a
MG
5340void __unmap_hugepage_range_final(struct mmu_gather *tlb,
5341 struct vm_area_struct *vma, unsigned long start,
05e90bd0
PX
5342 unsigned long end, struct page *ref_page,
5343 zap_flags_t zap_flags)
d833352a 5344{
131a79b4
MK
5345 hugetlb_vma_lock_write(vma);
5346 i_mmap_lock_write(vma->vm_file->f_mapping);
5347
369258ce 5348 /* mmu notification performed in caller */
05e90bd0 5349 __unmap_hugepage_range(tlb, vma, start, end, ref_page, zap_flags);
d833352a 5350
04ada095
MK
5351 if (zap_flags & ZAP_FLAG_UNMAP) { /* final unmap */
5352 /*
5353 * Unlock and free the vma lock before releasing i_mmap_rwsem.
5354 * When the vma_lock is freed, this makes the vma ineligible
5355 * for pmd sharing. And, i_mmap_rwsem is required to set up
5356 * pmd sharing. This is important as page tables for this
5357 * unmapped range will be asynchrously deleted. If the page
5358 * tables are shared, there will be issues when accessed by
5359 * someone else.
5360 */
5361 __hugetlb_vma_unlock_write_free(vma);
5362 i_mmap_unlock_write(vma->vm_file->f_mapping);
5363 } else {
5364 i_mmap_unlock_write(vma->vm_file->f_mapping);
5365 hugetlb_vma_unlock_write(vma);
5366 }
d833352a
MG
5367}
5368
502717f4 5369void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
05e90bd0
PX
5370 unsigned long end, struct page *ref_page,
5371 zap_flags_t zap_flags)
502717f4 5372{
369258ce 5373 struct mmu_notifier_range range;
24669e58 5374 struct mmu_gather tlb;
dff11abe 5375
369258ce
MK
5376 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
5377 start, end);
5378 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5379 mmu_notifier_invalidate_range_start(&range);
a72afd87 5380 tlb_gather_mmu(&tlb, vma->vm_mm);
369258ce 5381
05e90bd0 5382 __unmap_hugepage_range(&tlb, vma, start, end, ref_page, zap_flags);
369258ce
MK
5383
5384 mmu_notifier_invalidate_range_end(&range);
ae8eba8b 5385 tlb_finish_mmu(&tlb);
502717f4
CK
5386}
5387
04f2cbe3
MG
5388/*
5389 * This is called when the original mapper is failing to COW a MAP_PRIVATE
578b7725 5390 * mapping it owns the reserve page for. The intention is to unmap the page
04f2cbe3
MG
5391 * from other VMAs and let the children be SIGKILLed if they are faulting the
5392 * same region.
5393 */
2f4612af
DB
5394static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
5395 struct page *page, unsigned long address)
04f2cbe3 5396{
7526674d 5397 struct hstate *h = hstate_vma(vma);
04f2cbe3
MG
5398 struct vm_area_struct *iter_vma;
5399 struct address_space *mapping;
04f2cbe3
MG
5400 pgoff_t pgoff;
5401
5402 /*
5403 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
5404 * from page cache lookup which is in HPAGE_SIZE units.
5405 */
7526674d 5406 address = address & huge_page_mask(h);
36e4f20a
MH
5407 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
5408 vma->vm_pgoff;
93c76a3d 5409 mapping = vma->vm_file->f_mapping;
04f2cbe3 5410
4eb2b1dc
MG
5411 /*
5412 * Take the mapping lock for the duration of the table walk. As
5413 * this mapping should be shared between all the VMAs,
5414 * __unmap_hugepage_range() is called as the lock is already held
5415 */
83cde9e8 5416 i_mmap_lock_write(mapping);
6b2dbba8 5417 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
04f2cbe3
MG
5418 /* Do not unmap the current VMA */
5419 if (iter_vma == vma)
5420 continue;
5421
2f84a899
MG
5422 /*
5423 * Shared VMAs have their own reserves and do not affect
5424 * MAP_PRIVATE accounting but it is possible that a shared
5425 * VMA is using the same page so check and skip such VMAs.
5426 */
5427 if (iter_vma->vm_flags & VM_MAYSHARE)
5428 continue;
5429
04f2cbe3
MG
5430 /*
5431 * Unmap the page from other VMAs without their own reserves.
5432 * They get marked to be SIGKILLed if they fault in these
5433 * areas. This is because a future no-page fault on this VMA
5434 * could insert a zeroed page instead of the data existing
5435 * from the time of fork. This would look like data corruption
5436 */
5437 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
24669e58 5438 unmap_hugepage_range(iter_vma, address,
05e90bd0 5439 address + huge_page_size(h), page, 0);
04f2cbe3 5440 }
83cde9e8 5441 i_mmap_unlock_write(mapping);
04f2cbe3
MG
5442}
5443
0fe6e20b 5444/*
c89357e2 5445 * hugetlb_wp() should be called with page lock of the original hugepage held.
aa6d2e8c 5446 * Called with hugetlb_fault_mutex_table held and pte_page locked so we
ef009b25
MH
5447 * cannot race with other handlers or page migration.
5448 * Keep the pte_same checks anyway to make transition from the mutex easier.
0fe6e20b 5449 */
c89357e2
DH
5450static vm_fault_t hugetlb_wp(struct mm_struct *mm, struct vm_area_struct *vma,
5451 unsigned long address, pte_t *ptep, unsigned int flags,
3999f52e 5452 struct page *pagecache_page, spinlock_t *ptl)
1e8f889b 5453{
c89357e2 5454 const bool unshare = flags & FAULT_FLAG_UNSHARE;
3999f52e 5455 pte_t pte;
a5516438 5456 struct hstate *h = hstate_vma(vma);
1e8f889b 5457 struct page *old_page, *new_page;
2b740303
SJ
5458 int outside_reserve = 0;
5459 vm_fault_t ret = 0;
974e6d66 5460 unsigned long haddr = address & huge_page_mask(h);
ac46d4f3 5461 struct mmu_notifier_range range;
1e8f889b 5462
1d8d1464
DH
5463 /*
5464 * hugetlb does not support FOLL_FORCE-style write faults that keep the
5465 * PTE mapped R/O such as maybe_mkwrite() would do.
5466 */
5467 if (WARN_ON_ONCE(!unshare && !(vma->vm_flags & VM_WRITE)))
5468 return VM_FAULT_SIGSEGV;
5469
5470 /* Let's take out MAP_SHARED mappings first. */
5471 if (vma->vm_flags & VM_MAYSHARE) {
1d8d1464
DH
5472 set_huge_ptep_writable(vma, haddr, ptep);
5473 return 0;
5474 }
5475
3999f52e 5476 pte = huge_ptep_get(ptep);
1e8f889b
DG
5477 old_page = pte_page(pte);
5478
662ce1dc
YY
5479 delayacct_wpcopy_start();
5480
04f2cbe3 5481retry_avoidcopy:
c89357e2
DH
5482 /*
5483 * If no-one else is actually using this page, we're the exclusive
5484 * owner and can reuse this page.
5485 */
37a2140d 5486 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
c89357e2
DH
5487 if (!PageAnonExclusive(old_page))
5488 page_move_anon_rmap(old_page, vma);
5489 if (likely(!unshare))
5490 set_huge_ptep_writable(vma, haddr, ptep);
662ce1dc
YY
5491
5492 delayacct_wpcopy_end();
83c54070 5493 return 0;
1e8f889b 5494 }
6c287605
DH
5495 VM_BUG_ON_PAGE(PageAnon(old_page) && PageAnonExclusive(old_page),
5496 old_page);
1e8f889b 5497
04f2cbe3
MG
5498 /*
5499 * If the process that created a MAP_PRIVATE mapping is about to
5500 * perform a COW due to a shared page count, attempt to satisfy
5501 * the allocation without using the existing reserves. The pagecache
5502 * page is used to determine if the reserve at this address was
5503 * consumed or not. If reserves were used, a partial faulted mapping
5504 * at the time of fork() could consume its reserves on COW instead
5505 * of the full address range.
5506 */
5944d011 5507 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
04f2cbe3
MG
5508 old_page != pagecache_page)
5509 outside_reserve = 1;
5510
09cbfeaf 5511 get_page(old_page);
b76c8cfb 5512
ad4404a2
DB
5513 /*
5514 * Drop page table lock as buddy allocator may be called. It will
5515 * be acquired again before returning to the caller, as expected.
5516 */
cb900f41 5517 spin_unlock(ptl);
5b7a1d40 5518 new_page = alloc_huge_page(vma, haddr, outside_reserve);
1e8f889b 5519
2fc39cec 5520 if (IS_ERR(new_page)) {
04f2cbe3
MG
5521 /*
5522 * If a process owning a MAP_PRIVATE mapping fails to COW,
5523 * it is due to references held by a child and an insufficient
5524 * huge page pool. To guarantee the original mappers
5525 * reliability, unmap the page from child processes. The child
5526 * may get SIGKILLed if it later faults.
5527 */
5528 if (outside_reserve) {
40549ba8
MK
5529 struct address_space *mapping = vma->vm_file->f_mapping;
5530 pgoff_t idx;
5531 u32 hash;
5532
09cbfeaf 5533 put_page(old_page);
40549ba8
MK
5534 /*
5535 * Drop hugetlb_fault_mutex and vma_lock before
5536 * unmapping. unmapping needs to hold vma_lock
5537 * in write mode. Dropping vma_lock in read mode
5538 * here is OK as COW mappings do not interact with
5539 * PMD sharing.
5540 *
5541 * Reacquire both after unmap operation.
5542 */
5543 idx = vma_hugecache_offset(h, vma, haddr);
5544 hash = hugetlb_fault_mutex_hash(mapping, idx);
5545 hugetlb_vma_unlock_read(vma);
5546 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5547
5b7a1d40 5548 unmap_ref_private(mm, vma, old_page, haddr);
40549ba8
MK
5549
5550 mutex_lock(&hugetlb_fault_mutex_table[hash]);
5551 hugetlb_vma_lock_read(vma);
2f4612af 5552 spin_lock(ptl);
5b7a1d40 5553 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
2f4612af
DB
5554 if (likely(ptep &&
5555 pte_same(huge_ptep_get(ptep), pte)))
5556 goto retry_avoidcopy;
5557 /*
5558 * race occurs while re-acquiring page table
5559 * lock, and our job is done.
5560 */
662ce1dc 5561 delayacct_wpcopy_end();
2f4612af 5562 return 0;
04f2cbe3
MG
5563 }
5564
2b740303 5565 ret = vmf_error(PTR_ERR(new_page));
ad4404a2 5566 goto out_release_old;
1e8f889b
DG
5567 }
5568
0fe6e20b
NH
5569 /*
5570 * When the original hugepage is shared one, it does not have
5571 * anon_vma prepared.
5572 */
44e2aa93 5573 if (unlikely(anon_vma_prepare(vma))) {
ad4404a2
DB
5574 ret = VM_FAULT_OOM;
5575 goto out_release_all;
44e2aa93 5576 }
0fe6e20b 5577
974e6d66 5578 copy_user_huge_page(new_page, old_page, address, vma,
47ad8475 5579 pages_per_huge_page(h));
0ed361de 5580 __SetPageUptodate(new_page);
1e8f889b 5581
7269f999 5582 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
6f4f13e8 5583 haddr + huge_page_size(h));
ac46d4f3 5584 mmu_notifier_invalidate_range_start(&range);
ad4404a2 5585
b76c8cfb 5586 /*
cb900f41 5587 * Retake the page table lock to check for racing updates
b76c8cfb
LW
5588 * before the page tables are altered
5589 */
cb900f41 5590 spin_lock(ptl);
5b7a1d40 5591 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
a9af0c5d 5592 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
c89357e2 5593 /* Break COW or unshare */
5b7a1d40 5594 huge_ptep_clear_flush(vma, haddr, ptep);
ac46d4f3 5595 mmu_notifier_invalidate_range(mm, range.start, range.end);
cea86fe2 5596 page_remove_rmap(old_page, vma, true);
5b7a1d40 5597 hugepage_add_new_anon_rmap(new_page, vma, haddr);
1eba86c0 5598 set_huge_pte_at(mm, haddr, ptep,
c89357e2 5599 make_huge_pte(vma, new_page, !unshare));
8f251a3d 5600 SetHPageMigratable(new_page);
1e8f889b
DG
5601 /* Make the old page be freed below */
5602 new_page = old_page;
5603 }
cb900f41 5604 spin_unlock(ptl);
ac46d4f3 5605 mmu_notifier_invalidate_range_end(&range);
ad4404a2 5606out_release_all:
c89357e2
DH
5607 /*
5608 * No restore in case of successful pagetable update (Break COW or
5609 * unshare)
5610 */
c7b1850d
MK
5611 if (new_page != old_page)
5612 restore_reserve_on_error(h, vma, haddr, new_page);
09cbfeaf 5613 put_page(new_page);
ad4404a2 5614out_release_old:
09cbfeaf 5615 put_page(old_page);
8312034f 5616
ad4404a2 5617 spin_lock(ptl); /* Caller expects lock to be held */
662ce1dc
YY
5618
5619 delayacct_wpcopy_end();
ad4404a2 5620 return ret;
1e8f889b
DG
5621}
5622
3ae77f43
HD
5623/*
5624 * Return whether there is a pagecache page to back given address within VMA.
5625 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
5626 */
5627static bool hugetlbfs_pagecache_present(struct hstate *h,
2a15efc9
HD
5628 struct vm_area_struct *vma, unsigned long address)
5629{
5630 struct address_space *mapping;
5631 pgoff_t idx;
5632 struct page *page;
5633
5634 mapping = vma->vm_file->f_mapping;
5635 idx = vma_hugecache_offset(h, vma, address);
5636
5637 page = find_get_page(mapping, idx);
5638 if (page)
5639 put_page(page);
5640 return page != NULL;
5641}
5642
7e1813d4 5643int hugetlb_add_to_page_cache(struct page *page, struct address_space *mapping,
ab76ad54
MK
5644 pgoff_t idx)
5645{
d9ef44de 5646 struct folio *folio = page_folio(page);
ab76ad54
MK
5647 struct inode *inode = mapping->host;
5648 struct hstate *h = hstate_inode(inode);
d9ef44de 5649 int err;
ab76ad54 5650
d9ef44de
MWO
5651 __folio_set_locked(folio);
5652 err = __filemap_add_folio(mapping, folio, idx, GFP_KERNEL, NULL);
5653
5654 if (unlikely(err)) {
5655 __folio_clear_locked(folio);
ab76ad54 5656 return err;
d9ef44de 5657 }
d6995da3 5658 ClearHPageRestoreReserve(page);
ab76ad54 5659
22146c3c 5660 /*
d9ef44de 5661 * mark folio dirty so that it will not be removed from cache/file
22146c3c
MK
5662 * by non-hugetlbfs specific code paths.
5663 */
d9ef44de 5664 folio_mark_dirty(folio);
22146c3c 5665
ab76ad54
MK
5666 spin_lock(&inode->i_lock);
5667 inode->i_blocks += blocks_per_huge_page(h);
5668 spin_unlock(&inode->i_lock);
5669 return 0;
5670}
5671
7677f7fd
AR
5672static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma,
5673 struct address_space *mapping,
5674 pgoff_t idx,
5675 unsigned int flags,
5676 unsigned long haddr,
824ddc60 5677 unsigned long addr,
7677f7fd
AR
5678 unsigned long reason)
5679{
7677f7fd
AR
5680 u32 hash;
5681 struct vm_fault vmf = {
5682 .vma = vma,
5683 .address = haddr,
824ddc60 5684 .real_address = addr,
7677f7fd
AR
5685 .flags = flags,
5686
5687 /*
5688 * Hard to debug if it ends up being
5689 * used by a callee that assumes
5690 * something about the other
5691 * uninitialized fields... same as in
5692 * memory.c
5693 */
5694 };
5695
5696 /*
958f32ce
LS
5697 * vma_lock and hugetlb_fault_mutex must be dropped before handling
5698 * userfault. Also mmap_lock could be dropped due to handling
5699 * userfault, any vma operation should be careful from here.
7677f7fd 5700 */
40549ba8 5701 hugetlb_vma_unlock_read(vma);
7677f7fd
AR
5702 hash = hugetlb_fault_mutex_hash(mapping, idx);
5703 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
958f32ce 5704 return handle_userfault(&vmf, reason);
7677f7fd
AR
5705}
5706
2ea7ff1e
PX
5707/*
5708 * Recheck pte with pgtable lock. Returns true if pte didn't change, or
5709 * false if pte changed or is changing.
5710 */
5711static bool hugetlb_pte_stable(struct hstate *h, struct mm_struct *mm,
5712 pte_t *ptep, pte_t old_pte)
5713{
5714 spinlock_t *ptl;
5715 bool same;
5716
5717 ptl = huge_pte_lock(h, mm, ptep);
5718 same = pte_same(huge_ptep_get(ptep), old_pte);
5719 spin_unlock(ptl);
5720
5721 return same;
5722}
5723
2b740303
SJ
5724static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
5725 struct vm_area_struct *vma,
5726 struct address_space *mapping, pgoff_t idx,
c64e912c
PX
5727 unsigned long address, pte_t *ptep,
5728 pte_t old_pte, unsigned int flags)
ac9b9c66 5729{
a5516438 5730 struct hstate *h = hstate_vma(vma);
2b740303 5731 vm_fault_t ret = VM_FAULT_SIGBUS;
409eb8c2 5732 int anon_rmap = 0;
4c887265 5733 unsigned long size;
4c887265 5734 struct page *page;
1e8f889b 5735 pte_t new_pte;
cb900f41 5736 spinlock_t *ptl;
285b8dca 5737 unsigned long haddr = address & huge_page_mask(h);
c7b1850d 5738 bool new_page, new_pagecache_page = false;
958f32ce 5739 u32 hash = hugetlb_fault_mutex_hash(mapping, idx);
4c887265 5740
04f2cbe3
MG
5741 /*
5742 * Currently, we are forced to kill the process in the event the
5743 * original mapper has unmapped pages from the child due to a failed
c89357e2
DH
5744 * COW/unsharing. Warn that such a situation has occurred as it may not
5745 * be obvious.
04f2cbe3
MG
5746 */
5747 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
910154d5 5748 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
ffb22af5 5749 current->pid);
958f32ce 5750 goto out;
04f2cbe3
MG
5751 }
5752
4c887265 5753 /*
188a3972
MK
5754 * Use page lock to guard against racing truncation
5755 * before we get page_table_lock.
4c887265 5756 */
c7b1850d 5757 new_page = false;
6bda666a
CL
5758 page = find_lock_page(mapping, idx);
5759 if (!page) {
188a3972
MK
5760 size = i_size_read(mapping->host) >> huge_page_shift(h);
5761 if (idx >= size)
5762 goto out;
7677f7fd 5763 /* Check for page in userfault range */
2ea7ff1e
PX
5764 if (userfaultfd_missing(vma)) {
5765 /*
5766 * Since hugetlb_no_page() was examining pte
5767 * without pgtable lock, we need to re-test under
5768 * lock because the pte may not be stable and could
5769 * have changed from under us. Try to detect
5770 * either changed or during-changing ptes and retry
5771 * properly when needed.
5772 *
5773 * Note that userfaultfd is actually fine with
5774 * false positives (e.g. caused by pte changed),
5775 * but not wrong logical events (e.g. caused by
5776 * reading a pte during changing). The latter can
5777 * confuse the userspace, so the strictness is very
5778 * much preferred. E.g., MISSING event should
5779 * never happen on the page after UFFDIO_COPY has
5780 * correctly installed the page and returned.
5781 */
5782 if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
5783 ret = 0;
5784 goto out;
5785 }
5786
5787 return hugetlb_handle_userfault(vma, mapping, idx, flags,
5788 haddr, address,
5789 VM_UFFD_MISSING);
5790 }
1a1aad8a 5791
285b8dca 5792 page = alloc_huge_page(vma, haddr, 0);
2fc39cec 5793 if (IS_ERR(page)) {
4643d67e
MK
5794 /*
5795 * Returning error will result in faulting task being
5796 * sent SIGBUS. The hugetlb fault mutex prevents two
5797 * tasks from racing to fault in the same page which
5798 * could result in false unable to allocate errors.
5799 * Page migration does not take the fault mutex, but
5800 * does a clear then write of pte's under page table
5801 * lock. Page fault code could race with migration,
5802 * notice the clear pte and try to allocate a page
5803 * here. Before returning error, get ptl and make
5804 * sure there really is no pte entry.
5805 */
f9bf6c03 5806 if (hugetlb_pte_stable(h, mm, ptep, old_pte))
d83e6c8a 5807 ret = vmf_error(PTR_ERR(page));
f9bf6c03
PX
5808 else
5809 ret = 0;
6bda666a
CL
5810 goto out;
5811 }
47ad8475 5812 clear_huge_page(page, address, pages_per_huge_page(h));
0ed361de 5813 __SetPageUptodate(page);
cb6acd01 5814 new_page = true;
ac9b9c66 5815
f83a275d 5816 if (vma->vm_flags & VM_MAYSHARE) {
7e1813d4 5817 int err = hugetlb_add_to_page_cache(page, mapping, idx);
6bda666a 5818 if (err) {
3a5497a2
ML
5819 /*
5820 * err can't be -EEXIST which implies someone
5821 * else consumed the reservation since hugetlb
5822 * fault mutex is held when add a hugetlb page
5823 * to the page cache. So it's safe to call
5824 * restore_reserve_on_error() here.
5825 */
5826 restore_reserve_on_error(h, vma, haddr, page);
6bda666a 5827 put_page(page);
6bda666a
CL
5828 goto out;
5829 }
c7b1850d 5830 new_pagecache_page = true;
23be7468 5831 } else {
6bda666a 5832 lock_page(page);
0fe6e20b
NH
5833 if (unlikely(anon_vma_prepare(vma))) {
5834 ret = VM_FAULT_OOM;
5835 goto backout_unlocked;
5836 }
409eb8c2 5837 anon_rmap = 1;
23be7468 5838 }
0fe6e20b 5839 } else {
998b4382
NH
5840 /*
5841 * If memory error occurs between mmap() and fault, some process
5842 * don't have hwpoisoned swap entry for errored virtual address.
5843 * So we need to block hugepage fault by PG_hwpoison bit check.
5844 */
5845 if (unlikely(PageHWPoison(page))) {
0eb98f15 5846 ret = VM_FAULT_HWPOISON_LARGE |
972dc4de 5847 VM_FAULT_SET_HINDEX(hstate_index(h));
998b4382
NH
5848 goto backout_unlocked;
5849 }
7677f7fd
AR
5850
5851 /* Check for page in userfault range. */
5852 if (userfaultfd_minor(vma)) {
5853 unlock_page(page);
5854 put_page(page);
2ea7ff1e
PX
5855 /* See comment in userfaultfd_missing() block above */
5856 if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
5857 ret = 0;
5858 goto out;
5859 }
5860 return hugetlb_handle_userfault(vma, mapping, idx, flags,
5861 haddr, address,
5862 VM_UFFD_MINOR);
7677f7fd 5863 }
6bda666a 5864 }
1e8f889b 5865
57303d80
AW
5866 /*
5867 * If we are going to COW a private mapping later, we examine the
5868 * pending reservations for this page now. This will ensure that
5869 * any allocations necessary to record that reservation occur outside
5870 * the spinlock.
5871 */
5e911373 5872 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
285b8dca 5873 if (vma_needs_reservation(h, vma, haddr) < 0) {
2b26736c
AW
5874 ret = VM_FAULT_OOM;
5875 goto backout_unlocked;
5876 }
5e911373 5877 /* Just decrements count, does not deallocate */
285b8dca 5878 vma_end_reservation(h, vma, haddr);
5e911373 5879 }
57303d80 5880
8bea8052 5881 ptl = huge_pte_lock(h, mm, ptep);
83c54070 5882 ret = 0;
c64e912c
PX
5883 /* If pte changed from under us, retry */
5884 if (!pte_same(huge_ptep_get(ptep), old_pte))
4c887265
AL
5885 goto backout;
5886
4781593d 5887 if (anon_rmap)
285b8dca 5888 hugepage_add_new_anon_rmap(page, vma, haddr);
4781593d 5889 else
fb3d824d 5890 page_dup_file_rmap(page, true);
1e8f889b
DG
5891 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
5892 && (vma->vm_flags & VM_SHARED)));
c64e912c
PX
5893 /*
5894 * If this pte was previously wr-protected, keep it wr-protected even
5895 * if populated.
5896 */
5897 if (unlikely(pte_marker_uffd_wp(old_pte)))
5898 new_pte = huge_pte_wrprotect(huge_pte_mkuffd_wp(new_pte));
285b8dca 5899 set_huge_pte_at(mm, haddr, ptep, new_pte);
1e8f889b 5900
5d317b2b 5901 hugetlb_count_add(pages_per_huge_page(h), mm);
788c7df4 5902 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
1e8f889b 5903 /* Optimization, do the COW without a second fault */
c89357e2 5904 ret = hugetlb_wp(mm, vma, address, ptep, flags, page, ptl);
1e8f889b
DG
5905 }
5906
cb900f41 5907 spin_unlock(ptl);
cb6acd01
MK
5908
5909 /*
8f251a3d
MK
5910 * Only set HPageMigratable in newly allocated pages. Existing pages
5911 * found in the pagecache may not have HPageMigratableset if they have
5912 * been isolated for migration.
cb6acd01
MK
5913 */
5914 if (new_page)
8f251a3d 5915 SetHPageMigratable(page);
cb6acd01 5916
4c887265
AL
5917 unlock_page(page);
5918out:
958f32ce
LS
5919 hugetlb_vma_unlock_read(vma);
5920 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
ac9b9c66 5921 return ret;
4c887265
AL
5922
5923backout:
cb900f41 5924 spin_unlock(ptl);
2b26736c 5925backout_unlocked:
c7b1850d
MK
5926 if (new_page && !new_pagecache_page)
5927 restore_reserve_on_error(h, vma, haddr, page);
fa27759a
MK
5928
5929 unlock_page(page);
4c887265
AL
5930 put_page(page);
5931 goto out;
ac9b9c66
HD
5932}
5933
8382d914 5934#ifdef CONFIG_SMP
188b04a7 5935u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
8382d914
DB
5936{
5937 unsigned long key[2];
5938 u32 hash;
5939
1b426bac
MK
5940 key[0] = (unsigned long) mapping;
5941 key[1] = idx;
8382d914 5942
55254636 5943 hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
8382d914
DB
5944
5945 return hash & (num_fault_mutexes - 1);
5946}
5947#else
5948/*
6c26d310 5949 * For uniprocessor systems we always use a single mutex, so just
8382d914
DB
5950 * return 0 and avoid the hashing overhead.
5951 */
188b04a7 5952u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
8382d914
DB
5953{
5954 return 0;
5955}
5956#endif
5957
2b740303 5958vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
788c7df4 5959 unsigned long address, unsigned int flags)
86e5216f 5960{
8382d914 5961 pte_t *ptep, entry;
cb900f41 5962 spinlock_t *ptl;
2b740303 5963 vm_fault_t ret;
8382d914
DB
5964 u32 hash;
5965 pgoff_t idx;
0fe6e20b 5966 struct page *page = NULL;
57303d80 5967 struct page *pagecache_page = NULL;
a5516438 5968 struct hstate *h = hstate_vma(vma);
8382d914 5969 struct address_space *mapping;
0f792cf9 5970 int need_wait_lock = 0;
285b8dca 5971 unsigned long haddr = address & huge_page_mask(h);
86e5216f 5972
285b8dca 5973 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
fd6a03ed 5974 if (ptep) {
40549ba8
MK
5975 /*
5976 * Since we hold no locks, ptep could be stale. That is
5977 * OK as we are only making decisions based on content and
5978 * not actually modifying content here.
5979 */
fd6a03ed 5980 entry = huge_ptep_get(ptep);
290408d4 5981 if (unlikely(is_hugetlb_entry_migration(entry))) {
ad1ac596 5982 migration_entry_wait_huge(vma, ptep);
290408d4
NH
5983 return 0;
5984 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
32f84528 5985 return VM_FAULT_HWPOISON_LARGE |
972dc4de 5986 VM_FAULT_SET_HINDEX(hstate_index(h));
fd6a03ed
NH
5987 }
5988
3935baa9
DG
5989 /*
5990 * Serialize hugepage allocation and instantiation, so that we don't
5991 * get spurious allocation failures if two CPUs race to instantiate
5992 * the same page in the page cache.
5993 */
40549ba8
MK
5994 mapping = vma->vm_file->f_mapping;
5995 idx = vma_hugecache_offset(h, vma, haddr);
188b04a7 5996 hash = hugetlb_fault_mutex_hash(mapping, idx);
c672c7f2 5997 mutex_lock(&hugetlb_fault_mutex_table[hash]);
8382d914 5998
40549ba8
MK
5999 /*
6000 * Acquire vma lock before calling huge_pte_alloc and hold
6001 * until finished with ptep. This prevents huge_pmd_unshare from
6002 * being called elsewhere and making the ptep no longer valid.
6003 *
6004 * ptep could have already be assigned via huge_pte_offset. That
6005 * is OK, as huge_pte_alloc will return the same value unless
6006 * something has changed.
6007 */
6008 hugetlb_vma_lock_read(vma);
6009 ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h));
6010 if (!ptep) {
6011 hugetlb_vma_unlock_read(vma);
6012 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6013 return VM_FAULT_OOM;
6014 }
6015
7f2e9525 6016 entry = huge_ptep_get(ptep);
c64e912c 6017 /* PTE markers should be handled the same way as none pte */
958f32ce
LS
6018 if (huge_pte_none_mostly(entry))
6019 /*
6020 * hugetlb_no_page will drop vma lock and hugetlb fault
6021 * mutex internally, which make us return immediately.
6022 */
6023 return hugetlb_no_page(mm, vma, mapping, idx, address, ptep,
c64e912c 6024 entry, flags);
86e5216f 6025
83c54070 6026 ret = 0;
1e8f889b 6027
0f792cf9
NH
6028 /*
6029 * entry could be a migration/hwpoison entry at this point, so this
6030 * check prevents the kernel from going below assuming that we have
7c8de358
EP
6031 * an active hugepage in pagecache. This goto expects the 2nd page
6032 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
6033 * properly handle it.
0f792cf9
NH
6034 */
6035 if (!pte_present(entry))
6036 goto out_mutex;
6037
57303d80 6038 /*
c89357e2
DH
6039 * If we are going to COW/unshare the mapping later, we examine the
6040 * pending reservations for this page now. This will ensure that any
57303d80 6041 * allocations necessary to record that reservation occur outside the
1d8d1464
DH
6042 * spinlock. Also lookup the pagecache page now as it is used to
6043 * determine if a reservation has been consumed.
57303d80 6044 */
c89357e2 6045 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
1d8d1464 6046 !(vma->vm_flags & VM_MAYSHARE) && !huge_pte_write(entry)) {
285b8dca 6047 if (vma_needs_reservation(h, vma, haddr) < 0) {
2b26736c 6048 ret = VM_FAULT_OOM;
b4d1d99f 6049 goto out_mutex;
2b26736c 6050 }
5e911373 6051 /* Just decrements count, does not deallocate */
285b8dca 6052 vma_end_reservation(h, vma, haddr);
57303d80 6053
29be8426 6054 pagecache_page = find_lock_page(mapping, idx);
57303d80
AW
6055 }
6056
0f792cf9
NH
6057 ptl = huge_pte_lock(h, mm, ptep);
6058
c89357e2 6059 /* Check for a racing update before calling hugetlb_wp() */
0f792cf9
NH
6060 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
6061 goto out_ptl;
6062
166f3ecc
PX
6063 /* Handle userfault-wp first, before trying to lock more pages */
6064 if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(ptep)) &&
6065 (flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
6066 struct vm_fault vmf = {
6067 .vma = vma,
6068 .address = haddr,
6069 .real_address = address,
6070 .flags = flags,
6071 };
6072
6073 spin_unlock(ptl);
6074 if (pagecache_page) {
6075 unlock_page(pagecache_page);
6076 put_page(pagecache_page);
6077 }
40549ba8 6078 hugetlb_vma_unlock_read(vma);
166f3ecc 6079 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
166f3ecc
PX
6080 return handle_userfault(&vmf, VM_UFFD_WP);
6081 }
6082
56c9cfb1 6083 /*
c89357e2 6084 * hugetlb_wp() requires page locks of pte_page(entry) and
56c9cfb1
NH
6085 * pagecache_page, so here we need take the former one
6086 * when page != pagecache_page or !pagecache_page.
56c9cfb1
NH
6087 */
6088 page = pte_page(entry);
6089 if (page != pagecache_page)
0f792cf9
NH
6090 if (!trylock_page(page)) {
6091 need_wait_lock = 1;
6092 goto out_ptl;
6093 }
b4d1d99f 6094
0f792cf9 6095 get_page(page);
b4d1d99f 6096
c89357e2 6097 if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
106c992a 6098 if (!huge_pte_write(entry)) {
c89357e2
DH
6099 ret = hugetlb_wp(mm, vma, address, ptep, flags,
6100 pagecache_page, ptl);
0f792cf9 6101 goto out_put_page;
c89357e2
DH
6102 } else if (likely(flags & FAULT_FLAG_WRITE)) {
6103 entry = huge_pte_mkdirty(entry);
b4d1d99f 6104 }
b4d1d99f
DG
6105 }
6106 entry = pte_mkyoung(entry);
285b8dca 6107 if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
788c7df4 6108 flags & FAULT_FLAG_WRITE))
285b8dca 6109 update_mmu_cache(vma, haddr, ptep);
0f792cf9
NH
6110out_put_page:
6111 if (page != pagecache_page)
6112 unlock_page(page);
6113 put_page(page);
cb900f41
KS
6114out_ptl:
6115 spin_unlock(ptl);
57303d80
AW
6116
6117 if (pagecache_page) {
6118 unlock_page(pagecache_page);
6119 put_page(pagecache_page);
6120 }
b4d1d99f 6121out_mutex:
40549ba8 6122 hugetlb_vma_unlock_read(vma);
c672c7f2 6123 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
0f792cf9
NH
6124 /*
6125 * Generally it's safe to hold refcount during waiting page lock. But
6126 * here we just wait to defer the next page fault to avoid busy loop and
6127 * the page is not used after unlocked before returning from the current
6128 * page fault. So we are safe from accessing freed page, even if we wait
6129 * here without taking refcount.
6130 */
6131 if (need_wait_lock)
6132 wait_on_page_locked(page);
1e8f889b 6133 return ret;
86e5216f
AL
6134}
6135
714c1891 6136#ifdef CONFIG_USERFAULTFD
8fb5debc
MK
6137/*
6138 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with
6139 * modifications for huge pages.
6140 */
6141int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
6142 pte_t *dst_pte,
6143 struct vm_area_struct *dst_vma,
6144 unsigned long dst_addr,
6145 unsigned long src_addr,
f6191471 6146 enum mcopy_atomic_mode mode,
6041c691
PX
6147 struct page **pagep,
6148 bool wp_copy)
8fb5debc 6149{
f6191471 6150 bool is_continue = (mode == MCOPY_ATOMIC_CONTINUE);
8cc5fcbb
MA
6151 struct hstate *h = hstate_vma(dst_vma);
6152 struct address_space *mapping = dst_vma->vm_file->f_mapping;
6153 pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
1e392147 6154 unsigned long size;
1c9e8def 6155 int vm_shared = dst_vma->vm_flags & VM_SHARED;
8fb5debc
MK
6156 pte_t _dst_pte;
6157 spinlock_t *ptl;
8cc5fcbb 6158 int ret = -ENOMEM;
8fb5debc 6159 struct page *page;
f6191471 6160 int writable;
cc30042d 6161 bool page_in_pagecache = false;
8fb5debc 6162
f6191471
AR
6163 if (is_continue) {
6164 ret = -EFAULT;
6165 page = find_lock_page(mapping, idx);
6166 if (!page)
6167 goto out;
cc30042d 6168 page_in_pagecache = true;
f6191471 6169 } else if (!*pagep) {
d84cf06e
MA
6170 /* If a page already exists, then it's UFFDIO_COPY for
6171 * a non-missing case. Return -EEXIST.
6172 */
6173 if (vm_shared &&
6174 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6175 ret = -EEXIST;
6176 goto out;
6177 }
6178
8fb5debc 6179 page = alloc_huge_page(dst_vma, dst_addr, 0);
d84cf06e
MA
6180 if (IS_ERR(page)) {
6181 ret = -ENOMEM;
8fb5debc 6182 goto out;
d84cf06e 6183 }
8fb5debc
MK
6184
6185 ret = copy_huge_page_from_user(page,
6186 (const void __user *) src_addr,
810a56b9 6187 pages_per_huge_page(h), false);
8fb5debc 6188
c1e8d7c6 6189 /* fallback to copy_from_user outside mmap_lock */
8fb5debc 6190 if (unlikely(ret)) {
9e368259 6191 ret = -ENOENT;
8cc5fcbb
MA
6192 /* Free the allocated page which may have
6193 * consumed a reservation.
6194 */
6195 restore_reserve_on_error(h, dst_vma, dst_addr, page);
6196 put_page(page);
6197
6198 /* Allocate a temporary page to hold the copied
6199 * contents.
6200 */
6201 page = alloc_huge_page_vma(h, dst_vma, dst_addr);
6202 if (!page) {
6203 ret = -ENOMEM;
6204 goto out;
6205 }
8fb5debc 6206 *pagep = page;
8cc5fcbb
MA
6207 /* Set the outparam pagep and return to the caller to
6208 * copy the contents outside the lock. Don't free the
6209 * page.
6210 */
8fb5debc
MK
6211 goto out;
6212 }
6213 } else {
8cc5fcbb
MA
6214 if (vm_shared &&
6215 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6216 put_page(*pagep);
6217 ret = -EEXIST;
6218 *pagep = NULL;
6219 goto out;
6220 }
6221
6222 page = alloc_huge_page(dst_vma, dst_addr, 0);
6223 if (IS_ERR(page)) {
da9a298f 6224 put_page(*pagep);
8cc5fcbb
MA
6225 ret = -ENOMEM;
6226 *pagep = NULL;
6227 goto out;
6228 }
34892366
MS
6229 copy_user_huge_page(page, *pagep, dst_addr, dst_vma,
6230 pages_per_huge_page(h));
8cc5fcbb 6231 put_page(*pagep);
8fb5debc
MK
6232 *pagep = NULL;
6233 }
6234
6235 /*
6236 * The memory barrier inside __SetPageUptodate makes sure that
6237 * preceding stores to the page contents become visible before
6238 * the set_pte_at() write.
6239 */
6240 __SetPageUptodate(page);
8fb5debc 6241
f6191471
AR
6242 /* Add shared, newly allocated pages to the page cache. */
6243 if (vm_shared && !is_continue) {
1e392147
AA
6244 size = i_size_read(mapping->host) >> huge_page_shift(h);
6245 ret = -EFAULT;
6246 if (idx >= size)
6247 goto out_release_nounlock;
1c9e8def 6248
1e392147
AA
6249 /*
6250 * Serialization between remove_inode_hugepages() and
7e1813d4 6251 * hugetlb_add_to_page_cache() below happens through the
1e392147
AA
6252 * hugetlb_fault_mutex_table that here must be hold by
6253 * the caller.
6254 */
7e1813d4 6255 ret = hugetlb_add_to_page_cache(page, mapping, idx);
1c9e8def
MK
6256 if (ret)
6257 goto out_release_nounlock;
cc30042d 6258 page_in_pagecache = true;
1c9e8def
MK
6259 }
6260
bcc66543 6261 ptl = huge_pte_lock(h, dst_mm, dst_pte);
8fb5debc 6262
8625147c
JH
6263 ret = -EIO;
6264 if (PageHWPoison(page))
6265 goto out_release_unlock;
6266
6041c691
PX
6267 /*
6268 * We allow to overwrite a pte marker: consider when both MISSING|WP
6269 * registered, we firstly wr-protect a none pte which has no page cache
6270 * page backing it, then access the page.
6271 */
fa27759a 6272 ret = -EEXIST;
6041c691 6273 if (!huge_pte_none_mostly(huge_ptep_get(dst_pte)))
8fb5debc
MK
6274 goto out_release_unlock;
6275
4781593d 6276 if (page_in_pagecache)
fb3d824d 6277 page_dup_file_rmap(page, true);
4781593d 6278 else
1c9e8def 6279 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
8fb5debc 6280
6041c691
PX
6281 /*
6282 * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY
6283 * with wp flag set, don't set pte write bit.
6284 */
6285 if (wp_copy || (is_continue && !vm_shared))
f6191471
AR
6286 writable = 0;
6287 else
6288 writable = dst_vma->vm_flags & VM_WRITE;
6289
6290 _dst_pte = make_huge_pte(dst_vma, page, writable);
6041c691
PX
6291 /*
6292 * Always mark UFFDIO_COPY page dirty; note that this may not be
6293 * extremely important for hugetlbfs for now since swapping is not
6294 * supported, but we should still be clear in that this page cannot be
6295 * thrown away at will, even if write bit not set.
6296 */
6297 _dst_pte = huge_pte_mkdirty(_dst_pte);
8fb5debc
MK
6298 _dst_pte = pte_mkyoung(_dst_pte);
6299
6041c691
PX
6300 if (wp_copy)
6301 _dst_pte = huge_pte_mkuffd_wp(_dst_pte);
6302
8fb5debc
MK
6303 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
6304
8fb5debc
MK
6305 hugetlb_count_add(pages_per_huge_page(h), dst_mm);
6306
6307 /* No need to invalidate - it was non-present before */
6308 update_mmu_cache(dst_vma, dst_addr, dst_pte);
6309
6310 spin_unlock(ptl);
f6191471
AR
6311 if (!is_continue)
6312 SetHPageMigratable(page);
6313 if (vm_shared || is_continue)
1c9e8def 6314 unlock_page(page);
8fb5debc
MK
6315 ret = 0;
6316out:
6317 return ret;
6318out_release_unlock:
6319 spin_unlock(ptl);
f6191471 6320 if (vm_shared || is_continue)
1c9e8def 6321 unlock_page(page);
5af10dfd 6322out_release_nounlock:
cc30042d 6323 if (!page_in_pagecache)
c7b1850d 6324 restore_reserve_on_error(h, dst_vma, dst_addr, page);
8fb5debc
MK
6325 put_page(page);
6326 goto out;
6327}
714c1891 6328#endif /* CONFIG_USERFAULTFD */
8fb5debc 6329
82e5d378
JM
6330static void record_subpages_vmas(struct page *page, struct vm_area_struct *vma,
6331 int refs, struct page **pages,
6332 struct vm_area_struct **vmas)
6333{
6334 int nr;
6335
6336 for (nr = 0; nr < refs; nr++) {
6337 if (likely(pages))
14455eab 6338 pages[nr] = nth_page(page, nr);
82e5d378
JM
6339 if (vmas)
6340 vmas[nr] = vma;
6341 }
6342}
6343
84209e87
DH
6344static inline bool __follow_hugetlb_must_fault(struct vm_area_struct *vma,
6345 unsigned int flags, pte_t *pte,
a7f22660
DH
6346 bool *unshare)
6347{
6348 pte_t pteval = huge_ptep_get(pte);
6349
6350 *unshare = false;
6351 if (is_swap_pte(pteval))
6352 return true;
6353 if (huge_pte_write(pteval))
6354 return false;
6355 if (flags & FOLL_WRITE)
6356 return true;
84209e87 6357 if (gup_must_unshare(vma, flags, pte_page(pteval))) {
a7f22660
DH
6358 *unshare = true;
6359 return true;
6360 }
6361 return false;
6362}
6363
57a196a5
MK
6364struct page *hugetlb_follow_page_mask(struct vm_area_struct *vma,
6365 unsigned long address, unsigned int flags)
6366{
6367 struct hstate *h = hstate_vma(vma);
6368 struct mm_struct *mm = vma->vm_mm;
6369 unsigned long haddr = address & huge_page_mask(h);
6370 struct page *page = NULL;
6371 spinlock_t *ptl;
6372 pte_t *pte, entry;
6373
6374 /*
6375 * FOLL_PIN is not supported for follow_page(). Ordinary GUP goes via
6376 * follow_hugetlb_page().
6377 */
6378 if (WARN_ON_ONCE(flags & FOLL_PIN))
6379 return NULL;
6380
6381retry:
6382 pte = huge_pte_offset(mm, haddr, huge_page_size(h));
6383 if (!pte)
6384 return NULL;
6385
6386 ptl = huge_pte_lock(h, mm, pte);
6387 entry = huge_ptep_get(pte);
6388 if (pte_present(entry)) {
6389 page = pte_page(entry) +
6390 ((address & ~huge_page_mask(h)) >> PAGE_SHIFT);
6391 /*
6392 * Note that page may be a sub-page, and with vmemmap
6393 * optimizations the page struct may be read only.
6394 * try_grab_page() will increase the ref count on the
6395 * head page, so this will be OK.
6396 *
e2ca6ba6
LT
6397 * try_grab_page() should always be able to get the page here,
6398 * because we hold the ptl lock and have verified pte_present().
57a196a5 6399 */
e2ca6ba6 6400 if (try_grab_page(page, flags)) {
57a196a5
MK
6401 page = NULL;
6402 goto out;
6403 }
6404 } else {
6405 if (is_hugetlb_entry_migration(entry)) {
6406 spin_unlock(ptl);
6407 __migration_entry_wait_huge(pte, ptl);
6408 goto retry;
6409 }
6410 /*
6411 * hwpoisoned entry is treated as no_page_table in
6412 * follow_page_mask().
6413 */
6414 }
6415out:
6416 spin_unlock(ptl);
6417 return page;
6418}
6419
28a35716
ML
6420long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
6421 struct page **pages, struct vm_area_struct **vmas,
6422 unsigned long *position, unsigned long *nr_pages,
4f6da934 6423 long i, unsigned int flags, int *locked)
63551ae0 6424{
d5d4b0aa
CK
6425 unsigned long pfn_offset;
6426 unsigned long vaddr = *position;
28a35716 6427 unsigned long remainder = *nr_pages;
a5516438 6428 struct hstate *h = hstate_vma(vma);
0fa5bc40 6429 int err = -EFAULT, refs;
63551ae0 6430
63551ae0 6431 while (vaddr < vma->vm_end && remainder) {
4c887265 6432 pte_t *pte;
cb900f41 6433 spinlock_t *ptl = NULL;
a7f22660 6434 bool unshare = false;
2a15efc9 6435 int absent;
4c887265 6436 struct page *page;
63551ae0 6437
02057967
DR
6438 /*
6439 * If we have a pending SIGKILL, don't keep faulting pages and
6440 * potentially allocating memory.
6441 */
fa45f116 6442 if (fatal_signal_pending(current)) {
02057967
DR
6443 remainder = 0;
6444 break;
6445 }
6446
4c887265
AL
6447 /*
6448 * Some archs (sparc64, sh*) have multiple pte_ts to
2a15efc9 6449 * each hugepage. We have to make sure we get the
4c887265 6450 * first, for the page indexing below to work.
cb900f41
KS
6451 *
6452 * Note that page table lock is not held when pte is null.
4c887265 6453 */
7868a208
PA
6454 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
6455 huge_page_size(h));
cb900f41
KS
6456 if (pte)
6457 ptl = huge_pte_lock(h, mm, pte);
2a15efc9
HD
6458 absent = !pte || huge_pte_none(huge_ptep_get(pte));
6459
6460 /*
6461 * When coredumping, it suits get_dump_page if we just return
3ae77f43
HD
6462 * an error where there's an empty slot with no huge pagecache
6463 * to back it. This way, we avoid allocating a hugepage, and
6464 * the sparse dumpfile avoids allocating disk blocks, but its
6465 * huge holes still show up with zeroes where they need to be.
2a15efc9 6466 */
3ae77f43
HD
6467 if (absent && (flags & FOLL_DUMP) &&
6468 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
cb900f41
KS
6469 if (pte)
6470 spin_unlock(ptl);
2a15efc9
HD
6471 remainder = 0;
6472 break;
6473 }
63551ae0 6474
9cc3a5bd
NH
6475 /*
6476 * We need call hugetlb_fault for both hugepages under migration
6477 * (in which case hugetlb_fault waits for the migration,) and
6478 * hwpoisoned hugepages (in which case we need to prevent the
6479 * caller from accessing to them.) In order to do this, we use
6480 * here is_swap_pte instead of is_hugetlb_entry_migration and
6481 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
6482 * both cases, and because we can't follow correct pages
6483 * directly from any kind of swap entries.
6484 */
a7f22660 6485 if (absent ||
84209e87 6486 __follow_hugetlb_must_fault(vma, flags, pte, &unshare)) {
2b740303 6487 vm_fault_t ret;
87ffc118 6488 unsigned int fault_flags = 0;
63551ae0 6489
cb900f41
KS
6490 if (pte)
6491 spin_unlock(ptl);
87ffc118
AA
6492 if (flags & FOLL_WRITE)
6493 fault_flags |= FAULT_FLAG_WRITE;
a7f22660
DH
6494 else if (unshare)
6495 fault_flags |= FAULT_FLAG_UNSHARE;
93c5c61d 6496 if (locked) {
71335f37
PX
6497 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
6498 FAULT_FLAG_KILLABLE;
93c5c61d
PX
6499 if (flags & FOLL_INTERRUPTIBLE)
6500 fault_flags |= FAULT_FLAG_INTERRUPTIBLE;
6501 }
87ffc118
AA
6502 if (flags & FOLL_NOWAIT)
6503 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
6504 FAULT_FLAG_RETRY_NOWAIT;
6505 if (flags & FOLL_TRIED) {
4426e945
PX
6506 /*
6507 * Note: FAULT_FLAG_ALLOW_RETRY and
6508 * FAULT_FLAG_TRIED can co-exist
6509 */
87ffc118
AA
6510 fault_flags |= FAULT_FLAG_TRIED;
6511 }
6512 ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
6513 if (ret & VM_FAULT_ERROR) {
2be7cfed 6514 err = vm_fault_to_errno(ret, flags);
87ffc118
AA
6515 remainder = 0;
6516 break;
6517 }
6518 if (ret & VM_FAULT_RETRY) {
4f6da934 6519 if (locked &&
1ac25013 6520 !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
4f6da934 6521 *locked = 0;
87ffc118
AA
6522 *nr_pages = 0;
6523 /*
6524 * VM_FAULT_RETRY must not return an
6525 * error, it will return zero
6526 * instead.
6527 *
6528 * No need to update "position" as the
6529 * caller will not check it after
6530 * *nr_pages is set to 0.
6531 */
6532 return i;
6533 }
6534 continue;
4c887265
AL
6535 }
6536
a5516438 6537 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
7f2e9525 6538 page = pte_page(huge_ptep_get(pte));
8fde12ca 6539
b6a2619c
DH
6540 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
6541 !PageAnonExclusive(page), page);
6542
acbfb087
ZL
6543 /*
6544 * If subpage information not requested, update counters
6545 * and skip the same_page loop below.
6546 */
6547 if (!pages && !vmas && !pfn_offset &&
6548 (vaddr + huge_page_size(h) < vma->vm_end) &&
6549 (remainder >= pages_per_huge_page(h))) {
6550 vaddr += huge_page_size(h);
6551 remainder -= pages_per_huge_page(h);
6552 i += pages_per_huge_page(h);
6553 spin_unlock(ptl);
6554 continue;
6555 }
6556
d08af0a5
JM
6557 /* vaddr may not be aligned to PAGE_SIZE */
6558 refs = min3(pages_per_huge_page(h) - pfn_offset, remainder,
6559 (vma->vm_end - ALIGN_DOWN(vaddr, PAGE_SIZE)) >> PAGE_SHIFT);
0fa5bc40 6560
82e5d378 6561 if (pages || vmas)
14455eab 6562 record_subpages_vmas(nth_page(page, pfn_offset),
82e5d378
JM
6563 vma, refs,
6564 likely(pages) ? pages + i : NULL,
6565 vmas ? vmas + i : NULL);
63551ae0 6566
82e5d378 6567 if (pages) {
0fa5bc40 6568 /*
822951d8 6569 * try_grab_folio() should always succeed here,
0fa5bc40
JM
6570 * because: a) we hold the ptl lock, and b) we've just
6571 * checked that the huge page is present in the page
6572 * tables. If the huge page is present, then the tail
6573 * pages must also be present. The ptl prevents the
6574 * head page and tail pages from being rearranged in
4003f107
LG
6575 * any way. As this is hugetlb, the pages will never
6576 * be p2pdma or not longterm pinable. So this page
6577 * must be available at this point, unless the page
6578 * refcount overflowed:
0fa5bc40 6579 */
822951d8
MWO
6580 if (WARN_ON_ONCE(!try_grab_folio(pages[i], refs,
6581 flags))) {
0fa5bc40
JM
6582 spin_unlock(ptl);
6583 remainder = 0;
6584 err = -ENOMEM;
6585 break;
6586 }
d5d4b0aa 6587 }
82e5d378
JM
6588
6589 vaddr += (refs << PAGE_SHIFT);
6590 remainder -= refs;
6591 i += refs;
6592
cb900f41 6593 spin_unlock(ptl);
63551ae0 6594 }
28a35716 6595 *nr_pages = remainder;
87ffc118
AA
6596 /*
6597 * setting position is actually required only if remainder is
6598 * not zero but it's faster not to add a "if (remainder)"
6599 * branch.
6600 */
63551ae0
DG
6601 *position = vaddr;
6602
2be7cfed 6603 return i ? i : err;
63551ae0 6604}
8f860591 6605
7da4d641 6606unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
5a90d5a1
PX
6607 unsigned long address, unsigned long end,
6608 pgprot_t newprot, unsigned long cp_flags)
8f860591
ZY
6609{
6610 struct mm_struct *mm = vma->vm_mm;
6611 unsigned long start = address;
6612 pte_t *ptep;
6613 pte_t pte;
a5516438 6614 struct hstate *h = hstate_vma(vma);
60dfaad6 6615 unsigned long pages = 0, psize = huge_page_size(h);
dff11abe 6616 bool shared_pmd = false;
ac46d4f3 6617 struct mmu_notifier_range range;
e95a9851 6618 unsigned long last_addr_mask;
5a90d5a1
PX
6619 bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
6620 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
dff11abe
MK
6621
6622 /*
6623 * In the case of shared PMDs, the area to flush could be beyond
ac46d4f3 6624 * start/end. Set range.start/range.end to cover the maximum possible
dff11abe
MK
6625 * range if PMD sharing is possible.
6626 */
7269f999
JG
6627 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
6628 0, vma, mm, start, end);
ac46d4f3 6629 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
8f860591
ZY
6630
6631 BUG_ON(address >= end);
ac46d4f3 6632 flush_cache_range(vma, range.start, range.end);
8f860591 6633
ac46d4f3 6634 mmu_notifier_invalidate_range_start(&range);
40549ba8 6635 hugetlb_vma_lock_write(vma);
83cde9e8 6636 i_mmap_lock_write(vma->vm_file->f_mapping);
40549ba8 6637 last_addr_mask = hugetlb_mask_last_page(h);
60dfaad6 6638 for (; address < end; address += psize) {
cb900f41 6639 spinlock_t *ptl;
60dfaad6 6640 ptep = huge_pte_offset(mm, address, psize);
e95a9851
MK
6641 if (!ptep) {
6642 address |= last_addr_mask;
8f860591 6643 continue;
e95a9851 6644 }
cb900f41 6645 ptl = huge_pte_lock(h, mm, ptep);
4ddb4d91 6646 if (huge_pmd_unshare(mm, vma, address, ptep)) {
60dfaad6
PX
6647 /*
6648 * When uffd-wp is enabled on the vma, unshare
6649 * shouldn't happen at all. Warn about it if it
6650 * happened due to some reason.
6651 */
6652 WARN_ON_ONCE(uffd_wp || uffd_wp_resolve);
7da4d641 6653 pages++;
cb900f41 6654 spin_unlock(ptl);
dff11abe 6655 shared_pmd = true;
4ddb4d91 6656 address |= last_addr_mask;
39dde65c 6657 continue;
7da4d641 6658 }
a8bda28d
NH
6659 pte = huge_ptep_get(ptep);
6660 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
6661 spin_unlock(ptl);
6662 continue;
6663 }
6664 if (unlikely(is_hugetlb_entry_migration(pte))) {
6665 swp_entry_t entry = pte_to_swp_entry(pte);
6c287605 6666 struct page *page = pfn_swap_entry_to_page(entry);
a8bda28d 6667
6c287605 6668 if (!is_readable_migration_entry(entry)) {
a8bda28d
NH
6669 pte_t newpte;
6670
6c287605
DH
6671 if (PageAnon(page))
6672 entry = make_readable_exclusive_migration_entry(
6673 swp_offset(entry));
6674 else
6675 entry = make_readable_migration_entry(
6676 swp_offset(entry));
a8bda28d 6677 newpte = swp_entry_to_pte(entry);
5a90d5a1
PX
6678 if (uffd_wp)
6679 newpte = pte_swp_mkuffd_wp(newpte);
6680 else if (uffd_wp_resolve)
6681 newpte = pte_swp_clear_uffd_wp(newpte);
18f39629 6682 set_huge_pte_at(mm, address, ptep, newpte);
a8bda28d
NH
6683 pages++;
6684 }
6685 spin_unlock(ptl);
6686 continue;
6687 }
60dfaad6
PX
6688 if (unlikely(pte_marker_uffd_wp(pte))) {
6689 /*
6690 * This is changing a non-present pte into a none pte,
6691 * no need for huge_ptep_modify_prot_start/commit().
6692 */
6693 if (uffd_wp_resolve)
6694 huge_pte_clear(mm, address, ptep, psize);
6695 }
a8bda28d 6696 if (!huge_pte_none(pte)) {
023bdd00 6697 pte_t old_pte;
79c1c594 6698 unsigned int shift = huge_page_shift(hstate_vma(vma));
023bdd00
AK
6699
6700 old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
16785bd7 6701 pte = huge_pte_modify(old_pte, newprot);
79c1c594 6702 pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
5a90d5a1
PX
6703 if (uffd_wp)
6704 pte = huge_pte_mkuffd_wp(huge_pte_wrprotect(pte));
6705 else if (uffd_wp_resolve)
6706 pte = huge_pte_clear_uffd_wp(pte);
023bdd00 6707 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
7da4d641 6708 pages++;
60dfaad6
PX
6709 } else {
6710 /* None pte */
6711 if (unlikely(uffd_wp))
6712 /* Safe to modify directly (none->non-present). */
6713 set_huge_pte_at(mm, address, ptep,
6714 make_pte_marker(PTE_MARKER_UFFD_WP));
8f860591 6715 }
cb900f41 6716 spin_unlock(ptl);
8f860591 6717 }
d833352a 6718 /*
c8c06efa 6719 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
d833352a 6720 * may have cleared our pud entry and done put_page on the page table:
c8c06efa 6721 * once we release i_mmap_rwsem, another task can do the final put_page
dff11abe
MK
6722 * and that page table be reused and filled with junk. If we actually
6723 * did unshare a page of pmds, flush the range corresponding to the pud.
d833352a 6724 */
dff11abe 6725 if (shared_pmd)
ac46d4f3 6726 flush_hugetlb_tlb_range(vma, range.start, range.end);
dff11abe
MK
6727 else
6728 flush_hugetlb_tlb_range(vma, start, end);
0f10851e
JG
6729 /*
6730 * No need to call mmu_notifier_invalidate_range() we are downgrading
6731 * page table protection not changing it to point to a new page.
6732 *
ee65728e 6733 * See Documentation/mm/mmu_notifier.rst
0f10851e 6734 */
83cde9e8 6735 i_mmap_unlock_write(vma->vm_file->f_mapping);
40549ba8 6736 hugetlb_vma_unlock_write(vma);
ac46d4f3 6737 mmu_notifier_invalidate_range_end(&range);
7da4d641
PZ
6738
6739 return pages << h->order;
8f860591
ZY
6740}
6741
33b8f84a
MK
6742/* Return true if reservation was successful, false otherwise. */
6743bool hugetlb_reserve_pages(struct inode *inode,
a1e78772 6744 long from, long to,
5a6fe125 6745 struct vm_area_struct *vma,
ca16d140 6746 vm_flags_t vm_flags)
e4e574b7 6747{
33b8f84a 6748 long chg, add = -1;
a5516438 6749 struct hstate *h = hstate_inode(inode);
90481622 6750 struct hugepage_subpool *spool = subpool_inode(inode);
9119a41e 6751 struct resv_map *resv_map;
075a61d0 6752 struct hugetlb_cgroup *h_cg = NULL;
0db9d74e 6753 long gbl_reserve, regions_needed = 0;
e4e574b7 6754
63489f8e
MK
6755 /* This should never happen */
6756 if (from > to) {
6757 VM_WARN(1, "%s called with a negative range\n", __func__);
33b8f84a 6758 return false;
63489f8e
MK
6759 }
6760
8d9bfb26 6761 /*
e700898f
MK
6762 * vma specific semaphore used for pmd sharing and fault/truncation
6763 * synchronization
8d9bfb26
MK
6764 */
6765 hugetlb_vma_lock_alloc(vma);
6766
17c9d12e
MG
6767 /*
6768 * Only apply hugepage reservation if asked. At fault time, an
6769 * attempt will be made for VM_NORESERVE to allocate a page
90481622 6770 * without using reserves
17c9d12e 6771 */
ca16d140 6772 if (vm_flags & VM_NORESERVE)
33b8f84a 6773 return true;
17c9d12e 6774
a1e78772
MG
6775 /*
6776 * Shared mappings base their reservation on the number of pages that
6777 * are already allocated on behalf of the file. Private mappings need
6778 * to reserve the full area even if read-only as mprotect() may be
6779 * called to make the mapping read-write. Assume !vma is a shm mapping
6780 */
9119a41e 6781 if (!vma || vma->vm_flags & VM_MAYSHARE) {
f27a5136
MK
6782 /*
6783 * resv_map can not be NULL as hugetlb_reserve_pages is only
6784 * called for inodes for which resv_maps were created (see
6785 * hugetlbfs_get_inode).
6786 */
4e35f483 6787 resv_map = inode_resv_map(inode);
9119a41e 6788
0db9d74e 6789 chg = region_chg(resv_map, from, to, &regions_needed);
9119a41e 6790 } else {
e9fe92ae 6791 /* Private mapping. */
9119a41e 6792 resv_map = resv_map_alloc();
17c9d12e 6793 if (!resv_map)
8d9bfb26 6794 goto out_err;
17c9d12e 6795
a1e78772 6796 chg = to - from;
84afd99b 6797
17c9d12e
MG
6798 set_vma_resv_map(vma, resv_map);
6799 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
6800 }
6801
33b8f84a 6802 if (chg < 0)
c50ac050 6803 goto out_err;
8a630112 6804
33b8f84a
MK
6805 if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
6806 chg * pages_per_huge_page(h), &h_cg) < 0)
075a61d0 6807 goto out_err;
075a61d0
MA
6808
6809 if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
6810 /* For private mappings, the hugetlb_cgroup uncharge info hangs
6811 * of the resv_map.
6812 */
6813 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
6814 }
6815
1c5ecae3
MK
6816 /*
6817 * There must be enough pages in the subpool for the mapping. If
6818 * the subpool has a minimum size, there may be some global
6819 * reservations already in place (gbl_reserve).
6820 */
6821 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
33b8f84a 6822 if (gbl_reserve < 0)
075a61d0 6823 goto out_uncharge_cgroup;
5a6fe125
MG
6824
6825 /*
17c9d12e 6826 * Check enough hugepages are available for the reservation.
90481622 6827 * Hand the pages back to the subpool if there are not
5a6fe125 6828 */
33b8f84a 6829 if (hugetlb_acct_memory(h, gbl_reserve) < 0)
075a61d0 6830 goto out_put_pages;
17c9d12e
MG
6831
6832 /*
6833 * Account for the reservations made. Shared mappings record regions
6834 * that have reservations as they are shared by multiple VMAs.
6835 * When the last VMA disappears, the region map says how much
6836 * the reservation was and the page cache tells how much of
6837 * the reservation was consumed. Private mappings are per-VMA and
6838 * only the consumed reservations are tracked. When the VMA
6839 * disappears, the original reservation is the VMA size and the
6840 * consumed reservations are stored in the map. Hence, nothing
6841 * else has to be done for private mappings here
6842 */
33039678 6843 if (!vma || vma->vm_flags & VM_MAYSHARE) {
075a61d0 6844 add = region_add(resv_map, from, to, regions_needed, h, h_cg);
0db9d74e
MA
6845
6846 if (unlikely(add < 0)) {
6847 hugetlb_acct_memory(h, -gbl_reserve);
075a61d0 6848 goto out_put_pages;
0db9d74e 6849 } else if (unlikely(chg > add)) {
33039678
MK
6850 /*
6851 * pages in this range were added to the reserve
6852 * map between region_chg and region_add. This
6853 * indicates a race with alloc_huge_page. Adjust
6854 * the subpool and reserve counts modified above
6855 * based on the difference.
6856 */
6857 long rsv_adjust;
6858
d85aecf2
ML
6859 /*
6860 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
6861 * reference to h_cg->css. See comment below for detail.
6862 */
075a61d0
MA
6863 hugetlb_cgroup_uncharge_cgroup_rsvd(
6864 hstate_index(h),
6865 (chg - add) * pages_per_huge_page(h), h_cg);
6866
33039678
MK
6867 rsv_adjust = hugepage_subpool_put_pages(spool,
6868 chg - add);
6869 hugetlb_acct_memory(h, -rsv_adjust);
d85aecf2
ML
6870 } else if (h_cg) {
6871 /*
6872 * The file_regions will hold their own reference to
6873 * h_cg->css. So we should release the reference held
6874 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
6875 * done.
6876 */
6877 hugetlb_cgroup_put_rsvd_cgroup(h_cg);
33039678
MK
6878 }
6879 }
33b8f84a
MK
6880 return true;
6881
075a61d0
MA
6882out_put_pages:
6883 /* put back original number of pages, chg */
6884 (void)hugepage_subpool_put_pages(spool, chg);
6885out_uncharge_cgroup:
6886 hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
6887 chg * pages_per_huge_page(h), h_cg);
c50ac050 6888out_err:
8d9bfb26 6889 hugetlb_vma_lock_free(vma);
5e911373 6890 if (!vma || vma->vm_flags & VM_MAYSHARE)
0db9d74e
MA
6891 /* Only call region_abort if the region_chg succeeded but the
6892 * region_add failed or didn't run.
6893 */
6894 if (chg >= 0 && add < 0)
6895 region_abort(resv_map, from, to, regions_needed);
f031dd27
JK
6896 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
6897 kref_put(&resv_map->refs, resv_map_release);
33b8f84a 6898 return false;
a43a8c39
CK
6899}
6900
b5cec28d
MK
6901long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
6902 long freed)
a43a8c39 6903{
a5516438 6904 struct hstate *h = hstate_inode(inode);
4e35f483 6905 struct resv_map *resv_map = inode_resv_map(inode);
9119a41e 6906 long chg = 0;
90481622 6907 struct hugepage_subpool *spool = subpool_inode(inode);
1c5ecae3 6908 long gbl_reserve;
45c682a6 6909
f27a5136
MK
6910 /*
6911 * Since this routine can be called in the evict inode path for all
6912 * hugetlbfs inodes, resv_map could be NULL.
6913 */
b5cec28d
MK
6914 if (resv_map) {
6915 chg = region_del(resv_map, start, end);
6916 /*
6917 * region_del() can fail in the rare case where a region
6918 * must be split and another region descriptor can not be
6919 * allocated. If end == LONG_MAX, it will not fail.
6920 */
6921 if (chg < 0)
6922 return chg;
6923 }
6924
45c682a6 6925 spin_lock(&inode->i_lock);
e4c6f8be 6926 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
45c682a6
KC
6927 spin_unlock(&inode->i_lock);
6928
1c5ecae3
MK
6929 /*
6930 * If the subpool has a minimum size, the number of global
6931 * reservations to be released may be adjusted.
dddf31a4
ML
6932 *
6933 * Note that !resv_map implies freed == 0. So (chg - freed)
6934 * won't go negative.
1c5ecae3
MK
6935 */
6936 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
6937 hugetlb_acct_memory(h, -gbl_reserve);
b5cec28d
MK
6938
6939 return 0;
a43a8c39 6940}
93f70f90 6941
3212b535
SC
6942#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
6943static unsigned long page_table_shareable(struct vm_area_struct *svma,
6944 struct vm_area_struct *vma,
6945 unsigned long addr, pgoff_t idx)
6946{
6947 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
6948 svma->vm_start;
6949 unsigned long sbase = saddr & PUD_MASK;
6950 unsigned long s_end = sbase + PUD_SIZE;
6951
6952 /* Allow segments to share if only one is marked locked */
de60f5f1
EM
6953 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
6954 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
3212b535
SC
6955
6956 /*
6957 * match the virtual addresses, permission and the alignment of the
6958 * page table page.
131a79b4
MK
6959 *
6960 * Also, vma_lock (vm_private_data) is required for sharing.
3212b535
SC
6961 */
6962 if (pmd_index(addr) != pmd_index(saddr) ||
6963 vm_flags != svm_flags ||
131a79b4
MK
6964 !range_in_vma(svma, sbase, s_end) ||
6965 !svma->vm_private_data)
3212b535
SC
6966 return 0;
6967
6968 return saddr;
6969}
6970
bbff39cc 6971bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
3212b535 6972{
bbff39cc
MK
6973 unsigned long start = addr & PUD_MASK;
6974 unsigned long end = start + PUD_SIZE;
6975
8d9bfb26
MK
6976#ifdef CONFIG_USERFAULTFD
6977 if (uffd_disable_huge_pmd_share(vma))
6978 return false;
6979#endif
3212b535
SC
6980 /*
6981 * check on proper vm_flags and page table alignment
6982 */
8d9bfb26
MK
6983 if (!(vma->vm_flags & VM_MAYSHARE))
6984 return false;
bbff39cc 6985 if (!vma->vm_private_data) /* vma lock required for sharing */
8d9bfb26
MK
6986 return false;
6987 if (!range_in_vma(vma, start, end))
6988 return false;
6989 return true;
6990}
6991
017b1660
MK
6992/*
6993 * Determine if start,end range within vma could be mapped by shared pmd.
6994 * If yes, adjust start and end to cover range associated with possible
6995 * shared pmd mappings.
6996 */
6997void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
6998 unsigned long *start, unsigned long *end)
6999{
a1ba9da8
LX
7000 unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
7001 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
017b1660 7002
a1ba9da8 7003 /*
f0953a1b
IM
7004 * vma needs to span at least one aligned PUD size, and the range
7005 * must be at least partially within in.
a1ba9da8
LX
7006 */
7007 if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
7008 (*end <= v_start) || (*start >= v_end))
017b1660
MK
7009 return;
7010
75802ca6 7011 /* Extend the range to be PUD aligned for a worst case scenario */
a1ba9da8
LX
7012 if (*start > v_start)
7013 *start = ALIGN_DOWN(*start, PUD_SIZE);
017b1660 7014
a1ba9da8
LX
7015 if (*end < v_end)
7016 *end = ALIGN(*end, PUD_SIZE);
017b1660
MK
7017}
7018
3212b535
SC
7019/*
7020 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
7021 * and returns the corresponding pte. While this is not necessary for the
7022 * !shared pmd case because we can allocate the pmd later as well, it makes the
3a47c54f
MK
7023 * code much cleaner. pmd allocation is essential for the shared case because
7024 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
7025 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
7026 * bad pmd for sharing.
3212b535 7027 */
aec44e0f
PX
7028pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7029 unsigned long addr, pud_t *pud)
3212b535 7030{
3212b535
SC
7031 struct address_space *mapping = vma->vm_file->f_mapping;
7032 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
7033 vma->vm_pgoff;
7034 struct vm_area_struct *svma;
7035 unsigned long saddr;
7036 pte_t *spte = NULL;
7037 pte_t *pte;
cb900f41 7038 spinlock_t *ptl;
3212b535 7039
3a47c54f 7040 i_mmap_lock_read(mapping);
3212b535
SC
7041 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
7042 if (svma == vma)
7043 continue;
7044
7045 saddr = page_table_shareable(svma, vma, addr, idx);
7046 if (saddr) {
7868a208
PA
7047 spte = huge_pte_offset(svma->vm_mm, saddr,
7048 vma_mmu_pagesize(svma));
3212b535
SC
7049 if (spte) {
7050 get_page(virt_to_page(spte));
7051 break;
7052 }
7053 }
7054 }
7055
7056 if (!spte)
7057 goto out;
7058
8bea8052 7059 ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
dc6c9a35 7060 if (pud_none(*pud)) {
3212b535
SC
7061 pud_populate(mm, pud,
7062 (pmd_t *)((unsigned long)spte & PAGE_MASK));
c17b1f42 7063 mm_inc_nr_pmds(mm);
dc6c9a35 7064 } else {
3212b535 7065 put_page(virt_to_page(spte));
dc6c9a35 7066 }
cb900f41 7067 spin_unlock(ptl);
3212b535
SC
7068out:
7069 pte = (pte_t *)pmd_alloc(mm, pud, addr);
3a47c54f 7070 i_mmap_unlock_read(mapping);
3212b535
SC
7071 return pte;
7072}
7073
7074/*
7075 * unmap huge page backed by shared pte.
7076 *
7077 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
7078 * indicated by page_count > 1, unmap is achieved by clearing pud and
7079 * decrementing the ref count. If count == 1, the pte page is not shared.
7080 *
3a47c54f 7081 * Called with page table lock held.
3212b535
SC
7082 *
7083 * returns: 1 successfully unmapped a shared pte page
7084 * 0 the underlying pte page is not shared, or it is the last user
7085 */
34ae204f 7086int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
4ddb4d91 7087 unsigned long addr, pte_t *ptep)
3212b535 7088{
4ddb4d91
MK
7089 pgd_t *pgd = pgd_offset(mm, addr);
7090 p4d_t *p4d = p4d_offset(pgd, addr);
7091 pud_t *pud = pud_offset(p4d, addr);
3212b535 7092
34ae204f 7093 i_mmap_assert_write_locked(vma->vm_file->f_mapping);
40549ba8 7094 hugetlb_vma_assert_locked(vma);
3212b535
SC
7095 BUG_ON(page_count(virt_to_page(ptep)) == 0);
7096 if (page_count(virt_to_page(ptep)) == 1)
7097 return 0;
7098
7099 pud_clear(pud);
7100 put_page(virt_to_page(ptep));
dc6c9a35 7101 mm_dec_nr_pmds(mm);
3212b535
SC
7102 return 1;
7103}
c1991e07 7104
9e5fc74c 7105#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
8d9bfb26 7106
aec44e0f
PX
7107pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7108 unsigned long addr, pud_t *pud)
9e5fc74c
SC
7109{
7110 return NULL;
7111}
e81f2d22 7112
34ae204f 7113int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
4ddb4d91 7114 unsigned long addr, pte_t *ptep)
e81f2d22
ZZ
7115{
7116 return 0;
7117}
017b1660
MK
7118
7119void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7120 unsigned long *start, unsigned long *end)
7121{
7122}
c1991e07
PX
7123
7124bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
7125{
7126 return false;
7127}
3212b535
SC
7128#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7129
9e5fc74c 7130#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
aec44e0f 7131pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
9e5fc74c
SC
7132 unsigned long addr, unsigned long sz)
7133{
7134 pgd_t *pgd;
c2febafc 7135 p4d_t *p4d;
9e5fc74c
SC
7136 pud_t *pud;
7137 pte_t *pte = NULL;
7138
7139 pgd = pgd_offset(mm, addr);
f4f0a3d8
KS
7140 p4d = p4d_alloc(mm, pgd, addr);
7141 if (!p4d)
7142 return NULL;
c2febafc 7143 pud = pud_alloc(mm, p4d, addr);
9e5fc74c
SC
7144 if (pud) {
7145 if (sz == PUD_SIZE) {
7146 pte = (pte_t *)pud;
7147 } else {
7148 BUG_ON(sz != PMD_SIZE);
c1991e07 7149 if (want_pmd_share(vma, addr) && pud_none(*pud))
aec44e0f 7150 pte = huge_pmd_share(mm, vma, addr, pud);
9e5fc74c
SC
7151 else
7152 pte = (pte_t *)pmd_alloc(mm, pud, addr);
7153 }
7154 }
4e666314 7155 BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
9e5fc74c
SC
7156
7157 return pte;
7158}
7159
9b19df29
PA
7160/*
7161 * huge_pte_offset() - Walk the page table to resolve the hugepage
7162 * entry at address @addr
7163 *
8ac0b81a
LX
7164 * Return: Pointer to page table entry (PUD or PMD) for
7165 * address @addr, or NULL if a !p*d_present() entry is encountered and the
9b19df29
PA
7166 * size @sz doesn't match the hugepage size at this level of the page
7167 * table.
7168 */
7868a208
PA
7169pte_t *huge_pte_offset(struct mm_struct *mm,
7170 unsigned long addr, unsigned long sz)
9e5fc74c
SC
7171{
7172 pgd_t *pgd;
c2febafc 7173 p4d_t *p4d;
8ac0b81a
LX
7174 pud_t *pud;
7175 pmd_t *pmd;
9e5fc74c
SC
7176
7177 pgd = pgd_offset(mm, addr);
c2febafc
KS
7178 if (!pgd_present(*pgd))
7179 return NULL;
7180 p4d = p4d_offset(pgd, addr);
7181 if (!p4d_present(*p4d))
7182 return NULL;
9b19df29 7183
c2febafc 7184 pud = pud_offset(p4d, addr);
8ac0b81a
LX
7185 if (sz == PUD_SIZE)
7186 /* must be pud huge, non-present or none */
c2febafc 7187 return (pte_t *)pud;
8ac0b81a 7188 if (!pud_present(*pud))
9b19df29 7189 return NULL;
8ac0b81a 7190 /* must have a valid entry and size to go further */
9b19df29 7191
8ac0b81a
LX
7192 pmd = pmd_offset(pud, addr);
7193 /* must be pmd huge, non-present or none */
7194 return (pte_t *)pmd;
9e5fc74c
SC
7195}
7196
e95a9851
MK
7197/*
7198 * Return a mask that can be used to update an address to the last huge
7199 * page in a page table page mapping size. Used to skip non-present
7200 * page table entries when linearly scanning address ranges. Architectures
7201 * with unique huge page to page table relationships can define their own
7202 * version of this routine.
7203 */
7204unsigned long hugetlb_mask_last_page(struct hstate *h)
7205{
7206 unsigned long hp_size = huge_page_size(h);
7207
7208 if (hp_size == PUD_SIZE)
7209 return P4D_SIZE - PUD_SIZE;
7210 else if (hp_size == PMD_SIZE)
7211 return PUD_SIZE - PMD_SIZE;
7212 else
7213 return 0UL;
7214}
7215
7216#else
7217
7218/* See description above. Architectures can provide their own version. */
7219__weak unsigned long hugetlb_mask_last_page(struct hstate *h)
7220{
4ddb4d91
MK
7221#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
7222 if (huge_page_size(h) == PMD_SIZE)
7223 return PUD_SIZE - PMD_SIZE;
7224#endif
e95a9851
MK
7225 return 0UL;
7226}
7227
61f77eda
NH
7228#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
7229
7230/*
7231 * These functions are overwritable if your architecture needs its own
7232 * behavior.
7233 */
7ce82f4c 7234int isolate_hugetlb(struct page *page, struct list_head *list)
31caf665 7235{
7ce82f4c 7236 int ret = 0;
bcc54222 7237
db71ef79 7238 spin_lock_irq(&hugetlb_lock);
8f251a3d
MK
7239 if (!PageHeadHuge(page) ||
7240 !HPageMigratable(page) ||
0eb2df2b 7241 !get_page_unless_zero(page)) {
7ce82f4c 7242 ret = -EBUSY;
bcc54222
NH
7243 goto unlock;
7244 }
8f251a3d 7245 ClearHPageMigratable(page);
31caf665 7246 list_move_tail(&page->lru, list);
bcc54222 7247unlock:
db71ef79 7248 spin_unlock_irq(&hugetlb_lock);
bcc54222 7249 return ret;
31caf665
NH
7250}
7251
e591ef7d 7252int get_hwpoison_huge_page(struct page *page, bool *hugetlb, bool unpoison)
25182f05
NH
7253{
7254 int ret = 0;
7255
7256 *hugetlb = false;
7257 spin_lock_irq(&hugetlb_lock);
7258 if (PageHeadHuge(page)) {
7259 *hugetlb = true;
b283d983
NH
7260 if (HPageFreed(page))
7261 ret = 0;
e591ef7d 7262 else if (HPageMigratable(page) || unpoison)
25182f05 7263 ret = get_page_unless_zero(page);
0ed950d1
NH
7264 else
7265 ret = -EBUSY;
25182f05
NH
7266 }
7267 spin_unlock_irq(&hugetlb_lock);
7268 return ret;
7269}
7270
e591ef7d
NH
7271int get_huge_page_for_hwpoison(unsigned long pfn, int flags,
7272 bool *migratable_cleared)
405ce051
NH
7273{
7274 int ret;
7275
7276 spin_lock_irq(&hugetlb_lock);
e591ef7d 7277 ret = __get_huge_page_for_hwpoison(pfn, flags, migratable_cleared);
405ce051
NH
7278 spin_unlock_irq(&hugetlb_lock);
7279 return ret;
7280}
7281
31caf665
NH
7282void putback_active_hugepage(struct page *page)
7283{
db71ef79 7284 spin_lock_irq(&hugetlb_lock);
8f251a3d 7285 SetHPageMigratable(page);
31caf665 7286 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
db71ef79 7287 spin_unlock_irq(&hugetlb_lock);
31caf665
NH
7288 put_page(page);
7289}
ab5ac90a 7290
345c62d1 7291void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason)
ab5ac90a 7292{
345c62d1 7293 struct hstate *h = folio_hstate(old_folio);
ab5ac90a 7294
345c62d1
SK
7295 hugetlb_cgroup_migrate(old_folio, new_folio);
7296 set_page_owner_migrate_reason(&new_folio->page, reason);
ab5ac90a
MH
7297
7298 /*
345c62d1 7299 * transfer temporary state of the new hugetlb folio. This is
ab5ac90a
MH
7300 * reverse to other transitions because the newpage is going to
7301 * be final while the old one will be freed so it takes over
7302 * the temporary status.
7303 *
7304 * Also note that we have to transfer the per-node surplus state
7305 * here as well otherwise the global surplus count will not match
7306 * the per-node's.
7307 */
345c62d1
SK
7308 if (folio_test_hugetlb_temporary(new_folio)) {
7309 int old_nid = folio_nid(old_folio);
7310 int new_nid = folio_nid(new_folio);
7311
345c62d1
SK
7312 folio_set_hugetlb_temporary(old_folio);
7313 folio_clear_hugetlb_temporary(new_folio);
ab5ac90a 7314
ab5ac90a 7315
5af1ab1d
ML
7316 /*
7317 * There is no need to transfer the per-node surplus state
7318 * when we do not cross the node.
7319 */
7320 if (new_nid == old_nid)
7321 return;
db71ef79 7322 spin_lock_irq(&hugetlb_lock);
ab5ac90a
MH
7323 if (h->surplus_huge_pages_node[old_nid]) {
7324 h->surplus_huge_pages_node[old_nid]--;
7325 h->surplus_huge_pages_node[new_nid]++;
7326 }
db71ef79 7327 spin_unlock_irq(&hugetlb_lock);
ab5ac90a
MH
7328 }
7329}
cf11e85f 7330
6dfeaff9
PX
7331/*
7332 * This function will unconditionally remove all the shared pmd pgtable entries
7333 * within the specific vma for a hugetlbfs memory range.
7334 */
7335void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
7336{
7337 struct hstate *h = hstate_vma(vma);
7338 unsigned long sz = huge_page_size(h);
7339 struct mm_struct *mm = vma->vm_mm;
7340 struct mmu_notifier_range range;
7341 unsigned long address, start, end;
7342 spinlock_t *ptl;
7343 pte_t *ptep;
7344
7345 if (!(vma->vm_flags & VM_MAYSHARE))
7346 return;
7347
7348 start = ALIGN(vma->vm_start, PUD_SIZE);
7349 end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
7350
7351 if (start >= end)
7352 return;
7353
9c8bbfac 7354 flush_cache_range(vma, start, end);
6dfeaff9
PX
7355 /*
7356 * No need to call adjust_range_if_pmd_sharing_possible(), because
7357 * we have already done the PUD_SIZE alignment.
7358 */
7359 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
7360 start, end);
7361 mmu_notifier_invalidate_range_start(&range);
40549ba8 7362 hugetlb_vma_lock_write(vma);
6dfeaff9
PX
7363 i_mmap_lock_write(vma->vm_file->f_mapping);
7364 for (address = start; address < end; address += PUD_SIZE) {
6dfeaff9
PX
7365 ptep = huge_pte_offset(mm, address, sz);
7366 if (!ptep)
7367 continue;
7368 ptl = huge_pte_lock(h, mm, ptep);
4ddb4d91 7369 huge_pmd_unshare(mm, vma, address, ptep);
6dfeaff9
PX
7370 spin_unlock(ptl);
7371 }
7372 flush_hugetlb_tlb_range(vma, start, end);
7373 i_mmap_unlock_write(vma->vm_file->f_mapping);
40549ba8 7374 hugetlb_vma_unlock_write(vma);
6dfeaff9
PX
7375 /*
7376 * No need to call mmu_notifier_invalidate_range(), see
ee65728e 7377 * Documentation/mm/mmu_notifier.rst.
6dfeaff9
PX
7378 */
7379 mmu_notifier_invalidate_range_end(&range);
7380}
7381
cf11e85f 7382#ifdef CONFIG_CMA
cf11e85f
RG
7383static bool cma_reserve_called __initdata;
7384
7385static int __init cmdline_parse_hugetlb_cma(char *p)
7386{
38e719ab
BW
7387 int nid, count = 0;
7388 unsigned long tmp;
7389 char *s = p;
7390
7391 while (*s) {
7392 if (sscanf(s, "%lu%n", &tmp, &count) != 1)
7393 break;
7394
7395 if (s[count] == ':') {
f9317f77 7396 if (tmp >= MAX_NUMNODES)
38e719ab 7397 break;
f9317f77 7398 nid = array_index_nospec(tmp, MAX_NUMNODES);
38e719ab
BW
7399
7400 s += count + 1;
7401 tmp = memparse(s, &s);
7402 hugetlb_cma_size_in_node[nid] = tmp;
7403 hugetlb_cma_size += tmp;
7404
7405 /*
7406 * Skip the separator if have one, otherwise
7407 * break the parsing.
7408 */
7409 if (*s == ',')
7410 s++;
7411 else
7412 break;
7413 } else {
7414 hugetlb_cma_size = memparse(p, &p);
7415 break;
7416 }
7417 }
7418
cf11e85f
RG
7419 return 0;
7420}
7421
7422early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
7423
7424void __init hugetlb_cma_reserve(int order)
7425{
7426 unsigned long size, reserved, per_node;
38e719ab 7427 bool node_specific_cma_alloc = false;
cf11e85f
RG
7428 int nid;
7429
7430 cma_reserve_called = true;
7431
38e719ab
BW
7432 if (!hugetlb_cma_size)
7433 return;
7434
7435 for (nid = 0; nid < MAX_NUMNODES; nid++) {
7436 if (hugetlb_cma_size_in_node[nid] == 0)
7437 continue;
7438
30a51400 7439 if (!node_online(nid)) {
38e719ab
BW
7440 pr_warn("hugetlb_cma: invalid node %d specified\n", nid);
7441 hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7442 hugetlb_cma_size_in_node[nid] = 0;
7443 continue;
7444 }
7445
7446 if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) {
7447 pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n",
7448 nid, (PAGE_SIZE << order) / SZ_1M);
7449 hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7450 hugetlb_cma_size_in_node[nid] = 0;
7451 } else {
7452 node_specific_cma_alloc = true;
7453 }
7454 }
7455
7456 /* Validate the CMA size again in case some invalid nodes specified. */
cf11e85f
RG
7457 if (!hugetlb_cma_size)
7458 return;
7459
7460 if (hugetlb_cma_size < (PAGE_SIZE << order)) {
7461 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
7462 (PAGE_SIZE << order) / SZ_1M);
a01f4390 7463 hugetlb_cma_size = 0;
cf11e85f
RG
7464 return;
7465 }
7466
38e719ab
BW
7467 if (!node_specific_cma_alloc) {
7468 /*
7469 * If 3 GB area is requested on a machine with 4 numa nodes,
7470 * let's allocate 1 GB on first three nodes and ignore the last one.
7471 */
7472 per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
7473 pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
7474 hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
7475 }
cf11e85f
RG
7476
7477 reserved = 0;
30a51400 7478 for_each_online_node(nid) {
cf11e85f 7479 int res;
2281f797 7480 char name[CMA_MAX_NAME];
cf11e85f 7481
38e719ab
BW
7482 if (node_specific_cma_alloc) {
7483 if (hugetlb_cma_size_in_node[nid] == 0)
7484 continue;
7485
7486 size = hugetlb_cma_size_in_node[nid];
7487 } else {
7488 size = min(per_node, hugetlb_cma_size - reserved);
7489 }
7490
cf11e85f
RG
7491 size = round_up(size, PAGE_SIZE << order);
7492
2281f797 7493 snprintf(name, sizeof(name), "hugetlb%d", nid);
a01f4390
MK
7494 /*
7495 * Note that 'order per bit' is based on smallest size that
7496 * may be returned to CMA allocator in the case of
7497 * huge page demotion.
7498 */
7499 res = cma_declare_contiguous_nid(0, size, 0,
7500 PAGE_SIZE << HUGETLB_PAGE_ORDER,
29d0f41d 7501 0, false, name,
cf11e85f
RG
7502 &hugetlb_cma[nid], nid);
7503 if (res) {
7504 pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
7505 res, nid);
7506 continue;
7507 }
7508
7509 reserved += size;
7510 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
7511 size / SZ_1M, nid);
7512
7513 if (reserved >= hugetlb_cma_size)
7514 break;
7515 }
a01f4390
MK
7516
7517 if (!reserved)
7518 /*
7519 * hugetlb_cma_size is used to determine if allocations from
7520 * cma are possible. Set to zero if no cma regions are set up.
7521 */
7522 hugetlb_cma_size = 0;
cf11e85f
RG
7523}
7524
263b8998 7525static void __init hugetlb_cma_check(void)
cf11e85f
RG
7526{
7527 if (!hugetlb_cma_size || cma_reserve_called)
7528 return;
7529
7530 pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
7531}
7532
7533#endif /* CONFIG_CMA */