ext4: switch to using ext4_do_writepages() for ordered data writeout
[linux-block.git] / mm / hugetlb.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * Generic hugetlb support.
6d49e352 4 * (C) Nadia Yvette Chambers, April 2004
1da177e4 5 */
1da177e4
LT
6#include <linux/list.h>
7#include <linux/init.h>
1da177e4 8#include <linux/mm.h>
e1759c21 9#include <linux/seq_file.h>
1da177e4
LT
10#include <linux/sysctl.h>
11#include <linux/highmem.h>
cddb8a5c 12#include <linux/mmu_notifier.h>
1da177e4 13#include <linux/nodemask.h>
63551ae0 14#include <linux/pagemap.h>
5da7ca86 15#include <linux/mempolicy.h>
3b32123d 16#include <linux/compiler.h>
aea47ff3 17#include <linux/cpuset.h>
3935baa9 18#include <linux/mutex.h>
97ad1087 19#include <linux/memblock.h>
a3437870 20#include <linux/sysfs.h>
5a0e3ad6 21#include <linux/slab.h>
bbe88753 22#include <linux/sched/mm.h>
63489f8e 23#include <linux/mmdebug.h>
174cd4b1 24#include <linux/sched/signal.h>
0fe6e20b 25#include <linux/rmap.h>
c6247f72 26#include <linux/string_helpers.h>
fd6a03ed
NH
27#include <linux/swap.h>
28#include <linux/swapops.h>
8382d914 29#include <linux/jhash.h>
98fa15f3 30#include <linux/numa.h>
c77c0a8a 31#include <linux/llist.h>
cf11e85f 32#include <linux/cma.h>
8cc5fcbb 33#include <linux/migrate.h>
f9317f77 34#include <linux/nospec.h>
662ce1dc 35#include <linux/delayacct.h>
b958d4d0 36#include <linux/memory.h>
d6606683 37
63551ae0 38#include <asm/page.h>
ca15ca40 39#include <asm/pgalloc.h>
24669e58 40#include <asm/tlb.h>
63551ae0 41
24669e58 42#include <linux/io.h>
63551ae0 43#include <linux/hugetlb.h>
9dd540e2 44#include <linux/hugetlb_cgroup.h>
9a305230 45#include <linux/node.h>
ab5ac90a 46#include <linux/page_owner.h>
7835e98b 47#include "internal.h"
f41f2ed4 48#include "hugetlb_vmemmap.h"
1da177e4 49
c3f38a38 50int hugetlb_max_hstate __read_mostly;
e5ff2159
AK
51unsigned int default_hstate_idx;
52struct hstate hstates[HUGE_MAX_HSTATE];
cf11e85f 53
dbda8fea 54#ifdef CONFIG_CMA
cf11e85f 55static struct cma *hugetlb_cma[MAX_NUMNODES];
38e719ab 56static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata;
a01f4390
MK
57static bool hugetlb_cma_page(struct page *page, unsigned int order)
58{
59 return cma_pages_valid(hugetlb_cma[page_to_nid(page)], page,
60 1 << order);
61}
62#else
63static bool hugetlb_cma_page(struct page *page, unsigned int order)
64{
65 return false;
66}
dbda8fea
BS
67#endif
68static unsigned long hugetlb_cma_size __initdata;
cf11e85f 69
53ba51d2
JT
70__initdata LIST_HEAD(huge_boot_pages);
71
e5ff2159
AK
72/* for command line parsing */
73static struct hstate * __initdata parsed_hstate;
74static unsigned long __initdata default_hstate_max_huge_pages;
9fee021d 75static bool __initdata parsed_valid_hugepagesz = true;
282f4214 76static bool __initdata parsed_default_hugepagesz;
b5389086 77static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata;
e5ff2159 78
3935baa9 79/*
31caf665
NH
80 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
81 * free_huge_pages, and surplus_huge_pages.
3935baa9 82 */
c3f38a38 83DEFINE_SPINLOCK(hugetlb_lock);
0bd0f9fb 84
8382d914
DB
85/*
86 * Serializes faults on the same logical page. This is used to
87 * prevent spurious OOMs when the hugepage pool is fully utilized.
88 */
89static int num_fault_mutexes;
c672c7f2 90struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
8382d914 91
7ca02d0a
MK
92/* Forward declaration */
93static int hugetlb_acct_memory(struct hstate *h, long delta);
8d9bfb26
MK
94static void hugetlb_vma_lock_free(struct vm_area_struct *vma);
95static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma);
ecfbd733 96static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma);
7ca02d0a 97
1d88433b 98static inline bool subpool_is_free(struct hugepage_subpool *spool)
90481622 99{
1d88433b
ML
100 if (spool->count)
101 return false;
102 if (spool->max_hpages != -1)
103 return spool->used_hpages == 0;
104 if (spool->min_hpages != -1)
105 return spool->rsv_hpages == spool->min_hpages;
106
107 return true;
108}
90481622 109
db71ef79
MK
110static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
111 unsigned long irq_flags)
1d88433b 112{
db71ef79 113 spin_unlock_irqrestore(&spool->lock, irq_flags);
90481622
DG
114
115 /* If no pages are used, and no other handles to the subpool
7c8de358 116 * remain, give up any reservations based on minimum size and
7ca02d0a 117 * free the subpool */
1d88433b 118 if (subpool_is_free(spool)) {
7ca02d0a
MK
119 if (spool->min_hpages != -1)
120 hugetlb_acct_memory(spool->hstate,
121 -spool->min_hpages);
90481622 122 kfree(spool);
7ca02d0a 123 }
90481622
DG
124}
125
7ca02d0a
MK
126struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
127 long min_hpages)
90481622
DG
128{
129 struct hugepage_subpool *spool;
130
c6a91820 131 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
90481622
DG
132 if (!spool)
133 return NULL;
134
135 spin_lock_init(&spool->lock);
136 spool->count = 1;
7ca02d0a
MK
137 spool->max_hpages = max_hpages;
138 spool->hstate = h;
139 spool->min_hpages = min_hpages;
140
141 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
142 kfree(spool);
143 return NULL;
144 }
145 spool->rsv_hpages = min_hpages;
90481622
DG
146
147 return spool;
148}
149
150void hugepage_put_subpool(struct hugepage_subpool *spool)
151{
db71ef79
MK
152 unsigned long flags;
153
154 spin_lock_irqsave(&spool->lock, flags);
90481622
DG
155 BUG_ON(!spool->count);
156 spool->count--;
db71ef79 157 unlock_or_release_subpool(spool, flags);
90481622
DG
158}
159
1c5ecae3
MK
160/*
161 * Subpool accounting for allocating and reserving pages.
162 * Return -ENOMEM if there are not enough resources to satisfy the
9e7ee400 163 * request. Otherwise, return the number of pages by which the
1c5ecae3
MK
164 * global pools must be adjusted (upward). The returned value may
165 * only be different than the passed value (delta) in the case where
7c8de358 166 * a subpool minimum size must be maintained.
1c5ecae3
MK
167 */
168static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
90481622
DG
169 long delta)
170{
1c5ecae3 171 long ret = delta;
90481622
DG
172
173 if (!spool)
1c5ecae3 174 return ret;
90481622 175
db71ef79 176 spin_lock_irq(&spool->lock);
1c5ecae3
MK
177
178 if (spool->max_hpages != -1) { /* maximum size accounting */
179 if ((spool->used_hpages + delta) <= spool->max_hpages)
180 spool->used_hpages += delta;
181 else {
182 ret = -ENOMEM;
183 goto unlock_ret;
184 }
90481622 185 }
90481622 186
09a95e29
MK
187 /* minimum size accounting */
188 if (spool->min_hpages != -1 && spool->rsv_hpages) {
1c5ecae3
MK
189 if (delta > spool->rsv_hpages) {
190 /*
191 * Asking for more reserves than those already taken on
192 * behalf of subpool. Return difference.
193 */
194 ret = delta - spool->rsv_hpages;
195 spool->rsv_hpages = 0;
196 } else {
197 ret = 0; /* reserves already accounted for */
198 spool->rsv_hpages -= delta;
199 }
200 }
201
202unlock_ret:
db71ef79 203 spin_unlock_irq(&spool->lock);
90481622
DG
204 return ret;
205}
206
1c5ecae3
MK
207/*
208 * Subpool accounting for freeing and unreserving pages.
209 * Return the number of global page reservations that must be dropped.
210 * The return value may only be different than the passed value (delta)
211 * in the case where a subpool minimum size must be maintained.
212 */
213static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
90481622
DG
214 long delta)
215{
1c5ecae3 216 long ret = delta;
db71ef79 217 unsigned long flags;
1c5ecae3 218
90481622 219 if (!spool)
1c5ecae3 220 return delta;
90481622 221
db71ef79 222 spin_lock_irqsave(&spool->lock, flags);
1c5ecae3
MK
223
224 if (spool->max_hpages != -1) /* maximum size accounting */
225 spool->used_hpages -= delta;
226
09a95e29
MK
227 /* minimum size accounting */
228 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
1c5ecae3
MK
229 if (spool->rsv_hpages + delta <= spool->min_hpages)
230 ret = 0;
231 else
232 ret = spool->rsv_hpages + delta - spool->min_hpages;
233
234 spool->rsv_hpages += delta;
235 if (spool->rsv_hpages > spool->min_hpages)
236 spool->rsv_hpages = spool->min_hpages;
237 }
238
239 /*
240 * If hugetlbfs_put_super couldn't free spool due to an outstanding
241 * quota reference, free it now.
242 */
db71ef79 243 unlock_or_release_subpool(spool, flags);
1c5ecae3
MK
244
245 return ret;
90481622
DG
246}
247
248static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
249{
250 return HUGETLBFS_SB(inode->i_sb)->spool;
251}
252
253static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
254{
496ad9aa 255 return subpool_inode(file_inode(vma->vm_file));
90481622
DG
256}
257
0db9d74e
MA
258/* Helper that removes a struct file_region from the resv_map cache and returns
259 * it for use.
260 */
261static struct file_region *
262get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
263{
3259914f 264 struct file_region *nrg;
0db9d74e
MA
265
266 VM_BUG_ON(resv->region_cache_count <= 0);
267
268 resv->region_cache_count--;
269 nrg = list_first_entry(&resv->region_cache, struct file_region, link);
0db9d74e
MA
270 list_del(&nrg->link);
271
272 nrg->from = from;
273 nrg->to = to;
274
275 return nrg;
276}
277
075a61d0
MA
278static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
279 struct file_region *rg)
280{
281#ifdef CONFIG_CGROUP_HUGETLB
282 nrg->reservation_counter = rg->reservation_counter;
283 nrg->css = rg->css;
284 if (rg->css)
285 css_get(rg->css);
286#endif
287}
288
289/* Helper that records hugetlb_cgroup uncharge info. */
290static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
291 struct hstate *h,
292 struct resv_map *resv,
293 struct file_region *nrg)
294{
295#ifdef CONFIG_CGROUP_HUGETLB
296 if (h_cg) {
297 nrg->reservation_counter =
298 &h_cg->rsvd_hugepage[hstate_index(h)];
299 nrg->css = &h_cg->css;
d85aecf2
ML
300 /*
301 * The caller will hold exactly one h_cg->css reference for the
302 * whole contiguous reservation region. But this area might be
303 * scattered when there are already some file_regions reside in
304 * it. As a result, many file_regions may share only one css
305 * reference. In order to ensure that one file_region must hold
306 * exactly one h_cg->css reference, we should do css_get for
307 * each file_region and leave the reference held by caller
308 * untouched.
309 */
310 css_get(&h_cg->css);
075a61d0
MA
311 if (!resv->pages_per_hpage)
312 resv->pages_per_hpage = pages_per_huge_page(h);
313 /* pages_per_hpage should be the same for all entries in
314 * a resv_map.
315 */
316 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
317 } else {
318 nrg->reservation_counter = NULL;
319 nrg->css = NULL;
320 }
321#endif
322}
323
d85aecf2
ML
324static void put_uncharge_info(struct file_region *rg)
325{
326#ifdef CONFIG_CGROUP_HUGETLB
327 if (rg->css)
328 css_put(rg->css);
329#endif
330}
331
a9b3f867
MA
332static bool has_same_uncharge_info(struct file_region *rg,
333 struct file_region *org)
334{
335#ifdef CONFIG_CGROUP_HUGETLB
0739eb43 336 return rg->reservation_counter == org->reservation_counter &&
a9b3f867
MA
337 rg->css == org->css;
338
339#else
340 return true;
341#endif
342}
343
344static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
345{
3259914f 346 struct file_region *nrg, *prg;
a9b3f867
MA
347
348 prg = list_prev_entry(rg, link);
349 if (&prg->link != &resv->regions && prg->to == rg->from &&
350 has_same_uncharge_info(prg, rg)) {
351 prg->to = rg->to;
352
353 list_del(&rg->link);
d85aecf2 354 put_uncharge_info(rg);
a9b3f867
MA
355 kfree(rg);
356
7db5e7b6 357 rg = prg;
a9b3f867
MA
358 }
359
360 nrg = list_next_entry(rg, link);
361 if (&nrg->link != &resv->regions && nrg->from == rg->to &&
362 has_same_uncharge_info(nrg, rg)) {
363 nrg->from = rg->from;
364
365 list_del(&rg->link);
d85aecf2 366 put_uncharge_info(rg);
a9b3f867 367 kfree(rg);
a9b3f867
MA
368 }
369}
370
2103cf9c 371static inline long
84448c8e 372hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from,
2103cf9c
PX
373 long to, struct hstate *h, struct hugetlb_cgroup *cg,
374 long *regions_needed)
375{
376 struct file_region *nrg;
377
378 if (!regions_needed) {
379 nrg = get_file_region_entry_from_cache(map, from, to);
380 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
84448c8e 381 list_add(&nrg->link, rg);
2103cf9c
PX
382 coalesce_file_region(map, nrg);
383 } else
384 *regions_needed += 1;
385
386 return to - from;
387}
388
972a3da3
WY
389/*
390 * Must be called with resv->lock held.
391 *
392 * Calling this with regions_needed != NULL will count the number of pages
393 * to be added but will not modify the linked list. And regions_needed will
394 * indicate the number of file_regions needed in the cache to carry out to add
395 * the regions for this range.
d75c6af9
MA
396 */
397static long add_reservation_in_range(struct resv_map *resv, long f, long t,
075a61d0 398 struct hugetlb_cgroup *h_cg,
972a3da3 399 struct hstate *h, long *regions_needed)
d75c6af9 400{
0db9d74e 401 long add = 0;
d75c6af9 402 struct list_head *head = &resv->regions;
0db9d74e 403 long last_accounted_offset = f;
84448c8e
JK
404 struct file_region *iter, *trg = NULL;
405 struct list_head *rg = NULL;
d75c6af9 406
0db9d74e
MA
407 if (regions_needed)
408 *regions_needed = 0;
d75c6af9 409
0db9d74e 410 /* In this loop, we essentially handle an entry for the range
84448c8e 411 * [last_accounted_offset, iter->from), at every iteration, with some
0db9d74e
MA
412 * bounds checking.
413 */
84448c8e 414 list_for_each_entry_safe(iter, trg, head, link) {
0db9d74e 415 /* Skip irrelevant regions that start before our range. */
84448c8e 416 if (iter->from < f) {
0db9d74e
MA
417 /* If this region ends after the last accounted offset,
418 * then we need to update last_accounted_offset.
419 */
84448c8e
JK
420 if (iter->to > last_accounted_offset)
421 last_accounted_offset = iter->to;
0db9d74e
MA
422 continue;
423 }
d75c6af9 424
0db9d74e
MA
425 /* When we find a region that starts beyond our range, we've
426 * finished.
427 */
84448c8e
JK
428 if (iter->from >= t) {
429 rg = iter->link.prev;
d75c6af9 430 break;
84448c8e 431 }
d75c6af9 432
84448c8e 433 /* Add an entry for last_accounted_offset -> iter->from, and
0db9d74e
MA
434 * update last_accounted_offset.
435 */
84448c8e
JK
436 if (iter->from > last_accounted_offset)
437 add += hugetlb_resv_map_add(resv, iter->link.prev,
2103cf9c 438 last_accounted_offset,
84448c8e 439 iter->from, h, h_cg,
2103cf9c 440 regions_needed);
0db9d74e 441
84448c8e 442 last_accounted_offset = iter->to;
0db9d74e
MA
443 }
444
445 /* Handle the case where our range extends beyond
446 * last_accounted_offset.
447 */
84448c8e
JK
448 if (!rg)
449 rg = head->prev;
2103cf9c
PX
450 if (last_accounted_offset < t)
451 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
452 t, h, h_cg, regions_needed);
0db9d74e 453
0db9d74e
MA
454 return add;
455}
456
457/* Must be called with resv->lock acquired. Will drop lock to allocate entries.
458 */
459static int allocate_file_region_entries(struct resv_map *resv,
460 int regions_needed)
461 __must_hold(&resv->lock)
462{
34665341 463 LIST_HEAD(allocated_regions);
0db9d74e
MA
464 int to_allocate = 0, i = 0;
465 struct file_region *trg = NULL, *rg = NULL;
466
467 VM_BUG_ON(regions_needed < 0);
468
0db9d74e
MA
469 /*
470 * Check for sufficient descriptors in the cache to accommodate
471 * the number of in progress add operations plus regions_needed.
472 *
473 * This is a while loop because when we drop the lock, some other call
474 * to region_add or region_del may have consumed some region_entries,
475 * so we keep looping here until we finally have enough entries for
476 * (adds_in_progress + regions_needed).
477 */
478 while (resv->region_cache_count <
479 (resv->adds_in_progress + regions_needed)) {
480 to_allocate = resv->adds_in_progress + regions_needed -
481 resv->region_cache_count;
482
483 /* At this point, we should have enough entries in the cache
f0953a1b 484 * for all the existing adds_in_progress. We should only be
0db9d74e 485 * needing to allocate for regions_needed.
d75c6af9 486 */
0db9d74e
MA
487 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
488
489 spin_unlock(&resv->lock);
490 for (i = 0; i < to_allocate; i++) {
491 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
492 if (!trg)
493 goto out_of_memory;
494 list_add(&trg->link, &allocated_regions);
d75c6af9 495 }
d75c6af9 496
0db9d74e
MA
497 spin_lock(&resv->lock);
498
d3ec7b6e
WY
499 list_splice(&allocated_regions, &resv->region_cache);
500 resv->region_cache_count += to_allocate;
d75c6af9
MA
501 }
502
0db9d74e 503 return 0;
d75c6af9 504
0db9d74e
MA
505out_of_memory:
506 list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
507 list_del(&rg->link);
508 kfree(rg);
509 }
510 return -ENOMEM;
d75c6af9
MA
511}
512
1dd308a7
MK
513/*
514 * Add the huge page range represented by [f, t) to the reserve
0db9d74e
MA
515 * map. Regions will be taken from the cache to fill in this range.
516 * Sufficient regions should exist in the cache due to the previous
517 * call to region_chg with the same range, but in some cases the cache will not
518 * have sufficient entries due to races with other code doing region_add or
519 * region_del. The extra needed entries will be allocated.
cf3ad20b 520 *
0db9d74e
MA
521 * regions_needed is the out value provided by a previous call to region_chg.
522 *
523 * Return the number of new huge pages added to the map. This number is greater
524 * than or equal to zero. If file_region entries needed to be allocated for
7c8de358 525 * this operation and we were not able to allocate, it returns -ENOMEM.
0db9d74e
MA
526 * region_add of regions of length 1 never allocate file_regions and cannot
527 * fail; region_chg will always allocate at least 1 entry and a region_add for
528 * 1 page will only require at most 1 entry.
1dd308a7 529 */
0db9d74e 530static long region_add(struct resv_map *resv, long f, long t,
075a61d0
MA
531 long in_regions_needed, struct hstate *h,
532 struct hugetlb_cgroup *h_cg)
96822904 533{
0db9d74e 534 long add = 0, actual_regions_needed = 0;
96822904 535
7b24d861 536 spin_lock(&resv->lock);
0db9d74e
MA
537retry:
538
539 /* Count how many regions are actually needed to execute this add. */
972a3da3
WY
540 add_reservation_in_range(resv, f, t, NULL, NULL,
541 &actual_regions_needed);
96822904 542
5e911373 543 /*
0db9d74e
MA
544 * Check for sufficient descriptors in the cache to accommodate
545 * this add operation. Note that actual_regions_needed may be greater
546 * than in_regions_needed, as the resv_map may have been modified since
547 * the region_chg call. In this case, we need to make sure that we
548 * allocate extra entries, such that we have enough for all the
549 * existing adds_in_progress, plus the excess needed for this
550 * operation.
5e911373 551 */
0db9d74e
MA
552 if (actual_regions_needed > in_regions_needed &&
553 resv->region_cache_count <
554 resv->adds_in_progress +
555 (actual_regions_needed - in_regions_needed)) {
556 /* region_add operation of range 1 should never need to
557 * allocate file_region entries.
558 */
559 VM_BUG_ON(t - f <= 1);
5e911373 560
0db9d74e
MA
561 if (allocate_file_region_entries(
562 resv, actual_regions_needed - in_regions_needed)) {
563 return -ENOMEM;
564 }
5e911373 565
0db9d74e 566 goto retry;
5e911373
MK
567 }
568
972a3da3 569 add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
0db9d74e
MA
570
571 resv->adds_in_progress -= in_regions_needed;
cf3ad20b 572
7b24d861 573 spin_unlock(&resv->lock);
cf3ad20b 574 return add;
96822904
AW
575}
576
1dd308a7
MK
577/*
578 * Examine the existing reserve map and determine how many
579 * huge pages in the specified range [f, t) are NOT currently
580 * represented. This routine is called before a subsequent
581 * call to region_add that will actually modify the reserve
582 * map to add the specified range [f, t). region_chg does
583 * not change the number of huge pages represented by the
0db9d74e
MA
584 * map. A number of new file_region structures is added to the cache as a
585 * placeholder, for the subsequent region_add call to use. At least 1
586 * file_region structure is added.
587 *
588 * out_regions_needed is the number of regions added to the
589 * resv->adds_in_progress. This value needs to be provided to a follow up call
590 * to region_add or region_abort for proper accounting.
5e911373
MK
591 *
592 * Returns the number of huge pages that need to be added to the existing
593 * reservation map for the range [f, t). This number is greater or equal to
594 * zero. -ENOMEM is returned if a new file_region structure or cache entry
595 * is needed and can not be allocated.
1dd308a7 596 */
0db9d74e
MA
597static long region_chg(struct resv_map *resv, long f, long t,
598 long *out_regions_needed)
96822904 599{
96822904
AW
600 long chg = 0;
601
7b24d861 602 spin_lock(&resv->lock);
5e911373 603
972a3da3 604 /* Count how many hugepages in this range are NOT represented. */
075a61d0 605 chg = add_reservation_in_range(resv, f, t, NULL, NULL,
972a3da3 606 out_regions_needed);
5e911373 607
0db9d74e
MA
608 if (*out_regions_needed == 0)
609 *out_regions_needed = 1;
5e911373 610
0db9d74e
MA
611 if (allocate_file_region_entries(resv, *out_regions_needed))
612 return -ENOMEM;
5e911373 613
0db9d74e 614 resv->adds_in_progress += *out_regions_needed;
7b24d861 615
7b24d861 616 spin_unlock(&resv->lock);
96822904
AW
617 return chg;
618}
619
5e911373
MK
620/*
621 * Abort the in progress add operation. The adds_in_progress field
622 * of the resv_map keeps track of the operations in progress between
623 * calls to region_chg and region_add. Operations are sometimes
624 * aborted after the call to region_chg. In such cases, region_abort
0db9d74e
MA
625 * is called to decrement the adds_in_progress counter. regions_needed
626 * is the value returned by the region_chg call, it is used to decrement
627 * the adds_in_progress counter.
5e911373
MK
628 *
629 * NOTE: The range arguments [f, t) are not needed or used in this
630 * routine. They are kept to make reading the calling code easier as
631 * arguments will match the associated region_chg call.
632 */
0db9d74e
MA
633static void region_abort(struct resv_map *resv, long f, long t,
634 long regions_needed)
5e911373
MK
635{
636 spin_lock(&resv->lock);
637 VM_BUG_ON(!resv->region_cache_count);
0db9d74e 638 resv->adds_in_progress -= regions_needed;
5e911373
MK
639 spin_unlock(&resv->lock);
640}
641
1dd308a7 642/*
feba16e2
MK
643 * Delete the specified range [f, t) from the reserve map. If the
644 * t parameter is LONG_MAX, this indicates that ALL regions after f
645 * should be deleted. Locate the regions which intersect [f, t)
646 * and either trim, delete or split the existing regions.
647 *
648 * Returns the number of huge pages deleted from the reserve map.
649 * In the normal case, the return value is zero or more. In the
650 * case where a region must be split, a new region descriptor must
651 * be allocated. If the allocation fails, -ENOMEM will be returned.
652 * NOTE: If the parameter t == LONG_MAX, then we will never split
653 * a region and possibly return -ENOMEM. Callers specifying
654 * t == LONG_MAX do not need to check for -ENOMEM error.
1dd308a7 655 */
feba16e2 656static long region_del(struct resv_map *resv, long f, long t)
96822904 657{
1406ec9b 658 struct list_head *head = &resv->regions;
96822904 659 struct file_region *rg, *trg;
feba16e2
MK
660 struct file_region *nrg = NULL;
661 long del = 0;
96822904 662
feba16e2 663retry:
7b24d861 664 spin_lock(&resv->lock);
feba16e2 665 list_for_each_entry_safe(rg, trg, head, link) {
dbe409e4
MK
666 /*
667 * Skip regions before the range to be deleted. file_region
668 * ranges are normally of the form [from, to). However, there
669 * may be a "placeholder" entry in the map which is of the form
670 * (from, to) with from == to. Check for placeholder entries
671 * at the beginning of the range to be deleted.
672 */
673 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
feba16e2 674 continue;
dbe409e4 675
feba16e2 676 if (rg->from >= t)
96822904 677 break;
96822904 678
feba16e2
MK
679 if (f > rg->from && t < rg->to) { /* Must split region */
680 /*
681 * Check for an entry in the cache before dropping
682 * lock and attempting allocation.
683 */
684 if (!nrg &&
685 resv->region_cache_count > resv->adds_in_progress) {
686 nrg = list_first_entry(&resv->region_cache,
687 struct file_region,
688 link);
689 list_del(&nrg->link);
690 resv->region_cache_count--;
691 }
96822904 692
feba16e2
MK
693 if (!nrg) {
694 spin_unlock(&resv->lock);
695 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
696 if (!nrg)
697 return -ENOMEM;
698 goto retry;
699 }
700
701 del += t - f;
79aa925b 702 hugetlb_cgroup_uncharge_file_region(
d85aecf2 703 resv, rg, t - f, false);
feba16e2
MK
704
705 /* New entry for end of split region */
706 nrg->from = t;
707 nrg->to = rg->to;
075a61d0
MA
708
709 copy_hugetlb_cgroup_uncharge_info(nrg, rg);
710
feba16e2
MK
711 INIT_LIST_HEAD(&nrg->link);
712
713 /* Original entry is trimmed */
714 rg->to = f;
715
716 list_add(&nrg->link, &rg->link);
717 nrg = NULL;
96822904 718 break;
feba16e2
MK
719 }
720
721 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
722 del += rg->to - rg->from;
075a61d0 723 hugetlb_cgroup_uncharge_file_region(resv, rg,
d85aecf2 724 rg->to - rg->from, true);
feba16e2
MK
725 list_del(&rg->link);
726 kfree(rg);
727 continue;
728 }
729
730 if (f <= rg->from) { /* Trim beginning of region */
075a61d0 731 hugetlb_cgroup_uncharge_file_region(resv, rg,
d85aecf2 732 t - rg->from, false);
075a61d0 733
79aa925b
MK
734 del += t - rg->from;
735 rg->from = t;
736 } else { /* Trim end of region */
075a61d0 737 hugetlb_cgroup_uncharge_file_region(resv, rg,
d85aecf2 738 rg->to - f, false);
79aa925b
MK
739
740 del += rg->to - f;
741 rg->to = f;
feba16e2 742 }
96822904 743 }
7b24d861 744
7b24d861 745 spin_unlock(&resv->lock);
feba16e2
MK
746 kfree(nrg);
747 return del;
96822904
AW
748}
749
b5cec28d
MK
750/*
751 * A rare out of memory error was encountered which prevented removal of
752 * the reserve map region for a page. The huge page itself was free'ed
753 * and removed from the page cache. This routine will adjust the subpool
754 * usage count, and the global reserve count if needed. By incrementing
755 * these counts, the reserve map entry which could not be deleted will
756 * appear as a "reserved" entry instead of simply dangling with incorrect
757 * counts.
758 */
72e2936c 759void hugetlb_fix_reserve_counts(struct inode *inode)
b5cec28d
MK
760{
761 struct hugepage_subpool *spool = subpool_inode(inode);
762 long rsv_adjust;
da56388c 763 bool reserved = false;
b5cec28d
MK
764
765 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
da56388c 766 if (rsv_adjust > 0) {
b5cec28d
MK
767 struct hstate *h = hstate_inode(inode);
768
da56388c
ML
769 if (!hugetlb_acct_memory(h, 1))
770 reserved = true;
771 } else if (!rsv_adjust) {
772 reserved = true;
b5cec28d 773 }
da56388c
ML
774
775 if (!reserved)
776 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
b5cec28d
MK
777}
778
1dd308a7
MK
779/*
780 * Count and return the number of huge pages in the reserve map
781 * that intersect with the range [f, t).
782 */
1406ec9b 783static long region_count(struct resv_map *resv, long f, long t)
84afd99b 784{
1406ec9b 785 struct list_head *head = &resv->regions;
84afd99b
AW
786 struct file_region *rg;
787 long chg = 0;
788
7b24d861 789 spin_lock(&resv->lock);
84afd99b
AW
790 /* Locate each segment we overlap with, and count that overlap. */
791 list_for_each_entry(rg, head, link) {
f2135a4a
WSH
792 long seg_from;
793 long seg_to;
84afd99b
AW
794
795 if (rg->to <= f)
796 continue;
797 if (rg->from >= t)
798 break;
799
800 seg_from = max(rg->from, f);
801 seg_to = min(rg->to, t);
802
803 chg += seg_to - seg_from;
804 }
7b24d861 805 spin_unlock(&resv->lock);
84afd99b
AW
806
807 return chg;
808}
809
e7c4b0bf
AW
810/*
811 * Convert the address within this vma to the page offset within
812 * the mapping, in pagecache page units; huge pages here.
813 */
a5516438
AK
814static pgoff_t vma_hugecache_offset(struct hstate *h,
815 struct vm_area_struct *vma, unsigned long address)
e7c4b0bf 816{
a5516438
AK
817 return ((address - vma->vm_start) >> huge_page_shift(h)) +
818 (vma->vm_pgoff >> huge_page_order(h));
e7c4b0bf
AW
819}
820
0fe6e20b
NH
821pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
822 unsigned long address)
823{
824 return vma_hugecache_offset(hstate_vma(vma), vma, address);
825}
dee41079 826EXPORT_SYMBOL_GPL(linear_hugepage_index);
0fe6e20b 827
08fba699
MG
828/*
829 * Return the size of the pages allocated when backing a VMA. In the majority
830 * cases this will be same size as used by the page table entries.
831 */
832unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
833{
05ea8860
DW
834 if (vma->vm_ops && vma->vm_ops->pagesize)
835 return vma->vm_ops->pagesize(vma);
836 return PAGE_SIZE;
08fba699 837}
f340ca0f 838EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
08fba699 839
3340289d
MG
840/*
841 * Return the page size being used by the MMU to back a VMA. In the majority
842 * of cases, the page size used by the kernel matches the MMU size. On
09135cc5
DW
843 * architectures where it differs, an architecture-specific 'strong'
844 * version of this symbol is required.
3340289d 845 */
09135cc5 846__weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
3340289d
MG
847{
848 return vma_kernel_pagesize(vma);
849}
3340289d 850
84afd99b
AW
851/*
852 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
853 * bits of the reservation map pointer, which are always clear due to
854 * alignment.
855 */
856#define HPAGE_RESV_OWNER (1UL << 0)
857#define HPAGE_RESV_UNMAPPED (1UL << 1)
04f2cbe3 858#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
84afd99b 859
a1e78772
MG
860/*
861 * These helpers are used to track how many pages are reserved for
862 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
863 * is guaranteed to have their future faults succeed.
864 *
8d9bfb26 865 * With the exception of hugetlb_dup_vma_private() which is called at fork(),
a1e78772
MG
866 * the reserve counters are updated with the hugetlb_lock held. It is safe
867 * to reset the VMA at fork() time as it is not in use yet and there is no
868 * chance of the global counters getting corrupted as a result of the values.
84afd99b
AW
869 *
870 * The private mapping reservation is represented in a subtly different
871 * manner to a shared mapping. A shared mapping has a region map associated
872 * with the underlying file, this region map represents the backing file
873 * pages which have ever had a reservation assigned which this persists even
874 * after the page is instantiated. A private mapping has a region map
875 * associated with the original mmap which is attached to all VMAs which
876 * reference it, this region map represents those offsets which have consumed
877 * reservation ie. where pages have been instantiated.
a1e78772 878 */
e7c4b0bf
AW
879static unsigned long get_vma_private_data(struct vm_area_struct *vma)
880{
881 return (unsigned long)vma->vm_private_data;
882}
883
884static void set_vma_private_data(struct vm_area_struct *vma,
885 unsigned long value)
886{
887 vma->vm_private_data = (void *)value;
888}
889
e9fe92ae
MA
890static void
891resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
892 struct hugetlb_cgroup *h_cg,
893 struct hstate *h)
894{
895#ifdef CONFIG_CGROUP_HUGETLB
896 if (!h_cg || !h) {
897 resv_map->reservation_counter = NULL;
898 resv_map->pages_per_hpage = 0;
899 resv_map->css = NULL;
900 } else {
901 resv_map->reservation_counter =
902 &h_cg->rsvd_hugepage[hstate_index(h)];
903 resv_map->pages_per_hpage = pages_per_huge_page(h);
904 resv_map->css = &h_cg->css;
905 }
906#endif
907}
908
9119a41e 909struct resv_map *resv_map_alloc(void)
84afd99b
AW
910{
911 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
5e911373
MK
912 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
913
914 if (!resv_map || !rg) {
915 kfree(resv_map);
916 kfree(rg);
84afd99b 917 return NULL;
5e911373 918 }
84afd99b
AW
919
920 kref_init(&resv_map->refs);
7b24d861 921 spin_lock_init(&resv_map->lock);
84afd99b
AW
922 INIT_LIST_HEAD(&resv_map->regions);
923
5e911373 924 resv_map->adds_in_progress = 0;
e9fe92ae
MA
925 /*
926 * Initialize these to 0. On shared mappings, 0's here indicate these
927 * fields don't do cgroup accounting. On private mappings, these will be
928 * re-initialized to the proper values, to indicate that hugetlb cgroup
929 * reservations are to be un-charged from here.
930 */
931 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
5e911373
MK
932
933 INIT_LIST_HEAD(&resv_map->region_cache);
934 list_add(&rg->link, &resv_map->region_cache);
935 resv_map->region_cache_count = 1;
936
84afd99b
AW
937 return resv_map;
938}
939
9119a41e 940void resv_map_release(struct kref *ref)
84afd99b
AW
941{
942 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
5e911373
MK
943 struct list_head *head = &resv_map->region_cache;
944 struct file_region *rg, *trg;
84afd99b
AW
945
946 /* Clear out any active regions before we release the map. */
feba16e2 947 region_del(resv_map, 0, LONG_MAX);
5e911373
MK
948
949 /* ... and any entries left in the cache */
950 list_for_each_entry_safe(rg, trg, head, link) {
951 list_del(&rg->link);
952 kfree(rg);
953 }
954
955 VM_BUG_ON(resv_map->adds_in_progress);
956
84afd99b
AW
957 kfree(resv_map);
958}
959
4e35f483
JK
960static inline struct resv_map *inode_resv_map(struct inode *inode)
961{
f27a5136
MK
962 /*
963 * At inode evict time, i_mapping may not point to the original
964 * address space within the inode. This original address space
965 * contains the pointer to the resv_map. So, always use the
966 * address space embedded within the inode.
967 * The VERY common case is inode->mapping == &inode->i_data but,
968 * this may not be true for device special inodes.
969 */
970 return (struct resv_map *)(&inode->i_data)->private_data;
4e35f483
JK
971}
972
84afd99b 973static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
a1e78772 974{
81d1b09c 975 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
4e35f483
JK
976 if (vma->vm_flags & VM_MAYSHARE) {
977 struct address_space *mapping = vma->vm_file->f_mapping;
978 struct inode *inode = mapping->host;
979
980 return inode_resv_map(inode);
981
982 } else {
84afd99b
AW
983 return (struct resv_map *)(get_vma_private_data(vma) &
984 ~HPAGE_RESV_MASK);
4e35f483 985 }
a1e78772
MG
986}
987
84afd99b 988static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
a1e78772 989{
81d1b09c
SL
990 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
991 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
a1e78772 992
84afd99b
AW
993 set_vma_private_data(vma, (get_vma_private_data(vma) &
994 HPAGE_RESV_MASK) | (unsigned long)map);
04f2cbe3
MG
995}
996
997static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
998{
81d1b09c
SL
999 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1000 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
e7c4b0bf
AW
1001
1002 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
04f2cbe3
MG
1003}
1004
1005static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
1006{
81d1b09c 1007 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
e7c4b0bf
AW
1008
1009 return (get_vma_private_data(vma) & flag) != 0;
a1e78772
MG
1010}
1011
8d9bfb26 1012void hugetlb_dup_vma_private(struct vm_area_struct *vma)
a1e78772 1013{
81d1b09c 1014 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
8d9bfb26
MK
1015 /*
1016 * Clear vm_private_data
612b8a31
MK
1017 * - For shared mappings this is a per-vma semaphore that may be
1018 * allocated in a subsequent call to hugetlb_vm_op_open.
1019 * Before clearing, make sure pointer is not associated with vma
1020 * as this will leak the structure. This is the case when called
1021 * via clear_vma_resv_huge_pages() and hugetlb_vm_op_open has already
1022 * been called to allocate a new structure.
8d9bfb26
MK
1023 * - For MAP_PRIVATE mappings, this is the reserve map which does
1024 * not apply to children. Faults generated by the children are
1025 * not guaranteed to succeed, even if read-only.
8d9bfb26 1026 */
612b8a31
MK
1027 if (vma->vm_flags & VM_MAYSHARE) {
1028 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
1029
1030 if (vma_lock && vma_lock->vma != vma)
1031 vma->vm_private_data = NULL;
1032 } else
1033 vma->vm_private_data = NULL;
a1e78772
MG
1034}
1035
550a7d60
MA
1036/*
1037 * Reset and decrement one ref on hugepage private reservation.
1038 * Called with mm->mmap_sem writer semaphore held.
1039 * This function should be only used by move_vma() and operate on
1040 * same sized vma. It should never come here with last ref on the
1041 * reservation.
1042 */
1043void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
1044{
1045 /*
1046 * Clear the old hugetlb private page reservation.
1047 * It has already been transferred to new_vma.
1048 *
1049 * During a mremap() operation of a hugetlb vma we call move_vma()
1050 * which copies vma into new_vma and unmaps vma. After the copy
1051 * operation both new_vma and vma share a reference to the resv_map
1052 * struct, and at that point vma is about to be unmapped. We don't
1053 * want to return the reservation to the pool at unmap of vma because
1054 * the reservation still lives on in new_vma, so simply decrement the
1055 * ref here and remove the resv_map reference from this vma.
1056 */
1057 struct resv_map *reservations = vma_resv_map(vma);
1058
afe041c2
BQM
1059 if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1060 resv_map_put_hugetlb_cgroup_uncharge_info(reservations);
550a7d60 1061 kref_put(&reservations->refs, resv_map_release);
afe041c2 1062 }
550a7d60 1063
8d9bfb26 1064 hugetlb_dup_vma_private(vma);
550a7d60
MA
1065}
1066
a1e78772 1067/* Returns true if the VMA has associated reserve pages */
559ec2f8 1068static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
a1e78772 1069{
af0ed73e
JK
1070 if (vma->vm_flags & VM_NORESERVE) {
1071 /*
1072 * This address is already reserved by other process(chg == 0),
1073 * so, we should decrement reserved count. Without decrementing,
1074 * reserve count remains after releasing inode, because this
1075 * allocated page will go into page cache and is regarded as
1076 * coming from reserved pool in releasing step. Currently, we
1077 * don't have any other solution to deal with this situation
1078 * properly, so add work-around here.
1079 */
1080 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
559ec2f8 1081 return true;
af0ed73e 1082 else
559ec2f8 1083 return false;
af0ed73e 1084 }
a63884e9
JK
1085
1086 /* Shared mappings always use reserves */
1fb1b0e9
MK
1087 if (vma->vm_flags & VM_MAYSHARE) {
1088 /*
1089 * We know VM_NORESERVE is not set. Therefore, there SHOULD
1090 * be a region map for all pages. The only situation where
1091 * there is no region map is if a hole was punched via
7c8de358 1092 * fallocate. In this case, there really are no reserves to
1fb1b0e9
MK
1093 * use. This situation is indicated if chg != 0.
1094 */
1095 if (chg)
1096 return false;
1097 else
1098 return true;
1099 }
a63884e9
JK
1100
1101 /*
1102 * Only the process that called mmap() has reserves for
1103 * private mappings.
1104 */
67961f9d
MK
1105 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1106 /*
1107 * Like the shared case above, a hole punch or truncate
1108 * could have been performed on the private mapping.
1109 * Examine the value of chg to determine if reserves
1110 * actually exist or were previously consumed.
1111 * Very Subtle - The value of chg comes from a previous
1112 * call to vma_needs_reserves(). The reserve map for
1113 * private mappings has different (opposite) semantics
1114 * than that of shared mappings. vma_needs_reserves()
1115 * has already taken this difference in semantics into
1116 * account. Therefore, the meaning of chg is the same
1117 * as in the shared case above. Code could easily be
1118 * combined, but keeping it separate draws attention to
1119 * subtle differences.
1120 */
1121 if (chg)
1122 return false;
1123 else
1124 return true;
1125 }
a63884e9 1126
559ec2f8 1127 return false;
a1e78772
MG
1128}
1129
a5516438 1130static void enqueue_huge_page(struct hstate *h, struct page *page)
1da177e4
LT
1131{
1132 int nid = page_to_nid(page);
9487ca60
MK
1133
1134 lockdep_assert_held(&hugetlb_lock);
b65a4eda
MK
1135 VM_BUG_ON_PAGE(page_count(page), page);
1136
0edaecfa 1137 list_move(&page->lru, &h->hugepage_freelists[nid]);
a5516438
AK
1138 h->free_huge_pages++;
1139 h->free_huge_pages_node[nid]++;
6c037149 1140 SetHPageFreed(page);
1da177e4
LT
1141}
1142
94310cbc 1143static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
bf50bab2
NH
1144{
1145 struct page *page;
1a08ae36 1146 bool pin = !!(current->flags & PF_MEMALLOC_PIN);
bbe88753 1147
9487ca60 1148 lockdep_assert_held(&hugetlb_lock);
bbe88753 1149 list_for_each_entry(page, &h->hugepage_freelists[nid], lru) {
6077c943 1150 if (pin && !is_longterm_pinnable_page(page))
bbe88753 1151 continue;
bf50bab2 1152
6664bfc8
WY
1153 if (PageHWPoison(page))
1154 continue;
1155
1156 list_move(&page->lru, &h->hugepage_activelist);
1157 set_page_refcounted(page);
6c037149 1158 ClearHPageFreed(page);
6664bfc8
WY
1159 h->free_huge_pages--;
1160 h->free_huge_pages_node[nid]--;
1161 return page;
bbe88753
JK
1162 }
1163
6664bfc8 1164 return NULL;
bf50bab2
NH
1165}
1166
3e59fcb0
MH
1167static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
1168 nodemask_t *nmask)
94310cbc 1169{
3e59fcb0
MH
1170 unsigned int cpuset_mems_cookie;
1171 struct zonelist *zonelist;
1172 struct zone *zone;
1173 struct zoneref *z;
98fa15f3 1174 int node = NUMA_NO_NODE;
94310cbc 1175
3e59fcb0
MH
1176 zonelist = node_zonelist(nid, gfp_mask);
1177
1178retry_cpuset:
1179 cpuset_mems_cookie = read_mems_allowed_begin();
1180 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1181 struct page *page;
1182
1183 if (!cpuset_zone_allowed(zone, gfp_mask))
1184 continue;
1185 /*
1186 * no need to ask again on the same node. Pool is node rather than
1187 * zone aware
1188 */
1189 if (zone_to_nid(zone) == node)
1190 continue;
1191 node = zone_to_nid(zone);
94310cbc 1192
94310cbc
AK
1193 page = dequeue_huge_page_node_exact(h, node);
1194 if (page)
1195 return page;
1196 }
3e59fcb0
MH
1197 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1198 goto retry_cpuset;
1199
94310cbc
AK
1200 return NULL;
1201}
1202
8346d69d
XH
1203static unsigned long available_huge_pages(struct hstate *h)
1204{
1205 return h->free_huge_pages - h->resv_huge_pages;
1206}
1207
a5516438
AK
1208static struct page *dequeue_huge_page_vma(struct hstate *h,
1209 struct vm_area_struct *vma,
af0ed73e
JK
1210 unsigned long address, int avoid_reserve,
1211 long chg)
1da177e4 1212{
cfcaa66f 1213 struct page *page = NULL;
480eccf9 1214 struct mempolicy *mpol;
04ec6264 1215 gfp_t gfp_mask;
3e59fcb0 1216 nodemask_t *nodemask;
04ec6264 1217 int nid;
1da177e4 1218
a1e78772
MG
1219 /*
1220 * A child process with MAP_PRIVATE mappings created by their parent
1221 * have no page reserves. This check ensures that reservations are
1222 * not "stolen". The child may still get SIGKILLed
1223 */
8346d69d 1224 if (!vma_has_reserves(vma, chg) && !available_huge_pages(h))
c0ff7453 1225 goto err;
a1e78772 1226
04f2cbe3 1227 /* If reserves cannot be used, ensure enough pages are in the pool */
8346d69d 1228 if (avoid_reserve && !available_huge_pages(h))
6eab04a8 1229 goto err;
04f2cbe3 1230
04ec6264
VB
1231 gfp_mask = htlb_alloc_mask(h);
1232 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
cfcaa66f
BW
1233
1234 if (mpol_is_preferred_many(mpol)) {
1235 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1236
1237 /* Fallback to all nodes if page==NULL */
1238 nodemask = NULL;
1239 }
1240
1241 if (!page)
1242 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1243
3e59fcb0 1244 if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
d6995da3 1245 SetHPageRestoreReserve(page);
3e59fcb0 1246 h->resv_huge_pages--;
1da177e4 1247 }
cc9a6c87 1248
52cd3b07 1249 mpol_cond_put(mpol);
1da177e4 1250 return page;
cc9a6c87
MG
1251
1252err:
cc9a6c87 1253 return NULL;
1da177e4
LT
1254}
1255
1cac6f2c
LC
1256/*
1257 * common helper functions for hstate_next_node_to_{alloc|free}.
1258 * We may have allocated or freed a huge page based on a different
1259 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1260 * be outside of *nodes_allowed. Ensure that we use an allowed
1261 * node for alloc or free.
1262 */
1263static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1264{
0edaf86c 1265 nid = next_node_in(nid, *nodes_allowed);
1cac6f2c
LC
1266 VM_BUG_ON(nid >= MAX_NUMNODES);
1267
1268 return nid;
1269}
1270
1271static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1272{
1273 if (!node_isset(nid, *nodes_allowed))
1274 nid = next_node_allowed(nid, nodes_allowed);
1275 return nid;
1276}
1277
1278/*
1279 * returns the previously saved node ["this node"] from which to
1280 * allocate a persistent huge page for the pool and advance the
1281 * next node from which to allocate, handling wrap at end of node
1282 * mask.
1283 */
1284static int hstate_next_node_to_alloc(struct hstate *h,
1285 nodemask_t *nodes_allowed)
1286{
1287 int nid;
1288
1289 VM_BUG_ON(!nodes_allowed);
1290
1291 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1292 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1293
1294 return nid;
1295}
1296
1297/*
10c6ec49 1298 * helper for remove_pool_huge_page() - return the previously saved
1cac6f2c
LC
1299 * node ["this node"] from which to free a huge page. Advance the
1300 * next node id whether or not we find a free huge page to free so
1301 * that the next attempt to free addresses the next node.
1302 */
1303static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1304{
1305 int nid;
1306
1307 VM_BUG_ON(!nodes_allowed);
1308
1309 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1310 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1311
1312 return nid;
1313}
1314
1315#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
1316 for (nr_nodes = nodes_weight(*mask); \
1317 nr_nodes > 0 && \
1318 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
1319 nr_nodes--)
1320
1321#define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1322 for (nr_nodes = nodes_weight(*mask); \
1323 nr_nodes > 0 && \
1324 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1325 nr_nodes--)
1326
8531fc6f 1327/* used to demote non-gigantic_huge pages as well */
34d9e35b
MK
1328static void __destroy_compound_gigantic_page(struct page *page,
1329 unsigned int order, bool demote)
944d9fec
LC
1330{
1331 int i;
1332 int nr_pages = 1 << order;
14455eab 1333 struct page *p;
944d9fec 1334
c8cc708a 1335 atomic_set(compound_mapcount_ptr(page), 0);
5291c09b 1336 atomic_set(compound_pincount_ptr(page), 0);
47e29d32 1337
14455eab
CL
1338 for (i = 1; i < nr_pages; i++) {
1339 p = nth_page(page, i);
a01f4390 1340 p->mapping = NULL;
1d798ca3 1341 clear_compound_head(p);
34d9e35b
MK
1342 if (!demote)
1343 set_page_refcounted(p);
944d9fec
LC
1344 }
1345
1346 set_compound_order(page, 0);
5232c63f 1347#ifdef CONFIG_64BIT
ba9c1201 1348 page[1].compound_nr = 0;
5232c63f 1349#endif
944d9fec
LC
1350 __ClearPageHead(page);
1351}
1352
8531fc6f
MK
1353static void destroy_compound_hugetlb_page_for_demote(struct page *page,
1354 unsigned int order)
1355{
1356 __destroy_compound_gigantic_page(page, order, true);
1357}
1358
1359#ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
34d9e35b
MK
1360static void destroy_compound_gigantic_page(struct page *page,
1361 unsigned int order)
1362{
1363 __destroy_compound_gigantic_page(page, order, false);
1364}
1365
d00181b9 1366static void free_gigantic_page(struct page *page, unsigned int order)
944d9fec 1367{
cf11e85f
RG
1368 /*
1369 * If the page isn't allocated using the cma allocator,
1370 * cma_release() returns false.
1371 */
dbda8fea
BS
1372#ifdef CONFIG_CMA
1373 if (cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order))
cf11e85f 1374 return;
dbda8fea 1375#endif
cf11e85f 1376
944d9fec
LC
1377 free_contig_range(page_to_pfn(page), 1 << order);
1378}
1379
4eb0716e 1380#ifdef CONFIG_CONTIG_ALLOC
d9cc948f
MH
1381static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1382 int nid, nodemask_t *nodemask)
944d9fec 1383{
04adbc3f 1384 unsigned long nr_pages = pages_per_huge_page(h);
953f064a
LX
1385 if (nid == NUMA_NO_NODE)
1386 nid = numa_mem_id();
944d9fec 1387
dbda8fea
BS
1388#ifdef CONFIG_CMA
1389 {
cf11e85f
RG
1390 struct page *page;
1391 int node;
1392
953f064a
LX
1393 if (hugetlb_cma[nid]) {
1394 page = cma_alloc(hugetlb_cma[nid], nr_pages,
1395 huge_page_order(h), true);
cf11e85f
RG
1396 if (page)
1397 return page;
1398 }
953f064a
LX
1399
1400 if (!(gfp_mask & __GFP_THISNODE)) {
1401 for_each_node_mask(node, *nodemask) {
1402 if (node == nid || !hugetlb_cma[node])
1403 continue;
1404
1405 page = cma_alloc(hugetlb_cma[node], nr_pages,
1406 huge_page_order(h), true);
1407 if (page)
1408 return page;
1409 }
1410 }
cf11e85f 1411 }
dbda8fea 1412#endif
cf11e85f 1413
5e27a2df 1414 return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
944d9fec
LC
1415}
1416
4eb0716e
AG
1417#else /* !CONFIG_CONTIG_ALLOC */
1418static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1419 int nid, nodemask_t *nodemask)
1420{
1421 return NULL;
1422}
1423#endif /* CONFIG_CONTIG_ALLOC */
944d9fec 1424
e1073d1e 1425#else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
d9cc948f 1426static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
4eb0716e
AG
1427 int nid, nodemask_t *nodemask)
1428{
1429 return NULL;
1430}
d00181b9 1431static inline void free_gigantic_page(struct page *page, unsigned int order) { }
944d9fec 1432static inline void destroy_compound_gigantic_page(struct page *page,
d00181b9 1433 unsigned int order) { }
944d9fec
LC
1434#endif
1435
6eb4e88a
MK
1436/*
1437 * Remove hugetlb page from lists, and update dtor so that page appears
34d9e35b
MK
1438 * as just a compound page.
1439 *
1440 * A reference is held on the page, except in the case of demote.
6eb4e88a
MK
1441 *
1442 * Must be called with hugetlb lock held.
1443 */
34d9e35b
MK
1444static void __remove_hugetlb_page(struct hstate *h, struct page *page,
1445 bool adjust_surplus,
1446 bool demote)
6eb4e88a
MK
1447{
1448 int nid = page_to_nid(page);
1449
1450 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1451 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page);
1452
9487ca60 1453 lockdep_assert_held(&hugetlb_lock);
6eb4e88a
MK
1454 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1455 return;
1456
1457 list_del(&page->lru);
1458
1459 if (HPageFreed(page)) {
1460 h->free_huge_pages--;
1461 h->free_huge_pages_node[nid]--;
1462 }
1463 if (adjust_surplus) {
1464 h->surplus_huge_pages--;
1465 h->surplus_huge_pages_node[nid]--;
1466 }
1467
e32d20c0
MK
1468 /*
1469 * Very subtle
1470 *
1471 * For non-gigantic pages set the destructor to the normal compound
1472 * page dtor. This is needed in case someone takes an additional
1473 * temporary ref to the page, and freeing is delayed until they drop
1474 * their reference.
1475 *
1476 * For gigantic pages set the destructor to the null dtor. This
1477 * destructor will never be called. Before freeing the gigantic
1478 * page destroy_compound_gigantic_page will turn the compound page
1479 * into a simple group of pages. After this the destructor does not
1480 * apply.
1481 *
1482 * This handles the case where more than one ref is held when and
1483 * after update_and_free_page is called.
34d9e35b
MK
1484 *
1485 * In the case of demote we do not ref count the page as it will soon
1486 * be turned into a page of smaller size.
e32d20c0 1487 */
34d9e35b
MK
1488 if (!demote)
1489 set_page_refcounted(page);
e32d20c0
MK
1490 if (hstate_is_gigantic(h))
1491 set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1492 else
1493 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
6eb4e88a
MK
1494
1495 h->nr_huge_pages--;
1496 h->nr_huge_pages_node[nid]--;
1497}
1498
34d9e35b
MK
1499static void remove_hugetlb_page(struct hstate *h, struct page *page,
1500 bool adjust_surplus)
1501{
1502 __remove_hugetlb_page(h, page, adjust_surplus, false);
1503}
1504
8531fc6f
MK
1505static void remove_hugetlb_page_for_demote(struct hstate *h, struct page *page,
1506 bool adjust_surplus)
1507{
1508 __remove_hugetlb_page(h, page, adjust_surplus, true);
1509}
1510
ad2fa371
MS
1511static void add_hugetlb_page(struct hstate *h, struct page *page,
1512 bool adjust_surplus)
1513{
1514 int zeroed;
1515 int nid = page_to_nid(page);
1516
1517 VM_BUG_ON_PAGE(!HPageVmemmapOptimized(page), page);
1518
1519 lockdep_assert_held(&hugetlb_lock);
1520
1521 INIT_LIST_HEAD(&page->lru);
1522 h->nr_huge_pages++;
1523 h->nr_huge_pages_node[nid]++;
1524
1525 if (adjust_surplus) {
1526 h->surplus_huge_pages++;
1527 h->surplus_huge_pages_node[nid]++;
1528 }
1529
1530 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1531 set_page_private(page, 0);
a9e1eab2
ML
1532 /*
1533 * We have to set HPageVmemmapOptimized again as above
1534 * set_page_private(page, 0) cleared it.
1535 */
ad2fa371
MS
1536 SetHPageVmemmapOptimized(page);
1537
1538 /*
b65a4eda
MK
1539 * This page is about to be managed by the hugetlb allocator and
1540 * should have no users. Drop our reference, and check for others
1541 * just in case.
ad2fa371
MS
1542 */
1543 zeroed = put_page_testzero(page);
b65a4eda
MK
1544 if (!zeroed)
1545 /*
1546 * It is VERY unlikely soneone else has taken a ref on
1547 * the page. In this case, we simply return as the
1548 * hugetlb destructor (free_huge_page) will be called
1549 * when this other ref is dropped.
1550 */
1551 return;
1552
ad2fa371
MS
1553 arch_clear_hugepage_flags(page);
1554 enqueue_huge_page(h, page);
1555}
1556
b65d4adb 1557static void __update_and_free_page(struct hstate *h, struct page *page)
6af2acb6
AL
1558{
1559 int i;
14455eab 1560 struct page *subpage;
a5516438 1561
4eb0716e 1562 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
944d9fec 1563 return;
18229df5 1564
161df60e
NH
1565 /*
1566 * If we don't know which subpages are hwpoisoned, we can't free
1567 * the hugepage, so it's leaked intentionally.
1568 */
1569 if (HPageRawHwpUnreliable(page))
1570 return;
1571
6213834c 1572 if (hugetlb_vmemmap_restore(h, page)) {
ad2fa371
MS
1573 spin_lock_irq(&hugetlb_lock);
1574 /*
1575 * If we cannot allocate vmemmap pages, just refuse to free the
1576 * page and put the page back on the hugetlb free list and treat
1577 * as a surplus page.
1578 */
1579 add_hugetlb_page(h, page, true);
1580 spin_unlock_irq(&hugetlb_lock);
1581 return;
1582 }
1583
161df60e
NH
1584 /*
1585 * Move PageHWPoison flag from head page to the raw error pages,
1586 * which makes any healthy subpages reusable.
1587 */
1588 if (unlikely(PageHWPoison(page)))
1589 hugetlb_clear_page_hwpoison(page);
1590
14455eab
CL
1591 for (i = 0; i < pages_per_huge_page(h); i++) {
1592 subpage = nth_page(page, i);
dbfee5ae 1593 subpage->flags &= ~(1 << PG_locked | 1 << PG_error |
32f84528 1594 1 << PG_referenced | 1 << PG_dirty |
a7407a27
LC
1595 1 << PG_active | 1 << PG_private |
1596 1 << PG_writeback);
6af2acb6 1597 }
a01f4390
MK
1598
1599 /*
1600 * Non-gigantic pages demoted from CMA allocated gigantic pages
1601 * need to be given back to CMA in free_gigantic_page.
1602 */
1603 if (hstate_is_gigantic(h) ||
1604 hugetlb_cma_page(page, huge_page_order(h))) {
944d9fec
LC
1605 destroy_compound_gigantic_page(page, huge_page_order(h));
1606 free_gigantic_page(page, huge_page_order(h));
1607 } else {
944d9fec
LC
1608 __free_pages(page, huge_page_order(h));
1609 }
6af2acb6
AL
1610}
1611
b65d4adb
MS
1612/*
1613 * As update_and_free_page() can be called under any context, so we cannot
1614 * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the
1615 * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate
1616 * the vmemmap pages.
1617 *
1618 * free_hpage_workfn() locklessly retrieves the linked list of pages to be
1619 * freed and frees them one-by-one. As the page->mapping pointer is going
1620 * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node
1621 * structure of a lockless linked list of huge pages to be freed.
1622 */
1623static LLIST_HEAD(hpage_freelist);
1624
1625static void free_hpage_workfn(struct work_struct *work)
1626{
1627 struct llist_node *node;
1628
1629 node = llist_del_all(&hpage_freelist);
1630
1631 while (node) {
1632 struct page *page;
1633 struct hstate *h;
1634
1635 page = container_of((struct address_space **)node,
1636 struct page, mapping);
1637 node = node->next;
1638 page->mapping = NULL;
1639 /*
1640 * The VM_BUG_ON_PAGE(!PageHuge(page), page) in page_hstate()
1641 * is going to trigger because a previous call to
1642 * remove_hugetlb_page() will set_compound_page_dtor(page,
1643 * NULL_COMPOUND_DTOR), so do not use page_hstate() directly.
1644 */
1645 h = size_to_hstate(page_size(page));
1646
1647 __update_and_free_page(h, page);
1648
1649 cond_resched();
1650 }
1651}
1652static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1653
1654static inline void flush_free_hpage_work(struct hstate *h)
1655{
6213834c 1656 if (hugetlb_vmemmap_optimizable(h))
b65d4adb
MS
1657 flush_work(&free_hpage_work);
1658}
1659
1660static void update_and_free_page(struct hstate *h, struct page *page,
1661 bool atomic)
1662{
ad2fa371 1663 if (!HPageVmemmapOptimized(page) || !atomic) {
b65d4adb
MS
1664 __update_and_free_page(h, page);
1665 return;
1666 }
1667
1668 /*
1669 * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages.
1670 *
1671 * Only call schedule_work() if hpage_freelist is previously
1672 * empty. Otherwise, schedule_work() had been called but the workfn
1673 * hasn't retrieved the list yet.
1674 */
1675 if (llist_add((struct llist_node *)&page->mapping, &hpage_freelist))
1676 schedule_work(&free_hpage_work);
1677}
1678
10c6ec49
MK
1679static void update_and_free_pages_bulk(struct hstate *h, struct list_head *list)
1680{
1681 struct page *page, *t_page;
1682
1683 list_for_each_entry_safe(page, t_page, list, lru) {
b65d4adb 1684 update_and_free_page(h, page, false);
10c6ec49
MK
1685 cond_resched();
1686 }
1687}
1688
e5ff2159
AK
1689struct hstate *size_to_hstate(unsigned long size)
1690{
1691 struct hstate *h;
1692
1693 for_each_hstate(h) {
1694 if (huge_page_size(h) == size)
1695 return h;
1696 }
1697 return NULL;
1698}
1699
db71ef79 1700void free_huge_page(struct page *page)
27a85ef1 1701{
a5516438
AK
1702 /*
1703 * Can't pass hstate in here because it is called from the
1704 * compound page destructor.
1705 */
e5ff2159 1706 struct hstate *h = page_hstate(page);
7893d1d5 1707 int nid = page_to_nid(page);
d6995da3 1708 struct hugepage_subpool *spool = hugetlb_page_subpool(page);
07443a85 1709 bool restore_reserve;
db71ef79 1710 unsigned long flags;
27a85ef1 1711
b4330afb
MK
1712 VM_BUG_ON_PAGE(page_count(page), page);
1713 VM_BUG_ON_PAGE(page_mapcount(page), page);
8ace22bc 1714
d6995da3 1715 hugetlb_set_page_subpool(page, NULL);
78fbe906
DH
1716 if (PageAnon(page))
1717 __ClearPageAnonExclusive(page);
8ace22bc 1718 page->mapping = NULL;
d6995da3
MK
1719 restore_reserve = HPageRestoreReserve(page);
1720 ClearHPageRestoreReserve(page);
27a85ef1 1721
1c5ecae3 1722 /*
d6995da3 1723 * If HPageRestoreReserve was set on page, page allocation consumed a
0919e1b6
MK
1724 * reservation. If the page was associated with a subpool, there
1725 * would have been a page reserved in the subpool before allocation
1726 * via hugepage_subpool_get_pages(). Since we are 'restoring' the
6c26d310 1727 * reservation, do not call hugepage_subpool_put_pages() as this will
0919e1b6 1728 * remove the reserved page from the subpool.
1c5ecae3 1729 */
0919e1b6
MK
1730 if (!restore_reserve) {
1731 /*
1732 * A return code of zero implies that the subpool will be
1733 * under its minimum size if the reservation is not restored
1734 * after page is free. Therefore, force restore_reserve
1735 * operation.
1736 */
1737 if (hugepage_subpool_put_pages(spool, 1) == 0)
1738 restore_reserve = true;
1739 }
1c5ecae3 1740
db71ef79 1741 spin_lock_irqsave(&hugetlb_lock, flags);
8f251a3d 1742 ClearHPageMigratable(page);
6d76dcf4
AK
1743 hugetlb_cgroup_uncharge_page(hstate_index(h),
1744 pages_per_huge_page(h), page);
08cf9faf
MA
1745 hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
1746 pages_per_huge_page(h), page);
07443a85
JK
1747 if (restore_reserve)
1748 h->resv_huge_pages++;
1749
9157c311 1750 if (HPageTemporary(page)) {
6eb4e88a 1751 remove_hugetlb_page(h, page, false);
db71ef79 1752 spin_unlock_irqrestore(&hugetlb_lock, flags);
b65d4adb 1753 update_and_free_page(h, page, true);
ab5ac90a 1754 } else if (h->surplus_huge_pages_node[nid]) {
0edaecfa 1755 /* remove the page from active list */
6eb4e88a 1756 remove_hugetlb_page(h, page, true);
db71ef79 1757 spin_unlock_irqrestore(&hugetlb_lock, flags);
b65d4adb 1758 update_and_free_page(h, page, true);
7893d1d5 1759 } else {
5d3a551c 1760 arch_clear_hugepage_flags(page);
a5516438 1761 enqueue_huge_page(h, page);
db71ef79 1762 spin_unlock_irqrestore(&hugetlb_lock, flags);
c77c0a8a 1763 }
c77c0a8a
WL
1764}
1765
d3d99fcc
OS
1766/*
1767 * Must be called with the hugetlb lock held
1768 */
1769static void __prep_account_new_huge_page(struct hstate *h, int nid)
1770{
1771 lockdep_assert_held(&hugetlb_lock);
1772 h->nr_huge_pages++;
1773 h->nr_huge_pages_node[nid]++;
1774}
1775
f41f2ed4 1776static void __prep_new_huge_page(struct hstate *h, struct page *page)
b7ba30c6 1777{
6213834c 1778 hugetlb_vmemmap_optimize(h, page);
0edaecfa 1779 INIT_LIST_HEAD(&page->lru);
f1e61557 1780 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
ff546117 1781 hugetlb_set_page_subpool(page, NULL);
9dd540e2 1782 set_hugetlb_cgroup(page, NULL);
1adc4d41 1783 set_hugetlb_cgroup_rsvd(page, NULL);
d3d99fcc
OS
1784}
1785
1786static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1787{
f41f2ed4 1788 __prep_new_huge_page(h, page);
db71ef79 1789 spin_lock_irq(&hugetlb_lock);
d3d99fcc 1790 __prep_account_new_huge_page(h, nid);
db71ef79 1791 spin_unlock_irq(&hugetlb_lock);
b7ba30c6
AK
1792}
1793
34d9e35b
MK
1794static bool __prep_compound_gigantic_page(struct page *page, unsigned int order,
1795 bool demote)
20a0307c 1796{
7118fc29 1797 int i, j;
20a0307c 1798 int nr_pages = 1 << order;
14455eab 1799 struct page *p;
20a0307c
WF
1800
1801 /* we rely on prep_new_huge_page to set the destructor */
1802 set_compound_order(page, order);
de09d31d 1803 __SetPageHead(page);
2b21624f 1804 for (i = 0; i < nr_pages; i++) {
14455eab
CL
1805 p = nth_page(page, i);
1806
ef5a22be
AA
1807 /*
1808 * For gigantic hugepages allocated through bootmem at
1809 * boot, it's safer to be consistent with the not-gigantic
1810 * hugepages and clear the PG_reserved bit from all tail pages
7c8de358 1811 * too. Otherwise drivers using get_user_pages() to access tail
ef5a22be
AA
1812 * pages may get the reference counting wrong if they see
1813 * PG_reserved set on a tail page (despite the head page not
1814 * having PG_reserved set). Enforcing this consistency between
1815 * head and tail pages allows drivers to optimize away a check
1816 * on the head page when they need know if put_page() is needed
1817 * after get_user_pages().
1818 */
1819 __ClearPageReserved(p);
7118fc29
MK
1820 /*
1821 * Subtle and very unlikely
1822 *
1823 * Gigantic 'page allocators' such as memblock or cma will
1824 * return a set of pages with each page ref counted. We need
1825 * to turn this set of pages into a compound page with tail
1826 * page ref counts set to zero. Code such as speculative page
1827 * cache adding could take a ref on a 'to be' tail page.
1828 * We need to respect any increased ref count, and only set
1829 * the ref count to zero if count is currently 1. If count
416d85ed
MK
1830 * is not 1, we return an error. An error return indicates
1831 * the set of pages can not be converted to a gigantic page.
1832 * The caller who allocated the pages should then discard the
1833 * pages using the appropriate free interface.
34d9e35b
MK
1834 *
1835 * In the case of demote, the ref count will be zero.
7118fc29 1836 */
34d9e35b
MK
1837 if (!demote) {
1838 if (!page_ref_freeze(p, 1)) {
1839 pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n");
1840 goto out_error;
1841 }
1842 } else {
1843 VM_BUG_ON_PAGE(page_count(p), p);
7118fc29 1844 }
2b21624f
MK
1845 if (i != 0)
1846 set_compound_head(p, page);
20a0307c 1847 }
b4330afb 1848 atomic_set(compound_mapcount_ptr(page), -1);
5291c09b 1849 atomic_set(compound_pincount_ptr(page), 0);
7118fc29
MK
1850 return true;
1851
1852out_error:
2b21624f
MK
1853 /* undo page modifications made above */
1854 for (j = 0; j < i; j++) {
14455eab 1855 p = nth_page(page, j);
2b21624f
MK
1856 if (j != 0)
1857 clear_compound_head(p);
7118fc29
MK
1858 set_page_refcounted(p);
1859 }
1860 /* need to clear PG_reserved on remaining tail pages */
14455eab
CL
1861 for (; j < nr_pages; j++) {
1862 p = nth_page(page, j);
7118fc29 1863 __ClearPageReserved(p);
14455eab 1864 }
7118fc29 1865 set_compound_order(page, 0);
5232c63f 1866#ifdef CONFIG_64BIT
7118fc29 1867 page[1].compound_nr = 0;
5232c63f 1868#endif
7118fc29
MK
1869 __ClearPageHead(page);
1870 return false;
20a0307c
WF
1871}
1872
34d9e35b
MK
1873static bool prep_compound_gigantic_page(struct page *page, unsigned int order)
1874{
1875 return __prep_compound_gigantic_page(page, order, false);
1876}
1877
8531fc6f
MK
1878static bool prep_compound_gigantic_page_for_demote(struct page *page,
1879 unsigned int order)
1880{
1881 return __prep_compound_gigantic_page(page, order, true);
1882}
1883
7795912c
AM
1884/*
1885 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1886 * transparent huge pages. See the PageTransHuge() documentation for more
1887 * details.
1888 */
20a0307c
WF
1889int PageHuge(struct page *page)
1890{
20a0307c
WF
1891 if (!PageCompound(page))
1892 return 0;
1893
1894 page = compound_head(page);
f1e61557 1895 return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
20a0307c 1896}
43131e14
NH
1897EXPORT_SYMBOL_GPL(PageHuge);
1898
27c73ae7
AA
1899/*
1900 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1901 * normal or transparent huge pages.
1902 */
1903int PageHeadHuge(struct page *page_head)
1904{
27c73ae7
AA
1905 if (!PageHead(page_head))
1906 return 0;
1907
d4af73e3 1908 return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR;
27c73ae7 1909}
4e936ecc 1910EXPORT_SYMBOL_GPL(PageHeadHuge);
27c73ae7 1911
c0d0381a
MK
1912/*
1913 * Find and lock address space (mapping) in write mode.
1914 *
336bf30e
MK
1915 * Upon entry, the page is locked which means that page_mapping() is
1916 * stable. Due to locking order, we can only trylock_write. If we can
1917 * not get the lock, simply return NULL to caller.
c0d0381a
MK
1918 */
1919struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
1920{
336bf30e 1921 struct address_space *mapping = page_mapping(hpage);
c0d0381a 1922
c0d0381a
MK
1923 if (!mapping)
1924 return mapping;
1925
c0d0381a
MK
1926 if (i_mmap_trylock_write(mapping))
1927 return mapping;
1928
336bf30e 1929 return NULL;
c0d0381a
MK
1930}
1931
fe19bd3d 1932pgoff_t hugetlb_basepage_index(struct page *page)
13d60f4b
ZY
1933{
1934 struct page *page_head = compound_head(page);
1935 pgoff_t index = page_index(page_head);
1936 unsigned long compound_idx;
1937
13d60f4b
ZY
1938 if (compound_order(page_head) >= MAX_ORDER)
1939 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1940 else
1941 compound_idx = page - page_head;
1942
1943 return (index << compound_order(page_head)) + compound_idx;
1944}
1945
0c397dae 1946static struct page *alloc_buddy_huge_page(struct hstate *h,
f60858f9
MK
1947 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1948 nodemask_t *node_alloc_noretry)
1da177e4 1949{
af0fb9df 1950 int order = huge_page_order(h);
1da177e4 1951 struct page *page;
f60858f9 1952 bool alloc_try_hard = true;
2b21624f 1953 bool retry = true;
f96efd58 1954
f60858f9
MK
1955 /*
1956 * By default we always try hard to allocate the page with
1957 * __GFP_RETRY_MAYFAIL flag. However, if we are allocating pages in
1958 * a loop (to adjust global huge page counts) and previous allocation
1959 * failed, do not continue to try hard on the same node. Use the
1960 * node_alloc_noretry bitmap to manage this state information.
1961 */
1962 if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1963 alloc_try_hard = false;
1964 gfp_mask |= __GFP_COMP|__GFP_NOWARN;
1965 if (alloc_try_hard)
1966 gfp_mask |= __GFP_RETRY_MAYFAIL;
af0fb9df
MH
1967 if (nid == NUMA_NO_NODE)
1968 nid = numa_mem_id();
2b21624f 1969retry:
84172f4b 1970 page = __alloc_pages(gfp_mask, order, nid, nmask);
2b21624f
MK
1971
1972 /* Freeze head page */
1973 if (page && !page_ref_freeze(page, 1)) {
1974 __free_pages(page, order);
1975 if (retry) { /* retry once */
1976 retry = false;
1977 goto retry;
1978 }
1979 /* WOW! twice in a row. */
1980 pr_warn("HugeTLB head page unexpected inflated ref count\n");
1981 page = NULL;
1982 }
1983
af0fb9df
MH
1984 if (page)
1985 __count_vm_event(HTLB_BUDDY_PGALLOC);
1986 else
1987 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
63b4613c 1988
f60858f9
MK
1989 /*
1990 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
1991 * indicates an overall state change. Clear bit so that we resume
1992 * normal 'try hard' allocations.
1993 */
1994 if (node_alloc_noretry && page && !alloc_try_hard)
1995 node_clear(nid, *node_alloc_noretry);
1996
1997 /*
1998 * If we tried hard to get a page but failed, set bit so that
1999 * subsequent attempts will not try as hard until there is an
2000 * overall state change.
2001 */
2002 if (node_alloc_noretry && !page && alloc_try_hard)
2003 node_set(nid, *node_alloc_noretry);
2004
63b4613c
NA
2005 return page;
2006}
2007
0c397dae
MH
2008/*
2009 * Common helper to allocate a fresh hugetlb page. All specific allocators
2010 * should use this function to get new hugetlb pages
2b21624f
MK
2011 *
2012 * Note that returned page is 'frozen': ref count of head page and all tail
2013 * pages is zero.
0c397dae
MH
2014 */
2015static struct page *alloc_fresh_huge_page(struct hstate *h,
f60858f9
MK
2016 gfp_t gfp_mask, int nid, nodemask_t *nmask,
2017 nodemask_t *node_alloc_noretry)
0c397dae
MH
2018{
2019 struct page *page;
7118fc29 2020 bool retry = false;
0c397dae 2021
7118fc29 2022retry:
0c397dae
MH
2023 if (hstate_is_gigantic(h))
2024 page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
2025 else
2026 page = alloc_buddy_huge_page(h, gfp_mask,
f60858f9 2027 nid, nmask, node_alloc_noretry);
0c397dae
MH
2028 if (!page)
2029 return NULL;
2030
7118fc29
MK
2031 if (hstate_is_gigantic(h)) {
2032 if (!prep_compound_gigantic_page(page, huge_page_order(h))) {
2033 /*
2034 * Rare failure to convert pages to compound page.
2035 * Free pages and try again - ONCE!
2036 */
2037 free_gigantic_page(page, huge_page_order(h));
2038 if (!retry) {
2039 retry = true;
2040 goto retry;
2041 }
7118fc29
MK
2042 return NULL;
2043 }
2044 }
0c397dae
MH
2045 prep_new_huge_page(h, page, page_to_nid(page));
2046
2047 return page;
2048}
2049
af0fb9df
MH
2050/*
2051 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
2052 * manner.
2053 */
f60858f9
MK
2054static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
2055 nodemask_t *node_alloc_noretry)
b2261026
JK
2056{
2057 struct page *page;
2058 int nr_nodes, node;
af0fb9df 2059 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
b2261026
JK
2060
2061 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
f60858f9
MK
2062 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
2063 node_alloc_noretry);
af0fb9df 2064 if (page)
b2261026 2065 break;
b2261026
JK
2066 }
2067
af0fb9df
MH
2068 if (!page)
2069 return 0;
b2261026 2070
2b21624f 2071 free_huge_page(page); /* free it into the hugepage allocator */
af0fb9df
MH
2072
2073 return 1;
b2261026
JK
2074}
2075
e8c5c824 2076/*
10c6ec49
MK
2077 * Remove huge page from pool from next node to free. Attempt to keep
2078 * persistent huge pages more or less balanced over allowed nodes.
2079 * This routine only 'removes' the hugetlb page. The caller must make
2080 * an additional call to free the page to low level allocators.
e8c5c824
LS
2081 * Called with hugetlb_lock locked.
2082 */
10c6ec49
MK
2083static struct page *remove_pool_huge_page(struct hstate *h,
2084 nodemask_t *nodes_allowed,
2085 bool acct_surplus)
e8c5c824 2086{
b2261026 2087 int nr_nodes, node;
10c6ec49 2088 struct page *page = NULL;
e8c5c824 2089
9487ca60 2090 lockdep_assert_held(&hugetlb_lock);
b2261026 2091 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
685f3457
LS
2092 /*
2093 * If we're returning unused surplus pages, only examine
2094 * nodes with surplus pages.
2095 */
b2261026
JK
2096 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
2097 !list_empty(&h->hugepage_freelists[node])) {
10c6ec49 2098 page = list_entry(h->hugepage_freelists[node].next,
e8c5c824 2099 struct page, lru);
6eb4e88a 2100 remove_hugetlb_page(h, page, acct_surplus);
9a76db09 2101 break;
e8c5c824 2102 }
b2261026 2103 }
e8c5c824 2104
10c6ec49 2105 return page;
e8c5c824
LS
2106}
2107
c8721bbb
NH
2108/*
2109 * Dissolve a given free hugepage into free buddy pages. This function does
faf53def
NH
2110 * nothing for in-use hugepages and non-hugepages.
2111 * This function returns values like below:
2112 *
ad2fa371
MS
2113 * -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages
2114 * when the system is under memory pressure and the feature of
2115 * freeing unused vmemmap pages associated with each hugetlb page
2116 * is enabled.
2117 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
2118 * (allocated or reserved.)
2119 * 0: successfully dissolved free hugepages or the page is not a
2120 * hugepage (considered as already dissolved)
c8721bbb 2121 */
c3114a84 2122int dissolve_free_huge_page(struct page *page)
c8721bbb 2123{
6bc9b564 2124 int rc = -EBUSY;
082d5b6b 2125
7ffddd49 2126retry:
faf53def
NH
2127 /* Not to disrupt normal path by vainly holding hugetlb_lock */
2128 if (!PageHuge(page))
2129 return 0;
2130
db71ef79 2131 spin_lock_irq(&hugetlb_lock);
faf53def
NH
2132 if (!PageHuge(page)) {
2133 rc = 0;
2134 goto out;
2135 }
2136
2137 if (!page_count(page)) {
2247bb33
GS
2138 struct page *head = compound_head(page);
2139 struct hstate *h = page_hstate(head);
8346d69d 2140 if (!available_huge_pages(h))
082d5b6b 2141 goto out;
7ffddd49
MS
2142
2143 /*
2144 * We should make sure that the page is already on the free list
2145 * when it is dissolved.
2146 */
6c037149 2147 if (unlikely(!HPageFreed(head))) {
db71ef79 2148 spin_unlock_irq(&hugetlb_lock);
7ffddd49
MS
2149 cond_resched();
2150
2151 /*
2152 * Theoretically, we should return -EBUSY when we
2153 * encounter this race. In fact, we have a chance
2154 * to successfully dissolve the page if we do a
2155 * retry. Because the race window is quite small.
2156 * If we seize this opportunity, it is an optimization
2157 * for increasing the success rate of dissolving page.
2158 */
2159 goto retry;
2160 }
2161
0c5da357 2162 remove_hugetlb_page(h, head, false);
c1470b33 2163 h->max_huge_pages--;
db71ef79 2164 spin_unlock_irq(&hugetlb_lock);
ad2fa371
MS
2165
2166 /*
2167 * Normally update_and_free_page will allocate required vmemmmap
2168 * before freeing the page. update_and_free_page will fail to
2169 * free the page if it can not allocate required vmemmap. We
2170 * need to adjust max_huge_pages if the page is not freed.
2171 * Attempt to allocate vmemmmap here so that we can take
2172 * appropriate action on failure.
2173 */
6213834c 2174 rc = hugetlb_vmemmap_restore(h, head);
ad2fa371 2175 if (!rc) {
ad2fa371
MS
2176 update_and_free_page(h, head, false);
2177 } else {
2178 spin_lock_irq(&hugetlb_lock);
2179 add_hugetlb_page(h, head, false);
2180 h->max_huge_pages++;
2181 spin_unlock_irq(&hugetlb_lock);
2182 }
2183
2184 return rc;
c8721bbb 2185 }
082d5b6b 2186out:
db71ef79 2187 spin_unlock_irq(&hugetlb_lock);
082d5b6b 2188 return rc;
c8721bbb
NH
2189}
2190
2191/*
2192 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
2193 * make specified memory blocks removable from the system.
2247bb33
GS
2194 * Note that this will dissolve a free gigantic hugepage completely, if any
2195 * part of it lies within the given range.
082d5b6b
GS
2196 * Also note that if dissolve_free_huge_page() returns with an error, all
2197 * free hugepages that were dissolved before that error are lost.
c8721bbb 2198 */
082d5b6b 2199int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
c8721bbb 2200{
c8721bbb 2201 unsigned long pfn;
eb03aa00 2202 struct page *page;
082d5b6b 2203 int rc = 0;
dc2628f3
MS
2204 unsigned int order;
2205 struct hstate *h;
c8721bbb 2206
d0177639 2207 if (!hugepages_supported())
082d5b6b 2208 return rc;
d0177639 2209
dc2628f3
MS
2210 order = huge_page_order(&default_hstate);
2211 for_each_hstate(h)
2212 order = min(order, huge_page_order(h));
2213
2214 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) {
eb03aa00 2215 page = pfn_to_page(pfn);
faf53def
NH
2216 rc = dissolve_free_huge_page(page);
2217 if (rc)
2218 break;
eb03aa00 2219 }
082d5b6b
GS
2220
2221 return rc;
c8721bbb
NH
2222}
2223
ab5ac90a
MH
2224/*
2225 * Allocates a fresh surplus page from the page allocator.
2226 */
0c397dae 2227static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
2b21624f 2228 int nid, nodemask_t *nmask)
7893d1d5 2229{
9980d744 2230 struct page *page = NULL;
7893d1d5 2231
bae7f4ae 2232 if (hstate_is_gigantic(h))
aa888a74
AK
2233 return NULL;
2234
db71ef79 2235 spin_lock_irq(&hugetlb_lock);
9980d744
MH
2236 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
2237 goto out_unlock;
db71ef79 2238 spin_unlock_irq(&hugetlb_lock);
d1c3fb1f 2239
f60858f9 2240 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
9980d744 2241 if (!page)
0c397dae 2242 return NULL;
d1c3fb1f 2243
db71ef79 2244 spin_lock_irq(&hugetlb_lock);
9980d744
MH
2245 /*
2246 * We could have raced with the pool size change.
2247 * Double check that and simply deallocate the new page
2248 * if we would end up overcommiting the surpluses. Abuse
2249 * temporary page to workaround the nasty free_huge_page
2250 * codeflow
2251 */
2252 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
9157c311 2253 SetHPageTemporary(page);
db71ef79 2254 spin_unlock_irq(&hugetlb_lock);
2b21624f 2255 free_huge_page(page);
2bf753e6 2256 return NULL;
7893d1d5 2257 }
9980d744 2258
b65a4eda
MK
2259 h->surplus_huge_pages++;
2260 h->surplus_huge_pages_node[page_to_nid(page)]++;
2261
9980d744 2262out_unlock:
db71ef79 2263 spin_unlock_irq(&hugetlb_lock);
7893d1d5
AL
2264
2265 return page;
2266}
2267
bbe88753 2268static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
9a4e9f3b 2269 int nid, nodemask_t *nmask)
ab5ac90a
MH
2270{
2271 struct page *page;
2272
2273 if (hstate_is_gigantic(h))
2274 return NULL;
2275
f60858f9 2276 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
ab5ac90a
MH
2277 if (!page)
2278 return NULL;
2279
2b21624f
MK
2280 /* fresh huge pages are frozen */
2281 set_page_refcounted(page);
2282
ab5ac90a
MH
2283 /*
2284 * We do not account these pages as surplus because they are only
2285 * temporary and will be released properly on the last reference
2286 */
9157c311 2287 SetHPageTemporary(page);
ab5ac90a
MH
2288
2289 return page;
2290}
2291
099730d6
DH
2292/*
2293 * Use the VMA's mpolicy to allocate a huge page from the buddy.
2294 */
e0ec90ee 2295static
0c397dae 2296struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
099730d6
DH
2297 struct vm_area_struct *vma, unsigned long addr)
2298{
cfcaa66f 2299 struct page *page = NULL;
aaf14e40
MH
2300 struct mempolicy *mpol;
2301 gfp_t gfp_mask = htlb_alloc_mask(h);
2302 int nid;
2303 nodemask_t *nodemask;
2304
2305 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
cfcaa66f
BW
2306 if (mpol_is_preferred_many(mpol)) {
2307 gfp_t gfp = gfp_mask | __GFP_NOWARN;
2308
2309 gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2b21624f 2310 page = alloc_surplus_huge_page(h, gfp, nid, nodemask);
aaf14e40 2311
cfcaa66f
BW
2312 /* Fallback to all nodes if page==NULL */
2313 nodemask = NULL;
2314 }
2315
2316 if (!page)
2b21624f 2317 page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
cfcaa66f 2318 mpol_cond_put(mpol);
aaf14e40 2319 return page;
099730d6
DH
2320}
2321
ab5ac90a 2322/* page migration callback function */
3e59fcb0 2323struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
d92bbc27 2324 nodemask_t *nmask, gfp_t gfp_mask)
4db9b2ef 2325{
db71ef79 2326 spin_lock_irq(&hugetlb_lock);
8346d69d 2327 if (available_huge_pages(h)) {
3e59fcb0
MH
2328 struct page *page;
2329
2330 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
2331 if (page) {
db71ef79 2332 spin_unlock_irq(&hugetlb_lock);
3e59fcb0 2333 return page;
4db9b2ef
MH
2334 }
2335 }
db71ef79 2336 spin_unlock_irq(&hugetlb_lock);
4db9b2ef 2337
0c397dae 2338 return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
4db9b2ef
MH
2339}
2340
ebd63723 2341/* mempolicy aware migration callback */
389c8178
MH
2342struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
2343 unsigned long address)
ebd63723
MH
2344{
2345 struct mempolicy *mpol;
2346 nodemask_t *nodemask;
2347 struct page *page;
ebd63723
MH
2348 gfp_t gfp_mask;
2349 int node;
2350
ebd63723
MH
2351 gfp_mask = htlb_alloc_mask(h);
2352 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
d92bbc27 2353 page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask);
ebd63723
MH
2354 mpol_cond_put(mpol);
2355
2356 return page;
2357}
2358
e4e574b7 2359/*
25985edc 2360 * Increase the hugetlb pool such that it can accommodate a reservation
e4e574b7
AL
2361 * of size 'delta'.
2362 */
0a4f3d1b 2363static int gather_surplus_pages(struct hstate *h, long delta)
1b2a1e7b 2364 __must_hold(&hugetlb_lock)
e4e574b7 2365{
34665341 2366 LIST_HEAD(surplus_list);
e4e574b7 2367 struct page *page, *tmp;
0a4f3d1b
LX
2368 int ret;
2369 long i;
2370 long needed, allocated;
28073b02 2371 bool alloc_ok = true;
e4e574b7 2372
9487ca60 2373 lockdep_assert_held(&hugetlb_lock);
a5516438 2374 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
ac09b3a1 2375 if (needed <= 0) {
a5516438 2376 h->resv_huge_pages += delta;
e4e574b7 2377 return 0;
ac09b3a1 2378 }
e4e574b7
AL
2379
2380 allocated = 0;
e4e574b7
AL
2381
2382 ret = -ENOMEM;
2383retry:
db71ef79 2384 spin_unlock_irq(&hugetlb_lock);
e4e574b7 2385 for (i = 0; i < needed; i++) {
0c397dae 2386 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
2b21624f 2387 NUMA_NO_NODE, NULL);
28073b02
HD
2388 if (!page) {
2389 alloc_ok = false;
2390 break;
2391 }
e4e574b7 2392 list_add(&page->lru, &surplus_list);
69ed779a 2393 cond_resched();
e4e574b7 2394 }
28073b02 2395 allocated += i;
e4e574b7
AL
2396
2397 /*
2398 * After retaking hugetlb_lock, we need to recalculate 'needed'
2399 * because either resv_huge_pages or free_huge_pages may have changed.
2400 */
db71ef79 2401 spin_lock_irq(&hugetlb_lock);
a5516438
AK
2402 needed = (h->resv_huge_pages + delta) -
2403 (h->free_huge_pages + allocated);
28073b02
HD
2404 if (needed > 0) {
2405 if (alloc_ok)
2406 goto retry;
2407 /*
2408 * We were not able to allocate enough pages to
2409 * satisfy the entire reservation so we free what
2410 * we've allocated so far.
2411 */
2412 goto free;
2413 }
e4e574b7
AL
2414 /*
2415 * The surplus_list now contains _at_least_ the number of extra pages
25985edc 2416 * needed to accommodate the reservation. Add the appropriate number
e4e574b7 2417 * of pages to the hugetlb pool and free the extras back to the buddy
ac09b3a1
AL
2418 * allocator. Commit the entire reservation here to prevent another
2419 * process from stealing the pages as they are added to the pool but
2420 * before they are reserved.
e4e574b7
AL
2421 */
2422 needed += allocated;
a5516438 2423 h->resv_huge_pages += delta;
e4e574b7 2424 ret = 0;
a9869b83 2425
19fc3f0a 2426 /* Free the needed pages to the hugetlb pool */
e4e574b7 2427 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
19fc3f0a
AL
2428 if ((--needed) < 0)
2429 break;
b65a4eda 2430 /* Add the page to the hugetlb allocator */
a5516438 2431 enqueue_huge_page(h, page);
19fc3f0a 2432 }
28073b02 2433free:
db71ef79 2434 spin_unlock_irq(&hugetlb_lock);
19fc3f0a 2435
b65a4eda
MK
2436 /*
2437 * Free unnecessary surplus pages to the buddy allocator.
2438 * Pages have no ref count, call free_huge_page directly.
2439 */
c0d934ba 2440 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
b65a4eda 2441 free_huge_page(page);
db71ef79 2442 spin_lock_irq(&hugetlb_lock);
e4e574b7
AL
2443
2444 return ret;
2445}
2446
2447/*
e5bbc8a6
MK
2448 * This routine has two main purposes:
2449 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2450 * in unused_resv_pages. This corresponds to the prior adjustments made
2451 * to the associated reservation map.
2452 * 2) Free any unused surplus pages that may have been allocated to satisfy
2453 * the reservation. As many as unused_resv_pages may be freed.
e4e574b7 2454 */
a5516438
AK
2455static void return_unused_surplus_pages(struct hstate *h,
2456 unsigned long unused_resv_pages)
e4e574b7 2457{
e4e574b7 2458 unsigned long nr_pages;
10c6ec49
MK
2459 struct page *page;
2460 LIST_HEAD(page_list);
2461
9487ca60 2462 lockdep_assert_held(&hugetlb_lock);
10c6ec49
MK
2463 /* Uncommit the reservation */
2464 h->resv_huge_pages -= unused_resv_pages;
e4e574b7 2465
c0531714 2466 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
e5bbc8a6 2467 goto out;
aa888a74 2468
e5bbc8a6
MK
2469 /*
2470 * Part (or even all) of the reservation could have been backed
2471 * by pre-allocated pages. Only free surplus pages.
2472 */
a5516438 2473 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
e4e574b7 2474
685f3457
LS
2475 /*
2476 * We want to release as many surplus pages as possible, spread
9b5e5d0f
LS
2477 * evenly across all nodes with memory. Iterate across these nodes
2478 * until we can no longer free unreserved surplus pages. This occurs
2479 * when the nodes with surplus pages have no free pages.
10c6ec49 2480 * remove_pool_huge_page() will balance the freed pages across the
9b5e5d0f 2481 * on-line nodes with memory and will handle the hstate accounting.
685f3457
LS
2482 */
2483 while (nr_pages--) {
10c6ec49
MK
2484 page = remove_pool_huge_page(h, &node_states[N_MEMORY], 1);
2485 if (!page)
e5bbc8a6 2486 goto out;
10c6ec49
MK
2487
2488 list_add(&page->lru, &page_list);
e4e574b7 2489 }
e5bbc8a6
MK
2490
2491out:
db71ef79 2492 spin_unlock_irq(&hugetlb_lock);
10c6ec49 2493 update_and_free_pages_bulk(h, &page_list);
db71ef79 2494 spin_lock_irq(&hugetlb_lock);
e4e574b7
AL
2495}
2496
5e911373 2497
c37f9fb1 2498/*
feba16e2 2499 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
5e911373 2500 * are used by the huge page allocation routines to manage reservations.
cf3ad20b
MK
2501 *
2502 * vma_needs_reservation is called to determine if the huge page at addr
2503 * within the vma has an associated reservation. If a reservation is
2504 * needed, the value 1 is returned. The caller is then responsible for
2505 * managing the global reservation and subpool usage counts. After
2506 * the huge page has been allocated, vma_commit_reservation is called
feba16e2
MK
2507 * to add the page to the reservation map. If the page allocation fails,
2508 * the reservation must be ended instead of committed. vma_end_reservation
2509 * is called in such cases.
cf3ad20b
MK
2510 *
2511 * In the normal case, vma_commit_reservation returns the same value
2512 * as the preceding vma_needs_reservation call. The only time this
2513 * is not the case is if a reserve map was changed between calls. It
2514 * is the responsibility of the caller to notice the difference and
2515 * take appropriate action.
96b96a96
MK
2516 *
2517 * vma_add_reservation is used in error paths where a reservation must
2518 * be restored when a newly allocated huge page must be freed. It is
2519 * to be called after calling vma_needs_reservation to determine if a
2520 * reservation exists.
846be085
MK
2521 *
2522 * vma_del_reservation is used in error paths where an entry in the reserve
2523 * map was created during huge page allocation and must be removed. It is to
2524 * be called after calling vma_needs_reservation to determine if a reservation
2525 * exists.
c37f9fb1 2526 */
5e911373
MK
2527enum vma_resv_mode {
2528 VMA_NEEDS_RESV,
2529 VMA_COMMIT_RESV,
feba16e2 2530 VMA_END_RESV,
96b96a96 2531 VMA_ADD_RESV,
846be085 2532 VMA_DEL_RESV,
5e911373 2533};
cf3ad20b
MK
2534static long __vma_reservation_common(struct hstate *h,
2535 struct vm_area_struct *vma, unsigned long addr,
5e911373 2536 enum vma_resv_mode mode)
c37f9fb1 2537{
4e35f483
JK
2538 struct resv_map *resv;
2539 pgoff_t idx;
cf3ad20b 2540 long ret;
0db9d74e 2541 long dummy_out_regions_needed;
c37f9fb1 2542
4e35f483
JK
2543 resv = vma_resv_map(vma);
2544 if (!resv)
84afd99b 2545 return 1;
c37f9fb1 2546
4e35f483 2547 idx = vma_hugecache_offset(h, vma, addr);
5e911373
MK
2548 switch (mode) {
2549 case VMA_NEEDS_RESV:
0db9d74e
MA
2550 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2551 /* We assume that vma_reservation_* routines always operate on
2552 * 1 page, and that adding to resv map a 1 page entry can only
2553 * ever require 1 region.
2554 */
2555 VM_BUG_ON(dummy_out_regions_needed != 1);
5e911373
MK
2556 break;
2557 case VMA_COMMIT_RESV:
075a61d0 2558 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
0db9d74e
MA
2559 /* region_add calls of range 1 should never fail. */
2560 VM_BUG_ON(ret < 0);
5e911373 2561 break;
feba16e2 2562 case VMA_END_RESV:
0db9d74e 2563 region_abort(resv, idx, idx + 1, 1);
5e911373
MK
2564 ret = 0;
2565 break;
96b96a96 2566 case VMA_ADD_RESV:
0db9d74e 2567 if (vma->vm_flags & VM_MAYSHARE) {
075a61d0 2568 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
0db9d74e
MA
2569 /* region_add calls of range 1 should never fail. */
2570 VM_BUG_ON(ret < 0);
2571 } else {
2572 region_abort(resv, idx, idx + 1, 1);
96b96a96
MK
2573 ret = region_del(resv, idx, idx + 1);
2574 }
2575 break;
846be085
MK
2576 case VMA_DEL_RESV:
2577 if (vma->vm_flags & VM_MAYSHARE) {
2578 region_abort(resv, idx, idx + 1, 1);
2579 ret = region_del(resv, idx, idx + 1);
2580 } else {
2581 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2582 /* region_add calls of range 1 should never fail. */
2583 VM_BUG_ON(ret < 0);
2584 }
2585 break;
5e911373
MK
2586 default:
2587 BUG();
2588 }
84afd99b 2589
846be085 2590 if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV)
cf3ad20b 2591 return ret;
bf3d12b9
ML
2592 /*
2593 * We know private mapping must have HPAGE_RESV_OWNER set.
2594 *
2595 * In most cases, reserves always exist for private mappings.
2596 * However, a file associated with mapping could have been
2597 * hole punched or truncated after reserves were consumed.
2598 * As subsequent fault on such a range will not use reserves.
2599 * Subtle - The reserve map for private mappings has the
2600 * opposite meaning than that of shared mappings. If NO
2601 * entry is in the reserve map, it means a reservation exists.
2602 * If an entry exists in the reserve map, it means the
2603 * reservation has already been consumed. As a result, the
2604 * return value of this routine is the opposite of the
2605 * value returned from reserve map manipulation routines above.
2606 */
2607 if (ret > 0)
2608 return 0;
2609 if (ret == 0)
2610 return 1;
2611 return ret;
c37f9fb1 2612}
cf3ad20b
MK
2613
2614static long vma_needs_reservation(struct hstate *h,
a5516438 2615 struct vm_area_struct *vma, unsigned long addr)
c37f9fb1 2616{
5e911373 2617 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
cf3ad20b 2618}
84afd99b 2619
cf3ad20b
MK
2620static long vma_commit_reservation(struct hstate *h,
2621 struct vm_area_struct *vma, unsigned long addr)
2622{
5e911373
MK
2623 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2624}
2625
feba16e2 2626static void vma_end_reservation(struct hstate *h,
5e911373
MK
2627 struct vm_area_struct *vma, unsigned long addr)
2628{
feba16e2 2629 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
c37f9fb1
AW
2630}
2631
96b96a96
MK
2632static long vma_add_reservation(struct hstate *h,
2633 struct vm_area_struct *vma, unsigned long addr)
2634{
2635 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2636}
2637
846be085
MK
2638static long vma_del_reservation(struct hstate *h,
2639 struct vm_area_struct *vma, unsigned long addr)
2640{
2641 return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV);
2642}
2643
96b96a96 2644/*
846be085
MK
2645 * This routine is called to restore reservation information on error paths.
2646 * It should ONLY be called for pages allocated via alloc_huge_page(), and
2647 * the hugetlb mutex should remain held when calling this routine.
2648 *
2649 * It handles two specific cases:
2650 * 1) A reservation was in place and the page consumed the reservation.
2651 * HPageRestoreReserve is set in the page.
2652 * 2) No reservation was in place for the page, so HPageRestoreReserve is
2653 * not set. However, alloc_huge_page always updates the reserve map.
2654 *
2655 * In case 1, free_huge_page later in the error path will increment the
2656 * global reserve count. But, free_huge_page does not have enough context
2657 * to adjust the reservation map. This case deals primarily with private
2658 * mappings. Adjust the reserve map here to be consistent with global
2659 * reserve count adjustments to be made by free_huge_page. Make sure the
2660 * reserve map indicates there is a reservation present.
2661 *
2662 * In case 2, simply undo reserve map modifications done by alloc_huge_page.
96b96a96 2663 */
846be085
MK
2664void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
2665 unsigned long address, struct page *page)
96b96a96 2666{
846be085 2667 long rc = vma_needs_reservation(h, vma, address);
96b96a96 2668
846be085
MK
2669 if (HPageRestoreReserve(page)) {
2670 if (unlikely(rc < 0))
96b96a96
MK
2671 /*
2672 * Rare out of memory condition in reserve map
d6995da3 2673 * manipulation. Clear HPageRestoreReserve so that
96b96a96
MK
2674 * global reserve count will not be incremented
2675 * by free_huge_page. This will make it appear
2676 * as though the reservation for this page was
2677 * consumed. This may prevent the task from
2678 * faulting in the page at a later time. This
2679 * is better than inconsistent global huge page
2680 * accounting of reserve counts.
2681 */
d6995da3 2682 ClearHPageRestoreReserve(page);
846be085
MK
2683 else if (rc)
2684 (void)vma_add_reservation(h, vma, address);
2685 else
2686 vma_end_reservation(h, vma, address);
2687 } else {
2688 if (!rc) {
2689 /*
2690 * This indicates there is an entry in the reserve map
c7b1850d 2691 * not added by alloc_huge_page. We know it was added
846be085
MK
2692 * before the alloc_huge_page call, otherwise
2693 * HPageRestoreReserve would be set on the page.
2694 * Remove the entry so that a subsequent allocation
2695 * does not consume a reservation.
2696 */
2697 rc = vma_del_reservation(h, vma, address);
2698 if (rc < 0)
96b96a96 2699 /*
846be085
MK
2700 * VERY rare out of memory condition. Since
2701 * we can not delete the entry, set
2702 * HPageRestoreReserve so that the reserve
2703 * count will be incremented when the page
2704 * is freed. This reserve will be consumed
2705 * on a subsequent allocation.
96b96a96 2706 */
846be085
MK
2707 SetHPageRestoreReserve(page);
2708 } else if (rc < 0) {
2709 /*
2710 * Rare out of memory condition from
2711 * vma_needs_reservation call. Memory allocation is
2712 * only attempted if a new entry is needed. Therefore,
2713 * this implies there is not an entry in the
2714 * reserve map.
2715 *
2716 * For shared mappings, no entry in the map indicates
2717 * no reservation. We are done.
2718 */
2719 if (!(vma->vm_flags & VM_MAYSHARE))
2720 /*
2721 * For private mappings, no entry indicates
2722 * a reservation is present. Since we can
2723 * not add an entry, set SetHPageRestoreReserve
2724 * on the page so reserve count will be
2725 * incremented when freed. This reserve will
2726 * be consumed on a subsequent allocation.
2727 */
2728 SetHPageRestoreReserve(page);
96b96a96 2729 } else
846be085
MK
2730 /*
2731 * No reservation present, do nothing
2732 */
2733 vma_end_reservation(h, vma, address);
96b96a96
MK
2734 }
2735}
2736
369fa227
OS
2737/*
2738 * alloc_and_dissolve_huge_page - Allocate a new page and dissolve the old one
2739 * @h: struct hstate old page belongs to
2740 * @old_page: Old page to dissolve
ae37c7ff 2741 * @list: List to isolate the page in case we need to
369fa227
OS
2742 * Returns 0 on success, otherwise negated error.
2743 */
ae37c7ff
OS
2744static int alloc_and_dissolve_huge_page(struct hstate *h, struct page *old_page,
2745 struct list_head *list)
369fa227
OS
2746{
2747 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2748 int nid = page_to_nid(old_page);
2749 struct page *new_page;
2750 int ret = 0;
2751
2752 /*
2753 * Before dissolving the page, we need to allocate a new one for the
f41f2ed4
MS
2754 * pool to remain stable. Here, we allocate the page and 'prep' it
2755 * by doing everything but actually updating counters and adding to
2756 * the pool. This simplifies and let us do most of the processing
2757 * under the lock.
369fa227
OS
2758 */
2759 new_page = alloc_buddy_huge_page(h, gfp_mask, nid, NULL, NULL);
2760 if (!new_page)
2761 return -ENOMEM;
f41f2ed4 2762 __prep_new_huge_page(h, new_page);
369fa227
OS
2763
2764retry:
2765 spin_lock_irq(&hugetlb_lock);
2766 if (!PageHuge(old_page)) {
2767 /*
2768 * Freed from under us. Drop new_page too.
2769 */
2770 goto free_new;
2771 } else if (page_count(old_page)) {
2772 /*
ae37c7ff
OS
2773 * Someone has grabbed the page, try to isolate it here.
2774 * Fail with -EBUSY if not possible.
369fa227 2775 */
ae37c7ff 2776 spin_unlock_irq(&hugetlb_lock);
7ce82f4c 2777 ret = isolate_hugetlb(old_page, list);
ae37c7ff 2778 spin_lock_irq(&hugetlb_lock);
369fa227
OS
2779 goto free_new;
2780 } else if (!HPageFreed(old_page)) {
2781 /*
2782 * Page's refcount is 0 but it has not been enqueued in the
2783 * freelist yet. Race window is small, so we can succeed here if
2784 * we retry.
2785 */
2786 spin_unlock_irq(&hugetlb_lock);
2787 cond_resched();
2788 goto retry;
2789 } else {
2790 /*
2791 * Ok, old_page is still a genuine free hugepage. Remove it from
2792 * the freelist and decrease the counters. These will be
2793 * incremented again when calling __prep_account_new_huge_page()
2794 * and enqueue_huge_page() for new_page. The counters will remain
2795 * stable since this happens under the lock.
2796 */
2797 remove_hugetlb_page(h, old_page, false);
2798
2799 /*
b65a4eda
MK
2800 * Ref count on new page is already zero as it was dropped
2801 * earlier. It can be directly added to the pool free list.
369fa227 2802 */
369fa227 2803 __prep_account_new_huge_page(h, nid);
369fa227
OS
2804 enqueue_huge_page(h, new_page);
2805
2806 /*
2807 * Pages have been replaced, we can safely free the old one.
2808 */
2809 spin_unlock_irq(&hugetlb_lock);
b65d4adb 2810 update_and_free_page(h, old_page, false);
369fa227
OS
2811 }
2812
2813 return ret;
2814
2815free_new:
2816 spin_unlock_irq(&hugetlb_lock);
b65a4eda
MK
2817 /* Page has a zero ref count, but needs a ref to be freed */
2818 set_page_refcounted(new_page);
b65d4adb 2819 update_and_free_page(h, new_page, false);
369fa227
OS
2820
2821 return ret;
2822}
2823
ae37c7ff 2824int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list)
369fa227
OS
2825{
2826 struct hstate *h;
2827 struct page *head;
ae37c7ff 2828 int ret = -EBUSY;
369fa227
OS
2829
2830 /*
2831 * The page might have been dissolved from under our feet, so make sure
2832 * to carefully check the state under the lock.
2833 * Return success when racing as if we dissolved the page ourselves.
2834 */
2835 spin_lock_irq(&hugetlb_lock);
2836 if (PageHuge(page)) {
2837 head = compound_head(page);
2838 h = page_hstate(head);
2839 } else {
2840 spin_unlock_irq(&hugetlb_lock);
2841 return 0;
2842 }
2843 spin_unlock_irq(&hugetlb_lock);
2844
2845 /*
2846 * Fence off gigantic pages as there is a cyclic dependency between
2847 * alloc_contig_range and them. Return -ENOMEM as this has the effect
2848 * of bailing out right away without further retrying.
2849 */
2850 if (hstate_is_gigantic(h))
2851 return -ENOMEM;
2852
7ce82f4c 2853 if (page_count(head) && !isolate_hugetlb(head, list))
ae37c7ff
OS
2854 ret = 0;
2855 else if (!page_count(head))
2856 ret = alloc_and_dissolve_huge_page(h, head, list);
2857
2858 return ret;
369fa227
OS
2859}
2860
70c3547e 2861struct page *alloc_huge_page(struct vm_area_struct *vma,
04f2cbe3 2862 unsigned long addr, int avoid_reserve)
1da177e4 2863{
90481622 2864 struct hugepage_subpool *spool = subpool_vma(vma);
a5516438 2865 struct hstate *h = hstate_vma(vma);
348ea204 2866 struct page *page;
d85f69b0
MK
2867 long map_chg, map_commit;
2868 long gbl_chg;
6d76dcf4
AK
2869 int ret, idx;
2870 struct hugetlb_cgroup *h_cg;
08cf9faf 2871 bool deferred_reserve;
a1e78772 2872
6d76dcf4 2873 idx = hstate_index(h);
a1e78772 2874 /*
d85f69b0
MK
2875 * Examine the region/reserve map to determine if the process
2876 * has a reservation for the page to be allocated. A return
2877 * code of zero indicates a reservation exists (no change).
a1e78772 2878 */
d85f69b0
MK
2879 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2880 if (map_chg < 0)
76dcee75 2881 return ERR_PTR(-ENOMEM);
d85f69b0
MK
2882
2883 /*
2884 * Processes that did not create the mapping will have no
2885 * reserves as indicated by the region/reserve map. Check
2886 * that the allocation will not exceed the subpool limit.
2887 * Allocations for MAP_NORESERVE mappings also need to be
2888 * checked against any subpool limit.
2889 */
2890 if (map_chg || avoid_reserve) {
2891 gbl_chg = hugepage_subpool_get_pages(spool, 1);
2892 if (gbl_chg < 0) {
feba16e2 2893 vma_end_reservation(h, vma, addr);
76dcee75 2894 return ERR_PTR(-ENOSPC);
5e911373 2895 }
1da177e4 2896
d85f69b0
MK
2897 /*
2898 * Even though there was no reservation in the region/reserve
2899 * map, there could be reservations associated with the
2900 * subpool that can be used. This would be indicated if the
2901 * return value of hugepage_subpool_get_pages() is zero.
2902 * However, if avoid_reserve is specified we still avoid even
2903 * the subpool reservations.
2904 */
2905 if (avoid_reserve)
2906 gbl_chg = 1;
2907 }
2908
08cf9faf
MA
2909 /* If this allocation is not consuming a reservation, charge it now.
2910 */
6501fe5f 2911 deferred_reserve = map_chg || avoid_reserve;
08cf9faf
MA
2912 if (deferred_reserve) {
2913 ret = hugetlb_cgroup_charge_cgroup_rsvd(
2914 idx, pages_per_huge_page(h), &h_cg);
2915 if (ret)
2916 goto out_subpool_put;
2917 }
2918
6d76dcf4 2919 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
8f34af6f 2920 if (ret)
08cf9faf 2921 goto out_uncharge_cgroup_reservation;
8f34af6f 2922
db71ef79 2923 spin_lock_irq(&hugetlb_lock);
d85f69b0
MK
2924 /*
2925 * glb_chg is passed to indicate whether or not a page must be taken
2926 * from the global free pool (global change). gbl_chg == 0 indicates
2927 * a reservation exists for the allocation.
2928 */
2929 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
81a6fcae 2930 if (!page) {
db71ef79 2931 spin_unlock_irq(&hugetlb_lock);
0c397dae 2932 page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
8f34af6f
JZ
2933 if (!page)
2934 goto out_uncharge_cgroup;
12df140f 2935 spin_lock_irq(&hugetlb_lock);
a88c7695 2936 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
d6995da3 2937 SetHPageRestoreReserve(page);
a88c7695
NH
2938 h->resv_huge_pages--;
2939 }
15a8d68e 2940 list_add(&page->lru, &h->hugepage_activelist);
2b21624f 2941 set_page_refcounted(page);
81a6fcae 2942 /* Fall through */
68842c9b 2943 }
81a6fcae 2944 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
08cf9faf
MA
2945 /* If allocation is not consuming a reservation, also store the
2946 * hugetlb_cgroup pointer on the page.
2947 */
2948 if (deferred_reserve) {
2949 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
2950 h_cg, page);
2951 }
2952
db71ef79 2953 spin_unlock_irq(&hugetlb_lock);
348ea204 2954
d6995da3 2955 hugetlb_set_page_subpool(page, spool);
90d8b7e6 2956
d85f69b0
MK
2957 map_commit = vma_commit_reservation(h, vma, addr);
2958 if (unlikely(map_chg > map_commit)) {
33039678
MK
2959 /*
2960 * The page was added to the reservation map between
2961 * vma_needs_reservation and vma_commit_reservation.
2962 * This indicates a race with hugetlb_reserve_pages.
2963 * Adjust for the subpool count incremented above AND
2964 * in hugetlb_reserve_pages for the same page. Also,
2965 * the reservation count added in hugetlb_reserve_pages
2966 * no longer applies.
2967 */
2968 long rsv_adjust;
2969
2970 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2971 hugetlb_acct_memory(h, -rsv_adjust);
79aa925b
MK
2972 if (deferred_reserve)
2973 hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
2974 pages_per_huge_page(h), page);
33039678 2975 }
90d8b7e6 2976 return page;
8f34af6f
JZ
2977
2978out_uncharge_cgroup:
2979 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
08cf9faf
MA
2980out_uncharge_cgroup_reservation:
2981 if (deferred_reserve)
2982 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
2983 h_cg);
8f34af6f 2984out_subpool_put:
d85f69b0 2985 if (map_chg || avoid_reserve)
8f34af6f 2986 hugepage_subpool_put_pages(spool, 1);
feba16e2 2987 vma_end_reservation(h, vma, addr);
8f34af6f 2988 return ERR_PTR(-ENOSPC);
b45b5bd6
DG
2989}
2990
b5389086 2991int alloc_bootmem_huge_page(struct hstate *h, int nid)
e24a1307 2992 __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
b5389086 2993int __alloc_bootmem_huge_page(struct hstate *h, int nid)
aa888a74 2994{
b5389086 2995 struct huge_bootmem_page *m = NULL; /* initialize for clang */
b2261026 2996 int nr_nodes, node;
aa888a74 2997
b5389086
ZY
2998 /* do node specific alloc */
2999 if (nid != NUMA_NO_NODE) {
3000 m = memblock_alloc_try_nid_raw(huge_page_size(h), huge_page_size(h),
3001 0, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
3002 if (!m)
3003 return 0;
3004 goto found;
3005 }
3006 /* allocate from next node when distributing huge pages */
b2261026 3007 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
b5389086 3008 m = memblock_alloc_try_nid_raw(
8b89a116 3009 huge_page_size(h), huge_page_size(h),
97ad1087 3010 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
b5389086
ZY
3011 /*
3012 * Use the beginning of the huge page to store the
3013 * huge_bootmem_page struct (until gather_bootmem
3014 * puts them into the mem_map).
3015 */
3016 if (!m)
3017 return 0;
3018 goto found;
aa888a74 3019 }
aa888a74
AK
3020
3021found:
aa888a74 3022 /* Put them into a private list first because mem_map is not up yet */
330d6e48 3023 INIT_LIST_HEAD(&m->list);
aa888a74
AK
3024 list_add(&m->list, &huge_boot_pages);
3025 m->hstate = h;
3026 return 1;
3027}
3028
48b8d744
MK
3029/*
3030 * Put bootmem huge pages into the standard lists after mem_map is up.
3031 * Note: This only applies to gigantic (order > MAX_ORDER) pages.
3032 */
aa888a74
AK
3033static void __init gather_bootmem_prealloc(void)
3034{
3035 struct huge_bootmem_page *m;
3036
3037 list_for_each_entry(m, &huge_boot_pages, list) {
40d18ebf 3038 struct page *page = virt_to_page(m);
aa888a74 3039 struct hstate *h = m->hstate;
ee8f248d 3040
48b8d744 3041 VM_BUG_ON(!hstate_is_gigantic(h));
aa888a74 3042 WARN_ON(page_count(page) != 1);
7118fc29
MK
3043 if (prep_compound_gigantic_page(page, huge_page_order(h))) {
3044 WARN_ON(PageReserved(page));
3045 prep_new_huge_page(h, page, page_to_nid(page));
2b21624f 3046 free_huge_page(page); /* add to the hugepage allocator */
7118fc29 3047 } else {
416d85ed 3048 /* VERY unlikely inflated ref count on a tail page */
7118fc29 3049 free_gigantic_page(page, huge_page_order(h));
7118fc29 3050 }
af0fb9df 3051
b0320c7b 3052 /*
48b8d744
MK
3053 * We need to restore the 'stolen' pages to totalram_pages
3054 * in order to fix confusing memory reports from free(1) and
3055 * other side-effects, like CommitLimit going negative.
b0320c7b 3056 */
48b8d744 3057 adjust_managed_page_count(page, pages_per_huge_page(h));
520495fe 3058 cond_resched();
aa888a74
AK
3059 }
3060}
b5389086
ZY
3061static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid)
3062{
3063 unsigned long i;
3064 char buf[32];
3065
3066 for (i = 0; i < h->max_huge_pages_node[nid]; ++i) {
3067 if (hstate_is_gigantic(h)) {
3068 if (!alloc_bootmem_huge_page(h, nid))
3069 break;
3070 } else {
3071 struct page *page;
3072 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
3073
3074 page = alloc_fresh_huge_page(h, gfp_mask, nid,
3075 &node_states[N_MEMORY], NULL);
3076 if (!page)
3077 break;
2b21624f 3078 free_huge_page(page); /* free it into the hugepage allocator */
b5389086
ZY
3079 }
3080 cond_resched();
3081 }
3082 if (i == h->max_huge_pages_node[nid])
3083 return;
3084
3085 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3086 pr_warn("HugeTLB: allocating %u of page size %s failed node%d. Only allocated %lu hugepages.\n",
3087 h->max_huge_pages_node[nid], buf, nid, i);
3088 h->max_huge_pages -= (h->max_huge_pages_node[nid] - i);
3089 h->max_huge_pages_node[nid] = i;
3090}
aa888a74 3091
8faa8b07 3092static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1da177e4
LT
3093{
3094 unsigned long i;
f60858f9 3095 nodemask_t *node_alloc_noretry;
b5389086
ZY
3096 bool node_specific_alloc = false;
3097
3098 /* skip gigantic hugepages allocation if hugetlb_cma enabled */
3099 if (hstate_is_gigantic(h) && hugetlb_cma_size) {
3100 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
3101 return;
3102 }
3103
3104 /* do node specific alloc */
0a7a0f6f 3105 for_each_online_node(i) {
b5389086
ZY
3106 if (h->max_huge_pages_node[i] > 0) {
3107 hugetlb_hstate_alloc_pages_onenode(h, i);
3108 node_specific_alloc = true;
3109 }
3110 }
f60858f9 3111
b5389086
ZY
3112 if (node_specific_alloc)
3113 return;
3114
3115 /* below will do all node balanced alloc */
f60858f9
MK
3116 if (!hstate_is_gigantic(h)) {
3117 /*
3118 * Bit mask controlling how hard we retry per-node allocations.
3119 * Ignore errors as lower level routines can deal with
3120 * node_alloc_noretry == NULL. If this kmalloc fails at boot
3121 * time, we are likely in bigger trouble.
3122 */
3123 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
3124 GFP_KERNEL);
3125 } else {
3126 /* allocations done at boot time */
3127 node_alloc_noretry = NULL;
3128 }
3129
3130 /* bit mask controlling how hard we retry per-node allocations */
3131 if (node_alloc_noretry)
3132 nodes_clear(*node_alloc_noretry);
a5516438 3133
e5ff2159 3134 for (i = 0; i < h->max_huge_pages; ++i) {
bae7f4ae 3135 if (hstate_is_gigantic(h)) {
b5389086 3136 if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE))
aa888a74 3137 break;
0c397dae 3138 } else if (!alloc_pool_huge_page(h,
f60858f9
MK
3139 &node_states[N_MEMORY],
3140 node_alloc_noretry))
1da177e4 3141 break;
69ed779a 3142 cond_resched();
1da177e4 3143 }
d715cf80
LH
3144 if (i < h->max_huge_pages) {
3145 char buf[32];
3146
c6247f72 3147 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
d715cf80
LH
3148 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n",
3149 h->max_huge_pages, buf, i);
3150 h->max_huge_pages = i;
3151 }
f60858f9 3152 kfree(node_alloc_noretry);
e5ff2159
AK
3153}
3154
3155static void __init hugetlb_init_hstates(void)
3156{
79dfc695 3157 struct hstate *h, *h2;
e5ff2159
AK
3158
3159 for_each_hstate(h) {
8faa8b07 3160 /* oversize hugepages were init'ed in early boot */
bae7f4ae 3161 if (!hstate_is_gigantic(h))
8faa8b07 3162 hugetlb_hstate_alloc_pages(h);
79dfc695
MK
3163
3164 /*
3165 * Set demote order for each hstate. Note that
3166 * h->demote_order is initially 0.
3167 * - We can not demote gigantic pages if runtime freeing
3168 * is not supported, so skip this.
a01f4390
MK
3169 * - If CMA allocation is possible, we can not demote
3170 * HUGETLB_PAGE_ORDER or smaller size pages.
79dfc695
MK
3171 */
3172 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3173 continue;
a01f4390
MK
3174 if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER)
3175 continue;
79dfc695
MK
3176 for_each_hstate(h2) {
3177 if (h2 == h)
3178 continue;
3179 if (h2->order < h->order &&
3180 h2->order > h->demote_order)
3181 h->demote_order = h2->order;
3182 }
e5ff2159
AK
3183 }
3184}
3185
3186static void __init report_hugepages(void)
3187{
3188 struct hstate *h;
3189
3190 for_each_hstate(h) {
4abd32db 3191 char buf[32];
c6247f72
MW
3192
3193 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
6213834c 3194 pr_info("HugeTLB: registered %s page size, pre-allocated %ld pages\n",
c6247f72 3195 buf, h->free_huge_pages);
6213834c
MS
3196 pr_info("HugeTLB: %d KiB vmemmap can be freed for a %s page\n",
3197 hugetlb_vmemmap_optimizable_size(h) / SZ_1K, buf);
e5ff2159
AK
3198 }
3199}
3200
1da177e4 3201#ifdef CONFIG_HIGHMEM
6ae11b27
LS
3202static void try_to_free_low(struct hstate *h, unsigned long count,
3203 nodemask_t *nodes_allowed)
1da177e4 3204{
4415cc8d 3205 int i;
1121828a 3206 LIST_HEAD(page_list);
4415cc8d 3207
9487ca60 3208 lockdep_assert_held(&hugetlb_lock);
bae7f4ae 3209 if (hstate_is_gigantic(h))
aa888a74
AK
3210 return;
3211
1121828a
MK
3212 /*
3213 * Collect pages to be freed on a list, and free after dropping lock
3214 */
6ae11b27 3215 for_each_node_mask(i, *nodes_allowed) {
10c6ec49 3216 struct page *page, *next;
a5516438
AK
3217 struct list_head *freel = &h->hugepage_freelists[i];
3218 list_for_each_entry_safe(page, next, freel, lru) {
3219 if (count >= h->nr_huge_pages)
1121828a 3220 goto out;
1da177e4
LT
3221 if (PageHighMem(page))
3222 continue;
6eb4e88a 3223 remove_hugetlb_page(h, page, false);
1121828a 3224 list_add(&page->lru, &page_list);
1da177e4
LT
3225 }
3226 }
1121828a
MK
3227
3228out:
db71ef79 3229 spin_unlock_irq(&hugetlb_lock);
10c6ec49 3230 update_and_free_pages_bulk(h, &page_list);
db71ef79 3231 spin_lock_irq(&hugetlb_lock);
1da177e4
LT
3232}
3233#else
6ae11b27
LS
3234static inline void try_to_free_low(struct hstate *h, unsigned long count,
3235 nodemask_t *nodes_allowed)
1da177e4
LT
3236{
3237}
3238#endif
3239
20a0307c
WF
3240/*
3241 * Increment or decrement surplus_huge_pages. Keep node-specific counters
3242 * balanced by operating on them in a round-robin fashion.
3243 * Returns 1 if an adjustment was made.
3244 */
6ae11b27
LS
3245static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
3246 int delta)
20a0307c 3247{
b2261026 3248 int nr_nodes, node;
20a0307c 3249
9487ca60 3250 lockdep_assert_held(&hugetlb_lock);
20a0307c 3251 VM_BUG_ON(delta != -1 && delta != 1);
20a0307c 3252
b2261026
JK
3253 if (delta < 0) {
3254 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
3255 if (h->surplus_huge_pages_node[node])
3256 goto found;
e8c5c824 3257 }
b2261026
JK
3258 } else {
3259 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3260 if (h->surplus_huge_pages_node[node] <
3261 h->nr_huge_pages_node[node])
3262 goto found;
e8c5c824 3263 }
b2261026
JK
3264 }
3265 return 0;
20a0307c 3266
b2261026
JK
3267found:
3268 h->surplus_huge_pages += delta;
3269 h->surplus_huge_pages_node[node] += delta;
3270 return 1;
20a0307c
WF
3271}
3272
a5516438 3273#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
fd875dca 3274static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
4eb0716e 3275 nodemask_t *nodes_allowed)
1da177e4 3276{
7893d1d5 3277 unsigned long min_count, ret;
10c6ec49
MK
3278 struct page *page;
3279 LIST_HEAD(page_list);
f60858f9
MK
3280 NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
3281
3282 /*
3283 * Bit mask controlling how hard we retry per-node allocations.
3284 * If we can not allocate the bit mask, do not attempt to allocate
3285 * the requested huge pages.
3286 */
3287 if (node_alloc_noretry)
3288 nodes_clear(*node_alloc_noretry);
3289 else
3290 return -ENOMEM;
1da177e4 3291
29383967
MK
3292 /*
3293 * resize_lock mutex prevents concurrent adjustments to number of
3294 * pages in hstate via the proc/sysfs interfaces.
3295 */
3296 mutex_lock(&h->resize_lock);
b65d4adb 3297 flush_free_hpage_work(h);
db71ef79 3298 spin_lock_irq(&hugetlb_lock);
4eb0716e 3299
fd875dca
MK
3300 /*
3301 * Check for a node specific request.
3302 * Changing node specific huge page count may require a corresponding
3303 * change to the global count. In any case, the passed node mask
3304 * (nodes_allowed) will restrict alloc/free to the specified node.
3305 */
3306 if (nid != NUMA_NO_NODE) {
3307 unsigned long old_count = count;
3308
3309 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
3310 /*
3311 * User may have specified a large count value which caused the
3312 * above calculation to overflow. In this case, they wanted
3313 * to allocate as many huge pages as possible. Set count to
3314 * largest possible value to align with their intention.
3315 */
3316 if (count < old_count)
3317 count = ULONG_MAX;
3318 }
3319
4eb0716e
AG
3320 /*
3321 * Gigantic pages runtime allocation depend on the capability for large
3322 * page range allocation.
3323 * If the system does not provide this feature, return an error when
3324 * the user tries to allocate gigantic pages but let the user free the
3325 * boottime allocated gigantic pages.
3326 */
3327 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
3328 if (count > persistent_huge_pages(h)) {
db71ef79 3329 spin_unlock_irq(&hugetlb_lock);
29383967 3330 mutex_unlock(&h->resize_lock);
f60858f9 3331 NODEMASK_FREE(node_alloc_noretry);
4eb0716e
AG
3332 return -EINVAL;
3333 }
3334 /* Fall through to decrease pool */
3335 }
aa888a74 3336
7893d1d5
AL
3337 /*
3338 * Increase the pool size
3339 * First take pages out of surplus state. Then make up the
3340 * remaining difference by allocating fresh huge pages.
d1c3fb1f 3341 *
0c397dae 3342 * We might race with alloc_surplus_huge_page() here and be unable
d1c3fb1f
NA
3343 * to convert a surplus huge page to a normal huge page. That is
3344 * not critical, though, it just means the overall size of the
3345 * pool might be one hugepage larger than it needs to be, but
3346 * within all the constraints specified by the sysctls.
7893d1d5 3347 */
a5516438 3348 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
6ae11b27 3349 if (!adjust_pool_surplus(h, nodes_allowed, -1))
7893d1d5
AL
3350 break;
3351 }
3352
a5516438 3353 while (count > persistent_huge_pages(h)) {
7893d1d5
AL
3354 /*
3355 * If this allocation races such that we no longer need the
3356 * page, free_huge_page will handle it by freeing the page
3357 * and reducing the surplus.
3358 */
db71ef79 3359 spin_unlock_irq(&hugetlb_lock);
649920c6
JH
3360
3361 /* yield cpu to avoid soft lockup */
3362 cond_resched();
3363
f60858f9
MK
3364 ret = alloc_pool_huge_page(h, nodes_allowed,
3365 node_alloc_noretry);
db71ef79 3366 spin_lock_irq(&hugetlb_lock);
7893d1d5
AL
3367 if (!ret)
3368 goto out;
3369
536240f2
MG
3370 /* Bail for signals. Probably ctrl-c from user */
3371 if (signal_pending(current))
3372 goto out;
7893d1d5 3373 }
7893d1d5
AL
3374
3375 /*
3376 * Decrease the pool size
3377 * First return free pages to the buddy allocator (being careful
3378 * to keep enough around to satisfy reservations). Then place
3379 * pages into surplus state as needed so the pool will shrink
3380 * to the desired size as pages become free.
d1c3fb1f
NA
3381 *
3382 * By placing pages into the surplus state independent of the
3383 * overcommit value, we are allowing the surplus pool size to
3384 * exceed overcommit. There are few sane options here. Since
0c397dae 3385 * alloc_surplus_huge_page() is checking the global counter,
d1c3fb1f
NA
3386 * though, we'll note that we're not allowed to exceed surplus
3387 * and won't grow the pool anywhere else. Not until one of the
3388 * sysctls are changed, or the surplus pages go out of use.
7893d1d5 3389 */
a5516438 3390 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
6b0c880d 3391 min_count = max(count, min_count);
6ae11b27 3392 try_to_free_low(h, min_count, nodes_allowed);
10c6ec49
MK
3393
3394 /*
3395 * Collect pages to be removed on list without dropping lock
3396 */
a5516438 3397 while (min_count < persistent_huge_pages(h)) {
10c6ec49
MK
3398 page = remove_pool_huge_page(h, nodes_allowed, 0);
3399 if (!page)
1da177e4 3400 break;
10c6ec49
MK
3401
3402 list_add(&page->lru, &page_list);
1da177e4 3403 }
10c6ec49 3404 /* free the pages after dropping lock */
db71ef79 3405 spin_unlock_irq(&hugetlb_lock);
10c6ec49 3406 update_and_free_pages_bulk(h, &page_list);
b65d4adb 3407 flush_free_hpage_work(h);
db71ef79 3408 spin_lock_irq(&hugetlb_lock);
10c6ec49 3409
a5516438 3410 while (count < persistent_huge_pages(h)) {
6ae11b27 3411 if (!adjust_pool_surplus(h, nodes_allowed, 1))
7893d1d5
AL
3412 break;
3413 }
3414out:
4eb0716e 3415 h->max_huge_pages = persistent_huge_pages(h);
db71ef79 3416 spin_unlock_irq(&hugetlb_lock);
29383967 3417 mutex_unlock(&h->resize_lock);
4eb0716e 3418
f60858f9
MK
3419 NODEMASK_FREE(node_alloc_noretry);
3420
4eb0716e 3421 return 0;
1da177e4
LT
3422}
3423
8531fc6f
MK
3424static int demote_free_huge_page(struct hstate *h, struct page *page)
3425{
3426 int i, nid = page_to_nid(page);
3427 struct hstate *target_hstate;
31731452 3428 struct page *subpage;
8531fc6f
MK
3429 int rc = 0;
3430
3431 target_hstate = size_to_hstate(PAGE_SIZE << h->demote_order);
3432
3433 remove_hugetlb_page_for_demote(h, page, false);
3434 spin_unlock_irq(&hugetlb_lock);
3435
6213834c 3436 rc = hugetlb_vmemmap_restore(h, page);
8531fc6f
MK
3437 if (rc) {
3438 /* Allocation of vmemmmap failed, we can not demote page */
3439 spin_lock_irq(&hugetlb_lock);
3440 set_page_refcounted(page);
3441 add_hugetlb_page(h, page, false);
3442 return rc;
3443 }
3444
3445 /*
3446 * Use destroy_compound_hugetlb_page_for_demote for all huge page
3447 * sizes as it will not ref count pages.
3448 */
3449 destroy_compound_hugetlb_page_for_demote(page, huge_page_order(h));
3450
3451 /*
3452 * Taking target hstate mutex synchronizes with set_max_huge_pages.
3453 * Without the mutex, pages added to target hstate could be marked
3454 * as surplus.
3455 *
3456 * Note that we already hold h->resize_lock. To prevent deadlock,
3457 * use the convention of always taking larger size hstate mutex first.
3458 */
3459 mutex_lock(&target_hstate->resize_lock);
3460 for (i = 0; i < pages_per_huge_page(h);
3461 i += pages_per_huge_page(target_hstate)) {
31731452 3462 subpage = nth_page(page, i);
8531fc6f 3463 if (hstate_is_gigantic(target_hstate))
31731452 3464 prep_compound_gigantic_page_for_demote(subpage,
8531fc6f
MK
3465 target_hstate->order);
3466 else
31731452
DB
3467 prep_compound_page(subpage, target_hstate->order);
3468 set_page_private(subpage, 0);
31731452 3469 prep_new_huge_page(target_hstate, subpage, nid);
2b21624f 3470 free_huge_page(subpage);
8531fc6f
MK
3471 }
3472 mutex_unlock(&target_hstate->resize_lock);
3473
3474 spin_lock_irq(&hugetlb_lock);
3475
3476 /*
3477 * Not absolutely necessary, but for consistency update max_huge_pages
3478 * based on pool changes for the demoted page.
3479 */
3480 h->max_huge_pages--;
a43a83c7
ML
3481 target_hstate->max_huge_pages +=
3482 pages_per_huge_page(h) / pages_per_huge_page(target_hstate);
8531fc6f
MK
3483
3484 return rc;
3485}
3486
79dfc695
MK
3487static int demote_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
3488 __must_hold(&hugetlb_lock)
3489{
8531fc6f
MK
3490 int nr_nodes, node;
3491 struct page *page;
79dfc695
MK
3492
3493 lockdep_assert_held(&hugetlb_lock);
3494
3495 /* We should never get here if no demote order */
3496 if (!h->demote_order) {
3497 pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n");
3498 return -EINVAL; /* internal error */
3499 }
3500
8531fc6f 3501 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
5a317412
MK
3502 list_for_each_entry(page, &h->hugepage_freelists[node], lru) {
3503 if (PageHWPoison(page))
3504 continue;
3505
3506 return demote_free_huge_page(h, page);
8531fc6f
MK
3507 }
3508 }
3509
5a317412
MK
3510 /*
3511 * Only way to get here is if all pages on free lists are poisoned.
3512 * Return -EBUSY so that caller will not retry.
3513 */
3514 return -EBUSY;
79dfc695
MK
3515}
3516
a3437870
NA
3517#define HSTATE_ATTR_RO(_name) \
3518 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3519
79dfc695
MK
3520#define HSTATE_ATTR_WO(_name) \
3521 static struct kobj_attribute _name##_attr = __ATTR_WO(_name)
3522
a3437870 3523#define HSTATE_ATTR(_name) \
98bc26ac 3524 static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
a3437870
NA
3525
3526static struct kobject *hugepages_kobj;
3527static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3528
9a305230
LS
3529static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
3530
3531static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
a3437870
NA
3532{
3533 int i;
9a305230 3534
a3437870 3535 for (i = 0; i < HUGE_MAX_HSTATE; i++)
9a305230
LS
3536 if (hstate_kobjs[i] == kobj) {
3537 if (nidp)
3538 *nidp = NUMA_NO_NODE;
a3437870 3539 return &hstates[i];
9a305230
LS
3540 }
3541
3542 return kobj_to_node_hstate(kobj, nidp);
a3437870
NA
3543}
3544
06808b08 3545static ssize_t nr_hugepages_show_common(struct kobject *kobj,
a3437870
NA
3546 struct kobj_attribute *attr, char *buf)
3547{
9a305230
LS
3548 struct hstate *h;
3549 unsigned long nr_huge_pages;
3550 int nid;
3551
3552 h = kobj_to_hstate(kobj, &nid);
3553 if (nid == NUMA_NO_NODE)
3554 nr_huge_pages = h->nr_huge_pages;
3555 else
3556 nr_huge_pages = h->nr_huge_pages_node[nid];
3557
ae7a927d 3558 return sysfs_emit(buf, "%lu\n", nr_huge_pages);
a3437870 3559}
adbe8726 3560
238d3c13
DR
3561static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
3562 struct hstate *h, int nid,
3563 unsigned long count, size_t len)
a3437870
NA
3564{
3565 int err;
2d0adf7e 3566 nodemask_t nodes_allowed, *n_mask;
a3437870 3567
2d0adf7e
OS
3568 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3569 return -EINVAL;
adbe8726 3570
9a305230
LS
3571 if (nid == NUMA_NO_NODE) {
3572 /*
3573 * global hstate attribute
3574 */
3575 if (!(obey_mempolicy &&
2d0adf7e
OS
3576 init_nodemask_of_mempolicy(&nodes_allowed)))
3577 n_mask = &node_states[N_MEMORY];
3578 else
3579 n_mask = &nodes_allowed;
3580 } else {
9a305230 3581 /*
fd875dca
MK
3582 * Node specific request. count adjustment happens in
3583 * set_max_huge_pages() after acquiring hugetlb_lock.
9a305230 3584 */
2d0adf7e
OS
3585 init_nodemask_of_node(&nodes_allowed, nid);
3586 n_mask = &nodes_allowed;
fd875dca 3587 }
9a305230 3588
2d0adf7e 3589 err = set_max_huge_pages(h, count, nid, n_mask);
06808b08 3590
4eb0716e 3591 return err ? err : len;
06808b08
LS
3592}
3593
238d3c13
DR
3594static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
3595 struct kobject *kobj, const char *buf,
3596 size_t len)
3597{
3598 struct hstate *h;
3599 unsigned long count;
3600 int nid;
3601 int err;
3602
3603 err = kstrtoul(buf, 10, &count);
3604 if (err)
3605 return err;
3606
3607 h = kobj_to_hstate(kobj, &nid);
3608 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
3609}
3610
06808b08
LS
3611static ssize_t nr_hugepages_show(struct kobject *kobj,
3612 struct kobj_attribute *attr, char *buf)
3613{
3614 return nr_hugepages_show_common(kobj, attr, buf);
3615}
3616
3617static ssize_t nr_hugepages_store(struct kobject *kobj,
3618 struct kobj_attribute *attr, const char *buf, size_t len)
3619{
238d3c13 3620 return nr_hugepages_store_common(false, kobj, buf, len);
a3437870
NA
3621}
3622HSTATE_ATTR(nr_hugepages);
3623
06808b08
LS
3624#ifdef CONFIG_NUMA
3625
3626/*
3627 * hstate attribute for optionally mempolicy-based constraint on persistent
3628 * huge page alloc/free.
3629 */
3630static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
ae7a927d
JP
3631 struct kobj_attribute *attr,
3632 char *buf)
06808b08
LS
3633{
3634 return nr_hugepages_show_common(kobj, attr, buf);
3635}
3636
3637static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
3638 struct kobj_attribute *attr, const char *buf, size_t len)
3639{
238d3c13 3640 return nr_hugepages_store_common(true, kobj, buf, len);
06808b08
LS
3641}
3642HSTATE_ATTR(nr_hugepages_mempolicy);
3643#endif
3644
3645
a3437870
NA
3646static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
3647 struct kobj_attribute *attr, char *buf)
3648{
9a305230 3649 struct hstate *h = kobj_to_hstate(kobj, NULL);
ae7a927d 3650 return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
a3437870 3651}
adbe8726 3652
a3437870
NA
3653static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
3654 struct kobj_attribute *attr, const char *buf, size_t count)
3655{
3656 int err;
3657 unsigned long input;
9a305230 3658 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870 3659
bae7f4ae 3660 if (hstate_is_gigantic(h))
adbe8726
EM
3661 return -EINVAL;
3662
3dbb95f7 3663 err = kstrtoul(buf, 10, &input);
a3437870 3664 if (err)
73ae31e5 3665 return err;
a3437870 3666
db71ef79 3667 spin_lock_irq(&hugetlb_lock);
a3437870 3668 h->nr_overcommit_huge_pages = input;
db71ef79 3669 spin_unlock_irq(&hugetlb_lock);
a3437870
NA
3670
3671 return count;
3672}
3673HSTATE_ATTR(nr_overcommit_hugepages);
3674
3675static ssize_t free_hugepages_show(struct kobject *kobj,
3676 struct kobj_attribute *attr, char *buf)
3677{
9a305230
LS
3678 struct hstate *h;
3679 unsigned long free_huge_pages;
3680 int nid;
3681
3682 h = kobj_to_hstate(kobj, &nid);
3683 if (nid == NUMA_NO_NODE)
3684 free_huge_pages = h->free_huge_pages;
3685 else
3686 free_huge_pages = h->free_huge_pages_node[nid];
3687
ae7a927d 3688 return sysfs_emit(buf, "%lu\n", free_huge_pages);
a3437870
NA
3689}
3690HSTATE_ATTR_RO(free_hugepages);
3691
3692static ssize_t resv_hugepages_show(struct kobject *kobj,
3693 struct kobj_attribute *attr, char *buf)
3694{
9a305230 3695 struct hstate *h = kobj_to_hstate(kobj, NULL);
ae7a927d 3696 return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
a3437870
NA
3697}
3698HSTATE_ATTR_RO(resv_hugepages);
3699
3700static ssize_t surplus_hugepages_show(struct kobject *kobj,
3701 struct kobj_attribute *attr, char *buf)
3702{
9a305230
LS
3703 struct hstate *h;
3704 unsigned long surplus_huge_pages;
3705 int nid;
3706
3707 h = kobj_to_hstate(kobj, &nid);
3708 if (nid == NUMA_NO_NODE)
3709 surplus_huge_pages = h->surplus_huge_pages;
3710 else
3711 surplus_huge_pages = h->surplus_huge_pages_node[nid];
3712
ae7a927d 3713 return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
a3437870
NA
3714}
3715HSTATE_ATTR_RO(surplus_hugepages);
3716
79dfc695
MK
3717static ssize_t demote_store(struct kobject *kobj,
3718 struct kobj_attribute *attr, const char *buf, size_t len)
3719{
3720 unsigned long nr_demote;
3721 unsigned long nr_available;
3722 nodemask_t nodes_allowed, *n_mask;
3723 struct hstate *h;
8eeda55f 3724 int err;
79dfc695
MK
3725 int nid;
3726
3727 err = kstrtoul(buf, 10, &nr_demote);
3728 if (err)
3729 return err;
3730 h = kobj_to_hstate(kobj, &nid);
3731
3732 if (nid != NUMA_NO_NODE) {
3733 init_nodemask_of_node(&nodes_allowed, nid);
3734 n_mask = &nodes_allowed;
3735 } else {
3736 n_mask = &node_states[N_MEMORY];
3737 }
3738
3739 /* Synchronize with other sysfs operations modifying huge pages */
3740 mutex_lock(&h->resize_lock);
3741 spin_lock_irq(&hugetlb_lock);
3742
3743 while (nr_demote) {
3744 /*
3745 * Check for available pages to demote each time thorough the
3746 * loop as demote_pool_huge_page will drop hugetlb_lock.
79dfc695
MK
3747 */
3748 if (nid != NUMA_NO_NODE)
3749 nr_available = h->free_huge_pages_node[nid];
3750 else
3751 nr_available = h->free_huge_pages;
3752 nr_available -= h->resv_huge_pages;
3753 if (!nr_available)
3754 break;
3755
3756 err = demote_pool_huge_page(h, n_mask);
3757 if (err)
3758 break;
3759
3760 nr_demote--;
3761 }
3762
3763 spin_unlock_irq(&hugetlb_lock);
3764 mutex_unlock(&h->resize_lock);
3765
3766 if (err)
3767 return err;
3768 return len;
3769}
3770HSTATE_ATTR_WO(demote);
3771
3772static ssize_t demote_size_show(struct kobject *kobj,
3773 struct kobj_attribute *attr, char *buf)
3774{
12658abf 3775 struct hstate *h = kobj_to_hstate(kobj, NULL);
79dfc695
MK
3776 unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K;
3777
3778 return sysfs_emit(buf, "%lukB\n", demote_size);
3779}
3780
3781static ssize_t demote_size_store(struct kobject *kobj,
3782 struct kobj_attribute *attr,
3783 const char *buf, size_t count)
3784{
3785 struct hstate *h, *demote_hstate;
3786 unsigned long demote_size;
3787 unsigned int demote_order;
79dfc695
MK
3788
3789 demote_size = (unsigned long)memparse(buf, NULL);
3790
3791 demote_hstate = size_to_hstate(demote_size);
3792 if (!demote_hstate)
3793 return -EINVAL;
3794 demote_order = demote_hstate->order;
a01f4390
MK
3795 if (demote_order < HUGETLB_PAGE_ORDER)
3796 return -EINVAL;
79dfc695
MK
3797
3798 /* demote order must be smaller than hstate order */
12658abf 3799 h = kobj_to_hstate(kobj, NULL);
79dfc695
MK
3800 if (demote_order >= h->order)
3801 return -EINVAL;
3802
3803 /* resize_lock synchronizes access to demote size and writes */
3804 mutex_lock(&h->resize_lock);
3805 h->demote_order = demote_order;
3806 mutex_unlock(&h->resize_lock);
3807
3808 return count;
3809}
3810HSTATE_ATTR(demote_size);
3811
a3437870
NA
3812static struct attribute *hstate_attrs[] = {
3813 &nr_hugepages_attr.attr,
3814 &nr_overcommit_hugepages_attr.attr,
3815 &free_hugepages_attr.attr,
3816 &resv_hugepages_attr.attr,
3817 &surplus_hugepages_attr.attr,
06808b08
LS
3818#ifdef CONFIG_NUMA
3819 &nr_hugepages_mempolicy_attr.attr,
3820#endif
a3437870
NA
3821 NULL,
3822};
3823
67e5ed96 3824static const struct attribute_group hstate_attr_group = {
a3437870
NA
3825 .attrs = hstate_attrs,
3826};
3827
79dfc695
MK
3828static struct attribute *hstate_demote_attrs[] = {
3829 &demote_size_attr.attr,
3830 &demote_attr.attr,
3831 NULL,
3832};
3833
3834static const struct attribute_group hstate_demote_attr_group = {
3835 .attrs = hstate_demote_attrs,
3836};
3837
094e9539
JM
3838static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
3839 struct kobject **hstate_kobjs,
67e5ed96 3840 const struct attribute_group *hstate_attr_group)
a3437870
NA
3841{
3842 int retval;
972dc4de 3843 int hi = hstate_index(h);
a3437870 3844
9a305230
LS
3845 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
3846 if (!hstate_kobjs[hi])
a3437870
NA
3847 return -ENOMEM;
3848
9a305230 3849 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
cc2205a6 3850 if (retval) {
9a305230 3851 kobject_put(hstate_kobjs[hi]);
cc2205a6 3852 hstate_kobjs[hi] = NULL;
3a6bdda0 3853 return retval;
cc2205a6 3854 }
a3437870 3855
79dfc695 3856 if (h->demote_order) {
01088a60
ML
3857 retval = sysfs_create_group(hstate_kobjs[hi],
3858 &hstate_demote_attr_group);
3859 if (retval) {
79dfc695 3860 pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name);
01088a60
ML
3861 sysfs_remove_group(hstate_kobjs[hi], hstate_attr_group);
3862 kobject_put(hstate_kobjs[hi]);
3863 hstate_kobjs[hi] = NULL;
3864 return retval;
3865 }
79dfc695
MK
3866 }
3867
01088a60 3868 return 0;
a3437870
NA
3869}
3870
9a305230 3871#ifdef CONFIG_NUMA
a4a00b45 3872static bool hugetlb_sysfs_initialized __ro_after_init;
9a305230
LS
3873
3874/*
3875 * node_hstate/s - associate per node hstate attributes, via their kobjects,
10fbcf4c
KS
3876 * with node devices in node_devices[] using a parallel array. The array
3877 * index of a node device or _hstate == node id.
3878 * This is here to avoid any static dependency of the node device driver, in
9a305230
LS
3879 * the base kernel, on the hugetlb module.
3880 */
3881struct node_hstate {
3882 struct kobject *hugepages_kobj;
3883 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3884};
b4e289a6 3885static struct node_hstate node_hstates[MAX_NUMNODES];
9a305230
LS
3886
3887/*
10fbcf4c 3888 * A subset of global hstate attributes for node devices
9a305230
LS
3889 */
3890static struct attribute *per_node_hstate_attrs[] = {
3891 &nr_hugepages_attr.attr,
3892 &free_hugepages_attr.attr,
3893 &surplus_hugepages_attr.attr,
3894 NULL,
3895};
3896
67e5ed96 3897static const struct attribute_group per_node_hstate_attr_group = {
9a305230
LS
3898 .attrs = per_node_hstate_attrs,
3899};
3900
3901/*
10fbcf4c 3902 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
9a305230
LS
3903 * Returns node id via non-NULL nidp.
3904 */
3905static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3906{
3907 int nid;
3908
3909 for (nid = 0; nid < nr_node_ids; nid++) {
3910 struct node_hstate *nhs = &node_hstates[nid];
3911 int i;
3912 for (i = 0; i < HUGE_MAX_HSTATE; i++)
3913 if (nhs->hstate_kobjs[i] == kobj) {
3914 if (nidp)
3915 *nidp = nid;
3916 return &hstates[i];
3917 }
3918 }
3919
3920 BUG();
3921 return NULL;
3922}
3923
3924/*
10fbcf4c 3925 * Unregister hstate attributes from a single node device.
9a305230
LS
3926 * No-op if no hstate attributes attached.
3927 */
a4a00b45 3928void hugetlb_unregister_node(struct node *node)
9a305230
LS
3929{
3930 struct hstate *h;
10fbcf4c 3931 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
3932
3933 if (!nhs->hugepages_kobj)
9b5e5d0f 3934 return; /* no hstate attributes */
9a305230 3935
972dc4de
AK
3936 for_each_hstate(h) {
3937 int idx = hstate_index(h);
01088a60
ML
3938 struct kobject *hstate_kobj = nhs->hstate_kobjs[idx];
3939
3940 if (!hstate_kobj)
3941 continue;
3942 if (h->demote_order)
3943 sysfs_remove_group(hstate_kobj, &hstate_demote_attr_group);
3944 sysfs_remove_group(hstate_kobj, &per_node_hstate_attr_group);
3945 kobject_put(hstate_kobj);
3946 nhs->hstate_kobjs[idx] = NULL;
972dc4de 3947 }
9a305230
LS
3948
3949 kobject_put(nhs->hugepages_kobj);
3950 nhs->hugepages_kobj = NULL;
3951}
3952
9a305230
LS
3953
3954/*
10fbcf4c 3955 * Register hstate attributes for a single node device.
9a305230
LS
3956 * No-op if attributes already registered.
3957 */
a4a00b45 3958void hugetlb_register_node(struct node *node)
9a305230
LS
3959{
3960 struct hstate *h;
10fbcf4c 3961 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
3962 int err;
3963
a4a00b45
MS
3964 if (!hugetlb_sysfs_initialized)
3965 return;
3966
9a305230
LS
3967 if (nhs->hugepages_kobj)
3968 return; /* already allocated */
3969
3970 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
10fbcf4c 3971 &node->dev.kobj);
9a305230
LS
3972 if (!nhs->hugepages_kobj)
3973 return;
3974
3975 for_each_hstate(h) {
3976 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
3977 nhs->hstate_kobjs,
3978 &per_node_hstate_attr_group);
3979 if (err) {
282f4214 3980 pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
ffb22af5 3981 h->name, node->dev.id);
9a305230
LS
3982 hugetlb_unregister_node(node);
3983 break;
3984 }
3985 }
3986}
3987
3988/*
9b5e5d0f 3989 * hugetlb init time: register hstate attributes for all registered node
10fbcf4c
KS
3990 * devices of nodes that have memory. All on-line nodes should have
3991 * registered their associated device by this time.
9a305230 3992 */
7d9ca000 3993static void __init hugetlb_register_all_nodes(void)
9a305230
LS
3994{
3995 int nid;
3996
a4a00b45 3997 for_each_online_node(nid)
b958d4d0 3998 hugetlb_register_node(node_devices[nid]);
9a305230
LS
3999}
4000#else /* !CONFIG_NUMA */
4001
4002static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4003{
4004 BUG();
4005 if (nidp)
4006 *nidp = -1;
4007 return NULL;
4008}
4009
9a305230
LS
4010static void hugetlb_register_all_nodes(void) { }
4011
4012#endif
4013
263b8998
ML
4014#ifdef CONFIG_CMA
4015static void __init hugetlb_cma_check(void);
4016#else
4017static inline __init void hugetlb_cma_check(void)
4018{
4019}
4020#endif
4021
a4a00b45
MS
4022static void __init hugetlb_sysfs_init(void)
4023{
4024 struct hstate *h;
4025 int err;
4026
4027 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
4028 if (!hugepages_kobj)
4029 return;
4030
4031 for_each_hstate(h) {
4032 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
4033 hstate_kobjs, &hstate_attr_group);
4034 if (err)
4035 pr_err("HugeTLB: Unable to add hstate %s", h->name);
4036 }
4037
4038#ifdef CONFIG_NUMA
4039 hugetlb_sysfs_initialized = true;
4040#endif
4041 hugetlb_register_all_nodes();
4042}
4043
a3437870
NA
4044static int __init hugetlb_init(void)
4045{
8382d914
DB
4046 int i;
4047
d6995da3
MK
4048 BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
4049 __NR_HPAGEFLAGS);
4050
c2833a5b
MK
4051 if (!hugepages_supported()) {
4052 if (hugetlb_max_hstate || default_hstate_max_huge_pages)
4053 pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
0ef89d25 4054 return 0;
c2833a5b 4055 }
a3437870 4056
282f4214
MK
4057 /*
4058 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists. Some
4059 * architectures depend on setup being done here.
4060 */
4061 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
4062 if (!parsed_default_hugepagesz) {
4063 /*
4064 * If we did not parse a default huge page size, set
4065 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
4066 * number of huge pages for this default size was implicitly
4067 * specified, set that here as well.
4068 * Note that the implicit setting will overwrite an explicit
4069 * setting. A warning will be printed in this case.
4070 */
4071 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
4072 if (default_hstate_max_huge_pages) {
4073 if (default_hstate.max_huge_pages) {
4074 char buf[32];
4075
4076 string_get_size(huge_page_size(&default_hstate),
4077 1, STRING_UNITS_2, buf, 32);
4078 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
4079 default_hstate.max_huge_pages, buf);
4080 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
4081 default_hstate_max_huge_pages);
4082 }
4083 default_hstate.max_huge_pages =
4084 default_hstate_max_huge_pages;
b5389086 4085
0a7a0f6f 4086 for_each_online_node(i)
b5389086
ZY
4087 default_hstate.max_huge_pages_node[i] =
4088 default_hugepages_in_node[i];
d715cf80 4089 }
f8b74815 4090 }
a3437870 4091
cf11e85f 4092 hugetlb_cma_check();
a3437870 4093 hugetlb_init_hstates();
aa888a74 4094 gather_bootmem_prealloc();
a3437870
NA
4095 report_hugepages();
4096
4097 hugetlb_sysfs_init();
7179e7bf 4098 hugetlb_cgroup_file_init();
9a305230 4099
8382d914
DB
4100#ifdef CONFIG_SMP
4101 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
4102#else
4103 num_fault_mutexes = 1;
4104#endif
c672c7f2 4105 hugetlb_fault_mutex_table =
6da2ec56
KC
4106 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
4107 GFP_KERNEL);
c672c7f2 4108 BUG_ON(!hugetlb_fault_mutex_table);
8382d914
DB
4109
4110 for (i = 0; i < num_fault_mutexes; i++)
c672c7f2 4111 mutex_init(&hugetlb_fault_mutex_table[i]);
a3437870
NA
4112 return 0;
4113}
3e89e1c5 4114subsys_initcall(hugetlb_init);
a3437870 4115
ae94da89
MK
4116/* Overwritten by architectures with more huge page sizes */
4117bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
9fee021d 4118{
ae94da89 4119 return size == HPAGE_SIZE;
9fee021d
VT
4120}
4121
d00181b9 4122void __init hugetlb_add_hstate(unsigned int order)
a3437870
NA
4123{
4124 struct hstate *h;
8faa8b07
AK
4125 unsigned long i;
4126
a3437870 4127 if (size_to_hstate(PAGE_SIZE << order)) {
a3437870
NA
4128 return;
4129 }
47d38344 4130 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
a3437870 4131 BUG_ON(order == 0);
47d38344 4132 h = &hstates[hugetlb_max_hstate++];
29383967 4133 mutex_init(&h->resize_lock);
a3437870 4134 h->order = order;
aca78307 4135 h->mask = ~(huge_page_size(h) - 1);
8faa8b07
AK
4136 for (i = 0; i < MAX_NUMNODES; ++i)
4137 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
0edaecfa 4138 INIT_LIST_HEAD(&h->hugepage_activelist);
54f18d35
AM
4139 h->next_nid_to_alloc = first_memory_node;
4140 h->next_nid_to_free = first_memory_node;
a3437870 4141 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
c2c3a60a 4142 huge_page_size(h)/SZ_1K);
8faa8b07 4143
a3437870
NA
4144 parsed_hstate = h;
4145}
4146
b5389086
ZY
4147bool __init __weak hugetlb_node_alloc_supported(void)
4148{
4149 return true;
4150}
f87442f4
PL
4151
4152static void __init hugepages_clear_pages_in_node(void)
4153{
4154 if (!hugetlb_max_hstate) {
4155 default_hstate_max_huge_pages = 0;
4156 memset(default_hugepages_in_node, 0,
10395680 4157 sizeof(default_hugepages_in_node));
f87442f4
PL
4158 } else {
4159 parsed_hstate->max_huge_pages = 0;
4160 memset(parsed_hstate->max_huge_pages_node, 0,
10395680 4161 sizeof(parsed_hstate->max_huge_pages_node));
f87442f4
PL
4162 }
4163}
4164
282f4214
MK
4165/*
4166 * hugepages command line processing
4167 * hugepages normally follows a valid hugepagsz or default_hugepagsz
4168 * specification. If not, ignore the hugepages value. hugepages can also
4169 * be the first huge page command line option in which case it implicitly
4170 * specifies the number of huge pages for the default size.
4171 */
4172static int __init hugepages_setup(char *s)
a3437870
NA
4173{
4174 unsigned long *mhp;
8faa8b07 4175 static unsigned long *last_mhp;
b5389086
ZY
4176 int node = NUMA_NO_NODE;
4177 int count;
4178 unsigned long tmp;
4179 char *p = s;
a3437870 4180
9fee021d 4181 if (!parsed_valid_hugepagesz) {
282f4214 4182 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
9fee021d 4183 parsed_valid_hugepagesz = true;
f81f6e4b 4184 return 1;
9fee021d 4185 }
282f4214 4186
a3437870 4187 /*
282f4214
MK
4188 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
4189 * yet, so this hugepages= parameter goes to the "default hstate".
4190 * Otherwise, it goes with the previously parsed hugepagesz or
4191 * default_hugepagesz.
a3437870 4192 */
9fee021d 4193 else if (!hugetlb_max_hstate)
a3437870
NA
4194 mhp = &default_hstate_max_huge_pages;
4195 else
4196 mhp = &parsed_hstate->max_huge_pages;
4197
8faa8b07 4198 if (mhp == last_mhp) {
282f4214 4199 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
f81f6e4b 4200 return 1;
8faa8b07
AK
4201 }
4202
b5389086
ZY
4203 while (*p) {
4204 count = 0;
4205 if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4206 goto invalid;
4207 /* Parameter is node format */
4208 if (p[count] == ':') {
4209 if (!hugetlb_node_alloc_supported()) {
4210 pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n");
f81f6e4b 4211 return 1;
b5389086 4212 }
0a7a0f6f 4213 if (tmp >= MAX_NUMNODES || !node_online(tmp))
e79ce983 4214 goto invalid;
0a7a0f6f 4215 node = array_index_nospec(tmp, MAX_NUMNODES);
b5389086 4216 p += count + 1;
b5389086
ZY
4217 /* Parse hugepages */
4218 if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4219 goto invalid;
4220 if (!hugetlb_max_hstate)
4221 default_hugepages_in_node[node] = tmp;
4222 else
4223 parsed_hstate->max_huge_pages_node[node] = tmp;
4224 *mhp += tmp;
4225 /* Go to parse next node*/
4226 if (p[count] == ',')
4227 p += count + 1;
4228 else
4229 break;
4230 } else {
4231 if (p != s)
4232 goto invalid;
4233 *mhp = tmp;
4234 break;
4235 }
4236 }
a3437870 4237
8faa8b07
AK
4238 /*
4239 * Global state is always initialized later in hugetlb_init.
04adbc3f 4240 * But we need to allocate gigantic hstates here early to still
8faa8b07
AK
4241 * use the bootmem allocator.
4242 */
04adbc3f 4243 if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
8faa8b07
AK
4244 hugetlb_hstate_alloc_pages(parsed_hstate);
4245
4246 last_mhp = mhp;
4247
a3437870 4248 return 1;
b5389086
ZY
4249
4250invalid:
4251 pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p);
f87442f4 4252 hugepages_clear_pages_in_node();
f81f6e4b 4253 return 1;
a3437870 4254}
282f4214 4255__setup("hugepages=", hugepages_setup);
e11bfbfc 4256
282f4214
MK
4257/*
4258 * hugepagesz command line processing
4259 * A specific huge page size can only be specified once with hugepagesz.
4260 * hugepagesz is followed by hugepages on the command line. The global
4261 * variable 'parsed_valid_hugepagesz' is used to determine if prior
4262 * hugepagesz argument was valid.
4263 */
359f2544 4264static int __init hugepagesz_setup(char *s)
e11bfbfc 4265{
359f2544 4266 unsigned long size;
282f4214
MK
4267 struct hstate *h;
4268
4269 parsed_valid_hugepagesz = false;
359f2544
MK
4270 size = (unsigned long)memparse(s, NULL);
4271
4272 if (!arch_hugetlb_valid_size(size)) {
282f4214 4273 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
f81f6e4b 4274 return 1;
359f2544
MK
4275 }
4276
282f4214
MK
4277 h = size_to_hstate(size);
4278 if (h) {
4279 /*
4280 * hstate for this size already exists. This is normally
4281 * an error, but is allowed if the existing hstate is the
4282 * default hstate. More specifically, it is only allowed if
4283 * the number of huge pages for the default hstate was not
4284 * previously specified.
4285 */
4286 if (!parsed_default_hugepagesz || h != &default_hstate ||
4287 default_hstate.max_huge_pages) {
4288 pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
f81f6e4b 4289 return 1;
282f4214
MK
4290 }
4291
4292 /*
4293 * No need to call hugetlb_add_hstate() as hstate already
4294 * exists. But, do set parsed_hstate so that a following
4295 * hugepages= parameter will be applied to this hstate.
4296 */
4297 parsed_hstate = h;
4298 parsed_valid_hugepagesz = true;
4299 return 1;
38237830
MK
4300 }
4301
359f2544 4302 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
282f4214 4303 parsed_valid_hugepagesz = true;
e11bfbfc
NP
4304 return 1;
4305}
359f2544
MK
4306__setup("hugepagesz=", hugepagesz_setup);
4307
282f4214
MK
4308/*
4309 * default_hugepagesz command line input
4310 * Only one instance of default_hugepagesz allowed on command line.
4311 */
ae94da89 4312static int __init default_hugepagesz_setup(char *s)
e11bfbfc 4313{
ae94da89 4314 unsigned long size;
b5389086 4315 int i;
ae94da89 4316
282f4214 4317 parsed_valid_hugepagesz = false;
282f4214
MK
4318 if (parsed_default_hugepagesz) {
4319 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
f81f6e4b 4320 return 1;
282f4214
MK
4321 }
4322
ae94da89
MK
4323 size = (unsigned long)memparse(s, NULL);
4324
4325 if (!arch_hugetlb_valid_size(size)) {
282f4214 4326 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
f81f6e4b 4327 return 1;
ae94da89
MK
4328 }
4329
282f4214
MK
4330 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4331 parsed_valid_hugepagesz = true;
4332 parsed_default_hugepagesz = true;
4333 default_hstate_idx = hstate_index(size_to_hstate(size));
4334
4335 /*
4336 * The number of default huge pages (for this size) could have been
4337 * specified as the first hugetlb parameter: hugepages=X. If so,
4338 * then default_hstate_max_huge_pages is set. If the default huge
4339 * page size is gigantic (>= MAX_ORDER), then the pages must be
4340 * allocated here from bootmem allocator.
4341 */
4342 if (default_hstate_max_huge_pages) {
4343 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
0a7a0f6f 4344 for_each_online_node(i)
b5389086
ZY
4345 default_hstate.max_huge_pages_node[i] =
4346 default_hugepages_in_node[i];
282f4214
MK
4347 if (hstate_is_gigantic(&default_hstate))
4348 hugetlb_hstate_alloc_pages(&default_hstate);
4349 default_hstate_max_huge_pages = 0;
4350 }
4351
e11bfbfc
NP
4352 return 1;
4353}
ae94da89 4354__setup("default_hugepagesz=", default_hugepagesz_setup);
a3437870 4355
d2226ebd
FT
4356static nodemask_t *policy_mbind_nodemask(gfp_t gfp)
4357{
4358#ifdef CONFIG_NUMA
4359 struct mempolicy *mpol = get_task_policy(current);
4360
4361 /*
4362 * Only enforce MPOL_BIND policy which overlaps with cpuset policy
4363 * (from policy_nodemask) specifically for hugetlb case
4364 */
4365 if (mpol->mode == MPOL_BIND &&
4366 (apply_policy_zone(mpol, gfp_zone(gfp)) &&
4367 cpuset_nodemask_valid_mems_allowed(&mpol->nodes)))
4368 return &mpol->nodes;
4369#endif
4370 return NULL;
4371}
4372
8ca39e68 4373static unsigned int allowed_mems_nr(struct hstate *h)
8a213460
NA
4374{
4375 int node;
4376 unsigned int nr = 0;
d2226ebd 4377 nodemask_t *mbind_nodemask;
8ca39e68
MS
4378 unsigned int *array = h->free_huge_pages_node;
4379 gfp_t gfp_mask = htlb_alloc_mask(h);
4380
d2226ebd 4381 mbind_nodemask = policy_mbind_nodemask(gfp_mask);
8ca39e68 4382 for_each_node_mask(node, cpuset_current_mems_allowed) {
d2226ebd 4383 if (!mbind_nodemask || node_isset(node, *mbind_nodemask))
8ca39e68
MS
4384 nr += array[node];
4385 }
8a213460
NA
4386
4387 return nr;
4388}
4389
4390#ifdef CONFIG_SYSCTL
17743798
MS
4391static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
4392 void *buffer, size_t *length,
4393 loff_t *ppos, unsigned long *out)
4394{
4395 struct ctl_table dup_table;
4396
4397 /*
4398 * In order to avoid races with __do_proc_doulongvec_minmax(), we
4399 * can duplicate the @table and alter the duplicate of it.
4400 */
4401 dup_table = *table;
4402 dup_table.data = out;
4403
4404 return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
4405}
4406
06808b08
LS
4407static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
4408 struct ctl_table *table, int write,
32927393 4409 void *buffer, size_t *length, loff_t *ppos)
1da177e4 4410{
e5ff2159 4411 struct hstate *h = &default_hstate;
238d3c13 4412 unsigned long tmp = h->max_huge_pages;
08d4a246 4413 int ret;
e5ff2159 4414
457c1b27 4415 if (!hugepages_supported())
86613628 4416 return -EOPNOTSUPP;
457c1b27 4417
17743798
MS
4418 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4419 &tmp);
08d4a246
MH
4420 if (ret)
4421 goto out;
e5ff2159 4422
238d3c13
DR
4423 if (write)
4424 ret = __nr_hugepages_store_common(obey_mempolicy, h,
4425 NUMA_NO_NODE, tmp, *length);
08d4a246
MH
4426out:
4427 return ret;
1da177e4 4428}
396faf03 4429
06808b08 4430int hugetlb_sysctl_handler(struct ctl_table *table, int write,
32927393 4431 void *buffer, size_t *length, loff_t *ppos)
06808b08
LS
4432{
4433
4434 return hugetlb_sysctl_handler_common(false, table, write,
4435 buffer, length, ppos);
4436}
4437
4438#ifdef CONFIG_NUMA
4439int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
32927393 4440 void *buffer, size_t *length, loff_t *ppos)
06808b08
LS
4441{
4442 return hugetlb_sysctl_handler_common(true, table, write,
4443 buffer, length, ppos);
4444}
4445#endif /* CONFIG_NUMA */
4446
a3d0c6aa 4447int hugetlb_overcommit_handler(struct ctl_table *table, int write,
32927393 4448 void *buffer, size_t *length, loff_t *ppos)
a3d0c6aa 4449{
a5516438 4450 struct hstate *h = &default_hstate;
e5ff2159 4451 unsigned long tmp;
08d4a246 4452 int ret;
e5ff2159 4453
457c1b27 4454 if (!hugepages_supported())
86613628 4455 return -EOPNOTSUPP;
457c1b27 4456
c033a93c 4457 tmp = h->nr_overcommit_huge_pages;
e5ff2159 4458
bae7f4ae 4459 if (write && hstate_is_gigantic(h))
adbe8726
EM
4460 return -EINVAL;
4461
17743798
MS
4462 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4463 &tmp);
08d4a246
MH
4464 if (ret)
4465 goto out;
e5ff2159
AK
4466
4467 if (write) {
db71ef79 4468 spin_lock_irq(&hugetlb_lock);
e5ff2159 4469 h->nr_overcommit_huge_pages = tmp;
db71ef79 4470 spin_unlock_irq(&hugetlb_lock);
e5ff2159 4471 }
08d4a246
MH
4472out:
4473 return ret;
a3d0c6aa
NA
4474}
4475
1da177e4
LT
4476#endif /* CONFIG_SYSCTL */
4477
e1759c21 4478void hugetlb_report_meminfo(struct seq_file *m)
1da177e4 4479{
fcb2b0c5
RG
4480 struct hstate *h;
4481 unsigned long total = 0;
4482
457c1b27
NA
4483 if (!hugepages_supported())
4484 return;
fcb2b0c5
RG
4485
4486 for_each_hstate(h) {
4487 unsigned long count = h->nr_huge_pages;
4488
aca78307 4489 total += huge_page_size(h) * count;
fcb2b0c5
RG
4490
4491 if (h == &default_hstate)
4492 seq_printf(m,
4493 "HugePages_Total: %5lu\n"
4494 "HugePages_Free: %5lu\n"
4495 "HugePages_Rsvd: %5lu\n"
4496 "HugePages_Surp: %5lu\n"
4497 "Hugepagesize: %8lu kB\n",
4498 count,
4499 h->free_huge_pages,
4500 h->resv_huge_pages,
4501 h->surplus_huge_pages,
aca78307 4502 huge_page_size(h) / SZ_1K);
fcb2b0c5
RG
4503 }
4504
aca78307 4505 seq_printf(m, "Hugetlb: %8lu kB\n", total / SZ_1K);
1da177e4
LT
4506}
4507
7981593b 4508int hugetlb_report_node_meminfo(char *buf, int len, int nid)
1da177e4 4509{
a5516438 4510 struct hstate *h = &default_hstate;
7981593b 4511
457c1b27
NA
4512 if (!hugepages_supported())
4513 return 0;
7981593b
JP
4514
4515 return sysfs_emit_at(buf, len,
4516 "Node %d HugePages_Total: %5u\n"
4517 "Node %d HugePages_Free: %5u\n"
4518 "Node %d HugePages_Surp: %5u\n",
4519 nid, h->nr_huge_pages_node[nid],
4520 nid, h->free_huge_pages_node[nid],
4521 nid, h->surplus_huge_pages_node[nid]);
1da177e4
LT
4522}
4523
dcadcf1c 4524void hugetlb_show_meminfo_node(int nid)
949f7ec5
DR
4525{
4526 struct hstate *h;
949f7ec5 4527
457c1b27
NA
4528 if (!hugepages_supported())
4529 return;
4530
dcadcf1c
GL
4531 for_each_hstate(h)
4532 printk("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
4533 nid,
4534 h->nr_huge_pages_node[nid],
4535 h->free_huge_pages_node[nid],
4536 h->surplus_huge_pages_node[nid],
4537 huge_page_size(h) / SZ_1K);
949f7ec5
DR
4538}
4539
5d317b2b
NH
4540void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
4541{
4542 seq_printf(m, "HugetlbPages:\t%8lu kB\n",
4543 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
4544}
4545
1da177e4
LT
4546/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
4547unsigned long hugetlb_total_pages(void)
4548{
d0028588
WL
4549 struct hstate *h;
4550 unsigned long nr_total_pages = 0;
4551
4552 for_each_hstate(h)
4553 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
4554 return nr_total_pages;
1da177e4 4555}
1da177e4 4556
a5516438 4557static int hugetlb_acct_memory(struct hstate *h, long delta)
fc1b8a73
MG
4558{
4559 int ret = -ENOMEM;
4560
0aa7f354
ML
4561 if (!delta)
4562 return 0;
4563
db71ef79 4564 spin_lock_irq(&hugetlb_lock);
fc1b8a73
MG
4565 /*
4566 * When cpuset is configured, it breaks the strict hugetlb page
4567 * reservation as the accounting is done on a global variable. Such
4568 * reservation is completely rubbish in the presence of cpuset because
4569 * the reservation is not checked against page availability for the
4570 * current cpuset. Application can still potentially OOM'ed by kernel
4571 * with lack of free htlb page in cpuset that the task is in.
4572 * Attempt to enforce strict accounting with cpuset is almost
4573 * impossible (or too ugly) because cpuset is too fluid that
4574 * task or memory node can be dynamically moved between cpusets.
4575 *
4576 * The change of semantics for shared hugetlb mapping with cpuset is
4577 * undesirable. However, in order to preserve some of the semantics,
4578 * we fall back to check against current free page availability as
4579 * a best attempt and hopefully to minimize the impact of changing
4580 * semantics that cpuset has.
8ca39e68
MS
4581 *
4582 * Apart from cpuset, we also have memory policy mechanism that
4583 * also determines from which node the kernel will allocate memory
4584 * in a NUMA system. So similar to cpuset, we also should consider
4585 * the memory policy of the current task. Similar to the description
4586 * above.
fc1b8a73
MG
4587 */
4588 if (delta > 0) {
a5516438 4589 if (gather_surplus_pages(h, delta) < 0)
fc1b8a73
MG
4590 goto out;
4591
8ca39e68 4592 if (delta > allowed_mems_nr(h)) {
a5516438 4593 return_unused_surplus_pages(h, delta);
fc1b8a73
MG
4594 goto out;
4595 }
4596 }
4597
4598 ret = 0;
4599 if (delta < 0)
a5516438 4600 return_unused_surplus_pages(h, (unsigned long) -delta);
fc1b8a73
MG
4601
4602out:
db71ef79 4603 spin_unlock_irq(&hugetlb_lock);
fc1b8a73
MG
4604 return ret;
4605}
4606
84afd99b
AW
4607static void hugetlb_vm_op_open(struct vm_area_struct *vma)
4608{
f522c3ac 4609 struct resv_map *resv = vma_resv_map(vma);
84afd99b
AW
4610
4611 /*
612b8a31 4612 * HPAGE_RESV_OWNER indicates a private mapping.
84afd99b
AW
4613 * This new VMA should share its siblings reservation map if present.
4614 * The VMA will only ever have a valid reservation map pointer where
4615 * it is being copied for another still existing VMA. As that VMA
25985edc 4616 * has a reference to the reservation map it cannot disappear until
84afd99b
AW
4617 * after this open call completes. It is therefore safe to take a
4618 * new reference here without additional locking.
4619 */
09a26e83
MK
4620 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
4621 resv_map_dup_hugetlb_cgroup_uncharge_info(resv);
f522c3ac 4622 kref_get(&resv->refs);
09a26e83 4623 }
8d9bfb26 4624
131a79b4
MK
4625 /*
4626 * vma_lock structure for sharable mappings is vma specific.
612b8a31
MK
4627 * Clear old pointer (if copied via vm_area_dup) and allocate
4628 * new structure. Before clearing, make sure vma_lock is not
4629 * for this vma.
131a79b4
MK
4630 */
4631 if (vma->vm_flags & VM_MAYSHARE) {
612b8a31
MK
4632 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
4633
4634 if (vma_lock) {
4635 if (vma_lock->vma != vma) {
4636 vma->vm_private_data = NULL;
4637 hugetlb_vma_lock_alloc(vma);
4638 } else
4639 pr_warn("HugeTLB: vma_lock already exists in %s.\n", __func__);
4640 } else
4641 hugetlb_vma_lock_alloc(vma);
131a79b4 4642 }
84afd99b
AW
4643}
4644
a1e78772
MG
4645static void hugetlb_vm_op_close(struct vm_area_struct *vma)
4646{
a5516438 4647 struct hstate *h = hstate_vma(vma);
8d9bfb26 4648 struct resv_map *resv;
90481622 4649 struct hugepage_subpool *spool = subpool_vma(vma);
4e35f483 4650 unsigned long reserve, start, end;
1c5ecae3 4651 long gbl_reserve;
84afd99b 4652
8d9bfb26
MK
4653 hugetlb_vma_lock_free(vma);
4654
4655 resv = vma_resv_map(vma);
4e35f483
JK
4656 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4657 return;
84afd99b 4658
4e35f483
JK
4659 start = vma_hugecache_offset(h, vma, vma->vm_start);
4660 end = vma_hugecache_offset(h, vma, vma->vm_end);
84afd99b 4661
4e35f483 4662 reserve = (end - start) - region_count(resv, start, end);
e9fe92ae 4663 hugetlb_cgroup_uncharge_counter(resv, start, end);
4e35f483 4664 if (reserve) {
1c5ecae3
MK
4665 /*
4666 * Decrement reserve counts. The global reserve count may be
4667 * adjusted if the subpool has a minimum size.
4668 */
4669 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
4670 hugetlb_acct_memory(h, -gbl_reserve);
84afd99b 4671 }
e9fe92ae
MA
4672
4673 kref_put(&resv->refs, resv_map_release);
a1e78772
MG
4674}
4675
31383c68
DW
4676static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
4677{
4678 if (addr & ~(huge_page_mask(hstate_vma(vma))))
4679 return -EINVAL;
4680 return 0;
4681}
4682
05ea8860
DW
4683static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
4684{
aca78307 4685 return huge_page_size(hstate_vma(vma));
05ea8860
DW
4686}
4687
1da177e4
LT
4688/*
4689 * We cannot handle pagefaults against hugetlb pages at all. They cause
4690 * handle_mm_fault() to try to instantiate regular-sized pages in the
6c26d310 4691 * hugepage VMA. do_page_fault() is supposed to trap this, so BUG is we get
1da177e4
LT
4692 * this far.
4693 */
b3ec9f33 4694static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
1da177e4
LT
4695{
4696 BUG();
d0217ac0 4697 return 0;
1da177e4
LT
4698}
4699
eec3636a
JC
4700/*
4701 * When a new function is introduced to vm_operations_struct and added
4702 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
4703 * This is because under System V memory model, mappings created via
4704 * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
4705 * their original vm_ops are overwritten with shm_vm_ops.
4706 */
f0f37e2f 4707const struct vm_operations_struct hugetlb_vm_ops = {
d0217ac0 4708 .fault = hugetlb_vm_op_fault,
84afd99b 4709 .open = hugetlb_vm_op_open,
a1e78772 4710 .close = hugetlb_vm_op_close,
dd3b614f 4711 .may_split = hugetlb_vm_op_split,
05ea8860 4712 .pagesize = hugetlb_vm_op_pagesize,
1da177e4
LT
4713};
4714
1e8f889b
DG
4715static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
4716 int writable)
63551ae0
DG
4717{
4718 pte_t entry;
79c1c594 4719 unsigned int shift = huge_page_shift(hstate_vma(vma));
63551ae0 4720
1e8f889b 4721 if (writable) {
106c992a
GS
4722 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
4723 vma->vm_page_prot)));
63551ae0 4724 } else {
106c992a
GS
4725 entry = huge_pte_wrprotect(mk_huge_pte(page,
4726 vma->vm_page_prot));
63551ae0
DG
4727 }
4728 entry = pte_mkyoung(entry);
79c1c594 4729 entry = arch_make_huge_pte(entry, shift, vma->vm_flags);
63551ae0
DG
4730
4731 return entry;
4732}
4733
1e8f889b
DG
4734static void set_huge_ptep_writable(struct vm_area_struct *vma,
4735 unsigned long address, pte_t *ptep)
4736{
4737 pte_t entry;
4738
106c992a 4739 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
32f84528 4740 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4b3073e1 4741 update_mmu_cache(vma, address, ptep);
1e8f889b
DG
4742}
4743
d5ed7444 4744bool is_hugetlb_entry_migration(pte_t pte)
4a705fef
NH
4745{
4746 swp_entry_t swp;
4747
4748 if (huge_pte_none(pte) || pte_present(pte))
d5ed7444 4749 return false;
4a705fef 4750 swp = pte_to_swp_entry(pte);
d79d176a 4751 if (is_migration_entry(swp))
d5ed7444 4752 return true;
4a705fef 4753 else
d5ed7444 4754 return false;
4a705fef
NH
4755}
4756
3e5c3600 4757static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
4a705fef
NH
4758{
4759 swp_entry_t swp;
4760
4761 if (huge_pte_none(pte) || pte_present(pte))
3e5c3600 4762 return false;
4a705fef 4763 swp = pte_to_swp_entry(pte);
d79d176a 4764 if (is_hwpoison_entry(swp))
3e5c3600 4765 return true;
4a705fef 4766 else
3e5c3600 4767 return false;
4a705fef 4768}
1e8f889b 4769
4eae4efa
PX
4770static void
4771hugetlb_install_page(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
4772 struct page *new_page)
4773{
4774 __SetPageUptodate(new_page);
4eae4efa 4775 hugepage_add_new_anon_rmap(new_page, vma, addr);
1eba86c0 4776 set_huge_pte_at(vma->vm_mm, addr, ptep, make_huge_pte(vma, new_page, 1));
4eae4efa
PX
4777 hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
4778 ClearHPageRestoreReserve(new_page);
4779 SetHPageMigratable(new_page);
4780}
4781
63551ae0 4782int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
bc70fbf2
PX
4783 struct vm_area_struct *dst_vma,
4784 struct vm_area_struct *src_vma)
63551ae0 4785{
3aa4ed80 4786 pte_t *src_pte, *dst_pte, entry;
63551ae0 4787 struct page *ptepage;
1c59827d 4788 unsigned long addr;
bc70fbf2
PX
4789 bool cow = is_cow_mapping(src_vma->vm_flags);
4790 struct hstate *h = hstate_vma(src_vma);
a5516438 4791 unsigned long sz = huge_page_size(h);
4eae4efa 4792 unsigned long npages = pages_per_huge_page(h);
ac46d4f3 4793 struct mmu_notifier_range range;
e95a9851 4794 unsigned long last_addr_mask;
e8569dd2 4795 int ret = 0;
1e8f889b 4796
ac46d4f3 4797 if (cow) {
bc70fbf2
PX
4798 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src_vma, src,
4799 src_vma->vm_start,
4800 src_vma->vm_end);
ac46d4f3 4801 mmu_notifier_invalidate_range_start(&range);
623a1ddf
DH
4802 mmap_assert_write_locked(src);
4803 raw_write_seqcount_begin(&src->write_protect_seq);
40549ba8
MK
4804 } else {
4805 /*
4806 * For shared mappings the vma lock must be held before
4807 * calling huge_pte_offset in the src vma. Otherwise, the
4808 * returned ptep could go away if part of a shared pmd and
4809 * another thread calls huge_pmd_unshare.
4810 */
4811 hugetlb_vma_lock_read(src_vma);
ac46d4f3 4812 }
e8569dd2 4813
e95a9851 4814 last_addr_mask = hugetlb_mask_last_page(h);
bc70fbf2 4815 for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) {
cb900f41 4816 spinlock_t *src_ptl, *dst_ptl;
7868a208 4817 src_pte = huge_pte_offset(src, addr, sz);
e95a9851
MK
4818 if (!src_pte) {
4819 addr |= last_addr_mask;
c74df32c 4820 continue;
e95a9851 4821 }
bc70fbf2 4822 dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz);
e8569dd2
AS
4823 if (!dst_pte) {
4824 ret = -ENOMEM;
4825 break;
4826 }
c5c99429 4827
5e41540c
MK
4828 /*
4829 * If the pagetables are shared don't copy or take references.
5e41540c 4830 *
3aa4ed80 4831 * dst_pte == src_pte is the common case of src/dest sharing.
5e41540c 4832 * However, src could have 'unshared' and dst shares with
3aa4ed80
ML
4833 * another vma. So page_count of ptep page is checked instead
4834 * to reliably determine whether pte is shared.
5e41540c 4835 */
3aa4ed80 4836 if (page_count(virt_to_page(dst_pte)) > 1) {
e95a9851 4837 addr |= last_addr_mask;
c5c99429 4838 continue;
e95a9851 4839 }
c5c99429 4840
cb900f41
KS
4841 dst_ptl = huge_pte_lock(h, dst, dst_pte);
4842 src_ptl = huge_pte_lockptr(h, src, src_pte);
4843 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4a705fef 4844 entry = huge_ptep_get(src_pte);
4eae4efa 4845again:
3aa4ed80 4846 if (huge_pte_none(entry)) {
5e41540c 4847 /*
3aa4ed80 4848 * Skip if src entry none.
5e41540c 4849 */
4a705fef 4850 ;
c2cb0dcc
NH
4851 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) {
4852 bool uffd_wp = huge_pte_uffd_wp(entry);
4853
4854 if (!userfaultfd_wp(dst_vma) && uffd_wp)
4855 entry = huge_pte_clear_uffd_wp(entry);
4856 set_huge_pte_at(dst, addr, dst_pte, entry);
4857 } else if (unlikely(is_hugetlb_entry_migration(entry))) {
4a705fef 4858 swp_entry_t swp_entry = pte_to_swp_entry(entry);
bc70fbf2 4859 bool uffd_wp = huge_pte_uffd_wp(entry);
4a705fef 4860
6c287605 4861 if (!is_readable_migration_entry(swp_entry) && cow) {
4a705fef
NH
4862 /*
4863 * COW mappings require pages in both
4864 * parent and child to be set to read.
4865 */
4dd845b5
AP
4866 swp_entry = make_readable_migration_entry(
4867 swp_offset(swp_entry));
4a705fef 4868 entry = swp_entry_to_pte(swp_entry);
bc70fbf2
PX
4869 if (userfaultfd_wp(src_vma) && uffd_wp)
4870 entry = huge_pte_mkuffd_wp(entry);
18f39629 4871 set_huge_pte_at(src, addr, src_pte, entry);
4a705fef 4872 }
bc70fbf2
PX
4873 if (!userfaultfd_wp(dst_vma) && uffd_wp)
4874 entry = huge_pte_clear_uffd_wp(entry);
18f39629 4875 set_huge_pte_at(dst, addr, dst_pte, entry);
bc70fbf2
PX
4876 } else if (unlikely(is_pte_marker(entry))) {
4877 /*
4878 * We copy the pte marker only if the dst vma has
4879 * uffd-wp enabled.
4880 */
4881 if (userfaultfd_wp(dst_vma))
4882 set_huge_pte_at(dst, addr, dst_pte, entry);
4a705fef 4883 } else {
4eae4efa
PX
4884 entry = huge_ptep_get(src_pte);
4885 ptepage = pte_page(entry);
4886 get_page(ptepage);
4887
4888 /*
fb3d824d
DH
4889 * Failing to duplicate the anon rmap is a rare case
4890 * where we see pinned hugetlb pages while they're
4891 * prone to COW. We need to do the COW earlier during
4892 * fork.
4eae4efa
PX
4893 *
4894 * When pre-allocating the page or copying data, we
4895 * need to be without the pgtable locks since we could
4896 * sleep during the process.
4897 */
fb3d824d
DH
4898 if (!PageAnon(ptepage)) {
4899 page_dup_file_rmap(ptepage, true);
bc70fbf2
PX
4900 } else if (page_try_dup_anon_rmap(ptepage, true,
4901 src_vma)) {
4eae4efa
PX
4902 pte_t src_pte_old = entry;
4903 struct page *new;
4904
4905 spin_unlock(src_ptl);
4906 spin_unlock(dst_ptl);
4907 /* Do not use reserve as it's private owned */
bc70fbf2 4908 new = alloc_huge_page(dst_vma, addr, 1);
4eae4efa
PX
4909 if (IS_ERR(new)) {
4910 put_page(ptepage);
4911 ret = PTR_ERR(new);
4912 break;
4913 }
bc70fbf2 4914 copy_user_huge_page(new, ptepage, addr, dst_vma,
4eae4efa
PX
4915 npages);
4916 put_page(ptepage);
4917
4918 /* Install the new huge page if src pte stable */
4919 dst_ptl = huge_pte_lock(h, dst, dst_pte);
4920 src_ptl = huge_pte_lockptr(h, src, src_pte);
4921 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4922 entry = huge_ptep_get(src_pte);
4923 if (!pte_same(src_pte_old, entry)) {
bc70fbf2 4924 restore_reserve_on_error(h, dst_vma, addr,
846be085 4925 new);
4eae4efa 4926 put_page(new);
3aa4ed80 4927 /* huge_ptep of dst_pte won't change as in child */
4eae4efa
PX
4928 goto again;
4929 }
bc70fbf2 4930 hugetlb_install_page(dst_vma, dst_pte, addr, new);
4eae4efa
PX
4931 spin_unlock(src_ptl);
4932 spin_unlock(dst_ptl);
4933 continue;
4934 }
4935
34ee645e 4936 if (cow) {
0f10851e
JG
4937 /*
4938 * No need to notify as we are downgrading page
4939 * table protection not changing it to point
4940 * to a new page.
4941 *
ee65728e 4942 * See Documentation/mm/mmu_notifier.rst
0f10851e 4943 */
7f2e9525 4944 huge_ptep_set_wrprotect(src, addr, src_pte);
84894e1c 4945 entry = huge_pte_wrprotect(entry);
34ee645e 4946 }
4eae4efa 4947
1c59827d 4948 set_huge_pte_at(dst, addr, dst_pte, entry);
4eae4efa 4949 hugetlb_count_add(npages, dst);
1c59827d 4950 }
cb900f41
KS
4951 spin_unlock(src_ptl);
4952 spin_unlock(dst_ptl);
63551ae0 4953 }
63551ae0 4954
623a1ddf
DH
4955 if (cow) {
4956 raw_write_seqcount_end(&src->write_protect_seq);
ac46d4f3 4957 mmu_notifier_invalidate_range_end(&range);
40549ba8
MK
4958 } else {
4959 hugetlb_vma_unlock_read(src_vma);
623a1ddf 4960 }
e8569dd2
AS
4961
4962 return ret;
63551ae0
DG
4963}
4964
550a7d60 4965static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr,
db110a99 4966 unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte)
550a7d60
MA
4967{
4968 struct hstate *h = hstate_vma(vma);
4969 struct mm_struct *mm = vma->vm_mm;
550a7d60 4970 spinlock_t *src_ptl, *dst_ptl;
db110a99 4971 pte_t pte;
550a7d60 4972
550a7d60
MA
4973 dst_ptl = huge_pte_lock(h, mm, dst_pte);
4974 src_ptl = huge_pte_lockptr(h, mm, src_pte);
4975
4976 /*
4977 * We don't have to worry about the ordering of src and dst ptlocks
4978 * because exclusive mmap_sem (or the i_mmap_lock) prevents deadlock.
4979 */
4980 if (src_ptl != dst_ptl)
4981 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4982
4983 pte = huge_ptep_get_and_clear(mm, old_addr, src_pte);
4984 set_huge_pte_at(mm, new_addr, dst_pte, pte);
4985
4986 if (src_ptl != dst_ptl)
4987 spin_unlock(src_ptl);
4988 spin_unlock(dst_ptl);
4989}
4990
4991int move_hugetlb_page_tables(struct vm_area_struct *vma,
4992 struct vm_area_struct *new_vma,
4993 unsigned long old_addr, unsigned long new_addr,
4994 unsigned long len)
4995{
4996 struct hstate *h = hstate_vma(vma);
4997 struct address_space *mapping = vma->vm_file->f_mapping;
4998 unsigned long sz = huge_page_size(h);
4999 struct mm_struct *mm = vma->vm_mm;
5000 unsigned long old_end = old_addr + len;
e95a9851 5001 unsigned long last_addr_mask;
550a7d60
MA
5002 pte_t *src_pte, *dst_pte;
5003 struct mmu_notifier_range range;
3d0b95cd 5004 bool shared_pmd = false;
550a7d60
MA
5005
5006 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, old_addr,
5007 old_end);
5008 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
3d0b95cd
BW
5009 /*
5010 * In case of shared PMDs, we should cover the maximum possible
5011 * range.
5012 */
5013 flush_cache_range(vma, range.start, range.end);
5014
550a7d60 5015 mmu_notifier_invalidate_range_start(&range);
e95a9851 5016 last_addr_mask = hugetlb_mask_last_page(h);
550a7d60 5017 /* Prevent race with file truncation */
40549ba8 5018 hugetlb_vma_lock_write(vma);
550a7d60
MA
5019 i_mmap_lock_write(mapping);
5020 for (; old_addr < old_end; old_addr += sz, new_addr += sz) {
5021 src_pte = huge_pte_offset(mm, old_addr, sz);
e95a9851
MK
5022 if (!src_pte) {
5023 old_addr |= last_addr_mask;
5024 new_addr |= last_addr_mask;
550a7d60 5025 continue;
e95a9851 5026 }
550a7d60
MA
5027 if (huge_pte_none(huge_ptep_get(src_pte)))
5028 continue;
5029
4ddb4d91 5030 if (huge_pmd_unshare(mm, vma, old_addr, src_pte)) {
3d0b95cd 5031 shared_pmd = true;
4ddb4d91
MK
5032 old_addr |= last_addr_mask;
5033 new_addr |= last_addr_mask;
550a7d60 5034 continue;
3d0b95cd 5035 }
550a7d60
MA
5036
5037 dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz);
5038 if (!dst_pte)
5039 break;
5040
db110a99 5041 move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte);
550a7d60 5042 }
3d0b95cd
BW
5043
5044 if (shared_pmd)
5045 flush_tlb_range(vma, range.start, range.end);
5046 else
5047 flush_tlb_range(vma, old_end - len, old_end);
550a7d60 5048 mmu_notifier_invalidate_range_end(&range);
13e4ad2c 5049 i_mmap_unlock_write(mapping);
40549ba8 5050 hugetlb_vma_unlock_write(vma);
550a7d60
MA
5051
5052 return len + old_addr - old_end;
5053}
5054
73c54763
PX
5055static void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
5056 unsigned long start, unsigned long end,
05e90bd0 5057 struct page *ref_page, zap_flags_t zap_flags)
63551ae0
DG
5058{
5059 struct mm_struct *mm = vma->vm_mm;
5060 unsigned long address;
c7546f8f 5061 pte_t *ptep;
63551ae0 5062 pte_t pte;
cb900f41 5063 spinlock_t *ptl;
63551ae0 5064 struct page *page;
a5516438
AK
5065 struct hstate *h = hstate_vma(vma);
5066 unsigned long sz = huge_page_size(h);
ac46d4f3 5067 struct mmu_notifier_range range;
e95a9851 5068 unsigned long last_addr_mask;
a4a118f2 5069 bool force_flush = false;
a5516438 5070
63551ae0 5071 WARN_ON(!is_vm_hugetlb_page(vma));
a5516438
AK
5072 BUG_ON(start & ~huge_page_mask(h));
5073 BUG_ON(end & ~huge_page_mask(h));
63551ae0 5074
07e32661
AK
5075 /*
5076 * This is a hugetlb vma, all the pte entries should point
5077 * to huge page.
5078 */
ed6a7935 5079 tlb_change_page_size(tlb, sz);
24669e58 5080 tlb_start_vma(tlb, vma);
dff11abe
MK
5081
5082 /*
5083 * If sharing possible, alert mmu notifiers of worst case.
5084 */
6f4f13e8
JG
5085 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
5086 end);
ac46d4f3
JG
5087 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5088 mmu_notifier_invalidate_range_start(&range);
e95a9851 5089 last_addr_mask = hugetlb_mask_last_page(h);
569f48b8 5090 address = start;
569f48b8 5091 for (; address < end; address += sz) {
7868a208 5092 ptep = huge_pte_offset(mm, address, sz);
e95a9851
MK
5093 if (!ptep) {
5094 address |= last_addr_mask;
c7546f8f 5095 continue;
e95a9851 5096 }
c7546f8f 5097
cb900f41 5098 ptl = huge_pte_lock(h, mm, ptep);
4ddb4d91 5099 if (huge_pmd_unshare(mm, vma, address, ptep)) {
31d49da5 5100 spin_unlock(ptl);
a4a118f2
NA
5101 tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE);
5102 force_flush = true;
4ddb4d91 5103 address |= last_addr_mask;
31d49da5
AK
5104 continue;
5105 }
39dde65c 5106
6629326b 5107 pte = huge_ptep_get(ptep);
31d49da5
AK
5108 if (huge_pte_none(pte)) {
5109 spin_unlock(ptl);
5110 continue;
5111 }
6629326b
HD
5112
5113 /*
9fbc1f63
NH
5114 * Migrating hugepage or HWPoisoned hugepage is already
5115 * unmapped and its refcount is dropped, so just clear pte here.
6629326b 5116 */
9fbc1f63 5117 if (unlikely(!pte_present(pte))) {
515778e2 5118#ifdef CONFIG_PTE_MARKER_UFFD_WP
05e90bd0
PX
5119 /*
5120 * If the pte was wr-protected by uffd-wp in any of the
5121 * swap forms, meanwhile the caller does not want to
5122 * drop the uffd-wp bit in this zap, then replace the
5123 * pte with a marker.
5124 */
5125 if (pte_swp_uffd_wp_any(pte) &&
5126 !(zap_flags & ZAP_FLAG_DROP_MARKER))
5127 set_huge_pte_at(mm, address, ptep,
5128 make_pte_marker(PTE_MARKER_UFFD_WP));
5129 else
515778e2 5130#endif
05e90bd0 5131 huge_pte_clear(mm, address, ptep, sz);
31d49da5
AK
5132 spin_unlock(ptl);
5133 continue;
8c4894c6 5134 }
6629326b
HD
5135
5136 page = pte_page(pte);
04f2cbe3
MG
5137 /*
5138 * If a reference page is supplied, it is because a specific
5139 * page is being unmapped, not a range. Ensure the page we
5140 * are about to unmap is the actual page of interest.
5141 */
5142 if (ref_page) {
31d49da5
AK
5143 if (page != ref_page) {
5144 spin_unlock(ptl);
5145 continue;
5146 }
04f2cbe3
MG
5147 /*
5148 * Mark the VMA as having unmapped its page so that
5149 * future faults in this VMA will fail rather than
5150 * looking like data was lost
5151 */
5152 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
5153 }
5154
c7546f8f 5155 pte = huge_ptep_get_and_clear(mm, address, ptep);
b528e4b6 5156 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
106c992a 5157 if (huge_pte_dirty(pte))
6649a386 5158 set_page_dirty(page);
515778e2 5159#ifdef CONFIG_PTE_MARKER_UFFD_WP
05e90bd0
PX
5160 /* Leave a uffd-wp pte marker if needed */
5161 if (huge_pte_uffd_wp(pte) &&
5162 !(zap_flags & ZAP_FLAG_DROP_MARKER))
5163 set_huge_pte_at(mm, address, ptep,
5164 make_pte_marker(PTE_MARKER_UFFD_WP));
515778e2 5165#endif
5d317b2b 5166 hugetlb_count_sub(pages_per_huge_page(h), mm);
cea86fe2 5167 page_remove_rmap(page, vma, true);
31d49da5 5168
cb900f41 5169 spin_unlock(ptl);
e77b0852 5170 tlb_remove_page_size(tlb, page, huge_page_size(h));
31d49da5
AK
5171 /*
5172 * Bail out after unmapping reference page if supplied
5173 */
5174 if (ref_page)
5175 break;
fe1668ae 5176 }
ac46d4f3 5177 mmu_notifier_invalidate_range_end(&range);
24669e58 5178 tlb_end_vma(tlb, vma);
a4a118f2
NA
5179
5180 /*
5181 * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We
5182 * could defer the flush until now, since by holding i_mmap_rwsem we
5183 * guaranteed that the last refernece would not be dropped. But we must
5184 * do the flushing before we return, as otherwise i_mmap_rwsem will be
5185 * dropped and the last reference to the shared PMDs page might be
5186 * dropped as well.
5187 *
5188 * In theory we could defer the freeing of the PMD pages as well, but
5189 * huge_pmd_unshare() relies on the exact page_count for the PMD page to
5190 * detect sharing, so we cannot defer the release of the page either.
5191 * Instead, do flush now.
5192 */
5193 if (force_flush)
5194 tlb_flush_mmu_tlbonly(tlb);
1da177e4 5195}
63551ae0 5196
d833352a
MG
5197void __unmap_hugepage_range_final(struct mmu_gather *tlb,
5198 struct vm_area_struct *vma, unsigned long start,
05e90bd0
PX
5199 unsigned long end, struct page *ref_page,
5200 zap_flags_t zap_flags)
d833352a 5201{
131a79b4
MK
5202 hugetlb_vma_lock_write(vma);
5203 i_mmap_lock_write(vma->vm_file->f_mapping);
5204
05e90bd0 5205 __unmap_hugepage_range(tlb, vma, start, end, ref_page, zap_flags);
d833352a
MG
5206
5207 /*
131a79b4
MK
5208 * Unlock and free the vma lock before releasing i_mmap_rwsem. When
5209 * the vma_lock is freed, this makes the vma ineligible for pmd
5210 * sharing. And, i_mmap_rwsem is required to set up pmd sharing.
5211 * This is important as page tables for this unmapped range will
5212 * be asynchrously deleted. If the page tables are shared, there
5213 * will be issues when accessed by someone else.
d833352a 5214 */
ecfbd733 5215 __hugetlb_vma_unlock_write_free(vma);
131a79b4
MK
5216
5217 i_mmap_unlock_write(vma->vm_file->f_mapping);
d833352a
MG
5218}
5219
502717f4 5220void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
05e90bd0
PX
5221 unsigned long end, struct page *ref_page,
5222 zap_flags_t zap_flags)
502717f4 5223{
24669e58 5224 struct mmu_gather tlb;
dff11abe 5225
a72afd87 5226 tlb_gather_mmu(&tlb, vma->vm_mm);
05e90bd0 5227 __unmap_hugepage_range(&tlb, vma, start, end, ref_page, zap_flags);
ae8eba8b 5228 tlb_finish_mmu(&tlb);
502717f4
CK
5229}
5230
04f2cbe3
MG
5231/*
5232 * This is called when the original mapper is failing to COW a MAP_PRIVATE
578b7725 5233 * mapping it owns the reserve page for. The intention is to unmap the page
04f2cbe3
MG
5234 * from other VMAs and let the children be SIGKILLed if they are faulting the
5235 * same region.
5236 */
2f4612af
DB
5237static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
5238 struct page *page, unsigned long address)
04f2cbe3 5239{
7526674d 5240 struct hstate *h = hstate_vma(vma);
04f2cbe3
MG
5241 struct vm_area_struct *iter_vma;
5242 struct address_space *mapping;
04f2cbe3
MG
5243 pgoff_t pgoff;
5244
5245 /*
5246 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
5247 * from page cache lookup which is in HPAGE_SIZE units.
5248 */
7526674d 5249 address = address & huge_page_mask(h);
36e4f20a
MH
5250 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
5251 vma->vm_pgoff;
93c76a3d 5252 mapping = vma->vm_file->f_mapping;
04f2cbe3 5253
4eb2b1dc
MG
5254 /*
5255 * Take the mapping lock for the duration of the table walk. As
5256 * this mapping should be shared between all the VMAs,
5257 * __unmap_hugepage_range() is called as the lock is already held
5258 */
83cde9e8 5259 i_mmap_lock_write(mapping);
6b2dbba8 5260 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
04f2cbe3
MG
5261 /* Do not unmap the current VMA */
5262 if (iter_vma == vma)
5263 continue;
5264
2f84a899
MG
5265 /*
5266 * Shared VMAs have their own reserves and do not affect
5267 * MAP_PRIVATE accounting but it is possible that a shared
5268 * VMA is using the same page so check and skip such VMAs.
5269 */
5270 if (iter_vma->vm_flags & VM_MAYSHARE)
5271 continue;
5272
04f2cbe3
MG
5273 /*
5274 * Unmap the page from other VMAs without their own reserves.
5275 * They get marked to be SIGKILLed if they fault in these
5276 * areas. This is because a future no-page fault on this VMA
5277 * could insert a zeroed page instead of the data existing
5278 * from the time of fork. This would look like data corruption
5279 */
5280 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
24669e58 5281 unmap_hugepage_range(iter_vma, address,
05e90bd0 5282 address + huge_page_size(h), page, 0);
04f2cbe3 5283 }
83cde9e8 5284 i_mmap_unlock_write(mapping);
04f2cbe3
MG
5285}
5286
0fe6e20b 5287/*
c89357e2 5288 * hugetlb_wp() should be called with page lock of the original hugepage held.
aa6d2e8c 5289 * Called with hugetlb_fault_mutex_table held and pte_page locked so we
ef009b25
MH
5290 * cannot race with other handlers or page migration.
5291 * Keep the pte_same checks anyway to make transition from the mutex easier.
0fe6e20b 5292 */
c89357e2
DH
5293static vm_fault_t hugetlb_wp(struct mm_struct *mm, struct vm_area_struct *vma,
5294 unsigned long address, pte_t *ptep, unsigned int flags,
3999f52e 5295 struct page *pagecache_page, spinlock_t *ptl)
1e8f889b 5296{
c89357e2 5297 const bool unshare = flags & FAULT_FLAG_UNSHARE;
3999f52e 5298 pte_t pte;
a5516438 5299 struct hstate *h = hstate_vma(vma);
1e8f889b 5300 struct page *old_page, *new_page;
2b740303
SJ
5301 int outside_reserve = 0;
5302 vm_fault_t ret = 0;
974e6d66 5303 unsigned long haddr = address & huge_page_mask(h);
ac46d4f3 5304 struct mmu_notifier_range range;
1e8f889b 5305
c89357e2
DH
5306 VM_BUG_ON(unshare && (flags & FOLL_WRITE));
5307 VM_BUG_ON(!unshare && !(flags & FOLL_WRITE));
5308
1d8d1464
DH
5309 /*
5310 * hugetlb does not support FOLL_FORCE-style write faults that keep the
5311 * PTE mapped R/O such as maybe_mkwrite() would do.
5312 */
5313 if (WARN_ON_ONCE(!unshare && !(vma->vm_flags & VM_WRITE)))
5314 return VM_FAULT_SIGSEGV;
5315
5316 /* Let's take out MAP_SHARED mappings first. */
5317 if (vma->vm_flags & VM_MAYSHARE) {
5318 if (unlikely(unshare))
5319 return 0;
5320 set_huge_ptep_writable(vma, haddr, ptep);
5321 return 0;
5322 }
5323
3999f52e 5324 pte = huge_ptep_get(ptep);
1e8f889b
DG
5325 old_page = pte_page(pte);
5326
662ce1dc
YY
5327 delayacct_wpcopy_start();
5328
04f2cbe3 5329retry_avoidcopy:
c89357e2
DH
5330 /*
5331 * If no-one else is actually using this page, we're the exclusive
5332 * owner and can reuse this page.
5333 */
37a2140d 5334 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
c89357e2
DH
5335 if (!PageAnonExclusive(old_page))
5336 page_move_anon_rmap(old_page, vma);
5337 if (likely(!unshare))
5338 set_huge_ptep_writable(vma, haddr, ptep);
662ce1dc
YY
5339
5340 delayacct_wpcopy_end();
83c54070 5341 return 0;
1e8f889b 5342 }
6c287605
DH
5343 VM_BUG_ON_PAGE(PageAnon(old_page) && PageAnonExclusive(old_page),
5344 old_page);
1e8f889b 5345
04f2cbe3
MG
5346 /*
5347 * If the process that created a MAP_PRIVATE mapping is about to
5348 * perform a COW due to a shared page count, attempt to satisfy
5349 * the allocation without using the existing reserves. The pagecache
5350 * page is used to determine if the reserve at this address was
5351 * consumed or not. If reserves were used, a partial faulted mapping
5352 * at the time of fork() could consume its reserves on COW instead
5353 * of the full address range.
5354 */
5944d011 5355 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
04f2cbe3
MG
5356 old_page != pagecache_page)
5357 outside_reserve = 1;
5358
09cbfeaf 5359 get_page(old_page);
b76c8cfb 5360
ad4404a2
DB
5361 /*
5362 * Drop page table lock as buddy allocator may be called. It will
5363 * be acquired again before returning to the caller, as expected.
5364 */
cb900f41 5365 spin_unlock(ptl);
5b7a1d40 5366 new_page = alloc_huge_page(vma, haddr, outside_reserve);
1e8f889b 5367
2fc39cec 5368 if (IS_ERR(new_page)) {
04f2cbe3
MG
5369 /*
5370 * If a process owning a MAP_PRIVATE mapping fails to COW,
5371 * it is due to references held by a child and an insufficient
5372 * huge page pool. To guarantee the original mappers
5373 * reliability, unmap the page from child processes. The child
5374 * may get SIGKILLed if it later faults.
5375 */
5376 if (outside_reserve) {
40549ba8
MK
5377 struct address_space *mapping = vma->vm_file->f_mapping;
5378 pgoff_t idx;
5379 u32 hash;
5380
09cbfeaf 5381 put_page(old_page);
40549ba8
MK
5382 /*
5383 * Drop hugetlb_fault_mutex and vma_lock before
5384 * unmapping. unmapping needs to hold vma_lock
5385 * in write mode. Dropping vma_lock in read mode
5386 * here is OK as COW mappings do not interact with
5387 * PMD sharing.
5388 *
5389 * Reacquire both after unmap operation.
5390 */
5391 idx = vma_hugecache_offset(h, vma, haddr);
5392 hash = hugetlb_fault_mutex_hash(mapping, idx);
5393 hugetlb_vma_unlock_read(vma);
5394 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5395
5b7a1d40 5396 unmap_ref_private(mm, vma, old_page, haddr);
40549ba8
MK
5397
5398 mutex_lock(&hugetlb_fault_mutex_table[hash]);
5399 hugetlb_vma_lock_read(vma);
2f4612af 5400 spin_lock(ptl);
5b7a1d40 5401 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
2f4612af
DB
5402 if (likely(ptep &&
5403 pte_same(huge_ptep_get(ptep), pte)))
5404 goto retry_avoidcopy;
5405 /*
5406 * race occurs while re-acquiring page table
5407 * lock, and our job is done.
5408 */
662ce1dc 5409 delayacct_wpcopy_end();
2f4612af 5410 return 0;
04f2cbe3
MG
5411 }
5412
2b740303 5413 ret = vmf_error(PTR_ERR(new_page));
ad4404a2 5414 goto out_release_old;
1e8f889b
DG
5415 }
5416
0fe6e20b
NH
5417 /*
5418 * When the original hugepage is shared one, it does not have
5419 * anon_vma prepared.
5420 */
44e2aa93 5421 if (unlikely(anon_vma_prepare(vma))) {
ad4404a2
DB
5422 ret = VM_FAULT_OOM;
5423 goto out_release_all;
44e2aa93 5424 }
0fe6e20b 5425
974e6d66 5426 copy_user_huge_page(new_page, old_page, address, vma,
47ad8475 5427 pages_per_huge_page(h));
0ed361de 5428 __SetPageUptodate(new_page);
1e8f889b 5429
7269f999 5430 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
6f4f13e8 5431 haddr + huge_page_size(h));
ac46d4f3 5432 mmu_notifier_invalidate_range_start(&range);
ad4404a2 5433
b76c8cfb 5434 /*
cb900f41 5435 * Retake the page table lock to check for racing updates
b76c8cfb
LW
5436 * before the page tables are altered
5437 */
cb900f41 5438 spin_lock(ptl);
5b7a1d40 5439 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
a9af0c5d 5440 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
d6995da3 5441 ClearHPageRestoreReserve(new_page);
07443a85 5442
c89357e2 5443 /* Break COW or unshare */
5b7a1d40 5444 huge_ptep_clear_flush(vma, haddr, ptep);
ac46d4f3 5445 mmu_notifier_invalidate_range(mm, range.start, range.end);
cea86fe2 5446 page_remove_rmap(old_page, vma, true);
5b7a1d40 5447 hugepage_add_new_anon_rmap(new_page, vma, haddr);
1eba86c0 5448 set_huge_pte_at(mm, haddr, ptep,
c89357e2 5449 make_huge_pte(vma, new_page, !unshare));
8f251a3d 5450 SetHPageMigratable(new_page);
1e8f889b
DG
5451 /* Make the old page be freed below */
5452 new_page = old_page;
5453 }
cb900f41 5454 spin_unlock(ptl);
ac46d4f3 5455 mmu_notifier_invalidate_range_end(&range);
ad4404a2 5456out_release_all:
c89357e2
DH
5457 /*
5458 * No restore in case of successful pagetable update (Break COW or
5459 * unshare)
5460 */
c7b1850d
MK
5461 if (new_page != old_page)
5462 restore_reserve_on_error(h, vma, haddr, new_page);
09cbfeaf 5463 put_page(new_page);
ad4404a2 5464out_release_old:
09cbfeaf 5465 put_page(old_page);
8312034f 5466
ad4404a2 5467 spin_lock(ptl); /* Caller expects lock to be held */
662ce1dc
YY
5468
5469 delayacct_wpcopy_end();
ad4404a2 5470 return ret;
1e8f889b
DG
5471}
5472
3ae77f43
HD
5473/*
5474 * Return whether there is a pagecache page to back given address within VMA.
5475 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
5476 */
5477static bool hugetlbfs_pagecache_present(struct hstate *h,
2a15efc9
HD
5478 struct vm_area_struct *vma, unsigned long address)
5479{
5480 struct address_space *mapping;
5481 pgoff_t idx;
5482 struct page *page;
5483
5484 mapping = vma->vm_file->f_mapping;
5485 idx = vma_hugecache_offset(h, vma, address);
5486
5487 page = find_get_page(mapping, idx);
5488 if (page)
5489 put_page(page);
5490 return page != NULL;
5491}
5492
7e1813d4 5493int hugetlb_add_to_page_cache(struct page *page, struct address_space *mapping,
ab76ad54
MK
5494 pgoff_t idx)
5495{
d9ef44de 5496 struct folio *folio = page_folio(page);
ab76ad54
MK
5497 struct inode *inode = mapping->host;
5498 struct hstate *h = hstate_inode(inode);
d9ef44de 5499 int err;
ab76ad54 5500
d9ef44de
MWO
5501 __folio_set_locked(folio);
5502 err = __filemap_add_folio(mapping, folio, idx, GFP_KERNEL, NULL);
5503
5504 if (unlikely(err)) {
5505 __folio_clear_locked(folio);
ab76ad54 5506 return err;
d9ef44de 5507 }
d6995da3 5508 ClearHPageRestoreReserve(page);
ab76ad54 5509
22146c3c 5510 /*
d9ef44de 5511 * mark folio dirty so that it will not be removed from cache/file
22146c3c
MK
5512 * by non-hugetlbfs specific code paths.
5513 */
d9ef44de 5514 folio_mark_dirty(folio);
22146c3c 5515
ab76ad54
MK
5516 spin_lock(&inode->i_lock);
5517 inode->i_blocks += blocks_per_huge_page(h);
5518 spin_unlock(&inode->i_lock);
5519 return 0;
5520}
5521
7677f7fd
AR
5522static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma,
5523 struct address_space *mapping,
5524 pgoff_t idx,
5525 unsigned int flags,
5526 unsigned long haddr,
824ddc60 5527 unsigned long addr,
7677f7fd
AR
5528 unsigned long reason)
5529{
7677f7fd
AR
5530 u32 hash;
5531 struct vm_fault vmf = {
5532 .vma = vma,
5533 .address = haddr,
824ddc60 5534 .real_address = addr,
7677f7fd
AR
5535 .flags = flags,
5536
5537 /*
5538 * Hard to debug if it ends up being
5539 * used by a callee that assumes
5540 * something about the other
5541 * uninitialized fields... same as in
5542 * memory.c
5543 */
5544 };
5545
5546 /*
958f32ce
LS
5547 * vma_lock and hugetlb_fault_mutex must be dropped before handling
5548 * userfault. Also mmap_lock could be dropped due to handling
5549 * userfault, any vma operation should be careful from here.
7677f7fd 5550 */
40549ba8 5551 hugetlb_vma_unlock_read(vma);
7677f7fd
AR
5552 hash = hugetlb_fault_mutex_hash(mapping, idx);
5553 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
958f32ce 5554 return handle_userfault(&vmf, reason);
7677f7fd
AR
5555}
5556
2ea7ff1e
PX
5557/*
5558 * Recheck pte with pgtable lock. Returns true if pte didn't change, or
5559 * false if pte changed or is changing.
5560 */
5561static bool hugetlb_pte_stable(struct hstate *h, struct mm_struct *mm,
5562 pte_t *ptep, pte_t old_pte)
5563{
5564 spinlock_t *ptl;
5565 bool same;
5566
5567 ptl = huge_pte_lock(h, mm, ptep);
5568 same = pte_same(huge_ptep_get(ptep), old_pte);
5569 spin_unlock(ptl);
5570
5571 return same;
5572}
5573
2b740303
SJ
5574static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
5575 struct vm_area_struct *vma,
5576 struct address_space *mapping, pgoff_t idx,
c64e912c
PX
5577 unsigned long address, pte_t *ptep,
5578 pte_t old_pte, unsigned int flags)
ac9b9c66 5579{
a5516438 5580 struct hstate *h = hstate_vma(vma);
2b740303 5581 vm_fault_t ret = VM_FAULT_SIGBUS;
409eb8c2 5582 int anon_rmap = 0;
4c887265 5583 unsigned long size;
4c887265 5584 struct page *page;
1e8f889b 5585 pte_t new_pte;
cb900f41 5586 spinlock_t *ptl;
285b8dca 5587 unsigned long haddr = address & huge_page_mask(h);
c7b1850d 5588 bool new_page, new_pagecache_page = false;
958f32ce 5589 u32 hash = hugetlb_fault_mutex_hash(mapping, idx);
4c887265 5590
04f2cbe3
MG
5591 /*
5592 * Currently, we are forced to kill the process in the event the
5593 * original mapper has unmapped pages from the child due to a failed
c89357e2
DH
5594 * COW/unsharing. Warn that such a situation has occurred as it may not
5595 * be obvious.
04f2cbe3
MG
5596 */
5597 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
910154d5 5598 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
ffb22af5 5599 current->pid);
958f32ce 5600 goto out;
04f2cbe3
MG
5601 }
5602
4c887265 5603 /*
188a3972
MK
5604 * Use page lock to guard against racing truncation
5605 * before we get page_table_lock.
4c887265 5606 */
c7b1850d 5607 new_page = false;
6bda666a
CL
5608 page = find_lock_page(mapping, idx);
5609 if (!page) {
188a3972
MK
5610 size = i_size_read(mapping->host) >> huge_page_shift(h);
5611 if (idx >= size)
5612 goto out;
7677f7fd 5613 /* Check for page in userfault range */
2ea7ff1e
PX
5614 if (userfaultfd_missing(vma)) {
5615 /*
5616 * Since hugetlb_no_page() was examining pte
5617 * without pgtable lock, we need to re-test under
5618 * lock because the pte may not be stable and could
5619 * have changed from under us. Try to detect
5620 * either changed or during-changing ptes and retry
5621 * properly when needed.
5622 *
5623 * Note that userfaultfd is actually fine with
5624 * false positives (e.g. caused by pte changed),
5625 * but not wrong logical events (e.g. caused by
5626 * reading a pte during changing). The latter can
5627 * confuse the userspace, so the strictness is very
5628 * much preferred. E.g., MISSING event should
5629 * never happen on the page after UFFDIO_COPY has
5630 * correctly installed the page and returned.
5631 */
5632 if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
5633 ret = 0;
5634 goto out;
5635 }
5636
5637 return hugetlb_handle_userfault(vma, mapping, idx, flags,
5638 haddr, address,
5639 VM_UFFD_MISSING);
5640 }
1a1aad8a 5641
285b8dca 5642 page = alloc_huge_page(vma, haddr, 0);
2fc39cec 5643 if (IS_ERR(page)) {
4643d67e
MK
5644 /*
5645 * Returning error will result in faulting task being
5646 * sent SIGBUS. The hugetlb fault mutex prevents two
5647 * tasks from racing to fault in the same page which
5648 * could result in false unable to allocate errors.
5649 * Page migration does not take the fault mutex, but
5650 * does a clear then write of pte's under page table
5651 * lock. Page fault code could race with migration,
5652 * notice the clear pte and try to allocate a page
5653 * here. Before returning error, get ptl and make
5654 * sure there really is no pte entry.
5655 */
f9bf6c03 5656 if (hugetlb_pte_stable(h, mm, ptep, old_pte))
d83e6c8a 5657 ret = vmf_error(PTR_ERR(page));
f9bf6c03
PX
5658 else
5659 ret = 0;
6bda666a
CL
5660 goto out;
5661 }
47ad8475 5662 clear_huge_page(page, address, pages_per_huge_page(h));
0ed361de 5663 __SetPageUptodate(page);
cb6acd01 5664 new_page = true;
ac9b9c66 5665
f83a275d 5666 if (vma->vm_flags & VM_MAYSHARE) {
7e1813d4 5667 int err = hugetlb_add_to_page_cache(page, mapping, idx);
6bda666a 5668 if (err) {
3a5497a2
ML
5669 /*
5670 * err can't be -EEXIST which implies someone
5671 * else consumed the reservation since hugetlb
5672 * fault mutex is held when add a hugetlb page
5673 * to the page cache. So it's safe to call
5674 * restore_reserve_on_error() here.
5675 */
5676 restore_reserve_on_error(h, vma, haddr, page);
6bda666a 5677 put_page(page);
6bda666a
CL
5678 goto out;
5679 }
c7b1850d 5680 new_pagecache_page = true;
23be7468 5681 } else {
6bda666a 5682 lock_page(page);
0fe6e20b
NH
5683 if (unlikely(anon_vma_prepare(vma))) {
5684 ret = VM_FAULT_OOM;
5685 goto backout_unlocked;
5686 }
409eb8c2 5687 anon_rmap = 1;
23be7468 5688 }
0fe6e20b 5689 } else {
998b4382
NH
5690 /*
5691 * If memory error occurs between mmap() and fault, some process
5692 * don't have hwpoisoned swap entry for errored virtual address.
5693 * So we need to block hugepage fault by PG_hwpoison bit check.
5694 */
5695 if (unlikely(PageHWPoison(page))) {
0eb98f15 5696 ret = VM_FAULT_HWPOISON_LARGE |
972dc4de 5697 VM_FAULT_SET_HINDEX(hstate_index(h));
998b4382
NH
5698 goto backout_unlocked;
5699 }
7677f7fd
AR
5700
5701 /* Check for page in userfault range. */
5702 if (userfaultfd_minor(vma)) {
5703 unlock_page(page);
5704 put_page(page);
2ea7ff1e
PX
5705 /* See comment in userfaultfd_missing() block above */
5706 if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
5707 ret = 0;
5708 goto out;
5709 }
5710 return hugetlb_handle_userfault(vma, mapping, idx, flags,
5711 haddr, address,
5712 VM_UFFD_MINOR);
7677f7fd 5713 }
6bda666a 5714 }
1e8f889b 5715
57303d80
AW
5716 /*
5717 * If we are going to COW a private mapping later, we examine the
5718 * pending reservations for this page now. This will ensure that
5719 * any allocations necessary to record that reservation occur outside
5720 * the spinlock.
5721 */
5e911373 5722 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
285b8dca 5723 if (vma_needs_reservation(h, vma, haddr) < 0) {
2b26736c
AW
5724 ret = VM_FAULT_OOM;
5725 goto backout_unlocked;
5726 }
5e911373 5727 /* Just decrements count, does not deallocate */
285b8dca 5728 vma_end_reservation(h, vma, haddr);
5e911373 5729 }
57303d80 5730
8bea8052 5731 ptl = huge_pte_lock(h, mm, ptep);
83c54070 5732 ret = 0;
c64e912c
PX
5733 /* If pte changed from under us, retry */
5734 if (!pte_same(huge_ptep_get(ptep), old_pte))
4c887265
AL
5735 goto backout;
5736
07443a85 5737 if (anon_rmap) {
d6995da3 5738 ClearHPageRestoreReserve(page);
285b8dca 5739 hugepage_add_new_anon_rmap(page, vma, haddr);
ac714904 5740 } else
fb3d824d 5741 page_dup_file_rmap(page, true);
1e8f889b
DG
5742 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
5743 && (vma->vm_flags & VM_SHARED)));
c64e912c
PX
5744 /*
5745 * If this pte was previously wr-protected, keep it wr-protected even
5746 * if populated.
5747 */
5748 if (unlikely(pte_marker_uffd_wp(old_pte)))
5749 new_pte = huge_pte_wrprotect(huge_pte_mkuffd_wp(new_pte));
285b8dca 5750 set_huge_pte_at(mm, haddr, ptep, new_pte);
1e8f889b 5751
5d317b2b 5752 hugetlb_count_add(pages_per_huge_page(h), mm);
788c7df4 5753 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
1e8f889b 5754 /* Optimization, do the COW without a second fault */
c89357e2 5755 ret = hugetlb_wp(mm, vma, address, ptep, flags, page, ptl);
1e8f889b
DG
5756 }
5757
cb900f41 5758 spin_unlock(ptl);
cb6acd01
MK
5759
5760 /*
8f251a3d
MK
5761 * Only set HPageMigratable in newly allocated pages. Existing pages
5762 * found in the pagecache may not have HPageMigratableset if they have
5763 * been isolated for migration.
cb6acd01
MK
5764 */
5765 if (new_page)
8f251a3d 5766 SetHPageMigratable(page);
cb6acd01 5767
4c887265
AL
5768 unlock_page(page);
5769out:
958f32ce
LS
5770 hugetlb_vma_unlock_read(vma);
5771 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
ac9b9c66 5772 return ret;
4c887265
AL
5773
5774backout:
cb900f41 5775 spin_unlock(ptl);
2b26736c 5776backout_unlocked:
c7b1850d
MK
5777 if (new_page && !new_pagecache_page)
5778 restore_reserve_on_error(h, vma, haddr, page);
fa27759a
MK
5779
5780 unlock_page(page);
4c887265
AL
5781 put_page(page);
5782 goto out;
ac9b9c66
HD
5783}
5784
8382d914 5785#ifdef CONFIG_SMP
188b04a7 5786u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
8382d914
DB
5787{
5788 unsigned long key[2];
5789 u32 hash;
5790
1b426bac
MK
5791 key[0] = (unsigned long) mapping;
5792 key[1] = idx;
8382d914 5793
55254636 5794 hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
8382d914
DB
5795
5796 return hash & (num_fault_mutexes - 1);
5797}
5798#else
5799/*
6c26d310 5800 * For uniprocessor systems we always use a single mutex, so just
8382d914
DB
5801 * return 0 and avoid the hashing overhead.
5802 */
188b04a7 5803u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
8382d914
DB
5804{
5805 return 0;
5806}
5807#endif
5808
2b740303 5809vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
788c7df4 5810 unsigned long address, unsigned int flags)
86e5216f 5811{
8382d914 5812 pte_t *ptep, entry;
cb900f41 5813 spinlock_t *ptl;
2b740303 5814 vm_fault_t ret;
8382d914
DB
5815 u32 hash;
5816 pgoff_t idx;
0fe6e20b 5817 struct page *page = NULL;
57303d80 5818 struct page *pagecache_page = NULL;
a5516438 5819 struct hstate *h = hstate_vma(vma);
8382d914 5820 struct address_space *mapping;
0f792cf9 5821 int need_wait_lock = 0;
285b8dca 5822 unsigned long haddr = address & huge_page_mask(h);
86e5216f 5823
285b8dca 5824 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
fd6a03ed 5825 if (ptep) {
40549ba8
MK
5826 /*
5827 * Since we hold no locks, ptep could be stale. That is
5828 * OK as we are only making decisions based on content and
5829 * not actually modifying content here.
5830 */
fd6a03ed 5831 entry = huge_ptep_get(ptep);
290408d4 5832 if (unlikely(is_hugetlb_entry_migration(entry))) {
ad1ac596 5833 migration_entry_wait_huge(vma, ptep);
290408d4
NH
5834 return 0;
5835 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
32f84528 5836 return VM_FAULT_HWPOISON_LARGE |
972dc4de 5837 VM_FAULT_SET_HINDEX(hstate_index(h));
fd6a03ed
NH
5838 }
5839
3935baa9
DG
5840 /*
5841 * Serialize hugepage allocation and instantiation, so that we don't
5842 * get spurious allocation failures if two CPUs race to instantiate
5843 * the same page in the page cache.
5844 */
40549ba8
MK
5845 mapping = vma->vm_file->f_mapping;
5846 idx = vma_hugecache_offset(h, vma, haddr);
188b04a7 5847 hash = hugetlb_fault_mutex_hash(mapping, idx);
c672c7f2 5848 mutex_lock(&hugetlb_fault_mutex_table[hash]);
8382d914 5849
40549ba8
MK
5850 /*
5851 * Acquire vma lock before calling huge_pte_alloc and hold
5852 * until finished with ptep. This prevents huge_pmd_unshare from
5853 * being called elsewhere and making the ptep no longer valid.
5854 *
5855 * ptep could have already be assigned via huge_pte_offset. That
5856 * is OK, as huge_pte_alloc will return the same value unless
5857 * something has changed.
5858 */
5859 hugetlb_vma_lock_read(vma);
5860 ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h));
5861 if (!ptep) {
5862 hugetlb_vma_unlock_read(vma);
5863 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5864 return VM_FAULT_OOM;
5865 }
5866
7f2e9525 5867 entry = huge_ptep_get(ptep);
c64e912c 5868 /* PTE markers should be handled the same way as none pte */
958f32ce
LS
5869 if (huge_pte_none_mostly(entry))
5870 /*
5871 * hugetlb_no_page will drop vma lock and hugetlb fault
5872 * mutex internally, which make us return immediately.
5873 */
5874 return hugetlb_no_page(mm, vma, mapping, idx, address, ptep,
c64e912c 5875 entry, flags);
86e5216f 5876
83c54070 5877 ret = 0;
1e8f889b 5878
0f792cf9
NH
5879 /*
5880 * entry could be a migration/hwpoison entry at this point, so this
5881 * check prevents the kernel from going below assuming that we have
7c8de358
EP
5882 * an active hugepage in pagecache. This goto expects the 2nd page
5883 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
5884 * properly handle it.
0f792cf9
NH
5885 */
5886 if (!pte_present(entry))
5887 goto out_mutex;
5888
57303d80 5889 /*
c89357e2
DH
5890 * If we are going to COW/unshare the mapping later, we examine the
5891 * pending reservations for this page now. This will ensure that any
57303d80 5892 * allocations necessary to record that reservation occur outside the
1d8d1464
DH
5893 * spinlock. Also lookup the pagecache page now as it is used to
5894 * determine if a reservation has been consumed.
57303d80 5895 */
c89357e2 5896 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
1d8d1464 5897 !(vma->vm_flags & VM_MAYSHARE) && !huge_pte_write(entry)) {
285b8dca 5898 if (vma_needs_reservation(h, vma, haddr) < 0) {
2b26736c 5899 ret = VM_FAULT_OOM;
b4d1d99f 5900 goto out_mutex;
2b26736c 5901 }
5e911373 5902 /* Just decrements count, does not deallocate */
285b8dca 5903 vma_end_reservation(h, vma, haddr);
57303d80 5904
29be8426 5905 pagecache_page = find_lock_page(mapping, idx);
57303d80
AW
5906 }
5907
0f792cf9
NH
5908 ptl = huge_pte_lock(h, mm, ptep);
5909
c89357e2 5910 /* Check for a racing update before calling hugetlb_wp() */
0f792cf9
NH
5911 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
5912 goto out_ptl;
5913
166f3ecc
PX
5914 /* Handle userfault-wp first, before trying to lock more pages */
5915 if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(ptep)) &&
5916 (flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
5917 struct vm_fault vmf = {
5918 .vma = vma,
5919 .address = haddr,
5920 .real_address = address,
5921 .flags = flags,
5922 };
5923
5924 spin_unlock(ptl);
5925 if (pagecache_page) {
5926 unlock_page(pagecache_page);
5927 put_page(pagecache_page);
5928 }
40549ba8 5929 hugetlb_vma_unlock_read(vma);
166f3ecc 5930 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
166f3ecc
PX
5931 return handle_userfault(&vmf, VM_UFFD_WP);
5932 }
5933
56c9cfb1 5934 /*
c89357e2 5935 * hugetlb_wp() requires page locks of pte_page(entry) and
56c9cfb1
NH
5936 * pagecache_page, so here we need take the former one
5937 * when page != pagecache_page or !pagecache_page.
56c9cfb1
NH
5938 */
5939 page = pte_page(entry);
5940 if (page != pagecache_page)
0f792cf9
NH
5941 if (!trylock_page(page)) {
5942 need_wait_lock = 1;
5943 goto out_ptl;
5944 }
b4d1d99f 5945
0f792cf9 5946 get_page(page);
b4d1d99f 5947
c89357e2 5948 if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
106c992a 5949 if (!huge_pte_write(entry)) {
c89357e2
DH
5950 ret = hugetlb_wp(mm, vma, address, ptep, flags,
5951 pagecache_page, ptl);
0f792cf9 5952 goto out_put_page;
c89357e2
DH
5953 } else if (likely(flags & FAULT_FLAG_WRITE)) {
5954 entry = huge_pte_mkdirty(entry);
b4d1d99f 5955 }
b4d1d99f
DG
5956 }
5957 entry = pte_mkyoung(entry);
285b8dca 5958 if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
788c7df4 5959 flags & FAULT_FLAG_WRITE))
285b8dca 5960 update_mmu_cache(vma, haddr, ptep);
0f792cf9
NH
5961out_put_page:
5962 if (page != pagecache_page)
5963 unlock_page(page);
5964 put_page(page);
cb900f41
KS
5965out_ptl:
5966 spin_unlock(ptl);
57303d80
AW
5967
5968 if (pagecache_page) {
5969 unlock_page(pagecache_page);
5970 put_page(pagecache_page);
5971 }
b4d1d99f 5972out_mutex:
40549ba8 5973 hugetlb_vma_unlock_read(vma);
c672c7f2 5974 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
0f792cf9
NH
5975 /*
5976 * Generally it's safe to hold refcount during waiting page lock. But
5977 * here we just wait to defer the next page fault to avoid busy loop and
5978 * the page is not used after unlocked before returning from the current
5979 * page fault. So we are safe from accessing freed page, even if we wait
5980 * here without taking refcount.
5981 */
5982 if (need_wait_lock)
5983 wait_on_page_locked(page);
1e8f889b 5984 return ret;
86e5216f
AL
5985}
5986
714c1891 5987#ifdef CONFIG_USERFAULTFD
8fb5debc
MK
5988/*
5989 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with
5990 * modifications for huge pages.
5991 */
5992int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
5993 pte_t *dst_pte,
5994 struct vm_area_struct *dst_vma,
5995 unsigned long dst_addr,
5996 unsigned long src_addr,
f6191471 5997 enum mcopy_atomic_mode mode,
6041c691
PX
5998 struct page **pagep,
5999 bool wp_copy)
8fb5debc 6000{
f6191471 6001 bool is_continue = (mode == MCOPY_ATOMIC_CONTINUE);
8cc5fcbb
MA
6002 struct hstate *h = hstate_vma(dst_vma);
6003 struct address_space *mapping = dst_vma->vm_file->f_mapping;
6004 pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
1e392147 6005 unsigned long size;
1c9e8def 6006 int vm_shared = dst_vma->vm_flags & VM_SHARED;
8fb5debc
MK
6007 pte_t _dst_pte;
6008 spinlock_t *ptl;
8cc5fcbb 6009 int ret = -ENOMEM;
8fb5debc 6010 struct page *page;
f6191471 6011 int writable;
cc30042d 6012 bool page_in_pagecache = false;
8fb5debc 6013
f6191471
AR
6014 if (is_continue) {
6015 ret = -EFAULT;
6016 page = find_lock_page(mapping, idx);
6017 if (!page)
6018 goto out;
cc30042d 6019 page_in_pagecache = true;
f6191471 6020 } else if (!*pagep) {
d84cf06e
MA
6021 /* If a page already exists, then it's UFFDIO_COPY for
6022 * a non-missing case. Return -EEXIST.
6023 */
6024 if (vm_shared &&
6025 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6026 ret = -EEXIST;
6027 goto out;
6028 }
6029
8fb5debc 6030 page = alloc_huge_page(dst_vma, dst_addr, 0);
d84cf06e
MA
6031 if (IS_ERR(page)) {
6032 ret = -ENOMEM;
8fb5debc 6033 goto out;
d84cf06e 6034 }
8fb5debc
MK
6035
6036 ret = copy_huge_page_from_user(page,
6037 (const void __user *) src_addr,
810a56b9 6038 pages_per_huge_page(h), false);
8fb5debc 6039
c1e8d7c6 6040 /* fallback to copy_from_user outside mmap_lock */
8fb5debc 6041 if (unlikely(ret)) {
9e368259 6042 ret = -ENOENT;
8cc5fcbb
MA
6043 /* Free the allocated page which may have
6044 * consumed a reservation.
6045 */
6046 restore_reserve_on_error(h, dst_vma, dst_addr, page);
6047 put_page(page);
6048
6049 /* Allocate a temporary page to hold the copied
6050 * contents.
6051 */
6052 page = alloc_huge_page_vma(h, dst_vma, dst_addr);
6053 if (!page) {
6054 ret = -ENOMEM;
6055 goto out;
6056 }
8fb5debc 6057 *pagep = page;
8cc5fcbb
MA
6058 /* Set the outparam pagep and return to the caller to
6059 * copy the contents outside the lock. Don't free the
6060 * page.
6061 */
8fb5debc
MK
6062 goto out;
6063 }
6064 } else {
8cc5fcbb
MA
6065 if (vm_shared &&
6066 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6067 put_page(*pagep);
6068 ret = -EEXIST;
6069 *pagep = NULL;
6070 goto out;
6071 }
6072
6073 page = alloc_huge_page(dst_vma, dst_addr, 0);
6074 if (IS_ERR(page)) {
da9a298f 6075 put_page(*pagep);
8cc5fcbb
MA
6076 ret = -ENOMEM;
6077 *pagep = NULL;
6078 goto out;
6079 }
34892366
MS
6080 copy_user_huge_page(page, *pagep, dst_addr, dst_vma,
6081 pages_per_huge_page(h));
8cc5fcbb 6082 put_page(*pagep);
8fb5debc
MK
6083 *pagep = NULL;
6084 }
6085
6086 /*
6087 * The memory barrier inside __SetPageUptodate makes sure that
6088 * preceding stores to the page contents become visible before
6089 * the set_pte_at() write.
6090 */
6091 __SetPageUptodate(page);
8fb5debc 6092
f6191471
AR
6093 /* Add shared, newly allocated pages to the page cache. */
6094 if (vm_shared && !is_continue) {
1e392147
AA
6095 size = i_size_read(mapping->host) >> huge_page_shift(h);
6096 ret = -EFAULT;
6097 if (idx >= size)
6098 goto out_release_nounlock;
1c9e8def 6099
1e392147
AA
6100 /*
6101 * Serialization between remove_inode_hugepages() and
7e1813d4 6102 * hugetlb_add_to_page_cache() below happens through the
1e392147
AA
6103 * hugetlb_fault_mutex_table that here must be hold by
6104 * the caller.
6105 */
7e1813d4 6106 ret = hugetlb_add_to_page_cache(page, mapping, idx);
1c9e8def
MK
6107 if (ret)
6108 goto out_release_nounlock;
cc30042d 6109 page_in_pagecache = true;
1c9e8def
MK
6110 }
6111
bcc66543 6112 ptl = huge_pte_lock(h, dst_mm, dst_pte);
8fb5debc 6113
6041c691
PX
6114 /*
6115 * We allow to overwrite a pte marker: consider when both MISSING|WP
6116 * registered, we firstly wr-protect a none pte which has no page cache
6117 * page backing it, then access the page.
6118 */
fa27759a 6119 ret = -EEXIST;
6041c691 6120 if (!huge_pte_none_mostly(huge_ptep_get(dst_pte)))
8fb5debc
MK
6121 goto out_release_unlock;
6122
ab74ef70 6123 if (page_in_pagecache) {
fb3d824d 6124 page_dup_file_rmap(page, true);
1c9e8def 6125 } else {
d6995da3 6126 ClearHPageRestoreReserve(page);
1c9e8def
MK
6127 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
6128 }
8fb5debc 6129
6041c691
PX
6130 /*
6131 * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY
6132 * with wp flag set, don't set pte write bit.
6133 */
6134 if (wp_copy || (is_continue && !vm_shared))
f6191471
AR
6135 writable = 0;
6136 else
6137 writable = dst_vma->vm_flags & VM_WRITE;
6138
6139 _dst_pte = make_huge_pte(dst_vma, page, writable);
6041c691
PX
6140 /*
6141 * Always mark UFFDIO_COPY page dirty; note that this may not be
6142 * extremely important for hugetlbfs for now since swapping is not
6143 * supported, but we should still be clear in that this page cannot be
6144 * thrown away at will, even if write bit not set.
6145 */
6146 _dst_pte = huge_pte_mkdirty(_dst_pte);
8fb5debc
MK
6147 _dst_pte = pte_mkyoung(_dst_pte);
6148
6041c691
PX
6149 if (wp_copy)
6150 _dst_pte = huge_pte_mkuffd_wp(_dst_pte);
6151
8fb5debc
MK
6152 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
6153
8fb5debc
MK
6154 hugetlb_count_add(pages_per_huge_page(h), dst_mm);
6155
6156 /* No need to invalidate - it was non-present before */
6157 update_mmu_cache(dst_vma, dst_addr, dst_pte);
6158
6159 spin_unlock(ptl);
f6191471
AR
6160 if (!is_continue)
6161 SetHPageMigratable(page);
6162 if (vm_shared || is_continue)
1c9e8def 6163 unlock_page(page);
8fb5debc
MK
6164 ret = 0;
6165out:
6166 return ret;
6167out_release_unlock:
6168 spin_unlock(ptl);
f6191471 6169 if (vm_shared || is_continue)
1c9e8def 6170 unlock_page(page);
5af10dfd 6171out_release_nounlock:
cc30042d 6172 if (!page_in_pagecache)
c7b1850d 6173 restore_reserve_on_error(h, dst_vma, dst_addr, page);
8fb5debc
MK
6174 put_page(page);
6175 goto out;
6176}
714c1891 6177#endif /* CONFIG_USERFAULTFD */
8fb5debc 6178
82e5d378
JM
6179static void record_subpages_vmas(struct page *page, struct vm_area_struct *vma,
6180 int refs, struct page **pages,
6181 struct vm_area_struct **vmas)
6182{
6183 int nr;
6184
6185 for (nr = 0; nr < refs; nr++) {
6186 if (likely(pages))
14455eab 6187 pages[nr] = nth_page(page, nr);
82e5d378
JM
6188 if (vmas)
6189 vmas[nr] = vma;
6190 }
6191}
6192
a7f22660
DH
6193static inline bool __follow_hugetlb_must_fault(unsigned int flags, pte_t *pte,
6194 bool *unshare)
6195{
6196 pte_t pteval = huge_ptep_get(pte);
6197
6198 *unshare = false;
6199 if (is_swap_pte(pteval))
6200 return true;
6201 if (huge_pte_write(pteval))
6202 return false;
6203 if (flags & FOLL_WRITE)
6204 return true;
6205 if (gup_must_unshare(flags, pte_page(pteval))) {
6206 *unshare = true;
6207 return true;
6208 }
6209 return false;
6210}
6211
28a35716
ML
6212long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
6213 struct page **pages, struct vm_area_struct **vmas,
6214 unsigned long *position, unsigned long *nr_pages,
4f6da934 6215 long i, unsigned int flags, int *locked)
63551ae0 6216{
d5d4b0aa
CK
6217 unsigned long pfn_offset;
6218 unsigned long vaddr = *position;
28a35716 6219 unsigned long remainder = *nr_pages;
a5516438 6220 struct hstate *h = hstate_vma(vma);
0fa5bc40 6221 int err = -EFAULT, refs;
63551ae0 6222
63551ae0 6223 while (vaddr < vma->vm_end && remainder) {
4c887265 6224 pte_t *pte;
cb900f41 6225 spinlock_t *ptl = NULL;
a7f22660 6226 bool unshare = false;
2a15efc9 6227 int absent;
4c887265 6228 struct page *page;
63551ae0 6229
02057967
DR
6230 /*
6231 * If we have a pending SIGKILL, don't keep faulting pages and
6232 * potentially allocating memory.
6233 */
fa45f116 6234 if (fatal_signal_pending(current)) {
02057967
DR
6235 remainder = 0;
6236 break;
6237 }
6238
4c887265
AL
6239 /*
6240 * Some archs (sparc64, sh*) have multiple pte_ts to
2a15efc9 6241 * each hugepage. We have to make sure we get the
4c887265 6242 * first, for the page indexing below to work.
cb900f41
KS
6243 *
6244 * Note that page table lock is not held when pte is null.
4c887265 6245 */
7868a208
PA
6246 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
6247 huge_page_size(h));
cb900f41
KS
6248 if (pte)
6249 ptl = huge_pte_lock(h, mm, pte);
2a15efc9
HD
6250 absent = !pte || huge_pte_none(huge_ptep_get(pte));
6251
6252 /*
6253 * When coredumping, it suits get_dump_page if we just return
3ae77f43
HD
6254 * an error where there's an empty slot with no huge pagecache
6255 * to back it. This way, we avoid allocating a hugepage, and
6256 * the sparse dumpfile avoids allocating disk blocks, but its
6257 * huge holes still show up with zeroes where they need to be.
2a15efc9 6258 */
3ae77f43
HD
6259 if (absent && (flags & FOLL_DUMP) &&
6260 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
cb900f41
KS
6261 if (pte)
6262 spin_unlock(ptl);
2a15efc9
HD
6263 remainder = 0;
6264 break;
6265 }
63551ae0 6266
9cc3a5bd
NH
6267 /*
6268 * We need call hugetlb_fault for both hugepages under migration
6269 * (in which case hugetlb_fault waits for the migration,) and
6270 * hwpoisoned hugepages (in which case we need to prevent the
6271 * caller from accessing to them.) In order to do this, we use
6272 * here is_swap_pte instead of is_hugetlb_entry_migration and
6273 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
6274 * both cases, and because we can't follow correct pages
6275 * directly from any kind of swap entries.
6276 */
a7f22660
DH
6277 if (absent ||
6278 __follow_hugetlb_must_fault(flags, pte, &unshare)) {
2b740303 6279 vm_fault_t ret;
87ffc118 6280 unsigned int fault_flags = 0;
63551ae0 6281
cb900f41
KS
6282 if (pte)
6283 spin_unlock(ptl);
87ffc118
AA
6284 if (flags & FOLL_WRITE)
6285 fault_flags |= FAULT_FLAG_WRITE;
a7f22660
DH
6286 else if (unshare)
6287 fault_flags |= FAULT_FLAG_UNSHARE;
4f6da934 6288 if (locked)
71335f37
PX
6289 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
6290 FAULT_FLAG_KILLABLE;
87ffc118
AA
6291 if (flags & FOLL_NOWAIT)
6292 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
6293 FAULT_FLAG_RETRY_NOWAIT;
6294 if (flags & FOLL_TRIED) {
4426e945
PX
6295 /*
6296 * Note: FAULT_FLAG_ALLOW_RETRY and
6297 * FAULT_FLAG_TRIED can co-exist
6298 */
87ffc118
AA
6299 fault_flags |= FAULT_FLAG_TRIED;
6300 }
6301 ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
6302 if (ret & VM_FAULT_ERROR) {
2be7cfed 6303 err = vm_fault_to_errno(ret, flags);
87ffc118
AA
6304 remainder = 0;
6305 break;
6306 }
6307 if (ret & VM_FAULT_RETRY) {
4f6da934 6308 if (locked &&
1ac25013 6309 !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
4f6da934 6310 *locked = 0;
87ffc118
AA
6311 *nr_pages = 0;
6312 /*
6313 * VM_FAULT_RETRY must not return an
6314 * error, it will return zero
6315 * instead.
6316 *
6317 * No need to update "position" as the
6318 * caller will not check it after
6319 * *nr_pages is set to 0.
6320 */
6321 return i;
6322 }
6323 continue;
4c887265
AL
6324 }
6325
a5516438 6326 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
7f2e9525 6327 page = pte_page(huge_ptep_get(pte));
8fde12ca 6328
b6a2619c
DH
6329 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
6330 !PageAnonExclusive(page), page);
6331
acbfb087
ZL
6332 /*
6333 * If subpage information not requested, update counters
6334 * and skip the same_page loop below.
6335 */
6336 if (!pages && !vmas && !pfn_offset &&
6337 (vaddr + huge_page_size(h) < vma->vm_end) &&
6338 (remainder >= pages_per_huge_page(h))) {
6339 vaddr += huge_page_size(h);
6340 remainder -= pages_per_huge_page(h);
6341 i += pages_per_huge_page(h);
6342 spin_unlock(ptl);
6343 continue;
6344 }
6345
d08af0a5
JM
6346 /* vaddr may not be aligned to PAGE_SIZE */
6347 refs = min3(pages_per_huge_page(h) - pfn_offset, remainder,
6348 (vma->vm_end - ALIGN_DOWN(vaddr, PAGE_SIZE)) >> PAGE_SHIFT);
0fa5bc40 6349
82e5d378 6350 if (pages || vmas)
14455eab 6351 record_subpages_vmas(nth_page(page, pfn_offset),
82e5d378
JM
6352 vma, refs,
6353 likely(pages) ? pages + i : NULL,
6354 vmas ? vmas + i : NULL);
63551ae0 6355
82e5d378 6356 if (pages) {
0fa5bc40 6357 /*
822951d8 6358 * try_grab_folio() should always succeed here,
0fa5bc40
JM
6359 * because: a) we hold the ptl lock, and b) we've just
6360 * checked that the huge page is present in the page
6361 * tables. If the huge page is present, then the tail
6362 * pages must also be present. The ptl prevents the
6363 * head page and tail pages from being rearranged in
6364 * any way. So this page must be available at this
6365 * point, unless the page refcount overflowed:
6366 */
822951d8
MWO
6367 if (WARN_ON_ONCE(!try_grab_folio(pages[i], refs,
6368 flags))) {
0fa5bc40
JM
6369 spin_unlock(ptl);
6370 remainder = 0;
6371 err = -ENOMEM;
6372 break;
6373 }
d5d4b0aa 6374 }
82e5d378
JM
6375
6376 vaddr += (refs << PAGE_SHIFT);
6377 remainder -= refs;
6378 i += refs;
6379
cb900f41 6380 spin_unlock(ptl);
63551ae0 6381 }
28a35716 6382 *nr_pages = remainder;
87ffc118
AA
6383 /*
6384 * setting position is actually required only if remainder is
6385 * not zero but it's faster not to add a "if (remainder)"
6386 * branch.
6387 */
63551ae0
DG
6388 *position = vaddr;
6389
2be7cfed 6390 return i ? i : err;
63551ae0 6391}
8f860591 6392
7da4d641 6393unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
5a90d5a1
PX
6394 unsigned long address, unsigned long end,
6395 pgprot_t newprot, unsigned long cp_flags)
8f860591
ZY
6396{
6397 struct mm_struct *mm = vma->vm_mm;
6398 unsigned long start = address;
6399 pte_t *ptep;
6400 pte_t pte;
a5516438 6401 struct hstate *h = hstate_vma(vma);
60dfaad6 6402 unsigned long pages = 0, psize = huge_page_size(h);
dff11abe 6403 bool shared_pmd = false;
ac46d4f3 6404 struct mmu_notifier_range range;
e95a9851 6405 unsigned long last_addr_mask;
5a90d5a1
PX
6406 bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
6407 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
dff11abe
MK
6408
6409 /*
6410 * In the case of shared PMDs, the area to flush could be beyond
ac46d4f3 6411 * start/end. Set range.start/range.end to cover the maximum possible
dff11abe
MK
6412 * range if PMD sharing is possible.
6413 */
7269f999
JG
6414 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
6415 0, vma, mm, start, end);
ac46d4f3 6416 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
8f860591
ZY
6417
6418 BUG_ON(address >= end);
ac46d4f3 6419 flush_cache_range(vma, range.start, range.end);
8f860591 6420
ac46d4f3 6421 mmu_notifier_invalidate_range_start(&range);
40549ba8 6422 hugetlb_vma_lock_write(vma);
83cde9e8 6423 i_mmap_lock_write(vma->vm_file->f_mapping);
40549ba8 6424 last_addr_mask = hugetlb_mask_last_page(h);
60dfaad6 6425 for (; address < end; address += psize) {
cb900f41 6426 spinlock_t *ptl;
60dfaad6 6427 ptep = huge_pte_offset(mm, address, psize);
e95a9851
MK
6428 if (!ptep) {
6429 address |= last_addr_mask;
8f860591 6430 continue;
e95a9851 6431 }
cb900f41 6432 ptl = huge_pte_lock(h, mm, ptep);
4ddb4d91 6433 if (huge_pmd_unshare(mm, vma, address, ptep)) {
60dfaad6
PX
6434 /*
6435 * When uffd-wp is enabled on the vma, unshare
6436 * shouldn't happen at all. Warn about it if it
6437 * happened due to some reason.
6438 */
6439 WARN_ON_ONCE(uffd_wp || uffd_wp_resolve);
7da4d641 6440 pages++;
cb900f41 6441 spin_unlock(ptl);
dff11abe 6442 shared_pmd = true;
4ddb4d91 6443 address |= last_addr_mask;
39dde65c 6444 continue;
7da4d641 6445 }
a8bda28d
NH
6446 pte = huge_ptep_get(ptep);
6447 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
6448 spin_unlock(ptl);
6449 continue;
6450 }
6451 if (unlikely(is_hugetlb_entry_migration(pte))) {
6452 swp_entry_t entry = pte_to_swp_entry(pte);
6c287605 6453 struct page *page = pfn_swap_entry_to_page(entry);
a8bda28d 6454
6c287605 6455 if (!is_readable_migration_entry(entry)) {
a8bda28d
NH
6456 pte_t newpte;
6457
6c287605
DH
6458 if (PageAnon(page))
6459 entry = make_readable_exclusive_migration_entry(
6460 swp_offset(entry));
6461 else
6462 entry = make_readable_migration_entry(
6463 swp_offset(entry));
a8bda28d 6464 newpte = swp_entry_to_pte(entry);
5a90d5a1
PX
6465 if (uffd_wp)
6466 newpte = pte_swp_mkuffd_wp(newpte);
6467 else if (uffd_wp_resolve)
6468 newpte = pte_swp_clear_uffd_wp(newpte);
18f39629 6469 set_huge_pte_at(mm, address, ptep, newpte);
a8bda28d
NH
6470 pages++;
6471 }
6472 spin_unlock(ptl);
6473 continue;
6474 }
60dfaad6
PX
6475 if (unlikely(pte_marker_uffd_wp(pte))) {
6476 /*
6477 * This is changing a non-present pte into a none pte,
6478 * no need for huge_ptep_modify_prot_start/commit().
6479 */
6480 if (uffd_wp_resolve)
6481 huge_pte_clear(mm, address, ptep, psize);
6482 }
a8bda28d 6483 if (!huge_pte_none(pte)) {
023bdd00 6484 pte_t old_pte;
79c1c594 6485 unsigned int shift = huge_page_shift(hstate_vma(vma));
023bdd00
AK
6486
6487 old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
16785bd7 6488 pte = huge_pte_modify(old_pte, newprot);
79c1c594 6489 pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
5a90d5a1
PX
6490 if (uffd_wp)
6491 pte = huge_pte_mkuffd_wp(huge_pte_wrprotect(pte));
6492 else if (uffd_wp_resolve)
6493 pte = huge_pte_clear_uffd_wp(pte);
023bdd00 6494 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
7da4d641 6495 pages++;
60dfaad6
PX
6496 } else {
6497 /* None pte */
6498 if (unlikely(uffd_wp))
6499 /* Safe to modify directly (none->non-present). */
6500 set_huge_pte_at(mm, address, ptep,
6501 make_pte_marker(PTE_MARKER_UFFD_WP));
8f860591 6502 }
cb900f41 6503 spin_unlock(ptl);
8f860591 6504 }
d833352a 6505 /*
c8c06efa 6506 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
d833352a 6507 * may have cleared our pud entry and done put_page on the page table:
c8c06efa 6508 * once we release i_mmap_rwsem, another task can do the final put_page
dff11abe
MK
6509 * and that page table be reused and filled with junk. If we actually
6510 * did unshare a page of pmds, flush the range corresponding to the pud.
d833352a 6511 */
dff11abe 6512 if (shared_pmd)
ac46d4f3 6513 flush_hugetlb_tlb_range(vma, range.start, range.end);
dff11abe
MK
6514 else
6515 flush_hugetlb_tlb_range(vma, start, end);
0f10851e
JG
6516 /*
6517 * No need to call mmu_notifier_invalidate_range() we are downgrading
6518 * page table protection not changing it to point to a new page.
6519 *
ee65728e 6520 * See Documentation/mm/mmu_notifier.rst
0f10851e 6521 */
83cde9e8 6522 i_mmap_unlock_write(vma->vm_file->f_mapping);
40549ba8 6523 hugetlb_vma_unlock_write(vma);
ac46d4f3 6524 mmu_notifier_invalidate_range_end(&range);
7da4d641
PZ
6525
6526 return pages << h->order;
8f860591
ZY
6527}
6528
33b8f84a
MK
6529/* Return true if reservation was successful, false otherwise. */
6530bool hugetlb_reserve_pages(struct inode *inode,
a1e78772 6531 long from, long to,
5a6fe125 6532 struct vm_area_struct *vma,
ca16d140 6533 vm_flags_t vm_flags)
e4e574b7 6534{
33b8f84a 6535 long chg, add = -1;
a5516438 6536 struct hstate *h = hstate_inode(inode);
90481622 6537 struct hugepage_subpool *spool = subpool_inode(inode);
9119a41e 6538 struct resv_map *resv_map;
075a61d0 6539 struct hugetlb_cgroup *h_cg = NULL;
0db9d74e 6540 long gbl_reserve, regions_needed = 0;
e4e574b7 6541
63489f8e
MK
6542 /* This should never happen */
6543 if (from > to) {
6544 VM_WARN(1, "%s called with a negative range\n", __func__);
33b8f84a 6545 return false;
63489f8e
MK
6546 }
6547
8d9bfb26
MK
6548 /*
6549 * vma specific semaphore used for pmd sharing synchronization
6550 */
6551 hugetlb_vma_lock_alloc(vma);
6552
17c9d12e
MG
6553 /*
6554 * Only apply hugepage reservation if asked. At fault time, an
6555 * attempt will be made for VM_NORESERVE to allocate a page
90481622 6556 * without using reserves
17c9d12e 6557 */
ca16d140 6558 if (vm_flags & VM_NORESERVE)
33b8f84a 6559 return true;
17c9d12e 6560
a1e78772
MG
6561 /*
6562 * Shared mappings base their reservation on the number of pages that
6563 * are already allocated on behalf of the file. Private mappings need
6564 * to reserve the full area even if read-only as mprotect() may be
6565 * called to make the mapping read-write. Assume !vma is a shm mapping
6566 */
9119a41e 6567 if (!vma || vma->vm_flags & VM_MAYSHARE) {
f27a5136
MK
6568 /*
6569 * resv_map can not be NULL as hugetlb_reserve_pages is only
6570 * called for inodes for which resv_maps were created (see
6571 * hugetlbfs_get_inode).
6572 */
4e35f483 6573 resv_map = inode_resv_map(inode);
9119a41e 6574
0db9d74e 6575 chg = region_chg(resv_map, from, to, &regions_needed);
9119a41e 6576 } else {
e9fe92ae 6577 /* Private mapping. */
9119a41e 6578 resv_map = resv_map_alloc();
17c9d12e 6579 if (!resv_map)
8d9bfb26 6580 goto out_err;
17c9d12e 6581
a1e78772 6582 chg = to - from;
84afd99b 6583
17c9d12e
MG
6584 set_vma_resv_map(vma, resv_map);
6585 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
6586 }
6587
33b8f84a 6588 if (chg < 0)
c50ac050 6589 goto out_err;
8a630112 6590
33b8f84a
MK
6591 if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
6592 chg * pages_per_huge_page(h), &h_cg) < 0)
075a61d0 6593 goto out_err;
075a61d0
MA
6594
6595 if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
6596 /* For private mappings, the hugetlb_cgroup uncharge info hangs
6597 * of the resv_map.
6598 */
6599 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
6600 }
6601
1c5ecae3
MK
6602 /*
6603 * There must be enough pages in the subpool for the mapping. If
6604 * the subpool has a minimum size, there may be some global
6605 * reservations already in place (gbl_reserve).
6606 */
6607 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
33b8f84a 6608 if (gbl_reserve < 0)
075a61d0 6609 goto out_uncharge_cgroup;
5a6fe125
MG
6610
6611 /*
17c9d12e 6612 * Check enough hugepages are available for the reservation.
90481622 6613 * Hand the pages back to the subpool if there are not
5a6fe125 6614 */
33b8f84a 6615 if (hugetlb_acct_memory(h, gbl_reserve) < 0)
075a61d0 6616 goto out_put_pages;
17c9d12e
MG
6617
6618 /*
6619 * Account for the reservations made. Shared mappings record regions
6620 * that have reservations as they are shared by multiple VMAs.
6621 * When the last VMA disappears, the region map says how much
6622 * the reservation was and the page cache tells how much of
6623 * the reservation was consumed. Private mappings are per-VMA and
6624 * only the consumed reservations are tracked. When the VMA
6625 * disappears, the original reservation is the VMA size and the
6626 * consumed reservations are stored in the map. Hence, nothing
6627 * else has to be done for private mappings here
6628 */
33039678 6629 if (!vma || vma->vm_flags & VM_MAYSHARE) {
075a61d0 6630 add = region_add(resv_map, from, to, regions_needed, h, h_cg);
0db9d74e
MA
6631
6632 if (unlikely(add < 0)) {
6633 hugetlb_acct_memory(h, -gbl_reserve);
075a61d0 6634 goto out_put_pages;
0db9d74e 6635 } else if (unlikely(chg > add)) {
33039678
MK
6636 /*
6637 * pages in this range were added to the reserve
6638 * map between region_chg and region_add. This
6639 * indicates a race with alloc_huge_page. Adjust
6640 * the subpool and reserve counts modified above
6641 * based on the difference.
6642 */
6643 long rsv_adjust;
6644
d85aecf2
ML
6645 /*
6646 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
6647 * reference to h_cg->css. See comment below for detail.
6648 */
075a61d0
MA
6649 hugetlb_cgroup_uncharge_cgroup_rsvd(
6650 hstate_index(h),
6651 (chg - add) * pages_per_huge_page(h), h_cg);
6652
33039678
MK
6653 rsv_adjust = hugepage_subpool_put_pages(spool,
6654 chg - add);
6655 hugetlb_acct_memory(h, -rsv_adjust);
d85aecf2
ML
6656 } else if (h_cg) {
6657 /*
6658 * The file_regions will hold their own reference to
6659 * h_cg->css. So we should release the reference held
6660 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
6661 * done.
6662 */
6663 hugetlb_cgroup_put_rsvd_cgroup(h_cg);
33039678
MK
6664 }
6665 }
33b8f84a
MK
6666 return true;
6667
075a61d0
MA
6668out_put_pages:
6669 /* put back original number of pages, chg */
6670 (void)hugepage_subpool_put_pages(spool, chg);
6671out_uncharge_cgroup:
6672 hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
6673 chg * pages_per_huge_page(h), h_cg);
c50ac050 6674out_err:
8d9bfb26 6675 hugetlb_vma_lock_free(vma);
5e911373 6676 if (!vma || vma->vm_flags & VM_MAYSHARE)
0db9d74e
MA
6677 /* Only call region_abort if the region_chg succeeded but the
6678 * region_add failed or didn't run.
6679 */
6680 if (chg >= 0 && add < 0)
6681 region_abort(resv_map, from, to, regions_needed);
f031dd27
JK
6682 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
6683 kref_put(&resv_map->refs, resv_map_release);
33b8f84a 6684 return false;
a43a8c39
CK
6685}
6686
b5cec28d
MK
6687long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
6688 long freed)
a43a8c39 6689{
a5516438 6690 struct hstate *h = hstate_inode(inode);
4e35f483 6691 struct resv_map *resv_map = inode_resv_map(inode);
9119a41e 6692 long chg = 0;
90481622 6693 struct hugepage_subpool *spool = subpool_inode(inode);
1c5ecae3 6694 long gbl_reserve;
45c682a6 6695
f27a5136
MK
6696 /*
6697 * Since this routine can be called in the evict inode path for all
6698 * hugetlbfs inodes, resv_map could be NULL.
6699 */
b5cec28d
MK
6700 if (resv_map) {
6701 chg = region_del(resv_map, start, end);
6702 /*
6703 * region_del() can fail in the rare case where a region
6704 * must be split and another region descriptor can not be
6705 * allocated. If end == LONG_MAX, it will not fail.
6706 */
6707 if (chg < 0)
6708 return chg;
6709 }
6710
45c682a6 6711 spin_lock(&inode->i_lock);
e4c6f8be 6712 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
45c682a6
KC
6713 spin_unlock(&inode->i_lock);
6714
1c5ecae3
MK
6715 /*
6716 * If the subpool has a minimum size, the number of global
6717 * reservations to be released may be adjusted.
dddf31a4
ML
6718 *
6719 * Note that !resv_map implies freed == 0. So (chg - freed)
6720 * won't go negative.
1c5ecae3
MK
6721 */
6722 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
6723 hugetlb_acct_memory(h, -gbl_reserve);
b5cec28d
MK
6724
6725 return 0;
a43a8c39 6726}
93f70f90 6727
3212b535
SC
6728#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
6729static unsigned long page_table_shareable(struct vm_area_struct *svma,
6730 struct vm_area_struct *vma,
6731 unsigned long addr, pgoff_t idx)
6732{
6733 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
6734 svma->vm_start;
6735 unsigned long sbase = saddr & PUD_MASK;
6736 unsigned long s_end = sbase + PUD_SIZE;
6737
6738 /* Allow segments to share if only one is marked locked */
de60f5f1
EM
6739 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
6740 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
3212b535
SC
6741
6742 /*
6743 * match the virtual addresses, permission and the alignment of the
6744 * page table page.
131a79b4
MK
6745 *
6746 * Also, vma_lock (vm_private_data) is required for sharing.
3212b535
SC
6747 */
6748 if (pmd_index(addr) != pmd_index(saddr) ||
6749 vm_flags != svm_flags ||
131a79b4
MK
6750 !range_in_vma(svma, sbase, s_end) ||
6751 !svma->vm_private_data)
3212b535
SC
6752 return 0;
6753
6754 return saddr;
6755}
6756
bbff39cc 6757bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
3212b535 6758{
bbff39cc
MK
6759 unsigned long start = addr & PUD_MASK;
6760 unsigned long end = start + PUD_SIZE;
6761
8d9bfb26
MK
6762#ifdef CONFIG_USERFAULTFD
6763 if (uffd_disable_huge_pmd_share(vma))
6764 return false;
6765#endif
3212b535
SC
6766 /*
6767 * check on proper vm_flags and page table alignment
6768 */
8d9bfb26
MK
6769 if (!(vma->vm_flags & VM_MAYSHARE))
6770 return false;
bbff39cc 6771 if (!vma->vm_private_data) /* vma lock required for sharing */
8d9bfb26
MK
6772 return false;
6773 if (!range_in_vma(vma, start, end))
6774 return false;
6775 return true;
6776}
6777
017b1660
MK
6778/*
6779 * Determine if start,end range within vma could be mapped by shared pmd.
6780 * If yes, adjust start and end to cover range associated with possible
6781 * shared pmd mappings.
6782 */
6783void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
6784 unsigned long *start, unsigned long *end)
6785{
a1ba9da8
LX
6786 unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
6787 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
017b1660 6788
a1ba9da8 6789 /*
f0953a1b
IM
6790 * vma needs to span at least one aligned PUD size, and the range
6791 * must be at least partially within in.
a1ba9da8
LX
6792 */
6793 if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
6794 (*end <= v_start) || (*start >= v_end))
017b1660
MK
6795 return;
6796
75802ca6 6797 /* Extend the range to be PUD aligned for a worst case scenario */
a1ba9da8
LX
6798 if (*start > v_start)
6799 *start = ALIGN_DOWN(*start, PUD_SIZE);
017b1660 6800
a1ba9da8
LX
6801 if (*end < v_end)
6802 *end = ALIGN(*end, PUD_SIZE);
017b1660
MK
6803}
6804
8d9bfb26
MK
6805static bool __vma_shareable_flags_pmd(struct vm_area_struct *vma)
6806{
6807 return vma->vm_flags & (VM_MAYSHARE | VM_SHARED) &&
6808 vma->vm_private_data;
6809}
6810
6811void hugetlb_vma_lock_read(struct vm_area_struct *vma)
6812{
6813 if (__vma_shareable_flags_pmd(vma)) {
6814 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
6815
6816 down_read(&vma_lock->rw_sema);
6817 }
6818}
6819
6820void hugetlb_vma_unlock_read(struct vm_area_struct *vma)
6821{
6822 if (__vma_shareable_flags_pmd(vma)) {
6823 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
6824
6825 up_read(&vma_lock->rw_sema);
6826 }
6827}
6828
6829void hugetlb_vma_lock_write(struct vm_area_struct *vma)
6830{
6831 if (__vma_shareable_flags_pmd(vma)) {
6832 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
6833
6834 down_write(&vma_lock->rw_sema);
6835 }
6836}
6837
6838void hugetlb_vma_unlock_write(struct vm_area_struct *vma)
6839{
6840 if (__vma_shareable_flags_pmd(vma)) {
6841 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
6842
6843 up_write(&vma_lock->rw_sema);
6844 }
6845}
6846
6847int hugetlb_vma_trylock_write(struct vm_area_struct *vma)
6848{
6849 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
6850
6851 if (!__vma_shareable_flags_pmd(vma))
6852 return 1;
6853
6854 return down_write_trylock(&vma_lock->rw_sema);
6855}
6856
6857void hugetlb_vma_assert_locked(struct vm_area_struct *vma)
6858{
6859 if (__vma_shareable_flags_pmd(vma)) {
6860 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
6861
6862 lockdep_assert_held(&vma_lock->rw_sema);
6863 }
6864}
6865
6866void hugetlb_vma_lock_release(struct kref *kref)
6867{
6868 struct hugetlb_vma_lock *vma_lock = container_of(kref,
6869 struct hugetlb_vma_lock, refs);
6870
6871 kfree(vma_lock);
6872}
6873
acfac378 6874static void __hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock *vma_lock)
ecfbd733
MK
6875{
6876 struct vm_area_struct *vma = vma_lock->vma;
6877
6878 /*
6879 * vma_lock structure may or not be released as a result of put,
6880 * it certainly will no longer be attached to vma so clear pointer.
6881 * Semaphore synchronizes access to vma_lock->vma field.
6882 */
6883 vma_lock->vma = NULL;
6884 vma->vm_private_data = NULL;
6885 up_write(&vma_lock->rw_sema);
6886 kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
6887}
6888
6889static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma)
6890{
6891 if (__vma_shareable_flags_pmd(vma)) {
6892 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
6893
6894 __hugetlb_vma_unlock_write_put(vma_lock);
6895 }
6896}
6897
8d9bfb26
MK
6898static void hugetlb_vma_lock_free(struct vm_area_struct *vma)
6899{
6900 /*
131a79b4 6901 * Only present in sharable vmas.
8d9bfb26 6902 */
131a79b4 6903 if (!vma || !__vma_shareable_flags_pmd(vma))
8d9bfb26
MK
6904 return;
6905
6906 if (vma->vm_private_data) {
6907 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
6908
ecfbd733
MK
6909 down_write(&vma_lock->rw_sema);
6910 __hugetlb_vma_unlock_write_put(vma_lock);
8d9bfb26
MK
6911 }
6912}
6913
6914static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma)
6915{
6916 struct hugetlb_vma_lock *vma_lock;
6917
6918 /* Only establish in (flags) sharable vmas */
6919 if (!vma || !(vma->vm_flags & VM_MAYSHARE))
6920 return;
6921
6922 /* Should never get here with non-NULL vm_private_data */
6923 if (vma->vm_private_data)
6924 return;
6925
8d9bfb26 6926 vma_lock = kmalloc(sizeof(*vma_lock), GFP_KERNEL);
bbff39cc 6927 if (!vma_lock) {
8d9bfb26
MK
6928 /*
6929 * If we can not allocate structure, then vma can not
bbff39cc
MK
6930 * participate in pmd sharing. This is only a possible
6931 * performance enhancement and memory saving issue.
6932 * However, the lock is also used to synchronize page
6933 * faults with truncation. If the lock is not present,
6934 * unlikely races could leave pages in a file past i_size
6935 * until the file is removed. Warn in the unlikely case of
6936 * allocation failure.
8d9bfb26 6937 */
bbff39cc 6938 pr_warn_once("HugeTLB: unable to allocate vma specific lock\n");
8d9bfb26 6939 return;
bbff39cc 6940 }
8d9bfb26
MK
6941
6942 kref_init(&vma_lock->refs);
6943 init_rwsem(&vma_lock->rw_sema);
6944 vma_lock->vma = vma;
6945 vma->vm_private_data = vma_lock;
6946}
6947
3212b535
SC
6948/*
6949 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
6950 * and returns the corresponding pte. While this is not necessary for the
6951 * !shared pmd case because we can allocate the pmd later as well, it makes the
3a47c54f
MK
6952 * code much cleaner. pmd allocation is essential for the shared case because
6953 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
6954 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
6955 * bad pmd for sharing.
3212b535 6956 */
aec44e0f
PX
6957pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
6958 unsigned long addr, pud_t *pud)
3212b535 6959{
3212b535
SC
6960 struct address_space *mapping = vma->vm_file->f_mapping;
6961 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
6962 vma->vm_pgoff;
6963 struct vm_area_struct *svma;
6964 unsigned long saddr;
6965 pte_t *spte = NULL;
6966 pte_t *pte;
cb900f41 6967 spinlock_t *ptl;
3212b535 6968
3a47c54f 6969 i_mmap_lock_read(mapping);
3212b535
SC
6970 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
6971 if (svma == vma)
6972 continue;
6973
6974 saddr = page_table_shareable(svma, vma, addr, idx);
6975 if (saddr) {
7868a208
PA
6976 spte = huge_pte_offset(svma->vm_mm, saddr,
6977 vma_mmu_pagesize(svma));
3212b535
SC
6978 if (spte) {
6979 get_page(virt_to_page(spte));
6980 break;
6981 }
6982 }
6983 }
6984
6985 if (!spte)
6986 goto out;
6987
8bea8052 6988 ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
dc6c9a35 6989 if (pud_none(*pud)) {
3212b535
SC
6990 pud_populate(mm, pud,
6991 (pmd_t *)((unsigned long)spte & PAGE_MASK));
c17b1f42 6992 mm_inc_nr_pmds(mm);
dc6c9a35 6993 } else {
3212b535 6994 put_page(virt_to_page(spte));
dc6c9a35 6995 }
cb900f41 6996 spin_unlock(ptl);
3212b535
SC
6997out:
6998 pte = (pte_t *)pmd_alloc(mm, pud, addr);
3a47c54f 6999 i_mmap_unlock_read(mapping);
3212b535
SC
7000 return pte;
7001}
7002
7003/*
7004 * unmap huge page backed by shared pte.
7005 *
7006 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
7007 * indicated by page_count > 1, unmap is achieved by clearing pud and
7008 * decrementing the ref count. If count == 1, the pte page is not shared.
7009 *
3a47c54f 7010 * Called with page table lock held.
3212b535
SC
7011 *
7012 * returns: 1 successfully unmapped a shared pte page
7013 * 0 the underlying pte page is not shared, or it is the last user
7014 */
34ae204f 7015int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
4ddb4d91 7016 unsigned long addr, pte_t *ptep)
3212b535 7017{
4ddb4d91
MK
7018 pgd_t *pgd = pgd_offset(mm, addr);
7019 p4d_t *p4d = p4d_offset(pgd, addr);
7020 pud_t *pud = pud_offset(p4d, addr);
3212b535 7021
34ae204f 7022 i_mmap_assert_write_locked(vma->vm_file->f_mapping);
40549ba8 7023 hugetlb_vma_assert_locked(vma);
3212b535
SC
7024 BUG_ON(page_count(virt_to_page(ptep)) == 0);
7025 if (page_count(virt_to_page(ptep)) == 1)
7026 return 0;
7027
7028 pud_clear(pud);
7029 put_page(virt_to_page(ptep));
dc6c9a35 7030 mm_dec_nr_pmds(mm);
3212b535
SC
7031 return 1;
7032}
c1991e07 7033
9e5fc74c 7034#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
8d9bfb26 7035
40549ba8
MK
7036void hugetlb_vma_lock_read(struct vm_area_struct *vma)
7037{
7038}
7039
7040void hugetlb_vma_unlock_read(struct vm_area_struct *vma)
7041{
7042}
7043
7044void hugetlb_vma_lock_write(struct vm_area_struct *vma)
7045{
7046}
7047
7048void hugetlb_vma_unlock_write(struct vm_area_struct *vma)
7049{
7050}
7051
7052int hugetlb_vma_trylock_write(struct vm_area_struct *vma)
7053{
7054 return 1;
7055}
7056
7057void hugetlb_vma_assert_locked(struct vm_area_struct *vma)
7058{
7059}
7060
8d9bfb26
MK
7061void hugetlb_vma_lock_release(struct kref *kref)
7062{
7063}
7064
ecfbd733
MK
7065static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma)
7066{
7067}
7068
8d9bfb26
MK
7069static void hugetlb_vma_lock_free(struct vm_area_struct *vma)
7070{
7071}
7072
7073static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma)
7074{
7075}
7076
aec44e0f
PX
7077pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7078 unsigned long addr, pud_t *pud)
9e5fc74c
SC
7079{
7080 return NULL;
7081}
e81f2d22 7082
34ae204f 7083int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
4ddb4d91 7084 unsigned long addr, pte_t *ptep)
e81f2d22
ZZ
7085{
7086 return 0;
7087}
017b1660
MK
7088
7089void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7090 unsigned long *start, unsigned long *end)
7091{
7092}
c1991e07
PX
7093
7094bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
7095{
7096 return false;
7097}
3212b535
SC
7098#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7099
9e5fc74c 7100#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
aec44e0f 7101pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
9e5fc74c
SC
7102 unsigned long addr, unsigned long sz)
7103{
7104 pgd_t *pgd;
c2febafc 7105 p4d_t *p4d;
9e5fc74c
SC
7106 pud_t *pud;
7107 pte_t *pte = NULL;
7108
7109 pgd = pgd_offset(mm, addr);
f4f0a3d8
KS
7110 p4d = p4d_alloc(mm, pgd, addr);
7111 if (!p4d)
7112 return NULL;
c2febafc 7113 pud = pud_alloc(mm, p4d, addr);
9e5fc74c
SC
7114 if (pud) {
7115 if (sz == PUD_SIZE) {
7116 pte = (pte_t *)pud;
7117 } else {
7118 BUG_ON(sz != PMD_SIZE);
c1991e07 7119 if (want_pmd_share(vma, addr) && pud_none(*pud))
aec44e0f 7120 pte = huge_pmd_share(mm, vma, addr, pud);
9e5fc74c
SC
7121 else
7122 pte = (pte_t *)pmd_alloc(mm, pud, addr);
7123 }
7124 }
4e666314 7125 BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
9e5fc74c
SC
7126
7127 return pte;
7128}
7129
9b19df29
PA
7130/*
7131 * huge_pte_offset() - Walk the page table to resolve the hugepage
7132 * entry at address @addr
7133 *
8ac0b81a
LX
7134 * Return: Pointer to page table entry (PUD or PMD) for
7135 * address @addr, or NULL if a !p*d_present() entry is encountered and the
9b19df29
PA
7136 * size @sz doesn't match the hugepage size at this level of the page
7137 * table.
7138 */
7868a208
PA
7139pte_t *huge_pte_offset(struct mm_struct *mm,
7140 unsigned long addr, unsigned long sz)
9e5fc74c
SC
7141{
7142 pgd_t *pgd;
c2febafc 7143 p4d_t *p4d;
8ac0b81a
LX
7144 pud_t *pud;
7145 pmd_t *pmd;
9e5fc74c
SC
7146
7147 pgd = pgd_offset(mm, addr);
c2febafc
KS
7148 if (!pgd_present(*pgd))
7149 return NULL;
7150 p4d = p4d_offset(pgd, addr);
7151 if (!p4d_present(*p4d))
7152 return NULL;
9b19df29 7153
c2febafc 7154 pud = pud_offset(p4d, addr);
8ac0b81a
LX
7155 if (sz == PUD_SIZE)
7156 /* must be pud huge, non-present or none */
c2febafc 7157 return (pte_t *)pud;
8ac0b81a 7158 if (!pud_present(*pud))
9b19df29 7159 return NULL;
8ac0b81a 7160 /* must have a valid entry and size to go further */
9b19df29 7161
8ac0b81a
LX
7162 pmd = pmd_offset(pud, addr);
7163 /* must be pmd huge, non-present or none */
7164 return (pte_t *)pmd;
9e5fc74c
SC
7165}
7166
e95a9851
MK
7167/*
7168 * Return a mask that can be used to update an address to the last huge
7169 * page in a page table page mapping size. Used to skip non-present
7170 * page table entries when linearly scanning address ranges. Architectures
7171 * with unique huge page to page table relationships can define their own
7172 * version of this routine.
7173 */
7174unsigned long hugetlb_mask_last_page(struct hstate *h)
7175{
7176 unsigned long hp_size = huge_page_size(h);
7177
7178 if (hp_size == PUD_SIZE)
7179 return P4D_SIZE - PUD_SIZE;
7180 else if (hp_size == PMD_SIZE)
7181 return PUD_SIZE - PMD_SIZE;
7182 else
7183 return 0UL;
7184}
7185
7186#else
7187
7188/* See description above. Architectures can provide their own version. */
7189__weak unsigned long hugetlb_mask_last_page(struct hstate *h)
7190{
4ddb4d91
MK
7191#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
7192 if (huge_page_size(h) == PMD_SIZE)
7193 return PUD_SIZE - PMD_SIZE;
7194#endif
e95a9851
MK
7195 return 0UL;
7196}
7197
61f77eda
NH
7198#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
7199
7200/*
7201 * These functions are overwritable if your architecture needs its own
7202 * behavior.
7203 */
7204struct page * __weak
7205follow_huge_addr(struct mm_struct *mm, unsigned long address,
7206 int write)
7207{
7208 return ERR_PTR(-EINVAL);
7209}
7210
4dc71451
AK
7211struct page * __weak
7212follow_huge_pd(struct vm_area_struct *vma,
7213 unsigned long address, hugepd_t hpd, int flags, int pdshift)
7214{
7215 WARN(1, "hugepd follow called with no support for hugepage directory format\n");
7216 return NULL;
7217}
7218
61f77eda 7219struct page * __weak
fac35ba7 7220follow_huge_pmd_pte(struct vm_area_struct *vma, unsigned long address, int flags)
9e5fc74c 7221{
fac35ba7
BW
7222 struct hstate *h = hstate_vma(vma);
7223 struct mm_struct *mm = vma->vm_mm;
e66f17ff
NH
7224 struct page *page = NULL;
7225 spinlock_t *ptl;
fac35ba7 7226 pte_t *ptep, pte;
3faa52c0 7227
8909691b
DH
7228 /*
7229 * FOLL_PIN is not supported for follow_page(). Ordinary GUP goes via
7230 * follow_hugetlb_page().
7231 */
7232 if (WARN_ON_ONCE(flags & FOLL_PIN))
3faa52c0
JH
7233 return NULL;
7234
e66f17ff 7235retry:
fac35ba7
BW
7236 ptep = huge_pte_offset(mm, address, huge_page_size(h));
7237 if (!ptep)
7238 return NULL;
7239
7240 ptl = huge_pte_lock(h, mm, ptep);
7241 pte = huge_ptep_get(ptep);
c9d398fa 7242 if (pte_present(pte)) {
fac35ba7
BW
7243 page = pte_page(pte) +
7244 ((address & ~huge_page_mask(h)) >> PAGE_SHIFT);
3faa52c0
JH
7245 /*
7246 * try_grab_page() should always succeed here, because: a) we
7247 * hold the pmd (ptl) lock, and b) we've just checked that the
7248 * huge pmd (head) page is present in the page tables. The ptl
7249 * prevents the head page and tail pages from being rearranged
7250 * in any way. So this page must be available at this point,
7251 * unless the page refcount overflowed:
7252 */
7253 if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
7254 page = NULL;
7255 goto out;
7256 }
e66f17ff 7257 } else {
c9d398fa 7258 if (is_hugetlb_entry_migration(pte)) {
e66f17ff 7259 spin_unlock(ptl);
fac35ba7 7260 __migration_entry_wait_huge(ptep, ptl);
e66f17ff
NH
7261 goto retry;
7262 }
7263 /*
7264 * hwpoisoned entry is treated as no_page_table in
7265 * follow_page_mask().
7266 */
7267 }
7268out:
7269 spin_unlock(ptl);
9e5fc74c
SC
7270 return page;
7271}
7272
61f77eda 7273struct page * __weak
9e5fc74c 7274follow_huge_pud(struct mm_struct *mm, unsigned long address,
e66f17ff 7275 pud_t *pud, int flags)
9e5fc74c 7276{
3a194f3f
NH
7277 struct page *page = NULL;
7278 spinlock_t *ptl;
7279 pte_t pte;
7280
7281 if (WARN_ON_ONCE(flags & FOLL_PIN))
e66f17ff 7282 return NULL;
9e5fc74c 7283
3a194f3f
NH
7284retry:
7285 ptl = huge_pte_lock(hstate_sizelog(PUD_SHIFT), mm, (pte_t *)pud);
7286 if (!pud_huge(*pud))
7287 goto out;
7288 pte = huge_ptep_get((pte_t *)pud);
7289 if (pte_present(pte)) {
7290 page = pud_page(*pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
7291 if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
7292 page = NULL;
7293 goto out;
7294 }
7295 } else {
7296 if (is_hugetlb_entry_migration(pte)) {
7297 spin_unlock(ptl);
7298 __migration_entry_wait(mm, (pte_t *)pud, ptl);
7299 goto retry;
7300 }
7301 /*
7302 * hwpoisoned entry is treated as no_page_table in
7303 * follow_page_mask().
7304 */
7305 }
7306out:
7307 spin_unlock(ptl);
7308 return page;
9e5fc74c
SC
7309}
7310
faaa5b62
AK
7311struct page * __weak
7312follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
7313{
3faa52c0 7314 if (flags & (FOLL_GET | FOLL_PIN))
faaa5b62
AK
7315 return NULL;
7316
7317 return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
7318}
7319
7ce82f4c 7320int isolate_hugetlb(struct page *page, struct list_head *list)
31caf665 7321{
7ce82f4c 7322 int ret = 0;
bcc54222 7323
db71ef79 7324 spin_lock_irq(&hugetlb_lock);
8f251a3d
MK
7325 if (!PageHeadHuge(page) ||
7326 !HPageMigratable(page) ||
0eb2df2b 7327 !get_page_unless_zero(page)) {
7ce82f4c 7328 ret = -EBUSY;
bcc54222
NH
7329 goto unlock;
7330 }
8f251a3d 7331 ClearHPageMigratable(page);
31caf665 7332 list_move_tail(&page->lru, list);
bcc54222 7333unlock:
db71ef79 7334 spin_unlock_irq(&hugetlb_lock);
bcc54222 7335 return ret;
31caf665
NH
7336}
7337
25182f05
NH
7338int get_hwpoison_huge_page(struct page *page, bool *hugetlb)
7339{
7340 int ret = 0;
7341
7342 *hugetlb = false;
7343 spin_lock_irq(&hugetlb_lock);
7344 if (PageHeadHuge(page)) {
7345 *hugetlb = true;
b283d983
NH
7346 if (HPageFreed(page))
7347 ret = 0;
7348 else if (HPageMigratable(page))
25182f05 7349 ret = get_page_unless_zero(page);
0ed950d1
NH
7350 else
7351 ret = -EBUSY;
25182f05
NH
7352 }
7353 spin_unlock_irq(&hugetlb_lock);
7354 return ret;
7355}
7356
405ce051
NH
7357int get_huge_page_for_hwpoison(unsigned long pfn, int flags)
7358{
7359 int ret;
7360
7361 spin_lock_irq(&hugetlb_lock);
7362 ret = __get_huge_page_for_hwpoison(pfn, flags);
7363 spin_unlock_irq(&hugetlb_lock);
7364 return ret;
7365}
7366
31caf665
NH
7367void putback_active_hugepage(struct page *page)
7368{
db71ef79 7369 spin_lock_irq(&hugetlb_lock);
8f251a3d 7370 SetHPageMigratable(page);
31caf665 7371 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
db71ef79 7372 spin_unlock_irq(&hugetlb_lock);
31caf665
NH
7373 put_page(page);
7374}
ab5ac90a
MH
7375
7376void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
7377{
7378 struct hstate *h = page_hstate(oldpage);
7379
7380 hugetlb_cgroup_migrate(oldpage, newpage);
7381 set_page_owner_migrate_reason(newpage, reason);
7382
7383 /*
7384 * transfer temporary state of the new huge page. This is
7385 * reverse to other transitions because the newpage is going to
7386 * be final while the old one will be freed so it takes over
7387 * the temporary status.
7388 *
7389 * Also note that we have to transfer the per-node surplus state
7390 * here as well otherwise the global surplus count will not match
7391 * the per-node's.
7392 */
9157c311 7393 if (HPageTemporary(newpage)) {
ab5ac90a
MH
7394 int old_nid = page_to_nid(oldpage);
7395 int new_nid = page_to_nid(newpage);
7396
9157c311
MK
7397 SetHPageTemporary(oldpage);
7398 ClearHPageTemporary(newpage);
ab5ac90a 7399
5af1ab1d
ML
7400 /*
7401 * There is no need to transfer the per-node surplus state
7402 * when we do not cross the node.
7403 */
7404 if (new_nid == old_nid)
7405 return;
db71ef79 7406 spin_lock_irq(&hugetlb_lock);
ab5ac90a
MH
7407 if (h->surplus_huge_pages_node[old_nid]) {
7408 h->surplus_huge_pages_node[old_nid]--;
7409 h->surplus_huge_pages_node[new_nid]++;
7410 }
db71ef79 7411 spin_unlock_irq(&hugetlb_lock);
ab5ac90a
MH
7412 }
7413}
cf11e85f 7414
6dfeaff9
PX
7415/*
7416 * This function will unconditionally remove all the shared pmd pgtable entries
7417 * within the specific vma for a hugetlbfs memory range.
7418 */
7419void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
7420{
7421 struct hstate *h = hstate_vma(vma);
7422 unsigned long sz = huge_page_size(h);
7423 struct mm_struct *mm = vma->vm_mm;
7424 struct mmu_notifier_range range;
7425 unsigned long address, start, end;
7426 spinlock_t *ptl;
7427 pte_t *ptep;
7428
7429 if (!(vma->vm_flags & VM_MAYSHARE))
7430 return;
7431
7432 start = ALIGN(vma->vm_start, PUD_SIZE);
7433 end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
7434
7435 if (start >= end)
7436 return;
7437
9c8bbfac 7438 flush_cache_range(vma, start, end);
6dfeaff9
PX
7439 /*
7440 * No need to call adjust_range_if_pmd_sharing_possible(), because
7441 * we have already done the PUD_SIZE alignment.
7442 */
7443 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
7444 start, end);
7445 mmu_notifier_invalidate_range_start(&range);
40549ba8 7446 hugetlb_vma_lock_write(vma);
6dfeaff9
PX
7447 i_mmap_lock_write(vma->vm_file->f_mapping);
7448 for (address = start; address < end; address += PUD_SIZE) {
6dfeaff9
PX
7449 ptep = huge_pte_offset(mm, address, sz);
7450 if (!ptep)
7451 continue;
7452 ptl = huge_pte_lock(h, mm, ptep);
4ddb4d91 7453 huge_pmd_unshare(mm, vma, address, ptep);
6dfeaff9
PX
7454 spin_unlock(ptl);
7455 }
7456 flush_hugetlb_tlb_range(vma, start, end);
7457 i_mmap_unlock_write(vma->vm_file->f_mapping);
40549ba8 7458 hugetlb_vma_unlock_write(vma);
6dfeaff9
PX
7459 /*
7460 * No need to call mmu_notifier_invalidate_range(), see
ee65728e 7461 * Documentation/mm/mmu_notifier.rst.
6dfeaff9
PX
7462 */
7463 mmu_notifier_invalidate_range_end(&range);
7464}
7465
cf11e85f 7466#ifdef CONFIG_CMA
cf11e85f
RG
7467static bool cma_reserve_called __initdata;
7468
7469static int __init cmdline_parse_hugetlb_cma(char *p)
7470{
38e719ab
BW
7471 int nid, count = 0;
7472 unsigned long tmp;
7473 char *s = p;
7474
7475 while (*s) {
7476 if (sscanf(s, "%lu%n", &tmp, &count) != 1)
7477 break;
7478
7479 if (s[count] == ':') {
f9317f77 7480 if (tmp >= MAX_NUMNODES)
38e719ab 7481 break;
f9317f77 7482 nid = array_index_nospec(tmp, MAX_NUMNODES);
38e719ab
BW
7483
7484 s += count + 1;
7485 tmp = memparse(s, &s);
7486 hugetlb_cma_size_in_node[nid] = tmp;
7487 hugetlb_cma_size += tmp;
7488
7489 /*
7490 * Skip the separator if have one, otherwise
7491 * break the parsing.
7492 */
7493 if (*s == ',')
7494 s++;
7495 else
7496 break;
7497 } else {
7498 hugetlb_cma_size = memparse(p, &p);
7499 break;
7500 }
7501 }
7502
cf11e85f
RG
7503 return 0;
7504}
7505
7506early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
7507
7508void __init hugetlb_cma_reserve(int order)
7509{
7510 unsigned long size, reserved, per_node;
38e719ab 7511 bool node_specific_cma_alloc = false;
cf11e85f
RG
7512 int nid;
7513
7514 cma_reserve_called = true;
7515
38e719ab
BW
7516 if (!hugetlb_cma_size)
7517 return;
7518
7519 for (nid = 0; nid < MAX_NUMNODES; nid++) {
7520 if (hugetlb_cma_size_in_node[nid] == 0)
7521 continue;
7522
30a51400 7523 if (!node_online(nid)) {
38e719ab
BW
7524 pr_warn("hugetlb_cma: invalid node %d specified\n", nid);
7525 hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7526 hugetlb_cma_size_in_node[nid] = 0;
7527 continue;
7528 }
7529
7530 if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) {
7531 pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n",
7532 nid, (PAGE_SIZE << order) / SZ_1M);
7533 hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7534 hugetlb_cma_size_in_node[nid] = 0;
7535 } else {
7536 node_specific_cma_alloc = true;
7537 }
7538 }
7539
7540 /* Validate the CMA size again in case some invalid nodes specified. */
cf11e85f
RG
7541 if (!hugetlb_cma_size)
7542 return;
7543
7544 if (hugetlb_cma_size < (PAGE_SIZE << order)) {
7545 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
7546 (PAGE_SIZE << order) / SZ_1M);
a01f4390 7547 hugetlb_cma_size = 0;
cf11e85f
RG
7548 return;
7549 }
7550
38e719ab
BW
7551 if (!node_specific_cma_alloc) {
7552 /*
7553 * If 3 GB area is requested on a machine with 4 numa nodes,
7554 * let's allocate 1 GB on first three nodes and ignore the last one.
7555 */
7556 per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
7557 pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
7558 hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
7559 }
cf11e85f
RG
7560
7561 reserved = 0;
30a51400 7562 for_each_online_node(nid) {
cf11e85f 7563 int res;
2281f797 7564 char name[CMA_MAX_NAME];
cf11e85f 7565
38e719ab
BW
7566 if (node_specific_cma_alloc) {
7567 if (hugetlb_cma_size_in_node[nid] == 0)
7568 continue;
7569
7570 size = hugetlb_cma_size_in_node[nid];
7571 } else {
7572 size = min(per_node, hugetlb_cma_size - reserved);
7573 }
7574
cf11e85f
RG
7575 size = round_up(size, PAGE_SIZE << order);
7576
2281f797 7577 snprintf(name, sizeof(name), "hugetlb%d", nid);
a01f4390
MK
7578 /*
7579 * Note that 'order per bit' is based on smallest size that
7580 * may be returned to CMA allocator in the case of
7581 * huge page demotion.
7582 */
7583 res = cma_declare_contiguous_nid(0, size, 0,
7584 PAGE_SIZE << HUGETLB_PAGE_ORDER,
29d0f41d 7585 0, false, name,
cf11e85f
RG
7586 &hugetlb_cma[nid], nid);
7587 if (res) {
7588 pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
7589 res, nid);
7590 continue;
7591 }
7592
7593 reserved += size;
7594 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
7595 size / SZ_1M, nid);
7596
7597 if (reserved >= hugetlb_cma_size)
7598 break;
7599 }
a01f4390
MK
7600
7601 if (!reserved)
7602 /*
7603 * hugetlb_cma_size is used to determine if allocations from
7604 * cma are possible. Set to zero if no cma regions are set up.
7605 */
7606 hugetlb_cma_size = 0;
cf11e85f
RG
7607}
7608
263b8998 7609static void __init hugetlb_cma_check(void)
cf11e85f
RG
7610{
7611 if (!hugetlb_cma_size || cma_reserve_called)
7612 return;
7613
7614 pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
7615}
7616
7617#endif /* CONFIG_CMA */