Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * Generic hugetlb support. | |
6d49e352 | 3 | * (C) Nadia Yvette Chambers, April 2004 |
1da177e4 | 4 | */ |
1da177e4 LT |
5 | #include <linux/list.h> |
6 | #include <linux/init.h> | |
7 | #include <linux/module.h> | |
8 | #include <linux/mm.h> | |
e1759c21 | 9 | #include <linux/seq_file.h> |
1da177e4 LT |
10 | #include <linux/sysctl.h> |
11 | #include <linux/highmem.h> | |
cddb8a5c | 12 | #include <linux/mmu_notifier.h> |
1da177e4 | 13 | #include <linux/nodemask.h> |
63551ae0 | 14 | #include <linux/pagemap.h> |
5da7ca86 | 15 | #include <linux/mempolicy.h> |
3b32123d | 16 | #include <linux/compiler.h> |
aea47ff3 | 17 | #include <linux/cpuset.h> |
3935baa9 | 18 | #include <linux/mutex.h> |
aa888a74 | 19 | #include <linux/bootmem.h> |
a3437870 | 20 | #include <linux/sysfs.h> |
5a0e3ad6 | 21 | #include <linux/slab.h> |
0fe6e20b | 22 | #include <linux/rmap.h> |
fd6a03ed NH |
23 | #include <linux/swap.h> |
24 | #include <linux/swapops.h> | |
c8721bbb | 25 | #include <linux/page-isolation.h> |
8382d914 | 26 | #include <linux/jhash.h> |
d6606683 | 27 | |
63551ae0 DG |
28 | #include <asm/page.h> |
29 | #include <asm/pgtable.h> | |
24669e58 | 30 | #include <asm/tlb.h> |
63551ae0 | 31 | |
24669e58 | 32 | #include <linux/io.h> |
63551ae0 | 33 | #include <linux/hugetlb.h> |
9dd540e2 | 34 | #include <linux/hugetlb_cgroup.h> |
9a305230 | 35 | #include <linux/node.h> |
7835e98b | 36 | #include "internal.h" |
1da177e4 | 37 | |
753162cd | 38 | int hugepages_treat_as_movable; |
a5516438 | 39 | |
c3f38a38 | 40 | int hugetlb_max_hstate __read_mostly; |
e5ff2159 AK |
41 | unsigned int default_hstate_idx; |
42 | struct hstate hstates[HUGE_MAX_HSTATE]; | |
43 | ||
53ba51d2 JT |
44 | __initdata LIST_HEAD(huge_boot_pages); |
45 | ||
e5ff2159 AK |
46 | /* for command line parsing */ |
47 | static struct hstate * __initdata parsed_hstate; | |
48 | static unsigned long __initdata default_hstate_max_huge_pages; | |
e11bfbfc | 49 | static unsigned long __initdata default_hstate_size; |
e5ff2159 | 50 | |
3935baa9 | 51 | /* |
31caf665 NH |
52 | * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages, |
53 | * free_huge_pages, and surplus_huge_pages. | |
3935baa9 | 54 | */ |
c3f38a38 | 55 | DEFINE_SPINLOCK(hugetlb_lock); |
0bd0f9fb | 56 | |
8382d914 DB |
57 | /* |
58 | * Serializes faults on the same logical page. This is used to | |
59 | * prevent spurious OOMs when the hugepage pool is fully utilized. | |
60 | */ | |
61 | static int num_fault_mutexes; | |
62 | static struct mutex *htlb_fault_mutex_table ____cacheline_aligned_in_smp; | |
63 | ||
7ca02d0a MK |
64 | /* Forward declaration */ |
65 | static int hugetlb_acct_memory(struct hstate *h, long delta); | |
66 | ||
90481622 DG |
67 | static inline void unlock_or_release_subpool(struct hugepage_subpool *spool) |
68 | { | |
69 | bool free = (spool->count == 0) && (spool->used_hpages == 0); | |
70 | ||
71 | spin_unlock(&spool->lock); | |
72 | ||
73 | /* If no pages are used, and no other handles to the subpool | |
7ca02d0a MK |
74 | * remain, give up any reservations mased on minimum size and |
75 | * free the subpool */ | |
76 | if (free) { | |
77 | if (spool->min_hpages != -1) | |
78 | hugetlb_acct_memory(spool->hstate, | |
79 | -spool->min_hpages); | |
90481622 | 80 | kfree(spool); |
7ca02d0a | 81 | } |
90481622 DG |
82 | } |
83 | ||
7ca02d0a MK |
84 | struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages, |
85 | long min_hpages) | |
90481622 DG |
86 | { |
87 | struct hugepage_subpool *spool; | |
88 | ||
c6a91820 | 89 | spool = kzalloc(sizeof(*spool), GFP_KERNEL); |
90481622 DG |
90 | if (!spool) |
91 | return NULL; | |
92 | ||
93 | spin_lock_init(&spool->lock); | |
94 | spool->count = 1; | |
7ca02d0a MK |
95 | spool->max_hpages = max_hpages; |
96 | spool->hstate = h; | |
97 | spool->min_hpages = min_hpages; | |
98 | ||
99 | if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) { | |
100 | kfree(spool); | |
101 | return NULL; | |
102 | } | |
103 | spool->rsv_hpages = min_hpages; | |
90481622 DG |
104 | |
105 | return spool; | |
106 | } | |
107 | ||
108 | void hugepage_put_subpool(struct hugepage_subpool *spool) | |
109 | { | |
110 | spin_lock(&spool->lock); | |
111 | BUG_ON(!spool->count); | |
112 | spool->count--; | |
113 | unlock_or_release_subpool(spool); | |
114 | } | |
115 | ||
1c5ecae3 MK |
116 | /* |
117 | * Subpool accounting for allocating and reserving pages. | |
118 | * Return -ENOMEM if there are not enough resources to satisfy the | |
119 | * the request. Otherwise, return the number of pages by which the | |
120 | * global pools must be adjusted (upward). The returned value may | |
121 | * only be different than the passed value (delta) in the case where | |
122 | * a subpool minimum size must be manitained. | |
123 | */ | |
124 | static long hugepage_subpool_get_pages(struct hugepage_subpool *spool, | |
90481622 DG |
125 | long delta) |
126 | { | |
1c5ecae3 | 127 | long ret = delta; |
90481622 DG |
128 | |
129 | if (!spool) | |
1c5ecae3 | 130 | return ret; |
90481622 DG |
131 | |
132 | spin_lock(&spool->lock); | |
1c5ecae3 MK |
133 | |
134 | if (spool->max_hpages != -1) { /* maximum size accounting */ | |
135 | if ((spool->used_hpages + delta) <= spool->max_hpages) | |
136 | spool->used_hpages += delta; | |
137 | else { | |
138 | ret = -ENOMEM; | |
139 | goto unlock_ret; | |
140 | } | |
90481622 | 141 | } |
90481622 | 142 | |
1c5ecae3 MK |
143 | if (spool->min_hpages != -1) { /* minimum size accounting */ |
144 | if (delta > spool->rsv_hpages) { | |
145 | /* | |
146 | * Asking for more reserves than those already taken on | |
147 | * behalf of subpool. Return difference. | |
148 | */ | |
149 | ret = delta - spool->rsv_hpages; | |
150 | spool->rsv_hpages = 0; | |
151 | } else { | |
152 | ret = 0; /* reserves already accounted for */ | |
153 | spool->rsv_hpages -= delta; | |
154 | } | |
155 | } | |
156 | ||
157 | unlock_ret: | |
158 | spin_unlock(&spool->lock); | |
90481622 DG |
159 | return ret; |
160 | } | |
161 | ||
1c5ecae3 MK |
162 | /* |
163 | * Subpool accounting for freeing and unreserving pages. | |
164 | * Return the number of global page reservations that must be dropped. | |
165 | * The return value may only be different than the passed value (delta) | |
166 | * in the case where a subpool minimum size must be maintained. | |
167 | */ | |
168 | static long hugepage_subpool_put_pages(struct hugepage_subpool *spool, | |
90481622 DG |
169 | long delta) |
170 | { | |
1c5ecae3 MK |
171 | long ret = delta; |
172 | ||
90481622 | 173 | if (!spool) |
1c5ecae3 | 174 | return delta; |
90481622 DG |
175 | |
176 | spin_lock(&spool->lock); | |
1c5ecae3 MK |
177 | |
178 | if (spool->max_hpages != -1) /* maximum size accounting */ | |
179 | spool->used_hpages -= delta; | |
180 | ||
181 | if (spool->min_hpages != -1) { /* minimum size accounting */ | |
182 | if (spool->rsv_hpages + delta <= spool->min_hpages) | |
183 | ret = 0; | |
184 | else | |
185 | ret = spool->rsv_hpages + delta - spool->min_hpages; | |
186 | ||
187 | spool->rsv_hpages += delta; | |
188 | if (spool->rsv_hpages > spool->min_hpages) | |
189 | spool->rsv_hpages = spool->min_hpages; | |
190 | } | |
191 | ||
192 | /* | |
193 | * If hugetlbfs_put_super couldn't free spool due to an outstanding | |
194 | * quota reference, free it now. | |
195 | */ | |
90481622 | 196 | unlock_or_release_subpool(spool); |
1c5ecae3 MK |
197 | |
198 | return ret; | |
90481622 DG |
199 | } |
200 | ||
201 | static inline struct hugepage_subpool *subpool_inode(struct inode *inode) | |
202 | { | |
203 | return HUGETLBFS_SB(inode->i_sb)->spool; | |
204 | } | |
205 | ||
206 | static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma) | |
207 | { | |
496ad9aa | 208 | return subpool_inode(file_inode(vma->vm_file)); |
90481622 DG |
209 | } |
210 | ||
96822904 AW |
211 | /* |
212 | * Region tracking -- allows tracking of reservations and instantiated pages | |
213 | * across the pages in a mapping. | |
84afd99b | 214 | * |
7b24d861 DB |
215 | * The region data structures are embedded into a resv_map and |
216 | * protected by a resv_map's lock | |
96822904 AW |
217 | */ |
218 | struct file_region { | |
219 | struct list_head link; | |
220 | long from; | |
221 | long to; | |
222 | }; | |
223 | ||
1406ec9b | 224 | static long region_add(struct resv_map *resv, long f, long t) |
96822904 | 225 | { |
1406ec9b | 226 | struct list_head *head = &resv->regions; |
96822904 AW |
227 | struct file_region *rg, *nrg, *trg; |
228 | ||
7b24d861 | 229 | spin_lock(&resv->lock); |
96822904 AW |
230 | /* Locate the region we are either in or before. */ |
231 | list_for_each_entry(rg, head, link) | |
232 | if (f <= rg->to) | |
233 | break; | |
234 | ||
235 | /* Round our left edge to the current segment if it encloses us. */ | |
236 | if (f > rg->from) | |
237 | f = rg->from; | |
238 | ||
239 | /* Check for and consume any regions we now overlap with. */ | |
240 | nrg = rg; | |
241 | list_for_each_entry_safe(rg, trg, rg->link.prev, link) { | |
242 | if (&rg->link == head) | |
243 | break; | |
244 | if (rg->from > t) | |
245 | break; | |
246 | ||
247 | /* If this area reaches higher then extend our area to | |
248 | * include it completely. If this is not the first area | |
249 | * which we intend to reuse, free it. */ | |
250 | if (rg->to > t) | |
251 | t = rg->to; | |
252 | if (rg != nrg) { | |
253 | list_del(&rg->link); | |
254 | kfree(rg); | |
255 | } | |
256 | } | |
257 | nrg->from = f; | |
258 | nrg->to = t; | |
7b24d861 | 259 | spin_unlock(&resv->lock); |
96822904 AW |
260 | return 0; |
261 | } | |
262 | ||
1406ec9b | 263 | static long region_chg(struct resv_map *resv, long f, long t) |
96822904 | 264 | { |
1406ec9b | 265 | struct list_head *head = &resv->regions; |
7b24d861 | 266 | struct file_region *rg, *nrg = NULL; |
96822904 AW |
267 | long chg = 0; |
268 | ||
7b24d861 DB |
269 | retry: |
270 | spin_lock(&resv->lock); | |
96822904 AW |
271 | /* Locate the region we are before or in. */ |
272 | list_for_each_entry(rg, head, link) | |
273 | if (f <= rg->to) | |
274 | break; | |
275 | ||
276 | /* If we are below the current region then a new region is required. | |
277 | * Subtle, allocate a new region at the position but make it zero | |
278 | * size such that we can guarantee to record the reservation. */ | |
279 | if (&rg->link == head || t < rg->from) { | |
7b24d861 DB |
280 | if (!nrg) { |
281 | spin_unlock(&resv->lock); | |
282 | nrg = kmalloc(sizeof(*nrg), GFP_KERNEL); | |
283 | if (!nrg) | |
284 | return -ENOMEM; | |
285 | ||
286 | nrg->from = f; | |
287 | nrg->to = f; | |
288 | INIT_LIST_HEAD(&nrg->link); | |
289 | goto retry; | |
290 | } | |
96822904 | 291 | |
7b24d861 DB |
292 | list_add(&nrg->link, rg->link.prev); |
293 | chg = t - f; | |
294 | goto out_nrg; | |
96822904 AW |
295 | } |
296 | ||
297 | /* Round our left edge to the current segment if it encloses us. */ | |
298 | if (f > rg->from) | |
299 | f = rg->from; | |
300 | chg = t - f; | |
301 | ||
302 | /* Check for and consume any regions we now overlap with. */ | |
303 | list_for_each_entry(rg, rg->link.prev, link) { | |
304 | if (&rg->link == head) | |
305 | break; | |
306 | if (rg->from > t) | |
7b24d861 | 307 | goto out; |
96822904 | 308 | |
25985edc | 309 | /* We overlap with this area, if it extends further than |
96822904 AW |
310 | * us then we must extend ourselves. Account for its |
311 | * existing reservation. */ | |
312 | if (rg->to > t) { | |
313 | chg += rg->to - t; | |
314 | t = rg->to; | |
315 | } | |
316 | chg -= rg->to - rg->from; | |
317 | } | |
7b24d861 DB |
318 | |
319 | out: | |
320 | spin_unlock(&resv->lock); | |
321 | /* We already know we raced and no longer need the new region */ | |
322 | kfree(nrg); | |
323 | return chg; | |
324 | out_nrg: | |
325 | spin_unlock(&resv->lock); | |
96822904 AW |
326 | return chg; |
327 | } | |
328 | ||
1406ec9b | 329 | static long region_truncate(struct resv_map *resv, long end) |
96822904 | 330 | { |
1406ec9b | 331 | struct list_head *head = &resv->regions; |
96822904 AW |
332 | struct file_region *rg, *trg; |
333 | long chg = 0; | |
334 | ||
7b24d861 | 335 | spin_lock(&resv->lock); |
96822904 AW |
336 | /* Locate the region we are either in or before. */ |
337 | list_for_each_entry(rg, head, link) | |
338 | if (end <= rg->to) | |
339 | break; | |
340 | if (&rg->link == head) | |
7b24d861 | 341 | goto out; |
96822904 AW |
342 | |
343 | /* If we are in the middle of a region then adjust it. */ | |
344 | if (end > rg->from) { | |
345 | chg = rg->to - end; | |
346 | rg->to = end; | |
347 | rg = list_entry(rg->link.next, typeof(*rg), link); | |
348 | } | |
349 | ||
350 | /* Drop any remaining regions. */ | |
351 | list_for_each_entry_safe(rg, trg, rg->link.prev, link) { | |
352 | if (&rg->link == head) | |
353 | break; | |
354 | chg += rg->to - rg->from; | |
355 | list_del(&rg->link); | |
356 | kfree(rg); | |
357 | } | |
7b24d861 DB |
358 | |
359 | out: | |
360 | spin_unlock(&resv->lock); | |
96822904 AW |
361 | return chg; |
362 | } | |
363 | ||
1406ec9b | 364 | static long region_count(struct resv_map *resv, long f, long t) |
84afd99b | 365 | { |
1406ec9b | 366 | struct list_head *head = &resv->regions; |
84afd99b AW |
367 | struct file_region *rg; |
368 | long chg = 0; | |
369 | ||
7b24d861 | 370 | spin_lock(&resv->lock); |
84afd99b AW |
371 | /* Locate each segment we overlap with, and count that overlap. */ |
372 | list_for_each_entry(rg, head, link) { | |
f2135a4a WSH |
373 | long seg_from; |
374 | long seg_to; | |
84afd99b AW |
375 | |
376 | if (rg->to <= f) | |
377 | continue; | |
378 | if (rg->from >= t) | |
379 | break; | |
380 | ||
381 | seg_from = max(rg->from, f); | |
382 | seg_to = min(rg->to, t); | |
383 | ||
384 | chg += seg_to - seg_from; | |
385 | } | |
7b24d861 | 386 | spin_unlock(&resv->lock); |
84afd99b AW |
387 | |
388 | return chg; | |
389 | } | |
390 | ||
e7c4b0bf AW |
391 | /* |
392 | * Convert the address within this vma to the page offset within | |
393 | * the mapping, in pagecache page units; huge pages here. | |
394 | */ | |
a5516438 AK |
395 | static pgoff_t vma_hugecache_offset(struct hstate *h, |
396 | struct vm_area_struct *vma, unsigned long address) | |
e7c4b0bf | 397 | { |
a5516438 AK |
398 | return ((address - vma->vm_start) >> huge_page_shift(h)) + |
399 | (vma->vm_pgoff >> huge_page_order(h)); | |
e7c4b0bf AW |
400 | } |
401 | ||
0fe6e20b NH |
402 | pgoff_t linear_hugepage_index(struct vm_area_struct *vma, |
403 | unsigned long address) | |
404 | { | |
405 | return vma_hugecache_offset(hstate_vma(vma), vma, address); | |
406 | } | |
407 | ||
08fba699 MG |
408 | /* |
409 | * Return the size of the pages allocated when backing a VMA. In the majority | |
410 | * cases this will be same size as used by the page table entries. | |
411 | */ | |
412 | unsigned long vma_kernel_pagesize(struct vm_area_struct *vma) | |
413 | { | |
414 | struct hstate *hstate; | |
415 | ||
416 | if (!is_vm_hugetlb_page(vma)) | |
417 | return PAGE_SIZE; | |
418 | ||
419 | hstate = hstate_vma(vma); | |
420 | ||
2415cf12 | 421 | return 1UL << huge_page_shift(hstate); |
08fba699 | 422 | } |
f340ca0f | 423 | EXPORT_SYMBOL_GPL(vma_kernel_pagesize); |
08fba699 | 424 | |
3340289d MG |
425 | /* |
426 | * Return the page size being used by the MMU to back a VMA. In the majority | |
427 | * of cases, the page size used by the kernel matches the MMU size. On | |
428 | * architectures where it differs, an architecture-specific version of this | |
429 | * function is required. | |
430 | */ | |
431 | #ifndef vma_mmu_pagesize | |
432 | unsigned long vma_mmu_pagesize(struct vm_area_struct *vma) | |
433 | { | |
434 | return vma_kernel_pagesize(vma); | |
435 | } | |
436 | #endif | |
437 | ||
84afd99b AW |
438 | /* |
439 | * Flags for MAP_PRIVATE reservations. These are stored in the bottom | |
440 | * bits of the reservation map pointer, which are always clear due to | |
441 | * alignment. | |
442 | */ | |
443 | #define HPAGE_RESV_OWNER (1UL << 0) | |
444 | #define HPAGE_RESV_UNMAPPED (1UL << 1) | |
04f2cbe3 | 445 | #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED) |
84afd99b | 446 | |
a1e78772 MG |
447 | /* |
448 | * These helpers are used to track how many pages are reserved for | |
449 | * faults in a MAP_PRIVATE mapping. Only the process that called mmap() | |
450 | * is guaranteed to have their future faults succeed. | |
451 | * | |
452 | * With the exception of reset_vma_resv_huge_pages() which is called at fork(), | |
453 | * the reserve counters are updated with the hugetlb_lock held. It is safe | |
454 | * to reset the VMA at fork() time as it is not in use yet and there is no | |
455 | * chance of the global counters getting corrupted as a result of the values. | |
84afd99b AW |
456 | * |
457 | * The private mapping reservation is represented in a subtly different | |
458 | * manner to a shared mapping. A shared mapping has a region map associated | |
459 | * with the underlying file, this region map represents the backing file | |
460 | * pages which have ever had a reservation assigned which this persists even | |
461 | * after the page is instantiated. A private mapping has a region map | |
462 | * associated with the original mmap which is attached to all VMAs which | |
463 | * reference it, this region map represents those offsets which have consumed | |
464 | * reservation ie. where pages have been instantiated. | |
a1e78772 | 465 | */ |
e7c4b0bf AW |
466 | static unsigned long get_vma_private_data(struct vm_area_struct *vma) |
467 | { | |
468 | return (unsigned long)vma->vm_private_data; | |
469 | } | |
470 | ||
471 | static void set_vma_private_data(struct vm_area_struct *vma, | |
472 | unsigned long value) | |
473 | { | |
474 | vma->vm_private_data = (void *)value; | |
475 | } | |
476 | ||
9119a41e | 477 | struct resv_map *resv_map_alloc(void) |
84afd99b AW |
478 | { |
479 | struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL); | |
480 | if (!resv_map) | |
481 | return NULL; | |
482 | ||
483 | kref_init(&resv_map->refs); | |
7b24d861 | 484 | spin_lock_init(&resv_map->lock); |
84afd99b AW |
485 | INIT_LIST_HEAD(&resv_map->regions); |
486 | ||
487 | return resv_map; | |
488 | } | |
489 | ||
9119a41e | 490 | void resv_map_release(struct kref *ref) |
84afd99b AW |
491 | { |
492 | struct resv_map *resv_map = container_of(ref, struct resv_map, refs); | |
493 | ||
494 | /* Clear out any active regions before we release the map. */ | |
1406ec9b | 495 | region_truncate(resv_map, 0); |
84afd99b AW |
496 | kfree(resv_map); |
497 | } | |
498 | ||
4e35f483 JK |
499 | static inline struct resv_map *inode_resv_map(struct inode *inode) |
500 | { | |
501 | return inode->i_mapping->private_data; | |
502 | } | |
503 | ||
84afd99b | 504 | static struct resv_map *vma_resv_map(struct vm_area_struct *vma) |
a1e78772 | 505 | { |
81d1b09c | 506 | VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); |
4e35f483 JK |
507 | if (vma->vm_flags & VM_MAYSHARE) { |
508 | struct address_space *mapping = vma->vm_file->f_mapping; | |
509 | struct inode *inode = mapping->host; | |
510 | ||
511 | return inode_resv_map(inode); | |
512 | ||
513 | } else { | |
84afd99b AW |
514 | return (struct resv_map *)(get_vma_private_data(vma) & |
515 | ~HPAGE_RESV_MASK); | |
4e35f483 | 516 | } |
a1e78772 MG |
517 | } |
518 | ||
84afd99b | 519 | static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map) |
a1e78772 | 520 | { |
81d1b09c SL |
521 | VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); |
522 | VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); | |
a1e78772 | 523 | |
84afd99b AW |
524 | set_vma_private_data(vma, (get_vma_private_data(vma) & |
525 | HPAGE_RESV_MASK) | (unsigned long)map); | |
04f2cbe3 MG |
526 | } |
527 | ||
528 | static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags) | |
529 | { | |
81d1b09c SL |
530 | VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); |
531 | VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); | |
e7c4b0bf AW |
532 | |
533 | set_vma_private_data(vma, get_vma_private_data(vma) | flags); | |
04f2cbe3 MG |
534 | } |
535 | ||
536 | static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag) | |
537 | { | |
81d1b09c | 538 | VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); |
e7c4b0bf AW |
539 | |
540 | return (get_vma_private_data(vma) & flag) != 0; | |
a1e78772 MG |
541 | } |
542 | ||
04f2cbe3 | 543 | /* Reset counters to 0 and clear all HPAGE_RESV_* flags */ |
a1e78772 MG |
544 | void reset_vma_resv_huge_pages(struct vm_area_struct *vma) |
545 | { | |
81d1b09c | 546 | VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); |
f83a275d | 547 | if (!(vma->vm_flags & VM_MAYSHARE)) |
a1e78772 MG |
548 | vma->vm_private_data = (void *)0; |
549 | } | |
550 | ||
551 | /* Returns true if the VMA has associated reserve pages */ | |
af0ed73e | 552 | static int vma_has_reserves(struct vm_area_struct *vma, long chg) |
a1e78772 | 553 | { |
af0ed73e JK |
554 | if (vma->vm_flags & VM_NORESERVE) { |
555 | /* | |
556 | * This address is already reserved by other process(chg == 0), | |
557 | * so, we should decrement reserved count. Without decrementing, | |
558 | * reserve count remains after releasing inode, because this | |
559 | * allocated page will go into page cache and is regarded as | |
560 | * coming from reserved pool in releasing step. Currently, we | |
561 | * don't have any other solution to deal with this situation | |
562 | * properly, so add work-around here. | |
563 | */ | |
564 | if (vma->vm_flags & VM_MAYSHARE && chg == 0) | |
565 | return 1; | |
566 | else | |
567 | return 0; | |
568 | } | |
a63884e9 JK |
569 | |
570 | /* Shared mappings always use reserves */ | |
f83a275d | 571 | if (vma->vm_flags & VM_MAYSHARE) |
7f09ca51 | 572 | return 1; |
a63884e9 JK |
573 | |
574 | /* | |
575 | * Only the process that called mmap() has reserves for | |
576 | * private mappings. | |
577 | */ | |
7f09ca51 MG |
578 | if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) |
579 | return 1; | |
a63884e9 | 580 | |
7f09ca51 | 581 | return 0; |
a1e78772 MG |
582 | } |
583 | ||
a5516438 | 584 | static void enqueue_huge_page(struct hstate *h, struct page *page) |
1da177e4 LT |
585 | { |
586 | int nid = page_to_nid(page); | |
0edaecfa | 587 | list_move(&page->lru, &h->hugepage_freelists[nid]); |
a5516438 AK |
588 | h->free_huge_pages++; |
589 | h->free_huge_pages_node[nid]++; | |
1da177e4 LT |
590 | } |
591 | ||
bf50bab2 NH |
592 | static struct page *dequeue_huge_page_node(struct hstate *h, int nid) |
593 | { | |
594 | struct page *page; | |
595 | ||
c8721bbb NH |
596 | list_for_each_entry(page, &h->hugepage_freelists[nid], lru) |
597 | if (!is_migrate_isolate_page(page)) | |
598 | break; | |
599 | /* | |
600 | * if 'non-isolated free hugepage' not found on the list, | |
601 | * the allocation fails. | |
602 | */ | |
603 | if (&h->hugepage_freelists[nid] == &page->lru) | |
bf50bab2 | 604 | return NULL; |
0edaecfa | 605 | list_move(&page->lru, &h->hugepage_activelist); |
a9869b83 | 606 | set_page_refcounted(page); |
bf50bab2 NH |
607 | h->free_huge_pages--; |
608 | h->free_huge_pages_node[nid]--; | |
609 | return page; | |
610 | } | |
611 | ||
86cdb465 NH |
612 | /* Movability of hugepages depends on migration support. */ |
613 | static inline gfp_t htlb_alloc_mask(struct hstate *h) | |
614 | { | |
100873d7 | 615 | if (hugepages_treat_as_movable || hugepage_migration_supported(h)) |
86cdb465 NH |
616 | return GFP_HIGHUSER_MOVABLE; |
617 | else | |
618 | return GFP_HIGHUSER; | |
619 | } | |
620 | ||
a5516438 AK |
621 | static struct page *dequeue_huge_page_vma(struct hstate *h, |
622 | struct vm_area_struct *vma, | |
af0ed73e JK |
623 | unsigned long address, int avoid_reserve, |
624 | long chg) | |
1da177e4 | 625 | { |
b1c12cbc | 626 | struct page *page = NULL; |
480eccf9 | 627 | struct mempolicy *mpol; |
19770b32 | 628 | nodemask_t *nodemask; |
c0ff7453 | 629 | struct zonelist *zonelist; |
dd1a239f MG |
630 | struct zone *zone; |
631 | struct zoneref *z; | |
cc9a6c87 | 632 | unsigned int cpuset_mems_cookie; |
1da177e4 | 633 | |
a1e78772 MG |
634 | /* |
635 | * A child process with MAP_PRIVATE mappings created by their parent | |
636 | * have no page reserves. This check ensures that reservations are | |
637 | * not "stolen". The child may still get SIGKILLed | |
638 | */ | |
af0ed73e | 639 | if (!vma_has_reserves(vma, chg) && |
a5516438 | 640 | h->free_huge_pages - h->resv_huge_pages == 0) |
c0ff7453 | 641 | goto err; |
a1e78772 | 642 | |
04f2cbe3 | 643 | /* If reserves cannot be used, ensure enough pages are in the pool */ |
a5516438 | 644 | if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0) |
6eab04a8 | 645 | goto err; |
04f2cbe3 | 646 | |
9966c4bb | 647 | retry_cpuset: |
d26914d1 | 648 | cpuset_mems_cookie = read_mems_allowed_begin(); |
9966c4bb | 649 | zonelist = huge_zonelist(vma, address, |
86cdb465 | 650 | htlb_alloc_mask(h), &mpol, &nodemask); |
9966c4bb | 651 | |
19770b32 MG |
652 | for_each_zone_zonelist_nodemask(zone, z, zonelist, |
653 | MAX_NR_ZONES - 1, nodemask) { | |
344736f2 | 654 | if (cpuset_zone_allowed(zone, htlb_alloc_mask(h))) { |
bf50bab2 NH |
655 | page = dequeue_huge_page_node(h, zone_to_nid(zone)); |
656 | if (page) { | |
af0ed73e JK |
657 | if (avoid_reserve) |
658 | break; | |
659 | if (!vma_has_reserves(vma, chg)) | |
660 | break; | |
661 | ||
07443a85 | 662 | SetPagePrivate(page); |
af0ed73e | 663 | h->resv_huge_pages--; |
bf50bab2 NH |
664 | break; |
665 | } | |
3abf7afd | 666 | } |
1da177e4 | 667 | } |
cc9a6c87 | 668 | |
52cd3b07 | 669 | mpol_cond_put(mpol); |
d26914d1 | 670 | if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie))) |
cc9a6c87 | 671 | goto retry_cpuset; |
1da177e4 | 672 | return page; |
cc9a6c87 MG |
673 | |
674 | err: | |
cc9a6c87 | 675 | return NULL; |
1da177e4 LT |
676 | } |
677 | ||
1cac6f2c LC |
678 | /* |
679 | * common helper functions for hstate_next_node_to_{alloc|free}. | |
680 | * We may have allocated or freed a huge page based on a different | |
681 | * nodes_allowed previously, so h->next_node_to_{alloc|free} might | |
682 | * be outside of *nodes_allowed. Ensure that we use an allowed | |
683 | * node for alloc or free. | |
684 | */ | |
685 | static int next_node_allowed(int nid, nodemask_t *nodes_allowed) | |
686 | { | |
687 | nid = next_node(nid, *nodes_allowed); | |
688 | if (nid == MAX_NUMNODES) | |
689 | nid = first_node(*nodes_allowed); | |
690 | VM_BUG_ON(nid >= MAX_NUMNODES); | |
691 | ||
692 | return nid; | |
693 | } | |
694 | ||
695 | static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed) | |
696 | { | |
697 | if (!node_isset(nid, *nodes_allowed)) | |
698 | nid = next_node_allowed(nid, nodes_allowed); | |
699 | return nid; | |
700 | } | |
701 | ||
702 | /* | |
703 | * returns the previously saved node ["this node"] from which to | |
704 | * allocate a persistent huge page for the pool and advance the | |
705 | * next node from which to allocate, handling wrap at end of node | |
706 | * mask. | |
707 | */ | |
708 | static int hstate_next_node_to_alloc(struct hstate *h, | |
709 | nodemask_t *nodes_allowed) | |
710 | { | |
711 | int nid; | |
712 | ||
713 | VM_BUG_ON(!nodes_allowed); | |
714 | ||
715 | nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed); | |
716 | h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed); | |
717 | ||
718 | return nid; | |
719 | } | |
720 | ||
721 | /* | |
722 | * helper for free_pool_huge_page() - return the previously saved | |
723 | * node ["this node"] from which to free a huge page. Advance the | |
724 | * next node id whether or not we find a free huge page to free so | |
725 | * that the next attempt to free addresses the next node. | |
726 | */ | |
727 | static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed) | |
728 | { | |
729 | int nid; | |
730 | ||
731 | VM_BUG_ON(!nodes_allowed); | |
732 | ||
733 | nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed); | |
734 | h->next_nid_to_free = next_node_allowed(nid, nodes_allowed); | |
735 | ||
736 | return nid; | |
737 | } | |
738 | ||
739 | #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \ | |
740 | for (nr_nodes = nodes_weight(*mask); \ | |
741 | nr_nodes > 0 && \ | |
742 | ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \ | |
743 | nr_nodes--) | |
744 | ||
745 | #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \ | |
746 | for (nr_nodes = nodes_weight(*mask); \ | |
747 | nr_nodes > 0 && \ | |
748 | ((node = hstate_next_node_to_free(hs, mask)) || 1); \ | |
749 | nr_nodes--) | |
750 | ||
944d9fec LC |
751 | #if defined(CONFIG_CMA) && defined(CONFIG_X86_64) |
752 | static void destroy_compound_gigantic_page(struct page *page, | |
753 | unsigned long order) | |
754 | { | |
755 | int i; | |
756 | int nr_pages = 1 << order; | |
757 | struct page *p = page + 1; | |
758 | ||
759 | for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) { | |
760 | __ClearPageTail(p); | |
761 | set_page_refcounted(p); | |
762 | p->first_page = NULL; | |
763 | } | |
764 | ||
765 | set_compound_order(page, 0); | |
766 | __ClearPageHead(page); | |
767 | } | |
768 | ||
769 | static void free_gigantic_page(struct page *page, unsigned order) | |
770 | { | |
771 | free_contig_range(page_to_pfn(page), 1 << order); | |
772 | } | |
773 | ||
774 | static int __alloc_gigantic_page(unsigned long start_pfn, | |
775 | unsigned long nr_pages) | |
776 | { | |
777 | unsigned long end_pfn = start_pfn + nr_pages; | |
778 | return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE); | |
779 | } | |
780 | ||
781 | static bool pfn_range_valid_gigantic(unsigned long start_pfn, | |
782 | unsigned long nr_pages) | |
783 | { | |
784 | unsigned long i, end_pfn = start_pfn + nr_pages; | |
785 | struct page *page; | |
786 | ||
787 | for (i = start_pfn; i < end_pfn; i++) { | |
788 | if (!pfn_valid(i)) | |
789 | return false; | |
790 | ||
791 | page = pfn_to_page(i); | |
792 | ||
793 | if (PageReserved(page)) | |
794 | return false; | |
795 | ||
796 | if (page_count(page) > 0) | |
797 | return false; | |
798 | ||
799 | if (PageHuge(page)) | |
800 | return false; | |
801 | } | |
802 | ||
803 | return true; | |
804 | } | |
805 | ||
806 | static bool zone_spans_last_pfn(const struct zone *zone, | |
807 | unsigned long start_pfn, unsigned long nr_pages) | |
808 | { | |
809 | unsigned long last_pfn = start_pfn + nr_pages - 1; | |
810 | return zone_spans_pfn(zone, last_pfn); | |
811 | } | |
812 | ||
813 | static struct page *alloc_gigantic_page(int nid, unsigned order) | |
814 | { | |
815 | unsigned long nr_pages = 1 << order; | |
816 | unsigned long ret, pfn, flags; | |
817 | struct zone *z; | |
818 | ||
819 | z = NODE_DATA(nid)->node_zones; | |
820 | for (; z - NODE_DATA(nid)->node_zones < MAX_NR_ZONES; z++) { | |
821 | spin_lock_irqsave(&z->lock, flags); | |
822 | ||
823 | pfn = ALIGN(z->zone_start_pfn, nr_pages); | |
824 | while (zone_spans_last_pfn(z, pfn, nr_pages)) { | |
825 | if (pfn_range_valid_gigantic(pfn, nr_pages)) { | |
826 | /* | |
827 | * We release the zone lock here because | |
828 | * alloc_contig_range() will also lock the zone | |
829 | * at some point. If there's an allocation | |
830 | * spinning on this lock, it may win the race | |
831 | * and cause alloc_contig_range() to fail... | |
832 | */ | |
833 | spin_unlock_irqrestore(&z->lock, flags); | |
834 | ret = __alloc_gigantic_page(pfn, nr_pages); | |
835 | if (!ret) | |
836 | return pfn_to_page(pfn); | |
837 | spin_lock_irqsave(&z->lock, flags); | |
838 | } | |
839 | pfn += nr_pages; | |
840 | } | |
841 | ||
842 | spin_unlock_irqrestore(&z->lock, flags); | |
843 | } | |
844 | ||
845 | return NULL; | |
846 | } | |
847 | ||
848 | static void prep_new_huge_page(struct hstate *h, struct page *page, int nid); | |
849 | static void prep_compound_gigantic_page(struct page *page, unsigned long order); | |
850 | ||
851 | static struct page *alloc_fresh_gigantic_page_node(struct hstate *h, int nid) | |
852 | { | |
853 | struct page *page; | |
854 | ||
855 | page = alloc_gigantic_page(nid, huge_page_order(h)); | |
856 | if (page) { | |
857 | prep_compound_gigantic_page(page, huge_page_order(h)); | |
858 | prep_new_huge_page(h, page, nid); | |
859 | } | |
860 | ||
861 | return page; | |
862 | } | |
863 | ||
864 | static int alloc_fresh_gigantic_page(struct hstate *h, | |
865 | nodemask_t *nodes_allowed) | |
866 | { | |
867 | struct page *page = NULL; | |
868 | int nr_nodes, node; | |
869 | ||
870 | for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { | |
871 | page = alloc_fresh_gigantic_page_node(h, node); | |
872 | if (page) | |
873 | return 1; | |
874 | } | |
875 | ||
876 | return 0; | |
877 | } | |
878 | ||
879 | static inline bool gigantic_page_supported(void) { return true; } | |
880 | #else | |
881 | static inline bool gigantic_page_supported(void) { return false; } | |
882 | static inline void free_gigantic_page(struct page *page, unsigned order) { } | |
883 | static inline void destroy_compound_gigantic_page(struct page *page, | |
884 | unsigned long order) { } | |
885 | static inline int alloc_fresh_gigantic_page(struct hstate *h, | |
886 | nodemask_t *nodes_allowed) { return 0; } | |
887 | #endif | |
888 | ||
a5516438 | 889 | static void update_and_free_page(struct hstate *h, struct page *page) |
6af2acb6 AL |
890 | { |
891 | int i; | |
a5516438 | 892 | |
944d9fec LC |
893 | if (hstate_is_gigantic(h) && !gigantic_page_supported()) |
894 | return; | |
18229df5 | 895 | |
a5516438 AK |
896 | h->nr_huge_pages--; |
897 | h->nr_huge_pages_node[page_to_nid(page)]--; | |
898 | for (i = 0; i < pages_per_huge_page(h); i++) { | |
32f84528 CF |
899 | page[i].flags &= ~(1 << PG_locked | 1 << PG_error | |
900 | 1 << PG_referenced | 1 << PG_dirty | | |
a7407a27 LC |
901 | 1 << PG_active | 1 << PG_private | |
902 | 1 << PG_writeback); | |
6af2acb6 | 903 | } |
309381fe | 904 | VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page); |
6af2acb6 AL |
905 | set_compound_page_dtor(page, NULL); |
906 | set_page_refcounted(page); | |
944d9fec LC |
907 | if (hstate_is_gigantic(h)) { |
908 | destroy_compound_gigantic_page(page, huge_page_order(h)); | |
909 | free_gigantic_page(page, huge_page_order(h)); | |
910 | } else { | |
911 | arch_release_hugepage(page); | |
912 | __free_pages(page, huge_page_order(h)); | |
913 | } | |
6af2acb6 AL |
914 | } |
915 | ||
e5ff2159 AK |
916 | struct hstate *size_to_hstate(unsigned long size) |
917 | { | |
918 | struct hstate *h; | |
919 | ||
920 | for_each_hstate(h) { | |
921 | if (huge_page_size(h) == size) | |
922 | return h; | |
923 | } | |
924 | return NULL; | |
925 | } | |
926 | ||
bcc54222 NH |
927 | /* |
928 | * Test to determine whether the hugepage is "active/in-use" (i.e. being linked | |
929 | * to hstate->hugepage_activelist.) | |
930 | * | |
931 | * This function can be called for tail pages, but never returns true for them. | |
932 | */ | |
933 | bool page_huge_active(struct page *page) | |
934 | { | |
935 | VM_BUG_ON_PAGE(!PageHuge(page), page); | |
936 | return PageHead(page) && PagePrivate(&page[1]); | |
937 | } | |
938 | ||
939 | /* never called for tail page */ | |
940 | static void set_page_huge_active(struct page *page) | |
941 | { | |
942 | VM_BUG_ON_PAGE(!PageHeadHuge(page), page); | |
943 | SetPagePrivate(&page[1]); | |
944 | } | |
945 | ||
946 | static void clear_page_huge_active(struct page *page) | |
947 | { | |
948 | VM_BUG_ON_PAGE(!PageHeadHuge(page), page); | |
949 | ClearPagePrivate(&page[1]); | |
950 | } | |
951 | ||
8f1d26d0 | 952 | void free_huge_page(struct page *page) |
27a85ef1 | 953 | { |
a5516438 AK |
954 | /* |
955 | * Can't pass hstate in here because it is called from the | |
956 | * compound page destructor. | |
957 | */ | |
e5ff2159 | 958 | struct hstate *h = page_hstate(page); |
7893d1d5 | 959 | int nid = page_to_nid(page); |
90481622 DG |
960 | struct hugepage_subpool *spool = |
961 | (struct hugepage_subpool *)page_private(page); | |
07443a85 | 962 | bool restore_reserve; |
27a85ef1 | 963 | |
e5df70ab | 964 | set_page_private(page, 0); |
23be7468 | 965 | page->mapping = NULL; |
7893d1d5 | 966 | BUG_ON(page_count(page)); |
0fe6e20b | 967 | BUG_ON(page_mapcount(page)); |
07443a85 | 968 | restore_reserve = PagePrivate(page); |
16c794b4 | 969 | ClearPagePrivate(page); |
27a85ef1 | 970 | |
1c5ecae3 MK |
971 | /* |
972 | * A return code of zero implies that the subpool will be under its | |
973 | * minimum size if the reservation is not restored after page is free. | |
974 | * Therefore, force restore_reserve operation. | |
975 | */ | |
976 | if (hugepage_subpool_put_pages(spool, 1) == 0) | |
977 | restore_reserve = true; | |
978 | ||
27a85ef1 | 979 | spin_lock(&hugetlb_lock); |
bcc54222 | 980 | clear_page_huge_active(page); |
6d76dcf4 AK |
981 | hugetlb_cgroup_uncharge_page(hstate_index(h), |
982 | pages_per_huge_page(h), page); | |
07443a85 JK |
983 | if (restore_reserve) |
984 | h->resv_huge_pages++; | |
985 | ||
944d9fec | 986 | if (h->surplus_huge_pages_node[nid]) { |
0edaecfa AK |
987 | /* remove the page from active list */ |
988 | list_del(&page->lru); | |
a5516438 AK |
989 | update_and_free_page(h, page); |
990 | h->surplus_huge_pages--; | |
991 | h->surplus_huge_pages_node[nid]--; | |
7893d1d5 | 992 | } else { |
5d3a551c | 993 | arch_clear_hugepage_flags(page); |
a5516438 | 994 | enqueue_huge_page(h, page); |
7893d1d5 | 995 | } |
27a85ef1 DG |
996 | spin_unlock(&hugetlb_lock); |
997 | } | |
998 | ||
a5516438 | 999 | static void prep_new_huge_page(struct hstate *h, struct page *page, int nid) |
b7ba30c6 | 1000 | { |
0edaecfa | 1001 | INIT_LIST_HEAD(&page->lru); |
b7ba30c6 AK |
1002 | set_compound_page_dtor(page, free_huge_page); |
1003 | spin_lock(&hugetlb_lock); | |
9dd540e2 | 1004 | set_hugetlb_cgroup(page, NULL); |
a5516438 AK |
1005 | h->nr_huge_pages++; |
1006 | h->nr_huge_pages_node[nid]++; | |
b7ba30c6 AK |
1007 | spin_unlock(&hugetlb_lock); |
1008 | put_page(page); /* free it into the hugepage allocator */ | |
1009 | } | |
1010 | ||
2906dd52 | 1011 | static void prep_compound_gigantic_page(struct page *page, unsigned long order) |
20a0307c WF |
1012 | { |
1013 | int i; | |
1014 | int nr_pages = 1 << order; | |
1015 | struct page *p = page + 1; | |
1016 | ||
1017 | /* we rely on prep_new_huge_page to set the destructor */ | |
1018 | set_compound_order(page, order); | |
1019 | __SetPageHead(page); | |
ef5a22be | 1020 | __ClearPageReserved(page); |
20a0307c | 1021 | for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) { |
ef5a22be AA |
1022 | /* |
1023 | * For gigantic hugepages allocated through bootmem at | |
1024 | * boot, it's safer to be consistent with the not-gigantic | |
1025 | * hugepages and clear the PG_reserved bit from all tail pages | |
1026 | * too. Otherwse drivers using get_user_pages() to access tail | |
1027 | * pages may get the reference counting wrong if they see | |
1028 | * PG_reserved set on a tail page (despite the head page not | |
1029 | * having PG_reserved set). Enforcing this consistency between | |
1030 | * head and tail pages allows drivers to optimize away a check | |
1031 | * on the head page when they need know if put_page() is needed | |
1032 | * after get_user_pages(). | |
1033 | */ | |
1034 | __ClearPageReserved(p); | |
58a84aa9 | 1035 | set_page_count(p, 0); |
20a0307c | 1036 | p->first_page = page; |
44fc8057 DR |
1037 | /* Make sure p->first_page is always valid for PageTail() */ |
1038 | smp_wmb(); | |
1039 | __SetPageTail(p); | |
20a0307c WF |
1040 | } |
1041 | } | |
1042 | ||
7795912c AM |
1043 | /* |
1044 | * PageHuge() only returns true for hugetlbfs pages, but not for normal or | |
1045 | * transparent huge pages. See the PageTransHuge() documentation for more | |
1046 | * details. | |
1047 | */ | |
20a0307c WF |
1048 | int PageHuge(struct page *page) |
1049 | { | |
20a0307c WF |
1050 | if (!PageCompound(page)) |
1051 | return 0; | |
1052 | ||
1053 | page = compound_head(page); | |
758f66a2 | 1054 | return get_compound_page_dtor(page) == free_huge_page; |
20a0307c | 1055 | } |
43131e14 NH |
1056 | EXPORT_SYMBOL_GPL(PageHuge); |
1057 | ||
27c73ae7 AA |
1058 | /* |
1059 | * PageHeadHuge() only returns true for hugetlbfs head page, but not for | |
1060 | * normal or transparent huge pages. | |
1061 | */ | |
1062 | int PageHeadHuge(struct page *page_head) | |
1063 | { | |
27c73ae7 AA |
1064 | if (!PageHead(page_head)) |
1065 | return 0; | |
1066 | ||
758f66a2 | 1067 | return get_compound_page_dtor(page_head) == free_huge_page; |
27c73ae7 | 1068 | } |
27c73ae7 | 1069 | |
13d60f4b ZY |
1070 | pgoff_t __basepage_index(struct page *page) |
1071 | { | |
1072 | struct page *page_head = compound_head(page); | |
1073 | pgoff_t index = page_index(page_head); | |
1074 | unsigned long compound_idx; | |
1075 | ||
1076 | if (!PageHuge(page_head)) | |
1077 | return page_index(page); | |
1078 | ||
1079 | if (compound_order(page_head) >= MAX_ORDER) | |
1080 | compound_idx = page_to_pfn(page) - page_to_pfn(page_head); | |
1081 | else | |
1082 | compound_idx = page - page_head; | |
1083 | ||
1084 | return (index << compound_order(page_head)) + compound_idx; | |
1085 | } | |
1086 | ||
a5516438 | 1087 | static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid) |
1da177e4 | 1088 | { |
1da177e4 | 1089 | struct page *page; |
f96efd58 | 1090 | |
6484eb3e | 1091 | page = alloc_pages_exact_node(nid, |
86cdb465 | 1092 | htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE| |
551883ae | 1093 | __GFP_REPEAT|__GFP_NOWARN, |
a5516438 | 1094 | huge_page_order(h)); |
1da177e4 | 1095 | if (page) { |
7f2e9525 | 1096 | if (arch_prepare_hugepage(page)) { |
caff3a2c | 1097 | __free_pages(page, huge_page_order(h)); |
7b8ee84d | 1098 | return NULL; |
7f2e9525 | 1099 | } |
a5516438 | 1100 | prep_new_huge_page(h, page, nid); |
1da177e4 | 1101 | } |
63b4613c NA |
1102 | |
1103 | return page; | |
1104 | } | |
1105 | ||
b2261026 JK |
1106 | static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed) |
1107 | { | |
1108 | struct page *page; | |
1109 | int nr_nodes, node; | |
1110 | int ret = 0; | |
1111 | ||
1112 | for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { | |
1113 | page = alloc_fresh_huge_page_node(h, node); | |
1114 | if (page) { | |
1115 | ret = 1; | |
1116 | break; | |
1117 | } | |
1118 | } | |
1119 | ||
1120 | if (ret) | |
1121 | count_vm_event(HTLB_BUDDY_PGALLOC); | |
1122 | else | |
1123 | count_vm_event(HTLB_BUDDY_PGALLOC_FAIL); | |
1124 | ||
1125 | return ret; | |
1126 | } | |
1127 | ||
e8c5c824 LS |
1128 | /* |
1129 | * Free huge page from pool from next node to free. | |
1130 | * Attempt to keep persistent huge pages more or less | |
1131 | * balanced over allowed nodes. | |
1132 | * Called with hugetlb_lock locked. | |
1133 | */ | |
6ae11b27 LS |
1134 | static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed, |
1135 | bool acct_surplus) | |
e8c5c824 | 1136 | { |
b2261026 | 1137 | int nr_nodes, node; |
e8c5c824 LS |
1138 | int ret = 0; |
1139 | ||
b2261026 | 1140 | for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { |
685f3457 LS |
1141 | /* |
1142 | * If we're returning unused surplus pages, only examine | |
1143 | * nodes with surplus pages. | |
1144 | */ | |
b2261026 JK |
1145 | if ((!acct_surplus || h->surplus_huge_pages_node[node]) && |
1146 | !list_empty(&h->hugepage_freelists[node])) { | |
e8c5c824 | 1147 | struct page *page = |
b2261026 | 1148 | list_entry(h->hugepage_freelists[node].next, |
e8c5c824 LS |
1149 | struct page, lru); |
1150 | list_del(&page->lru); | |
1151 | h->free_huge_pages--; | |
b2261026 | 1152 | h->free_huge_pages_node[node]--; |
685f3457 LS |
1153 | if (acct_surplus) { |
1154 | h->surplus_huge_pages--; | |
b2261026 | 1155 | h->surplus_huge_pages_node[node]--; |
685f3457 | 1156 | } |
e8c5c824 LS |
1157 | update_and_free_page(h, page); |
1158 | ret = 1; | |
9a76db09 | 1159 | break; |
e8c5c824 | 1160 | } |
b2261026 | 1161 | } |
e8c5c824 LS |
1162 | |
1163 | return ret; | |
1164 | } | |
1165 | ||
c8721bbb NH |
1166 | /* |
1167 | * Dissolve a given free hugepage into free buddy pages. This function does | |
1168 | * nothing for in-use (including surplus) hugepages. | |
1169 | */ | |
1170 | static void dissolve_free_huge_page(struct page *page) | |
1171 | { | |
1172 | spin_lock(&hugetlb_lock); | |
1173 | if (PageHuge(page) && !page_count(page)) { | |
1174 | struct hstate *h = page_hstate(page); | |
1175 | int nid = page_to_nid(page); | |
1176 | list_del(&page->lru); | |
1177 | h->free_huge_pages--; | |
1178 | h->free_huge_pages_node[nid]--; | |
1179 | update_and_free_page(h, page); | |
1180 | } | |
1181 | spin_unlock(&hugetlb_lock); | |
1182 | } | |
1183 | ||
1184 | /* | |
1185 | * Dissolve free hugepages in a given pfn range. Used by memory hotplug to | |
1186 | * make specified memory blocks removable from the system. | |
1187 | * Note that start_pfn should aligned with (minimum) hugepage size. | |
1188 | */ | |
1189 | void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn) | |
1190 | { | |
1191 | unsigned int order = 8 * sizeof(void *); | |
1192 | unsigned long pfn; | |
1193 | struct hstate *h; | |
1194 | ||
d0177639 LZ |
1195 | if (!hugepages_supported()) |
1196 | return; | |
1197 | ||
c8721bbb NH |
1198 | /* Set scan step to minimum hugepage size */ |
1199 | for_each_hstate(h) | |
1200 | if (order > huge_page_order(h)) | |
1201 | order = huge_page_order(h); | |
1202 | VM_BUG_ON(!IS_ALIGNED(start_pfn, 1 << order)); | |
1203 | for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) | |
1204 | dissolve_free_huge_page(pfn_to_page(pfn)); | |
1205 | } | |
1206 | ||
bf50bab2 | 1207 | static struct page *alloc_buddy_huge_page(struct hstate *h, int nid) |
7893d1d5 AL |
1208 | { |
1209 | struct page *page; | |
bf50bab2 | 1210 | unsigned int r_nid; |
7893d1d5 | 1211 | |
bae7f4ae | 1212 | if (hstate_is_gigantic(h)) |
aa888a74 AK |
1213 | return NULL; |
1214 | ||
d1c3fb1f NA |
1215 | /* |
1216 | * Assume we will successfully allocate the surplus page to | |
1217 | * prevent racing processes from causing the surplus to exceed | |
1218 | * overcommit | |
1219 | * | |
1220 | * This however introduces a different race, where a process B | |
1221 | * tries to grow the static hugepage pool while alloc_pages() is | |
1222 | * called by process A. B will only examine the per-node | |
1223 | * counters in determining if surplus huge pages can be | |
1224 | * converted to normal huge pages in adjust_pool_surplus(). A | |
1225 | * won't be able to increment the per-node counter, until the | |
1226 | * lock is dropped by B, but B doesn't drop hugetlb_lock until | |
1227 | * no more huge pages can be converted from surplus to normal | |
1228 | * state (and doesn't try to convert again). Thus, we have a | |
1229 | * case where a surplus huge page exists, the pool is grown, and | |
1230 | * the surplus huge page still exists after, even though it | |
1231 | * should just have been converted to a normal huge page. This | |
1232 | * does not leak memory, though, as the hugepage will be freed | |
1233 | * once it is out of use. It also does not allow the counters to | |
1234 | * go out of whack in adjust_pool_surplus() as we don't modify | |
1235 | * the node values until we've gotten the hugepage and only the | |
1236 | * per-node value is checked there. | |
1237 | */ | |
1238 | spin_lock(&hugetlb_lock); | |
a5516438 | 1239 | if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) { |
d1c3fb1f NA |
1240 | spin_unlock(&hugetlb_lock); |
1241 | return NULL; | |
1242 | } else { | |
a5516438 AK |
1243 | h->nr_huge_pages++; |
1244 | h->surplus_huge_pages++; | |
d1c3fb1f NA |
1245 | } |
1246 | spin_unlock(&hugetlb_lock); | |
1247 | ||
bf50bab2 | 1248 | if (nid == NUMA_NO_NODE) |
86cdb465 | 1249 | page = alloc_pages(htlb_alloc_mask(h)|__GFP_COMP| |
bf50bab2 NH |
1250 | __GFP_REPEAT|__GFP_NOWARN, |
1251 | huge_page_order(h)); | |
1252 | else | |
1253 | page = alloc_pages_exact_node(nid, | |
86cdb465 | 1254 | htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE| |
bf50bab2 | 1255 | __GFP_REPEAT|__GFP_NOWARN, huge_page_order(h)); |
d1c3fb1f | 1256 | |
caff3a2c GS |
1257 | if (page && arch_prepare_hugepage(page)) { |
1258 | __free_pages(page, huge_page_order(h)); | |
ea5768c7 | 1259 | page = NULL; |
caff3a2c GS |
1260 | } |
1261 | ||
d1c3fb1f | 1262 | spin_lock(&hugetlb_lock); |
7893d1d5 | 1263 | if (page) { |
0edaecfa | 1264 | INIT_LIST_HEAD(&page->lru); |
bf50bab2 | 1265 | r_nid = page_to_nid(page); |
7893d1d5 | 1266 | set_compound_page_dtor(page, free_huge_page); |
9dd540e2 | 1267 | set_hugetlb_cgroup(page, NULL); |
d1c3fb1f NA |
1268 | /* |
1269 | * We incremented the global counters already | |
1270 | */ | |
bf50bab2 NH |
1271 | h->nr_huge_pages_node[r_nid]++; |
1272 | h->surplus_huge_pages_node[r_nid]++; | |
3b116300 | 1273 | __count_vm_event(HTLB_BUDDY_PGALLOC); |
d1c3fb1f | 1274 | } else { |
a5516438 AK |
1275 | h->nr_huge_pages--; |
1276 | h->surplus_huge_pages--; | |
3b116300 | 1277 | __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL); |
7893d1d5 | 1278 | } |
d1c3fb1f | 1279 | spin_unlock(&hugetlb_lock); |
7893d1d5 AL |
1280 | |
1281 | return page; | |
1282 | } | |
1283 | ||
bf50bab2 NH |
1284 | /* |
1285 | * This allocation function is useful in the context where vma is irrelevant. | |
1286 | * E.g. soft-offlining uses this function because it only cares physical | |
1287 | * address of error page. | |
1288 | */ | |
1289 | struct page *alloc_huge_page_node(struct hstate *h, int nid) | |
1290 | { | |
4ef91848 | 1291 | struct page *page = NULL; |
bf50bab2 NH |
1292 | |
1293 | spin_lock(&hugetlb_lock); | |
4ef91848 JK |
1294 | if (h->free_huge_pages - h->resv_huge_pages > 0) |
1295 | page = dequeue_huge_page_node(h, nid); | |
bf50bab2 NH |
1296 | spin_unlock(&hugetlb_lock); |
1297 | ||
94ae8ba7 | 1298 | if (!page) |
bf50bab2 NH |
1299 | page = alloc_buddy_huge_page(h, nid); |
1300 | ||
1301 | return page; | |
1302 | } | |
1303 | ||
e4e574b7 | 1304 | /* |
25985edc | 1305 | * Increase the hugetlb pool such that it can accommodate a reservation |
e4e574b7 AL |
1306 | * of size 'delta'. |
1307 | */ | |
a5516438 | 1308 | static int gather_surplus_pages(struct hstate *h, int delta) |
e4e574b7 AL |
1309 | { |
1310 | struct list_head surplus_list; | |
1311 | struct page *page, *tmp; | |
1312 | int ret, i; | |
1313 | int needed, allocated; | |
28073b02 | 1314 | bool alloc_ok = true; |
e4e574b7 | 1315 | |
a5516438 | 1316 | needed = (h->resv_huge_pages + delta) - h->free_huge_pages; |
ac09b3a1 | 1317 | if (needed <= 0) { |
a5516438 | 1318 | h->resv_huge_pages += delta; |
e4e574b7 | 1319 | return 0; |
ac09b3a1 | 1320 | } |
e4e574b7 AL |
1321 | |
1322 | allocated = 0; | |
1323 | INIT_LIST_HEAD(&surplus_list); | |
1324 | ||
1325 | ret = -ENOMEM; | |
1326 | retry: | |
1327 | spin_unlock(&hugetlb_lock); | |
1328 | for (i = 0; i < needed; i++) { | |
bf50bab2 | 1329 | page = alloc_buddy_huge_page(h, NUMA_NO_NODE); |
28073b02 HD |
1330 | if (!page) { |
1331 | alloc_ok = false; | |
1332 | break; | |
1333 | } | |
e4e574b7 AL |
1334 | list_add(&page->lru, &surplus_list); |
1335 | } | |
28073b02 | 1336 | allocated += i; |
e4e574b7 AL |
1337 | |
1338 | /* | |
1339 | * After retaking hugetlb_lock, we need to recalculate 'needed' | |
1340 | * because either resv_huge_pages or free_huge_pages may have changed. | |
1341 | */ | |
1342 | spin_lock(&hugetlb_lock); | |
a5516438 AK |
1343 | needed = (h->resv_huge_pages + delta) - |
1344 | (h->free_huge_pages + allocated); | |
28073b02 HD |
1345 | if (needed > 0) { |
1346 | if (alloc_ok) | |
1347 | goto retry; | |
1348 | /* | |
1349 | * We were not able to allocate enough pages to | |
1350 | * satisfy the entire reservation so we free what | |
1351 | * we've allocated so far. | |
1352 | */ | |
1353 | goto free; | |
1354 | } | |
e4e574b7 AL |
1355 | /* |
1356 | * The surplus_list now contains _at_least_ the number of extra pages | |
25985edc | 1357 | * needed to accommodate the reservation. Add the appropriate number |
e4e574b7 | 1358 | * of pages to the hugetlb pool and free the extras back to the buddy |
ac09b3a1 AL |
1359 | * allocator. Commit the entire reservation here to prevent another |
1360 | * process from stealing the pages as they are added to the pool but | |
1361 | * before they are reserved. | |
e4e574b7 AL |
1362 | */ |
1363 | needed += allocated; | |
a5516438 | 1364 | h->resv_huge_pages += delta; |
e4e574b7 | 1365 | ret = 0; |
a9869b83 | 1366 | |
19fc3f0a | 1367 | /* Free the needed pages to the hugetlb pool */ |
e4e574b7 | 1368 | list_for_each_entry_safe(page, tmp, &surplus_list, lru) { |
19fc3f0a AL |
1369 | if ((--needed) < 0) |
1370 | break; | |
a9869b83 NH |
1371 | /* |
1372 | * This page is now managed by the hugetlb allocator and has | |
1373 | * no users -- drop the buddy allocator's reference. | |
1374 | */ | |
1375 | put_page_testzero(page); | |
309381fe | 1376 | VM_BUG_ON_PAGE(page_count(page), page); |
a5516438 | 1377 | enqueue_huge_page(h, page); |
19fc3f0a | 1378 | } |
28073b02 | 1379 | free: |
b0365c8d | 1380 | spin_unlock(&hugetlb_lock); |
19fc3f0a AL |
1381 | |
1382 | /* Free unnecessary surplus pages to the buddy allocator */ | |
c0d934ba JK |
1383 | list_for_each_entry_safe(page, tmp, &surplus_list, lru) |
1384 | put_page(page); | |
a9869b83 | 1385 | spin_lock(&hugetlb_lock); |
e4e574b7 AL |
1386 | |
1387 | return ret; | |
1388 | } | |
1389 | ||
1390 | /* | |
1391 | * When releasing a hugetlb pool reservation, any surplus pages that were | |
1392 | * allocated to satisfy the reservation must be explicitly freed if they were | |
1393 | * never used. | |
685f3457 | 1394 | * Called with hugetlb_lock held. |
e4e574b7 | 1395 | */ |
a5516438 AK |
1396 | static void return_unused_surplus_pages(struct hstate *h, |
1397 | unsigned long unused_resv_pages) | |
e4e574b7 | 1398 | { |
e4e574b7 AL |
1399 | unsigned long nr_pages; |
1400 | ||
ac09b3a1 | 1401 | /* Uncommit the reservation */ |
a5516438 | 1402 | h->resv_huge_pages -= unused_resv_pages; |
ac09b3a1 | 1403 | |
aa888a74 | 1404 | /* Cannot return gigantic pages currently */ |
bae7f4ae | 1405 | if (hstate_is_gigantic(h)) |
aa888a74 AK |
1406 | return; |
1407 | ||
a5516438 | 1408 | nr_pages = min(unused_resv_pages, h->surplus_huge_pages); |
e4e574b7 | 1409 | |
685f3457 LS |
1410 | /* |
1411 | * We want to release as many surplus pages as possible, spread | |
9b5e5d0f LS |
1412 | * evenly across all nodes with memory. Iterate across these nodes |
1413 | * until we can no longer free unreserved surplus pages. This occurs | |
1414 | * when the nodes with surplus pages have no free pages. | |
1415 | * free_pool_huge_page() will balance the the freed pages across the | |
1416 | * on-line nodes with memory and will handle the hstate accounting. | |
685f3457 LS |
1417 | */ |
1418 | while (nr_pages--) { | |
8cebfcd0 | 1419 | if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1)) |
685f3457 | 1420 | break; |
7848a4bf | 1421 | cond_resched_lock(&hugetlb_lock); |
e4e574b7 AL |
1422 | } |
1423 | } | |
1424 | ||
c37f9fb1 AW |
1425 | /* |
1426 | * Determine if the huge page at addr within the vma has an associated | |
1427 | * reservation. Where it does not we will need to logically increase | |
90481622 DG |
1428 | * reservation and actually increase subpool usage before an allocation |
1429 | * can occur. Where any new reservation would be required the | |
1430 | * reservation change is prepared, but not committed. Once the page | |
1431 | * has been allocated from the subpool and instantiated the change should | |
1432 | * be committed via vma_commit_reservation. No action is required on | |
1433 | * failure. | |
c37f9fb1 | 1434 | */ |
e2f17d94 | 1435 | static long vma_needs_reservation(struct hstate *h, |
a5516438 | 1436 | struct vm_area_struct *vma, unsigned long addr) |
c37f9fb1 | 1437 | { |
4e35f483 JK |
1438 | struct resv_map *resv; |
1439 | pgoff_t idx; | |
1440 | long chg; | |
c37f9fb1 | 1441 | |
4e35f483 JK |
1442 | resv = vma_resv_map(vma); |
1443 | if (!resv) | |
84afd99b | 1444 | return 1; |
c37f9fb1 | 1445 | |
4e35f483 JK |
1446 | idx = vma_hugecache_offset(h, vma, addr); |
1447 | chg = region_chg(resv, idx, idx + 1); | |
84afd99b | 1448 | |
4e35f483 JK |
1449 | if (vma->vm_flags & VM_MAYSHARE) |
1450 | return chg; | |
1451 | else | |
1452 | return chg < 0 ? chg : 0; | |
c37f9fb1 | 1453 | } |
a5516438 AK |
1454 | static void vma_commit_reservation(struct hstate *h, |
1455 | struct vm_area_struct *vma, unsigned long addr) | |
c37f9fb1 | 1456 | { |
4e35f483 JK |
1457 | struct resv_map *resv; |
1458 | pgoff_t idx; | |
84afd99b | 1459 | |
4e35f483 JK |
1460 | resv = vma_resv_map(vma); |
1461 | if (!resv) | |
1462 | return; | |
84afd99b | 1463 | |
4e35f483 JK |
1464 | idx = vma_hugecache_offset(h, vma, addr); |
1465 | region_add(resv, idx, idx + 1); | |
c37f9fb1 AW |
1466 | } |
1467 | ||
a1e78772 | 1468 | static struct page *alloc_huge_page(struct vm_area_struct *vma, |
04f2cbe3 | 1469 | unsigned long addr, int avoid_reserve) |
1da177e4 | 1470 | { |
90481622 | 1471 | struct hugepage_subpool *spool = subpool_vma(vma); |
a5516438 | 1472 | struct hstate *h = hstate_vma(vma); |
348ea204 | 1473 | struct page *page; |
e2f17d94 | 1474 | long chg; |
6d76dcf4 AK |
1475 | int ret, idx; |
1476 | struct hugetlb_cgroup *h_cg; | |
a1e78772 | 1477 | |
6d76dcf4 | 1478 | idx = hstate_index(h); |
a1e78772 | 1479 | /* |
90481622 DG |
1480 | * Processes that did not create the mapping will have no |
1481 | * reserves and will not have accounted against subpool | |
1482 | * limit. Check that the subpool limit can be made before | |
1483 | * satisfying the allocation MAP_NORESERVE mappings may also | |
1484 | * need pages and subpool limit allocated allocated if no reserve | |
1485 | * mapping overlaps. | |
a1e78772 | 1486 | */ |
a5516438 | 1487 | chg = vma_needs_reservation(h, vma, addr); |
c37f9fb1 | 1488 | if (chg < 0) |
76dcee75 | 1489 | return ERR_PTR(-ENOMEM); |
8bb3f12e | 1490 | if (chg || avoid_reserve) |
1c5ecae3 | 1491 | if (hugepage_subpool_get_pages(spool, 1) < 0) |
76dcee75 | 1492 | return ERR_PTR(-ENOSPC); |
1da177e4 | 1493 | |
6d76dcf4 | 1494 | ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg); |
8f34af6f JZ |
1495 | if (ret) |
1496 | goto out_subpool_put; | |
1497 | ||
1da177e4 | 1498 | spin_lock(&hugetlb_lock); |
af0ed73e | 1499 | page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, chg); |
81a6fcae | 1500 | if (!page) { |
94ae8ba7 | 1501 | spin_unlock(&hugetlb_lock); |
bf50bab2 | 1502 | page = alloc_buddy_huge_page(h, NUMA_NO_NODE); |
8f34af6f JZ |
1503 | if (!page) |
1504 | goto out_uncharge_cgroup; | |
1505 | ||
79dbb236 AK |
1506 | spin_lock(&hugetlb_lock); |
1507 | list_move(&page->lru, &h->hugepage_activelist); | |
81a6fcae | 1508 | /* Fall through */ |
68842c9b | 1509 | } |
81a6fcae JK |
1510 | hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page); |
1511 | spin_unlock(&hugetlb_lock); | |
348ea204 | 1512 | |
90481622 | 1513 | set_page_private(page, (unsigned long)spool); |
90d8b7e6 | 1514 | |
a5516438 | 1515 | vma_commit_reservation(h, vma, addr); |
90d8b7e6 | 1516 | return page; |
8f34af6f JZ |
1517 | |
1518 | out_uncharge_cgroup: | |
1519 | hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg); | |
1520 | out_subpool_put: | |
1521 | if (chg || avoid_reserve) | |
1522 | hugepage_subpool_put_pages(spool, 1); | |
1523 | return ERR_PTR(-ENOSPC); | |
b45b5bd6 DG |
1524 | } |
1525 | ||
74060e4d NH |
1526 | /* |
1527 | * alloc_huge_page()'s wrapper which simply returns the page if allocation | |
1528 | * succeeds, otherwise NULL. This function is called from new_vma_page(), | |
1529 | * where no ERR_VALUE is expected to be returned. | |
1530 | */ | |
1531 | struct page *alloc_huge_page_noerr(struct vm_area_struct *vma, | |
1532 | unsigned long addr, int avoid_reserve) | |
1533 | { | |
1534 | struct page *page = alloc_huge_page(vma, addr, avoid_reserve); | |
1535 | if (IS_ERR(page)) | |
1536 | page = NULL; | |
1537 | return page; | |
1538 | } | |
1539 | ||
91f47662 | 1540 | int __weak alloc_bootmem_huge_page(struct hstate *h) |
aa888a74 AK |
1541 | { |
1542 | struct huge_bootmem_page *m; | |
b2261026 | 1543 | int nr_nodes, node; |
aa888a74 | 1544 | |
b2261026 | 1545 | for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) { |
aa888a74 AK |
1546 | void *addr; |
1547 | ||
8b89a116 GS |
1548 | addr = memblock_virt_alloc_try_nid_nopanic( |
1549 | huge_page_size(h), huge_page_size(h), | |
1550 | 0, BOOTMEM_ALLOC_ACCESSIBLE, node); | |
aa888a74 AK |
1551 | if (addr) { |
1552 | /* | |
1553 | * Use the beginning of the huge page to store the | |
1554 | * huge_bootmem_page struct (until gather_bootmem | |
1555 | * puts them into the mem_map). | |
1556 | */ | |
1557 | m = addr; | |
91f47662 | 1558 | goto found; |
aa888a74 | 1559 | } |
aa888a74 AK |
1560 | } |
1561 | return 0; | |
1562 | ||
1563 | found: | |
df994ead | 1564 | BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h))); |
aa888a74 AK |
1565 | /* Put them into a private list first because mem_map is not up yet */ |
1566 | list_add(&m->list, &huge_boot_pages); | |
1567 | m->hstate = h; | |
1568 | return 1; | |
1569 | } | |
1570 | ||
f412c97a | 1571 | static void __init prep_compound_huge_page(struct page *page, int order) |
18229df5 AW |
1572 | { |
1573 | if (unlikely(order > (MAX_ORDER - 1))) | |
1574 | prep_compound_gigantic_page(page, order); | |
1575 | else | |
1576 | prep_compound_page(page, order); | |
1577 | } | |
1578 | ||
aa888a74 AK |
1579 | /* Put bootmem huge pages into the standard lists after mem_map is up */ |
1580 | static void __init gather_bootmem_prealloc(void) | |
1581 | { | |
1582 | struct huge_bootmem_page *m; | |
1583 | ||
1584 | list_for_each_entry(m, &huge_boot_pages, list) { | |
aa888a74 | 1585 | struct hstate *h = m->hstate; |
ee8f248d BB |
1586 | struct page *page; |
1587 | ||
1588 | #ifdef CONFIG_HIGHMEM | |
1589 | page = pfn_to_page(m->phys >> PAGE_SHIFT); | |
8b89a116 GS |
1590 | memblock_free_late(__pa(m), |
1591 | sizeof(struct huge_bootmem_page)); | |
ee8f248d BB |
1592 | #else |
1593 | page = virt_to_page(m); | |
1594 | #endif | |
aa888a74 | 1595 | WARN_ON(page_count(page) != 1); |
18229df5 | 1596 | prep_compound_huge_page(page, h->order); |
ef5a22be | 1597 | WARN_ON(PageReserved(page)); |
aa888a74 | 1598 | prep_new_huge_page(h, page, page_to_nid(page)); |
b0320c7b RA |
1599 | /* |
1600 | * If we had gigantic hugepages allocated at boot time, we need | |
1601 | * to restore the 'stolen' pages to totalram_pages in order to | |
1602 | * fix confusing memory reports from free(1) and another | |
1603 | * side-effects, like CommitLimit going negative. | |
1604 | */ | |
bae7f4ae | 1605 | if (hstate_is_gigantic(h)) |
3dcc0571 | 1606 | adjust_managed_page_count(page, 1 << h->order); |
aa888a74 AK |
1607 | } |
1608 | } | |
1609 | ||
8faa8b07 | 1610 | static void __init hugetlb_hstate_alloc_pages(struct hstate *h) |
1da177e4 LT |
1611 | { |
1612 | unsigned long i; | |
a5516438 | 1613 | |
e5ff2159 | 1614 | for (i = 0; i < h->max_huge_pages; ++i) { |
bae7f4ae | 1615 | if (hstate_is_gigantic(h)) { |
aa888a74 AK |
1616 | if (!alloc_bootmem_huge_page(h)) |
1617 | break; | |
9b5e5d0f | 1618 | } else if (!alloc_fresh_huge_page(h, |
8cebfcd0 | 1619 | &node_states[N_MEMORY])) |
1da177e4 | 1620 | break; |
1da177e4 | 1621 | } |
8faa8b07 | 1622 | h->max_huge_pages = i; |
e5ff2159 AK |
1623 | } |
1624 | ||
1625 | static void __init hugetlb_init_hstates(void) | |
1626 | { | |
1627 | struct hstate *h; | |
1628 | ||
1629 | for_each_hstate(h) { | |
8faa8b07 | 1630 | /* oversize hugepages were init'ed in early boot */ |
bae7f4ae | 1631 | if (!hstate_is_gigantic(h)) |
8faa8b07 | 1632 | hugetlb_hstate_alloc_pages(h); |
e5ff2159 AK |
1633 | } |
1634 | } | |
1635 | ||
4abd32db AK |
1636 | static char * __init memfmt(char *buf, unsigned long n) |
1637 | { | |
1638 | if (n >= (1UL << 30)) | |
1639 | sprintf(buf, "%lu GB", n >> 30); | |
1640 | else if (n >= (1UL << 20)) | |
1641 | sprintf(buf, "%lu MB", n >> 20); | |
1642 | else | |
1643 | sprintf(buf, "%lu KB", n >> 10); | |
1644 | return buf; | |
1645 | } | |
1646 | ||
e5ff2159 AK |
1647 | static void __init report_hugepages(void) |
1648 | { | |
1649 | struct hstate *h; | |
1650 | ||
1651 | for_each_hstate(h) { | |
4abd32db | 1652 | char buf[32]; |
ffb22af5 | 1653 | pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n", |
4abd32db AK |
1654 | memfmt(buf, huge_page_size(h)), |
1655 | h->free_huge_pages); | |
e5ff2159 AK |
1656 | } |
1657 | } | |
1658 | ||
1da177e4 | 1659 | #ifdef CONFIG_HIGHMEM |
6ae11b27 LS |
1660 | static void try_to_free_low(struct hstate *h, unsigned long count, |
1661 | nodemask_t *nodes_allowed) | |
1da177e4 | 1662 | { |
4415cc8d CL |
1663 | int i; |
1664 | ||
bae7f4ae | 1665 | if (hstate_is_gigantic(h)) |
aa888a74 AK |
1666 | return; |
1667 | ||
6ae11b27 | 1668 | for_each_node_mask(i, *nodes_allowed) { |
1da177e4 | 1669 | struct page *page, *next; |
a5516438 AK |
1670 | struct list_head *freel = &h->hugepage_freelists[i]; |
1671 | list_for_each_entry_safe(page, next, freel, lru) { | |
1672 | if (count >= h->nr_huge_pages) | |
6b0c880d | 1673 | return; |
1da177e4 LT |
1674 | if (PageHighMem(page)) |
1675 | continue; | |
1676 | list_del(&page->lru); | |
e5ff2159 | 1677 | update_and_free_page(h, page); |
a5516438 AK |
1678 | h->free_huge_pages--; |
1679 | h->free_huge_pages_node[page_to_nid(page)]--; | |
1da177e4 LT |
1680 | } |
1681 | } | |
1682 | } | |
1683 | #else | |
6ae11b27 LS |
1684 | static inline void try_to_free_low(struct hstate *h, unsigned long count, |
1685 | nodemask_t *nodes_allowed) | |
1da177e4 LT |
1686 | { |
1687 | } | |
1688 | #endif | |
1689 | ||
20a0307c WF |
1690 | /* |
1691 | * Increment or decrement surplus_huge_pages. Keep node-specific counters | |
1692 | * balanced by operating on them in a round-robin fashion. | |
1693 | * Returns 1 if an adjustment was made. | |
1694 | */ | |
6ae11b27 LS |
1695 | static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed, |
1696 | int delta) | |
20a0307c | 1697 | { |
b2261026 | 1698 | int nr_nodes, node; |
20a0307c WF |
1699 | |
1700 | VM_BUG_ON(delta != -1 && delta != 1); | |
20a0307c | 1701 | |
b2261026 JK |
1702 | if (delta < 0) { |
1703 | for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { | |
1704 | if (h->surplus_huge_pages_node[node]) | |
1705 | goto found; | |
e8c5c824 | 1706 | } |
b2261026 JK |
1707 | } else { |
1708 | for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { | |
1709 | if (h->surplus_huge_pages_node[node] < | |
1710 | h->nr_huge_pages_node[node]) | |
1711 | goto found; | |
e8c5c824 | 1712 | } |
b2261026 JK |
1713 | } |
1714 | return 0; | |
20a0307c | 1715 | |
b2261026 JK |
1716 | found: |
1717 | h->surplus_huge_pages += delta; | |
1718 | h->surplus_huge_pages_node[node] += delta; | |
1719 | return 1; | |
20a0307c WF |
1720 | } |
1721 | ||
a5516438 | 1722 | #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages) |
6ae11b27 LS |
1723 | static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count, |
1724 | nodemask_t *nodes_allowed) | |
1da177e4 | 1725 | { |
7893d1d5 | 1726 | unsigned long min_count, ret; |
1da177e4 | 1727 | |
944d9fec | 1728 | if (hstate_is_gigantic(h) && !gigantic_page_supported()) |
aa888a74 AK |
1729 | return h->max_huge_pages; |
1730 | ||
7893d1d5 AL |
1731 | /* |
1732 | * Increase the pool size | |
1733 | * First take pages out of surplus state. Then make up the | |
1734 | * remaining difference by allocating fresh huge pages. | |
d1c3fb1f NA |
1735 | * |
1736 | * We might race with alloc_buddy_huge_page() here and be unable | |
1737 | * to convert a surplus huge page to a normal huge page. That is | |
1738 | * not critical, though, it just means the overall size of the | |
1739 | * pool might be one hugepage larger than it needs to be, but | |
1740 | * within all the constraints specified by the sysctls. | |
7893d1d5 | 1741 | */ |
1da177e4 | 1742 | spin_lock(&hugetlb_lock); |
a5516438 | 1743 | while (h->surplus_huge_pages && count > persistent_huge_pages(h)) { |
6ae11b27 | 1744 | if (!adjust_pool_surplus(h, nodes_allowed, -1)) |
7893d1d5 AL |
1745 | break; |
1746 | } | |
1747 | ||
a5516438 | 1748 | while (count > persistent_huge_pages(h)) { |
7893d1d5 AL |
1749 | /* |
1750 | * If this allocation races such that we no longer need the | |
1751 | * page, free_huge_page will handle it by freeing the page | |
1752 | * and reducing the surplus. | |
1753 | */ | |
1754 | spin_unlock(&hugetlb_lock); | |
944d9fec LC |
1755 | if (hstate_is_gigantic(h)) |
1756 | ret = alloc_fresh_gigantic_page(h, nodes_allowed); | |
1757 | else | |
1758 | ret = alloc_fresh_huge_page(h, nodes_allowed); | |
7893d1d5 AL |
1759 | spin_lock(&hugetlb_lock); |
1760 | if (!ret) | |
1761 | goto out; | |
1762 | ||
536240f2 MG |
1763 | /* Bail for signals. Probably ctrl-c from user */ |
1764 | if (signal_pending(current)) | |
1765 | goto out; | |
7893d1d5 | 1766 | } |
7893d1d5 AL |
1767 | |
1768 | /* | |
1769 | * Decrease the pool size | |
1770 | * First return free pages to the buddy allocator (being careful | |
1771 | * to keep enough around to satisfy reservations). Then place | |
1772 | * pages into surplus state as needed so the pool will shrink | |
1773 | * to the desired size as pages become free. | |
d1c3fb1f NA |
1774 | * |
1775 | * By placing pages into the surplus state independent of the | |
1776 | * overcommit value, we are allowing the surplus pool size to | |
1777 | * exceed overcommit. There are few sane options here. Since | |
1778 | * alloc_buddy_huge_page() is checking the global counter, | |
1779 | * though, we'll note that we're not allowed to exceed surplus | |
1780 | * and won't grow the pool anywhere else. Not until one of the | |
1781 | * sysctls are changed, or the surplus pages go out of use. | |
7893d1d5 | 1782 | */ |
a5516438 | 1783 | min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages; |
6b0c880d | 1784 | min_count = max(count, min_count); |
6ae11b27 | 1785 | try_to_free_low(h, min_count, nodes_allowed); |
a5516438 | 1786 | while (min_count < persistent_huge_pages(h)) { |
6ae11b27 | 1787 | if (!free_pool_huge_page(h, nodes_allowed, 0)) |
1da177e4 | 1788 | break; |
55f67141 | 1789 | cond_resched_lock(&hugetlb_lock); |
1da177e4 | 1790 | } |
a5516438 | 1791 | while (count < persistent_huge_pages(h)) { |
6ae11b27 | 1792 | if (!adjust_pool_surplus(h, nodes_allowed, 1)) |
7893d1d5 AL |
1793 | break; |
1794 | } | |
1795 | out: | |
a5516438 | 1796 | ret = persistent_huge_pages(h); |
1da177e4 | 1797 | spin_unlock(&hugetlb_lock); |
7893d1d5 | 1798 | return ret; |
1da177e4 LT |
1799 | } |
1800 | ||
a3437870 NA |
1801 | #define HSTATE_ATTR_RO(_name) \ |
1802 | static struct kobj_attribute _name##_attr = __ATTR_RO(_name) | |
1803 | ||
1804 | #define HSTATE_ATTR(_name) \ | |
1805 | static struct kobj_attribute _name##_attr = \ | |
1806 | __ATTR(_name, 0644, _name##_show, _name##_store) | |
1807 | ||
1808 | static struct kobject *hugepages_kobj; | |
1809 | static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; | |
1810 | ||
9a305230 LS |
1811 | static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp); |
1812 | ||
1813 | static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp) | |
a3437870 NA |
1814 | { |
1815 | int i; | |
9a305230 | 1816 | |
a3437870 | 1817 | for (i = 0; i < HUGE_MAX_HSTATE; i++) |
9a305230 LS |
1818 | if (hstate_kobjs[i] == kobj) { |
1819 | if (nidp) | |
1820 | *nidp = NUMA_NO_NODE; | |
a3437870 | 1821 | return &hstates[i]; |
9a305230 LS |
1822 | } |
1823 | ||
1824 | return kobj_to_node_hstate(kobj, nidp); | |
a3437870 NA |
1825 | } |
1826 | ||
06808b08 | 1827 | static ssize_t nr_hugepages_show_common(struct kobject *kobj, |
a3437870 NA |
1828 | struct kobj_attribute *attr, char *buf) |
1829 | { | |
9a305230 LS |
1830 | struct hstate *h; |
1831 | unsigned long nr_huge_pages; | |
1832 | int nid; | |
1833 | ||
1834 | h = kobj_to_hstate(kobj, &nid); | |
1835 | if (nid == NUMA_NO_NODE) | |
1836 | nr_huge_pages = h->nr_huge_pages; | |
1837 | else | |
1838 | nr_huge_pages = h->nr_huge_pages_node[nid]; | |
1839 | ||
1840 | return sprintf(buf, "%lu\n", nr_huge_pages); | |
a3437870 | 1841 | } |
adbe8726 | 1842 | |
238d3c13 DR |
1843 | static ssize_t __nr_hugepages_store_common(bool obey_mempolicy, |
1844 | struct hstate *h, int nid, | |
1845 | unsigned long count, size_t len) | |
a3437870 NA |
1846 | { |
1847 | int err; | |
bad44b5b | 1848 | NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY); |
a3437870 | 1849 | |
944d9fec | 1850 | if (hstate_is_gigantic(h) && !gigantic_page_supported()) { |
adbe8726 EM |
1851 | err = -EINVAL; |
1852 | goto out; | |
1853 | } | |
1854 | ||
9a305230 LS |
1855 | if (nid == NUMA_NO_NODE) { |
1856 | /* | |
1857 | * global hstate attribute | |
1858 | */ | |
1859 | if (!(obey_mempolicy && | |
1860 | init_nodemask_of_mempolicy(nodes_allowed))) { | |
1861 | NODEMASK_FREE(nodes_allowed); | |
8cebfcd0 | 1862 | nodes_allowed = &node_states[N_MEMORY]; |
9a305230 LS |
1863 | } |
1864 | } else if (nodes_allowed) { | |
1865 | /* | |
1866 | * per node hstate attribute: adjust count to global, | |
1867 | * but restrict alloc/free to the specified node. | |
1868 | */ | |
1869 | count += h->nr_huge_pages - h->nr_huge_pages_node[nid]; | |
1870 | init_nodemask_of_node(nodes_allowed, nid); | |
1871 | } else | |
8cebfcd0 | 1872 | nodes_allowed = &node_states[N_MEMORY]; |
9a305230 | 1873 | |
06808b08 | 1874 | h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed); |
a3437870 | 1875 | |
8cebfcd0 | 1876 | if (nodes_allowed != &node_states[N_MEMORY]) |
06808b08 LS |
1877 | NODEMASK_FREE(nodes_allowed); |
1878 | ||
1879 | return len; | |
adbe8726 EM |
1880 | out: |
1881 | NODEMASK_FREE(nodes_allowed); | |
1882 | return err; | |
06808b08 LS |
1883 | } |
1884 | ||
238d3c13 DR |
1885 | static ssize_t nr_hugepages_store_common(bool obey_mempolicy, |
1886 | struct kobject *kobj, const char *buf, | |
1887 | size_t len) | |
1888 | { | |
1889 | struct hstate *h; | |
1890 | unsigned long count; | |
1891 | int nid; | |
1892 | int err; | |
1893 | ||
1894 | err = kstrtoul(buf, 10, &count); | |
1895 | if (err) | |
1896 | return err; | |
1897 | ||
1898 | h = kobj_to_hstate(kobj, &nid); | |
1899 | return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len); | |
1900 | } | |
1901 | ||
06808b08 LS |
1902 | static ssize_t nr_hugepages_show(struct kobject *kobj, |
1903 | struct kobj_attribute *attr, char *buf) | |
1904 | { | |
1905 | return nr_hugepages_show_common(kobj, attr, buf); | |
1906 | } | |
1907 | ||
1908 | static ssize_t nr_hugepages_store(struct kobject *kobj, | |
1909 | struct kobj_attribute *attr, const char *buf, size_t len) | |
1910 | { | |
238d3c13 | 1911 | return nr_hugepages_store_common(false, kobj, buf, len); |
a3437870 NA |
1912 | } |
1913 | HSTATE_ATTR(nr_hugepages); | |
1914 | ||
06808b08 LS |
1915 | #ifdef CONFIG_NUMA |
1916 | ||
1917 | /* | |
1918 | * hstate attribute for optionally mempolicy-based constraint on persistent | |
1919 | * huge page alloc/free. | |
1920 | */ | |
1921 | static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj, | |
1922 | struct kobj_attribute *attr, char *buf) | |
1923 | { | |
1924 | return nr_hugepages_show_common(kobj, attr, buf); | |
1925 | } | |
1926 | ||
1927 | static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj, | |
1928 | struct kobj_attribute *attr, const char *buf, size_t len) | |
1929 | { | |
238d3c13 | 1930 | return nr_hugepages_store_common(true, kobj, buf, len); |
06808b08 LS |
1931 | } |
1932 | HSTATE_ATTR(nr_hugepages_mempolicy); | |
1933 | #endif | |
1934 | ||
1935 | ||
a3437870 NA |
1936 | static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj, |
1937 | struct kobj_attribute *attr, char *buf) | |
1938 | { | |
9a305230 | 1939 | struct hstate *h = kobj_to_hstate(kobj, NULL); |
a3437870 NA |
1940 | return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages); |
1941 | } | |
adbe8726 | 1942 | |
a3437870 NA |
1943 | static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj, |
1944 | struct kobj_attribute *attr, const char *buf, size_t count) | |
1945 | { | |
1946 | int err; | |
1947 | unsigned long input; | |
9a305230 | 1948 | struct hstate *h = kobj_to_hstate(kobj, NULL); |
a3437870 | 1949 | |
bae7f4ae | 1950 | if (hstate_is_gigantic(h)) |
adbe8726 EM |
1951 | return -EINVAL; |
1952 | ||
3dbb95f7 | 1953 | err = kstrtoul(buf, 10, &input); |
a3437870 | 1954 | if (err) |
73ae31e5 | 1955 | return err; |
a3437870 NA |
1956 | |
1957 | spin_lock(&hugetlb_lock); | |
1958 | h->nr_overcommit_huge_pages = input; | |
1959 | spin_unlock(&hugetlb_lock); | |
1960 | ||
1961 | return count; | |
1962 | } | |
1963 | HSTATE_ATTR(nr_overcommit_hugepages); | |
1964 | ||
1965 | static ssize_t free_hugepages_show(struct kobject *kobj, | |
1966 | struct kobj_attribute *attr, char *buf) | |
1967 | { | |
9a305230 LS |
1968 | struct hstate *h; |
1969 | unsigned long free_huge_pages; | |
1970 | int nid; | |
1971 | ||
1972 | h = kobj_to_hstate(kobj, &nid); | |
1973 | if (nid == NUMA_NO_NODE) | |
1974 | free_huge_pages = h->free_huge_pages; | |
1975 | else | |
1976 | free_huge_pages = h->free_huge_pages_node[nid]; | |
1977 | ||
1978 | return sprintf(buf, "%lu\n", free_huge_pages); | |
a3437870 NA |
1979 | } |
1980 | HSTATE_ATTR_RO(free_hugepages); | |
1981 | ||
1982 | static ssize_t resv_hugepages_show(struct kobject *kobj, | |
1983 | struct kobj_attribute *attr, char *buf) | |
1984 | { | |
9a305230 | 1985 | struct hstate *h = kobj_to_hstate(kobj, NULL); |
a3437870 NA |
1986 | return sprintf(buf, "%lu\n", h->resv_huge_pages); |
1987 | } | |
1988 | HSTATE_ATTR_RO(resv_hugepages); | |
1989 | ||
1990 | static ssize_t surplus_hugepages_show(struct kobject *kobj, | |
1991 | struct kobj_attribute *attr, char *buf) | |
1992 | { | |
9a305230 LS |
1993 | struct hstate *h; |
1994 | unsigned long surplus_huge_pages; | |
1995 | int nid; | |
1996 | ||
1997 | h = kobj_to_hstate(kobj, &nid); | |
1998 | if (nid == NUMA_NO_NODE) | |
1999 | surplus_huge_pages = h->surplus_huge_pages; | |
2000 | else | |
2001 | surplus_huge_pages = h->surplus_huge_pages_node[nid]; | |
2002 | ||
2003 | return sprintf(buf, "%lu\n", surplus_huge_pages); | |
a3437870 NA |
2004 | } |
2005 | HSTATE_ATTR_RO(surplus_hugepages); | |
2006 | ||
2007 | static struct attribute *hstate_attrs[] = { | |
2008 | &nr_hugepages_attr.attr, | |
2009 | &nr_overcommit_hugepages_attr.attr, | |
2010 | &free_hugepages_attr.attr, | |
2011 | &resv_hugepages_attr.attr, | |
2012 | &surplus_hugepages_attr.attr, | |
06808b08 LS |
2013 | #ifdef CONFIG_NUMA |
2014 | &nr_hugepages_mempolicy_attr.attr, | |
2015 | #endif | |
a3437870 NA |
2016 | NULL, |
2017 | }; | |
2018 | ||
2019 | static struct attribute_group hstate_attr_group = { | |
2020 | .attrs = hstate_attrs, | |
2021 | }; | |
2022 | ||
094e9539 JM |
2023 | static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent, |
2024 | struct kobject **hstate_kobjs, | |
2025 | struct attribute_group *hstate_attr_group) | |
a3437870 NA |
2026 | { |
2027 | int retval; | |
972dc4de | 2028 | int hi = hstate_index(h); |
a3437870 | 2029 | |
9a305230 LS |
2030 | hstate_kobjs[hi] = kobject_create_and_add(h->name, parent); |
2031 | if (!hstate_kobjs[hi]) | |
a3437870 NA |
2032 | return -ENOMEM; |
2033 | ||
9a305230 | 2034 | retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group); |
a3437870 | 2035 | if (retval) |
9a305230 | 2036 | kobject_put(hstate_kobjs[hi]); |
a3437870 NA |
2037 | |
2038 | return retval; | |
2039 | } | |
2040 | ||
2041 | static void __init hugetlb_sysfs_init(void) | |
2042 | { | |
2043 | struct hstate *h; | |
2044 | int err; | |
2045 | ||
2046 | hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj); | |
2047 | if (!hugepages_kobj) | |
2048 | return; | |
2049 | ||
2050 | for_each_hstate(h) { | |
9a305230 LS |
2051 | err = hugetlb_sysfs_add_hstate(h, hugepages_kobj, |
2052 | hstate_kobjs, &hstate_attr_group); | |
a3437870 | 2053 | if (err) |
ffb22af5 | 2054 | pr_err("Hugetlb: Unable to add hstate %s", h->name); |
a3437870 NA |
2055 | } |
2056 | } | |
2057 | ||
9a305230 LS |
2058 | #ifdef CONFIG_NUMA |
2059 | ||
2060 | /* | |
2061 | * node_hstate/s - associate per node hstate attributes, via their kobjects, | |
10fbcf4c KS |
2062 | * with node devices in node_devices[] using a parallel array. The array |
2063 | * index of a node device or _hstate == node id. | |
2064 | * This is here to avoid any static dependency of the node device driver, in | |
9a305230 LS |
2065 | * the base kernel, on the hugetlb module. |
2066 | */ | |
2067 | struct node_hstate { | |
2068 | struct kobject *hugepages_kobj; | |
2069 | struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; | |
2070 | }; | |
2071 | struct node_hstate node_hstates[MAX_NUMNODES]; | |
2072 | ||
2073 | /* | |
10fbcf4c | 2074 | * A subset of global hstate attributes for node devices |
9a305230 LS |
2075 | */ |
2076 | static struct attribute *per_node_hstate_attrs[] = { | |
2077 | &nr_hugepages_attr.attr, | |
2078 | &free_hugepages_attr.attr, | |
2079 | &surplus_hugepages_attr.attr, | |
2080 | NULL, | |
2081 | }; | |
2082 | ||
2083 | static struct attribute_group per_node_hstate_attr_group = { | |
2084 | .attrs = per_node_hstate_attrs, | |
2085 | }; | |
2086 | ||
2087 | /* | |
10fbcf4c | 2088 | * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj. |
9a305230 LS |
2089 | * Returns node id via non-NULL nidp. |
2090 | */ | |
2091 | static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) | |
2092 | { | |
2093 | int nid; | |
2094 | ||
2095 | for (nid = 0; nid < nr_node_ids; nid++) { | |
2096 | struct node_hstate *nhs = &node_hstates[nid]; | |
2097 | int i; | |
2098 | for (i = 0; i < HUGE_MAX_HSTATE; i++) | |
2099 | if (nhs->hstate_kobjs[i] == kobj) { | |
2100 | if (nidp) | |
2101 | *nidp = nid; | |
2102 | return &hstates[i]; | |
2103 | } | |
2104 | } | |
2105 | ||
2106 | BUG(); | |
2107 | return NULL; | |
2108 | } | |
2109 | ||
2110 | /* | |
10fbcf4c | 2111 | * Unregister hstate attributes from a single node device. |
9a305230 LS |
2112 | * No-op if no hstate attributes attached. |
2113 | */ | |
3cd8b44f | 2114 | static void hugetlb_unregister_node(struct node *node) |
9a305230 LS |
2115 | { |
2116 | struct hstate *h; | |
10fbcf4c | 2117 | struct node_hstate *nhs = &node_hstates[node->dev.id]; |
9a305230 LS |
2118 | |
2119 | if (!nhs->hugepages_kobj) | |
9b5e5d0f | 2120 | return; /* no hstate attributes */ |
9a305230 | 2121 | |
972dc4de AK |
2122 | for_each_hstate(h) { |
2123 | int idx = hstate_index(h); | |
2124 | if (nhs->hstate_kobjs[idx]) { | |
2125 | kobject_put(nhs->hstate_kobjs[idx]); | |
2126 | nhs->hstate_kobjs[idx] = NULL; | |
9a305230 | 2127 | } |
972dc4de | 2128 | } |
9a305230 LS |
2129 | |
2130 | kobject_put(nhs->hugepages_kobj); | |
2131 | nhs->hugepages_kobj = NULL; | |
2132 | } | |
2133 | ||
2134 | /* | |
10fbcf4c | 2135 | * hugetlb module exit: unregister hstate attributes from node devices |
9a305230 LS |
2136 | * that have them. |
2137 | */ | |
2138 | static void hugetlb_unregister_all_nodes(void) | |
2139 | { | |
2140 | int nid; | |
2141 | ||
2142 | /* | |
10fbcf4c | 2143 | * disable node device registrations. |
9a305230 LS |
2144 | */ |
2145 | register_hugetlbfs_with_node(NULL, NULL); | |
2146 | ||
2147 | /* | |
2148 | * remove hstate attributes from any nodes that have them. | |
2149 | */ | |
2150 | for (nid = 0; nid < nr_node_ids; nid++) | |
8732794b | 2151 | hugetlb_unregister_node(node_devices[nid]); |
9a305230 LS |
2152 | } |
2153 | ||
2154 | /* | |
10fbcf4c | 2155 | * Register hstate attributes for a single node device. |
9a305230 LS |
2156 | * No-op if attributes already registered. |
2157 | */ | |
3cd8b44f | 2158 | static void hugetlb_register_node(struct node *node) |
9a305230 LS |
2159 | { |
2160 | struct hstate *h; | |
10fbcf4c | 2161 | struct node_hstate *nhs = &node_hstates[node->dev.id]; |
9a305230 LS |
2162 | int err; |
2163 | ||
2164 | if (nhs->hugepages_kobj) | |
2165 | return; /* already allocated */ | |
2166 | ||
2167 | nhs->hugepages_kobj = kobject_create_and_add("hugepages", | |
10fbcf4c | 2168 | &node->dev.kobj); |
9a305230 LS |
2169 | if (!nhs->hugepages_kobj) |
2170 | return; | |
2171 | ||
2172 | for_each_hstate(h) { | |
2173 | err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj, | |
2174 | nhs->hstate_kobjs, | |
2175 | &per_node_hstate_attr_group); | |
2176 | if (err) { | |
ffb22af5 AM |
2177 | pr_err("Hugetlb: Unable to add hstate %s for node %d\n", |
2178 | h->name, node->dev.id); | |
9a305230 LS |
2179 | hugetlb_unregister_node(node); |
2180 | break; | |
2181 | } | |
2182 | } | |
2183 | } | |
2184 | ||
2185 | /* | |
9b5e5d0f | 2186 | * hugetlb init time: register hstate attributes for all registered node |
10fbcf4c KS |
2187 | * devices of nodes that have memory. All on-line nodes should have |
2188 | * registered their associated device by this time. | |
9a305230 | 2189 | */ |
7d9ca000 | 2190 | static void __init hugetlb_register_all_nodes(void) |
9a305230 LS |
2191 | { |
2192 | int nid; | |
2193 | ||
8cebfcd0 | 2194 | for_each_node_state(nid, N_MEMORY) { |
8732794b | 2195 | struct node *node = node_devices[nid]; |
10fbcf4c | 2196 | if (node->dev.id == nid) |
9a305230 LS |
2197 | hugetlb_register_node(node); |
2198 | } | |
2199 | ||
2200 | /* | |
10fbcf4c | 2201 | * Let the node device driver know we're here so it can |
9a305230 LS |
2202 | * [un]register hstate attributes on node hotplug. |
2203 | */ | |
2204 | register_hugetlbfs_with_node(hugetlb_register_node, | |
2205 | hugetlb_unregister_node); | |
2206 | } | |
2207 | #else /* !CONFIG_NUMA */ | |
2208 | ||
2209 | static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) | |
2210 | { | |
2211 | BUG(); | |
2212 | if (nidp) | |
2213 | *nidp = -1; | |
2214 | return NULL; | |
2215 | } | |
2216 | ||
2217 | static void hugetlb_unregister_all_nodes(void) { } | |
2218 | ||
2219 | static void hugetlb_register_all_nodes(void) { } | |
2220 | ||
2221 | #endif | |
2222 | ||
a3437870 NA |
2223 | static void __exit hugetlb_exit(void) |
2224 | { | |
2225 | struct hstate *h; | |
2226 | ||
9a305230 LS |
2227 | hugetlb_unregister_all_nodes(); |
2228 | ||
a3437870 | 2229 | for_each_hstate(h) { |
972dc4de | 2230 | kobject_put(hstate_kobjs[hstate_index(h)]); |
a3437870 NA |
2231 | } |
2232 | ||
2233 | kobject_put(hugepages_kobj); | |
8382d914 | 2234 | kfree(htlb_fault_mutex_table); |
a3437870 NA |
2235 | } |
2236 | module_exit(hugetlb_exit); | |
2237 | ||
2238 | static int __init hugetlb_init(void) | |
2239 | { | |
8382d914 DB |
2240 | int i; |
2241 | ||
457c1b27 | 2242 | if (!hugepages_supported()) |
0ef89d25 | 2243 | return 0; |
a3437870 | 2244 | |
e11bfbfc NP |
2245 | if (!size_to_hstate(default_hstate_size)) { |
2246 | default_hstate_size = HPAGE_SIZE; | |
2247 | if (!size_to_hstate(default_hstate_size)) | |
2248 | hugetlb_add_hstate(HUGETLB_PAGE_ORDER); | |
a3437870 | 2249 | } |
972dc4de | 2250 | default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size)); |
e11bfbfc NP |
2251 | if (default_hstate_max_huge_pages) |
2252 | default_hstate.max_huge_pages = default_hstate_max_huge_pages; | |
a3437870 NA |
2253 | |
2254 | hugetlb_init_hstates(); | |
aa888a74 | 2255 | gather_bootmem_prealloc(); |
a3437870 NA |
2256 | report_hugepages(); |
2257 | ||
2258 | hugetlb_sysfs_init(); | |
9a305230 | 2259 | hugetlb_register_all_nodes(); |
7179e7bf | 2260 | hugetlb_cgroup_file_init(); |
9a305230 | 2261 | |
8382d914 DB |
2262 | #ifdef CONFIG_SMP |
2263 | num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus()); | |
2264 | #else | |
2265 | num_fault_mutexes = 1; | |
2266 | #endif | |
2267 | htlb_fault_mutex_table = | |
2268 | kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL); | |
2269 | BUG_ON(!htlb_fault_mutex_table); | |
2270 | ||
2271 | for (i = 0; i < num_fault_mutexes; i++) | |
2272 | mutex_init(&htlb_fault_mutex_table[i]); | |
a3437870 NA |
2273 | return 0; |
2274 | } | |
2275 | module_init(hugetlb_init); | |
2276 | ||
2277 | /* Should be called on processing a hugepagesz=... option */ | |
2278 | void __init hugetlb_add_hstate(unsigned order) | |
2279 | { | |
2280 | struct hstate *h; | |
8faa8b07 AK |
2281 | unsigned long i; |
2282 | ||
a3437870 | 2283 | if (size_to_hstate(PAGE_SIZE << order)) { |
ffb22af5 | 2284 | pr_warning("hugepagesz= specified twice, ignoring\n"); |
a3437870 NA |
2285 | return; |
2286 | } | |
47d38344 | 2287 | BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE); |
a3437870 | 2288 | BUG_ON(order == 0); |
47d38344 | 2289 | h = &hstates[hugetlb_max_hstate++]; |
a3437870 NA |
2290 | h->order = order; |
2291 | h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1); | |
8faa8b07 AK |
2292 | h->nr_huge_pages = 0; |
2293 | h->free_huge_pages = 0; | |
2294 | for (i = 0; i < MAX_NUMNODES; ++i) | |
2295 | INIT_LIST_HEAD(&h->hugepage_freelists[i]); | |
0edaecfa | 2296 | INIT_LIST_HEAD(&h->hugepage_activelist); |
8cebfcd0 LJ |
2297 | h->next_nid_to_alloc = first_node(node_states[N_MEMORY]); |
2298 | h->next_nid_to_free = first_node(node_states[N_MEMORY]); | |
a3437870 NA |
2299 | snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB", |
2300 | huge_page_size(h)/1024); | |
8faa8b07 | 2301 | |
a3437870 NA |
2302 | parsed_hstate = h; |
2303 | } | |
2304 | ||
e11bfbfc | 2305 | static int __init hugetlb_nrpages_setup(char *s) |
a3437870 NA |
2306 | { |
2307 | unsigned long *mhp; | |
8faa8b07 | 2308 | static unsigned long *last_mhp; |
a3437870 NA |
2309 | |
2310 | /* | |
47d38344 | 2311 | * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet, |
a3437870 NA |
2312 | * so this hugepages= parameter goes to the "default hstate". |
2313 | */ | |
47d38344 | 2314 | if (!hugetlb_max_hstate) |
a3437870 NA |
2315 | mhp = &default_hstate_max_huge_pages; |
2316 | else | |
2317 | mhp = &parsed_hstate->max_huge_pages; | |
2318 | ||
8faa8b07 | 2319 | if (mhp == last_mhp) { |
ffb22af5 AM |
2320 | pr_warning("hugepages= specified twice without " |
2321 | "interleaving hugepagesz=, ignoring\n"); | |
8faa8b07 AK |
2322 | return 1; |
2323 | } | |
2324 | ||
a3437870 NA |
2325 | if (sscanf(s, "%lu", mhp) <= 0) |
2326 | *mhp = 0; | |
2327 | ||
8faa8b07 AK |
2328 | /* |
2329 | * Global state is always initialized later in hugetlb_init. | |
2330 | * But we need to allocate >= MAX_ORDER hstates here early to still | |
2331 | * use the bootmem allocator. | |
2332 | */ | |
47d38344 | 2333 | if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER) |
8faa8b07 AK |
2334 | hugetlb_hstate_alloc_pages(parsed_hstate); |
2335 | ||
2336 | last_mhp = mhp; | |
2337 | ||
a3437870 NA |
2338 | return 1; |
2339 | } | |
e11bfbfc NP |
2340 | __setup("hugepages=", hugetlb_nrpages_setup); |
2341 | ||
2342 | static int __init hugetlb_default_setup(char *s) | |
2343 | { | |
2344 | default_hstate_size = memparse(s, &s); | |
2345 | return 1; | |
2346 | } | |
2347 | __setup("default_hugepagesz=", hugetlb_default_setup); | |
a3437870 | 2348 | |
8a213460 NA |
2349 | static unsigned int cpuset_mems_nr(unsigned int *array) |
2350 | { | |
2351 | int node; | |
2352 | unsigned int nr = 0; | |
2353 | ||
2354 | for_each_node_mask(node, cpuset_current_mems_allowed) | |
2355 | nr += array[node]; | |
2356 | ||
2357 | return nr; | |
2358 | } | |
2359 | ||
2360 | #ifdef CONFIG_SYSCTL | |
06808b08 LS |
2361 | static int hugetlb_sysctl_handler_common(bool obey_mempolicy, |
2362 | struct ctl_table *table, int write, | |
2363 | void __user *buffer, size_t *length, loff_t *ppos) | |
1da177e4 | 2364 | { |
e5ff2159 | 2365 | struct hstate *h = &default_hstate; |
238d3c13 | 2366 | unsigned long tmp = h->max_huge_pages; |
08d4a246 | 2367 | int ret; |
e5ff2159 | 2368 | |
457c1b27 NA |
2369 | if (!hugepages_supported()) |
2370 | return -ENOTSUPP; | |
2371 | ||
e5ff2159 AK |
2372 | table->data = &tmp; |
2373 | table->maxlen = sizeof(unsigned long); | |
08d4a246 MH |
2374 | ret = proc_doulongvec_minmax(table, write, buffer, length, ppos); |
2375 | if (ret) | |
2376 | goto out; | |
e5ff2159 | 2377 | |
238d3c13 DR |
2378 | if (write) |
2379 | ret = __nr_hugepages_store_common(obey_mempolicy, h, | |
2380 | NUMA_NO_NODE, tmp, *length); | |
08d4a246 MH |
2381 | out: |
2382 | return ret; | |
1da177e4 | 2383 | } |
396faf03 | 2384 | |
06808b08 LS |
2385 | int hugetlb_sysctl_handler(struct ctl_table *table, int write, |
2386 | void __user *buffer, size_t *length, loff_t *ppos) | |
2387 | { | |
2388 | ||
2389 | return hugetlb_sysctl_handler_common(false, table, write, | |
2390 | buffer, length, ppos); | |
2391 | } | |
2392 | ||
2393 | #ifdef CONFIG_NUMA | |
2394 | int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write, | |
2395 | void __user *buffer, size_t *length, loff_t *ppos) | |
2396 | { | |
2397 | return hugetlb_sysctl_handler_common(true, table, write, | |
2398 | buffer, length, ppos); | |
2399 | } | |
2400 | #endif /* CONFIG_NUMA */ | |
2401 | ||
a3d0c6aa | 2402 | int hugetlb_overcommit_handler(struct ctl_table *table, int write, |
8d65af78 | 2403 | void __user *buffer, |
a3d0c6aa NA |
2404 | size_t *length, loff_t *ppos) |
2405 | { | |
a5516438 | 2406 | struct hstate *h = &default_hstate; |
e5ff2159 | 2407 | unsigned long tmp; |
08d4a246 | 2408 | int ret; |
e5ff2159 | 2409 | |
457c1b27 NA |
2410 | if (!hugepages_supported()) |
2411 | return -ENOTSUPP; | |
2412 | ||
c033a93c | 2413 | tmp = h->nr_overcommit_huge_pages; |
e5ff2159 | 2414 | |
bae7f4ae | 2415 | if (write && hstate_is_gigantic(h)) |
adbe8726 EM |
2416 | return -EINVAL; |
2417 | ||
e5ff2159 AK |
2418 | table->data = &tmp; |
2419 | table->maxlen = sizeof(unsigned long); | |
08d4a246 MH |
2420 | ret = proc_doulongvec_minmax(table, write, buffer, length, ppos); |
2421 | if (ret) | |
2422 | goto out; | |
e5ff2159 AK |
2423 | |
2424 | if (write) { | |
2425 | spin_lock(&hugetlb_lock); | |
2426 | h->nr_overcommit_huge_pages = tmp; | |
2427 | spin_unlock(&hugetlb_lock); | |
2428 | } | |
08d4a246 MH |
2429 | out: |
2430 | return ret; | |
a3d0c6aa NA |
2431 | } |
2432 | ||
1da177e4 LT |
2433 | #endif /* CONFIG_SYSCTL */ |
2434 | ||
e1759c21 | 2435 | void hugetlb_report_meminfo(struct seq_file *m) |
1da177e4 | 2436 | { |
a5516438 | 2437 | struct hstate *h = &default_hstate; |
457c1b27 NA |
2438 | if (!hugepages_supported()) |
2439 | return; | |
e1759c21 | 2440 | seq_printf(m, |
4f98a2fe RR |
2441 | "HugePages_Total: %5lu\n" |
2442 | "HugePages_Free: %5lu\n" | |
2443 | "HugePages_Rsvd: %5lu\n" | |
2444 | "HugePages_Surp: %5lu\n" | |
2445 | "Hugepagesize: %8lu kB\n", | |
a5516438 AK |
2446 | h->nr_huge_pages, |
2447 | h->free_huge_pages, | |
2448 | h->resv_huge_pages, | |
2449 | h->surplus_huge_pages, | |
2450 | 1UL << (huge_page_order(h) + PAGE_SHIFT - 10)); | |
1da177e4 LT |
2451 | } |
2452 | ||
2453 | int hugetlb_report_node_meminfo(int nid, char *buf) | |
2454 | { | |
a5516438 | 2455 | struct hstate *h = &default_hstate; |
457c1b27 NA |
2456 | if (!hugepages_supported()) |
2457 | return 0; | |
1da177e4 LT |
2458 | return sprintf(buf, |
2459 | "Node %d HugePages_Total: %5u\n" | |
a1de0919 NA |
2460 | "Node %d HugePages_Free: %5u\n" |
2461 | "Node %d HugePages_Surp: %5u\n", | |
a5516438 AK |
2462 | nid, h->nr_huge_pages_node[nid], |
2463 | nid, h->free_huge_pages_node[nid], | |
2464 | nid, h->surplus_huge_pages_node[nid]); | |
1da177e4 LT |
2465 | } |
2466 | ||
949f7ec5 DR |
2467 | void hugetlb_show_meminfo(void) |
2468 | { | |
2469 | struct hstate *h; | |
2470 | int nid; | |
2471 | ||
457c1b27 NA |
2472 | if (!hugepages_supported()) |
2473 | return; | |
2474 | ||
949f7ec5 DR |
2475 | for_each_node_state(nid, N_MEMORY) |
2476 | for_each_hstate(h) | |
2477 | pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n", | |
2478 | nid, | |
2479 | h->nr_huge_pages_node[nid], | |
2480 | h->free_huge_pages_node[nid], | |
2481 | h->surplus_huge_pages_node[nid], | |
2482 | 1UL << (huge_page_order(h) + PAGE_SHIFT - 10)); | |
2483 | } | |
2484 | ||
1da177e4 LT |
2485 | /* Return the number pages of memory we physically have, in PAGE_SIZE units. */ |
2486 | unsigned long hugetlb_total_pages(void) | |
2487 | { | |
d0028588 WL |
2488 | struct hstate *h; |
2489 | unsigned long nr_total_pages = 0; | |
2490 | ||
2491 | for_each_hstate(h) | |
2492 | nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h); | |
2493 | return nr_total_pages; | |
1da177e4 | 2494 | } |
1da177e4 | 2495 | |
a5516438 | 2496 | static int hugetlb_acct_memory(struct hstate *h, long delta) |
fc1b8a73 MG |
2497 | { |
2498 | int ret = -ENOMEM; | |
2499 | ||
2500 | spin_lock(&hugetlb_lock); | |
2501 | /* | |
2502 | * When cpuset is configured, it breaks the strict hugetlb page | |
2503 | * reservation as the accounting is done on a global variable. Such | |
2504 | * reservation is completely rubbish in the presence of cpuset because | |
2505 | * the reservation is not checked against page availability for the | |
2506 | * current cpuset. Application can still potentially OOM'ed by kernel | |
2507 | * with lack of free htlb page in cpuset that the task is in. | |
2508 | * Attempt to enforce strict accounting with cpuset is almost | |
2509 | * impossible (or too ugly) because cpuset is too fluid that | |
2510 | * task or memory node can be dynamically moved between cpusets. | |
2511 | * | |
2512 | * The change of semantics for shared hugetlb mapping with cpuset is | |
2513 | * undesirable. However, in order to preserve some of the semantics, | |
2514 | * we fall back to check against current free page availability as | |
2515 | * a best attempt and hopefully to minimize the impact of changing | |
2516 | * semantics that cpuset has. | |
2517 | */ | |
2518 | if (delta > 0) { | |
a5516438 | 2519 | if (gather_surplus_pages(h, delta) < 0) |
fc1b8a73 MG |
2520 | goto out; |
2521 | ||
a5516438 AK |
2522 | if (delta > cpuset_mems_nr(h->free_huge_pages_node)) { |
2523 | return_unused_surplus_pages(h, delta); | |
fc1b8a73 MG |
2524 | goto out; |
2525 | } | |
2526 | } | |
2527 | ||
2528 | ret = 0; | |
2529 | if (delta < 0) | |
a5516438 | 2530 | return_unused_surplus_pages(h, (unsigned long) -delta); |
fc1b8a73 MG |
2531 | |
2532 | out: | |
2533 | spin_unlock(&hugetlb_lock); | |
2534 | return ret; | |
2535 | } | |
2536 | ||
84afd99b AW |
2537 | static void hugetlb_vm_op_open(struct vm_area_struct *vma) |
2538 | { | |
f522c3ac | 2539 | struct resv_map *resv = vma_resv_map(vma); |
84afd99b AW |
2540 | |
2541 | /* | |
2542 | * This new VMA should share its siblings reservation map if present. | |
2543 | * The VMA will only ever have a valid reservation map pointer where | |
2544 | * it is being copied for another still existing VMA. As that VMA | |
25985edc | 2545 | * has a reference to the reservation map it cannot disappear until |
84afd99b AW |
2546 | * after this open call completes. It is therefore safe to take a |
2547 | * new reference here without additional locking. | |
2548 | */ | |
4e35f483 | 2549 | if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) |
f522c3ac | 2550 | kref_get(&resv->refs); |
84afd99b AW |
2551 | } |
2552 | ||
a1e78772 MG |
2553 | static void hugetlb_vm_op_close(struct vm_area_struct *vma) |
2554 | { | |
a5516438 | 2555 | struct hstate *h = hstate_vma(vma); |
f522c3ac | 2556 | struct resv_map *resv = vma_resv_map(vma); |
90481622 | 2557 | struct hugepage_subpool *spool = subpool_vma(vma); |
4e35f483 | 2558 | unsigned long reserve, start, end; |
1c5ecae3 | 2559 | long gbl_reserve; |
84afd99b | 2560 | |
4e35f483 JK |
2561 | if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER)) |
2562 | return; | |
84afd99b | 2563 | |
4e35f483 JK |
2564 | start = vma_hugecache_offset(h, vma, vma->vm_start); |
2565 | end = vma_hugecache_offset(h, vma, vma->vm_end); | |
84afd99b | 2566 | |
4e35f483 | 2567 | reserve = (end - start) - region_count(resv, start, end); |
84afd99b | 2568 | |
4e35f483 JK |
2569 | kref_put(&resv->refs, resv_map_release); |
2570 | ||
2571 | if (reserve) { | |
1c5ecae3 MK |
2572 | /* |
2573 | * Decrement reserve counts. The global reserve count may be | |
2574 | * adjusted if the subpool has a minimum size. | |
2575 | */ | |
2576 | gbl_reserve = hugepage_subpool_put_pages(spool, reserve); | |
2577 | hugetlb_acct_memory(h, -gbl_reserve); | |
84afd99b | 2578 | } |
a1e78772 MG |
2579 | } |
2580 | ||
1da177e4 LT |
2581 | /* |
2582 | * We cannot handle pagefaults against hugetlb pages at all. They cause | |
2583 | * handle_mm_fault() to try to instantiate regular-sized pages in the | |
2584 | * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get | |
2585 | * this far. | |
2586 | */ | |
d0217ac0 | 2587 | static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf) |
1da177e4 LT |
2588 | { |
2589 | BUG(); | |
d0217ac0 | 2590 | return 0; |
1da177e4 LT |
2591 | } |
2592 | ||
f0f37e2f | 2593 | const struct vm_operations_struct hugetlb_vm_ops = { |
d0217ac0 | 2594 | .fault = hugetlb_vm_op_fault, |
84afd99b | 2595 | .open = hugetlb_vm_op_open, |
a1e78772 | 2596 | .close = hugetlb_vm_op_close, |
1da177e4 LT |
2597 | }; |
2598 | ||
1e8f889b DG |
2599 | static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page, |
2600 | int writable) | |
63551ae0 DG |
2601 | { |
2602 | pte_t entry; | |
2603 | ||
1e8f889b | 2604 | if (writable) { |
106c992a GS |
2605 | entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page, |
2606 | vma->vm_page_prot))); | |
63551ae0 | 2607 | } else { |
106c992a GS |
2608 | entry = huge_pte_wrprotect(mk_huge_pte(page, |
2609 | vma->vm_page_prot)); | |
63551ae0 DG |
2610 | } |
2611 | entry = pte_mkyoung(entry); | |
2612 | entry = pte_mkhuge(entry); | |
d9ed9faa | 2613 | entry = arch_make_huge_pte(entry, vma, page, writable); |
63551ae0 DG |
2614 | |
2615 | return entry; | |
2616 | } | |
2617 | ||
1e8f889b DG |
2618 | static void set_huge_ptep_writable(struct vm_area_struct *vma, |
2619 | unsigned long address, pte_t *ptep) | |
2620 | { | |
2621 | pte_t entry; | |
2622 | ||
106c992a | 2623 | entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep))); |
32f84528 | 2624 | if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) |
4b3073e1 | 2625 | update_mmu_cache(vma, address, ptep); |
1e8f889b DG |
2626 | } |
2627 | ||
4a705fef NH |
2628 | static int is_hugetlb_entry_migration(pte_t pte) |
2629 | { | |
2630 | swp_entry_t swp; | |
2631 | ||
2632 | if (huge_pte_none(pte) || pte_present(pte)) | |
2633 | return 0; | |
2634 | swp = pte_to_swp_entry(pte); | |
2635 | if (non_swap_entry(swp) && is_migration_entry(swp)) | |
2636 | return 1; | |
2637 | else | |
2638 | return 0; | |
2639 | } | |
2640 | ||
2641 | static int is_hugetlb_entry_hwpoisoned(pte_t pte) | |
2642 | { | |
2643 | swp_entry_t swp; | |
2644 | ||
2645 | if (huge_pte_none(pte) || pte_present(pte)) | |
2646 | return 0; | |
2647 | swp = pte_to_swp_entry(pte); | |
2648 | if (non_swap_entry(swp) && is_hwpoison_entry(swp)) | |
2649 | return 1; | |
2650 | else | |
2651 | return 0; | |
2652 | } | |
1e8f889b | 2653 | |
63551ae0 DG |
2654 | int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src, |
2655 | struct vm_area_struct *vma) | |
2656 | { | |
2657 | pte_t *src_pte, *dst_pte, entry; | |
2658 | struct page *ptepage; | |
1c59827d | 2659 | unsigned long addr; |
1e8f889b | 2660 | int cow; |
a5516438 AK |
2661 | struct hstate *h = hstate_vma(vma); |
2662 | unsigned long sz = huge_page_size(h); | |
e8569dd2 AS |
2663 | unsigned long mmun_start; /* For mmu_notifiers */ |
2664 | unsigned long mmun_end; /* For mmu_notifiers */ | |
2665 | int ret = 0; | |
1e8f889b DG |
2666 | |
2667 | cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; | |
63551ae0 | 2668 | |
e8569dd2 AS |
2669 | mmun_start = vma->vm_start; |
2670 | mmun_end = vma->vm_end; | |
2671 | if (cow) | |
2672 | mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end); | |
2673 | ||
a5516438 | 2674 | for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) { |
cb900f41 | 2675 | spinlock_t *src_ptl, *dst_ptl; |
c74df32c HD |
2676 | src_pte = huge_pte_offset(src, addr); |
2677 | if (!src_pte) | |
2678 | continue; | |
a5516438 | 2679 | dst_pte = huge_pte_alloc(dst, addr, sz); |
e8569dd2 AS |
2680 | if (!dst_pte) { |
2681 | ret = -ENOMEM; | |
2682 | break; | |
2683 | } | |
c5c99429 LW |
2684 | |
2685 | /* If the pagetables are shared don't copy or take references */ | |
2686 | if (dst_pte == src_pte) | |
2687 | continue; | |
2688 | ||
cb900f41 KS |
2689 | dst_ptl = huge_pte_lock(h, dst, dst_pte); |
2690 | src_ptl = huge_pte_lockptr(h, src, src_pte); | |
2691 | spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); | |
4a705fef NH |
2692 | entry = huge_ptep_get(src_pte); |
2693 | if (huge_pte_none(entry)) { /* skip none entry */ | |
2694 | ; | |
2695 | } else if (unlikely(is_hugetlb_entry_migration(entry) || | |
2696 | is_hugetlb_entry_hwpoisoned(entry))) { | |
2697 | swp_entry_t swp_entry = pte_to_swp_entry(entry); | |
2698 | ||
2699 | if (is_write_migration_entry(swp_entry) && cow) { | |
2700 | /* | |
2701 | * COW mappings require pages in both | |
2702 | * parent and child to be set to read. | |
2703 | */ | |
2704 | make_migration_entry_read(&swp_entry); | |
2705 | entry = swp_entry_to_pte(swp_entry); | |
2706 | set_huge_pte_at(src, addr, src_pte, entry); | |
2707 | } | |
2708 | set_huge_pte_at(dst, addr, dst_pte, entry); | |
2709 | } else { | |
34ee645e | 2710 | if (cow) { |
7f2e9525 | 2711 | huge_ptep_set_wrprotect(src, addr, src_pte); |
34ee645e JR |
2712 | mmu_notifier_invalidate_range(src, mmun_start, |
2713 | mmun_end); | |
2714 | } | |
0253d634 | 2715 | entry = huge_ptep_get(src_pte); |
1c59827d HD |
2716 | ptepage = pte_page(entry); |
2717 | get_page(ptepage); | |
0fe6e20b | 2718 | page_dup_rmap(ptepage); |
1c59827d HD |
2719 | set_huge_pte_at(dst, addr, dst_pte, entry); |
2720 | } | |
cb900f41 KS |
2721 | spin_unlock(src_ptl); |
2722 | spin_unlock(dst_ptl); | |
63551ae0 | 2723 | } |
63551ae0 | 2724 | |
e8569dd2 AS |
2725 | if (cow) |
2726 | mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end); | |
2727 | ||
2728 | return ret; | |
63551ae0 DG |
2729 | } |
2730 | ||
24669e58 AK |
2731 | void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma, |
2732 | unsigned long start, unsigned long end, | |
2733 | struct page *ref_page) | |
63551ae0 | 2734 | { |
24669e58 | 2735 | int force_flush = 0; |
63551ae0 DG |
2736 | struct mm_struct *mm = vma->vm_mm; |
2737 | unsigned long address; | |
c7546f8f | 2738 | pte_t *ptep; |
63551ae0 | 2739 | pte_t pte; |
cb900f41 | 2740 | spinlock_t *ptl; |
63551ae0 | 2741 | struct page *page; |
a5516438 AK |
2742 | struct hstate *h = hstate_vma(vma); |
2743 | unsigned long sz = huge_page_size(h); | |
2ec74c3e SG |
2744 | const unsigned long mmun_start = start; /* For mmu_notifiers */ |
2745 | const unsigned long mmun_end = end; /* For mmu_notifiers */ | |
a5516438 | 2746 | |
63551ae0 | 2747 | WARN_ON(!is_vm_hugetlb_page(vma)); |
a5516438 AK |
2748 | BUG_ON(start & ~huge_page_mask(h)); |
2749 | BUG_ON(end & ~huge_page_mask(h)); | |
63551ae0 | 2750 | |
24669e58 | 2751 | tlb_start_vma(tlb, vma); |
2ec74c3e | 2752 | mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); |
569f48b8 | 2753 | address = start; |
24669e58 | 2754 | again: |
569f48b8 | 2755 | for (; address < end; address += sz) { |
c7546f8f | 2756 | ptep = huge_pte_offset(mm, address); |
4c887265 | 2757 | if (!ptep) |
c7546f8f DG |
2758 | continue; |
2759 | ||
cb900f41 | 2760 | ptl = huge_pte_lock(h, mm, ptep); |
39dde65c | 2761 | if (huge_pmd_unshare(mm, &address, ptep)) |
cb900f41 | 2762 | goto unlock; |
39dde65c | 2763 | |
6629326b HD |
2764 | pte = huge_ptep_get(ptep); |
2765 | if (huge_pte_none(pte)) | |
cb900f41 | 2766 | goto unlock; |
6629326b HD |
2767 | |
2768 | /* | |
9fbc1f63 NH |
2769 | * Migrating hugepage or HWPoisoned hugepage is already |
2770 | * unmapped and its refcount is dropped, so just clear pte here. | |
6629326b | 2771 | */ |
9fbc1f63 | 2772 | if (unlikely(!pte_present(pte))) { |
106c992a | 2773 | huge_pte_clear(mm, address, ptep); |
cb900f41 | 2774 | goto unlock; |
8c4894c6 | 2775 | } |
6629326b HD |
2776 | |
2777 | page = pte_page(pte); | |
04f2cbe3 MG |
2778 | /* |
2779 | * If a reference page is supplied, it is because a specific | |
2780 | * page is being unmapped, not a range. Ensure the page we | |
2781 | * are about to unmap is the actual page of interest. | |
2782 | */ | |
2783 | if (ref_page) { | |
04f2cbe3 | 2784 | if (page != ref_page) |
cb900f41 | 2785 | goto unlock; |
04f2cbe3 MG |
2786 | |
2787 | /* | |
2788 | * Mark the VMA as having unmapped its page so that | |
2789 | * future faults in this VMA will fail rather than | |
2790 | * looking like data was lost | |
2791 | */ | |
2792 | set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED); | |
2793 | } | |
2794 | ||
c7546f8f | 2795 | pte = huge_ptep_get_and_clear(mm, address, ptep); |
24669e58 | 2796 | tlb_remove_tlb_entry(tlb, ptep, address); |
106c992a | 2797 | if (huge_pte_dirty(pte)) |
6649a386 | 2798 | set_page_dirty(page); |
9e81130b | 2799 | |
24669e58 AK |
2800 | page_remove_rmap(page); |
2801 | force_flush = !__tlb_remove_page(tlb, page); | |
cb900f41 | 2802 | if (force_flush) { |
569f48b8 | 2803 | address += sz; |
cb900f41 | 2804 | spin_unlock(ptl); |
24669e58 | 2805 | break; |
cb900f41 | 2806 | } |
9e81130b | 2807 | /* Bail out after unmapping reference page if supplied */ |
cb900f41 KS |
2808 | if (ref_page) { |
2809 | spin_unlock(ptl); | |
9e81130b | 2810 | break; |
cb900f41 KS |
2811 | } |
2812 | unlock: | |
2813 | spin_unlock(ptl); | |
63551ae0 | 2814 | } |
24669e58 AK |
2815 | /* |
2816 | * mmu_gather ran out of room to batch pages, we break out of | |
2817 | * the PTE lock to avoid doing the potential expensive TLB invalidate | |
2818 | * and page-free while holding it. | |
2819 | */ | |
2820 | if (force_flush) { | |
2821 | force_flush = 0; | |
2822 | tlb_flush_mmu(tlb); | |
2823 | if (address < end && !ref_page) | |
2824 | goto again; | |
fe1668ae | 2825 | } |
2ec74c3e | 2826 | mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); |
24669e58 | 2827 | tlb_end_vma(tlb, vma); |
1da177e4 | 2828 | } |
63551ae0 | 2829 | |
d833352a MG |
2830 | void __unmap_hugepage_range_final(struct mmu_gather *tlb, |
2831 | struct vm_area_struct *vma, unsigned long start, | |
2832 | unsigned long end, struct page *ref_page) | |
2833 | { | |
2834 | __unmap_hugepage_range(tlb, vma, start, end, ref_page); | |
2835 | ||
2836 | /* | |
2837 | * Clear this flag so that x86's huge_pmd_share page_table_shareable | |
2838 | * test will fail on a vma being torn down, and not grab a page table | |
2839 | * on its way out. We're lucky that the flag has such an appropriate | |
2840 | * name, and can in fact be safely cleared here. We could clear it | |
2841 | * before the __unmap_hugepage_range above, but all that's necessary | |
c8c06efa | 2842 | * is to clear it before releasing the i_mmap_rwsem. This works |
d833352a | 2843 | * because in the context this is called, the VMA is about to be |
c8c06efa | 2844 | * destroyed and the i_mmap_rwsem is held. |
d833352a MG |
2845 | */ |
2846 | vma->vm_flags &= ~VM_MAYSHARE; | |
2847 | } | |
2848 | ||
502717f4 | 2849 | void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, |
04f2cbe3 | 2850 | unsigned long end, struct page *ref_page) |
502717f4 | 2851 | { |
24669e58 AK |
2852 | struct mm_struct *mm; |
2853 | struct mmu_gather tlb; | |
2854 | ||
2855 | mm = vma->vm_mm; | |
2856 | ||
2b047252 | 2857 | tlb_gather_mmu(&tlb, mm, start, end); |
24669e58 AK |
2858 | __unmap_hugepage_range(&tlb, vma, start, end, ref_page); |
2859 | tlb_finish_mmu(&tlb, start, end); | |
502717f4 CK |
2860 | } |
2861 | ||
04f2cbe3 MG |
2862 | /* |
2863 | * This is called when the original mapper is failing to COW a MAP_PRIVATE | |
2864 | * mappping it owns the reserve page for. The intention is to unmap the page | |
2865 | * from other VMAs and let the children be SIGKILLed if they are faulting the | |
2866 | * same region. | |
2867 | */ | |
2f4612af DB |
2868 | static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma, |
2869 | struct page *page, unsigned long address) | |
04f2cbe3 | 2870 | { |
7526674d | 2871 | struct hstate *h = hstate_vma(vma); |
04f2cbe3 MG |
2872 | struct vm_area_struct *iter_vma; |
2873 | struct address_space *mapping; | |
04f2cbe3 MG |
2874 | pgoff_t pgoff; |
2875 | ||
2876 | /* | |
2877 | * vm_pgoff is in PAGE_SIZE units, hence the different calculation | |
2878 | * from page cache lookup which is in HPAGE_SIZE units. | |
2879 | */ | |
7526674d | 2880 | address = address & huge_page_mask(h); |
36e4f20a MH |
2881 | pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + |
2882 | vma->vm_pgoff; | |
496ad9aa | 2883 | mapping = file_inode(vma->vm_file)->i_mapping; |
04f2cbe3 | 2884 | |
4eb2b1dc MG |
2885 | /* |
2886 | * Take the mapping lock for the duration of the table walk. As | |
2887 | * this mapping should be shared between all the VMAs, | |
2888 | * __unmap_hugepage_range() is called as the lock is already held | |
2889 | */ | |
83cde9e8 | 2890 | i_mmap_lock_write(mapping); |
6b2dbba8 | 2891 | vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) { |
04f2cbe3 MG |
2892 | /* Do not unmap the current VMA */ |
2893 | if (iter_vma == vma) | |
2894 | continue; | |
2895 | ||
2896 | /* | |
2897 | * Unmap the page from other VMAs without their own reserves. | |
2898 | * They get marked to be SIGKILLed if they fault in these | |
2899 | * areas. This is because a future no-page fault on this VMA | |
2900 | * could insert a zeroed page instead of the data existing | |
2901 | * from the time of fork. This would look like data corruption | |
2902 | */ | |
2903 | if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER)) | |
24669e58 AK |
2904 | unmap_hugepage_range(iter_vma, address, |
2905 | address + huge_page_size(h), page); | |
04f2cbe3 | 2906 | } |
83cde9e8 | 2907 | i_mmap_unlock_write(mapping); |
04f2cbe3 MG |
2908 | } |
2909 | ||
0fe6e20b NH |
2910 | /* |
2911 | * Hugetlb_cow() should be called with page lock of the original hugepage held. | |
ef009b25 MH |
2912 | * Called with hugetlb_instantiation_mutex held and pte_page locked so we |
2913 | * cannot race with other handlers or page migration. | |
2914 | * Keep the pte_same checks anyway to make transition from the mutex easier. | |
0fe6e20b | 2915 | */ |
1e8f889b | 2916 | static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma, |
04f2cbe3 | 2917 | unsigned long address, pte_t *ptep, pte_t pte, |
cb900f41 | 2918 | struct page *pagecache_page, spinlock_t *ptl) |
1e8f889b | 2919 | { |
a5516438 | 2920 | struct hstate *h = hstate_vma(vma); |
1e8f889b | 2921 | struct page *old_page, *new_page; |
ad4404a2 | 2922 | int ret = 0, outside_reserve = 0; |
2ec74c3e SG |
2923 | unsigned long mmun_start; /* For mmu_notifiers */ |
2924 | unsigned long mmun_end; /* For mmu_notifiers */ | |
1e8f889b DG |
2925 | |
2926 | old_page = pte_page(pte); | |
2927 | ||
04f2cbe3 | 2928 | retry_avoidcopy: |
1e8f889b DG |
2929 | /* If no-one else is actually using this page, avoid the copy |
2930 | * and just make the page writable */ | |
37a2140d JK |
2931 | if (page_mapcount(old_page) == 1 && PageAnon(old_page)) { |
2932 | page_move_anon_rmap(old_page, vma, address); | |
1e8f889b | 2933 | set_huge_ptep_writable(vma, address, ptep); |
83c54070 | 2934 | return 0; |
1e8f889b DG |
2935 | } |
2936 | ||
04f2cbe3 MG |
2937 | /* |
2938 | * If the process that created a MAP_PRIVATE mapping is about to | |
2939 | * perform a COW due to a shared page count, attempt to satisfy | |
2940 | * the allocation without using the existing reserves. The pagecache | |
2941 | * page is used to determine if the reserve at this address was | |
2942 | * consumed or not. If reserves were used, a partial faulted mapping | |
2943 | * at the time of fork() could consume its reserves on COW instead | |
2944 | * of the full address range. | |
2945 | */ | |
5944d011 | 2946 | if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && |
04f2cbe3 MG |
2947 | old_page != pagecache_page) |
2948 | outside_reserve = 1; | |
2949 | ||
1e8f889b | 2950 | page_cache_get(old_page); |
b76c8cfb | 2951 | |
ad4404a2 DB |
2952 | /* |
2953 | * Drop page table lock as buddy allocator may be called. It will | |
2954 | * be acquired again before returning to the caller, as expected. | |
2955 | */ | |
cb900f41 | 2956 | spin_unlock(ptl); |
04f2cbe3 | 2957 | new_page = alloc_huge_page(vma, address, outside_reserve); |
1e8f889b | 2958 | |
2fc39cec | 2959 | if (IS_ERR(new_page)) { |
04f2cbe3 MG |
2960 | /* |
2961 | * If a process owning a MAP_PRIVATE mapping fails to COW, | |
2962 | * it is due to references held by a child and an insufficient | |
2963 | * huge page pool. To guarantee the original mappers | |
2964 | * reliability, unmap the page from child processes. The child | |
2965 | * may get SIGKILLed if it later faults. | |
2966 | */ | |
2967 | if (outside_reserve) { | |
ad4404a2 | 2968 | page_cache_release(old_page); |
04f2cbe3 | 2969 | BUG_ON(huge_pte_none(pte)); |
2f4612af DB |
2970 | unmap_ref_private(mm, vma, old_page, address); |
2971 | BUG_ON(huge_pte_none(pte)); | |
2972 | spin_lock(ptl); | |
2973 | ptep = huge_pte_offset(mm, address & huge_page_mask(h)); | |
2974 | if (likely(ptep && | |
2975 | pte_same(huge_ptep_get(ptep), pte))) | |
2976 | goto retry_avoidcopy; | |
2977 | /* | |
2978 | * race occurs while re-acquiring page table | |
2979 | * lock, and our job is done. | |
2980 | */ | |
2981 | return 0; | |
04f2cbe3 MG |
2982 | } |
2983 | ||
ad4404a2 DB |
2984 | ret = (PTR_ERR(new_page) == -ENOMEM) ? |
2985 | VM_FAULT_OOM : VM_FAULT_SIGBUS; | |
2986 | goto out_release_old; | |
1e8f889b DG |
2987 | } |
2988 | ||
0fe6e20b NH |
2989 | /* |
2990 | * When the original hugepage is shared one, it does not have | |
2991 | * anon_vma prepared. | |
2992 | */ | |
44e2aa93 | 2993 | if (unlikely(anon_vma_prepare(vma))) { |
ad4404a2 DB |
2994 | ret = VM_FAULT_OOM; |
2995 | goto out_release_all; | |
44e2aa93 | 2996 | } |
0fe6e20b | 2997 | |
47ad8475 AA |
2998 | copy_user_huge_page(new_page, old_page, address, vma, |
2999 | pages_per_huge_page(h)); | |
0ed361de | 3000 | __SetPageUptodate(new_page); |
bcc54222 | 3001 | set_page_huge_active(new_page); |
1e8f889b | 3002 | |
2ec74c3e SG |
3003 | mmun_start = address & huge_page_mask(h); |
3004 | mmun_end = mmun_start + huge_page_size(h); | |
3005 | mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); | |
ad4404a2 | 3006 | |
b76c8cfb | 3007 | /* |
cb900f41 | 3008 | * Retake the page table lock to check for racing updates |
b76c8cfb LW |
3009 | * before the page tables are altered |
3010 | */ | |
cb900f41 | 3011 | spin_lock(ptl); |
a5516438 | 3012 | ptep = huge_pte_offset(mm, address & huge_page_mask(h)); |
a9af0c5d | 3013 | if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) { |
07443a85 JK |
3014 | ClearPagePrivate(new_page); |
3015 | ||
1e8f889b | 3016 | /* Break COW */ |
8fe627ec | 3017 | huge_ptep_clear_flush(vma, address, ptep); |
34ee645e | 3018 | mmu_notifier_invalidate_range(mm, mmun_start, mmun_end); |
1e8f889b DG |
3019 | set_huge_pte_at(mm, address, ptep, |
3020 | make_huge_pte(vma, new_page, 1)); | |
0fe6e20b | 3021 | page_remove_rmap(old_page); |
cd67f0d2 | 3022 | hugepage_add_new_anon_rmap(new_page, vma, address); |
1e8f889b DG |
3023 | /* Make the old page be freed below */ |
3024 | new_page = old_page; | |
3025 | } | |
cb900f41 | 3026 | spin_unlock(ptl); |
2ec74c3e | 3027 | mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); |
ad4404a2 | 3028 | out_release_all: |
1e8f889b | 3029 | page_cache_release(new_page); |
ad4404a2 | 3030 | out_release_old: |
1e8f889b | 3031 | page_cache_release(old_page); |
8312034f | 3032 | |
ad4404a2 DB |
3033 | spin_lock(ptl); /* Caller expects lock to be held */ |
3034 | return ret; | |
1e8f889b DG |
3035 | } |
3036 | ||
04f2cbe3 | 3037 | /* Return the pagecache page at a given address within a VMA */ |
a5516438 AK |
3038 | static struct page *hugetlbfs_pagecache_page(struct hstate *h, |
3039 | struct vm_area_struct *vma, unsigned long address) | |
04f2cbe3 MG |
3040 | { |
3041 | struct address_space *mapping; | |
e7c4b0bf | 3042 | pgoff_t idx; |
04f2cbe3 MG |
3043 | |
3044 | mapping = vma->vm_file->f_mapping; | |
a5516438 | 3045 | idx = vma_hugecache_offset(h, vma, address); |
04f2cbe3 MG |
3046 | |
3047 | return find_lock_page(mapping, idx); | |
3048 | } | |
3049 | ||
3ae77f43 HD |
3050 | /* |
3051 | * Return whether there is a pagecache page to back given address within VMA. | |
3052 | * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page. | |
3053 | */ | |
3054 | static bool hugetlbfs_pagecache_present(struct hstate *h, | |
2a15efc9 HD |
3055 | struct vm_area_struct *vma, unsigned long address) |
3056 | { | |
3057 | struct address_space *mapping; | |
3058 | pgoff_t idx; | |
3059 | struct page *page; | |
3060 | ||
3061 | mapping = vma->vm_file->f_mapping; | |
3062 | idx = vma_hugecache_offset(h, vma, address); | |
3063 | ||
3064 | page = find_get_page(mapping, idx); | |
3065 | if (page) | |
3066 | put_page(page); | |
3067 | return page != NULL; | |
3068 | } | |
3069 | ||
a1ed3dda | 3070 | static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma, |
8382d914 DB |
3071 | struct address_space *mapping, pgoff_t idx, |
3072 | unsigned long address, pte_t *ptep, unsigned int flags) | |
ac9b9c66 | 3073 | { |
a5516438 | 3074 | struct hstate *h = hstate_vma(vma); |
ac9b9c66 | 3075 | int ret = VM_FAULT_SIGBUS; |
409eb8c2 | 3076 | int anon_rmap = 0; |
4c887265 | 3077 | unsigned long size; |
4c887265 | 3078 | struct page *page; |
1e8f889b | 3079 | pte_t new_pte; |
cb900f41 | 3080 | spinlock_t *ptl; |
4c887265 | 3081 | |
04f2cbe3 MG |
3082 | /* |
3083 | * Currently, we are forced to kill the process in the event the | |
3084 | * original mapper has unmapped pages from the child due to a failed | |
25985edc | 3085 | * COW. Warn that such a situation has occurred as it may not be obvious |
04f2cbe3 MG |
3086 | */ |
3087 | if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) { | |
ffb22af5 AM |
3088 | pr_warning("PID %d killed due to inadequate hugepage pool\n", |
3089 | current->pid); | |
04f2cbe3 MG |
3090 | return ret; |
3091 | } | |
3092 | ||
4c887265 AL |
3093 | /* |
3094 | * Use page lock to guard against racing truncation | |
3095 | * before we get page_table_lock. | |
3096 | */ | |
6bda666a CL |
3097 | retry: |
3098 | page = find_lock_page(mapping, idx); | |
3099 | if (!page) { | |
a5516438 | 3100 | size = i_size_read(mapping->host) >> huge_page_shift(h); |
ebed4bfc HD |
3101 | if (idx >= size) |
3102 | goto out; | |
04f2cbe3 | 3103 | page = alloc_huge_page(vma, address, 0); |
2fc39cec | 3104 | if (IS_ERR(page)) { |
76dcee75 AK |
3105 | ret = PTR_ERR(page); |
3106 | if (ret == -ENOMEM) | |
3107 | ret = VM_FAULT_OOM; | |
3108 | else | |
3109 | ret = VM_FAULT_SIGBUS; | |
6bda666a CL |
3110 | goto out; |
3111 | } | |
47ad8475 | 3112 | clear_huge_page(page, address, pages_per_huge_page(h)); |
0ed361de | 3113 | __SetPageUptodate(page); |
bcc54222 | 3114 | set_page_huge_active(page); |
ac9b9c66 | 3115 | |
f83a275d | 3116 | if (vma->vm_flags & VM_MAYSHARE) { |
6bda666a | 3117 | int err; |
45c682a6 | 3118 | struct inode *inode = mapping->host; |
6bda666a CL |
3119 | |
3120 | err = add_to_page_cache(page, mapping, idx, GFP_KERNEL); | |
3121 | if (err) { | |
3122 | put_page(page); | |
6bda666a CL |
3123 | if (err == -EEXIST) |
3124 | goto retry; | |
3125 | goto out; | |
3126 | } | |
07443a85 | 3127 | ClearPagePrivate(page); |
45c682a6 KC |
3128 | |
3129 | spin_lock(&inode->i_lock); | |
a5516438 | 3130 | inode->i_blocks += blocks_per_huge_page(h); |
45c682a6 | 3131 | spin_unlock(&inode->i_lock); |
23be7468 | 3132 | } else { |
6bda666a | 3133 | lock_page(page); |
0fe6e20b NH |
3134 | if (unlikely(anon_vma_prepare(vma))) { |
3135 | ret = VM_FAULT_OOM; | |
3136 | goto backout_unlocked; | |
3137 | } | |
409eb8c2 | 3138 | anon_rmap = 1; |
23be7468 | 3139 | } |
0fe6e20b | 3140 | } else { |
998b4382 NH |
3141 | /* |
3142 | * If memory error occurs between mmap() and fault, some process | |
3143 | * don't have hwpoisoned swap entry for errored virtual address. | |
3144 | * So we need to block hugepage fault by PG_hwpoison bit check. | |
3145 | */ | |
3146 | if (unlikely(PageHWPoison(page))) { | |
32f84528 | 3147 | ret = VM_FAULT_HWPOISON | |
972dc4de | 3148 | VM_FAULT_SET_HINDEX(hstate_index(h)); |
998b4382 NH |
3149 | goto backout_unlocked; |
3150 | } | |
6bda666a | 3151 | } |
1e8f889b | 3152 | |
57303d80 AW |
3153 | /* |
3154 | * If we are going to COW a private mapping later, we examine the | |
3155 | * pending reservations for this page now. This will ensure that | |
3156 | * any allocations necessary to record that reservation occur outside | |
3157 | * the spinlock. | |
3158 | */ | |
788c7df4 | 3159 | if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) |
2b26736c AW |
3160 | if (vma_needs_reservation(h, vma, address) < 0) { |
3161 | ret = VM_FAULT_OOM; | |
3162 | goto backout_unlocked; | |
3163 | } | |
57303d80 | 3164 | |
cb900f41 KS |
3165 | ptl = huge_pte_lockptr(h, mm, ptep); |
3166 | spin_lock(ptl); | |
a5516438 | 3167 | size = i_size_read(mapping->host) >> huge_page_shift(h); |
4c887265 AL |
3168 | if (idx >= size) |
3169 | goto backout; | |
3170 | ||
83c54070 | 3171 | ret = 0; |
7f2e9525 | 3172 | if (!huge_pte_none(huge_ptep_get(ptep))) |
4c887265 AL |
3173 | goto backout; |
3174 | ||
07443a85 JK |
3175 | if (anon_rmap) { |
3176 | ClearPagePrivate(page); | |
409eb8c2 | 3177 | hugepage_add_new_anon_rmap(page, vma, address); |
ac714904 | 3178 | } else |
409eb8c2 | 3179 | page_dup_rmap(page); |
1e8f889b DG |
3180 | new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE) |
3181 | && (vma->vm_flags & VM_SHARED))); | |
3182 | set_huge_pte_at(mm, address, ptep, new_pte); | |
3183 | ||
788c7df4 | 3184 | if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { |
1e8f889b | 3185 | /* Optimization, do the COW without a second fault */ |
cb900f41 | 3186 | ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page, ptl); |
1e8f889b DG |
3187 | } |
3188 | ||
cb900f41 | 3189 | spin_unlock(ptl); |
4c887265 AL |
3190 | unlock_page(page); |
3191 | out: | |
ac9b9c66 | 3192 | return ret; |
4c887265 AL |
3193 | |
3194 | backout: | |
cb900f41 | 3195 | spin_unlock(ptl); |
2b26736c | 3196 | backout_unlocked: |
4c887265 AL |
3197 | unlock_page(page); |
3198 | put_page(page); | |
3199 | goto out; | |
ac9b9c66 HD |
3200 | } |
3201 | ||
8382d914 DB |
3202 | #ifdef CONFIG_SMP |
3203 | static u32 fault_mutex_hash(struct hstate *h, struct mm_struct *mm, | |
3204 | struct vm_area_struct *vma, | |
3205 | struct address_space *mapping, | |
3206 | pgoff_t idx, unsigned long address) | |
3207 | { | |
3208 | unsigned long key[2]; | |
3209 | u32 hash; | |
3210 | ||
3211 | if (vma->vm_flags & VM_SHARED) { | |
3212 | key[0] = (unsigned long) mapping; | |
3213 | key[1] = idx; | |
3214 | } else { | |
3215 | key[0] = (unsigned long) mm; | |
3216 | key[1] = address >> huge_page_shift(h); | |
3217 | } | |
3218 | ||
3219 | hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0); | |
3220 | ||
3221 | return hash & (num_fault_mutexes - 1); | |
3222 | } | |
3223 | #else | |
3224 | /* | |
3225 | * For uniprocesor systems we always use a single mutex, so just | |
3226 | * return 0 and avoid the hashing overhead. | |
3227 | */ | |
3228 | static u32 fault_mutex_hash(struct hstate *h, struct mm_struct *mm, | |
3229 | struct vm_area_struct *vma, | |
3230 | struct address_space *mapping, | |
3231 | pgoff_t idx, unsigned long address) | |
3232 | { | |
3233 | return 0; | |
3234 | } | |
3235 | #endif | |
3236 | ||
86e5216f | 3237 | int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma, |
788c7df4 | 3238 | unsigned long address, unsigned int flags) |
86e5216f | 3239 | { |
8382d914 | 3240 | pte_t *ptep, entry; |
cb900f41 | 3241 | spinlock_t *ptl; |
1e8f889b | 3242 | int ret; |
8382d914 DB |
3243 | u32 hash; |
3244 | pgoff_t idx; | |
0fe6e20b | 3245 | struct page *page = NULL; |
57303d80 | 3246 | struct page *pagecache_page = NULL; |
a5516438 | 3247 | struct hstate *h = hstate_vma(vma); |
8382d914 | 3248 | struct address_space *mapping; |
0f792cf9 | 3249 | int need_wait_lock = 0; |
86e5216f | 3250 | |
1e16a539 KH |
3251 | address &= huge_page_mask(h); |
3252 | ||
fd6a03ed NH |
3253 | ptep = huge_pte_offset(mm, address); |
3254 | if (ptep) { | |
3255 | entry = huge_ptep_get(ptep); | |
290408d4 | 3256 | if (unlikely(is_hugetlb_entry_migration(entry))) { |
cb900f41 | 3257 | migration_entry_wait_huge(vma, mm, ptep); |
290408d4 NH |
3258 | return 0; |
3259 | } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) | |
32f84528 | 3260 | return VM_FAULT_HWPOISON_LARGE | |
972dc4de | 3261 | VM_FAULT_SET_HINDEX(hstate_index(h)); |
fd6a03ed NH |
3262 | } |
3263 | ||
a5516438 | 3264 | ptep = huge_pte_alloc(mm, address, huge_page_size(h)); |
86e5216f AL |
3265 | if (!ptep) |
3266 | return VM_FAULT_OOM; | |
3267 | ||
8382d914 DB |
3268 | mapping = vma->vm_file->f_mapping; |
3269 | idx = vma_hugecache_offset(h, vma, address); | |
3270 | ||
3935baa9 DG |
3271 | /* |
3272 | * Serialize hugepage allocation and instantiation, so that we don't | |
3273 | * get spurious allocation failures if two CPUs race to instantiate | |
3274 | * the same page in the page cache. | |
3275 | */ | |
8382d914 DB |
3276 | hash = fault_mutex_hash(h, mm, vma, mapping, idx, address); |
3277 | mutex_lock(&htlb_fault_mutex_table[hash]); | |
3278 | ||
7f2e9525 GS |
3279 | entry = huge_ptep_get(ptep); |
3280 | if (huge_pte_none(entry)) { | |
8382d914 | 3281 | ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags); |
b4d1d99f | 3282 | goto out_mutex; |
3935baa9 | 3283 | } |
86e5216f | 3284 | |
83c54070 | 3285 | ret = 0; |
1e8f889b | 3286 | |
0f792cf9 NH |
3287 | /* |
3288 | * entry could be a migration/hwpoison entry at this point, so this | |
3289 | * check prevents the kernel from going below assuming that we have | |
3290 | * a active hugepage in pagecache. This goto expects the 2nd page fault, | |
3291 | * and is_hugetlb_entry_(migration|hwpoisoned) check will properly | |
3292 | * handle it. | |
3293 | */ | |
3294 | if (!pte_present(entry)) | |
3295 | goto out_mutex; | |
3296 | ||
57303d80 AW |
3297 | /* |
3298 | * If we are going to COW the mapping later, we examine the pending | |
3299 | * reservations for this page now. This will ensure that any | |
3300 | * allocations necessary to record that reservation occur outside the | |
3301 | * spinlock. For private mappings, we also lookup the pagecache | |
3302 | * page now as it is used to determine if a reservation has been | |
3303 | * consumed. | |
3304 | */ | |
106c992a | 3305 | if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) { |
2b26736c AW |
3306 | if (vma_needs_reservation(h, vma, address) < 0) { |
3307 | ret = VM_FAULT_OOM; | |
b4d1d99f | 3308 | goto out_mutex; |
2b26736c | 3309 | } |
57303d80 | 3310 | |
f83a275d | 3311 | if (!(vma->vm_flags & VM_MAYSHARE)) |
57303d80 AW |
3312 | pagecache_page = hugetlbfs_pagecache_page(h, |
3313 | vma, address); | |
3314 | } | |
3315 | ||
0f792cf9 NH |
3316 | ptl = huge_pte_lock(h, mm, ptep); |
3317 | ||
3318 | /* Check for a racing update before calling hugetlb_cow */ | |
3319 | if (unlikely(!pte_same(entry, huge_ptep_get(ptep)))) | |
3320 | goto out_ptl; | |
3321 | ||
56c9cfb1 NH |
3322 | /* |
3323 | * hugetlb_cow() requires page locks of pte_page(entry) and | |
3324 | * pagecache_page, so here we need take the former one | |
3325 | * when page != pagecache_page or !pagecache_page. | |
56c9cfb1 NH |
3326 | */ |
3327 | page = pte_page(entry); | |
3328 | if (page != pagecache_page) | |
0f792cf9 NH |
3329 | if (!trylock_page(page)) { |
3330 | need_wait_lock = 1; | |
3331 | goto out_ptl; | |
3332 | } | |
b4d1d99f | 3333 | |
0f792cf9 | 3334 | get_page(page); |
b4d1d99f | 3335 | |
788c7df4 | 3336 | if (flags & FAULT_FLAG_WRITE) { |
106c992a | 3337 | if (!huge_pte_write(entry)) { |
57303d80 | 3338 | ret = hugetlb_cow(mm, vma, address, ptep, entry, |
cb900f41 | 3339 | pagecache_page, ptl); |
0f792cf9 | 3340 | goto out_put_page; |
b4d1d99f | 3341 | } |
106c992a | 3342 | entry = huge_pte_mkdirty(entry); |
b4d1d99f DG |
3343 | } |
3344 | entry = pte_mkyoung(entry); | |
788c7df4 HD |
3345 | if (huge_ptep_set_access_flags(vma, address, ptep, entry, |
3346 | flags & FAULT_FLAG_WRITE)) | |
4b3073e1 | 3347 | update_mmu_cache(vma, address, ptep); |
0f792cf9 NH |
3348 | out_put_page: |
3349 | if (page != pagecache_page) | |
3350 | unlock_page(page); | |
3351 | put_page(page); | |
cb900f41 KS |
3352 | out_ptl: |
3353 | spin_unlock(ptl); | |
57303d80 AW |
3354 | |
3355 | if (pagecache_page) { | |
3356 | unlock_page(pagecache_page); | |
3357 | put_page(pagecache_page); | |
3358 | } | |
b4d1d99f | 3359 | out_mutex: |
8382d914 | 3360 | mutex_unlock(&htlb_fault_mutex_table[hash]); |
0f792cf9 NH |
3361 | /* |
3362 | * Generally it's safe to hold refcount during waiting page lock. But | |
3363 | * here we just wait to defer the next page fault to avoid busy loop and | |
3364 | * the page is not used after unlocked before returning from the current | |
3365 | * page fault. So we are safe from accessing freed page, even if we wait | |
3366 | * here without taking refcount. | |
3367 | */ | |
3368 | if (need_wait_lock) | |
3369 | wait_on_page_locked(page); | |
1e8f889b | 3370 | return ret; |
86e5216f AL |
3371 | } |
3372 | ||
28a35716 ML |
3373 | long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma, |
3374 | struct page **pages, struct vm_area_struct **vmas, | |
3375 | unsigned long *position, unsigned long *nr_pages, | |
3376 | long i, unsigned int flags) | |
63551ae0 | 3377 | { |
d5d4b0aa CK |
3378 | unsigned long pfn_offset; |
3379 | unsigned long vaddr = *position; | |
28a35716 | 3380 | unsigned long remainder = *nr_pages; |
a5516438 | 3381 | struct hstate *h = hstate_vma(vma); |
63551ae0 | 3382 | |
63551ae0 | 3383 | while (vaddr < vma->vm_end && remainder) { |
4c887265 | 3384 | pte_t *pte; |
cb900f41 | 3385 | spinlock_t *ptl = NULL; |
2a15efc9 | 3386 | int absent; |
4c887265 | 3387 | struct page *page; |
63551ae0 | 3388 | |
02057967 DR |
3389 | /* |
3390 | * If we have a pending SIGKILL, don't keep faulting pages and | |
3391 | * potentially allocating memory. | |
3392 | */ | |
3393 | if (unlikely(fatal_signal_pending(current))) { | |
3394 | remainder = 0; | |
3395 | break; | |
3396 | } | |
3397 | ||
4c887265 AL |
3398 | /* |
3399 | * Some archs (sparc64, sh*) have multiple pte_ts to | |
2a15efc9 | 3400 | * each hugepage. We have to make sure we get the |
4c887265 | 3401 | * first, for the page indexing below to work. |
cb900f41 KS |
3402 | * |
3403 | * Note that page table lock is not held when pte is null. | |
4c887265 | 3404 | */ |
a5516438 | 3405 | pte = huge_pte_offset(mm, vaddr & huge_page_mask(h)); |
cb900f41 KS |
3406 | if (pte) |
3407 | ptl = huge_pte_lock(h, mm, pte); | |
2a15efc9 HD |
3408 | absent = !pte || huge_pte_none(huge_ptep_get(pte)); |
3409 | ||
3410 | /* | |
3411 | * When coredumping, it suits get_dump_page if we just return | |
3ae77f43 HD |
3412 | * an error where there's an empty slot with no huge pagecache |
3413 | * to back it. This way, we avoid allocating a hugepage, and | |
3414 | * the sparse dumpfile avoids allocating disk blocks, but its | |
3415 | * huge holes still show up with zeroes where they need to be. | |
2a15efc9 | 3416 | */ |
3ae77f43 HD |
3417 | if (absent && (flags & FOLL_DUMP) && |
3418 | !hugetlbfs_pagecache_present(h, vma, vaddr)) { | |
cb900f41 KS |
3419 | if (pte) |
3420 | spin_unlock(ptl); | |
2a15efc9 HD |
3421 | remainder = 0; |
3422 | break; | |
3423 | } | |
63551ae0 | 3424 | |
9cc3a5bd NH |
3425 | /* |
3426 | * We need call hugetlb_fault for both hugepages under migration | |
3427 | * (in which case hugetlb_fault waits for the migration,) and | |
3428 | * hwpoisoned hugepages (in which case we need to prevent the | |
3429 | * caller from accessing to them.) In order to do this, we use | |
3430 | * here is_swap_pte instead of is_hugetlb_entry_migration and | |
3431 | * is_hugetlb_entry_hwpoisoned. This is because it simply covers | |
3432 | * both cases, and because we can't follow correct pages | |
3433 | * directly from any kind of swap entries. | |
3434 | */ | |
3435 | if (absent || is_swap_pte(huge_ptep_get(pte)) || | |
106c992a GS |
3436 | ((flags & FOLL_WRITE) && |
3437 | !huge_pte_write(huge_ptep_get(pte)))) { | |
4c887265 | 3438 | int ret; |
63551ae0 | 3439 | |
cb900f41 KS |
3440 | if (pte) |
3441 | spin_unlock(ptl); | |
2a15efc9 HD |
3442 | ret = hugetlb_fault(mm, vma, vaddr, |
3443 | (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0); | |
a89182c7 | 3444 | if (!(ret & VM_FAULT_ERROR)) |
4c887265 | 3445 | continue; |
63551ae0 | 3446 | |
4c887265 | 3447 | remainder = 0; |
4c887265 AL |
3448 | break; |
3449 | } | |
3450 | ||
a5516438 | 3451 | pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT; |
7f2e9525 | 3452 | page = pte_page(huge_ptep_get(pte)); |
d5d4b0aa | 3453 | same_page: |
d6692183 | 3454 | if (pages) { |
2a15efc9 | 3455 | pages[i] = mem_map_offset(page, pfn_offset); |
a0368d4e | 3456 | get_page_foll(pages[i]); |
d6692183 | 3457 | } |
63551ae0 DG |
3458 | |
3459 | if (vmas) | |
3460 | vmas[i] = vma; | |
3461 | ||
3462 | vaddr += PAGE_SIZE; | |
d5d4b0aa | 3463 | ++pfn_offset; |
63551ae0 DG |
3464 | --remainder; |
3465 | ++i; | |
d5d4b0aa | 3466 | if (vaddr < vma->vm_end && remainder && |
a5516438 | 3467 | pfn_offset < pages_per_huge_page(h)) { |
d5d4b0aa CK |
3468 | /* |
3469 | * We use pfn_offset to avoid touching the pageframes | |
3470 | * of this compound page. | |
3471 | */ | |
3472 | goto same_page; | |
3473 | } | |
cb900f41 | 3474 | spin_unlock(ptl); |
63551ae0 | 3475 | } |
28a35716 | 3476 | *nr_pages = remainder; |
63551ae0 DG |
3477 | *position = vaddr; |
3478 | ||
2a15efc9 | 3479 | return i ? i : -EFAULT; |
63551ae0 | 3480 | } |
8f860591 | 3481 | |
7da4d641 | 3482 | unsigned long hugetlb_change_protection(struct vm_area_struct *vma, |
8f860591 ZY |
3483 | unsigned long address, unsigned long end, pgprot_t newprot) |
3484 | { | |
3485 | struct mm_struct *mm = vma->vm_mm; | |
3486 | unsigned long start = address; | |
3487 | pte_t *ptep; | |
3488 | pte_t pte; | |
a5516438 | 3489 | struct hstate *h = hstate_vma(vma); |
7da4d641 | 3490 | unsigned long pages = 0; |
8f860591 ZY |
3491 | |
3492 | BUG_ON(address >= end); | |
3493 | flush_cache_range(vma, address, end); | |
3494 | ||
a5338093 | 3495 | mmu_notifier_invalidate_range_start(mm, start, end); |
83cde9e8 | 3496 | i_mmap_lock_write(vma->vm_file->f_mapping); |
a5516438 | 3497 | for (; address < end; address += huge_page_size(h)) { |
cb900f41 | 3498 | spinlock_t *ptl; |
8f860591 ZY |
3499 | ptep = huge_pte_offset(mm, address); |
3500 | if (!ptep) | |
3501 | continue; | |
cb900f41 | 3502 | ptl = huge_pte_lock(h, mm, ptep); |
7da4d641 PZ |
3503 | if (huge_pmd_unshare(mm, &address, ptep)) { |
3504 | pages++; | |
cb900f41 | 3505 | spin_unlock(ptl); |
39dde65c | 3506 | continue; |
7da4d641 | 3507 | } |
a8bda28d NH |
3508 | pte = huge_ptep_get(ptep); |
3509 | if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) { | |
3510 | spin_unlock(ptl); | |
3511 | continue; | |
3512 | } | |
3513 | if (unlikely(is_hugetlb_entry_migration(pte))) { | |
3514 | swp_entry_t entry = pte_to_swp_entry(pte); | |
3515 | ||
3516 | if (is_write_migration_entry(entry)) { | |
3517 | pte_t newpte; | |
3518 | ||
3519 | make_migration_entry_read(&entry); | |
3520 | newpte = swp_entry_to_pte(entry); | |
3521 | set_huge_pte_at(mm, address, ptep, newpte); | |
3522 | pages++; | |
3523 | } | |
3524 | spin_unlock(ptl); | |
3525 | continue; | |
3526 | } | |
3527 | if (!huge_pte_none(pte)) { | |
8f860591 | 3528 | pte = huge_ptep_get_and_clear(mm, address, ptep); |
106c992a | 3529 | pte = pte_mkhuge(huge_pte_modify(pte, newprot)); |
be7517d6 | 3530 | pte = arch_make_huge_pte(pte, vma, NULL, 0); |
8f860591 | 3531 | set_huge_pte_at(mm, address, ptep, pte); |
7da4d641 | 3532 | pages++; |
8f860591 | 3533 | } |
cb900f41 | 3534 | spin_unlock(ptl); |
8f860591 | 3535 | } |
d833352a | 3536 | /* |
c8c06efa | 3537 | * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare |
d833352a | 3538 | * may have cleared our pud entry and done put_page on the page table: |
c8c06efa | 3539 | * once we release i_mmap_rwsem, another task can do the final put_page |
d833352a MG |
3540 | * and that page table be reused and filled with junk. |
3541 | */ | |
8f860591 | 3542 | flush_tlb_range(vma, start, end); |
34ee645e | 3543 | mmu_notifier_invalidate_range(mm, start, end); |
83cde9e8 | 3544 | i_mmap_unlock_write(vma->vm_file->f_mapping); |
a5338093 | 3545 | mmu_notifier_invalidate_range_end(mm, start, end); |
7da4d641 PZ |
3546 | |
3547 | return pages << h->order; | |
8f860591 ZY |
3548 | } |
3549 | ||
a1e78772 MG |
3550 | int hugetlb_reserve_pages(struct inode *inode, |
3551 | long from, long to, | |
5a6fe125 | 3552 | struct vm_area_struct *vma, |
ca16d140 | 3553 | vm_flags_t vm_flags) |
e4e574b7 | 3554 | { |
17c9d12e | 3555 | long ret, chg; |
a5516438 | 3556 | struct hstate *h = hstate_inode(inode); |
90481622 | 3557 | struct hugepage_subpool *spool = subpool_inode(inode); |
9119a41e | 3558 | struct resv_map *resv_map; |
1c5ecae3 | 3559 | long gbl_reserve; |
e4e574b7 | 3560 | |
17c9d12e MG |
3561 | /* |
3562 | * Only apply hugepage reservation if asked. At fault time, an | |
3563 | * attempt will be made for VM_NORESERVE to allocate a page | |
90481622 | 3564 | * without using reserves |
17c9d12e | 3565 | */ |
ca16d140 | 3566 | if (vm_flags & VM_NORESERVE) |
17c9d12e MG |
3567 | return 0; |
3568 | ||
a1e78772 MG |
3569 | /* |
3570 | * Shared mappings base their reservation on the number of pages that | |
3571 | * are already allocated on behalf of the file. Private mappings need | |
3572 | * to reserve the full area even if read-only as mprotect() may be | |
3573 | * called to make the mapping read-write. Assume !vma is a shm mapping | |
3574 | */ | |
9119a41e | 3575 | if (!vma || vma->vm_flags & VM_MAYSHARE) { |
4e35f483 | 3576 | resv_map = inode_resv_map(inode); |
9119a41e | 3577 | |
1406ec9b | 3578 | chg = region_chg(resv_map, from, to); |
9119a41e JK |
3579 | |
3580 | } else { | |
3581 | resv_map = resv_map_alloc(); | |
17c9d12e MG |
3582 | if (!resv_map) |
3583 | return -ENOMEM; | |
3584 | ||
a1e78772 | 3585 | chg = to - from; |
84afd99b | 3586 | |
17c9d12e MG |
3587 | set_vma_resv_map(vma, resv_map); |
3588 | set_vma_resv_flags(vma, HPAGE_RESV_OWNER); | |
3589 | } | |
3590 | ||
c50ac050 DH |
3591 | if (chg < 0) { |
3592 | ret = chg; | |
3593 | goto out_err; | |
3594 | } | |
8a630112 | 3595 | |
1c5ecae3 MK |
3596 | /* |
3597 | * There must be enough pages in the subpool for the mapping. If | |
3598 | * the subpool has a minimum size, there may be some global | |
3599 | * reservations already in place (gbl_reserve). | |
3600 | */ | |
3601 | gbl_reserve = hugepage_subpool_get_pages(spool, chg); | |
3602 | if (gbl_reserve < 0) { | |
c50ac050 DH |
3603 | ret = -ENOSPC; |
3604 | goto out_err; | |
3605 | } | |
5a6fe125 MG |
3606 | |
3607 | /* | |
17c9d12e | 3608 | * Check enough hugepages are available for the reservation. |
90481622 | 3609 | * Hand the pages back to the subpool if there are not |
5a6fe125 | 3610 | */ |
1c5ecae3 | 3611 | ret = hugetlb_acct_memory(h, gbl_reserve); |
68842c9b | 3612 | if (ret < 0) { |
1c5ecae3 MK |
3613 | /* put back original number of pages, chg */ |
3614 | (void)hugepage_subpool_put_pages(spool, chg); | |
c50ac050 | 3615 | goto out_err; |
68842c9b | 3616 | } |
17c9d12e MG |
3617 | |
3618 | /* | |
3619 | * Account for the reservations made. Shared mappings record regions | |
3620 | * that have reservations as they are shared by multiple VMAs. | |
3621 | * When the last VMA disappears, the region map says how much | |
3622 | * the reservation was and the page cache tells how much of | |
3623 | * the reservation was consumed. Private mappings are per-VMA and | |
3624 | * only the consumed reservations are tracked. When the VMA | |
3625 | * disappears, the original reservation is the VMA size and the | |
3626 | * consumed reservations are stored in the map. Hence, nothing | |
3627 | * else has to be done for private mappings here | |
3628 | */ | |
f83a275d | 3629 | if (!vma || vma->vm_flags & VM_MAYSHARE) |
1406ec9b | 3630 | region_add(resv_map, from, to); |
a43a8c39 | 3631 | return 0; |
c50ac050 | 3632 | out_err: |
f031dd27 JK |
3633 | if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) |
3634 | kref_put(&resv_map->refs, resv_map_release); | |
c50ac050 | 3635 | return ret; |
a43a8c39 CK |
3636 | } |
3637 | ||
3638 | void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed) | |
3639 | { | |
a5516438 | 3640 | struct hstate *h = hstate_inode(inode); |
4e35f483 | 3641 | struct resv_map *resv_map = inode_resv_map(inode); |
9119a41e | 3642 | long chg = 0; |
90481622 | 3643 | struct hugepage_subpool *spool = subpool_inode(inode); |
1c5ecae3 | 3644 | long gbl_reserve; |
45c682a6 | 3645 | |
9119a41e | 3646 | if (resv_map) |
1406ec9b | 3647 | chg = region_truncate(resv_map, offset); |
45c682a6 | 3648 | spin_lock(&inode->i_lock); |
e4c6f8be | 3649 | inode->i_blocks -= (blocks_per_huge_page(h) * freed); |
45c682a6 KC |
3650 | spin_unlock(&inode->i_lock); |
3651 | ||
1c5ecae3 MK |
3652 | /* |
3653 | * If the subpool has a minimum size, the number of global | |
3654 | * reservations to be released may be adjusted. | |
3655 | */ | |
3656 | gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed)); | |
3657 | hugetlb_acct_memory(h, -gbl_reserve); | |
a43a8c39 | 3658 | } |
93f70f90 | 3659 | |
3212b535 SC |
3660 | #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE |
3661 | static unsigned long page_table_shareable(struct vm_area_struct *svma, | |
3662 | struct vm_area_struct *vma, | |
3663 | unsigned long addr, pgoff_t idx) | |
3664 | { | |
3665 | unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) + | |
3666 | svma->vm_start; | |
3667 | unsigned long sbase = saddr & PUD_MASK; | |
3668 | unsigned long s_end = sbase + PUD_SIZE; | |
3669 | ||
3670 | /* Allow segments to share if only one is marked locked */ | |
3671 | unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED; | |
3672 | unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED; | |
3673 | ||
3674 | /* | |
3675 | * match the virtual addresses, permission and the alignment of the | |
3676 | * page table page. | |
3677 | */ | |
3678 | if (pmd_index(addr) != pmd_index(saddr) || | |
3679 | vm_flags != svm_flags || | |
3680 | sbase < svma->vm_start || svma->vm_end < s_end) | |
3681 | return 0; | |
3682 | ||
3683 | return saddr; | |
3684 | } | |
3685 | ||
3686 | static int vma_shareable(struct vm_area_struct *vma, unsigned long addr) | |
3687 | { | |
3688 | unsigned long base = addr & PUD_MASK; | |
3689 | unsigned long end = base + PUD_SIZE; | |
3690 | ||
3691 | /* | |
3692 | * check on proper vm_flags and page table alignment | |
3693 | */ | |
3694 | if (vma->vm_flags & VM_MAYSHARE && | |
3695 | vma->vm_start <= base && end <= vma->vm_end) | |
3696 | return 1; | |
3697 | return 0; | |
3698 | } | |
3699 | ||
3700 | /* | |
3701 | * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc() | |
3702 | * and returns the corresponding pte. While this is not necessary for the | |
3703 | * !shared pmd case because we can allocate the pmd later as well, it makes the | |
3704 | * code much cleaner. pmd allocation is essential for the shared case because | |
c8c06efa | 3705 | * pud has to be populated inside the same i_mmap_rwsem section - otherwise |
3212b535 SC |
3706 | * racing tasks could either miss the sharing (see huge_pte_offset) or select a |
3707 | * bad pmd for sharing. | |
3708 | */ | |
3709 | pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud) | |
3710 | { | |
3711 | struct vm_area_struct *vma = find_vma(mm, addr); | |
3712 | struct address_space *mapping = vma->vm_file->f_mapping; | |
3713 | pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + | |
3714 | vma->vm_pgoff; | |
3715 | struct vm_area_struct *svma; | |
3716 | unsigned long saddr; | |
3717 | pte_t *spte = NULL; | |
3718 | pte_t *pte; | |
cb900f41 | 3719 | spinlock_t *ptl; |
3212b535 SC |
3720 | |
3721 | if (!vma_shareable(vma, addr)) | |
3722 | return (pte_t *)pmd_alloc(mm, pud, addr); | |
3723 | ||
83cde9e8 | 3724 | i_mmap_lock_write(mapping); |
3212b535 SC |
3725 | vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) { |
3726 | if (svma == vma) | |
3727 | continue; | |
3728 | ||
3729 | saddr = page_table_shareable(svma, vma, addr, idx); | |
3730 | if (saddr) { | |
3731 | spte = huge_pte_offset(svma->vm_mm, saddr); | |
3732 | if (spte) { | |
dc6c9a35 | 3733 | mm_inc_nr_pmds(mm); |
3212b535 SC |
3734 | get_page(virt_to_page(spte)); |
3735 | break; | |
3736 | } | |
3737 | } | |
3738 | } | |
3739 | ||
3740 | if (!spte) | |
3741 | goto out; | |
3742 | ||
cb900f41 KS |
3743 | ptl = huge_pte_lockptr(hstate_vma(vma), mm, spte); |
3744 | spin_lock(ptl); | |
dc6c9a35 | 3745 | if (pud_none(*pud)) { |
3212b535 SC |
3746 | pud_populate(mm, pud, |
3747 | (pmd_t *)((unsigned long)spte & PAGE_MASK)); | |
dc6c9a35 | 3748 | } else { |
3212b535 | 3749 | put_page(virt_to_page(spte)); |
dc6c9a35 KS |
3750 | mm_inc_nr_pmds(mm); |
3751 | } | |
cb900f41 | 3752 | spin_unlock(ptl); |
3212b535 SC |
3753 | out: |
3754 | pte = (pte_t *)pmd_alloc(mm, pud, addr); | |
83cde9e8 | 3755 | i_mmap_unlock_write(mapping); |
3212b535 SC |
3756 | return pte; |
3757 | } | |
3758 | ||
3759 | /* | |
3760 | * unmap huge page backed by shared pte. | |
3761 | * | |
3762 | * Hugetlb pte page is ref counted at the time of mapping. If pte is shared | |
3763 | * indicated by page_count > 1, unmap is achieved by clearing pud and | |
3764 | * decrementing the ref count. If count == 1, the pte page is not shared. | |
3765 | * | |
cb900f41 | 3766 | * called with page table lock held. |
3212b535 SC |
3767 | * |
3768 | * returns: 1 successfully unmapped a shared pte page | |
3769 | * 0 the underlying pte page is not shared, or it is the last user | |
3770 | */ | |
3771 | int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep) | |
3772 | { | |
3773 | pgd_t *pgd = pgd_offset(mm, *addr); | |
3774 | pud_t *pud = pud_offset(pgd, *addr); | |
3775 | ||
3776 | BUG_ON(page_count(virt_to_page(ptep)) == 0); | |
3777 | if (page_count(virt_to_page(ptep)) == 1) | |
3778 | return 0; | |
3779 | ||
3780 | pud_clear(pud); | |
3781 | put_page(virt_to_page(ptep)); | |
dc6c9a35 | 3782 | mm_dec_nr_pmds(mm); |
3212b535 SC |
3783 | *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE; |
3784 | return 1; | |
3785 | } | |
9e5fc74c SC |
3786 | #define want_pmd_share() (1) |
3787 | #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ | |
3788 | pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud) | |
3789 | { | |
3790 | return NULL; | |
3791 | } | |
3792 | #define want_pmd_share() (0) | |
3212b535 SC |
3793 | #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ |
3794 | ||
9e5fc74c SC |
3795 | #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB |
3796 | pte_t *huge_pte_alloc(struct mm_struct *mm, | |
3797 | unsigned long addr, unsigned long sz) | |
3798 | { | |
3799 | pgd_t *pgd; | |
3800 | pud_t *pud; | |
3801 | pte_t *pte = NULL; | |
3802 | ||
3803 | pgd = pgd_offset(mm, addr); | |
3804 | pud = pud_alloc(mm, pgd, addr); | |
3805 | if (pud) { | |
3806 | if (sz == PUD_SIZE) { | |
3807 | pte = (pte_t *)pud; | |
3808 | } else { | |
3809 | BUG_ON(sz != PMD_SIZE); | |
3810 | if (want_pmd_share() && pud_none(*pud)) | |
3811 | pte = huge_pmd_share(mm, addr, pud); | |
3812 | else | |
3813 | pte = (pte_t *)pmd_alloc(mm, pud, addr); | |
3814 | } | |
3815 | } | |
3816 | BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte)); | |
3817 | ||
3818 | return pte; | |
3819 | } | |
3820 | ||
3821 | pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr) | |
3822 | { | |
3823 | pgd_t *pgd; | |
3824 | pud_t *pud; | |
3825 | pmd_t *pmd = NULL; | |
3826 | ||
3827 | pgd = pgd_offset(mm, addr); | |
3828 | if (pgd_present(*pgd)) { | |
3829 | pud = pud_offset(pgd, addr); | |
3830 | if (pud_present(*pud)) { | |
3831 | if (pud_huge(*pud)) | |
3832 | return (pte_t *)pud; | |
3833 | pmd = pmd_offset(pud, addr); | |
3834 | } | |
3835 | } | |
3836 | return (pte_t *) pmd; | |
3837 | } | |
3838 | ||
61f77eda NH |
3839 | #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */ |
3840 | ||
3841 | /* | |
3842 | * These functions are overwritable if your architecture needs its own | |
3843 | * behavior. | |
3844 | */ | |
3845 | struct page * __weak | |
3846 | follow_huge_addr(struct mm_struct *mm, unsigned long address, | |
3847 | int write) | |
3848 | { | |
3849 | return ERR_PTR(-EINVAL); | |
3850 | } | |
3851 | ||
3852 | struct page * __weak | |
9e5fc74c | 3853 | follow_huge_pmd(struct mm_struct *mm, unsigned long address, |
e66f17ff | 3854 | pmd_t *pmd, int flags) |
9e5fc74c | 3855 | { |
e66f17ff NH |
3856 | struct page *page = NULL; |
3857 | spinlock_t *ptl; | |
3858 | retry: | |
3859 | ptl = pmd_lockptr(mm, pmd); | |
3860 | spin_lock(ptl); | |
3861 | /* | |
3862 | * make sure that the address range covered by this pmd is not | |
3863 | * unmapped from other threads. | |
3864 | */ | |
3865 | if (!pmd_huge(*pmd)) | |
3866 | goto out; | |
3867 | if (pmd_present(*pmd)) { | |
97534127 | 3868 | page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT); |
e66f17ff NH |
3869 | if (flags & FOLL_GET) |
3870 | get_page(page); | |
3871 | } else { | |
3872 | if (is_hugetlb_entry_migration(huge_ptep_get((pte_t *)pmd))) { | |
3873 | spin_unlock(ptl); | |
3874 | __migration_entry_wait(mm, (pte_t *)pmd, ptl); | |
3875 | goto retry; | |
3876 | } | |
3877 | /* | |
3878 | * hwpoisoned entry is treated as no_page_table in | |
3879 | * follow_page_mask(). | |
3880 | */ | |
3881 | } | |
3882 | out: | |
3883 | spin_unlock(ptl); | |
9e5fc74c SC |
3884 | return page; |
3885 | } | |
3886 | ||
61f77eda | 3887 | struct page * __weak |
9e5fc74c | 3888 | follow_huge_pud(struct mm_struct *mm, unsigned long address, |
e66f17ff | 3889 | pud_t *pud, int flags) |
9e5fc74c | 3890 | { |
e66f17ff NH |
3891 | if (flags & FOLL_GET) |
3892 | return NULL; | |
9e5fc74c | 3893 | |
e66f17ff | 3894 | return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT); |
9e5fc74c SC |
3895 | } |
3896 | ||
d5bd9106 AK |
3897 | #ifdef CONFIG_MEMORY_FAILURE |
3898 | ||
93f70f90 NH |
3899 | /* |
3900 | * This function is called from memory failure code. | |
3901 | * Assume the caller holds page lock of the head page. | |
3902 | */ | |
6de2b1aa | 3903 | int dequeue_hwpoisoned_huge_page(struct page *hpage) |
93f70f90 NH |
3904 | { |
3905 | struct hstate *h = page_hstate(hpage); | |
3906 | int nid = page_to_nid(hpage); | |
6de2b1aa | 3907 | int ret = -EBUSY; |
93f70f90 NH |
3908 | |
3909 | spin_lock(&hugetlb_lock); | |
7e1f049e NH |
3910 | /* |
3911 | * Just checking !page_huge_active is not enough, because that could be | |
3912 | * an isolated/hwpoisoned hugepage (which have >0 refcount). | |
3913 | */ | |
3914 | if (!page_huge_active(hpage) && !page_count(hpage)) { | |
56f2fb14 NH |
3915 | /* |
3916 | * Hwpoisoned hugepage isn't linked to activelist or freelist, | |
3917 | * but dangling hpage->lru can trigger list-debug warnings | |
3918 | * (this happens when we call unpoison_memory() on it), | |
3919 | * so let it point to itself with list_del_init(). | |
3920 | */ | |
3921 | list_del_init(&hpage->lru); | |
8c6c2ecb | 3922 | set_page_refcounted(hpage); |
6de2b1aa NH |
3923 | h->free_huge_pages--; |
3924 | h->free_huge_pages_node[nid]--; | |
3925 | ret = 0; | |
3926 | } | |
93f70f90 | 3927 | spin_unlock(&hugetlb_lock); |
6de2b1aa | 3928 | return ret; |
93f70f90 | 3929 | } |
6de2b1aa | 3930 | #endif |
31caf665 NH |
3931 | |
3932 | bool isolate_huge_page(struct page *page, struct list_head *list) | |
3933 | { | |
bcc54222 NH |
3934 | bool ret = true; |
3935 | ||
309381fe | 3936 | VM_BUG_ON_PAGE(!PageHead(page), page); |
31caf665 | 3937 | spin_lock(&hugetlb_lock); |
bcc54222 NH |
3938 | if (!page_huge_active(page) || !get_page_unless_zero(page)) { |
3939 | ret = false; | |
3940 | goto unlock; | |
3941 | } | |
3942 | clear_page_huge_active(page); | |
31caf665 | 3943 | list_move_tail(&page->lru, list); |
bcc54222 | 3944 | unlock: |
31caf665 | 3945 | spin_unlock(&hugetlb_lock); |
bcc54222 | 3946 | return ret; |
31caf665 NH |
3947 | } |
3948 | ||
3949 | void putback_active_hugepage(struct page *page) | |
3950 | { | |
309381fe | 3951 | VM_BUG_ON_PAGE(!PageHead(page), page); |
31caf665 | 3952 | spin_lock(&hugetlb_lock); |
bcc54222 | 3953 | set_page_huge_active(page); |
31caf665 NH |
3954 | list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist); |
3955 | spin_unlock(&hugetlb_lock); | |
3956 | put_page(page); | |
3957 | } |