mm/page_counter: remove an incorrect call to propagate_protected_usage()
[linux-2.6-block.git] / mm / hugetlb.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * Generic hugetlb support.
6d49e352 4 * (C) Nadia Yvette Chambers, April 2004
1da177e4 5 */
1da177e4
LT
6#include <linux/list.h>
7#include <linux/init.h>
1da177e4 8#include <linux/mm.h>
e1759c21 9#include <linux/seq_file.h>
1da177e4
LT
10#include <linux/sysctl.h>
11#include <linux/highmem.h>
cddb8a5c 12#include <linux/mmu_notifier.h>
1da177e4 13#include <linux/nodemask.h>
63551ae0 14#include <linux/pagemap.h>
5da7ca86 15#include <linux/mempolicy.h>
3b32123d 16#include <linux/compiler.h>
aea47ff3 17#include <linux/cpuset.h>
3935baa9 18#include <linux/mutex.h>
97ad1087 19#include <linux/memblock.h>
a3437870 20#include <linux/sysfs.h>
5a0e3ad6 21#include <linux/slab.h>
bbe88753 22#include <linux/sched/mm.h>
63489f8e 23#include <linux/mmdebug.h>
174cd4b1 24#include <linux/sched/signal.h>
0fe6e20b 25#include <linux/rmap.h>
c6247f72 26#include <linux/string_helpers.h>
fd6a03ed
NH
27#include <linux/swap.h>
28#include <linux/swapops.h>
8382d914 29#include <linux/jhash.h>
98fa15f3 30#include <linux/numa.h>
c77c0a8a 31#include <linux/llist.h>
cf11e85f 32#include <linux/cma.h>
8cc5fcbb 33#include <linux/migrate.h>
d6606683 34
63551ae0 35#include <asm/page.h>
ca15ca40 36#include <asm/pgalloc.h>
24669e58 37#include <asm/tlb.h>
63551ae0 38
24669e58 39#include <linux/io.h>
63551ae0 40#include <linux/hugetlb.h>
9dd540e2 41#include <linux/hugetlb_cgroup.h>
9a305230 42#include <linux/node.h>
ab5ac90a 43#include <linux/page_owner.h>
7835e98b 44#include "internal.h"
f41f2ed4 45#include "hugetlb_vmemmap.h"
1da177e4 46
c3f38a38 47int hugetlb_max_hstate __read_mostly;
e5ff2159
AK
48unsigned int default_hstate_idx;
49struct hstate hstates[HUGE_MAX_HSTATE];
cf11e85f 50
dbda8fea 51#ifdef CONFIG_CMA
cf11e85f 52static struct cma *hugetlb_cma[MAX_NUMNODES];
38e719ab 53static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata;
a01f4390
MK
54static bool hugetlb_cma_page(struct page *page, unsigned int order)
55{
56 return cma_pages_valid(hugetlb_cma[page_to_nid(page)], page,
57 1 << order);
58}
59#else
60static bool hugetlb_cma_page(struct page *page, unsigned int order)
61{
62 return false;
63}
dbda8fea
BS
64#endif
65static unsigned long hugetlb_cma_size __initdata;
cf11e85f 66
641844f5
NH
67/*
68 * Minimum page order among possible hugepage sizes, set to a proper value
69 * at boot time.
70 */
71static unsigned int minimum_order __read_mostly = UINT_MAX;
e5ff2159 72
53ba51d2
JT
73__initdata LIST_HEAD(huge_boot_pages);
74
e5ff2159
AK
75/* for command line parsing */
76static struct hstate * __initdata parsed_hstate;
77static unsigned long __initdata default_hstate_max_huge_pages;
9fee021d 78static bool __initdata parsed_valid_hugepagesz = true;
282f4214 79static bool __initdata parsed_default_hugepagesz;
b5389086 80static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata;
e5ff2159 81
3935baa9 82/*
31caf665
NH
83 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
84 * free_huge_pages, and surplus_huge_pages.
3935baa9 85 */
c3f38a38 86DEFINE_SPINLOCK(hugetlb_lock);
0bd0f9fb 87
8382d914
DB
88/*
89 * Serializes faults on the same logical page. This is used to
90 * prevent spurious OOMs when the hugepage pool is fully utilized.
91 */
92static int num_fault_mutexes;
c672c7f2 93struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
8382d914 94
7ca02d0a
MK
95/* Forward declaration */
96static int hugetlb_acct_memory(struct hstate *h, long delta);
97
1d88433b 98static inline bool subpool_is_free(struct hugepage_subpool *spool)
90481622 99{
1d88433b
ML
100 if (spool->count)
101 return false;
102 if (spool->max_hpages != -1)
103 return spool->used_hpages == 0;
104 if (spool->min_hpages != -1)
105 return spool->rsv_hpages == spool->min_hpages;
106
107 return true;
108}
90481622 109
db71ef79
MK
110static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
111 unsigned long irq_flags)
1d88433b 112{
db71ef79 113 spin_unlock_irqrestore(&spool->lock, irq_flags);
90481622
DG
114
115 /* If no pages are used, and no other handles to the subpool
7c8de358 116 * remain, give up any reservations based on minimum size and
7ca02d0a 117 * free the subpool */
1d88433b 118 if (subpool_is_free(spool)) {
7ca02d0a
MK
119 if (spool->min_hpages != -1)
120 hugetlb_acct_memory(spool->hstate,
121 -spool->min_hpages);
90481622 122 kfree(spool);
7ca02d0a 123 }
90481622
DG
124}
125
7ca02d0a
MK
126struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
127 long min_hpages)
90481622
DG
128{
129 struct hugepage_subpool *spool;
130
c6a91820 131 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
90481622
DG
132 if (!spool)
133 return NULL;
134
135 spin_lock_init(&spool->lock);
136 spool->count = 1;
7ca02d0a
MK
137 spool->max_hpages = max_hpages;
138 spool->hstate = h;
139 spool->min_hpages = min_hpages;
140
141 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
142 kfree(spool);
143 return NULL;
144 }
145 spool->rsv_hpages = min_hpages;
90481622
DG
146
147 return spool;
148}
149
150void hugepage_put_subpool(struct hugepage_subpool *spool)
151{
db71ef79
MK
152 unsigned long flags;
153
154 spin_lock_irqsave(&spool->lock, flags);
90481622
DG
155 BUG_ON(!spool->count);
156 spool->count--;
db71ef79 157 unlock_or_release_subpool(spool, flags);
90481622
DG
158}
159
1c5ecae3
MK
160/*
161 * Subpool accounting for allocating and reserving pages.
162 * Return -ENOMEM if there are not enough resources to satisfy the
9e7ee400 163 * request. Otherwise, return the number of pages by which the
1c5ecae3
MK
164 * global pools must be adjusted (upward). The returned value may
165 * only be different than the passed value (delta) in the case where
7c8de358 166 * a subpool minimum size must be maintained.
1c5ecae3
MK
167 */
168static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
90481622
DG
169 long delta)
170{
1c5ecae3 171 long ret = delta;
90481622
DG
172
173 if (!spool)
1c5ecae3 174 return ret;
90481622 175
db71ef79 176 spin_lock_irq(&spool->lock);
1c5ecae3
MK
177
178 if (spool->max_hpages != -1) { /* maximum size accounting */
179 if ((spool->used_hpages + delta) <= spool->max_hpages)
180 spool->used_hpages += delta;
181 else {
182 ret = -ENOMEM;
183 goto unlock_ret;
184 }
90481622 185 }
90481622 186
09a95e29
MK
187 /* minimum size accounting */
188 if (spool->min_hpages != -1 && spool->rsv_hpages) {
1c5ecae3
MK
189 if (delta > spool->rsv_hpages) {
190 /*
191 * Asking for more reserves than those already taken on
192 * behalf of subpool. Return difference.
193 */
194 ret = delta - spool->rsv_hpages;
195 spool->rsv_hpages = 0;
196 } else {
197 ret = 0; /* reserves already accounted for */
198 spool->rsv_hpages -= delta;
199 }
200 }
201
202unlock_ret:
db71ef79 203 spin_unlock_irq(&spool->lock);
90481622
DG
204 return ret;
205}
206
1c5ecae3
MK
207/*
208 * Subpool accounting for freeing and unreserving pages.
209 * Return the number of global page reservations that must be dropped.
210 * The return value may only be different than the passed value (delta)
211 * in the case where a subpool minimum size must be maintained.
212 */
213static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
90481622
DG
214 long delta)
215{
1c5ecae3 216 long ret = delta;
db71ef79 217 unsigned long flags;
1c5ecae3 218
90481622 219 if (!spool)
1c5ecae3 220 return delta;
90481622 221
db71ef79 222 spin_lock_irqsave(&spool->lock, flags);
1c5ecae3
MK
223
224 if (spool->max_hpages != -1) /* maximum size accounting */
225 spool->used_hpages -= delta;
226
09a95e29
MK
227 /* minimum size accounting */
228 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
1c5ecae3
MK
229 if (spool->rsv_hpages + delta <= spool->min_hpages)
230 ret = 0;
231 else
232 ret = spool->rsv_hpages + delta - spool->min_hpages;
233
234 spool->rsv_hpages += delta;
235 if (spool->rsv_hpages > spool->min_hpages)
236 spool->rsv_hpages = spool->min_hpages;
237 }
238
239 /*
240 * If hugetlbfs_put_super couldn't free spool due to an outstanding
241 * quota reference, free it now.
242 */
db71ef79 243 unlock_or_release_subpool(spool, flags);
1c5ecae3
MK
244
245 return ret;
90481622
DG
246}
247
248static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
249{
250 return HUGETLBFS_SB(inode->i_sb)->spool;
251}
252
253static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
254{
496ad9aa 255 return subpool_inode(file_inode(vma->vm_file));
90481622
DG
256}
257
0db9d74e
MA
258/* Helper that removes a struct file_region from the resv_map cache and returns
259 * it for use.
260 */
261static struct file_region *
262get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
263{
264 struct file_region *nrg = NULL;
265
266 VM_BUG_ON(resv->region_cache_count <= 0);
267
268 resv->region_cache_count--;
269 nrg = list_first_entry(&resv->region_cache, struct file_region, link);
0db9d74e
MA
270 list_del(&nrg->link);
271
272 nrg->from = from;
273 nrg->to = to;
274
275 return nrg;
276}
277
075a61d0
MA
278static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
279 struct file_region *rg)
280{
281#ifdef CONFIG_CGROUP_HUGETLB
282 nrg->reservation_counter = rg->reservation_counter;
283 nrg->css = rg->css;
284 if (rg->css)
285 css_get(rg->css);
286#endif
287}
288
289/* Helper that records hugetlb_cgroup uncharge info. */
290static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
291 struct hstate *h,
292 struct resv_map *resv,
293 struct file_region *nrg)
294{
295#ifdef CONFIG_CGROUP_HUGETLB
296 if (h_cg) {
297 nrg->reservation_counter =
298 &h_cg->rsvd_hugepage[hstate_index(h)];
299 nrg->css = &h_cg->css;
d85aecf2
ML
300 /*
301 * The caller will hold exactly one h_cg->css reference for the
302 * whole contiguous reservation region. But this area might be
303 * scattered when there are already some file_regions reside in
304 * it. As a result, many file_regions may share only one css
305 * reference. In order to ensure that one file_region must hold
306 * exactly one h_cg->css reference, we should do css_get for
307 * each file_region and leave the reference held by caller
308 * untouched.
309 */
310 css_get(&h_cg->css);
075a61d0
MA
311 if (!resv->pages_per_hpage)
312 resv->pages_per_hpage = pages_per_huge_page(h);
313 /* pages_per_hpage should be the same for all entries in
314 * a resv_map.
315 */
316 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
317 } else {
318 nrg->reservation_counter = NULL;
319 nrg->css = NULL;
320 }
321#endif
322}
323
d85aecf2
ML
324static void put_uncharge_info(struct file_region *rg)
325{
326#ifdef CONFIG_CGROUP_HUGETLB
327 if (rg->css)
328 css_put(rg->css);
329#endif
330}
331
a9b3f867
MA
332static bool has_same_uncharge_info(struct file_region *rg,
333 struct file_region *org)
334{
335#ifdef CONFIG_CGROUP_HUGETLB
0739eb43 336 return rg->reservation_counter == org->reservation_counter &&
a9b3f867
MA
337 rg->css == org->css;
338
339#else
340 return true;
341#endif
342}
343
344static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
345{
346 struct file_region *nrg = NULL, *prg = NULL;
347
348 prg = list_prev_entry(rg, link);
349 if (&prg->link != &resv->regions && prg->to == rg->from &&
350 has_same_uncharge_info(prg, rg)) {
351 prg->to = rg->to;
352
353 list_del(&rg->link);
d85aecf2 354 put_uncharge_info(rg);
a9b3f867
MA
355 kfree(rg);
356
7db5e7b6 357 rg = prg;
a9b3f867
MA
358 }
359
360 nrg = list_next_entry(rg, link);
361 if (&nrg->link != &resv->regions && nrg->from == rg->to &&
362 has_same_uncharge_info(nrg, rg)) {
363 nrg->from = rg->from;
364
365 list_del(&rg->link);
d85aecf2 366 put_uncharge_info(rg);
a9b3f867 367 kfree(rg);
a9b3f867
MA
368 }
369}
370
2103cf9c
PX
371static inline long
372hugetlb_resv_map_add(struct resv_map *map, struct file_region *rg, long from,
373 long to, struct hstate *h, struct hugetlb_cgroup *cg,
374 long *regions_needed)
375{
376 struct file_region *nrg;
377
378 if (!regions_needed) {
379 nrg = get_file_region_entry_from_cache(map, from, to);
380 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
381 list_add(&nrg->link, rg->link.prev);
382 coalesce_file_region(map, nrg);
383 } else
384 *regions_needed += 1;
385
386 return to - from;
387}
388
972a3da3
WY
389/*
390 * Must be called with resv->lock held.
391 *
392 * Calling this with regions_needed != NULL will count the number of pages
393 * to be added but will not modify the linked list. And regions_needed will
394 * indicate the number of file_regions needed in the cache to carry out to add
395 * the regions for this range.
d75c6af9
MA
396 */
397static long add_reservation_in_range(struct resv_map *resv, long f, long t,
075a61d0 398 struct hugetlb_cgroup *h_cg,
972a3da3 399 struct hstate *h, long *regions_needed)
d75c6af9 400{
0db9d74e 401 long add = 0;
d75c6af9 402 struct list_head *head = &resv->regions;
0db9d74e 403 long last_accounted_offset = f;
2103cf9c 404 struct file_region *rg = NULL, *trg = NULL;
d75c6af9 405
0db9d74e
MA
406 if (regions_needed)
407 *regions_needed = 0;
d75c6af9 408
0db9d74e
MA
409 /* In this loop, we essentially handle an entry for the range
410 * [last_accounted_offset, rg->from), at every iteration, with some
411 * bounds checking.
412 */
413 list_for_each_entry_safe(rg, trg, head, link) {
414 /* Skip irrelevant regions that start before our range. */
415 if (rg->from < f) {
416 /* If this region ends after the last accounted offset,
417 * then we need to update last_accounted_offset.
418 */
419 if (rg->to > last_accounted_offset)
420 last_accounted_offset = rg->to;
421 continue;
422 }
d75c6af9 423
0db9d74e
MA
424 /* When we find a region that starts beyond our range, we've
425 * finished.
426 */
ca7e0457 427 if (rg->from >= t)
d75c6af9
MA
428 break;
429
0db9d74e
MA
430 /* Add an entry for last_accounted_offset -> rg->from, and
431 * update last_accounted_offset.
432 */
2103cf9c
PX
433 if (rg->from > last_accounted_offset)
434 add += hugetlb_resv_map_add(resv, rg,
435 last_accounted_offset,
436 rg->from, h, h_cg,
437 regions_needed);
0db9d74e
MA
438
439 last_accounted_offset = rg->to;
440 }
441
442 /* Handle the case where our range extends beyond
443 * last_accounted_offset.
444 */
2103cf9c
PX
445 if (last_accounted_offset < t)
446 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
447 t, h, h_cg, regions_needed);
0db9d74e 448
0db9d74e
MA
449 return add;
450}
451
452/* Must be called with resv->lock acquired. Will drop lock to allocate entries.
453 */
454static int allocate_file_region_entries(struct resv_map *resv,
455 int regions_needed)
456 __must_hold(&resv->lock)
457{
458 struct list_head allocated_regions;
459 int to_allocate = 0, i = 0;
460 struct file_region *trg = NULL, *rg = NULL;
461
462 VM_BUG_ON(regions_needed < 0);
463
464 INIT_LIST_HEAD(&allocated_regions);
465
466 /*
467 * Check for sufficient descriptors in the cache to accommodate
468 * the number of in progress add operations plus regions_needed.
469 *
470 * This is a while loop because when we drop the lock, some other call
471 * to region_add or region_del may have consumed some region_entries,
472 * so we keep looping here until we finally have enough entries for
473 * (adds_in_progress + regions_needed).
474 */
475 while (resv->region_cache_count <
476 (resv->adds_in_progress + regions_needed)) {
477 to_allocate = resv->adds_in_progress + regions_needed -
478 resv->region_cache_count;
479
480 /* At this point, we should have enough entries in the cache
f0953a1b 481 * for all the existing adds_in_progress. We should only be
0db9d74e 482 * needing to allocate for regions_needed.
d75c6af9 483 */
0db9d74e
MA
484 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
485
486 spin_unlock(&resv->lock);
487 for (i = 0; i < to_allocate; i++) {
488 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
489 if (!trg)
490 goto out_of_memory;
491 list_add(&trg->link, &allocated_regions);
d75c6af9 492 }
d75c6af9 493
0db9d74e
MA
494 spin_lock(&resv->lock);
495
d3ec7b6e
WY
496 list_splice(&allocated_regions, &resv->region_cache);
497 resv->region_cache_count += to_allocate;
d75c6af9
MA
498 }
499
0db9d74e 500 return 0;
d75c6af9 501
0db9d74e
MA
502out_of_memory:
503 list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
504 list_del(&rg->link);
505 kfree(rg);
506 }
507 return -ENOMEM;
d75c6af9
MA
508}
509
1dd308a7
MK
510/*
511 * Add the huge page range represented by [f, t) to the reserve
0db9d74e
MA
512 * map. Regions will be taken from the cache to fill in this range.
513 * Sufficient regions should exist in the cache due to the previous
514 * call to region_chg with the same range, but in some cases the cache will not
515 * have sufficient entries due to races with other code doing region_add or
516 * region_del. The extra needed entries will be allocated.
cf3ad20b 517 *
0db9d74e
MA
518 * regions_needed is the out value provided by a previous call to region_chg.
519 *
520 * Return the number of new huge pages added to the map. This number is greater
521 * than or equal to zero. If file_region entries needed to be allocated for
7c8de358 522 * this operation and we were not able to allocate, it returns -ENOMEM.
0db9d74e
MA
523 * region_add of regions of length 1 never allocate file_regions and cannot
524 * fail; region_chg will always allocate at least 1 entry and a region_add for
525 * 1 page will only require at most 1 entry.
1dd308a7 526 */
0db9d74e 527static long region_add(struct resv_map *resv, long f, long t,
075a61d0
MA
528 long in_regions_needed, struct hstate *h,
529 struct hugetlb_cgroup *h_cg)
96822904 530{
0db9d74e 531 long add = 0, actual_regions_needed = 0;
96822904 532
7b24d861 533 spin_lock(&resv->lock);
0db9d74e
MA
534retry:
535
536 /* Count how many regions are actually needed to execute this add. */
972a3da3
WY
537 add_reservation_in_range(resv, f, t, NULL, NULL,
538 &actual_regions_needed);
96822904 539
5e911373 540 /*
0db9d74e
MA
541 * Check for sufficient descriptors in the cache to accommodate
542 * this add operation. Note that actual_regions_needed may be greater
543 * than in_regions_needed, as the resv_map may have been modified since
544 * the region_chg call. In this case, we need to make sure that we
545 * allocate extra entries, such that we have enough for all the
546 * existing adds_in_progress, plus the excess needed for this
547 * operation.
5e911373 548 */
0db9d74e
MA
549 if (actual_regions_needed > in_regions_needed &&
550 resv->region_cache_count <
551 resv->adds_in_progress +
552 (actual_regions_needed - in_regions_needed)) {
553 /* region_add operation of range 1 should never need to
554 * allocate file_region entries.
555 */
556 VM_BUG_ON(t - f <= 1);
5e911373 557
0db9d74e
MA
558 if (allocate_file_region_entries(
559 resv, actual_regions_needed - in_regions_needed)) {
560 return -ENOMEM;
561 }
5e911373 562
0db9d74e 563 goto retry;
5e911373
MK
564 }
565
972a3da3 566 add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
0db9d74e
MA
567
568 resv->adds_in_progress -= in_regions_needed;
cf3ad20b 569
7b24d861 570 spin_unlock(&resv->lock);
cf3ad20b 571 return add;
96822904
AW
572}
573
1dd308a7
MK
574/*
575 * Examine the existing reserve map and determine how many
576 * huge pages in the specified range [f, t) are NOT currently
577 * represented. This routine is called before a subsequent
578 * call to region_add that will actually modify the reserve
579 * map to add the specified range [f, t). region_chg does
580 * not change the number of huge pages represented by the
0db9d74e
MA
581 * map. A number of new file_region structures is added to the cache as a
582 * placeholder, for the subsequent region_add call to use. At least 1
583 * file_region structure is added.
584 *
585 * out_regions_needed is the number of regions added to the
586 * resv->adds_in_progress. This value needs to be provided to a follow up call
587 * to region_add or region_abort for proper accounting.
5e911373
MK
588 *
589 * Returns the number of huge pages that need to be added to the existing
590 * reservation map for the range [f, t). This number is greater or equal to
591 * zero. -ENOMEM is returned if a new file_region structure or cache entry
592 * is needed and can not be allocated.
1dd308a7 593 */
0db9d74e
MA
594static long region_chg(struct resv_map *resv, long f, long t,
595 long *out_regions_needed)
96822904 596{
96822904
AW
597 long chg = 0;
598
7b24d861 599 spin_lock(&resv->lock);
5e911373 600
972a3da3 601 /* Count how many hugepages in this range are NOT represented. */
075a61d0 602 chg = add_reservation_in_range(resv, f, t, NULL, NULL,
972a3da3 603 out_regions_needed);
5e911373 604
0db9d74e
MA
605 if (*out_regions_needed == 0)
606 *out_regions_needed = 1;
5e911373 607
0db9d74e
MA
608 if (allocate_file_region_entries(resv, *out_regions_needed))
609 return -ENOMEM;
5e911373 610
0db9d74e 611 resv->adds_in_progress += *out_regions_needed;
7b24d861 612
7b24d861 613 spin_unlock(&resv->lock);
96822904
AW
614 return chg;
615}
616
5e911373
MK
617/*
618 * Abort the in progress add operation. The adds_in_progress field
619 * of the resv_map keeps track of the operations in progress between
620 * calls to region_chg and region_add. Operations are sometimes
621 * aborted after the call to region_chg. In such cases, region_abort
0db9d74e
MA
622 * is called to decrement the adds_in_progress counter. regions_needed
623 * is the value returned by the region_chg call, it is used to decrement
624 * the adds_in_progress counter.
5e911373
MK
625 *
626 * NOTE: The range arguments [f, t) are not needed or used in this
627 * routine. They are kept to make reading the calling code easier as
628 * arguments will match the associated region_chg call.
629 */
0db9d74e
MA
630static void region_abort(struct resv_map *resv, long f, long t,
631 long regions_needed)
5e911373
MK
632{
633 spin_lock(&resv->lock);
634 VM_BUG_ON(!resv->region_cache_count);
0db9d74e 635 resv->adds_in_progress -= regions_needed;
5e911373
MK
636 spin_unlock(&resv->lock);
637}
638
1dd308a7 639/*
feba16e2
MK
640 * Delete the specified range [f, t) from the reserve map. If the
641 * t parameter is LONG_MAX, this indicates that ALL regions after f
642 * should be deleted. Locate the regions which intersect [f, t)
643 * and either trim, delete or split the existing regions.
644 *
645 * Returns the number of huge pages deleted from the reserve map.
646 * In the normal case, the return value is zero or more. In the
647 * case where a region must be split, a new region descriptor must
648 * be allocated. If the allocation fails, -ENOMEM will be returned.
649 * NOTE: If the parameter t == LONG_MAX, then we will never split
650 * a region and possibly return -ENOMEM. Callers specifying
651 * t == LONG_MAX do not need to check for -ENOMEM error.
1dd308a7 652 */
feba16e2 653static long region_del(struct resv_map *resv, long f, long t)
96822904 654{
1406ec9b 655 struct list_head *head = &resv->regions;
96822904 656 struct file_region *rg, *trg;
feba16e2
MK
657 struct file_region *nrg = NULL;
658 long del = 0;
96822904 659
feba16e2 660retry:
7b24d861 661 spin_lock(&resv->lock);
feba16e2 662 list_for_each_entry_safe(rg, trg, head, link) {
dbe409e4
MK
663 /*
664 * Skip regions before the range to be deleted. file_region
665 * ranges are normally of the form [from, to). However, there
666 * may be a "placeholder" entry in the map which is of the form
667 * (from, to) with from == to. Check for placeholder entries
668 * at the beginning of the range to be deleted.
669 */
670 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
feba16e2 671 continue;
dbe409e4 672
feba16e2 673 if (rg->from >= t)
96822904 674 break;
96822904 675
feba16e2
MK
676 if (f > rg->from && t < rg->to) { /* Must split region */
677 /*
678 * Check for an entry in the cache before dropping
679 * lock and attempting allocation.
680 */
681 if (!nrg &&
682 resv->region_cache_count > resv->adds_in_progress) {
683 nrg = list_first_entry(&resv->region_cache,
684 struct file_region,
685 link);
686 list_del(&nrg->link);
687 resv->region_cache_count--;
688 }
96822904 689
feba16e2
MK
690 if (!nrg) {
691 spin_unlock(&resv->lock);
692 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
693 if (!nrg)
694 return -ENOMEM;
695 goto retry;
696 }
697
698 del += t - f;
79aa925b 699 hugetlb_cgroup_uncharge_file_region(
d85aecf2 700 resv, rg, t - f, false);
feba16e2
MK
701
702 /* New entry for end of split region */
703 nrg->from = t;
704 nrg->to = rg->to;
075a61d0
MA
705
706 copy_hugetlb_cgroup_uncharge_info(nrg, rg);
707
feba16e2
MK
708 INIT_LIST_HEAD(&nrg->link);
709
710 /* Original entry is trimmed */
711 rg->to = f;
712
713 list_add(&nrg->link, &rg->link);
714 nrg = NULL;
96822904 715 break;
feba16e2
MK
716 }
717
718 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
719 del += rg->to - rg->from;
075a61d0 720 hugetlb_cgroup_uncharge_file_region(resv, rg,
d85aecf2 721 rg->to - rg->from, true);
feba16e2
MK
722 list_del(&rg->link);
723 kfree(rg);
724 continue;
725 }
726
727 if (f <= rg->from) { /* Trim beginning of region */
075a61d0 728 hugetlb_cgroup_uncharge_file_region(resv, rg,
d85aecf2 729 t - rg->from, false);
075a61d0 730
79aa925b
MK
731 del += t - rg->from;
732 rg->from = t;
733 } else { /* Trim end of region */
075a61d0 734 hugetlb_cgroup_uncharge_file_region(resv, rg,
d85aecf2 735 rg->to - f, false);
79aa925b
MK
736
737 del += rg->to - f;
738 rg->to = f;
feba16e2 739 }
96822904 740 }
7b24d861 741
7b24d861 742 spin_unlock(&resv->lock);
feba16e2
MK
743 kfree(nrg);
744 return del;
96822904
AW
745}
746
b5cec28d
MK
747/*
748 * A rare out of memory error was encountered which prevented removal of
749 * the reserve map region for a page. The huge page itself was free'ed
750 * and removed from the page cache. This routine will adjust the subpool
751 * usage count, and the global reserve count if needed. By incrementing
752 * these counts, the reserve map entry which could not be deleted will
753 * appear as a "reserved" entry instead of simply dangling with incorrect
754 * counts.
755 */
72e2936c 756void hugetlb_fix_reserve_counts(struct inode *inode)
b5cec28d
MK
757{
758 struct hugepage_subpool *spool = subpool_inode(inode);
759 long rsv_adjust;
da56388c 760 bool reserved = false;
b5cec28d
MK
761
762 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
da56388c 763 if (rsv_adjust > 0) {
b5cec28d
MK
764 struct hstate *h = hstate_inode(inode);
765
da56388c
ML
766 if (!hugetlb_acct_memory(h, 1))
767 reserved = true;
768 } else if (!rsv_adjust) {
769 reserved = true;
b5cec28d 770 }
da56388c
ML
771
772 if (!reserved)
773 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
b5cec28d
MK
774}
775
1dd308a7
MK
776/*
777 * Count and return the number of huge pages in the reserve map
778 * that intersect with the range [f, t).
779 */
1406ec9b 780static long region_count(struct resv_map *resv, long f, long t)
84afd99b 781{
1406ec9b 782 struct list_head *head = &resv->regions;
84afd99b
AW
783 struct file_region *rg;
784 long chg = 0;
785
7b24d861 786 spin_lock(&resv->lock);
84afd99b
AW
787 /* Locate each segment we overlap with, and count that overlap. */
788 list_for_each_entry(rg, head, link) {
f2135a4a
WSH
789 long seg_from;
790 long seg_to;
84afd99b
AW
791
792 if (rg->to <= f)
793 continue;
794 if (rg->from >= t)
795 break;
796
797 seg_from = max(rg->from, f);
798 seg_to = min(rg->to, t);
799
800 chg += seg_to - seg_from;
801 }
7b24d861 802 spin_unlock(&resv->lock);
84afd99b
AW
803
804 return chg;
805}
806
e7c4b0bf
AW
807/*
808 * Convert the address within this vma to the page offset within
809 * the mapping, in pagecache page units; huge pages here.
810 */
a5516438
AK
811static pgoff_t vma_hugecache_offset(struct hstate *h,
812 struct vm_area_struct *vma, unsigned long address)
e7c4b0bf 813{
a5516438
AK
814 return ((address - vma->vm_start) >> huge_page_shift(h)) +
815 (vma->vm_pgoff >> huge_page_order(h));
e7c4b0bf
AW
816}
817
0fe6e20b
NH
818pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
819 unsigned long address)
820{
821 return vma_hugecache_offset(hstate_vma(vma), vma, address);
822}
dee41079 823EXPORT_SYMBOL_GPL(linear_hugepage_index);
0fe6e20b 824
08fba699
MG
825/*
826 * Return the size of the pages allocated when backing a VMA. In the majority
827 * cases this will be same size as used by the page table entries.
828 */
829unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
830{
05ea8860
DW
831 if (vma->vm_ops && vma->vm_ops->pagesize)
832 return vma->vm_ops->pagesize(vma);
833 return PAGE_SIZE;
08fba699 834}
f340ca0f 835EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
08fba699 836
3340289d
MG
837/*
838 * Return the page size being used by the MMU to back a VMA. In the majority
839 * of cases, the page size used by the kernel matches the MMU size. On
09135cc5
DW
840 * architectures where it differs, an architecture-specific 'strong'
841 * version of this symbol is required.
3340289d 842 */
09135cc5 843__weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
3340289d
MG
844{
845 return vma_kernel_pagesize(vma);
846}
3340289d 847
84afd99b
AW
848/*
849 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
850 * bits of the reservation map pointer, which are always clear due to
851 * alignment.
852 */
853#define HPAGE_RESV_OWNER (1UL << 0)
854#define HPAGE_RESV_UNMAPPED (1UL << 1)
04f2cbe3 855#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
84afd99b 856
a1e78772
MG
857/*
858 * These helpers are used to track how many pages are reserved for
859 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
860 * is guaranteed to have their future faults succeed.
861 *
862 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
863 * the reserve counters are updated with the hugetlb_lock held. It is safe
864 * to reset the VMA at fork() time as it is not in use yet and there is no
865 * chance of the global counters getting corrupted as a result of the values.
84afd99b
AW
866 *
867 * The private mapping reservation is represented in a subtly different
868 * manner to a shared mapping. A shared mapping has a region map associated
869 * with the underlying file, this region map represents the backing file
870 * pages which have ever had a reservation assigned which this persists even
871 * after the page is instantiated. A private mapping has a region map
872 * associated with the original mmap which is attached to all VMAs which
873 * reference it, this region map represents those offsets which have consumed
874 * reservation ie. where pages have been instantiated.
a1e78772 875 */
e7c4b0bf
AW
876static unsigned long get_vma_private_data(struct vm_area_struct *vma)
877{
878 return (unsigned long)vma->vm_private_data;
879}
880
881static void set_vma_private_data(struct vm_area_struct *vma,
882 unsigned long value)
883{
884 vma->vm_private_data = (void *)value;
885}
886
e9fe92ae
MA
887static void
888resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
889 struct hugetlb_cgroup *h_cg,
890 struct hstate *h)
891{
892#ifdef CONFIG_CGROUP_HUGETLB
893 if (!h_cg || !h) {
894 resv_map->reservation_counter = NULL;
895 resv_map->pages_per_hpage = 0;
896 resv_map->css = NULL;
897 } else {
898 resv_map->reservation_counter =
899 &h_cg->rsvd_hugepage[hstate_index(h)];
900 resv_map->pages_per_hpage = pages_per_huge_page(h);
901 resv_map->css = &h_cg->css;
902 }
903#endif
904}
905
9119a41e 906struct resv_map *resv_map_alloc(void)
84afd99b
AW
907{
908 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
5e911373
MK
909 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
910
911 if (!resv_map || !rg) {
912 kfree(resv_map);
913 kfree(rg);
84afd99b 914 return NULL;
5e911373 915 }
84afd99b
AW
916
917 kref_init(&resv_map->refs);
7b24d861 918 spin_lock_init(&resv_map->lock);
84afd99b
AW
919 INIT_LIST_HEAD(&resv_map->regions);
920
5e911373 921 resv_map->adds_in_progress = 0;
e9fe92ae
MA
922 /*
923 * Initialize these to 0. On shared mappings, 0's here indicate these
924 * fields don't do cgroup accounting. On private mappings, these will be
925 * re-initialized to the proper values, to indicate that hugetlb cgroup
926 * reservations are to be un-charged from here.
927 */
928 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
5e911373
MK
929
930 INIT_LIST_HEAD(&resv_map->region_cache);
931 list_add(&rg->link, &resv_map->region_cache);
932 resv_map->region_cache_count = 1;
933
84afd99b
AW
934 return resv_map;
935}
936
9119a41e 937void resv_map_release(struct kref *ref)
84afd99b
AW
938{
939 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
5e911373
MK
940 struct list_head *head = &resv_map->region_cache;
941 struct file_region *rg, *trg;
84afd99b
AW
942
943 /* Clear out any active regions before we release the map. */
feba16e2 944 region_del(resv_map, 0, LONG_MAX);
5e911373
MK
945
946 /* ... and any entries left in the cache */
947 list_for_each_entry_safe(rg, trg, head, link) {
948 list_del(&rg->link);
949 kfree(rg);
950 }
951
952 VM_BUG_ON(resv_map->adds_in_progress);
953
84afd99b
AW
954 kfree(resv_map);
955}
956
4e35f483
JK
957static inline struct resv_map *inode_resv_map(struct inode *inode)
958{
f27a5136
MK
959 /*
960 * At inode evict time, i_mapping may not point to the original
961 * address space within the inode. This original address space
962 * contains the pointer to the resv_map. So, always use the
963 * address space embedded within the inode.
964 * The VERY common case is inode->mapping == &inode->i_data but,
965 * this may not be true for device special inodes.
966 */
967 return (struct resv_map *)(&inode->i_data)->private_data;
4e35f483
JK
968}
969
84afd99b 970static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
a1e78772 971{
81d1b09c 972 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
4e35f483
JK
973 if (vma->vm_flags & VM_MAYSHARE) {
974 struct address_space *mapping = vma->vm_file->f_mapping;
975 struct inode *inode = mapping->host;
976
977 return inode_resv_map(inode);
978
979 } else {
84afd99b
AW
980 return (struct resv_map *)(get_vma_private_data(vma) &
981 ~HPAGE_RESV_MASK);
4e35f483 982 }
a1e78772
MG
983}
984
84afd99b 985static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
a1e78772 986{
81d1b09c
SL
987 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
988 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
a1e78772 989
84afd99b
AW
990 set_vma_private_data(vma, (get_vma_private_data(vma) &
991 HPAGE_RESV_MASK) | (unsigned long)map);
04f2cbe3
MG
992}
993
994static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
995{
81d1b09c
SL
996 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
997 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
e7c4b0bf
AW
998
999 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
04f2cbe3
MG
1000}
1001
1002static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
1003{
81d1b09c 1004 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
e7c4b0bf
AW
1005
1006 return (get_vma_private_data(vma) & flag) != 0;
a1e78772
MG
1007}
1008
04f2cbe3 1009/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
a1e78772
MG
1010void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
1011{
81d1b09c 1012 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
f83a275d 1013 if (!(vma->vm_flags & VM_MAYSHARE))
a1e78772
MG
1014 vma->vm_private_data = (void *)0;
1015}
1016
550a7d60
MA
1017/*
1018 * Reset and decrement one ref on hugepage private reservation.
1019 * Called with mm->mmap_sem writer semaphore held.
1020 * This function should be only used by move_vma() and operate on
1021 * same sized vma. It should never come here with last ref on the
1022 * reservation.
1023 */
1024void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
1025{
1026 /*
1027 * Clear the old hugetlb private page reservation.
1028 * It has already been transferred to new_vma.
1029 *
1030 * During a mremap() operation of a hugetlb vma we call move_vma()
1031 * which copies vma into new_vma and unmaps vma. After the copy
1032 * operation both new_vma and vma share a reference to the resv_map
1033 * struct, and at that point vma is about to be unmapped. We don't
1034 * want to return the reservation to the pool at unmap of vma because
1035 * the reservation still lives on in new_vma, so simply decrement the
1036 * ref here and remove the resv_map reference from this vma.
1037 */
1038 struct resv_map *reservations = vma_resv_map(vma);
1039
afe041c2
BQM
1040 if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1041 resv_map_put_hugetlb_cgroup_uncharge_info(reservations);
550a7d60 1042 kref_put(&reservations->refs, resv_map_release);
afe041c2 1043 }
550a7d60
MA
1044
1045 reset_vma_resv_huge_pages(vma);
1046}
1047
a1e78772 1048/* Returns true if the VMA has associated reserve pages */
559ec2f8 1049static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
a1e78772 1050{
af0ed73e
JK
1051 if (vma->vm_flags & VM_NORESERVE) {
1052 /*
1053 * This address is already reserved by other process(chg == 0),
1054 * so, we should decrement reserved count. Without decrementing,
1055 * reserve count remains after releasing inode, because this
1056 * allocated page will go into page cache and is regarded as
1057 * coming from reserved pool in releasing step. Currently, we
1058 * don't have any other solution to deal with this situation
1059 * properly, so add work-around here.
1060 */
1061 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
559ec2f8 1062 return true;
af0ed73e 1063 else
559ec2f8 1064 return false;
af0ed73e 1065 }
a63884e9
JK
1066
1067 /* Shared mappings always use reserves */
1fb1b0e9
MK
1068 if (vma->vm_flags & VM_MAYSHARE) {
1069 /*
1070 * We know VM_NORESERVE is not set. Therefore, there SHOULD
1071 * be a region map for all pages. The only situation where
1072 * there is no region map is if a hole was punched via
7c8de358 1073 * fallocate. In this case, there really are no reserves to
1fb1b0e9
MK
1074 * use. This situation is indicated if chg != 0.
1075 */
1076 if (chg)
1077 return false;
1078 else
1079 return true;
1080 }
a63884e9
JK
1081
1082 /*
1083 * Only the process that called mmap() has reserves for
1084 * private mappings.
1085 */
67961f9d
MK
1086 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1087 /*
1088 * Like the shared case above, a hole punch or truncate
1089 * could have been performed on the private mapping.
1090 * Examine the value of chg to determine if reserves
1091 * actually exist or were previously consumed.
1092 * Very Subtle - The value of chg comes from a previous
1093 * call to vma_needs_reserves(). The reserve map for
1094 * private mappings has different (opposite) semantics
1095 * than that of shared mappings. vma_needs_reserves()
1096 * has already taken this difference in semantics into
1097 * account. Therefore, the meaning of chg is the same
1098 * as in the shared case above. Code could easily be
1099 * combined, but keeping it separate draws attention to
1100 * subtle differences.
1101 */
1102 if (chg)
1103 return false;
1104 else
1105 return true;
1106 }
a63884e9 1107
559ec2f8 1108 return false;
a1e78772
MG
1109}
1110
a5516438 1111static void enqueue_huge_page(struct hstate *h, struct page *page)
1da177e4
LT
1112{
1113 int nid = page_to_nid(page);
9487ca60
MK
1114
1115 lockdep_assert_held(&hugetlb_lock);
b65a4eda
MK
1116 VM_BUG_ON_PAGE(page_count(page), page);
1117
0edaecfa 1118 list_move(&page->lru, &h->hugepage_freelists[nid]);
a5516438
AK
1119 h->free_huge_pages++;
1120 h->free_huge_pages_node[nid]++;
6c037149 1121 SetHPageFreed(page);
1da177e4
LT
1122}
1123
94310cbc 1124static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
bf50bab2
NH
1125{
1126 struct page *page;
1a08ae36 1127 bool pin = !!(current->flags & PF_MEMALLOC_PIN);
bbe88753 1128
9487ca60 1129 lockdep_assert_held(&hugetlb_lock);
bbe88753 1130 list_for_each_entry(page, &h->hugepage_freelists[nid], lru) {
8e3560d9 1131 if (pin && !is_pinnable_page(page))
bbe88753 1132 continue;
bf50bab2 1133
6664bfc8
WY
1134 if (PageHWPoison(page))
1135 continue;
1136
1137 list_move(&page->lru, &h->hugepage_activelist);
1138 set_page_refcounted(page);
6c037149 1139 ClearHPageFreed(page);
6664bfc8
WY
1140 h->free_huge_pages--;
1141 h->free_huge_pages_node[nid]--;
1142 return page;
bbe88753
JK
1143 }
1144
6664bfc8 1145 return NULL;
bf50bab2
NH
1146}
1147
3e59fcb0
MH
1148static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
1149 nodemask_t *nmask)
94310cbc 1150{
3e59fcb0
MH
1151 unsigned int cpuset_mems_cookie;
1152 struct zonelist *zonelist;
1153 struct zone *zone;
1154 struct zoneref *z;
98fa15f3 1155 int node = NUMA_NO_NODE;
94310cbc 1156
3e59fcb0
MH
1157 zonelist = node_zonelist(nid, gfp_mask);
1158
1159retry_cpuset:
1160 cpuset_mems_cookie = read_mems_allowed_begin();
1161 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1162 struct page *page;
1163
1164 if (!cpuset_zone_allowed(zone, gfp_mask))
1165 continue;
1166 /*
1167 * no need to ask again on the same node. Pool is node rather than
1168 * zone aware
1169 */
1170 if (zone_to_nid(zone) == node)
1171 continue;
1172 node = zone_to_nid(zone);
94310cbc 1173
94310cbc
AK
1174 page = dequeue_huge_page_node_exact(h, node);
1175 if (page)
1176 return page;
1177 }
3e59fcb0
MH
1178 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1179 goto retry_cpuset;
1180
94310cbc
AK
1181 return NULL;
1182}
1183
a5516438
AK
1184static struct page *dequeue_huge_page_vma(struct hstate *h,
1185 struct vm_area_struct *vma,
af0ed73e
JK
1186 unsigned long address, int avoid_reserve,
1187 long chg)
1da177e4 1188{
cfcaa66f 1189 struct page *page = NULL;
480eccf9 1190 struct mempolicy *mpol;
04ec6264 1191 gfp_t gfp_mask;
3e59fcb0 1192 nodemask_t *nodemask;
04ec6264 1193 int nid;
1da177e4 1194
a1e78772
MG
1195 /*
1196 * A child process with MAP_PRIVATE mappings created by their parent
1197 * have no page reserves. This check ensures that reservations are
1198 * not "stolen". The child may still get SIGKILLed
1199 */
af0ed73e 1200 if (!vma_has_reserves(vma, chg) &&
a5516438 1201 h->free_huge_pages - h->resv_huge_pages == 0)
c0ff7453 1202 goto err;
a1e78772 1203
04f2cbe3 1204 /* If reserves cannot be used, ensure enough pages are in the pool */
a5516438 1205 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
6eab04a8 1206 goto err;
04f2cbe3 1207
04ec6264
VB
1208 gfp_mask = htlb_alloc_mask(h);
1209 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
cfcaa66f
BW
1210
1211 if (mpol_is_preferred_many(mpol)) {
1212 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1213
1214 /* Fallback to all nodes if page==NULL */
1215 nodemask = NULL;
1216 }
1217
1218 if (!page)
1219 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1220
3e59fcb0 1221 if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
d6995da3 1222 SetHPageRestoreReserve(page);
3e59fcb0 1223 h->resv_huge_pages--;
1da177e4 1224 }
cc9a6c87 1225
52cd3b07 1226 mpol_cond_put(mpol);
1da177e4 1227 return page;
cc9a6c87
MG
1228
1229err:
cc9a6c87 1230 return NULL;
1da177e4
LT
1231}
1232
1cac6f2c
LC
1233/*
1234 * common helper functions for hstate_next_node_to_{alloc|free}.
1235 * We may have allocated or freed a huge page based on a different
1236 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1237 * be outside of *nodes_allowed. Ensure that we use an allowed
1238 * node for alloc or free.
1239 */
1240static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1241{
0edaf86c 1242 nid = next_node_in(nid, *nodes_allowed);
1cac6f2c
LC
1243 VM_BUG_ON(nid >= MAX_NUMNODES);
1244
1245 return nid;
1246}
1247
1248static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1249{
1250 if (!node_isset(nid, *nodes_allowed))
1251 nid = next_node_allowed(nid, nodes_allowed);
1252 return nid;
1253}
1254
1255/*
1256 * returns the previously saved node ["this node"] from which to
1257 * allocate a persistent huge page for the pool and advance the
1258 * next node from which to allocate, handling wrap at end of node
1259 * mask.
1260 */
1261static int hstate_next_node_to_alloc(struct hstate *h,
1262 nodemask_t *nodes_allowed)
1263{
1264 int nid;
1265
1266 VM_BUG_ON(!nodes_allowed);
1267
1268 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1269 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1270
1271 return nid;
1272}
1273
1274/*
10c6ec49 1275 * helper for remove_pool_huge_page() - return the previously saved
1cac6f2c
LC
1276 * node ["this node"] from which to free a huge page. Advance the
1277 * next node id whether or not we find a free huge page to free so
1278 * that the next attempt to free addresses the next node.
1279 */
1280static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1281{
1282 int nid;
1283
1284 VM_BUG_ON(!nodes_allowed);
1285
1286 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1287 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1288
1289 return nid;
1290}
1291
1292#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
1293 for (nr_nodes = nodes_weight(*mask); \
1294 nr_nodes > 0 && \
1295 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
1296 nr_nodes--)
1297
1298#define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1299 for (nr_nodes = nodes_weight(*mask); \
1300 nr_nodes > 0 && \
1301 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1302 nr_nodes--)
1303
8531fc6f 1304/* used to demote non-gigantic_huge pages as well */
34d9e35b
MK
1305static void __destroy_compound_gigantic_page(struct page *page,
1306 unsigned int order, bool demote)
944d9fec
LC
1307{
1308 int i;
1309 int nr_pages = 1 << order;
1310 struct page *p = page + 1;
1311
c8cc708a 1312 atomic_set(compound_mapcount_ptr(page), 0);
5291c09b 1313 atomic_set(compound_pincount_ptr(page), 0);
47e29d32 1314
944d9fec 1315 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
a01f4390 1316 p->mapping = NULL;
1d798ca3 1317 clear_compound_head(p);
34d9e35b
MK
1318 if (!demote)
1319 set_page_refcounted(p);
944d9fec
LC
1320 }
1321
1322 set_compound_order(page, 0);
ba9c1201 1323 page[1].compound_nr = 0;
944d9fec
LC
1324 __ClearPageHead(page);
1325}
1326
8531fc6f
MK
1327static void destroy_compound_hugetlb_page_for_demote(struct page *page,
1328 unsigned int order)
1329{
1330 __destroy_compound_gigantic_page(page, order, true);
1331}
1332
1333#ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
34d9e35b
MK
1334static void destroy_compound_gigantic_page(struct page *page,
1335 unsigned int order)
1336{
1337 __destroy_compound_gigantic_page(page, order, false);
1338}
1339
d00181b9 1340static void free_gigantic_page(struct page *page, unsigned int order)
944d9fec 1341{
cf11e85f
RG
1342 /*
1343 * If the page isn't allocated using the cma allocator,
1344 * cma_release() returns false.
1345 */
dbda8fea
BS
1346#ifdef CONFIG_CMA
1347 if (cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order))
cf11e85f 1348 return;
dbda8fea 1349#endif
cf11e85f 1350
944d9fec
LC
1351 free_contig_range(page_to_pfn(page), 1 << order);
1352}
1353
4eb0716e 1354#ifdef CONFIG_CONTIG_ALLOC
d9cc948f
MH
1355static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1356 int nid, nodemask_t *nodemask)
944d9fec 1357{
04adbc3f 1358 unsigned long nr_pages = pages_per_huge_page(h);
953f064a
LX
1359 if (nid == NUMA_NO_NODE)
1360 nid = numa_mem_id();
944d9fec 1361
dbda8fea
BS
1362#ifdef CONFIG_CMA
1363 {
cf11e85f
RG
1364 struct page *page;
1365 int node;
1366
953f064a
LX
1367 if (hugetlb_cma[nid]) {
1368 page = cma_alloc(hugetlb_cma[nid], nr_pages,
1369 huge_page_order(h), true);
cf11e85f
RG
1370 if (page)
1371 return page;
1372 }
953f064a
LX
1373
1374 if (!(gfp_mask & __GFP_THISNODE)) {
1375 for_each_node_mask(node, *nodemask) {
1376 if (node == nid || !hugetlb_cma[node])
1377 continue;
1378
1379 page = cma_alloc(hugetlb_cma[node], nr_pages,
1380 huge_page_order(h), true);
1381 if (page)
1382 return page;
1383 }
1384 }
cf11e85f 1385 }
dbda8fea 1386#endif
cf11e85f 1387
5e27a2df 1388 return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
944d9fec
LC
1389}
1390
4eb0716e
AG
1391#else /* !CONFIG_CONTIG_ALLOC */
1392static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1393 int nid, nodemask_t *nodemask)
1394{
1395 return NULL;
1396}
1397#endif /* CONFIG_CONTIG_ALLOC */
944d9fec 1398
e1073d1e 1399#else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
d9cc948f 1400static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
4eb0716e
AG
1401 int nid, nodemask_t *nodemask)
1402{
1403 return NULL;
1404}
d00181b9 1405static inline void free_gigantic_page(struct page *page, unsigned int order) { }
944d9fec 1406static inline void destroy_compound_gigantic_page(struct page *page,
d00181b9 1407 unsigned int order) { }
944d9fec
LC
1408#endif
1409
6eb4e88a
MK
1410/*
1411 * Remove hugetlb page from lists, and update dtor so that page appears
34d9e35b
MK
1412 * as just a compound page.
1413 *
1414 * A reference is held on the page, except in the case of demote.
6eb4e88a
MK
1415 *
1416 * Must be called with hugetlb lock held.
1417 */
34d9e35b
MK
1418static void __remove_hugetlb_page(struct hstate *h, struct page *page,
1419 bool adjust_surplus,
1420 bool demote)
6eb4e88a
MK
1421{
1422 int nid = page_to_nid(page);
1423
1424 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1425 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page);
1426
9487ca60 1427 lockdep_assert_held(&hugetlb_lock);
6eb4e88a
MK
1428 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1429 return;
1430
1431 list_del(&page->lru);
1432
1433 if (HPageFreed(page)) {
1434 h->free_huge_pages--;
1435 h->free_huge_pages_node[nid]--;
1436 }
1437 if (adjust_surplus) {
1438 h->surplus_huge_pages--;
1439 h->surplus_huge_pages_node[nid]--;
1440 }
1441
e32d20c0
MK
1442 /*
1443 * Very subtle
1444 *
1445 * For non-gigantic pages set the destructor to the normal compound
1446 * page dtor. This is needed in case someone takes an additional
1447 * temporary ref to the page, and freeing is delayed until they drop
1448 * their reference.
1449 *
1450 * For gigantic pages set the destructor to the null dtor. This
1451 * destructor will never be called. Before freeing the gigantic
1452 * page destroy_compound_gigantic_page will turn the compound page
1453 * into a simple group of pages. After this the destructor does not
1454 * apply.
1455 *
1456 * This handles the case where more than one ref is held when and
1457 * after update_and_free_page is called.
34d9e35b
MK
1458 *
1459 * In the case of demote we do not ref count the page as it will soon
1460 * be turned into a page of smaller size.
e32d20c0 1461 */
34d9e35b
MK
1462 if (!demote)
1463 set_page_refcounted(page);
e32d20c0
MK
1464 if (hstate_is_gigantic(h))
1465 set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1466 else
1467 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
6eb4e88a
MK
1468
1469 h->nr_huge_pages--;
1470 h->nr_huge_pages_node[nid]--;
1471}
1472
34d9e35b
MK
1473static void remove_hugetlb_page(struct hstate *h, struct page *page,
1474 bool adjust_surplus)
1475{
1476 __remove_hugetlb_page(h, page, adjust_surplus, false);
1477}
1478
8531fc6f
MK
1479static void remove_hugetlb_page_for_demote(struct hstate *h, struct page *page,
1480 bool adjust_surplus)
1481{
1482 __remove_hugetlb_page(h, page, adjust_surplus, true);
1483}
1484
ad2fa371
MS
1485static void add_hugetlb_page(struct hstate *h, struct page *page,
1486 bool adjust_surplus)
1487{
1488 int zeroed;
1489 int nid = page_to_nid(page);
1490
1491 VM_BUG_ON_PAGE(!HPageVmemmapOptimized(page), page);
1492
1493 lockdep_assert_held(&hugetlb_lock);
1494
1495 INIT_LIST_HEAD(&page->lru);
1496 h->nr_huge_pages++;
1497 h->nr_huge_pages_node[nid]++;
1498
1499 if (adjust_surplus) {
1500 h->surplus_huge_pages++;
1501 h->surplus_huge_pages_node[nid]++;
1502 }
1503
1504 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1505 set_page_private(page, 0);
1506 SetHPageVmemmapOptimized(page);
1507
1508 /*
b65a4eda
MK
1509 * This page is about to be managed by the hugetlb allocator and
1510 * should have no users. Drop our reference, and check for others
1511 * just in case.
ad2fa371
MS
1512 */
1513 zeroed = put_page_testzero(page);
b65a4eda
MK
1514 if (!zeroed)
1515 /*
1516 * It is VERY unlikely soneone else has taken a ref on
1517 * the page. In this case, we simply return as the
1518 * hugetlb destructor (free_huge_page) will be called
1519 * when this other ref is dropped.
1520 */
1521 return;
1522
ad2fa371
MS
1523 arch_clear_hugepage_flags(page);
1524 enqueue_huge_page(h, page);
1525}
1526
b65d4adb 1527static void __update_and_free_page(struct hstate *h, struct page *page)
6af2acb6
AL
1528{
1529 int i;
dbfee5ae 1530 struct page *subpage = page;
a5516438 1531
4eb0716e 1532 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
944d9fec 1533 return;
18229df5 1534
ad2fa371
MS
1535 if (alloc_huge_page_vmemmap(h, page)) {
1536 spin_lock_irq(&hugetlb_lock);
1537 /*
1538 * If we cannot allocate vmemmap pages, just refuse to free the
1539 * page and put the page back on the hugetlb free list and treat
1540 * as a surplus page.
1541 */
1542 add_hugetlb_page(h, page, true);
1543 spin_unlock_irq(&hugetlb_lock);
1544 return;
1545 }
1546
dbfee5ae
MK
1547 for (i = 0; i < pages_per_huge_page(h);
1548 i++, subpage = mem_map_next(subpage, page, i)) {
1549 subpage->flags &= ~(1 << PG_locked | 1 << PG_error |
32f84528 1550 1 << PG_referenced | 1 << PG_dirty |
a7407a27
LC
1551 1 << PG_active | 1 << PG_private |
1552 1 << PG_writeback);
6af2acb6 1553 }
a01f4390
MK
1554
1555 /*
1556 * Non-gigantic pages demoted from CMA allocated gigantic pages
1557 * need to be given back to CMA in free_gigantic_page.
1558 */
1559 if (hstate_is_gigantic(h) ||
1560 hugetlb_cma_page(page, huge_page_order(h))) {
944d9fec
LC
1561 destroy_compound_gigantic_page(page, huge_page_order(h));
1562 free_gigantic_page(page, huge_page_order(h));
1563 } else {
944d9fec
LC
1564 __free_pages(page, huge_page_order(h));
1565 }
6af2acb6
AL
1566}
1567
b65d4adb
MS
1568/*
1569 * As update_and_free_page() can be called under any context, so we cannot
1570 * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the
1571 * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate
1572 * the vmemmap pages.
1573 *
1574 * free_hpage_workfn() locklessly retrieves the linked list of pages to be
1575 * freed and frees them one-by-one. As the page->mapping pointer is going
1576 * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node
1577 * structure of a lockless linked list of huge pages to be freed.
1578 */
1579static LLIST_HEAD(hpage_freelist);
1580
1581static void free_hpage_workfn(struct work_struct *work)
1582{
1583 struct llist_node *node;
1584
1585 node = llist_del_all(&hpage_freelist);
1586
1587 while (node) {
1588 struct page *page;
1589 struct hstate *h;
1590
1591 page = container_of((struct address_space **)node,
1592 struct page, mapping);
1593 node = node->next;
1594 page->mapping = NULL;
1595 /*
1596 * The VM_BUG_ON_PAGE(!PageHuge(page), page) in page_hstate()
1597 * is going to trigger because a previous call to
1598 * remove_hugetlb_page() will set_compound_page_dtor(page,
1599 * NULL_COMPOUND_DTOR), so do not use page_hstate() directly.
1600 */
1601 h = size_to_hstate(page_size(page));
1602
1603 __update_and_free_page(h, page);
1604
1605 cond_resched();
1606 }
1607}
1608static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1609
1610static inline void flush_free_hpage_work(struct hstate *h)
1611{
1612 if (free_vmemmap_pages_per_hpage(h))
1613 flush_work(&free_hpage_work);
1614}
1615
1616static void update_and_free_page(struct hstate *h, struct page *page,
1617 bool atomic)
1618{
ad2fa371 1619 if (!HPageVmemmapOptimized(page) || !atomic) {
b65d4adb
MS
1620 __update_and_free_page(h, page);
1621 return;
1622 }
1623
1624 /*
1625 * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages.
1626 *
1627 * Only call schedule_work() if hpage_freelist is previously
1628 * empty. Otherwise, schedule_work() had been called but the workfn
1629 * hasn't retrieved the list yet.
1630 */
1631 if (llist_add((struct llist_node *)&page->mapping, &hpage_freelist))
1632 schedule_work(&free_hpage_work);
1633}
1634
10c6ec49
MK
1635static void update_and_free_pages_bulk(struct hstate *h, struct list_head *list)
1636{
1637 struct page *page, *t_page;
1638
1639 list_for_each_entry_safe(page, t_page, list, lru) {
b65d4adb 1640 update_and_free_page(h, page, false);
10c6ec49
MK
1641 cond_resched();
1642 }
1643}
1644
e5ff2159
AK
1645struct hstate *size_to_hstate(unsigned long size)
1646{
1647 struct hstate *h;
1648
1649 for_each_hstate(h) {
1650 if (huge_page_size(h) == size)
1651 return h;
1652 }
1653 return NULL;
1654}
1655
db71ef79 1656void free_huge_page(struct page *page)
27a85ef1 1657{
a5516438
AK
1658 /*
1659 * Can't pass hstate in here because it is called from the
1660 * compound page destructor.
1661 */
e5ff2159 1662 struct hstate *h = page_hstate(page);
7893d1d5 1663 int nid = page_to_nid(page);
d6995da3 1664 struct hugepage_subpool *spool = hugetlb_page_subpool(page);
07443a85 1665 bool restore_reserve;
db71ef79 1666 unsigned long flags;
27a85ef1 1667
b4330afb
MK
1668 VM_BUG_ON_PAGE(page_count(page), page);
1669 VM_BUG_ON_PAGE(page_mapcount(page), page);
8ace22bc 1670
d6995da3 1671 hugetlb_set_page_subpool(page, NULL);
8ace22bc 1672 page->mapping = NULL;
d6995da3
MK
1673 restore_reserve = HPageRestoreReserve(page);
1674 ClearHPageRestoreReserve(page);
27a85ef1 1675
1c5ecae3 1676 /*
d6995da3 1677 * If HPageRestoreReserve was set on page, page allocation consumed a
0919e1b6
MK
1678 * reservation. If the page was associated with a subpool, there
1679 * would have been a page reserved in the subpool before allocation
1680 * via hugepage_subpool_get_pages(). Since we are 'restoring' the
6c26d310 1681 * reservation, do not call hugepage_subpool_put_pages() as this will
0919e1b6 1682 * remove the reserved page from the subpool.
1c5ecae3 1683 */
0919e1b6
MK
1684 if (!restore_reserve) {
1685 /*
1686 * A return code of zero implies that the subpool will be
1687 * under its minimum size if the reservation is not restored
1688 * after page is free. Therefore, force restore_reserve
1689 * operation.
1690 */
1691 if (hugepage_subpool_put_pages(spool, 1) == 0)
1692 restore_reserve = true;
1693 }
1c5ecae3 1694
db71ef79 1695 spin_lock_irqsave(&hugetlb_lock, flags);
8f251a3d 1696 ClearHPageMigratable(page);
6d76dcf4
AK
1697 hugetlb_cgroup_uncharge_page(hstate_index(h),
1698 pages_per_huge_page(h), page);
08cf9faf
MA
1699 hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
1700 pages_per_huge_page(h), page);
07443a85
JK
1701 if (restore_reserve)
1702 h->resv_huge_pages++;
1703
9157c311 1704 if (HPageTemporary(page)) {
6eb4e88a 1705 remove_hugetlb_page(h, page, false);
db71ef79 1706 spin_unlock_irqrestore(&hugetlb_lock, flags);
b65d4adb 1707 update_and_free_page(h, page, true);
ab5ac90a 1708 } else if (h->surplus_huge_pages_node[nid]) {
0edaecfa 1709 /* remove the page from active list */
6eb4e88a 1710 remove_hugetlb_page(h, page, true);
db71ef79 1711 spin_unlock_irqrestore(&hugetlb_lock, flags);
b65d4adb 1712 update_and_free_page(h, page, true);
7893d1d5 1713 } else {
5d3a551c 1714 arch_clear_hugepage_flags(page);
a5516438 1715 enqueue_huge_page(h, page);
db71ef79 1716 spin_unlock_irqrestore(&hugetlb_lock, flags);
c77c0a8a 1717 }
c77c0a8a
WL
1718}
1719
d3d99fcc
OS
1720/*
1721 * Must be called with the hugetlb lock held
1722 */
1723static void __prep_account_new_huge_page(struct hstate *h, int nid)
1724{
1725 lockdep_assert_held(&hugetlb_lock);
1726 h->nr_huge_pages++;
1727 h->nr_huge_pages_node[nid]++;
1728}
1729
f41f2ed4 1730static void __prep_new_huge_page(struct hstate *h, struct page *page)
b7ba30c6 1731{
f41f2ed4 1732 free_huge_page_vmemmap(h, page);
0edaecfa 1733 INIT_LIST_HEAD(&page->lru);
f1e61557 1734 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
ff546117 1735 hugetlb_set_page_subpool(page, NULL);
9dd540e2 1736 set_hugetlb_cgroup(page, NULL);
1adc4d41 1737 set_hugetlb_cgroup_rsvd(page, NULL);
d3d99fcc
OS
1738}
1739
1740static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1741{
f41f2ed4 1742 __prep_new_huge_page(h, page);
db71ef79 1743 spin_lock_irq(&hugetlb_lock);
d3d99fcc 1744 __prep_account_new_huge_page(h, nid);
db71ef79 1745 spin_unlock_irq(&hugetlb_lock);
b7ba30c6
AK
1746}
1747
34d9e35b
MK
1748static bool __prep_compound_gigantic_page(struct page *page, unsigned int order,
1749 bool demote)
20a0307c 1750{
7118fc29 1751 int i, j;
20a0307c
WF
1752 int nr_pages = 1 << order;
1753 struct page *p = page + 1;
1754
1755 /* we rely on prep_new_huge_page to set the destructor */
1756 set_compound_order(page, order);
ef5a22be 1757 __ClearPageReserved(page);
de09d31d 1758 __SetPageHead(page);
20a0307c 1759 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
ef5a22be
AA
1760 /*
1761 * For gigantic hugepages allocated through bootmem at
1762 * boot, it's safer to be consistent with the not-gigantic
1763 * hugepages and clear the PG_reserved bit from all tail pages
7c8de358 1764 * too. Otherwise drivers using get_user_pages() to access tail
ef5a22be
AA
1765 * pages may get the reference counting wrong if they see
1766 * PG_reserved set on a tail page (despite the head page not
1767 * having PG_reserved set). Enforcing this consistency between
1768 * head and tail pages allows drivers to optimize away a check
1769 * on the head page when they need know if put_page() is needed
1770 * after get_user_pages().
1771 */
1772 __ClearPageReserved(p);
7118fc29
MK
1773 /*
1774 * Subtle and very unlikely
1775 *
1776 * Gigantic 'page allocators' such as memblock or cma will
1777 * return a set of pages with each page ref counted. We need
1778 * to turn this set of pages into a compound page with tail
1779 * page ref counts set to zero. Code such as speculative page
1780 * cache adding could take a ref on a 'to be' tail page.
1781 * We need to respect any increased ref count, and only set
1782 * the ref count to zero if count is currently 1. If count
416d85ed
MK
1783 * is not 1, we return an error. An error return indicates
1784 * the set of pages can not be converted to a gigantic page.
1785 * The caller who allocated the pages should then discard the
1786 * pages using the appropriate free interface.
34d9e35b
MK
1787 *
1788 * In the case of demote, the ref count will be zero.
7118fc29 1789 */
34d9e35b
MK
1790 if (!demote) {
1791 if (!page_ref_freeze(p, 1)) {
1792 pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n");
1793 goto out_error;
1794 }
1795 } else {
1796 VM_BUG_ON_PAGE(page_count(p), p);
7118fc29 1797 }
1d798ca3 1798 set_compound_head(p, page);
20a0307c 1799 }
b4330afb 1800 atomic_set(compound_mapcount_ptr(page), -1);
5291c09b 1801 atomic_set(compound_pincount_ptr(page), 0);
7118fc29
MK
1802 return true;
1803
1804out_error:
1805 /* undo tail page modifications made above */
1806 p = page + 1;
1807 for (j = 1; j < i; j++, p = mem_map_next(p, page, j)) {
1808 clear_compound_head(p);
1809 set_page_refcounted(p);
1810 }
1811 /* need to clear PG_reserved on remaining tail pages */
1812 for (; j < nr_pages; j++, p = mem_map_next(p, page, j))
1813 __ClearPageReserved(p);
1814 set_compound_order(page, 0);
1815 page[1].compound_nr = 0;
1816 __ClearPageHead(page);
1817 return false;
20a0307c
WF
1818}
1819
34d9e35b
MK
1820static bool prep_compound_gigantic_page(struct page *page, unsigned int order)
1821{
1822 return __prep_compound_gigantic_page(page, order, false);
1823}
1824
8531fc6f
MK
1825static bool prep_compound_gigantic_page_for_demote(struct page *page,
1826 unsigned int order)
1827{
1828 return __prep_compound_gigantic_page(page, order, true);
1829}
1830
7795912c
AM
1831/*
1832 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1833 * transparent huge pages. See the PageTransHuge() documentation for more
1834 * details.
1835 */
20a0307c
WF
1836int PageHuge(struct page *page)
1837{
20a0307c
WF
1838 if (!PageCompound(page))
1839 return 0;
1840
1841 page = compound_head(page);
f1e61557 1842 return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
20a0307c 1843}
43131e14
NH
1844EXPORT_SYMBOL_GPL(PageHuge);
1845
27c73ae7
AA
1846/*
1847 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1848 * normal or transparent huge pages.
1849 */
1850int PageHeadHuge(struct page *page_head)
1851{
27c73ae7
AA
1852 if (!PageHead(page_head))
1853 return 0;
1854
d4af73e3 1855 return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR;
27c73ae7 1856}
27c73ae7 1857
c0d0381a
MK
1858/*
1859 * Find and lock address space (mapping) in write mode.
1860 *
336bf30e
MK
1861 * Upon entry, the page is locked which means that page_mapping() is
1862 * stable. Due to locking order, we can only trylock_write. If we can
1863 * not get the lock, simply return NULL to caller.
c0d0381a
MK
1864 */
1865struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
1866{
336bf30e 1867 struct address_space *mapping = page_mapping(hpage);
c0d0381a 1868
c0d0381a
MK
1869 if (!mapping)
1870 return mapping;
1871
c0d0381a
MK
1872 if (i_mmap_trylock_write(mapping))
1873 return mapping;
1874
336bf30e 1875 return NULL;
c0d0381a
MK
1876}
1877
fe19bd3d 1878pgoff_t hugetlb_basepage_index(struct page *page)
13d60f4b
ZY
1879{
1880 struct page *page_head = compound_head(page);
1881 pgoff_t index = page_index(page_head);
1882 unsigned long compound_idx;
1883
13d60f4b
ZY
1884 if (compound_order(page_head) >= MAX_ORDER)
1885 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1886 else
1887 compound_idx = page - page_head;
1888
1889 return (index << compound_order(page_head)) + compound_idx;
1890}
1891
0c397dae 1892static struct page *alloc_buddy_huge_page(struct hstate *h,
f60858f9
MK
1893 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1894 nodemask_t *node_alloc_noretry)
1da177e4 1895{
af0fb9df 1896 int order = huge_page_order(h);
1da177e4 1897 struct page *page;
f60858f9 1898 bool alloc_try_hard = true;
f96efd58 1899
f60858f9
MK
1900 /*
1901 * By default we always try hard to allocate the page with
1902 * __GFP_RETRY_MAYFAIL flag. However, if we are allocating pages in
1903 * a loop (to adjust global huge page counts) and previous allocation
1904 * failed, do not continue to try hard on the same node. Use the
1905 * node_alloc_noretry bitmap to manage this state information.
1906 */
1907 if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1908 alloc_try_hard = false;
1909 gfp_mask |= __GFP_COMP|__GFP_NOWARN;
1910 if (alloc_try_hard)
1911 gfp_mask |= __GFP_RETRY_MAYFAIL;
af0fb9df
MH
1912 if (nid == NUMA_NO_NODE)
1913 nid = numa_mem_id();
84172f4b 1914 page = __alloc_pages(gfp_mask, order, nid, nmask);
af0fb9df
MH
1915 if (page)
1916 __count_vm_event(HTLB_BUDDY_PGALLOC);
1917 else
1918 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
63b4613c 1919
f60858f9
MK
1920 /*
1921 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
1922 * indicates an overall state change. Clear bit so that we resume
1923 * normal 'try hard' allocations.
1924 */
1925 if (node_alloc_noretry && page && !alloc_try_hard)
1926 node_clear(nid, *node_alloc_noretry);
1927
1928 /*
1929 * If we tried hard to get a page but failed, set bit so that
1930 * subsequent attempts will not try as hard until there is an
1931 * overall state change.
1932 */
1933 if (node_alloc_noretry && !page && alloc_try_hard)
1934 node_set(nid, *node_alloc_noretry);
1935
63b4613c
NA
1936 return page;
1937}
1938
0c397dae
MH
1939/*
1940 * Common helper to allocate a fresh hugetlb page. All specific allocators
1941 * should use this function to get new hugetlb pages
1942 */
1943static struct page *alloc_fresh_huge_page(struct hstate *h,
f60858f9
MK
1944 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1945 nodemask_t *node_alloc_noretry)
0c397dae
MH
1946{
1947 struct page *page;
7118fc29 1948 bool retry = false;
0c397dae 1949
7118fc29 1950retry:
0c397dae
MH
1951 if (hstate_is_gigantic(h))
1952 page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1953 else
1954 page = alloc_buddy_huge_page(h, gfp_mask,
f60858f9 1955 nid, nmask, node_alloc_noretry);
0c397dae
MH
1956 if (!page)
1957 return NULL;
1958
7118fc29
MK
1959 if (hstate_is_gigantic(h)) {
1960 if (!prep_compound_gigantic_page(page, huge_page_order(h))) {
1961 /*
1962 * Rare failure to convert pages to compound page.
1963 * Free pages and try again - ONCE!
1964 */
1965 free_gigantic_page(page, huge_page_order(h));
1966 if (!retry) {
1967 retry = true;
1968 goto retry;
1969 }
7118fc29
MK
1970 return NULL;
1971 }
1972 }
0c397dae
MH
1973 prep_new_huge_page(h, page, page_to_nid(page));
1974
1975 return page;
1976}
1977
af0fb9df
MH
1978/*
1979 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1980 * manner.
1981 */
f60858f9
MK
1982static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1983 nodemask_t *node_alloc_noretry)
b2261026
JK
1984{
1985 struct page *page;
1986 int nr_nodes, node;
af0fb9df 1987 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
b2261026
JK
1988
1989 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
f60858f9
MK
1990 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
1991 node_alloc_noretry);
af0fb9df 1992 if (page)
b2261026 1993 break;
b2261026
JK
1994 }
1995
af0fb9df
MH
1996 if (!page)
1997 return 0;
b2261026 1998
af0fb9df
MH
1999 put_page(page); /* free it into the hugepage allocator */
2000
2001 return 1;
b2261026
JK
2002}
2003
e8c5c824 2004/*
10c6ec49
MK
2005 * Remove huge page from pool from next node to free. Attempt to keep
2006 * persistent huge pages more or less balanced over allowed nodes.
2007 * This routine only 'removes' the hugetlb page. The caller must make
2008 * an additional call to free the page to low level allocators.
e8c5c824
LS
2009 * Called with hugetlb_lock locked.
2010 */
10c6ec49
MK
2011static struct page *remove_pool_huge_page(struct hstate *h,
2012 nodemask_t *nodes_allowed,
2013 bool acct_surplus)
e8c5c824 2014{
b2261026 2015 int nr_nodes, node;
10c6ec49 2016 struct page *page = NULL;
e8c5c824 2017
9487ca60 2018 lockdep_assert_held(&hugetlb_lock);
b2261026 2019 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
685f3457
LS
2020 /*
2021 * If we're returning unused surplus pages, only examine
2022 * nodes with surplus pages.
2023 */
b2261026
JK
2024 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
2025 !list_empty(&h->hugepage_freelists[node])) {
10c6ec49 2026 page = list_entry(h->hugepage_freelists[node].next,
e8c5c824 2027 struct page, lru);
6eb4e88a 2028 remove_hugetlb_page(h, page, acct_surplus);
9a76db09 2029 break;
e8c5c824 2030 }
b2261026 2031 }
e8c5c824 2032
10c6ec49 2033 return page;
e8c5c824
LS
2034}
2035
c8721bbb
NH
2036/*
2037 * Dissolve a given free hugepage into free buddy pages. This function does
faf53def
NH
2038 * nothing for in-use hugepages and non-hugepages.
2039 * This function returns values like below:
2040 *
ad2fa371
MS
2041 * -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages
2042 * when the system is under memory pressure and the feature of
2043 * freeing unused vmemmap pages associated with each hugetlb page
2044 * is enabled.
2045 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
2046 * (allocated or reserved.)
2047 * 0: successfully dissolved free hugepages or the page is not a
2048 * hugepage (considered as already dissolved)
c8721bbb 2049 */
c3114a84 2050int dissolve_free_huge_page(struct page *page)
c8721bbb 2051{
6bc9b564 2052 int rc = -EBUSY;
082d5b6b 2053
7ffddd49 2054retry:
faf53def
NH
2055 /* Not to disrupt normal path by vainly holding hugetlb_lock */
2056 if (!PageHuge(page))
2057 return 0;
2058
db71ef79 2059 spin_lock_irq(&hugetlb_lock);
faf53def
NH
2060 if (!PageHuge(page)) {
2061 rc = 0;
2062 goto out;
2063 }
2064
2065 if (!page_count(page)) {
2247bb33
GS
2066 struct page *head = compound_head(page);
2067 struct hstate *h = page_hstate(head);
6bc9b564 2068 if (h->free_huge_pages - h->resv_huge_pages == 0)
082d5b6b 2069 goto out;
7ffddd49
MS
2070
2071 /*
2072 * We should make sure that the page is already on the free list
2073 * when it is dissolved.
2074 */
6c037149 2075 if (unlikely(!HPageFreed(head))) {
db71ef79 2076 spin_unlock_irq(&hugetlb_lock);
7ffddd49
MS
2077 cond_resched();
2078
2079 /*
2080 * Theoretically, we should return -EBUSY when we
2081 * encounter this race. In fact, we have a chance
2082 * to successfully dissolve the page if we do a
2083 * retry. Because the race window is quite small.
2084 * If we seize this opportunity, it is an optimization
2085 * for increasing the success rate of dissolving page.
2086 */
2087 goto retry;
2088 }
2089
0c5da357 2090 remove_hugetlb_page(h, head, false);
c1470b33 2091 h->max_huge_pages--;
db71ef79 2092 spin_unlock_irq(&hugetlb_lock);
ad2fa371
MS
2093
2094 /*
2095 * Normally update_and_free_page will allocate required vmemmmap
2096 * before freeing the page. update_and_free_page will fail to
2097 * free the page if it can not allocate required vmemmap. We
2098 * need to adjust max_huge_pages if the page is not freed.
2099 * Attempt to allocate vmemmmap here so that we can take
2100 * appropriate action on failure.
2101 */
2102 rc = alloc_huge_page_vmemmap(h, head);
2103 if (!rc) {
2104 /*
2105 * Move PageHWPoison flag from head page to the raw
2106 * error page, which makes any subpages rather than
2107 * the error page reusable.
2108 */
2109 if (PageHWPoison(head) && page != head) {
2110 SetPageHWPoison(page);
2111 ClearPageHWPoison(head);
2112 }
2113 update_and_free_page(h, head, false);
2114 } else {
2115 spin_lock_irq(&hugetlb_lock);
2116 add_hugetlb_page(h, head, false);
2117 h->max_huge_pages++;
2118 spin_unlock_irq(&hugetlb_lock);
2119 }
2120
2121 return rc;
c8721bbb 2122 }
082d5b6b 2123out:
db71ef79 2124 spin_unlock_irq(&hugetlb_lock);
082d5b6b 2125 return rc;
c8721bbb
NH
2126}
2127
2128/*
2129 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
2130 * make specified memory blocks removable from the system.
2247bb33
GS
2131 * Note that this will dissolve a free gigantic hugepage completely, if any
2132 * part of it lies within the given range.
082d5b6b
GS
2133 * Also note that if dissolve_free_huge_page() returns with an error, all
2134 * free hugepages that were dissolved before that error are lost.
c8721bbb 2135 */
082d5b6b 2136int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
c8721bbb 2137{
c8721bbb 2138 unsigned long pfn;
eb03aa00 2139 struct page *page;
082d5b6b 2140 int rc = 0;
c8721bbb 2141
d0177639 2142 if (!hugepages_supported())
082d5b6b 2143 return rc;
d0177639 2144
eb03aa00
GS
2145 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
2146 page = pfn_to_page(pfn);
faf53def
NH
2147 rc = dissolve_free_huge_page(page);
2148 if (rc)
2149 break;
eb03aa00 2150 }
082d5b6b
GS
2151
2152 return rc;
c8721bbb
NH
2153}
2154
ab5ac90a
MH
2155/*
2156 * Allocates a fresh surplus page from the page allocator.
2157 */
0c397dae 2158static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
b65a4eda 2159 int nid, nodemask_t *nmask, bool zero_ref)
7893d1d5 2160{
9980d744 2161 struct page *page = NULL;
b65a4eda 2162 bool retry = false;
7893d1d5 2163
bae7f4ae 2164 if (hstate_is_gigantic(h))
aa888a74
AK
2165 return NULL;
2166
db71ef79 2167 spin_lock_irq(&hugetlb_lock);
9980d744
MH
2168 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
2169 goto out_unlock;
db71ef79 2170 spin_unlock_irq(&hugetlb_lock);
d1c3fb1f 2171
b65a4eda 2172retry:
f60858f9 2173 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
9980d744 2174 if (!page)
0c397dae 2175 return NULL;
d1c3fb1f 2176
db71ef79 2177 spin_lock_irq(&hugetlb_lock);
9980d744
MH
2178 /*
2179 * We could have raced with the pool size change.
2180 * Double check that and simply deallocate the new page
2181 * if we would end up overcommiting the surpluses. Abuse
2182 * temporary page to workaround the nasty free_huge_page
2183 * codeflow
2184 */
2185 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
9157c311 2186 SetHPageTemporary(page);
db71ef79 2187 spin_unlock_irq(&hugetlb_lock);
9980d744 2188 put_page(page);
2bf753e6 2189 return NULL;
7893d1d5 2190 }
9980d744 2191
b65a4eda
MK
2192 if (zero_ref) {
2193 /*
2194 * Caller requires a page with zero ref count.
2195 * We will drop ref count here. If someone else is holding
2196 * a ref, the page will be freed when they drop it. Abuse
2197 * temporary page flag to accomplish this.
2198 */
2199 SetHPageTemporary(page);
2200 if (!put_page_testzero(page)) {
2201 /*
2202 * Unexpected inflated ref count on freshly allocated
2203 * huge. Retry once.
2204 */
2205 pr_info("HugeTLB unexpected inflated ref count on freshly allocated page\n");
2206 spin_unlock_irq(&hugetlb_lock);
2207 if (retry)
2208 return NULL;
2209
2210 retry = true;
2211 goto retry;
2212 }
2213 ClearHPageTemporary(page);
2214 }
2215
2216 h->surplus_huge_pages++;
2217 h->surplus_huge_pages_node[page_to_nid(page)]++;
2218
9980d744 2219out_unlock:
db71ef79 2220 spin_unlock_irq(&hugetlb_lock);
7893d1d5
AL
2221
2222 return page;
2223}
2224
bbe88753 2225static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
9a4e9f3b 2226 int nid, nodemask_t *nmask)
ab5ac90a
MH
2227{
2228 struct page *page;
2229
2230 if (hstate_is_gigantic(h))
2231 return NULL;
2232
f60858f9 2233 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
ab5ac90a
MH
2234 if (!page)
2235 return NULL;
2236
2237 /*
2238 * We do not account these pages as surplus because they are only
2239 * temporary and will be released properly on the last reference
2240 */
9157c311 2241 SetHPageTemporary(page);
ab5ac90a
MH
2242
2243 return page;
2244}
2245
099730d6
DH
2246/*
2247 * Use the VMA's mpolicy to allocate a huge page from the buddy.
2248 */
e0ec90ee 2249static
0c397dae 2250struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
099730d6
DH
2251 struct vm_area_struct *vma, unsigned long addr)
2252{
cfcaa66f 2253 struct page *page = NULL;
aaf14e40
MH
2254 struct mempolicy *mpol;
2255 gfp_t gfp_mask = htlb_alloc_mask(h);
2256 int nid;
2257 nodemask_t *nodemask;
2258
2259 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
cfcaa66f
BW
2260 if (mpol_is_preferred_many(mpol)) {
2261 gfp_t gfp = gfp_mask | __GFP_NOWARN;
2262
2263 gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2264 page = alloc_surplus_huge_page(h, gfp, nid, nodemask, false);
aaf14e40 2265
cfcaa66f
BW
2266 /* Fallback to all nodes if page==NULL */
2267 nodemask = NULL;
2268 }
2269
2270 if (!page)
2271 page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask, false);
2272 mpol_cond_put(mpol);
aaf14e40 2273 return page;
099730d6
DH
2274}
2275
ab5ac90a 2276/* page migration callback function */
3e59fcb0 2277struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
d92bbc27 2278 nodemask_t *nmask, gfp_t gfp_mask)
4db9b2ef 2279{
db71ef79 2280 spin_lock_irq(&hugetlb_lock);
4db9b2ef 2281 if (h->free_huge_pages - h->resv_huge_pages > 0) {
3e59fcb0
MH
2282 struct page *page;
2283
2284 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
2285 if (page) {
db71ef79 2286 spin_unlock_irq(&hugetlb_lock);
3e59fcb0 2287 return page;
4db9b2ef
MH
2288 }
2289 }
db71ef79 2290 spin_unlock_irq(&hugetlb_lock);
4db9b2ef 2291
0c397dae 2292 return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
4db9b2ef
MH
2293}
2294
ebd63723 2295/* mempolicy aware migration callback */
389c8178
MH
2296struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
2297 unsigned long address)
ebd63723
MH
2298{
2299 struct mempolicy *mpol;
2300 nodemask_t *nodemask;
2301 struct page *page;
ebd63723
MH
2302 gfp_t gfp_mask;
2303 int node;
2304
ebd63723
MH
2305 gfp_mask = htlb_alloc_mask(h);
2306 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
d92bbc27 2307 page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask);
ebd63723
MH
2308 mpol_cond_put(mpol);
2309
2310 return page;
2311}
2312
e4e574b7 2313/*
25985edc 2314 * Increase the hugetlb pool such that it can accommodate a reservation
e4e574b7
AL
2315 * of size 'delta'.
2316 */
0a4f3d1b 2317static int gather_surplus_pages(struct hstate *h, long delta)
1b2a1e7b 2318 __must_hold(&hugetlb_lock)
e4e574b7
AL
2319{
2320 struct list_head surplus_list;
2321 struct page *page, *tmp;
0a4f3d1b
LX
2322 int ret;
2323 long i;
2324 long needed, allocated;
28073b02 2325 bool alloc_ok = true;
e4e574b7 2326
9487ca60 2327 lockdep_assert_held(&hugetlb_lock);
a5516438 2328 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
ac09b3a1 2329 if (needed <= 0) {
a5516438 2330 h->resv_huge_pages += delta;
e4e574b7 2331 return 0;
ac09b3a1 2332 }
e4e574b7
AL
2333
2334 allocated = 0;
2335 INIT_LIST_HEAD(&surplus_list);
2336
2337 ret = -ENOMEM;
2338retry:
db71ef79 2339 spin_unlock_irq(&hugetlb_lock);
e4e574b7 2340 for (i = 0; i < needed; i++) {
0c397dae 2341 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
b65a4eda 2342 NUMA_NO_NODE, NULL, true);
28073b02
HD
2343 if (!page) {
2344 alloc_ok = false;
2345 break;
2346 }
e4e574b7 2347 list_add(&page->lru, &surplus_list);
69ed779a 2348 cond_resched();
e4e574b7 2349 }
28073b02 2350 allocated += i;
e4e574b7
AL
2351
2352 /*
2353 * After retaking hugetlb_lock, we need to recalculate 'needed'
2354 * because either resv_huge_pages or free_huge_pages may have changed.
2355 */
db71ef79 2356 spin_lock_irq(&hugetlb_lock);
a5516438
AK
2357 needed = (h->resv_huge_pages + delta) -
2358 (h->free_huge_pages + allocated);
28073b02
HD
2359 if (needed > 0) {
2360 if (alloc_ok)
2361 goto retry;
2362 /*
2363 * We were not able to allocate enough pages to
2364 * satisfy the entire reservation so we free what
2365 * we've allocated so far.
2366 */
2367 goto free;
2368 }
e4e574b7
AL
2369 /*
2370 * The surplus_list now contains _at_least_ the number of extra pages
25985edc 2371 * needed to accommodate the reservation. Add the appropriate number
e4e574b7 2372 * of pages to the hugetlb pool and free the extras back to the buddy
ac09b3a1
AL
2373 * allocator. Commit the entire reservation here to prevent another
2374 * process from stealing the pages as they are added to the pool but
2375 * before they are reserved.
e4e574b7
AL
2376 */
2377 needed += allocated;
a5516438 2378 h->resv_huge_pages += delta;
e4e574b7 2379 ret = 0;
a9869b83 2380
19fc3f0a 2381 /* Free the needed pages to the hugetlb pool */
e4e574b7 2382 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
19fc3f0a
AL
2383 if ((--needed) < 0)
2384 break;
b65a4eda 2385 /* Add the page to the hugetlb allocator */
a5516438 2386 enqueue_huge_page(h, page);
19fc3f0a 2387 }
28073b02 2388free:
db71ef79 2389 spin_unlock_irq(&hugetlb_lock);
19fc3f0a 2390
b65a4eda
MK
2391 /*
2392 * Free unnecessary surplus pages to the buddy allocator.
2393 * Pages have no ref count, call free_huge_page directly.
2394 */
c0d934ba 2395 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
b65a4eda 2396 free_huge_page(page);
db71ef79 2397 spin_lock_irq(&hugetlb_lock);
e4e574b7
AL
2398
2399 return ret;
2400}
2401
2402/*
e5bbc8a6
MK
2403 * This routine has two main purposes:
2404 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2405 * in unused_resv_pages. This corresponds to the prior adjustments made
2406 * to the associated reservation map.
2407 * 2) Free any unused surplus pages that may have been allocated to satisfy
2408 * the reservation. As many as unused_resv_pages may be freed.
e4e574b7 2409 */
a5516438
AK
2410static void return_unused_surplus_pages(struct hstate *h,
2411 unsigned long unused_resv_pages)
e4e574b7 2412{
e4e574b7 2413 unsigned long nr_pages;
10c6ec49
MK
2414 struct page *page;
2415 LIST_HEAD(page_list);
2416
9487ca60 2417 lockdep_assert_held(&hugetlb_lock);
10c6ec49
MK
2418 /* Uncommit the reservation */
2419 h->resv_huge_pages -= unused_resv_pages;
e4e574b7 2420
aa888a74 2421 /* Cannot return gigantic pages currently */
bae7f4ae 2422 if (hstate_is_gigantic(h))
e5bbc8a6 2423 goto out;
aa888a74 2424
e5bbc8a6
MK
2425 /*
2426 * Part (or even all) of the reservation could have been backed
2427 * by pre-allocated pages. Only free surplus pages.
2428 */
a5516438 2429 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
e4e574b7 2430
685f3457
LS
2431 /*
2432 * We want to release as many surplus pages as possible, spread
9b5e5d0f
LS
2433 * evenly across all nodes with memory. Iterate across these nodes
2434 * until we can no longer free unreserved surplus pages. This occurs
2435 * when the nodes with surplus pages have no free pages.
10c6ec49 2436 * remove_pool_huge_page() will balance the freed pages across the
9b5e5d0f 2437 * on-line nodes with memory and will handle the hstate accounting.
685f3457
LS
2438 */
2439 while (nr_pages--) {
10c6ec49
MK
2440 page = remove_pool_huge_page(h, &node_states[N_MEMORY], 1);
2441 if (!page)
e5bbc8a6 2442 goto out;
10c6ec49
MK
2443
2444 list_add(&page->lru, &page_list);
e4e574b7 2445 }
e5bbc8a6
MK
2446
2447out:
db71ef79 2448 spin_unlock_irq(&hugetlb_lock);
10c6ec49 2449 update_and_free_pages_bulk(h, &page_list);
db71ef79 2450 spin_lock_irq(&hugetlb_lock);
e4e574b7
AL
2451}
2452
5e911373 2453
c37f9fb1 2454/*
feba16e2 2455 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
5e911373 2456 * are used by the huge page allocation routines to manage reservations.
cf3ad20b
MK
2457 *
2458 * vma_needs_reservation is called to determine if the huge page at addr
2459 * within the vma has an associated reservation. If a reservation is
2460 * needed, the value 1 is returned. The caller is then responsible for
2461 * managing the global reservation and subpool usage counts. After
2462 * the huge page has been allocated, vma_commit_reservation is called
feba16e2
MK
2463 * to add the page to the reservation map. If the page allocation fails,
2464 * the reservation must be ended instead of committed. vma_end_reservation
2465 * is called in such cases.
cf3ad20b
MK
2466 *
2467 * In the normal case, vma_commit_reservation returns the same value
2468 * as the preceding vma_needs_reservation call. The only time this
2469 * is not the case is if a reserve map was changed between calls. It
2470 * is the responsibility of the caller to notice the difference and
2471 * take appropriate action.
96b96a96
MK
2472 *
2473 * vma_add_reservation is used in error paths where a reservation must
2474 * be restored when a newly allocated huge page must be freed. It is
2475 * to be called after calling vma_needs_reservation to determine if a
2476 * reservation exists.
846be085
MK
2477 *
2478 * vma_del_reservation is used in error paths where an entry in the reserve
2479 * map was created during huge page allocation and must be removed. It is to
2480 * be called after calling vma_needs_reservation to determine if a reservation
2481 * exists.
c37f9fb1 2482 */
5e911373
MK
2483enum vma_resv_mode {
2484 VMA_NEEDS_RESV,
2485 VMA_COMMIT_RESV,
feba16e2 2486 VMA_END_RESV,
96b96a96 2487 VMA_ADD_RESV,
846be085 2488 VMA_DEL_RESV,
5e911373 2489};
cf3ad20b
MK
2490static long __vma_reservation_common(struct hstate *h,
2491 struct vm_area_struct *vma, unsigned long addr,
5e911373 2492 enum vma_resv_mode mode)
c37f9fb1 2493{
4e35f483
JK
2494 struct resv_map *resv;
2495 pgoff_t idx;
cf3ad20b 2496 long ret;
0db9d74e 2497 long dummy_out_regions_needed;
c37f9fb1 2498
4e35f483
JK
2499 resv = vma_resv_map(vma);
2500 if (!resv)
84afd99b 2501 return 1;
c37f9fb1 2502
4e35f483 2503 idx = vma_hugecache_offset(h, vma, addr);
5e911373
MK
2504 switch (mode) {
2505 case VMA_NEEDS_RESV:
0db9d74e
MA
2506 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2507 /* We assume that vma_reservation_* routines always operate on
2508 * 1 page, and that adding to resv map a 1 page entry can only
2509 * ever require 1 region.
2510 */
2511 VM_BUG_ON(dummy_out_regions_needed != 1);
5e911373
MK
2512 break;
2513 case VMA_COMMIT_RESV:
075a61d0 2514 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
0db9d74e
MA
2515 /* region_add calls of range 1 should never fail. */
2516 VM_BUG_ON(ret < 0);
5e911373 2517 break;
feba16e2 2518 case VMA_END_RESV:
0db9d74e 2519 region_abort(resv, idx, idx + 1, 1);
5e911373
MK
2520 ret = 0;
2521 break;
96b96a96 2522 case VMA_ADD_RESV:
0db9d74e 2523 if (vma->vm_flags & VM_MAYSHARE) {
075a61d0 2524 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
0db9d74e
MA
2525 /* region_add calls of range 1 should never fail. */
2526 VM_BUG_ON(ret < 0);
2527 } else {
2528 region_abort(resv, idx, idx + 1, 1);
96b96a96
MK
2529 ret = region_del(resv, idx, idx + 1);
2530 }
2531 break;
846be085
MK
2532 case VMA_DEL_RESV:
2533 if (vma->vm_flags & VM_MAYSHARE) {
2534 region_abort(resv, idx, idx + 1, 1);
2535 ret = region_del(resv, idx, idx + 1);
2536 } else {
2537 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2538 /* region_add calls of range 1 should never fail. */
2539 VM_BUG_ON(ret < 0);
2540 }
2541 break;
5e911373
MK
2542 default:
2543 BUG();
2544 }
84afd99b 2545
846be085 2546 if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV)
cf3ad20b 2547 return ret;
bf3d12b9
ML
2548 /*
2549 * We know private mapping must have HPAGE_RESV_OWNER set.
2550 *
2551 * In most cases, reserves always exist for private mappings.
2552 * However, a file associated with mapping could have been
2553 * hole punched or truncated after reserves were consumed.
2554 * As subsequent fault on such a range will not use reserves.
2555 * Subtle - The reserve map for private mappings has the
2556 * opposite meaning than that of shared mappings. If NO
2557 * entry is in the reserve map, it means a reservation exists.
2558 * If an entry exists in the reserve map, it means the
2559 * reservation has already been consumed. As a result, the
2560 * return value of this routine is the opposite of the
2561 * value returned from reserve map manipulation routines above.
2562 */
2563 if (ret > 0)
2564 return 0;
2565 if (ret == 0)
2566 return 1;
2567 return ret;
c37f9fb1 2568}
cf3ad20b
MK
2569
2570static long vma_needs_reservation(struct hstate *h,
a5516438 2571 struct vm_area_struct *vma, unsigned long addr)
c37f9fb1 2572{
5e911373 2573 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
cf3ad20b 2574}
84afd99b 2575
cf3ad20b
MK
2576static long vma_commit_reservation(struct hstate *h,
2577 struct vm_area_struct *vma, unsigned long addr)
2578{
5e911373
MK
2579 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2580}
2581
feba16e2 2582static void vma_end_reservation(struct hstate *h,
5e911373
MK
2583 struct vm_area_struct *vma, unsigned long addr)
2584{
feba16e2 2585 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
c37f9fb1
AW
2586}
2587
96b96a96
MK
2588static long vma_add_reservation(struct hstate *h,
2589 struct vm_area_struct *vma, unsigned long addr)
2590{
2591 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2592}
2593
846be085
MK
2594static long vma_del_reservation(struct hstate *h,
2595 struct vm_area_struct *vma, unsigned long addr)
2596{
2597 return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV);
2598}
2599
96b96a96 2600/*
846be085
MK
2601 * This routine is called to restore reservation information on error paths.
2602 * It should ONLY be called for pages allocated via alloc_huge_page(), and
2603 * the hugetlb mutex should remain held when calling this routine.
2604 *
2605 * It handles two specific cases:
2606 * 1) A reservation was in place and the page consumed the reservation.
2607 * HPageRestoreReserve is set in the page.
2608 * 2) No reservation was in place for the page, so HPageRestoreReserve is
2609 * not set. However, alloc_huge_page always updates the reserve map.
2610 *
2611 * In case 1, free_huge_page later in the error path will increment the
2612 * global reserve count. But, free_huge_page does not have enough context
2613 * to adjust the reservation map. This case deals primarily with private
2614 * mappings. Adjust the reserve map here to be consistent with global
2615 * reserve count adjustments to be made by free_huge_page. Make sure the
2616 * reserve map indicates there is a reservation present.
2617 *
2618 * In case 2, simply undo reserve map modifications done by alloc_huge_page.
96b96a96 2619 */
846be085
MK
2620void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
2621 unsigned long address, struct page *page)
96b96a96 2622{
846be085 2623 long rc = vma_needs_reservation(h, vma, address);
96b96a96 2624
846be085
MK
2625 if (HPageRestoreReserve(page)) {
2626 if (unlikely(rc < 0))
96b96a96
MK
2627 /*
2628 * Rare out of memory condition in reserve map
d6995da3 2629 * manipulation. Clear HPageRestoreReserve so that
96b96a96
MK
2630 * global reserve count will not be incremented
2631 * by free_huge_page. This will make it appear
2632 * as though the reservation for this page was
2633 * consumed. This may prevent the task from
2634 * faulting in the page at a later time. This
2635 * is better than inconsistent global huge page
2636 * accounting of reserve counts.
2637 */
d6995da3 2638 ClearHPageRestoreReserve(page);
846be085
MK
2639 else if (rc)
2640 (void)vma_add_reservation(h, vma, address);
2641 else
2642 vma_end_reservation(h, vma, address);
2643 } else {
2644 if (!rc) {
2645 /*
2646 * This indicates there is an entry in the reserve map
c7b1850d 2647 * not added by alloc_huge_page. We know it was added
846be085
MK
2648 * before the alloc_huge_page call, otherwise
2649 * HPageRestoreReserve would be set on the page.
2650 * Remove the entry so that a subsequent allocation
2651 * does not consume a reservation.
2652 */
2653 rc = vma_del_reservation(h, vma, address);
2654 if (rc < 0)
96b96a96 2655 /*
846be085
MK
2656 * VERY rare out of memory condition. Since
2657 * we can not delete the entry, set
2658 * HPageRestoreReserve so that the reserve
2659 * count will be incremented when the page
2660 * is freed. This reserve will be consumed
2661 * on a subsequent allocation.
96b96a96 2662 */
846be085
MK
2663 SetHPageRestoreReserve(page);
2664 } else if (rc < 0) {
2665 /*
2666 * Rare out of memory condition from
2667 * vma_needs_reservation call. Memory allocation is
2668 * only attempted if a new entry is needed. Therefore,
2669 * this implies there is not an entry in the
2670 * reserve map.
2671 *
2672 * For shared mappings, no entry in the map indicates
2673 * no reservation. We are done.
2674 */
2675 if (!(vma->vm_flags & VM_MAYSHARE))
2676 /*
2677 * For private mappings, no entry indicates
2678 * a reservation is present. Since we can
2679 * not add an entry, set SetHPageRestoreReserve
2680 * on the page so reserve count will be
2681 * incremented when freed. This reserve will
2682 * be consumed on a subsequent allocation.
2683 */
2684 SetHPageRestoreReserve(page);
96b96a96 2685 } else
846be085
MK
2686 /*
2687 * No reservation present, do nothing
2688 */
2689 vma_end_reservation(h, vma, address);
96b96a96
MK
2690 }
2691}
2692
369fa227
OS
2693/*
2694 * alloc_and_dissolve_huge_page - Allocate a new page and dissolve the old one
2695 * @h: struct hstate old page belongs to
2696 * @old_page: Old page to dissolve
ae37c7ff 2697 * @list: List to isolate the page in case we need to
369fa227
OS
2698 * Returns 0 on success, otherwise negated error.
2699 */
ae37c7ff
OS
2700static int alloc_and_dissolve_huge_page(struct hstate *h, struct page *old_page,
2701 struct list_head *list)
369fa227
OS
2702{
2703 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2704 int nid = page_to_nid(old_page);
b65a4eda 2705 bool alloc_retry = false;
369fa227
OS
2706 struct page *new_page;
2707 int ret = 0;
2708
2709 /*
2710 * Before dissolving the page, we need to allocate a new one for the
f41f2ed4
MS
2711 * pool to remain stable. Here, we allocate the page and 'prep' it
2712 * by doing everything but actually updating counters and adding to
2713 * the pool. This simplifies and let us do most of the processing
2714 * under the lock.
369fa227 2715 */
b65a4eda 2716alloc_retry:
369fa227
OS
2717 new_page = alloc_buddy_huge_page(h, gfp_mask, nid, NULL, NULL);
2718 if (!new_page)
2719 return -ENOMEM;
b65a4eda
MK
2720 /*
2721 * If all goes well, this page will be directly added to the free
2722 * list in the pool. For this the ref count needs to be zero.
2723 * Attempt to drop now, and retry once if needed. It is VERY
2724 * unlikely there is another ref on the page.
2725 *
2726 * If someone else has a reference to the page, it will be freed
2727 * when they drop their ref. Abuse temporary page flag to accomplish
2728 * this. Retry once if there is an inflated ref count.
2729 */
2730 SetHPageTemporary(new_page);
2731 if (!put_page_testzero(new_page)) {
2732 if (alloc_retry)
2733 return -EBUSY;
2734
2735 alloc_retry = true;
2736 goto alloc_retry;
2737 }
2738 ClearHPageTemporary(new_page);
2739
f41f2ed4 2740 __prep_new_huge_page(h, new_page);
369fa227
OS
2741
2742retry:
2743 spin_lock_irq(&hugetlb_lock);
2744 if (!PageHuge(old_page)) {
2745 /*
2746 * Freed from under us. Drop new_page too.
2747 */
2748 goto free_new;
2749 } else if (page_count(old_page)) {
2750 /*
ae37c7ff
OS
2751 * Someone has grabbed the page, try to isolate it here.
2752 * Fail with -EBUSY if not possible.
369fa227 2753 */
ae37c7ff
OS
2754 spin_unlock_irq(&hugetlb_lock);
2755 if (!isolate_huge_page(old_page, list))
2756 ret = -EBUSY;
2757 spin_lock_irq(&hugetlb_lock);
369fa227
OS
2758 goto free_new;
2759 } else if (!HPageFreed(old_page)) {
2760 /*
2761 * Page's refcount is 0 but it has not been enqueued in the
2762 * freelist yet. Race window is small, so we can succeed here if
2763 * we retry.
2764 */
2765 spin_unlock_irq(&hugetlb_lock);
2766 cond_resched();
2767 goto retry;
2768 } else {
2769 /*
2770 * Ok, old_page is still a genuine free hugepage. Remove it from
2771 * the freelist and decrease the counters. These will be
2772 * incremented again when calling __prep_account_new_huge_page()
2773 * and enqueue_huge_page() for new_page. The counters will remain
2774 * stable since this happens under the lock.
2775 */
2776 remove_hugetlb_page(h, old_page, false);
2777
2778 /*
b65a4eda
MK
2779 * Ref count on new page is already zero as it was dropped
2780 * earlier. It can be directly added to the pool free list.
369fa227 2781 */
369fa227 2782 __prep_account_new_huge_page(h, nid);
369fa227
OS
2783 enqueue_huge_page(h, new_page);
2784
2785 /*
2786 * Pages have been replaced, we can safely free the old one.
2787 */
2788 spin_unlock_irq(&hugetlb_lock);
b65d4adb 2789 update_and_free_page(h, old_page, false);
369fa227
OS
2790 }
2791
2792 return ret;
2793
2794free_new:
2795 spin_unlock_irq(&hugetlb_lock);
b65a4eda
MK
2796 /* Page has a zero ref count, but needs a ref to be freed */
2797 set_page_refcounted(new_page);
b65d4adb 2798 update_and_free_page(h, new_page, false);
369fa227
OS
2799
2800 return ret;
2801}
2802
ae37c7ff 2803int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list)
369fa227
OS
2804{
2805 struct hstate *h;
2806 struct page *head;
ae37c7ff 2807 int ret = -EBUSY;
369fa227
OS
2808
2809 /*
2810 * The page might have been dissolved from under our feet, so make sure
2811 * to carefully check the state under the lock.
2812 * Return success when racing as if we dissolved the page ourselves.
2813 */
2814 spin_lock_irq(&hugetlb_lock);
2815 if (PageHuge(page)) {
2816 head = compound_head(page);
2817 h = page_hstate(head);
2818 } else {
2819 spin_unlock_irq(&hugetlb_lock);
2820 return 0;
2821 }
2822 spin_unlock_irq(&hugetlb_lock);
2823
2824 /*
2825 * Fence off gigantic pages as there is a cyclic dependency between
2826 * alloc_contig_range and them. Return -ENOMEM as this has the effect
2827 * of bailing out right away without further retrying.
2828 */
2829 if (hstate_is_gigantic(h))
2830 return -ENOMEM;
2831
ae37c7ff
OS
2832 if (page_count(head) && isolate_huge_page(head, list))
2833 ret = 0;
2834 else if (!page_count(head))
2835 ret = alloc_and_dissolve_huge_page(h, head, list);
2836
2837 return ret;
369fa227
OS
2838}
2839
70c3547e 2840struct page *alloc_huge_page(struct vm_area_struct *vma,
04f2cbe3 2841 unsigned long addr, int avoid_reserve)
1da177e4 2842{
90481622 2843 struct hugepage_subpool *spool = subpool_vma(vma);
a5516438 2844 struct hstate *h = hstate_vma(vma);
348ea204 2845 struct page *page;
d85f69b0
MK
2846 long map_chg, map_commit;
2847 long gbl_chg;
6d76dcf4
AK
2848 int ret, idx;
2849 struct hugetlb_cgroup *h_cg;
08cf9faf 2850 bool deferred_reserve;
a1e78772 2851
6d76dcf4 2852 idx = hstate_index(h);
a1e78772 2853 /*
d85f69b0
MK
2854 * Examine the region/reserve map to determine if the process
2855 * has a reservation for the page to be allocated. A return
2856 * code of zero indicates a reservation exists (no change).
a1e78772 2857 */
d85f69b0
MK
2858 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2859 if (map_chg < 0)
76dcee75 2860 return ERR_PTR(-ENOMEM);
d85f69b0
MK
2861
2862 /*
2863 * Processes that did not create the mapping will have no
2864 * reserves as indicated by the region/reserve map. Check
2865 * that the allocation will not exceed the subpool limit.
2866 * Allocations for MAP_NORESERVE mappings also need to be
2867 * checked against any subpool limit.
2868 */
2869 if (map_chg || avoid_reserve) {
2870 gbl_chg = hugepage_subpool_get_pages(spool, 1);
2871 if (gbl_chg < 0) {
feba16e2 2872 vma_end_reservation(h, vma, addr);
76dcee75 2873 return ERR_PTR(-ENOSPC);
5e911373 2874 }
1da177e4 2875
d85f69b0
MK
2876 /*
2877 * Even though there was no reservation in the region/reserve
2878 * map, there could be reservations associated with the
2879 * subpool that can be used. This would be indicated if the
2880 * return value of hugepage_subpool_get_pages() is zero.
2881 * However, if avoid_reserve is specified we still avoid even
2882 * the subpool reservations.
2883 */
2884 if (avoid_reserve)
2885 gbl_chg = 1;
2886 }
2887
08cf9faf
MA
2888 /* If this allocation is not consuming a reservation, charge it now.
2889 */
6501fe5f 2890 deferred_reserve = map_chg || avoid_reserve;
08cf9faf
MA
2891 if (deferred_reserve) {
2892 ret = hugetlb_cgroup_charge_cgroup_rsvd(
2893 idx, pages_per_huge_page(h), &h_cg);
2894 if (ret)
2895 goto out_subpool_put;
2896 }
2897
6d76dcf4 2898 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
8f34af6f 2899 if (ret)
08cf9faf 2900 goto out_uncharge_cgroup_reservation;
8f34af6f 2901
db71ef79 2902 spin_lock_irq(&hugetlb_lock);
d85f69b0
MK
2903 /*
2904 * glb_chg is passed to indicate whether or not a page must be taken
2905 * from the global free pool (global change). gbl_chg == 0 indicates
2906 * a reservation exists for the allocation.
2907 */
2908 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
81a6fcae 2909 if (!page) {
db71ef79 2910 spin_unlock_irq(&hugetlb_lock);
0c397dae 2911 page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
8f34af6f
JZ
2912 if (!page)
2913 goto out_uncharge_cgroup;
a88c7695 2914 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
d6995da3 2915 SetHPageRestoreReserve(page);
a88c7695
NH
2916 h->resv_huge_pages--;
2917 }
db71ef79 2918 spin_lock_irq(&hugetlb_lock);
15a8d68e 2919 list_add(&page->lru, &h->hugepage_activelist);
81a6fcae 2920 /* Fall through */
68842c9b 2921 }
81a6fcae 2922 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
08cf9faf
MA
2923 /* If allocation is not consuming a reservation, also store the
2924 * hugetlb_cgroup pointer on the page.
2925 */
2926 if (deferred_reserve) {
2927 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
2928 h_cg, page);
2929 }
2930
db71ef79 2931 spin_unlock_irq(&hugetlb_lock);
348ea204 2932
d6995da3 2933 hugetlb_set_page_subpool(page, spool);
90d8b7e6 2934
d85f69b0
MK
2935 map_commit = vma_commit_reservation(h, vma, addr);
2936 if (unlikely(map_chg > map_commit)) {
33039678
MK
2937 /*
2938 * The page was added to the reservation map between
2939 * vma_needs_reservation and vma_commit_reservation.
2940 * This indicates a race with hugetlb_reserve_pages.
2941 * Adjust for the subpool count incremented above AND
2942 * in hugetlb_reserve_pages for the same page. Also,
2943 * the reservation count added in hugetlb_reserve_pages
2944 * no longer applies.
2945 */
2946 long rsv_adjust;
2947
2948 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2949 hugetlb_acct_memory(h, -rsv_adjust);
79aa925b
MK
2950 if (deferred_reserve)
2951 hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
2952 pages_per_huge_page(h), page);
33039678 2953 }
90d8b7e6 2954 return page;
8f34af6f
JZ
2955
2956out_uncharge_cgroup:
2957 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
08cf9faf
MA
2958out_uncharge_cgroup_reservation:
2959 if (deferred_reserve)
2960 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
2961 h_cg);
8f34af6f 2962out_subpool_put:
d85f69b0 2963 if (map_chg || avoid_reserve)
8f34af6f 2964 hugepage_subpool_put_pages(spool, 1);
feba16e2 2965 vma_end_reservation(h, vma, addr);
8f34af6f 2966 return ERR_PTR(-ENOSPC);
b45b5bd6
DG
2967}
2968
b5389086 2969int alloc_bootmem_huge_page(struct hstate *h, int nid)
e24a1307 2970 __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
b5389086 2971int __alloc_bootmem_huge_page(struct hstate *h, int nid)
aa888a74 2972{
b5389086 2973 struct huge_bootmem_page *m = NULL; /* initialize for clang */
b2261026 2974 int nr_nodes, node;
aa888a74 2975
4178158e 2976 if (nid != NUMA_NO_NODE && nid >= nr_online_nodes)
b5389086
ZY
2977 return 0;
2978 /* do node specific alloc */
2979 if (nid != NUMA_NO_NODE) {
2980 m = memblock_alloc_try_nid_raw(huge_page_size(h), huge_page_size(h),
2981 0, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
2982 if (!m)
2983 return 0;
2984 goto found;
2985 }
2986 /* allocate from next node when distributing huge pages */
b2261026 2987 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
b5389086 2988 m = memblock_alloc_try_nid_raw(
8b89a116 2989 huge_page_size(h), huge_page_size(h),
97ad1087 2990 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
b5389086
ZY
2991 /*
2992 * Use the beginning of the huge page to store the
2993 * huge_bootmem_page struct (until gather_bootmem
2994 * puts them into the mem_map).
2995 */
2996 if (!m)
2997 return 0;
2998 goto found;
aa888a74 2999 }
aa888a74
AK
3000
3001found:
aa888a74 3002 /* Put them into a private list first because mem_map is not up yet */
330d6e48 3003 INIT_LIST_HEAD(&m->list);
aa888a74
AK
3004 list_add(&m->list, &huge_boot_pages);
3005 m->hstate = h;
3006 return 1;
3007}
3008
48b8d744
MK
3009/*
3010 * Put bootmem huge pages into the standard lists after mem_map is up.
3011 * Note: This only applies to gigantic (order > MAX_ORDER) pages.
3012 */
aa888a74
AK
3013static void __init gather_bootmem_prealloc(void)
3014{
3015 struct huge_bootmem_page *m;
3016
3017 list_for_each_entry(m, &huge_boot_pages, list) {
40d18ebf 3018 struct page *page = virt_to_page(m);
aa888a74 3019 struct hstate *h = m->hstate;
ee8f248d 3020
48b8d744 3021 VM_BUG_ON(!hstate_is_gigantic(h));
aa888a74 3022 WARN_ON(page_count(page) != 1);
7118fc29
MK
3023 if (prep_compound_gigantic_page(page, huge_page_order(h))) {
3024 WARN_ON(PageReserved(page));
3025 prep_new_huge_page(h, page, page_to_nid(page));
3026 put_page(page); /* add to the hugepage allocator */
3027 } else {
416d85ed 3028 /* VERY unlikely inflated ref count on a tail page */
7118fc29 3029 free_gigantic_page(page, huge_page_order(h));
7118fc29 3030 }
af0fb9df 3031
b0320c7b 3032 /*
48b8d744
MK
3033 * We need to restore the 'stolen' pages to totalram_pages
3034 * in order to fix confusing memory reports from free(1) and
3035 * other side-effects, like CommitLimit going negative.
b0320c7b 3036 */
48b8d744 3037 adjust_managed_page_count(page, pages_per_huge_page(h));
520495fe 3038 cond_resched();
aa888a74
AK
3039 }
3040}
b5389086
ZY
3041static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid)
3042{
3043 unsigned long i;
3044 char buf[32];
3045
3046 for (i = 0; i < h->max_huge_pages_node[nid]; ++i) {
3047 if (hstate_is_gigantic(h)) {
3048 if (!alloc_bootmem_huge_page(h, nid))
3049 break;
3050 } else {
3051 struct page *page;
3052 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
3053
3054 page = alloc_fresh_huge_page(h, gfp_mask, nid,
3055 &node_states[N_MEMORY], NULL);
3056 if (!page)
3057 break;
3058 put_page(page); /* free it into the hugepage allocator */
3059 }
3060 cond_resched();
3061 }
3062 if (i == h->max_huge_pages_node[nid])
3063 return;
3064
3065 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3066 pr_warn("HugeTLB: allocating %u of page size %s failed node%d. Only allocated %lu hugepages.\n",
3067 h->max_huge_pages_node[nid], buf, nid, i);
3068 h->max_huge_pages -= (h->max_huge_pages_node[nid] - i);
3069 h->max_huge_pages_node[nid] = i;
3070}
aa888a74 3071
8faa8b07 3072static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1da177e4
LT
3073{
3074 unsigned long i;
f60858f9 3075 nodemask_t *node_alloc_noretry;
b5389086
ZY
3076 bool node_specific_alloc = false;
3077
3078 /* skip gigantic hugepages allocation if hugetlb_cma enabled */
3079 if (hstate_is_gigantic(h) && hugetlb_cma_size) {
3080 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
3081 return;
3082 }
3083
3084 /* do node specific alloc */
3085 for (i = 0; i < nr_online_nodes; i++) {
3086 if (h->max_huge_pages_node[i] > 0) {
3087 hugetlb_hstate_alloc_pages_onenode(h, i);
3088 node_specific_alloc = true;
3089 }
3090 }
f60858f9 3091
b5389086
ZY
3092 if (node_specific_alloc)
3093 return;
3094
3095 /* below will do all node balanced alloc */
f60858f9
MK
3096 if (!hstate_is_gigantic(h)) {
3097 /*
3098 * Bit mask controlling how hard we retry per-node allocations.
3099 * Ignore errors as lower level routines can deal with
3100 * node_alloc_noretry == NULL. If this kmalloc fails at boot
3101 * time, we are likely in bigger trouble.
3102 */
3103 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
3104 GFP_KERNEL);
3105 } else {
3106 /* allocations done at boot time */
3107 node_alloc_noretry = NULL;
3108 }
3109
3110 /* bit mask controlling how hard we retry per-node allocations */
3111 if (node_alloc_noretry)
3112 nodes_clear(*node_alloc_noretry);
a5516438 3113
e5ff2159 3114 for (i = 0; i < h->max_huge_pages; ++i) {
bae7f4ae 3115 if (hstate_is_gigantic(h)) {
b5389086 3116 if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE))
aa888a74 3117 break;
0c397dae 3118 } else if (!alloc_pool_huge_page(h,
f60858f9
MK
3119 &node_states[N_MEMORY],
3120 node_alloc_noretry))
1da177e4 3121 break;
69ed779a 3122 cond_resched();
1da177e4 3123 }
d715cf80
LH
3124 if (i < h->max_huge_pages) {
3125 char buf[32];
3126
c6247f72 3127 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
d715cf80
LH
3128 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n",
3129 h->max_huge_pages, buf, i);
3130 h->max_huge_pages = i;
3131 }
f60858f9 3132 kfree(node_alloc_noretry);
e5ff2159
AK
3133}
3134
3135static void __init hugetlb_init_hstates(void)
3136{
79dfc695 3137 struct hstate *h, *h2;
e5ff2159
AK
3138
3139 for_each_hstate(h) {
641844f5
NH
3140 if (minimum_order > huge_page_order(h))
3141 minimum_order = huge_page_order(h);
3142
8faa8b07 3143 /* oversize hugepages were init'ed in early boot */
bae7f4ae 3144 if (!hstate_is_gigantic(h))
8faa8b07 3145 hugetlb_hstate_alloc_pages(h);
79dfc695
MK
3146
3147 /*
3148 * Set demote order for each hstate. Note that
3149 * h->demote_order is initially 0.
3150 * - We can not demote gigantic pages if runtime freeing
3151 * is not supported, so skip this.
a01f4390
MK
3152 * - If CMA allocation is possible, we can not demote
3153 * HUGETLB_PAGE_ORDER or smaller size pages.
79dfc695
MK
3154 */
3155 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3156 continue;
a01f4390
MK
3157 if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER)
3158 continue;
79dfc695
MK
3159 for_each_hstate(h2) {
3160 if (h2 == h)
3161 continue;
3162 if (h2->order < h->order &&
3163 h2->order > h->demote_order)
3164 h->demote_order = h2->order;
3165 }
e5ff2159 3166 }
641844f5 3167 VM_BUG_ON(minimum_order == UINT_MAX);
e5ff2159
AK
3168}
3169
3170static void __init report_hugepages(void)
3171{
3172 struct hstate *h;
3173
3174 for_each_hstate(h) {
4abd32db 3175 char buf[32];
c6247f72
MW
3176
3177 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
ffb22af5 3178 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
c6247f72 3179 buf, h->free_huge_pages);
e5ff2159
AK
3180 }
3181}
3182
1da177e4 3183#ifdef CONFIG_HIGHMEM
6ae11b27
LS
3184static void try_to_free_low(struct hstate *h, unsigned long count,
3185 nodemask_t *nodes_allowed)
1da177e4 3186{
4415cc8d 3187 int i;
1121828a 3188 LIST_HEAD(page_list);
4415cc8d 3189
9487ca60 3190 lockdep_assert_held(&hugetlb_lock);
bae7f4ae 3191 if (hstate_is_gigantic(h))
aa888a74
AK
3192 return;
3193
1121828a
MK
3194 /*
3195 * Collect pages to be freed on a list, and free after dropping lock
3196 */
6ae11b27 3197 for_each_node_mask(i, *nodes_allowed) {
10c6ec49 3198 struct page *page, *next;
a5516438
AK
3199 struct list_head *freel = &h->hugepage_freelists[i];
3200 list_for_each_entry_safe(page, next, freel, lru) {
3201 if (count >= h->nr_huge_pages)
1121828a 3202 goto out;
1da177e4
LT
3203 if (PageHighMem(page))
3204 continue;
6eb4e88a 3205 remove_hugetlb_page(h, page, false);
1121828a 3206 list_add(&page->lru, &page_list);
1da177e4
LT
3207 }
3208 }
1121828a
MK
3209
3210out:
db71ef79 3211 spin_unlock_irq(&hugetlb_lock);
10c6ec49 3212 update_and_free_pages_bulk(h, &page_list);
db71ef79 3213 spin_lock_irq(&hugetlb_lock);
1da177e4
LT
3214}
3215#else
6ae11b27
LS
3216static inline void try_to_free_low(struct hstate *h, unsigned long count,
3217 nodemask_t *nodes_allowed)
1da177e4
LT
3218{
3219}
3220#endif
3221
20a0307c
WF
3222/*
3223 * Increment or decrement surplus_huge_pages. Keep node-specific counters
3224 * balanced by operating on them in a round-robin fashion.
3225 * Returns 1 if an adjustment was made.
3226 */
6ae11b27
LS
3227static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
3228 int delta)
20a0307c 3229{
b2261026 3230 int nr_nodes, node;
20a0307c 3231
9487ca60 3232 lockdep_assert_held(&hugetlb_lock);
20a0307c 3233 VM_BUG_ON(delta != -1 && delta != 1);
20a0307c 3234
b2261026
JK
3235 if (delta < 0) {
3236 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
3237 if (h->surplus_huge_pages_node[node])
3238 goto found;
e8c5c824 3239 }
b2261026
JK
3240 } else {
3241 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3242 if (h->surplus_huge_pages_node[node] <
3243 h->nr_huge_pages_node[node])
3244 goto found;
e8c5c824 3245 }
b2261026
JK
3246 }
3247 return 0;
20a0307c 3248
b2261026
JK
3249found:
3250 h->surplus_huge_pages += delta;
3251 h->surplus_huge_pages_node[node] += delta;
3252 return 1;
20a0307c
WF
3253}
3254
a5516438 3255#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
fd875dca 3256static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
4eb0716e 3257 nodemask_t *nodes_allowed)
1da177e4 3258{
7893d1d5 3259 unsigned long min_count, ret;
10c6ec49
MK
3260 struct page *page;
3261 LIST_HEAD(page_list);
f60858f9
MK
3262 NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
3263
3264 /*
3265 * Bit mask controlling how hard we retry per-node allocations.
3266 * If we can not allocate the bit mask, do not attempt to allocate
3267 * the requested huge pages.
3268 */
3269 if (node_alloc_noretry)
3270 nodes_clear(*node_alloc_noretry);
3271 else
3272 return -ENOMEM;
1da177e4 3273
29383967
MK
3274 /*
3275 * resize_lock mutex prevents concurrent adjustments to number of
3276 * pages in hstate via the proc/sysfs interfaces.
3277 */
3278 mutex_lock(&h->resize_lock);
b65d4adb 3279 flush_free_hpage_work(h);
db71ef79 3280 spin_lock_irq(&hugetlb_lock);
4eb0716e 3281
fd875dca
MK
3282 /*
3283 * Check for a node specific request.
3284 * Changing node specific huge page count may require a corresponding
3285 * change to the global count. In any case, the passed node mask
3286 * (nodes_allowed) will restrict alloc/free to the specified node.
3287 */
3288 if (nid != NUMA_NO_NODE) {
3289 unsigned long old_count = count;
3290
3291 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
3292 /*
3293 * User may have specified a large count value which caused the
3294 * above calculation to overflow. In this case, they wanted
3295 * to allocate as many huge pages as possible. Set count to
3296 * largest possible value to align with their intention.
3297 */
3298 if (count < old_count)
3299 count = ULONG_MAX;
3300 }
3301
4eb0716e
AG
3302 /*
3303 * Gigantic pages runtime allocation depend on the capability for large
3304 * page range allocation.
3305 * If the system does not provide this feature, return an error when
3306 * the user tries to allocate gigantic pages but let the user free the
3307 * boottime allocated gigantic pages.
3308 */
3309 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
3310 if (count > persistent_huge_pages(h)) {
db71ef79 3311 spin_unlock_irq(&hugetlb_lock);
29383967 3312 mutex_unlock(&h->resize_lock);
f60858f9 3313 NODEMASK_FREE(node_alloc_noretry);
4eb0716e
AG
3314 return -EINVAL;
3315 }
3316 /* Fall through to decrease pool */
3317 }
aa888a74 3318
7893d1d5
AL
3319 /*
3320 * Increase the pool size
3321 * First take pages out of surplus state. Then make up the
3322 * remaining difference by allocating fresh huge pages.
d1c3fb1f 3323 *
0c397dae 3324 * We might race with alloc_surplus_huge_page() here and be unable
d1c3fb1f
NA
3325 * to convert a surplus huge page to a normal huge page. That is
3326 * not critical, though, it just means the overall size of the
3327 * pool might be one hugepage larger than it needs to be, but
3328 * within all the constraints specified by the sysctls.
7893d1d5 3329 */
a5516438 3330 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
6ae11b27 3331 if (!adjust_pool_surplus(h, nodes_allowed, -1))
7893d1d5
AL
3332 break;
3333 }
3334
a5516438 3335 while (count > persistent_huge_pages(h)) {
7893d1d5
AL
3336 /*
3337 * If this allocation races such that we no longer need the
3338 * page, free_huge_page will handle it by freeing the page
3339 * and reducing the surplus.
3340 */
db71ef79 3341 spin_unlock_irq(&hugetlb_lock);
649920c6
JH
3342
3343 /* yield cpu to avoid soft lockup */
3344 cond_resched();
3345
f60858f9
MK
3346 ret = alloc_pool_huge_page(h, nodes_allowed,
3347 node_alloc_noretry);
db71ef79 3348 spin_lock_irq(&hugetlb_lock);
7893d1d5
AL
3349 if (!ret)
3350 goto out;
3351
536240f2
MG
3352 /* Bail for signals. Probably ctrl-c from user */
3353 if (signal_pending(current))
3354 goto out;
7893d1d5 3355 }
7893d1d5
AL
3356
3357 /*
3358 * Decrease the pool size
3359 * First return free pages to the buddy allocator (being careful
3360 * to keep enough around to satisfy reservations). Then place
3361 * pages into surplus state as needed so the pool will shrink
3362 * to the desired size as pages become free.
d1c3fb1f
NA
3363 *
3364 * By placing pages into the surplus state independent of the
3365 * overcommit value, we are allowing the surplus pool size to
3366 * exceed overcommit. There are few sane options here. Since
0c397dae 3367 * alloc_surplus_huge_page() is checking the global counter,
d1c3fb1f
NA
3368 * though, we'll note that we're not allowed to exceed surplus
3369 * and won't grow the pool anywhere else. Not until one of the
3370 * sysctls are changed, or the surplus pages go out of use.
7893d1d5 3371 */
a5516438 3372 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
6b0c880d 3373 min_count = max(count, min_count);
6ae11b27 3374 try_to_free_low(h, min_count, nodes_allowed);
10c6ec49
MK
3375
3376 /*
3377 * Collect pages to be removed on list without dropping lock
3378 */
a5516438 3379 while (min_count < persistent_huge_pages(h)) {
10c6ec49
MK
3380 page = remove_pool_huge_page(h, nodes_allowed, 0);
3381 if (!page)
1da177e4 3382 break;
10c6ec49
MK
3383
3384 list_add(&page->lru, &page_list);
1da177e4 3385 }
10c6ec49 3386 /* free the pages after dropping lock */
db71ef79 3387 spin_unlock_irq(&hugetlb_lock);
10c6ec49 3388 update_and_free_pages_bulk(h, &page_list);
b65d4adb 3389 flush_free_hpage_work(h);
db71ef79 3390 spin_lock_irq(&hugetlb_lock);
10c6ec49 3391
a5516438 3392 while (count < persistent_huge_pages(h)) {
6ae11b27 3393 if (!adjust_pool_surplus(h, nodes_allowed, 1))
7893d1d5
AL
3394 break;
3395 }
3396out:
4eb0716e 3397 h->max_huge_pages = persistent_huge_pages(h);
db71ef79 3398 spin_unlock_irq(&hugetlb_lock);
29383967 3399 mutex_unlock(&h->resize_lock);
4eb0716e 3400
f60858f9
MK
3401 NODEMASK_FREE(node_alloc_noretry);
3402
4eb0716e 3403 return 0;
1da177e4
LT
3404}
3405
8531fc6f
MK
3406static int demote_free_huge_page(struct hstate *h, struct page *page)
3407{
3408 int i, nid = page_to_nid(page);
3409 struct hstate *target_hstate;
3410 int rc = 0;
3411
3412 target_hstate = size_to_hstate(PAGE_SIZE << h->demote_order);
3413
3414 remove_hugetlb_page_for_demote(h, page, false);
3415 spin_unlock_irq(&hugetlb_lock);
3416
3417 rc = alloc_huge_page_vmemmap(h, page);
3418 if (rc) {
3419 /* Allocation of vmemmmap failed, we can not demote page */
3420 spin_lock_irq(&hugetlb_lock);
3421 set_page_refcounted(page);
3422 add_hugetlb_page(h, page, false);
3423 return rc;
3424 }
3425
3426 /*
3427 * Use destroy_compound_hugetlb_page_for_demote for all huge page
3428 * sizes as it will not ref count pages.
3429 */
3430 destroy_compound_hugetlb_page_for_demote(page, huge_page_order(h));
3431
3432 /*
3433 * Taking target hstate mutex synchronizes with set_max_huge_pages.
3434 * Without the mutex, pages added to target hstate could be marked
3435 * as surplus.
3436 *
3437 * Note that we already hold h->resize_lock. To prevent deadlock,
3438 * use the convention of always taking larger size hstate mutex first.
3439 */
3440 mutex_lock(&target_hstate->resize_lock);
3441 for (i = 0; i < pages_per_huge_page(h);
3442 i += pages_per_huge_page(target_hstate)) {
3443 if (hstate_is_gigantic(target_hstate))
3444 prep_compound_gigantic_page_for_demote(page + i,
3445 target_hstate->order);
3446 else
3447 prep_compound_page(page + i, target_hstate->order);
3448 set_page_private(page + i, 0);
3449 set_page_refcounted(page + i);
3450 prep_new_huge_page(target_hstate, page + i, nid);
3451 put_page(page + i);
3452 }
3453 mutex_unlock(&target_hstate->resize_lock);
3454
3455 spin_lock_irq(&hugetlb_lock);
3456
3457 /*
3458 * Not absolutely necessary, but for consistency update max_huge_pages
3459 * based on pool changes for the demoted page.
3460 */
3461 h->max_huge_pages--;
3462 target_hstate->max_huge_pages += pages_per_huge_page(h);
3463
3464 return rc;
3465}
3466
79dfc695
MK
3467static int demote_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
3468 __must_hold(&hugetlb_lock)
3469{
8531fc6f
MK
3470 int nr_nodes, node;
3471 struct page *page;
79dfc695
MK
3472 int rc = 0;
3473
3474 lockdep_assert_held(&hugetlb_lock);
3475
3476 /* We should never get here if no demote order */
3477 if (!h->demote_order) {
3478 pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n");
3479 return -EINVAL; /* internal error */
3480 }
3481
8531fc6f
MK
3482 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3483 if (!list_empty(&h->hugepage_freelists[node])) {
3484 page = list_entry(h->hugepage_freelists[node].next,
3485 struct page, lru);
3486 rc = demote_free_huge_page(h, page);
3487 break;
3488 }
3489 }
3490
79dfc695
MK
3491 return rc;
3492}
3493
a3437870
NA
3494#define HSTATE_ATTR_RO(_name) \
3495 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3496
79dfc695
MK
3497#define HSTATE_ATTR_WO(_name) \
3498 static struct kobj_attribute _name##_attr = __ATTR_WO(_name)
3499
a3437870
NA
3500#define HSTATE_ATTR(_name) \
3501 static struct kobj_attribute _name##_attr = \
3502 __ATTR(_name, 0644, _name##_show, _name##_store)
3503
3504static struct kobject *hugepages_kobj;
3505static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3506
9a305230
LS
3507static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
3508
3509static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
a3437870
NA
3510{
3511 int i;
9a305230 3512
a3437870 3513 for (i = 0; i < HUGE_MAX_HSTATE; i++)
9a305230
LS
3514 if (hstate_kobjs[i] == kobj) {
3515 if (nidp)
3516 *nidp = NUMA_NO_NODE;
a3437870 3517 return &hstates[i];
9a305230
LS
3518 }
3519
3520 return kobj_to_node_hstate(kobj, nidp);
a3437870
NA
3521}
3522
06808b08 3523static ssize_t nr_hugepages_show_common(struct kobject *kobj,
a3437870
NA
3524 struct kobj_attribute *attr, char *buf)
3525{
9a305230
LS
3526 struct hstate *h;
3527 unsigned long nr_huge_pages;
3528 int nid;
3529
3530 h = kobj_to_hstate(kobj, &nid);
3531 if (nid == NUMA_NO_NODE)
3532 nr_huge_pages = h->nr_huge_pages;
3533 else
3534 nr_huge_pages = h->nr_huge_pages_node[nid];
3535
ae7a927d 3536 return sysfs_emit(buf, "%lu\n", nr_huge_pages);
a3437870 3537}
adbe8726 3538
238d3c13
DR
3539static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
3540 struct hstate *h, int nid,
3541 unsigned long count, size_t len)
a3437870
NA
3542{
3543 int err;
2d0adf7e 3544 nodemask_t nodes_allowed, *n_mask;
a3437870 3545
2d0adf7e
OS
3546 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3547 return -EINVAL;
adbe8726 3548
9a305230
LS
3549 if (nid == NUMA_NO_NODE) {
3550 /*
3551 * global hstate attribute
3552 */
3553 if (!(obey_mempolicy &&
2d0adf7e
OS
3554 init_nodemask_of_mempolicy(&nodes_allowed)))
3555 n_mask = &node_states[N_MEMORY];
3556 else
3557 n_mask = &nodes_allowed;
3558 } else {
9a305230 3559 /*
fd875dca
MK
3560 * Node specific request. count adjustment happens in
3561 * set_max_huge_pages() after acquiring hugetlb_lock.
9a305230 3562 */
2d0adf7e
OS
3563 init_nodemask_of_node(&nodes_allowed, nid);
3564 n_mask = &nodes_allowed;
fd875dca 3565 }
9a305230 3566
2d0adf7e 3567 err = set_max_huge_pages(h, count, nid, n_mask);
06808b08 3568
4eb0716e 3569 return err ? err : len;
06808b08
LS
3570}
3571
238d3c13
DR
3572static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
3573 struct kobject *kobj, const char *buf,
3574 size_t len)
3575{
3576 struct hstate *h;
3577 unsigned long count;
3578 int nid;
3579 int err;
3580
3581 err = kstrtoul(buf, 10, &count);
3582 if (err)
3583 return err;
3584
3585 h = kobj_to_hstate(kobj, &nid);
3586 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
3587}
3588
06808b08
LS
3589static ssize_t nr_hugepages_show(struct kobject *kobj,
3590 struct kobj_attribute *attr, char *buf)
3591{
3592 return nr_hugepages_show_common(kobj, attr, buf);
3593}
3594
3595static ssize_t nr_hugepages_store(struct kobject *kobj,
3596 struct kobj_attribute *attr, const char *buf, size_t len)
3597{
238d3c13 3598 return nr_hugepages_store_common(false, kobj, buf, len);
a3437870
NA
3599}
3600HSTATE_ATTR(nr_hugepages);
3601
06808b08
LS
3602#ifdef CONFIG_NUMA
3603
3604/*
3605 * hstate attribute for optionally mempolicy-based constraint on persistent
3606 * huge page alloc/free.
3607 */
3608static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
ae7a927d
JP
3609 struct kobj_attribute *attr,
3610 char *buf)
06808b08
LS
3611{
3612 return nr_hugepages_show_common(kobj, attr, buf);
3613}
3614
3615static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
3616 struct kobj_attribute *attr, const char *buf, size_t len)
3617{
238d3c13 3618 return nr_hugepages_store_common(true, kobj, buf, len);
06808b08
LS
3619}
3620HSTATE_ATTR(nr_hugepages_mempolicy);
3621#endif
3622
3623
a3437870
NA
3624static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
3625 struct kobj_attribute *attr, char *buf)
3626{
9a305230 3627 struct hstate *h = kobj_to_hstate(kobj, NULL);
ae7a927d 3628 return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
a3437870 3629}
adbe8726 3630
a3437870
NA
3631static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
3632 struct kobj_attribute *attr, const char *buf, size_t count)
3633{
3634 int err;
3635 unsigned long input;
9a305230 3636 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870 3637
bae7f4ae 3638 if (hstate_is_gigantic(h))
adbe8726
EM
3639 return -EINVAL;
3640
3dbb95f7 3641 err = kstrtoul(buf, 10, &input);
a3437870 3642 if (err)
73ae31e5 3643 return err;
a3437870 3644
db71ef79 3645 spin_lock_irq(&hugetlb_lock);
a3437870 3646 h->nr_overcommit_huge_pages = input;
db71ef79 3647 spin_unlock_irq(&hugetlb_lock);
a3437870
NA
3648
3649 return count;
3650}
3651HSTATE_ATTR(nr_overcommit_hugepages);
3652
3653static ssize_t free_hugepages_show(struct kobject *kobj,
3654 struct kobj_attribute *attr, char *buf)
3655{
9a305230
LS
3656 struct hstate *h;
3657 unsigned long free_huge_pages;
3658 int nid;
3659
3660 h = kobj_to_hstate(kobj, &nid);
3661 if (nid == NUMA_NO_NODE)
3662 free_huge_pages = h->free_huge_pages;
3663 else
3664 free_huge_pages = h->free_huge_pages_node[nid];
3665
ae7a927d 3666 return sysfs_emit(buf, "%lu\n", free_huge_pages);
a3437870
NA
3667}
3668HSTATE_ATTR_RO(free_hugepages);
3669
3670static ssize_t resv_hugepages_show(struct kobject *kobj,
3671 struct kobj_attribute *attr, char *buf)
3672{
9a305230 3673 struct hstate *h = kobj_to_hstate(kobj, NULL);
ae7a927d 3674 return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
a3437870
NA
3675}
3676HSTATE_ATTR_RO(resv_hugepages);
3677
3678static ssize_t surplus_hugepages_show(struct kobject *kobj,
3679 struct kobj_attribute *attr, char *buf)
3680{
9a305230
LS
3681 struct hstate *h;
3682 unsigned long surplus_huge_pages;
3683 int nid;
3684
3685 h = kobj_to_hstate(kobj, &nid);
3686 if (nid == NUMA_NO_NODE)
3687 surplus_huge_pages = h->surplus_huge_pages;
3688 else
3689 surplus_huge_pages = h->surplus_huge_pages_node[nid];
3690
ae7a927d 3691 return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
a3437870
NA
3692}
3693HSTATE_ATTR_RO(surplus_hugepages);
3694
79dfc695
MK
3695static ssize_t demote_store(struct kobject *kobj,
3696 struct kobj_attribute *attr, const char *buf, size_t len)
3697{
3698 unsigned long nr_demote;
3699 unsigned long nr_available;
3700 nodemask_t nodes_allowed, *n_mask;
3701 struct hstate *h;
3702 int err = 0;
3703 int nid;
3704
3705 err = kstrtoul(buf, 10, &nr_demote);
3706 if (err)
3707 return err;
3708 h = kobj_to_hstate(kobj, &nid);
3709
3710 if (nid != NUMA_NO_NODE) {
3711 init_nodemask_of_node(&nodes_allowed, nid);
3712 n_mask = &nodes_allowed;
3713 } else {
3714 n_mask = &node_states[N_MEMORY];
3715 }
3716
3717 /* Synchronize with other sysfs operations modifying huge pages */
3718 mutex_lock(&h->resize_lock);
3719 spin_lock_irq(&hugetlb_lock);
3720
3721 while (nr_demote) {
3722 /*
3723 * Check for available pages to demote each time thorough the
3724 * loop as demote_pool_huge_page will drop hugetlb_lock.
79dfc695
MK
3725 */
3726 if (nid != NUMA_NO_NODE)
3727 nr_available = h->free_huge_pages_node[nid];
3728 else
3729 nr_available = h->free_huge_pages;
3730 nr_available -= h->resv_huge_pages;
3731 if (!nr_available)
3732 break;
3733
3734 err = demote_pool_huge_page(h, n_mask);
3735 if (err)
3736 break;
3737
3738 nr_demote--;
3739 }
3740
3741 spin_unlock_irq(&hugetlb_lock);
3742 mutex_unlock(&h->resize_lock);
3743
3744 if (err)
3745 return err;
3746 return len;
3747}
3748HSTATE_ATTR_WO(demote);
3749
3750static ssize_t demote_size_show(struct kobject *kobj,
3751 struct kobj_attribute *attr, char *buf)
3752{
3753 int nid;
3754 struct hstate *h = kobj_to_hstate(kobj, &nid);
3755 unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K;
3756
3757 return sysfs_emit(buf, "%lukB\n", demote_size);
3758}
3759
3760static ssize_t demote_size_store(struct kobject *kobj,
3761 struct kobj_attribute *attr,
3762 const char *buf, size_t count)
3763{
3764 struct hstate *h, *demote_hstate;
3765 unsigned long demote_size;
3766 unsigned int demote_order;
3767 int nid;
3768
3769 demote_size = (unsigned long)memparse(buf, NULL);
3770
3771 demote_hstate = size_to_hstate(demote_size);
3772 if (!demote_hstate)
3773 return -EINVAL;
3774 demote_order = demote_hstate->order;
a01f4390
MK
3775 if (demote_order < HUGETLB_PAGE_ORDER)
3776 return -EINVAL;
79dfc695
MK
3777
3778 /* demote order must be smaller than hstate order */
3779 h = kobj_to_hstate(kobj, &nid);
3780 if (demote_order >= h->order)
3781 return -EINVAL;
3782
3783 /* resize_lock synchronizes access to demote size and writes */
3784 mutex_lock(&h->resize_lock);
3785 h->demote_order = demote_order;
3786 mutex_unlock(&h->resize_lock);
3787
3788 return count;
3789}
3790HSTATE_ATTR(demote_size);
3791
a3437870
NA
3792static struct attribute *hstate_attrs[] = {
3793 &nr_hugepages_attr.attr,
3794 &nr_overcommit_hugepages_attr.attr,
3795 &free_hugepages_attr.attr,
3796 &resv_hugepages_attr.attr,
3797 &surplus_hugepages_attr.attr,
06808b08
LS
3798#ifdef CONFIG_NUMA
3799 &nr_hugepages_mempolicy_attr.attr,
3800#endif
a3437870
NA
3801 NULL,
3802};
3803
67e5ed96 3804static const struct attribute_group hstate_attr_group = {
a3437870
NA
3805 .attrs = hstate_attrs,
3806};
3807
79dfc695
MK
3808static struct attribute *hstate_demote_attrs[] = {
3809 &demote_size_attr.attr,
3810 &demote_attr.attr,
3811 NULL,
3812};
3813
3814static const struct attribute_group hstate_demote_attr_group = {
3815 .attrs = hstate_demote_attrs,
3816};
3817
094e9539
JM
3818static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
3819 struct kobject **hstate_kobjs,
67e5ed96 3820 const struct attribute_group *hstate_attr_group)
a3437870
NA
3821{
3822 int retval;
972dc4de 3823 int hi = hstate_index(h);
a3437870 3824
9a305230
LS
3825 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
3826 if (!hstate_kobjs[hi])
a3437870
NA
3827 return -ENOMEM;
3828
9a305230 3829 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
cc2205a6 3830 if (retval) {
9a305230 3831 kobject_put(hstate_kobjs[hi]);
cc2205a6
ML
3832 hstate_kobjs[hi] = NULL;
3833 }
a3437870 3834
79dfc695
MK
3835 if (h->demote_order) {
3836 if (sysfs_create_group(hstate_kobjs[hi],
3837 &hstate_demote_attr_group))
3838 pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name);
3839 }
3840
a3437870
NA
3841 return retval;
3842}
3843
3844static void __init hugetlb_sysfs_init(void)
3845{
3846 struct hstate *h;
3847 int err;
3848
3849 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
3850 if (!hugepages_kobj)
3851 return;
3852
3853 for_each_hstate(h) {
9a305230
LS
3854 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
3855 hstate_kobjs, &hstate_attr_group);
a3437870 3856 if (err)
282f4214 3857 pr_err("HugeTLB: Unable to add hstate %s", h->name);
a3437870
NA
3858 }
3859}
3860
9a305230
LS
3861#ifdef CONFIG_NUMA
3862
3863/*
3864 * node_hstate/s - associate per node hstate attributes, via their kobjects,
10fbcf4c
KS
3865 * with node devices in node_devices[] using a parallel array. The array
3866 * index of a node device or _hstate == node id.
3867 * This is here to avoid any static dependency of the node device driver, in
9a305230
LS
3868 * the base kernel, on the hugetlb module.
3869 */
3870struct node_hstate {
3871 struct kobject *hugepages_kobj;
3872 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3873};
b4e289a6 3874static struct node_hstate node_hstates[MAX_NUMNODES];
9a305230
LS
3875
3876/*
10fbcf4c 3877 * A subset of global hstate attributes for node devices
9a305230
LS
3878 */
3879static struct attribute *per_node_hstate_attrs[] = {
3880 &nr_hugepages_attr.attr,
3881 &free_hugepages_attr.attr,
3882 &surplus_hugepages_attr.attr,
3883 NULL,
3884};
3885
67e5ed96 3886static const struct attribute_group per_node_hstate_attr_group = {
9a305230
LS
3887 .attrs = per_node_hstate_attrs,
3888};
3889
3890/*
10fbcf4c 3891 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
9a305230
LS
3892 * Returns node id via non-NULL nidp.
3893 */
3894static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3895{
3896 int nid;
3897
3898 for (nid = 0; nid < nr_node_ids; nid++) {
3899 struct node_hstate *nhs = &node_hstates[nid];
3900 int i;
3901 for (i = 0; i < HUGE_MAX_HSTATE; i++)
3902 if (nhs->hstate_kobjs[i] == kobj) {
3903 if (nidp)
3904 *nidp = nid;
3905 return &hstates[i];
3906 }
3907 }
3908
3909 BUG();
3910 return NULL;
3911}
3912
3913/*
10fbcf4c 3914 * Unregister hstate attributes from a single node device.
9a305230
LS
3915 * No-op if no hstate attributes attached.
3916 */
3cd8b44f 3917static void hugetlb_unregister_node(struct node *node)
9a305230
LS
3918{
3919 struct hstate *h;
10fbcf4c 3920 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
3921
3922 if (!nhs->hugepages_kobj)
9b5e5d0f 3923 return; /* no hstate attributes */
9a305230 3924
972dc4de
AK
3925 for_each_hstate(h) {
3926 int idx = hstate_index(h);
3927 if (nhs->hstate_kobjs[idx]) {
3928 kobject_put(nhs->hstate_kobjs[idx]);
3929 nhs->hstate_kobjs[idx] = NULL;
9a305230 3930 }
972dc4de 3931 }
9a305230
LS
3932
3933 kobject_put(nhs->hugepages_kobj);
3934 nhs->hugepages_kobj = NULL;
3935}
3936
9a305230
LS
3937
3938/*
10fbcf4c 3939 * Register hstate attributes for a single node device.
9a305230
LS
3940 * No-op if attributes already registered.
3941 */
3cd8b44f 3942static void hugetlb_register_node(struct node *node)
9a305230
LS
3943{
3944 struct hstate *h;
10fbcf4c 3945 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
3946 int err;
3947
3948 if (nhs->hugepages_kobj)
3949 return; /* already allocated */
3950
3951 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
10fbcf4c 3952 &node->dev.kobj);
9a305230
LS
3953 if (!nhs->hugepages_kobj)
3954 return;
3955
3956 for_each_hstate(h) {
3957 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
3958 nhs->hstate_kobjs,
3959 &per_node_hstate_attr_group);
3960 if (err) {
282f4214 3961 pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
ffb22af5 3962 h->name, node->dev.id);
9a305230
LS
3963 hugetlb_unregister_node(node);
3964 break;
3965 }
3966 }
3967}
3968
3969/*
9b5e5d0f 3970 * hugetlb init time: register hstate attributes for all registered node
10fbcf4c
KS
3971 * devices of nodes that have memory. All on-line nodes should have
3972 * registered their associated device by this time.
9a305230 3973 */
7d9ca000 3974static void __init hugetlb_register_all_nodes(void)
9a305230
LS
3975{
3976 int nid;
3977
8cebfcd0 3978 for_each_node_state(nid, N_MEMORY) {
8732794b 3979 struct node *node = node_devices[nid];
10fbcf4c 3980 if (node->dev.id == nid)
9a305230
LS
3981 hugetlb_register_node(node);
3982 }
3983
3984 /*
10fbcf4c 3985 * Let the node device driver know we're here so it can
9a305230
LS
3986 * [un]register hstate attributes on node hotplug.
3987 */
3988 register_hugetlbfs_with_node(hugetlb_register_node,
3989 hugetlb_unregister_node);
3990}
3991#else /* !CONFIG_NUMA */
3992
3993static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3994{
3995 BUG();
3996 if (nidp)
3997 *nidp = -1;
3998 return NULL;
3999}
4000
9a305230
LS
4001static void hugetlb_register_all_nodes(void) { }
4002
4003#endif
4004
a3437870
NA
4005static int __init hugetlb_init(void)
4006{
8382d914
DB
4007 int i;
4008
d6995da3
MK
4009 BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
4010 __NR_HPAGEFLAGS);
4011
c2833a5b
MK
4012 if (!hugepages_supported()) {
4013 if (hugetlb_max_hstate || default_hstate_max_huge_pages)
4014 pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
0ef89d25 4015 return 0;
c2833a5b 4016 }
a3437870 4017
282f4214
MK
4018 /*
4019 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists. Some
4020 * architectures depend on setup being done here.
4021 */
4022 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
4023 if (!parsed_default_hugepagesz) {
4024 /*
4025 * If we did not parse a default huge page size, set
4026 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
4027 * number of huge pages for this default size was implicitly
4028 * specified, set that here as well.
4029 * Note that the implicit setting will overwrite an explicit
4030 * setting. A warning will be printed in this case.
4031 */
4032 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
4033 if (default_hstate_max_huge_pages) {
4034 if (default_hstate.max_huge_pages) {
4035 char buf[32];
4036
4037 string_get_size(huge_page_size(&default_hstate),
4038 1, STRING_UNITS_2, buf, 32);
4039 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
4040 default_hstate.max_huge_pages, buf);
4041 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
4042 default_hstate_max_huge_pages);
4043 }
4044 default_hstate.max_huge_pages =
4045 default_hstate_max_huge_pages;
b5389086
ZY
4046
4047 for (i = 0; i < nr_online_nodes; i++)
4048 default_hstate.max_huge_pages_node[i] =
4049 default_hugepages_in_node[i];
d715cf80 4050 }
f8b74815 4051 }
a3437870 4052
cf11e85f 4053 hugetlb_cma_check();
a3437870 4054 hugetlb_init_hstates();
aa888a74 4055 gather_bootmem_prealloc();
a3437870
NA
4056 report_hugepages();
4057
4058 hugetlb_sysfs_init();
9a305230 4059 hugetlb_register_all_nodes();
7179e7bf 4060 hugetlb_cgroup_file_init();
9a305230 4061
8382d914
DB
4062#ifdef CONFIG_SMP
4063 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
4064#else
4065 num_fault_mutexes = 1;
4066#endif
c672c7f2 4067 hugetlb_fault_mutex_table =
6da2ec56
KC
4068 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
4069 GFP_KERNEL);
c672c7f2 4070 BUG_ON(!hugetlb_fault_mutex_table);
8382d914
DB
4071
4072 for (i = 0; i < num_fault_mutexes; i++)
c672c7f2 4073 mutex_init(&hugetlb_fault_mutex_table[i]);
a3437870
NA
4074 return 0;
4075}
3e89e1c5 4076subsys_initcall(hugetlb_init);
a3437870 4077
ae94da89
MK
4078/* Overwritten by architectures with more huge page sizes */
4079bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
9fee021d 4080{
ae94da89 4081 return size == HPAGE_SIZE;
9fee021d
VT
4082}
4083
d00181b9 4084void __init hugetlb_add_hstate(unsigned int order)
a3437870
NA
4085{
4086 struct hstate *h;
8faa8b07
AK
4087 unsigned long i;
4088
a3437870 4089 if (size_to_hstate(PAGE_SIZE << order)) {
a3437870
NA
4090 return;
4091 }
47d38344 4092 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
a3437870 4093 BUG_ON(order == 0);
47d38344 4094 h = &hstates[hugetlb_max_hstate++];
29383967 4095 mutex_init(&h->resize_lock);
a3437870 4096 h->order = order;
aca78307 4097 h->mask = ~(huge_page_size(h) - 1);
8faa8b07
AK
4098 for (i = 0; i < MAX_NUMNODES; ++i)
4099 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
0edaecfa 4100 INIT_LIST_HEAD(&h->hugepage_activelist);
54f18d35
AM
4101 h->next_nid_to_alloc = first_memory_node;
4102 h->next_nid_to_free = first_memory_node;
a3437870
NA
4103 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
4104 huge_page_size(h)/1024);
77490587 4105 hugetlb_vmemmap_init(h);
8faa8b07 4106
a3437870
NA
4107 parsed_hstate = h;
4108}
4109
b5389086
ZY
4110bool __init __weak hugetlb_node_alloc_supported(void)
4111{
4112 return true;
4113}
282f4214
MK
4114/*
4115 * hugepages command line processing
4116 * hugepages normally follows a valid hugepagsz or default_hugepagsz
4117 * specification. If not, ignore the hugepages value. hugepages can also
4118 * be the first huge page command line option in which case it implicitly
4119 * specifies the number of huge pages for the default size.
4120 */
4121static int __init hugepages_setup(char *s)
a3437870
NA
4122{
4123 unsigned long *mhp;
8faa8b07 4124 static unsigned long *last_mhp;
b5389086
ZY
4125 int node = NUMA_NO_NODE;
4126 int count;
4127 unsigned long tmp;
4128 char *p = s;
a3437870 4129
9fee021d 4130 if (!parsed_valid_hugepagesz) {
282f4214 4131 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
9fee021d 4132 parsed_valid_hugepagesz = true;
282f4214 4133 return 0;
9fee021d 4134 }
282f4214 4135
a3437870 4136 /*
282f4214
MK
4137 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
4138 * yet, so this hugepages= parameter goes to the "default hstate".
4139 * Otherwise, it goes with the previously parsed hugepagesz or
4140 * default_hugepagesz.
a3437870 4141 */
9fee021d 4142 else if (!hugetlb_max_hstate)
a3437870
NA
4143 mhp = &default_hstate_max_huge_pages;
4144 else
4145 mhp = &parsed_hstate->max_huge_pages;
4146
8faa8b07 4147 if (mhp == last_mhp) {
282f4214
MK
4148 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
4149 return 0;
8faa8b07
AK
4150 }
4151
b5389086
ZY
4152 while (*p) {
4153 count = 0;
4154 if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4155 goto invalid;
4156 /* Parameter is node format */
4157 if (p[count] == ':') {
4158 if (!hugetlb_node_alloc_supported()) {
4159 pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n");
4160 return 0;
4161 }
4162 node = tmp;
4163 p += count + 1;
4164 if (node < 0 || node >= nr_online_nodes)
4165 goto invalid;
4166 /* Parse hugepages */
4167 if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4168 goto invalid;
4169 if (!hugetlb_max_hstate)
4170 default_hugepages_in_node[node] = tmp;
4171 else
4172 parsed_hstate->max_huge_pages_node[node] = tmp;
4173 *mhp += tmp;
4174 /* Go to parse next node*/
4175 if (p[count] == ',')
4176 p += count + 1;
4177 else
4178 break;
4179 } else {
4180 if (p != s)
4181 goto invalid;
4182 *mhp = tmp;
4183 break;
4184 }
4185 }
a3437870 4186
8faa8b07
AK
4187 /*
4188 * Global state is always initialized later in hugetlb_init.
04adbc3f 4189 * But we need to allocate gigantic hstates here early to still
8faa8b07
AK
4190 * use the bootmem allocator.
4191 */
04adbc3f 4192 if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
8faa8b07
AK
4193 hugetlb_hstate_alloc_pages(parsed_hstate);
4194
4195 last_mhp = mhp;
4196
a3437870 4197 return 1;
b5389086
ZY
4198
4199invalid:
4200 pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p);
4201 return 0;
a3437870 4202}
282f4214 4203__setup("hugepages=", hugepages_setup);
e11bfbfc 4204
282f4214
MK
4205/*
4206 * hugepagesz command line processing
4207 * A specific huge page size can only be specified once with hugepagesz.
4208 * hugepagesz is followed by hugepages on the command line. The global
4209 * variable 'parsed_valid_hugepagesz' is used to determine if prior
4210 * hugepagesz argument was valid.
4211 */
359f2544 4212static int __init hugepagesz_setup(char *s)
e11bfbfc 4213{
359f2544 4214 unsigned long size;
282f4214
MK
4215 struct hstate *h;
4216
4217 parsed_valid_hugepagesz = false;
359f2544
MK
4218 size = (unsigned long)memparse(s, NULL);
4219
4220 if (!arch_hugetlb_valid_size(size)) {
282f4214 4221 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
359f2544
MK
4222 return 0;
4223 }
4224
282f4214
MK
4225 h = size_to_hstate(size);
4226 if (h) {
4227 /*
4228 * hstate for this size already exists. This is normally
4229 * an error, but is allowed if the existing hstate is the
4230 * default hstate. More specifically, it is only allowed if
4231 * the number of huge pages for the default hstate was not
4232 * previously specified.
4233 */
4234 if (!parsed_default_hugepagesz || h != &default_hstate ||
4235 default_hstate.max_huge_pages) {
4236 pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
4237 return 0;
4238 }
4239
4240 /*
4241 * No need to call hugetlb_add_hstate() as hstate already
4242 * exists. But, do set parsed_hstate so that a following
4243 * hugepages= parameter will be applied to this hstate.
4244 */
4245 parsed_hstate = h;
4246 parsed_valid_hugepagesz = true;
4247 return 1;
38237830
MK
4248 }
4249
359f2544 4250 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
282f4214 4251 parsed_valid_hugepagesz = true;
e11bfbfc
NP
4252 return 1;
4253}
359f2544
MK
4254__setup("hugepagesz=", hugepagesz_setup);
4255
282f4214
MK
4256/*
4257 * default_hugepagesz command line input
4258 * Only one instance of default_hugepagesz allowed on command line.
4259 */
ae94da89 4260static int __init default_hugepagesz_setup(char *s)
e11bfbfc 4261{
ae94da89 4262 unsigned long size;
b5389086 4263 int i;
ae94da89 4264
282f4214 4265 parsed_valid_hugepagesz = false;
282f4214
MK
4266 if (parsed_default_hugepagesz) {
4267 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
4268 return 0;
4269 }
4270
ae94da89
MK
4271 size = (unsigned long)memparse(s, NULL);
4272
4273 if (!arch_hugetlb_valid_size(size)) {
282f4214 4274 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
ae94da89
MK
4275 return 0;
4276 }
4277
282f4214
MK
4278 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4279 parsed_valid_hugepagesz = true;
4280 parsed_default_hugepagesz = true;
4281 default_hstate_idx = hstate_index(size_to_hstate(size));
4282
4283 /*
4284 * The number of default huge pages (for this size) could have been
4285 * specified as the first hugetlb parameter: hugepages=X. If so,
4286 * then default_hstate_max_huge_pages is set. If the default huge
4287 * page size is gigantic (>= MAX_ORDER), then the pages must be
4288 * allocated here from bootmem allocator.
4289 */
4290 if (default_hstate_max_huge_pages) {
4291 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
b5389086
ZY
4292 for (i = 0; i < nr_online_nodes; i++)
4293 default_hstate.max_huge_pages_node[i] =
4294 default_hugepages_in_node[i];
282f4214
MK
4295 if (hstate_is_gigantic(&default_hstate))
4296 hugetlb_hstate_alloc_pages(&default_hstate);
4297 default_hstate_max_huge_pages = 0;
4298 }
4299
e11bfbfc
NP
4300 return 1;
4301}
ae94da89 4302__setup("default_hugepagesz=", default_hugepagesz_setup);
a3437870 4303
8ca39e68 4304static unsigned int allowed_mems_nr(struct hstate *h)
8a213460
NA
4305{
4306 int node;
4307 unsigned int nr = 0;
8ca39e68
MS
4308 nodemask_t *mpol_allowed;
4309 unsigned int *array = h->free_huge_pages_node;
4310 gfp_t gfp_mask = htlb_alloc_mask(h);
4311
4312 mpol_allowed = policy_nodemask_current(gfp_mask);
8a213460 4313
8ca39e68 4314 for_each_node_mask(node, cpuset_current_mems_allowed) {
c93b0a99 4315 if (!mpol_allowed || node_isset(node, *mpol_allowed))
8ca39e68
MS
4316 nr += array[node];
4317 }
8a213460
NA
4318
4319 return nr;
4320}
4321
4322#ifdef CONFIG_SYSCTL
17743798
MS
4323static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
4324 void *buffer, size_t *length,
4325 loff_t *ppos, unsigned long *out)
4326{
4327 struct ctl_table dup_table;
4328
4329 /*
4330 * In order to avoid races with __do_proc_doulongvec_minmax(), we
4331 * can duplicate the @table and alter the duplicate of it.
4332 */
4333 dup_table = *table;
4334 dup_table.data = out;
4335
4336 return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
4337}
4338
06808b08
LS
4339static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
4340 struct ctl_table *table, int write,
32927393 4341 void *buffer, size_t *length, loff_t *ppos)
1da177e4 4342{
e5ff2159 4343 struct hstate *h = &default_hstate;
238d3c13 4344 unsigned long tmp = h->max_huge_pages;
08d4a246 4345 int ret;
e5ff2159 4346
457c1b27 4347 if (!hugepages_supported())
86613628 4348 return -EOPNOTSUPP;
457c1b27 4349
17743798
MS
4350 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4351 &tmp);
08d4a246
MH
4352 if (ret)
4353 goto out;
e5ff2159 4354
238d3c13
DR
4355 if (write)
4356 ret = __nr_hugepages_store_common(obey_mempolicy, h,
4357 NUMA_NO_NODE, tmp, *length);
08d4a246
MH
4358out:
4359 return ret;
1da177e4 4360}
396faf03 4361
06808b08 4362int hugetlb_sysctl_handler(struct ctl_table *table, int write,
32927393 4363 void *buffer, size_t *length, loff_t *ppos)
06808b08
LS
4364{
4365
4366 return hugetlb_sysctl_handler_common(false, table, write,
4367 buffer, length, ppos);
4368}
4369
4370#ifdef CONFIG_NUMA
4371int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
32927393 4372 void *buffer, size_t *length, loff_t *ppos)
06808b08
LS
4373{
4374 return hugetlb_sysctl_handler_common(true, table, write,
4375 buffer, length, ppos);
4376}
4377#endif /* CONFIG_NUMA */
4378
a3d0c6aa 4379int hugetlb_overcommit_handler(struct ctl_table *table, int write,
32927393 4380 void *buffer, size_t *length, loff_t *ppos)
a3d0c6aa 4381{
a5516438 4382 struct hstate *h = &default_hstate;
e5ff2159 4383 unsigned long tmp;
08d4a246 4384 int ret;
e5ff2159 4385
457c1b27 4386 if (!hugepages_supported())
86613628 4387 return -EOPNOTSUPP;
457c1b27 4388
c033a93c 4389 tmp = h->nr_overcommit_huge_pages;
e5ff2159 4390
bae7f4ae 4391 if (write && hstate_is_gigantic(h))
adbe8726
EM
4392 return -EINVAL;
4393
17743798
MS
4394 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4395 &tmp);
08d4a246
MH
4396 if (ret)
4397 goto out;
e5ff2159
AK
4398
4399 if (write) {
db71ef79 4400 spin_lock_irq(&hugetlb_lock);
e5ff2159 4401 h->nr_overcommit_huge_pages = tmp;
db71ef79 4402 spin_unlock_irq(&hugetlb_lock);
e5ff2159 4403 }
08d4a246
MH
4404out:
4405 return ret;
a3d0c6aa
NA
4406}
4407
1da177e4
LT
4408#endif /* CONFIG_SYSCTL */
4409
e1759c21 4410void hugetlb_report_meminfo(struct seq_file *m)
1da177e4 4411{
fcb2b0c5
RG
4412 struct hstate *h;
4413 unsigned long total = 0;
4414
457c1b27
NA
4415 if (!hugepages_supported())
4416 return;
fcb2b0c5
RG
4417
4418 for_each_hstate(h) {
4419 unsigned long count = h->nr_huge_pages;
4420
aca78307 4421 total += huge_page_size(h) * count;
fcb2b0c5
RG
4422
4423 if (h == &default_hstate)
4424 seq_printf(m,
4425 "HugePages_Total: %5lu\n"
4426 "HugePages_Free: %5lu\n"
4427 "HugePages_Rsvd: %5lu\n"
4428 "HugePages_Surp: %5lu\n"
4429 "Hugepagesize: %8lu kB\n",
4430 count,
4431 h->free_huge_pages,
4432 h->resv_huge_pages,
4433 h->surplus_huge_pages,
aca78307 4434 huge_page_size(h) / SZ_1K);
fcb2b0c5
RG
4435 }
4436
aca78307 4437 seq_printf(m, "Hugetlb: %8lu kB\n", total / SZ_1K);
1da177e4
LT
4438}
4439
7981593b 4440int hugetlb_report_node_meminfo(char *buf, int len, int nid)
1da177e4 4441{
a5516438 4442 struct hstate *h = &default_hstate;
7981593b 4443
457c1b27
NA
4444 if (!hugepages_supported())
4445 return 0;
7981593b
JP
4446
4447 return sysfs_emit_at(buf, len,
4448 "Node %d HugePages_Total: %5u\n"
4449 "Node %d HugePages_Free: %5u\n"
4450 "Node %d HugePages_Surp: %5u\n",
4451 nid, h->nr_huge_pages_node[nid],
4452 nid, h->free_huge_pages_node[nid],
4453 nid, h->surplus_huge_pages_node[nid]);
1da177e4
LT
4454}
4455
949f7ec5
DR
4456void hugetlb_show_meminfo(void)
4457{
4458 struct hstate *h;
4459 int nid;
4460
457c1b27
NA
4461 if (!hugepages_supported())
4462 return;
4463
949f7ec5
DR
4464 for_each_node_state(nid, N_MEMORY)
4465 for_each_hstate(h)
4466 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
4467 nid,
4468 h->nr_huge_pages_node[nid],
4469 h->free_huge_pages_node[nid],
4470 h->surplus_huge_pages_node[nid],
aca78307 4471 huge_page_size(h) / SZ_1K);
949f7ec5
DR
4472}
4473
5d317b2b
NH
4474void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
4475{
4476 seq_printf(m, "HugetlbPages:\t%8lu kB\n",
4477 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
4478}
4479
1da177e4
LT
4480/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
4481unsigned long hugetlb_total_pages(void)
4482{
d0028588
WL
4483 struct hstate *h;
4484 unsigned long nr_total_pages = 0;
4485
4486 for_each_hstate(h)
4487 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
4488 return nr_total_pages;
1da177e4 4489}
1da177e4 4490
a5516438 4491static int hugetlb_acct_memory(struct hstate *h, long delta)
fc1b8a73
MG
4492{
4493 int ret = -ENOMEM;
4494
0aa7f354
ML
4495 if (!delta)
4496 return 0;
4497
db71ef79 4498 spin_lock_irq(&hugetlb_lock);
fc1b8a73
MG
4499 /*
4500 * When cpuset is configured, it breaks the strict hugetlb page
4501 * reservation as the accounting is done on a global variable. Such
4502 * reservation is completely rubbish in the presence of cpuset because
4503 * the reservation is not checked against page availability for the
4504 * current cpuset. Application can still potentially OOM'ed by kernel
4505 * with lack of free htlb page in cpuset that the task is in.
4506 * Attempt to enforce strict accounting with cpuset is almost
4507 * impossible (or too ugly) because cpuset is too fluid that
4508 * task or memory node can be dynamically moved between cpusets.
4509 *
4510 * The change of semantics for shared hugetlb mapping with cpuset is
4511 * undesirable. However, in order to preserve some of the semantics,
4512 * we fall back to check against current free page availability as
4513 * a best attempt and hopefully to minimize the impact of changing
4514 * semantics that cpuset has.
8ca39e68
MS
4515 *
4516 * Apart from cpuset, we also have memory policy mechanism that
4517 * also determines from which node the kernel will allocate memory
4518 * in a NUMA system. So similar to cpuset, we also should consider
4519 * the memory policy of the current task. Similar to the description
4520 * above.
fc1b8a73
MG
4521 */
4522 if (delta > 0) {
a5516438 4523 if (gather_surplus_pages(h, delta) < 0)
fc1b8a73
MG
4524 goto out;
4525
8ca39e68 4526 if (delta > allowed_mems_nr(h)) {
a5516438 4527 return_unused_surplus_pages(h, delta);
fc1b8a73
MG
4528 goto out;
4529 }
4530 }
4531
4532 ret = 0;
4533 if (delta < 0)
a5516438 4534 return_unused_surplus_pages(h, (unsigned long) -delta);
fc1b8a73
MG
4535
4536out:
db71ef79 4537 spin_unlock_irq(&hugetlb_lock);
fc1b8a73
MG
4538 return ret;
4539}
4540
84afd99b
AW
4541static void hugetlb_vm_op_open(struct vm_area_struct *vma)
4542{
f522c3ac 4543 struct resv_map *resv = vma_resv_map(vma);
84afd99b
AW
4544
4545 /*
4546 * This new VMA should share its siblings reservation map if present.
4547 * The VMA will only ever have a valid reservation map pointer where
4548 * it is being copied for another still existing VMA. As that VMA
25985edc 4549 * has a reference to the reservation map it cannot disappear until
84afd99b
AW
4550 * after this open call completes. It is therefore safe to take a
4551 * new reference here without additional locking.
4552 */
09a26e83
MK
4553 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
4554 resv_map_dup_hugetlb_cgroup_uncharge_info(resv);
f522c3ac 4555 kref_get(&resv->refs);
09a26e83 4556 }
84afd99b
AW
4557}
4558
a1e78772
MG
4559static void hugetlb_vm_op_close(struct vm_area_struct *vma)
4560{
a5516438 4561 struct hstate *h = hstate_vma(vma);
f522c3ac 4562 struct resv_map *resv = vma_resv_map(vma);
90481622 4563 struct hugepage_subpool *spool = subpool_vma(vma);
4e35f483 4564 unsigned long reserve, start, end;
1c5ecae3 4565 long gbl_reserve;
84afd99b 4566
4e35f483
JK
4567 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4568 return;
84afd99b 4569
4e35f483
JK
4570 start = vma_hugecache_offset(h, vma, vma->vm_start);
4571 end = vma_hugecache_offset(h, vma, vma->vm_end);
84afd99b 4572
4e35f483 4573 reserve = (end - start) - region_count(resv, start, end);
e9fe92ae 4574 hugetlb_cgroup_uncharge_counter(resv, start, end);
4e35f483 4575 if (reserve) {
1c5ecae3
MK
4576 /*
4577 * Decrement reserve counts. The global reserve count may be
4578 * adjusted if the subpool has a minimum size.
4579 */
4580 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
4581 hugetlb_acct_memory(h, -gbl_reserve);
84afd99b 4582 }
e9fe92ae
MA
4583
4584 kref_put(&resv->refs, resv_map_release);
a1e78772
MG
4585}
4586
31383c68
DW
4587static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
4588{
4589 if (addr & ~(huge_page_mask(hstate_vma(vma))))
4590 return -EINVAL;
4591 return 0;
4592}
4593
05ea8860
DW
4594static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
4595{
aca78307 4596 return huge_page_size(hstate_vma(vma));
05ea8860
DW
4597}
4598
1da177e4
LT
4599/*
4600 * We cannot handle pagefaults against hugetlb pages at all. They cause
4601 * handle_mm_fault() to try to instantiate regular-sized pages in the
6c26d310 4602 * hugepage VMA. do_page_fault() is supposed to trap this, so BUG is we get
1da177e4
LT
4603 * this far.
4604 */
b3ec9f33 4605static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
1da177e4
LT
4606{
4607 BUG();
d0217ac0 4608 return 0;
1da177e4
LT
4609}
4610
eec3636a
JC
4611/*
4612 * When a new function is introduced to vm_operations_struct and added
4613 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
4614 * This is because under System V memory model, mappings created via
4615 * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
4616 * their original vm_ops are overwritten with shm_vm_ops.
4617 */
f0f37e2f 4618const struct vm_operations_struct hugetlb_vm_ops = {
d0217ac0 4619 .fault = hugetlb_vm_op_fault,
84afd99b 4620 .open = hugetlb_vm_op_open,
a1e78772 4621 .close = hugetlb_vm_op_close,
dd3b614f 4622 .may_split = hugetlb_vm_op_split,
05ea8860 4623 .pagesize = hugetlb_vm_op_pagesize,
1da177e4
LT
4624};
4625
1e8f889b
DG
4626static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
4627 int writable)
63551ae0
DG
4628{
4629 pte_t entry;
79c1c594 4630 unsigned int shift = huge_page_shift(hstate_vma(vma));
63551ae0 4631
1e8f889b 4632 if (writable) {
106c992a
GS
4633 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
4634 vma->vm_page_prot)));
63551ae0 4635 } else {
106c992a
GS
4636 entry = huge_pte_wrprotect(mk_huge_pte(page,
4637 vma->vm_page_prot));
63551ae0
DG
4638 }
4639 entry = pte_mkyoung(entry);
4640 entry = pte_mkhuge(entry);
79c1c594 4641 entry = arch_make_huge_pte(entry, shift, vma->vm_flags);
63551ae0
DG
4642
4643 return entry;
4644}
4645
1e8f889b
DG
4646static void set_huge_ptep_writable(struct vm_area_struct *vma,
4647 unsigned long address, pte_t *ptep)
4648{
4649 pte_t entry;
4650
106c992a 4651 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
32f84528 4652 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4b3073e1 4653 update_mmu_cache(vma, address, ptep);
1e8f889b
DG
4654}
4655
d5ed7444 4656bool is_hugetlb_entry_migration(pte_t pte)
4a705fef
NH
4657{
4658 swp_entry_t swp;
4659
4660 if (huge_pte_none(pte) || pte_present(pte))
d5ed7444 4661 return false;
4a705fef 4662 swp = pte_to_swp_entry(pte);
d79d176a 4663 if (is_migration_entry(swp))
d5ed7444 4664 return true;
4a705fef 4665 else
d5ed7444 4666 return false;
4a705fef
NH
4667}
4668
3e5c3600 4669static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
4a705fef
NH
4670{
4671 swp_entry_t swp;
4672
4673 if (huge_pte_none(pte) || pte_present(pte))
3e5c3600 4674 return false;
4a705fef 4675 swp = pte_to_swp_entry(pte);
d79d176a 4676 if (is_hwpoison_entry(swp))
3e5c3600 4677 return true;
4a705fef 4678 else
3e5c3600 4679 return false;
4a705fef 4680}
1e8f889b 4681
4eae4efa
PX
4682static void
4683hugetlb_install_page(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
4684 struct page *new_page)
4685{
4686 __SetPageUptodate(new_page);
4687 set_huge_pte_at(vma->vm_mm, addr, ptep, make_huge_pte(vma, new_page, 1));
4688 hugepage_add_new_anon_rmap(new_page, vma, addr);
4689 hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
4690 ClearHPageRestoreReserve(new_page);
4691 SetHPageMigratable(new_page);
4692}
4693
63551ae0
DG
4694int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
4695 struct vm_area_struct *vma)
4696{
5e41540c 4697 pte_t *src_pte, *dst_pte, entry, dst_entry;
63551ae0 4698 struct page *ptepage;
1c59827d 4699 unsigned long addr;
ca6eb14d 4700 bool cow = is_cow_mapping(vma->vm_flags);
a5516438
AK
4701 struct hstate *h = hstate_vma(vma);
4702 unsigned long sz = huge_page_size(h);
4eae4efa 4703 unsigned long npages = pages_per_huge_page(h);
c0d0381a 4704 struct address_space *mapping = vma->vm_file->f_mapping;
ac46d4f3 4705 struct mmu_notifier_range range;
e8569dd2 4706 int ret = 0;
1e8f889b 4707
ac46d4f3 4708 if (cow) {
7269f999 4709 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src,
6f4f13e8 4710 vma->vm_start,
ac46d4f3
JG
4711 vma->vm_end);
4712 mmu_notifier_invalidate_range_start(&range);
c0d0381a
MK
4713 } else {
4714 /*
4715 * For shared mappings i_mmap_rwsem must be held to call
4716 * huge_pte_alloc, otherwise the returned ptep could go
4717 * away if part of a shared pmd and another thread calls
4718 * huge_pmd_unshare.
4719 */
4720 i_mmap_lock_read(mapping);
ac46d4f3 4721 }
e8569dd2 4722
a5516438 4723 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
cb900f41 4724 spinlock_t *src_ptl, *dst_ptl;
7868a208 4725 src_pte = huge_pte_offset(src, addr, sz);
c74df32c
HD
4726 if (!src_pte)
4727 continue;
aec44e0f 4728 dst_pte = huge_pte_alloc(dst, vma, addr, sz);
e8569dd2
AS
4729 if (!dst_pte) {
4730 ret = -ENOMEM;
4731 break;
4732 }
c5c99429 4733
5e41540c
MK
4734 /*
4735 * If the pagetables are shared don't copy or take references.
4736 * dst_pte == src_pte is the common case of src/dest sharing.
4737 *
4738 * However, src could have 'unshared' and dst shares with
4739 * another vma. If dst_pte !none, this implies sharing.
4740 * Check here before taking page table lock, and once again
4741 * after taking the lock below.
4742 */
4743 dst_entry = huge_ptep_get(dst_pte);
4744 if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
c5c99429
LW
4745 continue;
4746
cb900f41
KS
4747 dst_ptl = huge_pte_lock(h, dst, dst_pte);
4748 src_ptl = huge_pte_lockptr(h, src, src_pte);
4749 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4a705fef 4750 entry = huge_ptep_get(src_pte);
5e41540c 4751 dst_entry = huge_ptep_get(dst_pte);
4eae4efa 4752again:
5e41540c
MK
4753 if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
4754 /*
4755 * Skip if src entry none. Also, skip in the
4756 * unlikely case dst entry !none as this implies
4757 * sharing with another vma.
4758 */
4a705fef
NH
4759 ;
4760 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
4761 is_hugetlb_entry_hwpoisoned(entry))) {
4762 swp_entry_t swp_entry = pte_to_swp_entry(entry);
4763
4dd845b5 4764 if (is_writable_migration_entry(swp_entry) && cow) {
4a705fef
NH
4765 /*
4766 * COW mappings require pages in both
4767 * parent and child to be set to read.
4768 */
4dd845b5
AP
4769 swp_entry = make_readable_migration_entry(
4770 swp_offset(swp_entry));
4a705fef 4771 entry = swp_entry_to_pte(swp_entry);
e5251fd4
PA
4772 set_huge_swap_pte_at(src, addr, src_pte,
4773 entry, sz);
4a705fef 4774 }
e5251fd4 4775 set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
4a705fef 4776 } else {
4eae4efa
PX
4777 entry = huge_ptep_get(src_pte);
4778 ptepage = pte_page(entry);
4779 get_page(ptepage);
4780
4781 /*
4782 * This is a rare case where we see pinned hugetlb
4783 * pages while they're prone to COW. We need to do the
4784 * COW earlier during fork.
4785 *
4786 * When pre-allocating the page or copying data, we
4787 * need to be without the pgtable locks since we could
4788 * sleep during the process.
4789 */
4790 if (unlikely(page_needs_cow_for_dma(vma, ptepage))) {
4791 pte_t src_pte_old = entry;
4792 struct page *new;
4793
4794 spin_unlock(src_ptl);
4795 spin_unlock(dst_ptl);
4796 /* Do not use reserve as it's private owned */
4797 new = alloc_huge_page(vma, addr, 1);
4798 if (IS_ERR(new)) {
4799 put_page(ptepage);
4800 ret = PTR_ERR(new);
4801 break;
4802 }
4803 copy_user_huge_page(new, ptepage, addr, vma,
4804 npages);
4805 put_page(ptepage);
4806
4807 /* Install the new huge page if src pte stable */
4808 dst_ptl = huge_pte_lock(h, dst, dst_pte);
4809 src_ptl = huge_pte_lockptr(h, src, src_pte);
4810 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4811 entry = huge_ptep_get(src_pte);
4812 if (!pte_same(src_pte_old, entry)) {
846be085
MK
4813 restore_reserve_on_error(h, vma, addr,
4814 new);
4eae4efa
PX
4815 put_page(new);
4816 /* dst_entry won't change as in child */
4817 goto again;
4818 }
4819 hugetlb_install_page(vma, dst_pte, addr, new);
4820 spin_unlock(src_ptl);
4821 spin_unlock(dst_ptl);
4822 continue;
4823 }
4824
34ee645e 4825 if (cow) {
0f10851e
JG
4826 /*
4827 * No need to notify as we are downgrading page
4828 * table protection not changing it to point
4829 * to a new page.
4830 *
ad56b738 4831 * See Documentation/vm/mmu_notifier.rst
0f10851e 4832 */
7f2e9525 4833 huge_ptep_set_wrprotect(src, addr, src_pte);
84894e1c 4834 entry = huge_pte_wrprotect(entry);
34ee645e 4835 }
4eae4efa 4836
53f9263b 4837 page_dup_rmap(ptepage, true);
1c59827d 4838 set_huge_pte_at(dst, addr, dst_pte, entry);
4eae4efa 4839 hugetlb_count_add(npages, dst);
1c59827d 4840 }
cb900f41
KS
4841 spin_unlock(src_ptl);
4842 spin_unlock(dst_ptl);
63551ae0 4843 }
63551ae0 4844
e8569dd2 4845 if (cow)
ac46d4f3 4846 mmu_notifier_invalidate_range_end(&range);
c0d0381a
MK
4847 else
4848 i_mmap_unlock_read(mapping);
e8569dd2
AS
4849
4850 return ret;
63551ae0
DG
4851}
4852
550a7d60
MA
4853static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr,
4854 unsigned long new_addr, pte_t *src_pte)
4855{
4856 struct hstate *h = hstate_vma(vma);
4857 struct mm_struct *mm = vma->vm_mm;
4858 pte_t *dst_pte, pte;
4859 spinlock_t *src_ptl, *dst_ptl;
4860
4861 dst_pte = huge_pte_offset(mm, new_addr, huge_page_size(h));
4862 dst_ptl = huge_pte_lock(h, mm, dst_pte);
4863 src_ptl = huge_pte_lockptr(h, mm, src_pte);
4864
4865 /*
4866 * We don't have to worry about the ordering of src and dst ptlocks
4867 * because exclusive mmap_sem (or the i_mmap_lock) prevents deadlock.
4868 */
4869 if (src_ptl != dst_ptl)
4870 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4871
4872 pte = huge_ptep_get_and_clear(mm, old_addr, src_pte);
4873 set_huge_pte_at(mm, new_addr, dst_pte, pte);
4874
4875 if (src_ptl != dst_ptl)
4876 spin_unlock(src_ptl);
4877 spin_unlock(dst_ptl);
4878}
4879
4880int move_hugetlb_page_tables(struct vm_area_struct *vma,
4881 struct vm_area_struct *new_vma,
4882 unsigned long old_addr, unsigned long new_addr,
4883 unsigned long len)
4884{
4885 struct hstate *h = hstate_vma(vma);
4886 struct address_space *mapping = vma->vm_file->f_mapping;
4887 unsigned long sz = huge_page_size(h);
4888 struct mm_struct *mm = vma->vm_mm;
4889 unsigned long old_end = old_addr + len;
4890 unsigned long old_addr_copy;
4891 pte_t *src_pte, *dst_pte;
4892 struct mmu_notifier_range range;
4893
4894 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, old_addr,
4895 old_end);
4896 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
4897 mmu_notifier_invalidate_range_start(&range);
4898 /* Prevent race with file truncation */
4899 i_mmap_lock_write(mapping);
4900 for (; old_addr < old_end; old_addr += sz, new_addr += sz) {
4901 src_pte = huge_pte_offset(mm, old_addr, sz);
4902 if (!src_pte)
4903 continue;
4904 if (huge_pte_none(huge_ptep_get(src_pte)))
4905 continue;
4906
4907 /* old_addr arg to huge_pmd_unshare() is a pointer and so the
4908 * arg may be modified. Pass a copy instead to preserve the
4909 * value in old_addr.
4910 */
4911 old_addr_copy = old_addr;
4912
4913 if (huge_pmd_unshare(mm, vma, &old_addr_copy, src_pte))
4914 continue;
4915
4916 dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz);
4917 if (!dst_pte)
4918 break;
4919
4920 move_huge_pte(vma, old_addr, new_addr, src_pte);
4921 }
550a7d60
MA
4922 flush_tlb_range(vma, old_end - len, old_end);
4923 mmu_notifier_invalidate_range_end(&range);
13e4ad2c 4924 i_mmap_unlock_write(mapping);
550a7d60
MA
4925
4926 return len + old_addr - old_end;
4927}
4928
73c54763
PX
4929static void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
4930 unsigned long start, unsigned long end,
4931 struct page *ref_page)
63551ae0
DG
4932{
4933 struct mm_struct *mm = vma->vm_mm;
4934 unsigned long address;
c7546f8f 4935 pte_t *ptep;
63551ae0 4936 pte_t pte;
cb900f41 4937 spinlock_t *ptl;
63551ae0 4938 struct page *page;
a5516438
AK
4939 struct hstate *h = hstate_vma(vma);
4940 unsigned long sz = huge_page_size(h);
ac46d4f3 4941 struct mmu_notifier_range range;
a4a118f2 4942 bool force_flush = false;
a5516438 4943
63551ae0 4944 WARN_ON(!is_vm_hugetlb_page(vma));
a5516438
AK
4945 BUG_ON(start & ~huge_page_mask(h));
4946 BUG_ON(end & ~huge_page_mask(h));
63551ae0 4947
07e32661
AK
4948 /*
4949 * This is a hugetlb vma, all the pte entries should point
4950 * to huge page.
4951 */
ed6a7935 4952 tlb_change_page_size(tlb, sz);
24669e58 4953 tlb_start_vma(tlb, vma);
dff11abe
MK
4954
4955 /*
4956 * If sharing possible, alert mmu notifiers of worst case.
4957 */
6f4f13e8
JG
4958 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
4959 end);
ac46d4f3
JG
4960 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
4961 mmu_notifier_invalidate_range_start(&range);
569f48b8 4962 address = start;
569f48b8 4963 for (; address < end; address += sz) {
7868a208 4964 ptep = huge_pte_offset(mm, address, sz);
4c887265 4965 if (!ptep)
c7546f8f
DG
4966 continue;
4967
cb900f41 4968 ptl = huge_pte_lock(h, mm, ptep);
34ae204f 4969 if (huge_pmd_unshare(mm, vma, &address, ptep)) {
31d49da5 4970 spin_unlock(ptl);
a4a118f2
NA
4971 tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE);
4972 force_flush = true;
31d49da5
AK
4973 continue;
4974 }
39dde65c 4975
6629326b 4976 pte = huge_ptep_get(ptep);
31d49da5
AK
4977 if (huge_pte_none(pte)) {
4978 spin_unlock(ptl);
4979 continue;
4980 }
6629326b
HD
4981
4982 /*
9fbc1f63
NH
4983 * Migrating hugepage or HWPoisoned hugepage is already
4984 * unmapped and its refcount is dropped, so just clear pte here.
6629326b 4985 */
9fbc1f63 4986 if (unlikely(!pte_present(pte))) {
9386fac3 4987 huge_pte_clear(mm, address, ptep, sz);
31d49da5
AK
4988 spin_unlock(ptl);
4989 continue;
8c4894c6 4990 }
6629326b
HD
4991
4992 page = pte_page(pte);
04f2cbe3
MG
4993 /*
4994 * If a reference page is supplied, it is because a specific
4995 * page is being unmapped, not a range. Ensure the page we
4996 * are about to unmap is the actual page of interest.
4997 */
4998 if (ref_page) {
31d49da5
AK
4999 if (page != ref_page) {
5000 spin_unlock(ptl);
5001 continue;
5002 }
04f2cbe3
MG
5003 /*
5004 * Mark the VMA as having unmapped its page so that
5005 * future faults in this VMA will fail rather than
5006 * looking like data was lost
5007 */
5008 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
5009 }
5010
c7546f8f 5011 pte = huge_ptep_get_and_clear(mm, address, ptep);
b528e4b6 5012 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
106c992a 5013 if (huge_pte_dirty(pte))
6649a386 5014 set_page_dirty(page);
9e81130b 5015
5d317b2b 5016 hugetlb_count_sub(pages_per_huge_page(h), mm);
d281ee61 5017 page_remove_rmap(page, true);
31d49da5 5018
cb900f41 5019 spin_unlock(ptl);
e77b0852 5020 tlb_remove_page_size(tlb, page, huge_page_size(h));
31d49da5
AK
5021 /*
5022 * Bail out after unmapping reference page if supplied
5023 */
5024 if (ref_page)
5025 break;
fe1668ae 5026 }
ac46d4f3 5027 mmu_notifier_invalidate_range_end(&range);
24669e58 5028 tlb_end_vma(tlb, vma);
a4a118f2
NA
5029
5030 /*
5031 * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We
5032 * could defer the flush until now, since by holding i_mmap_rwsem we
5033 * guaranteed that the last refernece would not be dropped. But we must
5034 * do the flushing before we return, as otherwise i_mmap_rwsem will be
5035 * dropped and the last reference to the shared PMDs page might be
5036 * dropped as well.
5037 *
5038 * In theory we could defer the freeing of the PMD pages as well, but
5039 * huge_pmd_unshare() relies on the exact page_count for the PMD page to
5040 * detect sharing, so we cannot defer the release of the page either.
5041 * Instead, do flush now.
5042 */
5043 if (force_flush)
5044 tlb_flush_mmu_tlbonly(tlb);
1da177e4 5045}
63551ae0 5046
d833352a
MG
5047void __unmap_hugepage_range_final(struct mmu_gather *tlb,
5048 struct vm_area_struct *vma, unsigned long start,
5049 unsigned long end, struct page *ref_page)
5050{
5051 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
5052
5053 /*
5054 * Clear this flag so that x86's huge_pmd_share page_table_shareable
5055 * test will fail on a vma being torn down, and not grab a page table
5056 * on its way out. We're lucky that the flag has such an appropriate
5057 * name, and can in fact be safely cleared here. We could clear it
5058 * before the __unmap_hugepage_range above, but all that's necessary
c8c06efa 5059 * is to clear it before releasing the i_mmap_rwsem. This works
d833352a 5060 * because in the context this is called, the VMA is about to be
c8c06efa 5061 * destroyed and the i_mmap_rwsem is held.
d833352a
MG
5062 */
5063 vma->vm_flags &= ~VM_MAYSHARE;
5064}
5065
502717f4 5066void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
04f2cbe3 5067 unsigned long end, struct page *ref_page)
502717f4 5068{
24669e58 5069 struct mmu_gather tlb;
dff11abe 5070
a72afd87 5071 tlb_gather_mmu(&tlb, vma->vm_mm);
24669e58 5072 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
ae8eba8b 5073 tlb_finish_mmu(&tlb);
502717f4
CK
5074}
5075
04f2cbe3
MG
5076/*
5077 * This is called when the original mapper is failing to COW a MAP_PRIVATE
578b7725 5078 * mapping it owns the reserve page for. The intention is to unmap the page
04f2cbe3
MG
5079 * from other VMAs and let the children be SIGKILLed if they are faulting the
5080 * same region.
5081 */
2f4612af
DB
5082static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
5083 struct page *page, unsigned long address)
04f2cbe3 5084{
7526674d 5085 struct hstate *h = hstate_vma(vma);
04f2cbe3
MG
5086 struct vm_area_struct *iter_vma;
5087 struct address_space *mapping;
04f2cbe3
MG
5088 pgoff_t pgoff;
5089
5090 /*
5091 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
5092 * from page cache lookup which is in HPAGE_SIZE units.
5093 */
7526674d 5094 address = address & huge_page_mask(h);
36e4f20a
MH
5095 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
5096 vma->vm_pgoff;
93c76a3d 5097 mapping = vma->vm_file->f_mapping;
04f2cbe3 5098
4eb2b1dc
MG
5099 /*
5100 * Take the mapping lock for the duration of the table walk. As
5101 * this mapping should be shared between all the VMAs,
5102 * __unmap_hugepage_range() is called as the lock is already held
5103 */
83cde9e8 5104 i_mmap_lock_write(mapping);
6b2dbba8 5105 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
04f2cbe3
MG
5106 /* Do not unmap the current VMA */
5107 if (iter_vma == vma)
5108 continue;
5109
2f84a899
MG
5110 /*
5111 * Shared VMAs have their own reserves and do not affect
5112 * MAP_PRIVATE accounting but it is possible that a shared
5113 * VMA is using the same page so check and skip such VMAs.
5114 */
5115 if (iter_vma->vm_flags & VM_MAYSHARE)
5116 continue;
5117
04f2cbe3
MG
5118 /*
5119 * Unmap the page from other VMAs without their own reserves.
5120 * They get marked to be SIGKILLed if they fault in these
5121 * areas. This is because a future no-page fault on this VMA
5122 * could insert a zeroed page instead of the data existing
5123 * from the time of fork. This would look like data corruption
5124 */
5125 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
24669e58
AK
5126 unmap_hugepage_range(iter_vma, address,
5127 address + huge_page_size(h), page);
04f2cbe3 5128 }
83cde9e8 5129 i_mmap_unlock_write(mapping);
04f2cbe3
MG
5130}
5131
0fe6e20b
NH
5132/*
5133 * Hugetlb_cow() should be called with page lock of the original hugepage held.
aa6d2e8c 5134 * Called with hugetlb_fault_mutex_table held and pte_page locked so we
ef009b25
MH
5135 * cannot race with other handlers or page migration.
5136 * Keep the pte_same checks anyway to make transition from the mutex easier.
0fe6e20b 5137 */
2b740303 5138static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
974e6d66 5139 unsigned long address, pte_t *ptep,
3999f52e 5140 struct page *pagecache_page, spinlock_t *ptl)
1e8f889b 5141{
3999f52e 5142 pte_t pte;
a5516438 5143 struct hstate *h = hstate_vma(vma);
1e8f889b 5144 struct page *old_page, *new_page;
2b740303
SJ
5145 int outside_reserve = 0;
5146 vm_fault_t ret = 0;
974e6d66 5147 unsigned long haddr = address & huge_page_mask(h);
ac46d4f3 5148 struct mmu_notifier_range range;
1e8f889b 5149
3999f52e 5150 pte = huge_ptep_get(ptep);
1e8f889b
DG
5151 old_page = pte_page(pte);
5152
04f2cbe3 5153retry_avoidcopy:
1e8f889b
DG
5154 /* If no-one else is actually using this page, avoid the copy
5155 * and just make the page writable */
37a2140d 5156 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
5a49973d 5157 page_move_anon_rmap(old_page, vma);
5b7a1d40 5158 set_huge_ptep_writable(vma, haddr, ptep);
83c54070 5159 return 0;
1e8f889b
DG
5160 }
5161
04f2cbe3
MG
5162 /*
5163 * If the process that created a MAP_PRIVATE mapping is about to
5164 * perform a COW due to a shared page count, attempt to satisfy
5165 * the allocation without using the existing reserves. The pagecache
5166 * page is used to determine if the reserve at this address was
5167 * consumed or not. If reserves were used, a partial faulted mapping
5168 * at the time of fork() could consume its reserves on COW instead
5169 * of the full address range.
5170 */
5944d011 5171 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
04f2cbe3
MG
5172 old_page != pagecache_page)
5173 outside_reserve = 1;
5174
09cbfeaf 5175 get_page(old_page);
b76c8cfb 5176
ad4404a2
DB
5177 /*
5178 * Drop page table lock as buddy allocator may be called. It will
5179 * be acquired again before returning to the caller, as expected.
5180 */
cb900f41 5181 spin_unlock(ptl);
5b7a1d40 5182 new_page = alloc_huge_page(vma, haddr, outside_reserve);
1e8f889b 5183
2fc39cec 5184 if (IS_ERR(new_page)) {
04f2cbe3
MG
5185 /*
5186 * If a process owning a MAP_PRIVATE mapping fails to COW,
5187 * it is due to references held by a child and an insufficient
5188 * huge page pool. To guarantee the original mappers
5189 * reliability, unmap the page from child processes. The child
5190 * may get SIGKILLed if it later faults.
5191 */
5192 if (outside_reserve) {
e7dd91c4
MK
5193 struct address_space *mapping = vma->vm_file->f_mapping;
5194 pgoff_t idx;
5195 u32 hash;
5196
09cbfeaf 5197 put_page(old_page);
04f2cbe3 5198 BUG_ON(huge_pte_none(pte));
e7dd91c4
MK
5199 /*
5200 * Drop hugetlb_fault_mutex and i_mmap_rwsem before
5201 * unmapping. unmapping needs to hold i_mmap_rwsem
5202 * in write mode. Dropping i_mmap_rwsem in read mode
5203 * here is OK as COW mappings do not interact with
5204 * PMD sharing.
5205 *
5206 * Reacquire both after unmap operation.
5207 */
5208 idx = vma_hugecache_offset(h, vma, haddr);
5209 hash = hugetlb_fault_mutex_hash(mapping, idx);
5210 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5211 i_mmap_unlock_read(mapping);
5212
5b7a1d40 5213 unmap_ref_private(mm, vma, old_page, haddr);
e7dd91c4
MK
5214
5215 i_mmap_lock_read(mapping);
5216 mutex_lock(&hugetlb_fault_mutex_table[hash]);
2f4612af 5217 spin_lock(ptl);
5b7a1d40 5218 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
2f4612af
DB
5219 if (likely(ptep &&
5220 pte_same(huge_ptep_get(ptep), pte)))
5221 goto retry_avoidcopy;
5222 /*
5223 * race occurs while re-acquiring page table
5224 * lock, and our job is done.
5225 */
5226 return 0;
04f2cbe3
MG
5227 }
5228
2b740303 5229 ret = vmf_error(PTR_ERR(new_page));
ad4404a2 5230 goto out_release_old;
1e8f889b
DG
5231 }
5232
0fe6e20b
NH
5233 /*
5234 * When the original hugepage is shared one, it does not have
5235 * anon_vma prepared.
5236 */
44e2aa93 5237 if (unlikely(anon_vma_prepare(vma))) {
ad4404a2
DB
5238 ret = VM_FAULT_OOM;
5239 goto out_release_all;
44e2aa93 5240 }
0fe6e20b 5241
974e6d66 5242 copy_user_huge_page(new_page, old_page, address, vma,
47ad8475 5243 pages_per_huge_page(h));
0ed361de 5244 __SetPageUptodate(new_page);
1e8f889b 5245
7269f999 5246 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
6f4f13e8 5247 haddr + huge_page_size(h));
ac46d4f3 5248 mmu_notifier_invalidate_range_start(&range);
ad4404a2 5249
b76c8cfb 5250 /*
cb900f41 5251 * Retake the page table lock to check for racing updates
b76c8cfb
LW
5252 * before the page tables are altered
5253 */
cb900f41 5254 spin_lock(ptl);
5b7a1d40 5255 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
a9af0c5d 5256 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
d6995da3 5257 ClearHPageRestoreReserve(new_page);
07443a85 5258
1e8f889b 5259 /* Break COW */
5b7a1d40 5260 huge_ptep_clear_flush(vma, haddr, ptep);
ac46d4f3 5261 mmu_notifier_invalidate_range(mm, range.start, range.end);
5b7a1d40 5262 set_huge_pte_at(mm, haddr, ptep,
1e8f889b 5263 make_huge_pte(vma, new_page, 1));
d281ee61 5264 page_remove_rmap(old_page, true);
5b7a1d40 5265 hugepage_add_new_anon_rmap(new_page, vma, haddr);
8f251a3d 5266 SetHPageMigratable(new_page);
1e8f889b
DG
5267 /* Make the old page be freed below */
5268 new_page = old_page;
5269 }
cb900f41 5270 spin_unlock(ptl);
ac46d4f3 5271 mmu_notifier_invalidate_range_end(&range);
ad4404a2 5272out_release_all:
c7b1850d
MK
5273 /* No restore in case of successful pagetable update (Break COW) */
5274 if (new_page != old_page)
5275 restore_reserve_on_error(h, vma, haddr, new_page);
09cbfeaf 5276 put_page(new_page);
ad4404a2 5277out_release_old:
09cbfeaf 5278 put_page(old_page);
8312034f 5279
ad4404a2
DB
5280 spin_lock(ptl); /* Caller expects lock to be held */
5281 return ret;
1e8f889b
DG
5282}
5283
04f2cbe3 5284/* Return the pagecache page at a given address within a VMA */
a5516438
AK
5285static struct page *hugetlbfs_pagecache_page(struct hstate *h,
5286 struct vm_area_struct *vma, unsigned long address)
04f2cbe3
MG
5287{
5288 struct address_space *mapping;
e7c4b0bf 5289 pgoff_t idx;
04f2cbe3
MG
5290
5291 mapping = vma->vm_file->f_mapping;
a5516438 5292 idx = vma_hugecache_offset(h, vma, address);
04f2cbe3
MG
5293
5294 return find_lock_page(mapping, idx);
5295}
5296
3ae77f43
HD
5297/*
5298 * Return whether there is a pagecache page to back given address within VMA.
5299 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
5300 */
5301static bool hugetlbfs_pagecache_present(struct hstate *h,
2a15efc9
HD
5302 struct vm_area_struct *vma, unsigned long address)
5303{
5304 struct address_space *mapping;
5305 pgoff_t idx;
5306 struct page *page;
5307
5308 mapping = vma->vm_file->f_mapping;
5309 idx = vma_hugecache_offset(h, vma, address);
5310
5311 page = find_get_page(mapping, idx);
5312 if (page)
5313 put_page(page);
5314 return page != NULL;
5315}
5316
ab76ad54
MK
5317int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
5318 pgoff_t idx)
5319{
5320 struct inode *inode = mapping->host;
5321 struct hstate *h = hstate_inode(inode);
5322 int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
5323
5324 if (err)
5325 return err;
d6995da3 5326 ClearHPageRestoreReserve(page);
ab76ad54 5327
22146c3c
MK
5328 /*
5329 * set page dirty so that it will not be removed from cache/file
5330 * by non-hugetlbfs specific code paths.
5331 */
5332 set_page_dirty(page);
5333
ab76ad54
MK
5334 spin_lock(&inode->i_lock);
5335 inode->i_blocks += blocks_per_huge_page(h);
5336 spin_unlock(&inode->i_lock);
5337 return 0;
5338}
5339
7677f7fd
AR
5340static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma,
5341 struct address_space *mapping,
5342 pgoff_t idx,
5343 unsigned int flags,
5344 unsigned long haddr,
5345 unsigned long reason)
5346{
5347 vm_fault_t ret;
5348 u32 hash;
5349 struct vm_fault vmf = {
5350 .vma = vma,
5351 .address = haddr,
5352 .flags = flags,
5353
5354 /*
5355 * Hard to debug if it ends up being
5356 * used by a callee that assumes
5357 * something about the other
5358 * uninitialized fields... same as in
5359 * memory.c
5360 */
5361 };
5362
5363 /*
5364 * hugetlb_fault_mutex and i_mmap_rwsem must be
5365 * dropped before handling userfault. Reacquire
5366 * after handling fault to make calling code simpler.
5367 */
5368 hash = hugetlb_fault_mutex_hash(mapping, idx);
5369 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5370 i_mmap_unlock_read(mapping);
5371 ret = handle_userfault(&vmf, reason);
5372 i_mmap_lock_read(mapping);
5373 mutex_lock(&hugetlb_fault_mutex_table[hash]);
5374
5375 return ret;
5376}
5377
2b740303
SJ
5378static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
5379 struct vm_area_struct *vma,
5380 struct address_space *mapping, pgoff_t idx,
5381 unsigned long address, pte_t *ptep, unsigned int flags)
ac9b9c66 5382{
a5516438 5383 struct hstate *h = hstate_vma(vma);
2b740303 5384 vm_fault_t ret = VM_FAULT_SIGBUS;
409eb8c2 5385 int anon_rmap = 0;
4c887265 5386 unsigned long size;
4c887265 5387 struct page *page;
1e8f889b 5388 pte_t new_pte;
cb900f41 5389 spinlock_t *ptl;
285b8dca 5390 unsigned long haddr = address & huge_page_mask(h);
c7b1850d 5391 bool new_page, new_pagecache_page = false;
4c887265 5392
04f2cbe3
MG
5393 /*
5394 * Currently, we are forced to kill the process in the event the
5395 * original mapper has unmapped pages from the child due to a failed
25985edc 5396 * COW. Warn that such a situation has occurred as it may not be obvious
04f2cbe3
MG
5397 */
5398 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
910154d5 5399 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
ffb22af5 5400 current->pid);
04f2cbe3
MG
5401 return ret;
5402 }
5403
4c887265 5404 /*
87bf91d3
MK
5405 * We can not race with truncation due to holding i_mmap_rwsem.
5406 * i_size is modified when holding i_mmap_rwsem, so check here
5407 * once for faults beyond end of file.
4c887265 5408 */
87bf91d3
MK
5409 size = i_size_read(mapping->host) >> huge_page_shift(h);
5410 if (idx >= size)
5411 goto out;
5412
6bda666a 5413retry:
c7b1850d 5414 new_page = false;
6bda666a
CL
5415 page = find_lock_page(mapping, idx);
5416 if (!page) {
7677f7fd 5417 /* Check for page in userfault range */
1a1aad8a 5418 if (userfaultfd_missing(vma)) {
7677f7fd
AR
5419 ret = hugetlb_handle_userfault(vma, mapping, idx,
5420 flags, haddr,
5421 VM_UFFD_MISSING);
1a1aad8a
MK
5422 goto out;
5423 }
5424
285b8dca 5425 page = alloc_huge_page(vma, haddr, 0);
2fc39cec 5426 if (IS_ERR(page)) {
4643d67e
MK
5427 /*
5428 * Returning error will result in faulting task being
5429 * sent SIGBUS. The hugetlb fault mutex prevents two
5430 * tasks from racing to fault in the same page which
5431 * could result in false unable to allocate errors.
5432 * Page migration does not take the fault mutex, but
5433 * does a clear then write of pte's under page table
5434 * lock. Page fault code could race with migration,
5435 * notice the clear pte and try to allocate a page
5436 * here. Before returning error, get ptl and make
5437 * sure there really is no pte entry.
5438 */
5439 ptl = huge_pte_lock(h, mm, ptep);
d83e6c8a
ML
5440 ret = 0;
5441 if (huge_pte_none(huge_ptep_get(ptep)))
5442 ret = vmf_error(PTR_ERR(page));
4643d67e 5443 spin_unlock(ptl);
6bda666a
CL
5444 goto out;
5445 }
47ad8475 5446 clear_huge_page(page, address, pages_per_huge_page(h));
0ed361de 5447 __SetPageUptodate(page);
cb6acd01 5448 new_page = true;
ac9b9c66 5449
f83a275d 5450 if (vma->vm_flags & VM_MAYSHARE) {
ab76ad54 5451 int err = huge_add_to_page_cache(page, mapping, idx);
6bda666a
CL
5452 if (err) {
5453 put_page(page);
6bda666a
CL
5454 if (err == -EEXIST)
5455 goto retry;
5456 goto out;
5457 }
c7b1850d 5458 new_pagecache_page = true;
23be7468 5459 } else {
6bda666a 5460 lock_page(page);
0fe6e20b
NH
5461 if (unlikely(anon_vma_prepare(vma))) {
5462 ret = VM_FAULT_OOM;
5463 goto backout_unlocked;
5464 }
409eb8c2 5465 anon_rmap = 1;
23be7468 5466 }
0fe6e20b 5467 } else {
998b4382
NH
5468 /*
5469 * If memory error occurs between mmap() and fault, some process
5470 * don't have hwpoisoned swap entry for errored virtual address.
5471 * So we need to block hugepage fault by PG_hwpoison bit check.
5472 */
5473 if (unlikely(PageHWPoison(page))) {
0eb98f15 5474 ret = VM_FAULT_HWPOISON_LARGE |
972dc4de 5475 VM_FAULT_SET_HINDEX(hstate_index(h));
998b4382
NH
5476 goto backout_unlocked;
5477 }
7677f7fd
AR
5478
5479 /* Check for page in userfault range. */
5480 if (userfaultfd_minor(vma)) {
5481 unlock_page(page);
5482 put_page(page);
5483 ret = hugetlb_handle_userfault(vma, mapping, idx,
5484 flags, haddr,
5485 VM_UFFD_MINOR);
5486 goto out;
5487 }
6bda666a 5488 }
1e8f889b 5489
57303d80
AW
5490 /*
5491 * If we are going to COW a private mapping later, we examine the
5492 * pending reservations for this page now. This will ensure that
5493 * any allocations necessary to record that reservation occur outside
5494 * the spinlock.
5495 */
5e911373 5496 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
285b8dca 5497 if (vma_needs_reservation(h, vma, haddr) < 0) {
2b26736c
AW
5498 ret = VM_FAULT_OOM;
5499 goto backout_unlocked;
5500 }
5e911373 5501 /* Just decrements count, does not deallocate */
285b8dca 5502 vma_end_reservation(h, vma, haddr);
5e911373 5503 }
57303d80 5504
8bea8052 5505 ptl = huge_pte_lock(h, mm, ptep);
83c54070 5506 ret = 0;
7f2e9525 5507 if (!huge_pte_none(huge_ptep_get(ptep)))
4c887265
AL
5508 goto backout;
5509
07443a85 5510 if (anon_rmap) {
d6995da3 5511 ClearHPageRestoreReserve(page);
285b8dca 5512 hugepage_add_new_anon_rmap(page, vma, haddr);
ac714904 5513 } else
53f9263b 5514 page_dup_rmap(page, true);
1e8f889b
DG
5515 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
5516 && (vma->vm_flags & VM_SHARED)));
285b8dca 5517 set_huge_pte_at(mm, haddr, ptep, new_pte);
1e8f889b 5518
5d317b2b 5519 hugetlb_count_add(pages_per_huge_page(h), mm);
788c7df4 5520 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
1e8f889b 5521 /* Optimization, do the COW without a second fault */
974e6d66 5522 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
1e8f889b
DG
5523 }
5524
cb900f41 5525 spin_unlock(ptl);
cb6acd01
MK
5526
5527 /*
8f251a3d
MK
5528 * Only set HPageMigratable in newly allocated pages. Existing pages
5529 * found in the pagecache may not have HPageMigratableset if they have
5530 * been isolated for migration.
cb6acd01
MK
5531 */
5532 if (new_page)
8f251a3d 5533 SetHPageMigratable(page);
cb6acd01 5534
4c887265
AL
5535 unlock_page(page);
5536out:
ac9b9c66 5537 return ret;
4c887265
AL
5538
5539backout:
cb900f41 5540 spin_unlock(ptl);
2b26736c 5541backout_unlocked:
4c887265 5542 unlock_page(page);
c7b1850d
MK
5543 /* restore reserve for newly allocated pages not in page cache */
5544 if (new_page && !new_pagecache_page)
5545 restore_reserve_on_error(h, vma, haddr, page);
4c887265
AL
5546 put_page(page);
5547 goto out;
ac9b9c66
HD
5548}
5549
8382d914 5550#ifdef CONFIG_SMP
188b04a7 5551u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
8382d914
DB
5552{
5553 unsigned long key[2];
5554 u32 hash;
5555
1b426bac
MK
5556 key[0] = (unsigned long) mapping;
5557 key[1] = idx;
8382d914 5558
55254636 5559 hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
8382d914
DB
5560
5561 return hash & (num_fault_mutexes - 1);
5562}
5563#else
5564/*
6c26d310 5565 * For uniprocessor systems we always use a single mutex, so just
8382d914
DB
5566 * return 0 and avoid the hashing overhead.
5567 */
188b04a7 5568u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
8382d914
DB
5569{
5570 return 0;
5571}
5572#endif
5573
2b740303 5574vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
788c7df4 5575 unsigned long address, unsigned int flags)
86e5216f 5576{
8382d914 5577 pte_t *ptep, entry;
cb900f41 5578 spinlock_t *ptl;
2b740303 5579 vm_fault_t ret;
8382d914
DB
5580 u32 hash;
5581 pgoff_t idx;
0fe6e20b 5582 struct page *page = NULL;
57303d80 5583 struct page *pagecache_page = NULL;
a5516438 5584 struct hstate *h = hstate_vma(vma);
8382d914 5585 struct address_space *mapping;
0f792cf9 5586 int need_wait_lock = 0;
285b8dca 5587 unsigned long haddr = address & huge_page_mask(h);
86e5216f 5588
285b8dca 5589 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
fd6a03ed 5590 if (ptep) {
c0d0381a
MK
5591 /*
5592 * Since we hold no locks, ptep could be stale. That is
5593 * OK as we are only making decisions based on content and
5594 * not actually modifying content here.
5595 */
fd6a03ed 5596 entry = huge_ptep_get(ptep);
290408d4 5597 if (unlikely(is_hugetlb_entry_migration(entry))) {
cb900f41 5598 migration_entry_wait_huge(vma, mm, ptep);
290408d4
NH
5599 return 0;
5600 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
32f84528 5601 return VM_FAULT_HWPOISON_LARGE |
972dc4de 5602 VM_FAULT_SET_HINDEX(hstate_index(h));
fd6a03ed
NH
5603 }
5604
c0d0381a
MK
5605 /*
5606 * Acquire i_mmap_rwsem before calling huge_pte_alloc and hold
87bf91d3
MK
5607 * until finished with ptep. This serves two purposes:
5608 * 1) It prevents huge_pmd_unshare from being called elsewhere
5609 * and making the ptep no longer valid.
5610 * 2) It synchronizes us with i_size modifications during truncation.
c0d0381a
MK
5611 *
5612 * ptep could have already be assigned via huge_pte_offset. That
5613 * is OK, as huge_pte_alloc will return the same value unless
5614 * something has changed.
5615 */
8382d914 5616 mapping = vma->vm_file->f_mapping;
c0d0381a 5617 i_mmap_lock_read(mapping);
aec44e0f 5618 ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h));
c0d0381a
MK
5619 if (!ptep) {
5620 i_mmap_unlock_read(mapping);
5621 return VM_FAULT_OOM;
5622 }
8382d914 5623
3935baa9
DG
5624 /*
5625 * Serialize hugepage allocation and instantiation, so that we don't
5626 * get spurious allocation failures if two CPUs race to instantiate
5627 * the same page in the page cache.
5628 */
c0d0381a 5629 idx = vma_hugecache_offset(h, vma, haddr);
188b04a7 5630 hash = hugetlb_fault_mutex_hash(mapping, idx);
c672c7f2 5631 mutex_lock(&hugetlb_fault_mutex_table[hash]);
8382d914 5632
7f2e9525
GS
5633 entry = huge_ptep_get(ptep);
5634 if (huge_pte_none(entry)) {
8382d914 5635 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
b4d1d99f 5636 goto out_mutex;
3935baa9 5637 }
86e5216f 5638
83c54070 5639 ret = 0;
1e8f889b 5640
0f792cf9
NH
5641 /*
5642 * entry could be a migration/hwpoison entry at this point, so this
5643 * check prevents the kernel from going below assuming that we have
7c8de358
EP
5644 * an active hugepage in pagecache. This goto expects the 2nd page
5645 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
5646 * properly handle it.
0f792cf9
NH
5647 */
5648 if (!pte_present(entry))
5649 goto out_mutex;
5650
57303d80
AW
5651 /*
5652 * If we are going to COW the mapping later, we examine the pending
5653 * reservations for this page now. This will ensure that any
5654 * allocations necessary to record that reservation occur outside the
5655 * spinlock. For private mappings, we also lookup the pagecache
5656 * page now as it is used to determine if a reservation has been
5657 * consumed.
5658 */
106c992a 5659 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
285b8dca 5660 if (vma_needs_reservation(h, vma, haddr) < 0) {
2b26736c 5661 ret = VM_FAULT_OOM;
b4d1d99f 5662 goto out_mutex;
2b26736c 5663 }
5e911373 5664 /* Just decrements count, does not deallocate */
285b8dca 5665 vma_end_reservation(h, vma, haddr);
57303d80 5666
f83a275d 5667 if (!(vma->vm_flags & VM_MAYSHARE))
57303d80 5668 pagecache_page = hugetlbfs_pagecache_page(h,
285b8dca 5669 vma, haddr);
57303d80
AW
5670 }
5671
0f792cf9
NH
5672 ptl = huge_pte_lock(h, mm, ptep);
5673
5674 /* Check for a racing update before calling hugetlb_cow */
5675 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
5676 goto out_ptl;
5677
56c9cfb1
NH
5678 /*
5679 * hugetlb_cow() requires page locks of pte_page(entry) and
5680 * pagecache_page, so here we need take the former one
5681 * when page != pagecache_page or !pagecache_page.
56c9cfb1
NH
5682 */
5683 page = pte_page(entry);
5684 if (page != pagecache_page)
0f792cf9
NH
5685 if (!trylock_page(page)) {
5686 need_wait_lock = 1;
5687 goto out_ptl;
5688 }
b4d1d99f 5689
0f792cf9 5690 get_page(page);
b4d1d99f 5691
788c7df4 5692 if (flags & FAULT_FLAG_WRITE) {
106c992a 5693 if (!huge_pte_write(entry)) {
974e6d66 5694 ret = hugetlb_cow(mm, vma, address, ptep,
3999f52e 5695 pagecache_page, ptl);
0f792cf9 5696 goto out_put_page;
b4d1d99f 5697 }
106c992a 5698 entry = huge_pte_mkdirty(entry);
b4d1d99f
DG
5699 }
5700 entry = pte_mkyoung(entry);
285b8dca 5701 if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
788c7df4 5702 flags & FAULT_FLAG_WRITE))
285b8dca 5703 update_mmu_cache(vma, haddr, ptep);
0f792cf9
NH
5704out_put_page:
5705 if (page != pagecache_page)
5706 unlock_page(page);
5707 put_page(page);
cb900f41
KS
5708out_ptl:
5709 spin_unlock(ptl);
57303d80
AW
5710
5711 if (pagecache_page) {
5712 unlock_page(pagecache_page);
5713 put_page(pagecache_page);
5714 }
b4d1d99f 5715out_mutex:
c672c7f2 5716 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
c0d0381a 5717 i_mmap_unlock_read(mapping);
0f792cf9
NH
5718 /*
5719 * Generally it's safe to hold refcount during waiting page lock. But
5720 * here we just wait to defer the next page fault to avoid busy loop and
5721 * the page is not used after unlocked before returning from the current
5722 * page fault. So we are safe from accessing freed page, even if we wait
5723 * here without taking refcount.
5724 */
5725 if (need_wait_lock)
5726 wait_on_page_locked(page);
1e8f889b 5727 return ret;
86e5216f
AL
5728}
5729
714c1891 5730#ifdef CONFIG_USERFAULTFD
8fb5debc
MK
5731/*
5732 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with
5733 * modifications for huge pages.
5734 */
5735int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
5736 pte_t *dst_pte,
5737 struct vm_area_struct *dst_vma,
5738 unsigned long dst_addr,
5739 unsigned long src_addr,
f6191471 5740 enum mcopy_atomic_mode mode,
8fb5debc
MK
5741 struct page **pagep)
5742{
f6191471 5743 bool is_continue = (mode == MCOPY_ATOMIC_CONTINUE);
8cc5fcbb
MA
5744 struct hstate *h = hstate_vma(dst_vma);
5745 struct address_space *mapping = dst_vma->vm_file->f_mapping;
5746 pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
1e392147 5747 unsigned long size;
1c9e8def 5748 int vm_shared = dst_vma->vm_flags & VM_SHARED;
8fb5debc
MK
5749 pte_t _dst_pte;
5750 spinlock_t *ptl;
8cc5fcbb 5751 int ret = -ENOMEM;
8fb5debc 5752 struct page *page;
f6191471 5753 int writable;
cc30042d 5754 bool page_in_pagecache = false;
8fb5debc 5755
f6191471
AR
5756 if (is_continue) {
5757 ret = -EFAULT;
5758 page = find_lock_page(mapping, idx);
5759 if (!page)
5760 goto out;
cc30042d 5761 page_in_pagecache = true;
f6191471 5762 } else if (!*pagep) {
d84cf06e
MA
5763 /* If a page already exists, then it's UFFDIO_COPY for
5764 * a non-missing case. Return -EEXIST.
5765 */
5766 if (vm_shared &&
5767 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
5768 ret = -EEXIST;
5769 goto out;
5770 }
5771
8fb5debc 5772 page = alloc_huge_page(dst_vma, dst_addr, 0);
d84cf06e
MA
5773 if (IS_ERR(page)) {
5774 ret = -ENOMEM;
8fb5debc 5775 goto out;
d84cf06e 5776 }
8fb5debc
MK
5777
5778 ret = copy_huge_page_from_user(page,
5779 (const void __user *) src_addr,
810a56b9 5780 pages_per_huge_page(h), false);
8fb5debc 5781
c1e8d7c6 5782 /* fallback to copy_from_user outside mmap_lock */
8fb5debc 5783 if (unlikely(ret)) {
9e368259 5784 ret = -ENOENT;
8cc5fcbb
MA
5785 /* Free the allocated page which may have
5786 * consumed a reservation.
5787 */
5788 restore_reserve_on_error(h, dst_vma, dst_addr, page);
5789 put_page(page);
5790
5791 /* Allocate a temporary page to hold the copied
5792 * contents.
5793 */
5794 page = alloc_huge_page_vma(h, dst_vma, dst_addr);
5795 if (!page) {
5796 ret = -ENOMEM;
5797 goto out;
5798 }
8fb5debc 5799 *pagep = page;
8cc5fcbb
MA
5800 /* Set the outparam pagep and return to the caller to
5801 * copy the contents outside the lock. Don't free the
5802 * page.
5803 */
8fb5debc
MK
5804 goto out;
5805 }
5806 } else {
8cc5fcbb
MA
5807 if (vm_shared &&
5808 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
5809 put_page(*pagep);
5810 ret = -EEXIST;
5811 *pagep = NULL;
5812 goto out;
5813 }
5814
5815 page = alloc_huge_page(dst_vma, dst_addr, 0);
5816 if (IS_ERR(page)) {
5817 ret = -ENOMEM;
5818 *pagep = NULL;
5819 goto out;
5820 }
715cbfd6 5821 folio_copy(page_folio(page), page_folio(*pagep));
8cc5fcbb 5822 put_page(*pagep);
8fb5debc
MK
5823 *pagep = NULL;
5824 }
5825
5826 /*
5827 * The memory barrier inside __SetPageUptodate makes sure that
5828 * preceding stores to the page contents become visible before
5829 * the set_pte_at() write.
5830 */
5831 __SetPageUptodate(page);
8fb5debc 5832
f6191471
AR
5833 /* Add shared, newly allocated pages to the page cache. */
5834 if (vm_shared && !is_continue) {
1e392147
AA
5835 size = i_size_read(mapping->host) >> huge_page_shift(h);
5836 ret = -EFAULT;
5837 if (idx >= size)
5838 goto out_release_nounlock;
1c9e8def 5839
1e392147
AA
5840 /*
5841 * Serialization between remove_inode_hugepages() and
5842 * huge_add_to_page_cache() below happens through the
5843 * hugetlb_fault_mutex_table that here must be hold by
5844 * the caller.
5845 */
1c9e8def
MK
5846 ret = huge_add_to_page_cache(page, mapping, idx);
5847 if (ret)
5848 goto out_release_nounlock;
cc30042d 5849 page_in_pagecache = true;
1c9e8def
MK
5850 }
5851
8fb5debc
MK
5852 ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
5853 spin_lock(ptl);
5854
1e392147
AA
5855 /*
5856 * Recheck the i_size after holding PT lock to make sure not
5857 * to leave any page mapped (as page_mapped()) beyond the end
5858 * of the i_size (remove_inode_hugepages() is strict about
5859 * enforcing that). If we bail out here, we'll also leave a
5860 * page in the radix tree in the vm_shared case beyond the end
5861 * of the i_size, but remove_inode_hugepages() will take care
5862 * of it as soon as we drop the hugetlb_fault_mutex_table.
5863 */
5864 size = i_size_read(mapping->host) >> huge_page_shift(h);
5865 ret = -EFAULT;
5866 if (idx >= size)
5867 goto out_release_unlock;
5868
8fb5debc
MK
5869 ret = -EEXIST;
5870 if (!huge_pte_none(huge_ptep_get(dst_pte)))
5871 goto out_release_unlock;
5872
1c9e8def
MK
5873 if (vm_shared) {
5874 page_dup_rmap(page, true);
5875 } else {
d6995da3 5876 ClearHPageRestoreReserve(page);
1c9e8def
MK
5877 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
5878 }
8fb5debc 5879
f6191471
AR
5880 /* For CONTINUE on a non-shared VMA, don't set VM_WRITE for CoW. */
5881 if (is_continue && !vm_shared)
5882 writable = 0;
5883 else
5884 writable = dst_vma->vm_flags & VM_WRITE;
5885
5886 _dst_pte = make_huge_pte(dst_vma, page, writable);
5887 if (writable)
8fb5debc
MK
5888 _dst_pte = huge_pte_mkdirty(_dst_pte);
5889 _dst_pte = pte_mkyoung(_dst_pte);
5890
5891 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
5892
5893 (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
5894 dst_vma->vm_flags & VM_WRITE);
5895 hugetlb_count_add(pages_per_huge_page(h), dst_mm);
5896
5897 /* No need to invalidate - it was non-present before */
5898 update_mmu_cache(dst_vma, dst_addr, dst_pte);
5899
5900 spin_unlock(ptl);
f6191471
AR
5901 if (!is_continue)
5902 SetHPageMigratable(page);
5903 if (vm_shared || is_continue)
1c9e8def 5904 unlock_page(page);
8fb5debc
MK
5905 ret = 0;
5906out:
5907 return ret;
5908out_release_unlock:
5909 spin_unlock(ptl);
f6191471 5910 if (vm_shared || is_continue)
1c9e8def 5911 unlock_page(page);
5af10dfd 5912out_release_nounlock:
cc30042d 5913 if (!page_in_pagecache)
c7b1850d 5914 restore_reserve_on_error(h, dst_vma, dst_addr, page);
8fb5debc
MK
5915 put_page(page);
5916 goto out;
5917}
714c1891 5918#endif /* CONFIG_USERFAULTFD */
8fb5debc 5919
82e5d378
JM
5920static void record_subpages_vmas(struct page *page, struct vm_area_struct *vma,
5921 int refs, struct page **pages,
5922 struct vm_area_struct **vmas)
5923{
5924 int nr;
5925
5926 for (nr = 0; nr < refs; nr++) {
5927 if (likely(pages))
5928 pages[nr] = mem_map_offset(page, nr);
5929 if (vmas)
5930 vmas[nr] = vma;
5931 }
5932}
5933
28a35716
ML
5934long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
5935 struct page **pages, struct vm_area_struct **vmas,
5936 unsigned long *position, unsigned long *nr_pages,
4f6da934 5937 long i, unsigned int flags, int *locked)
63551ae0 5938{
d5d4b0aa
CK
5939 unsigned long pfn_offset;
5940 unsigned long vaddr = *position;
28a35716 5941 unsigned long remainder = *nr_pages;
a5516438 5942 struct hstate *h = hstate_vma(vma);
0fa5bc40 5943 int err = -EFAULT, refs;
63551ae0 5944
63551ae0 5945 while (vaddr < vma->vm_end && remainder) {
4c887265 5946 pte_t *pte;
cb900f41 5947 spinlock_t *ptl = NULL;
2a15efc9 5948 int absent;
4c887265 5949 struct page *page;
63551ae0 5950
02057967
DR
5951 /*
5952 * If we have a pending SIGKILL, don't keep faulting pages and
5953 * potentially allocating memory.
5954 */
fa45f116 5955 if (fatal_signal_pending(current)) {
02057967
DR
5956 remainder = 0;
5957 break;
5958 }
5959
4c887265
AL
5960 /*
5961 * Some archs (sparc64, sh*) have multiple pte_ts to
2a15efc9 5962 * each hugepage. We have to make sure we get the
4c887265 5963 * first, for the page indexing below to work.
cb900f41
KS
5964 *
5965 * Note that page table lock is not held when pte is null.
4c887265 5966 */
7868a208
PA
5967 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
5968 huge_page_size(h));
cb900f41
KS
5969 if (pte)
5970 ptl = huge_pte_lock(h, mm, pte);
2a15efc9
HD
5971 absent = !pte || huge_pte_none(huge_ptep_get(pte));
5972
5973 /*
5974 * When coredumping, it suits get_dump_page if we just return
3ae77f43
HD
5975 * an error where there's an empty slot with no huge pagecache
5976 * to back it. This way, we avoid allocating a hugepage, and
5977 * the sparse dumpfile avoids allocating disk blocks, but its
5978 * huge holes still show up with zeroes where they need to be.
2a15efc9 5979 */
3ae77f43
HD
5980 if (absent && (flags & FOLL_DUMP) &&
5981 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
cb900f41
KS
5982 if (pte)
5983 spin_unlock(ptl);
2a15efc9
HD
5984 remainder = 0;
5985 break;
5986 }
63551ae0 5987
9cc3a5bd
NH
5988 /*
5989 * We need call hugetlb_fault for both hugepages under migration
5990 * (in which case hugetlb_fault waits for the migration,) and
5991 * hwpoisoned hugepages (in which case we need to prevent the
5992 * caller from accessing to them.) In order to do this, we use
5993 * here is_swap_pte instead of is_hugetlb_entry_migration and
5994 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
5995 * both cases, and because we can't follow correct pages
5996 * directly from any kind of swap entries.
5997 */
5998 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
106c992a
GS
5999 ((flags & FOLL_WRITE) &&
6000 !huge_pte_write(huge_ptep_get(pte)))) {
2b740303 6001 vm_fault_t ret;
87ffc118 6002 unsigned int fault_flags = 0;
63551ae0 6003
cb900f41
KS
6004 if (pte)
6005 spin_unlock(ptl);
87ffc118
AA
6006 if (flags & FOLL_WRITE)
6007 fault_flags |= FAULT_FLAG_WRITE;
4f6da934 6008 if (locked)
71335f37
PX
6009 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
6010 FAULT_FLAG_KILLABLE;
87ffc118
AA
6011 if (flags & FOLL_NOWAIT)
6012 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
6013 FAULT_FLAG_RETRY_NOWAIT;
6014 if (flags & FOLL_TRIED) {
4426e945
PX
6015 /*
6016 * Note: FAULT_FLAG_ALLOW_RETRY and
6017 * FAULT_FLAG_TRIED can co-exist
6018 */
87ffc118
AA
6019 fault_flags |= FAULT_FLAG_TRIED;
6020 }
6021 ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
6022 if (ret & VM_FAULT_ERROR) {
2be7cfed 6023 err = vm_fault_to_errno(ret, flags);
87ffc118
AA
6024 remainder = 0;
6025 break;
6026 }
6027 if (ret & VM_FAULT_RETRY) {
4f6da934 6028 if (locked &&
1ac25013 6029 !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
4f6da934 6030 *locked = 0;
87ffc118
AA
6031 *nr_pages = 0;
6032 /*
6033 * VM_FAULT_RETRY must not return an
6034 * error, it will return zero
6035 * instead.
6036 *
6037 * No need to update "position" as the
6038 * caller will not check it after
6039 * *nr_pages is set to 0.
6040 */
6041 return i;
6042 }
6043 continue;
4c887265
AL
6044 }
6045
a5516438 6046 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
7f2e9525 6047 page = pte_page(huge_ptep_get(pte));
8fde12ca 6048
acbfb087
ZL
6049 /*
6050 * If subpage information not requested, update counters
6051 * and skip the same_page loop below.
6052 */
6053 if (!pages && !vmas && !pfn_offset &&
6054 (vaddr + huge_page_size(h) < vma->vm_end) &&
6055 (remainder >= pages_per_huge_page(h))) {
6056 vaddr += huge_page_size(h);
6057 remainder -= pages_per_huge_page(h);
6058 i += pages_per_huge_page(h);
6059 spin_unlock(ptl);
6060 continue;
6061 }
6062
d08af0a5
JM
6063 /* vaddr may not be aligned to PAGE_SIZE */
6064 refs = min3(pages_per_huge_page(h) - pfn_offset, remainder,
6065 (vma->vm_end - ALIGN_DOWN(vaddr, PAGE_SIZE)) >> PAGE_SHIFT);
0fa5bc40 6066
82e5d378
JM
6067 if (pages || vmas)
6068 record_subpages_vmas(mem_map_offset(page, pfn_offset),
6069 vma, refs,
6070 likely(pages) ? pages + i : NULL,
6071 vmas ? vmas + i : NULL);
63551ae0 6072
82e5d378 6073 if (pages) {
0fa5bc40
JM
6074 /*
6075 * try_grab_compound_head() should always succeed here,
6076 * because: a) we hold the ptl lock, and b) we've just
6077 * checked that the huge page is present in the page
6078 * tables. If the huge page is present, then the tail
6079 * pages must also be present. The ptl prevents the
6080 * head page and tail pages from being rearranged in
6081 * any way. So this page must be available at this
6082 * point, unless the page refcount overflowed:
6083 */
82e5d378 6084 if (WARN_ON_ONCE(!try_grab_compound_head(pages[i],
0fa5bc40
JM
6085 refs,
6086 flags))) {
6087 spin_unlock(ptl);
6088 remainder = 0;
6089 err = -ENOMEM;
6090 break;
6091 }
d5d4b0aa 6092 }
82e5d378
JM
6093
6094 vaddr += (refs << PAGE_SHIFT);
6095 remainder -= refs;
6096 i += refs;
6097
cb900f41 6098 spin_unlock(ptl);
63551ae0 6099 }
28a35716 6100 *nr_pages = remainder;
87ffc118
AA
6101 /*
6102 * setting position is actually required only if remainder is
6103 * not zero but it's faster not to add a "if (remainder)"
6104 * branch.
6105 */
63551ae0
DG
6106 *position = vaddr;
6107
2be7cfed 6108 return i ? i : err;
63551ae0 6109}
8f860591 6110
7da4d641 6111unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
8f860591
ZY
6112 unsigned long address, unsigned long end, pgprot_t newprot)
6113{
6114 struct mm_struct *mm = vma->vm_mm;
6115 unsigned long start = address;
6116 pte_t *ptep;
6117 pte_t pte;
a5516438 6118 struct hstate *h = hstate_vma(vma);
7da4d641 6119 unsigned long pages = 0;
dff11abe 6120 bool shared_pmd = false;
ac46d4f3 6121 struct mmu_notifier_range range;
dff11abe
MK
6122
6123 /*
6124 * In the case of shared PMDs, the area to flush could be beyond
ac46d4f3 6125 * start/end. Set range.start/range.end to cover the maximum possible
dff11abe
MK
6126 * range if PMD sharing is possible.
6127 */
7269f999
JG
6128 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
6129 0, vma, mm, start, end);
ac46d4f3 6130 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
8f860591
ZY
6131
6132 BUG_ON(address >= end);
ac46d4f3 6133 flush_cache_range(vma, range.start, range.end);
8f860591 6134
ac46d4f3 6135 mmu_notifier_invalidate_range_start(&range);
83cde9e8 6136 i_mmap_lock_write(vma->vm_file->f_mapping);
a5516438 6137 for (; address < end; address += huge_page_size(h)) {
cb900f41 6138 spinlock_t *ptl;
7868a208 6139 ptep = huge_pte_offset(mm, address, huge_page_size(h));
8f860591
ZY
6140 if (!ptep)
6141 continue;
cb900f41 6142 ptl = huge_pte_lock(h, mm, ptep);
34ae204f 6143 if (huge_pmd_unshare(mm, vma, &address, ptep)) {
7da4d641 6144 pages++;
cb900f41 6145 spin_unlock(ptl);
dff11abe 6146 shared_pmd = true;
39dde65c 6147 continue;
7da4d641 6148 }
a8bda28d
NH
6149 pte = huge_ptep_get(ptep);
6150 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
6151 spin_unlock(ptl);
6152 continue;
6153 }
6154 if (unlikely(is_hugetlb_entry_migration(pte))) {
6155 swp_entry_t entry = pte_to_swp_entry(pte);
6156
4dd845b5 6157 if (is_writable_migration_entry(entry)) {
a8bda28d
NH
6158 pte_t newpte;
6159
4dd845b5
AP
6160 entry = make_readable_migration_entry(
6161 swp_offset(entry));
a8bda28d 6162 newpte = swp_entry_to_pte(entry);
e5251fd4
PA
6163 set_huge_swap_pte_at(mm, address, ptep,
6164 newpte, huge_page_size(h));
a8bda28d
NH
6165 pages++;
6166 }
6167 spin_unlock(ptl);
6168 continue;
6169 }
6170 if (!huge_pte_none(pte)) {
023bdd00 6171 pte_t old_pte;
79c1c594 6172 unsigned int shift = huge_page_shift(hstate_vma(vma));
023bdd00
AK
6173
6174 old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
6175 pte = pte_mkhuge(huge_pte_modify(old_pte, newprot));
79c1c594 6176 pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
023bdd00 6177 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
7da4d641 6178 pages++;
8f860591 6179 }
cb900f41 6180 spin_unlock(ptl);
8f860591 6181 }
d833352a 6182 /*
c8c06efa 6183 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
d833352a 6184 * may have cleared our pud entry and done put_page on the page table:
c8c06efa 6185 * once we release i_mmap_rwsem, another task can do the final put_page
dff11abe
MK
6186 * and that page table be reused and filled with junk. If we actually
6187 * did unshare a page of pmds, flush the range corresponding to the pud.
d833352a 6188 */
dff11abe 6189 if (shared_pmd)
ac46d4f3 6190 flush_hugetlb_tlb_range(vma, range.start, range.end);
dff11abe
MK
6191 else
6192 flush_hugetlb_tlb_range(vma, start, end);
0f10851e
JG
6193 /*
6194 * No need to call mmu_notifier_invalidate_range() we are downgrading
6195 * page table protection not changing it to point to a new page.
6196 *
ad56b738 6197 * See Documentation/vm/mmu_notifier.rst
0f10851e 6198 */
83cde9e8 6199 i_mmap_unlock_write(vma->vm_file->f_mapping);
ac46d4f3 6200 mmu_notifier_invalidate_range_end(&range);
7da4d641
PZ
6201
6202 return pages << h->order;
8f860591
ZY
6203}
6204
33b8f84a
MK
6205/* Return true if reservation was successful, false otherwise. */
6206bool hugetlb_reserve_pages(struct inode *inode,
a1e78772 6207 long from, long to,
5a6fe125 6208 struct vm_area_struct *vma,
ca16d140 6209 vm_flags_t vm_flags)
e4e574b7 6210{
33b8f84a 6211 long chg, add = -1;
a5516438 6212 struct hstate *h = hstate_inode(inode);
90481622 6213 struct hugepage_subpool *spool = subpool_inode(inode);
9119a41e 6214 struct resv_map *resv_map;
075a61d0 6215 struct hugetlb_cgroup *h_cg = NULL;
0db9d74e 6216 long gbl_reserve, regions_needed = 0;
e4e574b7 6217
63489f8e
MK
6218 /* This should never happen */
6219 if (from > to) {
6220 VM_WARN(1, "%s called with a negative range\n", __func__);
33b8f84a 6221 return false;
63489f8e
MK
6222 }
6223
17c9d12e
MG
6224 /*
6225 * Only apply hugepage reservation if asked. At fault time, an
6226 * attempt will be made for VM_NORESERVE to allocate a page
90481622 6227 * without using reserves
17c9d12e 6228 */
ca16d140 6229 if (vm_flags & VM_NORESERVE)
33b8f84a 6230 return true;
17c9d12e 6231
a1e78772
MG
6232 /*
6233 * Shared mappings base their reservation on the number of pages that
6234 * are already allocated on behalf of the file. Private mappings need
6235 * to reserve the full area even if read-only as mprotect() may be
6236 * called to make the mapping read-write. Assume !vma is a shm mapping
6237 */
9119a41e 6238 if (!vma || vma->vm_flags & VM_MAYSHARE) {
f27a5136
MK
6239 /*
6240 * resv_map can not be NULL as hugetlb_reserve_pages is only
6241 * called for inodes for which resv_maps were created (see
6242 * hugetlbfs_get_inode).
6243 */
4e35f483 6244 resv_map = inode_resv_map(inode);
9119a41e 6245
0db9d74e 6246 chg = region_chg(resv_map, from, to, &regions_needed);
9119a41e
JK
6247
6248 } else {
e9fe92ae 6249 /* Private mapping. */
9119a41e 6250 resv_map = resv_map_alloc();
17c9d12e 6251 if (!resv_map)
33b8f84a 6252 return false;
17c9d12e 6253
a1e78772 6254 chg = to - from;
84afd99b 6255
17c9d12e
MG
6256 set_vma_resv_map(vma, resv_map);
6257 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
6258 }
6259
33b8f84a 6260 if (chg < 0)
c50ac050 6261 goto out_err;
8a630112 6262
33b8f84a
MK
6263 if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
6264 chg * pages_per_huge_page(h), &h_cg) < 0)
075a61d0 6265 goto out_err;
075a61d0
MA
6266
6267 if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
6268 /* For private mappings, the hugetlb_cgroup uncharge info hangs
6269 * of the resv_map.
6270 */
6271 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
6272 }
6273
1c5ecae3
MK
6274 /*
6275 * There must be enough pages in the subpool for the mapping. If
6276 * the subpool has a minimum size, there may be some global
6277 * reservations already in place (gbl_reserve).
6278 */
6279 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
33b8f84a 6280 if (gbl_reserve < 0)
075a61d0 6281 goto out_uncharge_cgroup;
5a6fe125
MG
6282
6283 /*
17c9d12e 6284 * Check enough hugepages are available for the reservation.
90481622 6285 * Hand the pages back to the subpool if there are not
5a6fe125 6286 */
33b8f84a 6287 if (hugetlb_acct_memory(h, gbl_reserve) < 0)
075a61d0 6288 goto out_put_pages;
17c9d12e
MG
6289
6290 /*
6291 * Account for the reservations made. Shared mappings record regions
6292 * that have reservations as they are shared by multiple VMAs.
6293 * When the last VMA disappears, the region map says how much
6294 * the reservation was and the page cache tells how much of
6295 * the reservation was consumed. Private mappings are per-VMA and
6296 * only the consumed reservations are tracked. When the VMA
6297 * disappears, the original reservation is the VMA size and the
6298 * consumed reservations are stored in the map. Hence, nothing
6299 * else has to be done for private mappings here
6300 */
33039678 6301 if (!vma || vma->vm_flags & VM_MAYSHARE) {
075a61d0 6302 add = region_add(resv_map, from, to, regions_needed, h, h_cg);
0db9d74e
MA
6303
6304 if (unlikely(add < 0)) {
6305 hugetlb_acct_memory(h, -gbl_reserve);
075a61d0 6306 goto out_put_pages;
0db9d74e 6307 } else if (unlikely(chg > add)) {
33039678
MK
6308 /*
6309 * pages in this range were added to the reserve
6310 * map between region_chg and region_add. This
6311 * indicates a race with alloc_huge_page. Adjust
6312 * the subpool and reserve counts modified above
6313 * based on the difference.
6314 */
6315 long rsv_adjust;
6316
d85aecf2
ML
6317 /*
6318 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
6319 * reference to h_cg->css. See comment below for detail.
6320 */
075a61d0
MA
6321 hugetlb_cgroup_uncharge_cgroup_rsvd(
6322 hstate_index(h),
6323 (chg - add) * pages_per_huge_page(h), h_cg);
6324
33039678
MK
6325 rsv_adjust = hugepage_subpool_put_pages(spool,
6326 chg - add);
6327 hugetlb_acct_memory(h, -rsv_adjust);
d85aecf2
ML
6328 } else if (h_cg) {
6329 /*
6330 * The file_regions will hold their own reference to
6331 * h_cg->css. So we should release the reference held
6332 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
6333 * done.
6334 */
6335 hugetlb_cgroup_put_rsvd_cgroup(h_cg);
33039678
MK
6336 }
6337 }
33b8f84a
MK
6338 return true;
6339
075a61d0
MA
6340out_put_pages:
6341 /* put back original number of pages, chg */
6342 (void)hugepage_subpool_put_pages(spool, chg);
6343out_uncharge_cgroup:
6344 hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
6345 chg * pages_per_huge_page(h), h_cg);
c50ac050 6346out_err:
5e911373 6347 if (!vma || vma->vm_flags & VM_MAYSHARE)
0db9d74e
MA
6348 /* Only call region_abort if the region_chg succeeded but the
6349 * region_add failed or didn't run.
6350 */
6351 if (chg >= 0 && add < 0)
6352 region_abort(resv_map, from, to, regions_needed);
f031dd27
JK
6353 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
6354 kref_put(&resv_map->refs, resv_map_release);
33b8f84a 6355 return false;
a43a8c39
CK
6356}
6357
b5cec28d
MK
6358long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
6359 long freed)
a43a8c39 6360{
a5516438 6361 struct hstate *h = hstate_inode(inode);
4e35f483 6362 struct resv_map *resv_map = inode_resv_map(inode);
9119a41e 6363 long chg = 0;
90481622 6364 struct hugepage_subpool *spool = subpool_inode(inode);
1c5ecae3 6365 long gbl_reserve;
45c682a6 6366
f27a5136
MK
6367 /*
6368 * Since this routine can be called in the evict inode path for all
6369 * hugetlbfs inodes, resv_map could be NULL.
6370 */
b5cec28d
MK
6371 if (resv_map) {
6372 chg = region_del(resv_map, start, end);
6373 /*
6374 * region_del() can fail in the rare case where a region
6375 * must be split and another region descriptor can not be
6376 * allocated. If end == LONG_MAX, it will not fail.
6377 */
6378 if (chg < 0)
6379 return chg;
6380 }
6381
45c682a6 6382 spin_lock(&inode->i_lock);
e4c6f8be 6383 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
45c682a6
KC
6384 spin_unlock(&inode->i_lock);
6385
1c5ecae3
MK
6386 /*
6387 * If the subpool has a minimum size, the number of global
6388 * reservations to be released may be adjusted.
dddf31a4
ML
6389 *
6390 * Note that !resv_map implies freed == 0. So (chg - freed)
6391 * won't go negative.
1c5ecae3
MK
6392 */
6393 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
6394 hugetlb_acct_memory(h, -gbl_reserve);
b5cec28d
MK
6395
6396 return 0;
a43a8c39 6397}
93f70f90 6398
3212b535
SC
6399#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
6400static unsigned long page_table_shareable(struct vm_area_struct *svma,
6401 struct vm_area_struct *vma,
6402 unsigned long addr, pgoff_t idx)
6403{
6404 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
6405 svma->vm_start;
6406 unsigned long sbase = saddr & PUD_MASK;
6407 unsigned long s_end = sbase + PUD_SIZE;
6408
6409 /* Allow segments to share if only one is marked locked */
de60f5f1
EM
6410 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
6411 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
3212b535
SC
6412
6413 /*
6414 * match the virtual addresses, permission and the alignment of the
6415 * page table page.
6416 */
6417 if (pmd_index(addr) != pmd_index(saddr) ||
6418 vm_flags != svm_flags ||
07e51edf 6419 !range_in_vma(svma, sbase, s_end))
3212b535
SC
6420 return 0;
6421
6422 return saddr;
6423}
6424
31aafb45 6425static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
3212b535
SC
6426{
6427 unsigned long base = addr & PUD_MASK;
6428 unsigned long end = base + PUD_SIZE;
6429
6430 /*
6431 * check on proper vm_flags and page table alignment
6432 */
017b1660 6433 if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
31aafb45
NK
6434 return true;
6435 return false;
3212b535
SC
6436}
6437
c1991e07
PX
6438bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
6439{
6440#ifdef CONFIG_USERFAULTFD
6441 if (uffd_disable_huge_pmd_share(vma))
6442 return false;
6443#endif
6444 return vma_shareable(vma, addr);
6445}
6446
017b1660
MK
6447/*
6448 * Determine if start,end range within vma could be mapped by shared pmd.
6449 * If yes, adjust start and end to cover range associated with possible
6450 * shared pmd mappings.
6451 */
6452void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
6453 unsigned long *start, unsigned long *end)
6454{
a1ba9da8
LX
6455 unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
6456 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
017b1660 6457
a1ba9da8 6458 /*
f0953a1b
IM
6459 * vma needs to span at least one aligned PUD size, and the range
6460 * must be at least partially within in.
a1ba9da8
LX
6461 */
6462 if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
6463 (*end <= v_start) || (*start >= v_end))
017b1660
MK
6464 return;
6465
75802ca6 6466 /* Extend the range to be PUD aligned for a worst case scenario */
a1ba9da8
LX
6467 if (*start > v_start)
6468 *start = ALIGN_DOWN(*start, PUD_SIZE);
017b1660 6469
a1ba9da8
LX
6470 if (*end < v_end)
6471 *end = ALIGN(*end, PUD_SIZE);
017b1660
MK
6472}
6473
3212b535
SC
6474/*
6475 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
6476 * and returns the corresponding pte. While this is not necessary for the
6477 * !shared pmd case because we can allocate the pmd later as well, it makes the
c0d0381a
MK
6478 * code much cleaner.
6479 *
0bf7b64e
MK
6480 * This routine must be called with i_mmap_rwsem held in at least read mode if
6481 * sharing is possible. For hugetlbfs, this prevents removal of any page
6482 * table entries associated with the address space. This is important as we
6483 * are setting up sharing based on existing page table entries (mappings).
3212b535 6484 */
aec44e0f
PX
6485pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
6486 unsigned long addr, pud_t *pud)
3212b535 6487{
3212b535
SC
6488 struct address_space *mapping = vma->vm_file->f_mapping;
6489 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
6490 vma->vm_pgoff;
6491 struct vm_area_struct *svma;
6492 unsigned long saddr;
6493 pte_t *spte = NULL;
6494 pte_t *pte;
cb900f41 6495 spinlock_t *ptl;
3212b535 6496
0bf7b64e 6497 i_mmap_assert_locked(mapping);
3212b535
SC
6498 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
6499 if (svma == vma)
6500 continue;
6501
6502 saddr = page_table_shareable(svma, vma, addr, idx);
6503 if (saddr) {
7868a208
PA
6504 spte = huge_pte_offset(svma->vm_mm, saddr,
6505 vma_mmu_pagesize(svma));
3212b535
SC
6506 if (spte) {
6507 get_page(virt_to_page(spte));
6508 break;
6509 }
6510 }
6511 }
6512
6513 if (!spte)
6514 goto out;
6515
8bea8052 6516 ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
dc6c9a35 6517 if (pud_none(*pud)) {
3212b535
SC
6518 pud_populate(mm, pud,
6519 (pmd_t *)((unsigned long)spte & PAGE_MASK));
c17b1f42 6520 mm_inc_nr_pmds(mm);
dc6c9a35 6521 } else {
3212b535 6522 put_page(virt_to_page(spte));
dc6c9a35 6523 }
cb900f41 6524 spin_unlock(ptl);
3212b535
SC
6525out:
6526 pte = (pte_t *)pmd_alloc(mm, pud, addr);
3212b535
SC
6527 return pte;
6528}
6529
6530/*
6531 * unmap huge page backed by shared pte.
6532 *
6533 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
6534 * indicated by page_count > 1, unmap is achieved by clearing pud and
6535 * decrementing the ref count. If count == 1, the pte page is not shared.
6536 *
c0d0381a 6537 * Called with page table lock held and i_mmap_rwsem held in write mode.
3212b535
SC
6538 *
6539 * returns: 1 successfully unmapped a shared pte page
6540 * 0 the underlying pte page is not shared, or it is the last user
6541 */
34ae204f
MK
6542int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
6543 unsigned long *addr, pte_t *ptep)
3212b535
SC
6544{
6545 pgd_t *pgd = pgd_offset(mm, *addr);
c2febafc
KS
6546 p4d_t *p4d = p4d_offset(pgd, *addr);
6547 pud_t *pud = pud_offset(p4d, *addr);
3212b535 6548
34ae204f 6549 i_mmap_assert_write_locked(vma->vm_file->f_mapping);
3212b535
SC
6550 BUG_ON(page_count(virt_to_page(ptep)) == 0);
6551 if (page_count(virt_to_page(ptep)) == 1)
6552 return 0;
6553
6554 pud_clear(pud);
6555 put_page(virt_to_page(ptep));
dc6c9a35 6556 mm_dec_nr_pmds(mm);
3212b535
SC
6557 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
6558 return 1;
6559}
c1991e07 6560
9e5fc74c 6561#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
aec44e0f
PX
6562pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
6563 unsigned long addr, pud_t *pud)
9e5fc74c
SC
6564{
6565 return NULL;
6566}
e81f2d22 6567
34ae204f
MK
6568int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
6569 unsigned long *addr, pte_t *ptep)
e81f2d22
ZZ
6570{
6571 return 0;
6572}
017b1660
MK
6573
6574void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
6575 unsigned long *start, unsigned long *end)
6576{
6577}
c1991e07
PX
6578
6579bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
6580{
6581 return false;
6582}
3212b535
SC
6583#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
6584
9e5fc74c 6585#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
aec44e0f 6586pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
9e5fc74c
SC
6587 unsigned long addr, unsigned long sz)
6588{
6589 pgd_t *pgd;
c2febafc 6590 p4d_t *p4d;
9e5fc74c
SC
6591 pud_t *pud;
6592 pte_t *pte = NULL;
6593
6594 pgd = pgd_offset(mm, addr);
f4f0a3d8
KS
6595 p4d = p4d_alloc(mm, pgd, addr);
6596 if (!p4d)
6597 return NULL;
c2febafc 6598 pud = pud_alloc(mm, p4d, addr);
9e5fc74c
SC
6599 if (pud) {
6600 if (sz == PUD_SIZE) {
6601 pte = (pte_t *)pud;
6602 } else {
6603 BUG_ON(sz != PMD_SIZE);
c1991e07 6604 if (want_pmd_share(vma, addr) && pud_none(*pud))
aec44e0f 6605 pte = huge_pmd_share(mm, vma, addr, pud);
9e5fc74c
SC
6606 else
6607 pte = (pte_t *)pmd_alloc(mm, pud, addr);
6608 }
6609 }
4e666314 6610 BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
9e5fc74c
SC
6611
6612 return pte;
6613}
6614
9b19df29
PA
6615/*
6616 * huge_pte_offset() - Walk the page table to resolve the hugepage
6617 * entry at address @addr
6618 *
8ac0b81a
LX
6619 * Return: Pointer to page table entry (PUD or PMD) for
6620 * address @addr, or NULL if a !p*d_present() entry is encountered and the
9b19df29
PA
6621 * size @sz doesn't match the hugepage size at this level of the page
6622 * table.
6623 */
7868a208
PA
6624pte_t *huge_pte_offset(struct mm_struct *mm,
6625 unsigned long addr, unsigned long sz)
9e5fc74c
SC
6626{
6627 pgd_t *pgd;
c2febafc 6628 p4d_t *p4d;
8ac0b81a
LX
6629 pud_t *pud;
6630 pmd_t *pmd;
9e5fc74c
SC
6631
6632 pgd = pgd_offset(mm, addr);
c2febafc
KS
6633 if (!pgd_present(*pgd))
6634 return NULL;
6635 p4d = p4d_offset(pgd, addr);
6636 if (!p4d_present(*p4d))
6637 return NULL;
9b19df29 6638
c2febafc 6639 pud = pud_offset(p4d, addr);
8ac0b81a
LX
6640 if (sz == PUD_SIZE)
6641 /* must be pud huge, non-present or none */
c2febafc 6642 return (pte_t *)pud;
8ac0b81a 6643 if (!pud_present(*pud))
9b19df29 6644 return NULL;
8ac0b81a 6645 /* must have a valid entry and size to go further */
9b19df29 6646
8ac0b81a
LX
6647 pmd = pmd_offset(pud, addr);
6648 /* must be pmd huge, non-present or none */
6649 return (pte_t *)pmd;
9e5fc74c
SC
6650}
6651
61f77eda
NH
6652#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
6653
6654/*
6655 * These functions are overwritable if your architecture needs its own
6656 * behavior.
6657 */
6658struct page * __weak
6659follow_huge_addr(struct mm_struct *mm, unsigned long address,
6660 int write)
6661{
6662 return ERR_PTR(-EINVAL);
6663}
6664
4dc71451
AK
6665struct page * __weak
6666follow_huge_pd(struct vm_area_struct *vma,
6667 unsigned long address, hugepd_t hpd, int flags, int pdshift)
6668{
6669 WARN(1, "hugepd follow called with no support for hugepage directory format\n");
6670 return NULL;
6671}
6672
61f77eda 6673struct page * __weak
9e5fc74c 6674follow_huge_pmd(struct mm_struct *mm, unsigned long address,
e66f17ff 6675 pmd_t *pmd, int flags)
9e5fc74c 6676{
e66f17ff
NH
6677 struct page *page = NULL;
6678 spinlock_t *ptl;
c9d398fa 6679 pte_t pte;
3faa52c0
JH
6680
6681 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
6682 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
6683 (FOLL_PIN | FOLL_GET)))
6684 return NULL;
6685
e66f17ff
NH
6686retry:
6687 ptl = pmd_lockptr(mm, pmd);
6688 spin_lock(ptl);
6689 /*
6690 * make sure that the address range covered by this pmd is not
6691 * unmapped from other threads.
6692 */
6693 if (!pmd_huge(*pmd))
6694 goto out;
c9d398fa
NH
6695 pte = huge_ptep_get((pte_t *)pmd);
6696 if (pte_present(pte)) {
97534127 6697 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
3faa52c0
JH
6698 /*
6699 * try_grab_page() should always succeed here, because: a) we
6700 * hold the pmd (ptl) lock, and b) we've just checked that the
6701 * huge pmd (head) page is present in the page tables. The ptl
6702 * prevents the head page and tail pages from being rearranged
6703 * in any way. So this page must be available at this point,
6704 * unless the page refcount overflowed:
6705 */
6706 if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
6707 page = NULL;
6708 goto out;
6709 }
e66f17ff 6710 } else {
c9d398fa 6711 if (is_hugetlb_entry_migration(pte)) {
e66f17ff
NH
6712 spin_unlock(ptl);
6713 __migration_entry_wait(mm, (pte_t *)pmd, ptl);
6714 goto retry;
6715 }
6716 /*
6717 * hwpoisoned entry is treated as no_page_table in
6718 * follow_page_mask().
6719 */
6720 }
6721out:
6722 spin_unlock(ptl);
9e5fc74c
SC
6723 return page;
6724}
6725
61f77eda 6726struct page * __weak
9e5fc74c 6727follow_huge_pud(struct mm_struct *mm, unsigned long address,
e66f17ff 6728 pud_t *pud, int flags)
9e5fc74c 6729{
3faa52c0 6730 if (flags & (FOLL_GET | FOLL_PIN))
e66f17ff 6731 return NULL;
9e5fc74c 6732
e66f17ff 6733 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
9e5fc74c
SC
6734}
6735
faaa5b62
AK
6736struct page * __weak
6737follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
6738{
3faa52c0 6739 if (flags & (FOLL_GET | FOLL_PIN))
faaa5b62
AK
6740 return NULL;
6741
6742 return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
6743}
6744
31caf665
NH
6745bool isolate_huge_page(struct page *page, struct list_head *list)
6746{
bcc54222
NH
6747 bool ret = true;
6748
db71ef79 6749 spin_lock_irq(&hugetlb_lock);
8f251a3d
MK
6750 if (!PageHeadHuge(page) ||
6751 !HPageMigratable(page) ||
0eb2df2b 6752 !get_page_unless_zero(page)) {
bcc54222
NH
6753 ret = false;
6754 goto unlock;
6755 }
8f251a3d 6756 ClearHPageMigratable(page);
31caf665 6757 list_move_tail(&page->lru, list);
bcc54222 6758unlock:
db71ef79 6759 spin_unlock_irq(&hugetlb_lock);
bcc54222 6760 return ret;
31caf665
NH
6761}
6762
25182f05
NH
6763int get_hwpoison_huge_page(struct page *page, bool *hugetlb)
6764{
6765 int ret = 0;
6766
6767 *hugetlb = false;
6768 spin_lock_irq(&hugetlb_lock);
6769 if (PageHeadHuge(page)) {
6770 *hugetlb = true;
6771 if (HPageFreed(page) || HPageMigratable(page))
6772 ret = get_page_unless_zero(page);
0ed950d1
NH
6773 else
6774 ret = -EBUSY;
25182f05
NH
6775 }
6776 spin_unlock_irq(&hugetlb_lock);
6777 return ret;
6778}
6779
31caf665
NH
6780void putback_active_hugepage(struct page *page)
6781{
db71ef79 6782 spin_lock_irq(&hugetlb_lock);
8f251a3d 6783 SetHPageMigratable(page);
31caf665 6784 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
db71ef79 6785 spin_unlock_irq(&hugetlb_lock);
31caf665
NH
6786 put_page(page);
6787}
ab5ac90a
MH
6788
6789void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
6790{
6791 struct hstate *h = page_hstate(oldpage);
6792
6793 hugetlb_cgroup_migrate(oldpage, newpage);
6794 set_page_owner_migrate_reason(newpage, reason);
6795
6796 /*
6797 * transfer temporary state of the new huge page. This is
6798 * reverse to other transitions because the newpage is going to
6799 * be final while the old one will be freed so it takes over
6800 * the temporary status.
6801 *
6802 * Also note that we have to transfer the per-node surplus state
6803 * here as well otherwise the global surplus count will not match
6804 * the per-node's.
6805 */
9157c311 6806 if (HPageTemporary(newpage)) {
ab5ac90a
MH
6807 int old_nid = page_to_nid(oldpage);
6808 int new_nid = page_to_nid(newpage);
6809
9157c311
MK
6810 SetHPageTemporary(oldpage);
6811 ClearHPageTemporary(newpage);
ab5ac90a 6812
5af1ab1d
ML
6813 /*
6814 * There is no need to transfer the per-node surplus state
6815 * when we do not cross the node.
6816 */
6817 if (new_nid == old_nid)
6818 return;
db71ef79 6819 spin_lock_irq(&hugetlb_lock);
ab5ac90a
MH
6820 if (h->surplus_huge_pages_node[old_nid]) {
6821 h->surplus_huge_pages_node[old_nid]--;
6822 h->surplus_huge_pages_node[new_nid]++;
6823 }
db71ef79 6824 spin_unlock_irq(&hugetlb_lock);
ab5ac90a
MH
6825 }
6826}
cf11e85f 6827
6dfeaff9
PX
6828/*
6829 * This function will unconditionally remove all the shared pmd pgtable entries
6830 * within the specific vma for a hugetlbfs memory range.
6831 */
6832void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
6833{
6834 struct hstate *h = hstate_vma(vma);
6835 unsigned long sz = huge_page_size(h);
6836 struct mm_struct *mm = vma->vm_mm;
6837 struct mmu_notifier_range range;
6838 unsigned long address, start, end;
6839 spinlock_t *ptl;
6840 pte_t *ptep;
6841
6842 if (!(vma->vm_flags & VM_MAYSHARE))
6843 return;
6844
6845 start = ALIGN(vma->vm_start, PUD_SIZE);
6846 end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
6847
6848 if (start >= end)
6849 return;
6850
6851 /*
6852 * No need to call adjust_range_if_pmd_sharing_possible(), because
6853 * we have already done the PUD_SIZE alignment.
6854 */
6855 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
6856 start, end);
6857 mmu_notifier_invalidate_range_start(&range);
6858 i_mmap_lock_write(vma->vm_file->f_mapping);
6859 for (address = start; address < end; address += PUD_SIZE) {
6860 unsigned long tmp = address;
6861
6862 ptep = huge_pte_offset(mm, address, sz);
6863 if (!ptep)
6864 continue;
6865 ptl = huge_pte_lock(h, mm, ptep);
6866 /* We don't want 'address' to be changed */
6867 huge_pmd_unshare(mm, vma, &tmp, ptep);
6868 spin_unlock(ptl);
6869 }
6870 flush_hugetlb_tlb_range(vma, start, end);
6871 i_mmap_unlock_write(vma->vm_file->f_mapping);
6872 /*
6873 * No need to call mmu_notifier_invalidate_range(), see
6874 * Documentation/vm/mmu_notifier.rst.
6875 */
6876 mmu_notifier_invalidate_range_end(&range);
6877}
6878
cf11e85f 6879#ifdef CONFIG_CMA
cf11e85f
RG
6880static bool cma_reserve_called __initdata;
6881
6882static int __init cmdline_parse_hugetlb_cma(char *p)
6883{
38e719ab
BW
6884 int nid, count = 0;
6885 unsigned long tmp;
6886 char *s = p;
6887
6888 while (*s) {
6889 if (sscanf(s, "%lu%n", &tmp, &count) != 1)
6890 break;
6891
6892 if (s[count] == ':') {
6893 nid = tmp;
6894 if (nid < 0 || nid >= MAX_NUMNODES)
6895 break;
6896
6897 s += count + 1;
6898 tmp = memparse(s, &s);
6899 hugetlb_cma_size_in_node[nid] = tmp;
6900 hugetlb_cma_size += tmp;
6901
6902 /*
6903 * Skip the separator if have one, otherwise
6904 * break the parsing.
6905 */
6906 if (*s == ',')
6907 s++;
6908 else
6909 break;
6910 } else {
6911 hugetlb_cma_size = memparse(p, &p);
6912 break;
6913 }
6914 }
6915
cf11e85f
RG
6916 return 0;
6917}
6918
6919early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
6920
6921void __init hugetlb_cma_reserve(int order)
6922{
6923 unsigned long size, reserved, per_node;
38e719ab 6924 bool node_specific_cma_alloc = false;
cf11e85f
RG
6925 int nid;
6926
6927 cma_reserve_called = true;
6928
38e719ab
BW
6929 if (!hugetlb_cma_size)
6930 return;
6931
6932 for (nid = 0; nid < MAX_NUMNODES; nid++) {
6933 if (hugetlb_cma_size_in_node[nid] == 0)
6934 continue;
6935
6936 if (!node_state(nid, N_ONLINE)) {
6937 pr_warn("hugetlb_cma: invalid node %d specified\n", nid);
6938 hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
6939 hugetlb_cma_size_in_node[nid] = 0;
6940 continue;
6941 }
6942
6943 if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) {
6944 pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n",
6945 nid, (PAGE_SIZE << order) / SZ_1M);
6946 hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
6947 hugetlb_cma_size_in_node[nid] = 0;
6948 } else {
6949 node_specific_cma_alloc = true;
6950 }
6951 }
6952
6953 /* Validate the CMA size again in case some invalid nodes specified. */
cf11e85f
RG
6954 if (!hugetlb_cma_size)
6955 return;
6956
6957 if (hugetlb_cma_size < (PAGE_SIZE << order)) {
6958 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
6959 (PAGE_SIZE << order) / SZ_1M);
a01f4390 6960 hugetlb_cma_size = 0;
cf11e85f
RG
6961 return;
6962 }
6963
38e719ab
BW
6964 if (!node_specific_cma_alloc) {
6965 /*
6966 * If 3 GB area is requested on a machine with 4 numa nodes,
6967 * let's allocate 1 GB on first three nodes and ignore the last one.
6968 */
6969 per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
6970 pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
6971 hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
6972 }
cf11e85f
RG
6973
6974 reserved = 0;
6975 for_each_node_state(nid, N_ONLINE) {
6976 int res;
2281f797 6977 char name[CMA_MAX_NAME];
cf11e85f 6978
38e719ab
BW
6979 if (node_specific_cma_alloc) {
6980 if (hugetlb_cma_size_in_node[nid] == 0)
6981 continue;
6982
6983 size = hugetlb_cma_size_in_node[nid];
6984 } else {
6985 size = min(per_node, hugetlb_cma_size - reserved);
6986 }
6987
cf11e85f
RG
6988 size = round_up(size, PAGE_SIZE << order);
6989
2281f797 6990 snprintf(name, sizeof(name), "hugetlb%d", nid);
a01f4390
MK
6991 /*
6992 * Note that 'order per bit' is based on smallest size that
6993 * may be returned to CMA allocator in the case of
6994 * huge page demotion.
6995 */
6996 res = cma_declare_contiguous_nid(0, size, 0,
6997 PAGE_SIZE << HUGETLB_PAGE_ORDER,
29d0f41d 6998 0, false, name,
cf11e85f
RG
6999 &hugetlb_cma[nid], nid);
7000 if (res) {
7001 pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
7002 res, nid);
7003 continue;
7004 }
7005
7006 reserved += size;
7007 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
7008 size / SZ_1M, nid);
7009
7010 if (reserved >= hugetlb_cma_size)
7011 break;
7012 }
a01f4390
MK
7013
7014 if (!reserved)
7015 /*
7016 * hugetlb_cma_size is used to determine if allocations from
7017 * cma are possible. Set to zero if no cma regions are set up.
7018 */
7019 hugetlb_cma_size = 0;
cf11e85f
RG
7020}
7021
7022void __init hugetlb_cma_check(void)
7023{
7024 if (!hugetlb_cma_size || cma_reserve_called)
7025 return;
7026
7027 pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
7028}
7029
7030#endif /* CONFIG_CMA */