mm, thp: relax the VM_DENYWRITE constraint on file-backed THPs
[linux-block.git] / mm / huge_memory.c
CommitLineData
20c8ccb1 1// SPDX-License-Identifier: GPL-2.0-only
71e3aac0
AA
2/*
3 * Copyright (C) 2009 Red Hat, Inc.
71e3aac0
AA
4 */
5
ae3a8c1c
AM
6#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7
71e3aac0
AA
8#include <linux/mm.h>
9#include <linux/sched.h>
fa6c0231 10#include <linux/sched/mm.h>
f7ccbae4 11#include <linux/sched/coredump.h>
6a3827d7 12#include <linux/sched/numa_balancing.h>
71e3aac0
AA
13#include <linux/highmem.h>
14#include <linux/hugetlb.h>
15#include <linux/mmu_notifier.h>
16#include <linux/rmap.h>
17#include <linux/swap.h>
97ae1749 18#include <linux/shrinker.h>
ba76149f 19#include <linux/mm_inline.h>
e9b61f19 20#include <linux/swapops.h>
4897c765 21#include <linux/dax.h>
ba76149f 22#include <linux/khugepaged.h>
878aee7d 23#include <linux/freezer.h>
f25748e3 24#include <linux/pfn_t.h>
a664b2d8 25#include <linux/mman.h>
3565fce3 26#include <linux/memremap.h>
325adeb5 27#include <linux/pagemap.h>
49071d43 28#include <linux/debugfs.h>
4daae3b4 29#include <linux/migrate.h>
43b5fbbd 30#include <linux/hashtable.h>
6b251fc9 31#include <linux/userfaultfd_k.h>
33c3fc71 32#include <linux/page_idle.h>
baa355fd 33#include <linux/shmem_fs.h>
6b31d595 34#include <linux/oom.h>
98fa15f3 35#include <linux/numa.h>
f7da677b 36#include <linux/page_owner.h>
97ae1749 37
71e3aac0
AA
38#include <asm/tlb.h>
39#include <asm/pgalloc.h>
40#include "internal.h"
41
ba76149f 42/*
b14d595a
MD
43 * By default, transparent hugepage support is disabled in order to avoid
44 * risking an increased memory footprint for applications that are not
45 * guaranteed to benefit from it. When transparent hugepage support is
46 * enabled, it is for all mappings, and khugepaged scans all mappings.
8bfa3f9a
JW
47 * Defrag is invoked by khugepaged hugepage allocations and by page faults
48 * for all hugepage allocations.
ba76149f 49 */
71e3aac0 50unsigned long transparent_hugepage_flags __read_mostly =
13ece886 51#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
ba76149f 52 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
13ece886
AA
53#endif
54#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
55 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
56#endif
444eb2a4 57 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
79da5407
KS
58 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
59 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
ba76149f 60
9a982250 61static struct shrinker deferred_split_shrinker;
f000565a 62
97ae1749 63static atomic_t huge_zero_refcount;
56873f43 64struct page *huge_zero_page __read_mostly;
3b77e8c8 65unsigned long huge_zero_pfn __read_mostly = ~0UL;
4a6c1297 66
e6be37b2
ML
67static inline bool file_thp_enabled(struct vm_area_struct *vma)
68{
69 return transhuge_vma_enabled(vma, vma->vm_flags) && vma->vm_file &&
70 !inode_is_open_for_write(vma->vm_file->f_inode) &&
71 (vma->vm_flags & VM_EXEC);
72}
73
74bool transparent_hugepage_active(struct vm_area_struct *vma)
7635d9cb 75{
c0630669
YS
76 /* The addr is used to check if the vma size fits */
77 unsigned long addr = (vma->vm_end & HPAGE_PMD_MASK) - HPAGE_PMD_SIZE;
78
79 if (!transhuge_vma_suitable(vma, addr))
80 return false;
7635d9cb
MH
81 if (vma_is_anonymous(vma))
82 return __transparent_hugepage_enabled(vma);
c0630669
YS
83 if (vma_is_shmem(vma))
84 return shmem_huge_enabled(vma);
e6be37b2
ML
85 if (IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS))
86 return file_thp_enabled(vma);
7635d9cb
MH
87
88 return false;
89}
90
aaa9705b 91static bool get_huge_zero_page(void)
97ae1749
KS
92{
93 struct page *zero_page;
94retry:
95 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
aaa9705b 96 return true;
97ae1749
KS
97
98 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
4a6c1297 99 HPAGE_PMD_ORDER);
d8a8e1f0
KS
100 if (!zero_page) {
101 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
aaa9705b 102 return false;
d8a8e1f0
KS
103 }
104 count_vm_event(THP_ZERO_PAGE_ALLOC);
97ae1749 105 preempt_disable();
5918d10a 106 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
97ae1749 107 preempt_enable();
5ddacbe9 108 __free_pages(zero_page, compound_order(zero_page));
97ae1749
KS
109 goto retry;
110 }
3b77e8c8 111 WRITE_ONCE(huge_zero_pfn, page_to_pfn(zero_page));
97ae1749
KS
112
113 /* We take additional reference here. It will be put back by shrinker */
114 atomic_set(&huge_zero_refcount, 2);
115 preempt_enable();
aaa9705b 116 return true;
4a6c1297
KS
117}
118
6fcb52a5 119static void put_huge_zero_page(void)
4a6c1297 120{
97ae1749
KS
121 /*
122 * Counter should never go to zero here. Only shrinker can put
123 * last reference.
124 */
125 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
4a6c1297
KS
126}
127
6fcb52a5
AL
128struct page *mm_get_huge_zero_page(struct mm_struct *mm)
129{
130 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
131 return READ_ONCE(huge_zero_page);
132
133 if (!get_huge_zero_page())
134 return NULL;
135
136 if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
137 put_huge_zero_page();
138
139 return READ_ONCE(huge_zero_page);
140}
141
142void mm_put_huge_zero_page(struct mm_struct *mm)
143{
144 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
145 put_huge_zero_page();
146}
147
48896466
GC
148static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
149 struct shrink_control *sc)
4a6c1297 150{
48896466
GC
151 /* we can free zero page only if last reference remains */
152 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
153}
97ae1749 154
48896466
GC
155static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
156 struct shrink_control *sc)
157{
97ae1749 158 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
5918d10a
KS
159 struct page *zero_page = xchg(&huge_zero_page, NULL);
160 BUG_ON(zero_page == NULL);
3b77e8c8 161 WRITE_ONCE(huge_zero_pfn, ~0UL);
5ddacbe9 162 __free_pages(zero_page, compound_order(zero_page));
48896466 163 return HPAGE_PMD_NR;
97ae1749
KS
164 }
165
166 return 0;
4a6c1297
KS
167}
168
97ae1749 169static struct shrinker huge_zero_page_shrinker = {
48896466
GC
170 .count_objects = shrink_huge_zero_page_count,
171 .scan_objects = shrink_huge_zero_page_scan,
97ae1749
KS
172 .seeks = DEFAULT_SEEKS,
173};
174
71e3aac0 175#ifdef CONFIG_SYSFS
71e3aac0
AA
176static ssize_t enabled_show(struct kobject *kobj,
177 struct kobj_attribute *attr, char *buf)
178{
bfb0ffeb
JP
179 const char *output;
180
444eb2a4 181 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
bfb0ffeb
JP
182 output = "[always] madvise never";
183 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
184 &transparent_hugepage_flags))
185 output = "always [madvise] never";
444eb2a4 186 else
bfb0ffeb
JP
187 output = "always madvise [never]";
188
189 return sysfs_emit(buf, "%s\n", output);
71e3aac0 190}
444eb2a4 191
71e3aac0
AA
192static ssize_t enabled_store(struct kobject *kobj,
193 struct kobj_attribute *attr,
194 const char *buf, size_t count)
195{
21440d7e 196 ssize_t ret = count;
ba76149f 197
f42f2552 198 if (sysfs_streq(buf, "always")) {
21440d7e
DR
199 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
200 set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
f42f2552 201 } else if (sysfs_streq(buf, "madvise")) {
21440d7e
DR
202 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
203 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
f42f2552 204 } else if (sysfs_streq(buf, "never")) {
21440d7e
DR
205 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
206 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
207 } else
208 ret = -EINVAL;
ba76149f
AA
209
210 if (ret > 0) {
b46e756f 211 int err = start_stop_khugepaged();
ba76149f
AA
212 if (err)
213 ret = err;
214 }
ba76149f 215 return ret;
71e3aac0
AA
216}
217static struct kobj_attribute enabled_attr =
218 __ATTR(enabled, 0644, enabled_show, enabled_store);
219
b46e756f 220ssize_t single_hugepage_flag_show(struct kobject *kobj,
bfb0ffeb
JP
221 struct kobj_attribute *attr, char *buf,
222 enum transparent_hugepage_flag flag)
71e3aac0 223{
bfb0ffeb
JP
224 return sysfs_emit(buf, "%d\n",
225 !!test_bit(flag, &transparent_hugepage_flags));
71e3aac0 226}
e27e6151 227
b46e756f 228ssize_t single_hugepage_flag_store(struct kobject *kobj,
71e3aac0
AA
229 struct kobj_attribute *attr,
230 const char *buf, size_t count,
231 enum transparent_hugepage_flag flag)
232{
e27e6151
BH
233 unsigned long value;
234 int ret;
235
236 ret = kstrtoul(buf, 10, &value);
237 if (ret < 0)
238 return ret;
239 if (value > 1)
240 return -EINVAL;
241
242 if (value)
71e3aac0 243 set_bit(flag, &transparent_hugepage_flags);
e27e6151 244 else
71e3aac0 245 clear_bit(flag, &transparent_hugepage_flags);
71e3aac0
AA
246
247 return count;
248}
249
71e3aac0
AA
250static ssize_t defrag_show(struct kobject *kobj,
251 struct kobj_attribute *attr, char *buf)
252{
bfb0ffeb
JP
253 const char *output;
254
255 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
256 &transparent_hugepage_flags))
257 output = "[always] defer defer+madvise madvise never";
258 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
259 &transparent_hugepage_flags))
260 output = "always [defer] defer+madvise madvise never";
261 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG,
262 &transparent_hugepage_flags))
263 output = "always defer [defer+madvise] madvise never";
264 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG,
265 &transparent_hugepage_flags))
266 output = "always defer defer+madvise [madvise] never";
267 else
268 output = "always defer defer+madvise madvise [never]";
269
270 return sysfs_emit(buf, "%s\n", output);
71e3aac0 271}
21440d7e 272
71e3aac0
AA
273static ssize_t defrag_store(struct kobject *kobj,
274 struct kobj_attribute *attr,
275 const char *buf, size_t count)
276{
f42f2552 277 if (sysfs_streq(buf, "always")) {
21440d7e
DR
278 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
279 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
280 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
281 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
f42f2552 282 } else if (sysfs_streq(buf, "defer+madvise")) {
21440d7e
DR
283 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
284 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
285 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
286 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
f42f2552 287 } else if (sysfs_streq(buf, "defer")) {
4fad7fb6
DR
288 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
289 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
290 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
291 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
f42f2552 292 } else if (sysfs_streq(buf, "madvise")) {
21440d7e
DR
293 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
294 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
295 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
296 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
f42f2552 297 } else if (sysfs_streq(buf, "never")) {
21440d7e
DR
298 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
299 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
300 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
301 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
302 } else
303 return -EINVAL;
304
305 return count;
71e3aac0
AA
306}
307static struct kobj_attribute defrag_attr =
308 __ATTR(defrag, 0644, defrag_show, defrag_store);
309
79da5407 310static ssize_t use_zero_page_show(struct kobject *kobj,
ae7a927d 311 struct kobj_attribute *attr, char *buf)
79da5407 312{
b46e756f 313 return single_hugepage_flag_show(kobj, attr, buf,
ae7a927d 314 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
79da5407
KS
315}
316static ssize_t use_zero_page_store(struct kobject *kobj,
317 struct kobj_attribute *attr, const char *buf, size_t count)
318{
b46e756f 319 return single_hugepage_flag_store(kobj, attr, buf, count,
79da5407
KS
320 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
321}
322static struct kobj_attribute use_zero_page_attr =
323 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
49920d28
HD
324
325static ssize_t hpage_pmd_size_show(struct kobject *kobj,
ae7a927d 326 struct kobj_attribute *attr, char *buf)
49920d28 327{
ae7a927d 328 return sysfs_emit(buf, "%lu\n", HPAGE_PMD_SIZE);
49920d28
HD
329}
330static struct kobj_attribute hpage_pmd_size_attr =
331 __ATTR_RO(hpage_pmd_size);
332
71e3aac0
AA
333static struct attribute *hugepage_attr[] = {
334 &enabled_attr.attr,
335 &defrag_attr.attr,
79da5407 336 &use_zero_page_attr.attr,
49920d28 337 &hpage_pmd_size_attr.attr,
396bcc52 338#ifdef CONFIG_SHMEM
5a6e75f8 339 &shmem_enabled_attr.attr,
71e3aac0
AA
340#endif
341 NULL,
342};
343
8aa95a21 344static const struct attribute_group hugepage_attr_group = {
71e3aac0 345 .attrs = hugepage_attr,
ba76149f
AA
346};
347
569e5590 348static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
71e3aac0 349{
71e3aac0
AA
350 int err;
351
569e5590
SL
352 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
353 if (unlikely(!*hugepage_kobj)) {
ae3a8c1c 354 pr_err("failed to create transparent hugepage kobject\n");
569e5590 355 return -ENOMEM;
ba76149f
AA
356 }
357
569e5590 358 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
ba76149f 359 if (err) {
ae3a8c1c 360 pr_err("failed to register transparent hugepage group\n");
569e5590 361 goto delete_obj;
ba76149f
AA
362 }
363
569e5590 364 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
ba76149f 365 if (err) {
ae3a8c1c 366 pr_err("failed to register transparent hugepage group\n");
569e5590 367 goto remove_hp_group;
ba76149f 368 }
569e5590
SL
369
370 return 0;
371
372remove_hp_group:
373 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
374delete_obj:
375 kobject_put(*hugepage_kobj);
376 return err;
377}
378
379static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
380{
381 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
382 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
383 kobject_put(hugepage_kobj);
384}
385#else
386static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
387{
388 return 0;
389}
390
391static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
392{
393}
394#endif /* CONFIG_SYSFS */
395
396static int __init hugepage_init(void)
397{
398 int err;
399 struct kobject *hugepage_kobj;
400
401 if (!has_transparent_hugepage()) {
bae84953
AK
402 /*
403 * Hardware doesn't support hugepages, hence disable
404 * DAX PMD support.
405 */
406 transparent_hugepage_flags = 1 << TRANSPARENT_HUGEPAGE_NEVER_DAX;
569e5590
SL
407 return -EINVAL;
408 }
409
ff20c2e0
KS
410 /*
411 * hugepages can't be allocated by the buddy allocator
412 */
413 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
414 /*
415 * we use page->mapping and page->index in second tail page
416 * as list_head: assuming THP order >= 2
417 */
418 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
419
569e5590
SL
420 err = hugepage_init_sysfs(&hugepage_kobj);
421 if (err)
65ebb64f 422 goto err_sysfs;
ba76149f 423
b46e756f 424 err = khugepaged_init();
ba76149f 425 if (err)
65ebb64f 426 goto err_slab;
ba76149f 427
65ebb64f
KS
428 err = register_shrinker(&huge_zero_page_shrinker);
429 if (err)
430 goto err_hzp_shrinker;
9a982250
KS
431 err = register_shrinker(&deferred_split_shrinker);
432 if (err)
433 goto err_split_shrinker;
97ae1749 434
97562cd2
RR
435 /*
436 * By default disable transparent hugepages on smaller systems,
437 * where the extra memory used could hurt more than TLB overhead
438 * is likely to save. The admin can still enable it through /sys.
439 */
ca79b0c2 440 if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
97562cd2 441 transparent_hugepage_flags = 0;
79553da2
KS
442 return 0;
443 }
97562cd2 444
79553da2 445 err = start_stop_khugepaged();
65ebb64f
KS
446 if (err)
447 goto err_khugepaged;
ba76149f 448
569e5590 449 return 0;
65ebb64f 450err_khugepaged:
9a982250
KS
451 unregister_shrinker(&deferred_split_shrinker);
452err_split_shrinker:
65ebb64f
KS
453 unregister_shrinker(&huge_zero_page_shrinker);
454err_hzp_shrinker:
b46e756f 455 khugepaged_destroy();
65ebb64f 456err_slab:
569e5590 457 hugepage_exit_sysfs(hugepage_kobj);
65ebb64f 458err_sysfs:
ba76149f 459 return err;
71e3aac0 460}
a64fb3cd 461subsys_initcall(hugepage_init);
71e3aac0
AA
462
463static int __init setup_transparent_hugepage(char *str)
464{
465 int ret = 0;
466 if (!str)
467 goto out;
468 if (!strcmp(str, "always")) {
469 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
470 &transparent_hugepage_flags);
471 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
472 &transparent_hugepage_flags);
473 ret = 1;
474 } else if (!strcmp(str, "madvise")) {
475 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
476 &transparent_hugepage_flags);
477 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
478 &transparent_hugepage_flags);
479 ret = 1;
480 } else if (!strcmp(str, "never")) {
481 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
482 &transparent_hugepage_flags);
483 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
484 &transparent_hugepage_flags);
485 ret = 1;
486 }
487out:
488 if (!ret)
ae3a8c1c 489 pr_warn("transparent_hugepage= cannot parse, ignored\n");
71e3aac0
AA
490 return ret;
491}
492__setup("transparent_hugepage=", setup_transparent_hugepage);
493
f55e1014 494pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
71e3aac0 495{
f55e1014 496 if (likely(vma->vm_flags & VM_WRITE))
71e3aac0
AA
497 pmd = pmd_mkwrite(pmd);
498 return pmd;
499}
500
87eaceb3
YS
501#ifdef CONFIG_MEMCG
502static inline struct deferred_split *get_deferred_split_queue(struct page *page)
9a982250 503{
bcfe06bf 504 struct mem_cgroup *memcg = page_memcg(compound_head(page));
87eaceb3
YS
505 struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
506
507 if (memcg)
508 return &memcg->deferred_split_queue;
509 else
510 return &pgdat->deferred_split_queue;
9a982250 511}
87eaceb3
YS
512#else
513static inline struct deferred_split *get_deferred_split_queue(struct page *page)
514{
515 struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
516
517 return &pgdat->deferred_split_queue;
518}
519#endif
9a982250
KS
520
521void prep_transhuge_page(struct page *page)
522{
523 /*
524 * we use page->mapping and page->indexlru in second tail page
525 * as list_head: assuming THP order >= 2
526 */
9a982250
KS
527
528 INIT_LIST_HEAD(page_deferred_list(page));
529 set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
530}
531
005ba37c
SC
532bool is_transparent_hugepage(struct page *page)
533{
534 if (!PageCompound(page))
fa1f68cc 535 return false;
005ba37c
SC
536
537 page = compound_head(page);
538 return is_huge_zero_page(page) ||
539 page[1].compound_dtor == TRANSHUGE_PAGE_DTOR;
540}
541EXPORT_SYMBOL_GPL(is_transparent_hugepage);
542
97d3d0f9
KS
543static unsigned long __thp_get_unmapped_area(struct file *filp,
544 unsigned long addr, unsigned long len,
74d2fad1
TK
545 loff_t off, unsigned long flags, unsigned long size)
546{
74d2fad1
TK
547 loff_t off_end = off + len;
548 loff_t off_align = round_up(off, size);
97d3d0f9 549 unsigned long len_pad, ret;
74d2fad1
TK
550
551 if (off_end <= off_align || (off_end - off_align) < size)
552 return 0;
553
554 len_pad = len + size;
555 if (len_pad < len || (off + len_pad) < off)
556 return 0;
557
97d3d0f9 558 ret = current->mm->get_unmapped_area(filp, addr, len_pad,
74d2fad1 559 off >> PAGE_SHIFT, flags);
97d3d0f9
KS
560
561 /*
562 * The failure might be due to length padding. The caller will retry
563 * without the padding.
564 */
565 if (IS_ERR_VALUE(ret))
74d2fad1
TK
566 return 0;
567
97d3d0f9
KS
568 /*
569 * Do not try to align to THP boundary if allocation at the address
570 * hint succeeds.
571 */
572 if (ret == addr)
573 return addr;
574
575 ret += (off - ret) & (size - 1);
576 return ret;
74d2fad1
TK
577}
578
579unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
580 unsigned long len, unsigned long pgoff, unsigned long flags)
581{
97d3d0f9 582 unsigned long ret;
74d2fad1
TK
583 loff_t off = (loff_t)pgoff << PAGE_SHIFT;
584
74d2fad1
TK
585 if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
586 goto out;
587
97d3d0f9
KS
588 ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE);
589 if (ret)
590 return ret;
591out:
74d2fad1
TK
592 return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
593}
594EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
595
2b740303
SJ
596static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
597 struct page *page, gfp_t gfp)
71e3aac0 598{
82b0f8c3 599 struct vm_area_struct *vma = vmf->vma;
71e3aac0 600 pgtable_t pgtable;
82b0f8c3 601 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
2b740303 602 vm_fault_t ret = 0;
71e3aac0 603
309381fe 604 VM_BUG_ON_PAGE(!PageCompound(page), page);
00501b53 605
d9eb1ea2 606 if (mem_cgroup_charge(page, vma->vm_mm, gfp)) {
6b251fc9
AA
607 put_page(page);
608 count_vm_event(THP_FAULT_FALLBACK);
85b9f46e 609 count_vm_event(THP_FAULT_FALLBACK_CHARGE);
6b251fc9
AA
610 return VM_FAULT_FALLBACK;
611 }
9d82c694 612 cgroup_throttle_swaprate(page, gfp);
00501b53 613
4cf58924 614 pgtable = pte_alloc_one(vma->vm_mm);
00501b53 615 if (unlikely(!pgtable)) {
6b31d595
MH
616 ret = VM_FAULT_OOM;
617 goto release;
00501b53 618 }
71e3aac0 619
c79b57e4 620 clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
52f37629
MK
621 /*
622 * The memory barrier inside __SetPageUptodate makes sure that
623 * clear_huge_page writes become visible before the set_pmd_at()
624 * write.
625 */
71e3aac0
AA
626 __SetPageUptodate(page);
627
82b0f8c3
JK
628 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
629 if (unlikely(!pmd_none(*vmf->pmd))) {
6b31d595 630 goto unlock_release;
71e3aac0
AA
631 } else {
632 pmd_t entry;
6b251fc9 633
6b31d595
MH
634 ret = check_stable_address_space(vma->vm_mm);
635 if (ret)
636 goto unlock_release;
637
6b251fc9
AA
638 /* Deliver the page fault to userland */
639 if (userfaultfd_missing(vma)) {
82b0f8c3 640 spin_unlock(vmf->ptl);
6b251fc9 641 put_page(page);
bae473a4 642 pte_free(vma->vm_mm, pgtable);
8fd5eda4
ML
643 ret = handle_userfault(vmf, VM_UFFD_MISSING);
644 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
645 return ret;
6b251fc9
AA
646 }
647
3122359a 648 entry = mk_huge_pmd(page, vma->vm_page_prot);
f55e1014 649 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
d281ee61 650 page_add_new_anon_rmap(page, vma, haddr, true);
b518154e 651 lru_cache_add_inactive_or_unevictable(page, vma);
82b0f8c3
JK
652 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
653 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
fca40573 654 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
bae473a4 655 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
c4812909 656 mm_inc_nr_ptes(vma->vm_mm);
82b0f8c3 657 spin_unlock(vmf->ptl);
6b251fc9 658 count_vm_event(THP_FAULT_ALLOC);
9d82c694 659 count_memcg_event_mm(vma->vm_mm, THP_FAULT_ALLOC);
71e3aac0
AA
660 }
661
aa2e878e 662 return 0;
6b31d595
MH
663unlock_release:
664 spin_unlock(vmf->ptl);
665release:
666 if (pgtable)
667 pte_free(vma->vm_mm, pgtable);
6b31d595
MH
668 put_page(page);
669 return ret;
670
71e3aac0
AA
671}
672
444eb2a4 673/*
21440d7e
DR
674 * always: directly stall for all thp allocations
675 * defer: wake kswapd and fail if not immediately available
676 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
677 * fail if not immediately available
678 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
679 * available
680 * never: never stall for any thp allocation
444eb2a4 681 */
164cc4fe 682gfp_t vma_thp_gfp_mask(struct vm_area_struct *vma)
444eb2a4 683{
164cc4fe 684 const bool vma_madvised = vma && (vma->vm_flags & VM_HUGEPAGE);
2f0799a0 685
ac79f78d 686 /* Always do synchronous compaction */
a8282608
AA
687 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
688 return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
ac79f78d
DR
689
690 /* Kick kcompactd and fail quickly */
21440d7e 691 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
19deb769 692 return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
ac79f78d
DR
693
694 /* Synchronous compaction if madvised, otherwise kick kcompactd */
21440d7e 695 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
19deb769
DR
696 return GFP_TRANSHUGE_LIGHT |
697 (vma_madvised ? __GFP_DIRECT_RECLAIM :
698 __GFP_KSWAPD_RECLAIM);
ac79f78d
DR
699
700 /* Only do synchronous compaction if madvised */
21440d7e 701 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
19deb769
DR
702 return GFP_TRANSHUGE_LIGHT |
703 (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
ac79f78d 704
19deb769 705 return GFP_TRANSHUGE_LIGHT;
444eb2a4
MG
706}
707
c4088ebd 708/* Caller must hold page table lock. */
2efeb8da 709static void set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
97ae1749 710 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
5918d10a 711 struct page *zero_page)
fc9fe822
KS
712{
713 pmd_t entry;
7c414164 714 if (!pmd_none(*pmd))
2efeb8da 715 return;
5918d10a 716 entry = mk_pmd(zero_page, vma->vm_page_prot);
fc9fe822 717 entry = pmd_mkhuge(entry);
12c9d70b
MW
718 if (pgtable)
719 pgtable_trans_huge_deposit(mm, pmd, pgtable);
fc9fe822 720 set_pmd_at(mm, haddr, pmd, entry);
c4812909 721 mm_inc_nr_ptes(mm);
fc9fe822
KS
722}
723
2b740303 724vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
71e3aac0 725{
82b0f8c3 726 struct vm_area_struct *vma = vmf->vma;
077fcf11 727 gfp_t gfp;
71e3aac0 728 struct page *page;
82b0f8c3 729 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
71e3aac0 730
43675e6f 731 if (!transhuge_vma_suitable(vma, haddr))
c0292554 732 return VM_FAULT_FALLBACK;
128ec037
KS
733 if (unlikely(anon_vma_prepare(vma)))
734 return VM_FAULT_OOM;
6d50e60c 735 if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
128ec037 736 return VM_FAULT_OOM;
82b0f8c3 737 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
bae473a4 738 !mm_forbids_zeropage(vma->vm_mm) &&
128ec037
KS
739 transparent_hugepage_use_zero_page()) {
740 pgtable_t pgtable;
741 struct page *zero_page;
2b740303 742 vm_fault_t ret;
4cf58924 743 pgtable = pte_alloc_one(vma->vm_mm);
128ec037 744 if (unlikely(!pgtable))
ba76149f 745 return VM_FAULT_OOM;
6fcb52a5 746 zero_page = mm_get_huge_zero_page(vma->vm_mm);
128ec037 747 if (unlikely(!zero_page)) {
bae473a4 748 pte_free(vma->vm_mm, pgtable);
81ab4201 749 count_vm_event(THP_FAULT_FALLBACK);
c0292554 750 return VM_FAULT_FALLBACK;
b9bbfbe3 751 }
82b0f8c3 752 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
6b251fc9 753 ret = 0;
82b0f8c3 754 if (pmd_none(*vmf->pmd)) {
6b31d595
MH
755 ret = check_stable_address_space(vma->vm_mm);
756 if (ret) {
757 spin_unlock(vmf->ptl);
bfe8cc1d 758 pte_free(vma->vm_mm, pgtable);
6b31d595 759 } else if (userfaultfd_missing(vma)) {
82b0f8c3 760 spin_unlock(vmf->ptl);
bfe8cc1d 761 pte_free(vma->vm_mm, pgtable);
82b0f8c3 762 ret = handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9
AA
763 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
764 } else {
bae473a4 765 set_huge_zero_page(pgtable, vma->vm_mm, vma,
82b0f8c3 766 haddr, vmf->pmd, zero_page);
fca40573 767 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
82b0f8c3 768 spin_unlock(vmf->ptl);
6b251fc9 769 }
bfe8cc1d 770 } else {
82b0f8c3 771 spin_unlock(vmf->ptl);
bae473a4 772 pte_free(vma->vm_mm, pgtable);
bfe8cc1d 773 }
6b251fc9 774 return ret;
71e3aac0 775 }
164cc4fe 776 gfp = vma_thp_gfp_mask(vma);
19deb769 777 page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
128ec037
KS
778 if (unlikely(!page)) {
779 count_vm_event(THP_FAULT_FALLBACK);
c0292554 780 return VM_FAULT_FALLBACK;
128ec037 781 }
9a982250 782 prep_transhuge_page(page);
82b0f8c3 783 return __do_huge_pmd_anonymous_page(vmf, page, gfp);
71e3aac0
AA
784}
785
ae18d6dc 786static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
3b6521f5
OH
787 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
788 pgtable_t pgtable)
5cad465d
MW
789{
790 struct mm_struct *mm = vma->vm_mm;
791 pmd_t entry;
792 spinlock_t *ptl;
793
794 ptl = pmd_lock(mm, pmd);
c6f3c5ee
AK
795 if (!pmd_none(*pmd)) {
796 if (write) {
797 if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
798 WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
799 goto out_unlock;
800 }
801 entry = pmd_mkyoung(*pmd);
802 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
803 if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
804 update_mmu_cache_pmd(vma, addr, pmd);
805 }
806
807 goto out_unlock;
808 }
809
f25748e3
DW
810 entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
811 if (pfn_t_devmap(pfn))
812 entry = pmd_mkdevmap(entry);
01871e59 813 if (write) {
f55e1014
LT
814 entry = pmd_mkyoung(pmd_mkdirty(entry));
815 entry = maybe_pmd_mkwrite(entry, vma);
5cad465d 816 }
3b6521f5
OH
817
818 if (pgtable) {
819 pgtable_trans_huge_deposit(mm, pmd, pgtable);
c4812909 820 mm_inc_nr_ptes(mm);
c6f3c5ee 821 pgtable = NULL;
3b6521f5
OH
822 }
823
01871e59
RZ
824 set_pmd_at(mm, addr, pmd, entry);
825 update_mmu_cache_pmd(vma, addr, pmd);
c6f3c5ee
AK
826
827out_unlock:
5cad465d 828 spin_unlock(ptl);
c6f3c5ee
AK
829 if (pgtable)
830 pte_free(mm, pgtable);
5cad465d
MW
831}
832
9a9731b1
THV
833/**
834 * vmf_insert_pfn_pmd_prot - insert a pmd size pfn
835 * @vmf: Structure describing the fault
836 * @pfn: pfn to insert
837 * @pgprot: page protection to use
838 * @write: whether it's a write fault
839 *
840 * Insert a pmd size pfn. See vmf_insert_pfn() for additional info and
841 * also consult the vmf_insert_mixed_prot() documentation when
842 * @pgprot != @vmf->vma->vm_page_prot.
843 *
844 * Return: vm_fault_t value.
845 */
846vm_fault_t vmf_insert_pfn_pmd_prot(struct vm_fault *vmf, pfn_t pfn,
847 pgprot_t pgprot, bool write)
5cad465d 848{
fce86ff5
DW
849 unsigned long addr = vmf->address & PMD_MASK;
850 struct vm_area_struct *vma = vmf->vma;
3b6521f5 851 pgtable_t pgtable = NULL;
fce86ff5 852
5cad465d
MW
853 /*
854 * If we had pmd_special, we could avoid all these restrictions,
855 * but we need to be consistent with PTEs and architectures that
856 * can't support a 'special' bit.
857 */
e1fb4a08
DJ
858 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
859 !pfn_t_devmap(pfn));
5cad465d
MW
860 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
861 (VM_PFNMAP|VM_MIXEDMAP));
862 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
5cad465d
MW
863
864 if (addr < vma->vm_start || addr >= vma->vm_end)
865 return VM_FAULT_SIGBUS;
308a047c 866
3b6521f5 867 if (arch_needs_pgtable_deposit()) {
4cf58924 868 pgtable = pte_alloc_one(vma->vm_mm);
3b6521f5
OH
869 if (!pgtable)
870 return VM_FAULT_OOM;
871 }
872
308a047c
BP
873 track_pfn_insert(vma, &pgprot, pfn);
874
fce86ff5 875 insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable);
ae18d6dc 876 return VM_FAULT_NOPAGE;
5cad465d 877}
9a9731b1 878EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd_prot);
5cad465d 879
a00cc7d9 880#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
f55e1014 881static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
a00cc7d9 882{
f55e1014 883 if (likely(vma->vm_flags & VM_WRITE))
a00cc7d9
MW
884 pud = pud_mkwrite(pud);
885 return pud;
886}
887
888static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
889 pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
890{
891 struct mm_struct *mm = vma->vm_mm;
892 pud_t entry;
893 spinlock_t *ptl;
894
895 ptl = pud_lock(mm, pud);
c6f3c5ee
AK
896 if (!pud_none(*pud)) {
897 if (write) {
898 if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) {
899 WARN_ON_ONCE(!is_huge_zero_pud(*pud));
900 goto out_unlock;
901 }
902 entry = pud_mkyoung(*pud);
903 entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
904 if (pudp_set_access_flags(vma, addr, pud, entry, 1))
905 update_mmu_cache_pud(vma, addr, pud);
906 }
907 goto out_unlock;
908 }
909
a00cc7d9
MW
910 entry = pud_mkhuge(pfn_t_pud(pfn, prot));
911 if (pfn_t_devmap(pfn))
912 entry = pud_mkdevmap(entry);
913 if (write) {
f55e1014
LT
914 entry = pud_mkyoung(pud_mkdirty(entry));
915 entry = maybe_pud_mkwrite(entry, vma);
a00cc7d9
MW
916 }
917 set_pud_at(mm, addr, pud, entry);
918 update_mmu_cache_pud(vma, addr, pud);
c6f3c5ee
AK
919
920out_unlock:
a00cc7d9
MW
921 spin_unlock(ptl);
922}
923
9a9731b1
THV
924/**
925 * vmf_insert_pfn_pud_prot - insert a pud size pfn
926 * @vmf: Structure describing the fault
927 * @pfn: pfn to insert
928 * @pgprot: page protection to use
929 * @write: whether it's a write fault
930 *
931 * Insert a pud size pfn. See vmf_insert_pfn() for additional info and
932 * also consult the vmf_insert_mixed_prot() documentation when
933 * @pgprot != @vmf->vma->vm_page_prot.
934 *
935 * Return: vm_fault_t value.
936 */
937vm_fault_t vmf_insert_pfn_pud_prot(struct vm_fault *vmf, pfn_t pfn,
938 pgprot_t pgprot, bool write)
a00cc7d9 939{
fce86ff5
DW
940 unsigned long addr = vmf->address & PUD_MASK;
941 struct vm_area_struct *vma = vmf->vma;
fce86ff5 942
a00cc7d9
MW
943 /*
944 * If we had pud_special, we could avoid all these restrictions,
945 * but we need to be consistent with PTEs and architectures that
946 * can't support a 'special' bit.
947 */
62ec0d8c
DJ
948 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
949 !pfn_t_devmap(pfn));
a00cc7d9
MW
950 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
951 (VM_PFNMAP|VM_MIXEDMAP));
952 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
a00cc7d9
MW
953
954 if (addr < vma->vm_start || addr >= vma->vm_end)
955 return VM_FAULT_SIGBUS;
956
957 track_pfn_insert(vma, &pgprot, pfn);
958
fce86ff5 959 insert_pfn_pud(vma, addr, vmf->pud, pfn, pgprot, write);
a00cc7d9
MW
960 return VM_FAULT_NOPAGE;
961}
9a9731b1 962EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud_prot);
a00cc7d9
MW
963#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
964
3565fce3 965static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
a8f97366 966 pmd_t *pmd, int flags)
3565fce3
DW
967{
968 pmd_t _pmd;
969
a8f97366
KS
970 _pmd = pmd_mkyoung(*pmd);
971 if (flags & FOLL_WRITE)
972 _pmd = pmd_mkdirty(_pmd);
3565fce3 973 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
a8f97366 974 pmd, _pmd, flags & FOLL_WRITE))
3565fce3
DW
975 update_mmu_cache_pmd(vma, addr, pmd);
976}
977
978struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
df06b37f 979 pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
3565fce3
DW
980{
981 unsigned long pfn = pmd_pfn(*pmd);
982 struct mm_struct *mm = vma->vm_mm;
3565fce3
DW
983 struct page *page;
984
985 assert_spin_locked(pmd_lockptr(mm, pmd));
986
8310d48b
KF
987 /*
988 * When we COW a devmap PMD entry, we split it into PTEs, so we should
989 * not be in this function with `flags & FOLL_COW` set.
990 */
991 WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");
992
3faa52c0
JH
993 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
994 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
995 (FOLL_PIN | FOLL_GET)))
996 return NULL;
997
f6f37321 998 if (flags & FOLL_WRITE && !pmd_write(*pmd))
3565fce3
DW
999 return NULL;
1000
1001 if (pmd_present(*pmd) && pmd_devmap(*pmd))
1002 /* pass */;
1003 else
1004 return NULL;
1005
1006 if (flags & FOLL_TOUCH)
a8f97366 1007 touch_pmd(vma, addr, pmd, flags);
3565fce3
DW
1008
1009 /*
1010 * device mapped pages can only be returned if the
1011 * caller will manage the page reference count.
1012 */
3faa52c0 1013 if (!(flags & (FOLL_GET | FOLL_PIN)))
3565fce3
DW
1014 return ERR_PTR(-EEXIST);
1015
1016 pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
df06b37f
KB
1017 *pgmap = get_dev_pagemap(pfn, *pgmap);
1018 if (!*pgmap)
3565fce3
DW
1019 return ERR_PTR(-EFAULT);
1020 page = pfn_to_page(pfn);
3faa52c0
JH
1021 if (!try_grab_page(page, flags))
1022 page = ERR_PTR(-ENOMEM);
3565fce3
DW
1023
1024 return page;
1025}
1026
71e3aac0
AA
1027int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1028 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
8f34f1ea 1029 struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
71e3aac0 1030{
c4088ebd 1031 spinlock_t *dst_ptl, *src_ptl;
71e3aac0
AA
1032 struct page *src_page;
1033 pmd_t pmd;
12c9d70b 1034 pgtable_t pgtable = NULL;
628d47ce 1035 int ret = -ENOMEM;
71e3aac0 1036
628d47ce 1037 /* Skip if can be re-fill on fault */
8f34f1ea 1038 if (!vma_is_anonymous(dst_vma))
628d47ce
KS
1039 return 0;
1040
4cf58924 1041 pgtable = pte_alloc_one(dst_mm);
628d47ce
KS
1042 if (unlikely(!pgtable))
1043 goto out;
71e3aac0 1044
c4088ebd
KS
1045 dst_ptl = pmd_lock(dst_mm, dst_pmd);
1046 src_ptl = pmd_lockptr(src_mm, src_pmd);
1047 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
71e3aac0
AA
1048
1049 ret = -EAGAIN;
1050 pmd = *src_pmd;
84c3fc4e
ZY
1051
1052#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1053 if (unlikely(is_swap_pmd(pmd))) {
1054 swp_entry_t entry = pmd_to_swp_entry(pmd);
1055
1056 VM_BUG_ON(!is_pmd_migration_entry(pmd));
1057 if (is_write_migration_entry(entry)) {
1058 make_migration_entry_read(&entry);
1059 pmd = swp_entry_to_pmd(entry);
ab6e3d09
NH
1060 if (pmd_swp_soft_dirty(*src_pmd))
1061 pmd = pmd_swp_mksoft_dirty(pmd);
8f34f1ea
PX
1062 if (pmd_swp_uffd_wp(*src_pmd))
1063 pmd = pmd_swp_mkuffd_wp(pmd);
84c3fc4e
ZY
1064 set_pmd_at(src_mm, addr, src_pmd, pmd);
1065 }
dd8a67f9 1066 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
af5b0f6a 1067 mm_inc_nr_ptes(dst_mm);
dd8a67f9 1068 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
8f34f1ea
PX
1069 if (!userfaultfd_wp(dst_vma))
1070 pmd = pmd_swp_clear_uffd_wp(pmd);
84c3fc4e
ZY
1071 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1072 ret = 0;
1073 goto out_unlock;
1074 }
1075#endif
1076
628d47ce 1077 if (unlikely(!pmd_trans_huge(pmd))) {
71e3aac0
AA
1078 pte_free(dst_mm, pgtable);
1079 goto out_unlock;
1080 }
fc9fe822 1081 /*
c4088ebd 1082 * When page table lock is held, the huge zero pmd should not be
fc9fe822
KS
1083 * under splitting since we don't split the page itself, only pmd to
1084 * a page table.
1085 */
1086 if (is_huge_zero_pmd(pmd)) {
97ae1749
KS
1087 /*
1088 * get_huge_zero_page() will never allocate a new page here,
1089 * since we already have a zero page to copy. It just takes a
1090 * reference.
1091 */
5fc7a5f6
PX
1092 mm_get_huge_zero_page(dst_mm);
1093 goto out_zero_page;
fc9fe822 1094 }
de466bd6 1095
628d47ce
KS
1096 src_page = pmd_page(pmd);
1097 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
d042035e
PX
1098
1099 /*
1100 * If this page is a potentially pinned page, split and retry the fault
1101 * with smaller page size. Normally this should not happen because the
1102 * userspace should use MADV_DONTFORK upon pinned regions. This is a
1103 * best effort that the pinned pages won't be replaced by another
1104 * random page during the coming copy-on-write.
1105 */
8f34f1ea 1106 if (unlikely(page_needs_cow_for_dma(src_vma, src_page))) {
d042035e
PX
1107 pte_free(dst_mm, pgtable);
1108 spin_unlock(src_ptl);
1109 spin_unlock(dst_ptl);
8f34f1ea 1110 __split_huge_pmd(src_vma, src_pmd, addr, false, NULL);
d042035e
PX
1111 return -EAGAIN;
1112 }
1113
628d47ce
KS
1114 get_page(src_page);
1115 page_dup_rmap(src_page, true);
1116 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
5fc7a5f6 1117out_zero_page:
c4812909 1118 mm_inc_nr_ptes(dst_mm);
628d47ce 1119 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
71e3aac0 1120 pmdp_set_wrprotect(src_mm, addr, src_pmd);
8f34f1ea
PX
1121 if (!userfaultfd_wp(dst_vma))
1122 pmd = pmd_clear_uffd_wp(pmd);
71e3aac0
AA
1123 pmd = pmd_mkold(pmd_wrprotect(pmd));
1124 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
71e3aac0
AA
1125
1126 ret = 0;
1127out_unlock:
c4088ebd
KS
1128 spin_unlock(src_ptl);
1129 spin_unlock(dst_ptl);
71e3aac0
AA
1130out:
1131 return ret;
1132}
1133
a00cc7d9
MW
1134#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1135static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
a8f97366 1136 pud_t *pud, int flags)
a00cc7d9
MW
1137{
1138 pud_t _pud;
1139
a8f97366
KS
1140 _pud = pud_mkyoung(*pud);
1141 if (flags & FOLL_WRITE)
1142 _pud = pud_mkdirty(_pud);
a00cc7d9 1143 if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
a8f97366 1144 pud, _pud, flags & FOLL_WRITE))
a00cc7d9
MW
1145 update_mmu_cache_pud(vma, addr, pud);
1146}
1147
1148struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
df06b37f 1149 pud_t *pud, int flags, struct dev_pagemap **pgmap)
a00cc7d9
MW
1150{
1151 unsigned long pfn = pud_pfn(*pud);
1152 struct mm_struct *mm = vma->vm_mm;
a00cc7d9
MW
1153 struct page *page;
1154
1155 assert_spin_locked(pud_lockptr(mm, pud));
1156
f6f37321 1157 if (flags & FOLL_WRITE && !pud_write(*pud))
a00cc7d9
MW
1158 return NULL;
1159
3faa52c0
JH
1160 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
1161 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
1162 (FOLL_PIN | FOLL_GET)))
1163 return NULL;
1164
a00cc7d9
MW
1165 if (pud_present(*pud) && pud_devmap(*pud))
1166 /* pass */;
1167 else
1168 return NULL;
1169
1170 if (flags & FOLL_TOUCH)
a8f97366 1171 touch_pud(vma, addr, pud, flags);
a00cc7d9
MW
1172
1173 /*
1174 * device mapped pages can only be returned if the
1175 * caller will manage the page reference count.
3faa52c0
JH
1176 *
1177 * At least one of FOLL_GET | FOLL_PIN must be set, so assert that here:
a00cc7d9 1178 */
3faa52c0 1179 if (!(flags & (FOLL_GET | FOLL_PIN)))
a00cc7d9
MW
1180 return ERR_PTR(-EEXIST);
1181
1182 pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
df06b37f
KB
1183 *pgmap = get_dev_pagemap(pfn, *pgmap);
1184 if (!*pgmap)
a00cc7d9
MW
1185 return ERR_PTR(-EFAULT);
1186 page = pfn_to_page(pfn);
3faa52c0
JH
1187 if (!try_grab_page(page, flags))
1188 page = ERR_PTR(-ENOMEM);
a00cc7d9
MW
1189
1190 return page;
1191}
1192
1193int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1194 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1195 struct vm_area_struct *vma)
1196{
1197 spinlock_t *dst_ptl, *src_ptl;
1198 pud_t pud;
1199 int ret;
1200
1201 dst_ptl = pud_lock(dst_mm, dst_pud);
1202 src_ptl = pud_lockptr(src_mm, src_pud);
1203 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1204
1205 ret = -EAGAIN;
1206 pud = *src_pud;
1207 if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1208 goto out_unlock;
1209
1210 /*
1211 * When page table lock is held, the huge zero pud should not be
1212 * under splitting since we don't split the page itself, only pud to
1213 * a page table.
1214 */
1215 if (is_huge_zero_pud(pud)) {
1216 /* No huge zero pud yet */
1217 }
1218
d042035e 1219 /* Please refer to comments in copy_huge_pmd() */
97a7e473 1220 if (unlikely(page_needs_cow_for_dma(vma, pud_page(pud)))) {
d042035e
PX
1221 spin_unlock(src_ptl);
1222 spin_unlock(dst_ptl);
1223 __split_huge_pud(vma, src_pud, addr);
1224 return -EAGAIN;
1225 }
1226
a00cc7d9
MW
1227 pudp_set_wrprotect(src_mm, addr, src_pud);
1228 pud = pud_mkold(pud_wrprotect(pud));
1229 set_pud_at(dst_mm, addr, dst_pud, pud);
1230
1231 ret = 0;
1232out_unlock:
1233 spin_unlock(src_ptl);
1234 spin_unlock(dst_ptl);
1235 return ret;
1236}
1237
1238void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1239{
1240 pud_t entry;
1241 unsigned long haddr;
1242 bool write = vmf->flags & FAULT_FLAG_WRITE;
1243
1244 vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1245 if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1246 goto unlock;
1247
1248 entry = pud_mkyoung(orig_pud);
1249 if (write)
1250 entry = pud_mkdirty(entry);
1251 haddr = vmf->address & HPAGE_PUD_MASK;
1252 if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
1253 update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);
1254
1255unlock:
1256 spin_unlock(vmf->ptl);
1257}
1258#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1259
82b0f8c3 1260void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
a1dd450b
WD
1261{
1262 pmd_t entry;
1263 unsigned long haddr;
20f664aa 1264 bool write = vmf->flags & FAULT_FLAG_WRITE;
a1dd450b 1265
82b0f8c3
JK
1266 vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1267 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
a1dd450b
WD
1268 goto unlock;
1269
1270 entry = pmd_mkyoung(orig_pmd);
20f664aa
MK
1271 if (write)
1272 entry = pmd_mkdirty(entry);
82b0f8c3 1273 haddr = vmf->address & HPAGE_PMD_MASK;
20f664aa 1274 if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
82b0f8c3 1275 update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
a1dd450b
WD
1276
1277unlock:
82b0f8c3 1278 spin_unlock(vmf->ptl);
a1dd450b
WD
1279}
1280
2b740303 1281vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
71e3aac0 1282{
82b0f8c3 1283 struct vm_area_struct *vma = vmf->vma;
3917c802 1284 struct page *page;
82b0f8c3 1285 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
71e3aac0 1286
82b0f8c3 1287 vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
81d1b09c 1288 VM_BUG_ON_VMA(!vma->anon_vma, vma);
3917c802 1289
93b4796d 1290 if (is_huge_zero_pmd(orig_pmd))
3917c802
KS
1291 goto fallback;
1292
82b0f8c3 1293 spin_lock(vmf->ptl);
3917c802
KS
1294
1295 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1296 spin_unlock(vmf->ptl);
1297 return 0;
1298 }
71e3aac0
AA
1299
1300 page = pmd_page(orig_pmd);
f6004e73 1301 VM_BUG_ON_PAGE(!PageHead(page), page);
3917c802
KS
1302
1303 /* Lock page for reuse_swap_page() */
ba3c4ce6
HY
1304 if (!trylock_page(page)) {
1305 get_page(page);
1306 spin_unlock(vmf->ptl);
1307 lock_page(page);
1308 spin_lock(vmf->ptl);
1309 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
3917c802 1310 spin_unlock(vmf->ptl);
ba3c4ce6
HY
1311 unlock_page(page);
1312 put_page(page);
3917c802 1313 return 0;
ba3c4ce6
HY
1314 }
1315 put_page(page);
1316 }
3917c802
KS
1317
1318 /*
1319 * We can only reuse the page if nobody else maps the huge page or it's
1320 * part.
1321 */
ba3c4ce6 1322 if (reuse_swap_page(page, NULL)) {
71e3aac0
AA
1323 pmd_t entry;
1324 entry = pmd_mkyoung(orig_pmd);
f55e1014 1325 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3917c802 1326 if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
82b0f8c3 1327 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
ba3c4ce6 1328 unlock_page(page);
82b0f8c3 1329 spin_unlock(vmf->ptl);
3917c802 1330 return VM_FAULT_WRITE;
71e3aac0 1331 }
3917c802
KS
1332
1333 unlock_page(page);
82b0f8c3 1334 spin_unlock(vmf->ptl);
3917c802
KS
1335fallback:
1336 __split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
1337 return VM_FAULT_FALLBACK;
71e3aac0
AA
1338}
1339
8310d48b 1340/*
a308c71b
PX
1341 * FOLL_FORCE can write to even unwritable pmd's, but only
1342 * after we've gone through a COW cycle and they are dirty.
8310d48b
KF
1343 */
1344static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
1345{
a308c71b
PX
1346 return pmd_write(pmd) ||
1347 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
8310d48b
KF
1348}
1349
b676b293 1350struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
71e3aac0
AA
1351 unsigned long addr,
1352 pmd_t *pmd,
1353 unsigned int flags)
1354{
b676b293 1355 struct mm_struct *mm = vma->vm_mm;
71e3aac0
AA
1356 struct page *page = NULL;
1357
c4088ebd 1358 assert_spin_locked(pmd_lockptr(mm, pmd));
71e3aac0 1359
8310d48b 1360 if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
71e3aac0
AA
1361 goto out;
1362
85facf25
KS
1363 /* Avoid dumping huge zero page */
1364 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1365 return ERR_PTR(-EFAULT);
1366
2b4847e7 1367 /* Full NUMA hinting faults to serialise migration in fault paths */
8a0516ed 1368 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
2b4847e7
MG
1369 goto out;
1370
71e3aac0 1371 page = pmd_page(*pmd);
ca120cf6 1372 VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
3faa52c0
JH
1373
1374 if (!try_grab_page(page, flags))
1375 return ERR_PTR(-ENOMEM);
1376
3565fce3 1377 if (flags & FOLL_TOUCH)
a8f97366 1378 touch_pmd(vma, addr, pmd, flags);
3faa52c0 1379
de60f5f1 1380 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
e90309c9
KS
1381 /*
1382 * We don't mlock() pte-mapped THPs. This way we can avoid
1383 * leaking mlocked pages into non-VM_LOCKED VMAs.
1384 *
9a73f61b
KS
1385 * For anon THP:
1386 *
e90309c9
KS
1387 * In most cases the pmd is the only mapping of the page as we
1388 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1389 * writable private mappings in populate_vma_page_range().
1390 *
1391 * The only scenario when we have the page shared here is if we
1392 * mlocking read-only mapping shared over fork(). We skip
1393 * mlocking such pages.
9a73f61b
KS
1394 *
1395 * For file THP:
1396 *
1397 * We can expect PageDoubleMap() to be stable under page lock:
1398 * for file pages we set it in page_add_file_rmap(), which
1399 * requires page to be locked.
e90309c9 1400 */
9a73f61b
KS
1401
1402 if (PageAnon(page) && compound_mapcount(page) != 1)
1403 goto skip_mlock;
1404 if (PageDoubleMap(page) || !page->mapping)
1405 goto skip_mlock;
1406 if (!trylock_page(page))
1407 goto skip_mlock;
9a73f61b
KS
1408 if (page->mapping && !PageDoubleMap(page))
1409 mlock_vma_page(page);
1410 unlock_page(page);
b676b293 1411 }
9a73f61b 1412skip_mlock:
71e3aac0 1413 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
ca120cf6 1414 VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
71e3aac0
AA
1415
1416out:
1417 return page;
1418}
1419
d10e63f2 1420/* NUMA hinting page fault entry point for trans huge pmds */
2b740303 1421vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
d10e63f2 1422{
82b0f8c3 1423 struct vm_area_struct *vma = vmf->vma;
b8916634 1424 struct anon_vma *anon_vma = NULL;
b32967ff 1425 struct page *page;
82b0f8c3 1426 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
98fa15f3 1427 int page_nid = NUMA_NO_NODE, this_nid = numa_node_id();
90572890 1428 int target_nid, last_cpupid = -1;
8191acbd
MG
1429 bool page_locked;
1430 bool migrated = false;
b191f9b1 1431 bool was_writable;
6688cc05 1432 int flags = 0;
d10e63f2 1433
82b0f8c3
JK
1434 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1435 if (unlikely(!pmd_same(pmd, *vmf->pmd)))
d10e63f2
MG
1436 goto out_unlock;
1437
de466bd6
MG
1438 /*
1439 * If there are potential migrations, wait for completion and retry
1440 * without disrupting NUMA hinting information. Do not relock and
1441 * check_same as the page may no longer be mapped.
1442 */
82b0f8c3
JK
1443 if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
1444 page = pmd_page(*vmf->pmd);
3c226c63
MR
1445 if (!get_page_unless_zero(page))
1446 goto out_unlock;
82b0f8c3 1447 spin_unlock(vmf->ptl);
48054625 1448 put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE);
de466bd6
MG
1449 goto out;
1450 }
1451
d10e63f2 1452 page = pmd_page(pmd);
a1a46184 1453 BUG_ON(is_huge_zero_page(page));
8191acbd 1454 page_nid = page_to_nid(page);
90572890 1455 last_cpupid = page_cpupid_last(page);
03c5a6e1 1456 count_vm_numa_event(NUMA_HINT_FAULTS);
04bb2f94 1457 if (page_nid == this_nid) {
03c5a6e1 1458 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
04bb2f94
RR
1459 flags |= TNF_FAULT_LOCAL;
1460 }
4daae3b4 1461
bea66fbd 1462 /* See similar comment in do_numa_page for explanation */
288bc549 1463 if (!pmd_savedwrite(pmd))
6688cc05
PZ
1464 flags |= TNF_NO_GROUP;
1465
ff9042b1
MG
1466 /*
1467 * Acquire the page lock to serialise THP migrations but avoid dropping
1468 * page_table_lock if at all possible
1469 */
b8916634
MG
1470 page_locked = trylock_page(page);
1471 target_nid = mpol_misplaced(page, vma, haddr);
de466bd6 1472 /* Migration could have started since the pmd_trans_migrating check */
2b4847e7 1473 if (!page_locked) {
98fa15f3 1474 page_nid = NUMA_NO_NODE;
3c226c63
MR
1475 if (!get_page_unless_zero(page))
1476 goto out_unlock;
82b0f8c3 1477 spin_unlock(vmf->ptl);
48054625 1478 put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE);
b8916634 1479 goto out;
6beb5e8b
ML
1480 } else if (target_nid == NUMA_NO_NODE) {
1481 /* There are no parallel migrations and page is in the right
1482 * node. Clear the numa hinting info in this pmd.
1483 */
1484 goto clear_pmdnuma;
b8916634
MG
1485 }
1486
2b4847e7
MG
1487 /*
1488 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1489 * to serialises splits
1490 */
b8916634 1491 get_page(page);
82b0f8c3 1492 spin_unlock(vmf->ptl);
b8916634 1493 anon_vma = page_lock_anon_vma_read(page);
4daae3b4 1494
c69307d5 1495 /* Confirm the PMD did not change while page_table_lock was released */
82b0f8c3
JK
1496 spin_lock(vmf->ptl);
1497 if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
b32967ff
MG
1498 unlock_page(page);
1499 put_page(page);
98fa15f3 1500 page_nid = NUMA_NO_NODE;
4daae3b4 1501 goto out_unlock;
b32967ff 1502 }
ff9042b1 1503
c3a489ca
MG
1504 /* Bail if we fail to protect against THP splits for any reason */
1505 if (unlikely(!anon_vma)) {
1506 put_page(page);
98fa15f3 1507 page_nid = NUMA_NO_NODE;
c3a489ca
MG
1508 goto clear_pmdnuma;
1509 }
1510
8b1b436d
PZ
1511 /*
1512 * Since we took the NUMA fault, we must have observed the !accessible
1513 * bit. Make sure all other CPUs agree with that, to avoid them
1514 * modifying the page we're about to migrate.
1515 *
1516 * Must be done under PTL such that we'll observe the relevant
ccde85ba
PZ
1517 * inc_tlb_flush_pending().
1518 *
1519 * We are not sure a pending tlb flush here is for a huge page
1520 * mapping or not. Hence use the tlb range variant
8b1b436d 1521 */
7066f0f9 1522 if (mm_tlb_flush_pending(vma->vm_mm)) {
ccde85ba 1523 flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE);
7066f0f9
AA
1524 /*
1525 * change_huge_pmd() released the pmd lock before
1526 * invalidating the secondary MMUs sharing the primary
1527 * MMU pagetables (with ->invalidate_range()). The
1528 * mmu_notifier_invalidate_range_end() (which
1529 * internally calls ->invalidate_range()) in
1530 * change_pmd_range() will run after us, so we can't
1531 * rely on it here and we need an explicit invalidate.
1532 */
1533 mmu_notifier_invalidate_range(vma->vm_mm, haddr,
1534 haddr + HPAGE_PMD_SIZE);
1535 }
8b1b436d 1536
a54a407f
MG
1537 /*
1538 * Migrate the THP to the requested node, returns with page unlocked
8a0516ed 1539 * and access rights restored.
a54a407f 1540 */
82b0f8c3 1541 spin_unlock(vmf->ptl);
8b1b436d 1542
bae473a4 1543 migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
82b0f8c3 1544 vmf->pmd, pmd, vmf->address, page, target_nid);
6688cc05
PZ
1545 if (migrated) {
1546 flags |= TNF_MIGRATED;
8191acbd 1547 page_nid = target_nid;
074c2381
MG
1548 } else
1549 flags |= TNF_MIGRATE_FAIL;
b32967ff 1550
8191acbd 1551 goto out;
b32967ff 1552clear_pmdnuma:
a54a407f 1553 BUG_ON(!PageLocked(page));
288bc549 1554 was_writable = pmd_savedwrite(pmd);
4d942466 1555 pmd = pmd_modify(pmd, vma->vm_page_prot);
b7b04004 1556 pmd = pmd_mkyoung(pmd);
b191f9b1
MG
1557 if (was_writable)
1558 pmd = pmd_mkwrite(pmd);
82b0f8c3
JK
1559 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1560 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
a54a407f 1561 unlock_page(page);
d10e63f2 1562out_unlock:
82b0f8c3 1563 spin_unlock(vmf->ptl);
b8916634
MG
1564
1565out:
1566 if (anon_vma)
1567 page_unlock_anon_vma_read(anon_vma);
1568
98fa15f3 1569 if (page_nid != NUMA_NO_NODE)
82b0f8c3 1570 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
9a8b300f 1571 flags);
8191acbd 1572
d10e63f2
MG
1573 return 0;
1574}
1575
319904ad
HY
1576/*
1577 * Return true if we do MADV_FREE successfully on entire pmd page.
1578 * Otherwise, return false.
1579 */
1580bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
b8d3c4c3 1581 pmd_t *pmd, unsigned long addr, unsigned long next)
b8d3c4c3
MK
1582{
1583 spinlock_t *ptl;
1584 pmd_t orig_pmd;
1585 struct page *page;
1586 struct mm_struct *mm = tlb->mm;
319904ad 1587 bool ret = false;
b8d3c4c3 1588
ed6a7935 1589 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
07e32661 1590
b6ec57f4
KS
1591 ptl = pmd_trans_huge_lock(pmd, vma);
1592 if (!ptl)
25eedabe 1593 goto out_unlocked;
b8d3c4c3
MK
1594
1595 orig_pmd = *pmd;
319904ad 1596 if (is_huge_zero_pmd(orig_pmd))
b8d3c4c3 1597 goto out;
b8d3c4c3 1598
84c3fc4e
ZY
1599 if (unlikely(!pmd_present(orig_pmd))) {
1600 VM_BUG_ON(thp_migration_supported() &&
1601 !is_pmd_migration_entry(orig_pmd));
1602 goto out;
1603 }
1604
b8d3c4c3
MK
1605 page = pmd_page(orig_pmd);
1606 /*
1607 * If other processes are mapping this page, we couldn't discard
1608 * the page unless they all do MADV_FREE so let's skip the page.
1609 */
babbbdd0 1610 if (total_mapcount(page) != 1)
b8d3c4c3
MK
1611 goto out;
1612
1613 if (!trylock_page(page))
1614 goto out;
1615
1616 /*
1617 * If user want to discard part-pages of THP, split it so MADV_FREE
1618 * will deactivate only them.
1619 */
1620 if (next - addr != HPAGE_PMD_SIZE) {
1621 get_page(page);
1622 spin_unlock(ptl);
9818b8cd 1623 split_huge_page(page);
b8d3c4c3 1624 unlock_page(page);
bbf29ffc 1625 put_page(page);
b8d3c4c3
MK
1626 goto out_unlocked;
1627 }
1628
1629 if (PageDirty(page))
1630 ClearPageDirty(page);
1631 unlock_page(page);
1632
b8d3c4c3 1633 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
58ceeb6b 1634 pmdp_invalidate(vma, addr, pmd);
b8d3c4c3
MK
1635 orig_pmd = pmd_mkold(orig_pmd);
1636 orig_pmd = pmd_mkclean(orig_pmd);
1637
1638 set_pmd_at(mm, addr, pmd, orig_pmd);
1639 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1640 }
802a3a92
SL
1641
1642 mark_page_lazyfree(page);
319904ad 1643 ret = true;
b8d3c4c3
MK
1644out:
1645 spin_unlock(ptl);
1646out_unlocked:
1647 return ret;
1648}
1649
953c66c2
AK
1650static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1651{
1652 pgtable_t pgtable;
1653
1654 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1655 pte_free(mm, pgtable);
c4812909 1656 mm_dec_nr_ptes(mm);
953c66c2
AK
1657}
1658
71e3aac0 1659int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
f21760b1 1660 pmd_t *pmd, unsigned long addr)
71e3aac0 1661{
da146769 1662 pmd_t orig_pmd;
bf929152 1663 spinlock_t *ptl;
71e3aac0 1664
ed6a7935 1665 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
07e32661 1666
b6ec57f4
KS
1667 ptl = __pmd_trans_huge_lock(pmd, vma);
1668 if (!ptl)
da146769
KS
1669 return 0;
1670 /*
1671 * For architectures like ppc64 we look at deposited pgtable
1672 * when calling pmdp_huge_get_and_clear. So do the
1673 * pgtable_trans_huge_withdraw after finishing pmdp related
1674 * operations.
1675 */
93a98695
AK
1676 orig_pmd = pmdp_huge_get_and_clear_full(vma, addr, pmd,
1677 tlb->fullmm);
da146769 1678 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
2484ca9b 1679 if (vma_is_special_huge(vma)) {
3b6521f5
OH
1680 if (arch_needs_pgtable_deposit())
1681 zap_deposited_table(tlb->mm, pmd);
da146769 1682 spin_unlock(ptl);
da146769 1683 } else if (is_huge_zero_pmd(orig_pmd)) {
c14a6eb4 1684 zap_deposited_table(tlb->mm, pmd);
da146769 1685 spin_unlock(ptl);
da146769 1686 } else {
616b8371
ZY
1687 struct page *page = NULL;
1688 int flush_needed = 1;
1689
1690 if (pmd_present(orig_pmd)) {
1691 page = pmd_page(orig_pmd);
1692 page_remove_rmap(page, true);
1693 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1694 VM_BUG_ON_PAGE(!PageHead(page), page);
1695 } else if (thp_migration_supported()) {
1696 swp_entry_t entry;
1697
1698 VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1699 entry = pmd_to_swp_entry(orig_pmd);
a44f89dc 1700 page = migration_entry_to_page(entry);
616b8371
ZY
1701 flush_needed = 0;
1702 } else
1703 WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1704
b5072380 1705 if (PageAnon(page)) {
c14a6eb4 1706 zap_deposited_table(tlb->mm, pmd);
b5072380
KS
1707 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1708 } else {
953c66c2
AK
1709 if (arch_needs_pgtable_deposit())
1710 zap_deposited_table(tlb->mm, pmd);
fadae295 1711 add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
b5072380 1712 }
616b8371 1713
da146769 1714 spin_unlock(ptl);
616b8371
ZY
1715 if (flush_needed)
1716 tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
025c5b24 1717 }
da146769 1718 return 1;
71e3aac0
AA
1719}
1720
1dd38b6c
AK
1721#ifndef pmd_move_must_withdraw
1722static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1723 spinlock_t *old_pmd_ptl,
1724 struct vm_area_struct *vma)
1725{
1726 /*
1727 * With split pmd lock we also need to move preallocated
1728 * PTE page table if new_pmd is on different PMD page table.
1729 *
1730 * We also don't deposit and withdraw tables for file pages.
1731 */
1732 return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1733}
1734#endif
1735
ab6e3d09
NH
1736static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1737{
1738#ifdef CONFIG_MEM_SOFT_DIRTY
1739 if (unlikely(is_pmd_migration_entry(pmd)))
1740 pmd = pmd_swp_mksoft_dirty(pmd);
1741 else if (pmd_present(pmd))
1742 pmd = pmd_mksoft_dirty(pmd);
1743#endif
1744 return pmd;
1745}
1746
bf8616d5 1747bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
b8aa9d9d 1748 unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd)
37a1c49a 1749{
bf929152 1750 spinlock_t *old_ptl, *new_ptl;
37a1c49a 1751 pmd_t pmd;
37a1c49a 1752 struct mm_struct *mm = vma->vm_mm;
5d190420 1753 bool force_flush = false;
37a1c49a 1754
37a1c49a
AA
1755 /*
1756 * The destination pmd shouldn't be established, free_pgtables()
1757 * should have release it.
1758 */
1759 if (WARN_ON(!pmd_none(*new_pmd))) {
1760 VM_BUG_ON(pmd_trans_huge(*new_pmd));
4b471e88 1761 return false;
37a1c49a
AA
1762 }
1763
bf929152
KS
1764 /*
1765 * We don't have to worry about the ordering of src and dst
c1e8d7c6 1766 * ptlocks because exclusive mmap_lock prevents deadlock.
bf929152 1767 */
b6ec57f4
KS
1768 old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1769 if (old_ptl) {
bf929152
KS
1770 new_ptl = pmd_lockptr(mm, new_pmd);
1771 if (new_ptl != old_ptl)
1772 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
8809aa2d 1773 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
eb66ae03 1774 if (pmd_present(pmd))
a2ce2666 1775 force_flush = true;
025c5b24 1776 VM_BUG_ON(!pmd_none(*new_pmd));
3592806c 1777
1dd38b6c 1778 if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
b3084f4d 1779 pgtable_t pgtable;
3592806c
KS
1780 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1781 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
3592806c 1782 }
ab6e3d09
NH
1783 pmd = move_soft_dirty_pmd(pmd);
1784 set_pmd_at(mm, new_addr, new_pmd, pmd);
5d190420
AL
1785 if (force_flush)
1786 flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
eb66ae03
LT
1787 if (new_ptl != old_ptl)
1788 spin_unlock(new_ptl);
bf929152 1789 spin_unlock(old_ptl);
4b471e88 1790 return true;
37a1c49a 1791 }
4b471e88 1792 return false;
37a1c49a
AA
1793}
1794
f123d74a
MG
1795/*
1796 * Returns
1797 * - 0 if PMD could not be locked
f0953a1b
IM
1798 * - 1 if PMD was locked but protections unchanged and TLB flush unnecessary
1799 * - HPAGE_PMD_NR if protections changed and TLB flush necessary
f123d74a 1800 */
cd7548ab 1801int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
58705444 1802 unsigned long addr, pgprot_t newprot, unsigned long cp_flags)
cd7548ab
JW
1803{
1804 struct mm_struct *mm = vma->vm_mm;
bf929152 1805 spinlock_t *ptl;
0a85e51d
KS
1806 pmd_t entry;
1807 bool preserve_write;
1808 int ret;
58705444 1809 bool prot_numa = cp_flags & MM_CP_PROT_NUMA;
292924b2
PX
1810 bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
1811 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
cd7548ab 1812
b6ec57f4 1813 ptl = __pmd_trans_huge_lock(pmd, vma);
0a85e51d
KS
1814 if (!ptl)
1815 return 0;
e944fd67 1816
0a85e51d
KS
1817 preserve_write = prot_numa && pmd_write(*pmd);
1818 ret = 1;
e944fd67 1819
84c3fc4e
ZY
1820#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1821 if (is_swap_pmd(*pmd)) {
1822 swp_entry_t entry = pmd_to_swp_entry(*pmd);
1823
1824 VM_BUG_ON(!is_pmd_migration_entry(*pmd));
1825 if (is_write_migration_entry(entry)) {
1826 pmd_t newpmd;
1827 /*
1828 * A protection check is difficult so
1829 * just be safe and disable write
1830 */
1831 make_migration_entry_read(&entry);
1832 newpmd = swp_entry_to_pmd(entry);
ab6e3d09
NH
1833 if (pmd_swp_soft_dirty(*pmd))
1834 newpmd = pmd_swp_mksoft_dirty(newpmd);
8f34f1ea
PX
1835 if (pmd_swp_uffd_wp(*pmd))
1836 newpmd = pmd_swp_mkuffd_wp(newpmd);
84c3fc4e
ZY
1837 set_pmd_at(mm, addr, pmd, newpmd);
1838 }
1839 goto unlock;
1840 }
1841#endif
1842
0a85e51d
KS
1843 /*
1844 * Avoid trapping faults against the zero page. The read-only
1845 * data is likely to be read-cached on the local CPU and
1846 * local/remote hits to the zero page are not interesting.
1847 */
1848 if (prot_numa && is_huge_zero_pmd(*pmd))
1849 goto unlock;
025c5b24 1850
0a85e51d
KS
1851 if (prot_numa && pmd_protnone(*pmd))
1852 goto unlock;
1853
ced10803 1854 /*
3e4e28c5 1855 * In case prot_numa, we are under mmap_read_lock(mm). It's critical
ced10803 1856 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
3e4e28c5 1857 * which is also under mmap_read_lock(mm):
ced10803
KS
1858 *
1859 * CPU0: CPU1:
1860 * change_huge_pmd(prot_numa=1)
1861 * pmdp_huge_get_and_clear_notify()
1862 * madvise_dontneed()
1863 * zap_pmd_range()
1864 * pmd_trans_huge(*pmd) == 0 (without ptl)
1865 * // skip the pmd
1866 * set_pmd_at();
1867 * // pmd is re-established
1868 *
1869 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1870 * which may break userspace.
1871 *
1872 * pmdp_invalidate() is required to make sure we don't miss
1873 * dirty/young flags set by hardware.
1874 */
a3cf988f 1875 entry = pmdp_invalidate(vma, addr, pmd);
ced10803 1876
0a85e51d
KS
1877 entry = pmd_modify(entry, newprot);
1878 if (preserve_write)
1879 entry = pmd_mk_savedwrite(entry);
292924b2
PX
1880 if (uffd_wp) {
1881 entry = pmd_wrprotect(entry);
1882 entry = pmd_mkuffd_wp(entry);
1883 } else if (uffd_wp_resolve) {
1884 /*
1885 * Leave the write bit to be handled by PF interrupt
1886 * handler, then things like COW could be properly
1887 * handled.
1888 */
1889 entry = pmd_clear_uffd_wp(entry);
1890 }
0a85e51d
KS
1891 ret = HPAGE_PMD_NR;
1892 set_pmd_at(mm, addr, pmd, entry);
1893 BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
1894unlock:
1895 spin_unlock(ptl);
025c5b24
NH
1896 return ret;
1897}
1898
1899/*
8f19b0c0 1900 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
025c5b24 1901 *
8f19b0c0
HY
1902 * Note that if it returns page table lock pointer, this routine returns without
1903 * unlocking page table lock. So callers must unlock it.
025c5b24 1904 */
b6ec57f4 1905spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
025c5b24 1906{
b6ec57f4
KS
1907 spinlock_t *ptl;
1908 ptl = pmd_lock(vma->vm_mm, pmd);
84c3fc4e
ZY
1909 if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
1910 pmd_devmap(*pmd)))
b6ec57f4
KS
1911 return ptl;
1912 spin_unlock(ptl);
1913 return NULL;
cd7548ab
JW
1914}
1915
a00cc7d9
MW
1916/*
1917 * Returns true if a given pud maps a thp, false otherwise.
1918 *
1919 * Note that if it returns true, this routine returns without unlocking page
1920 * table lock. So callers must unlock it.
1921 */
1922spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
1923{
1924 spinlock_t *ptl;
1925
1926 ptl = pud_lock(vma->vm_mm, pud);
1927 if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
1928 return ptl;
1929 spin_unlock(ptl);
1930 return NULL;
1931}
1932
1933#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1934int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
1935 pud_t *pud, unsigned long addr)
1936{
a00cc7d9
MW
1937 spinlock_t *ptl;
1938
1939 ptl = __pud_trans_huge_lock(pud, vma);
1940 if (!ptl)
1941 return 0;
1942 /*
1943 * For architectures like ppc64 we look at deposited pgtable
1944 * when calling pudp_huge_get_and_clear. So do the
1945 * pgtable_trans_huge_withdraw after finishing pudp related
1946 * operations.
1947 */
70516b93 1948 pudp_huge_get_and_clear_full(tlb->mm, addr, pud, tlb->fullmm);
a00cc7d9 1949 tlb_remove_pud_tlb_entry(tlb, pud, addr);
2484ca9b 1950 if (vma_is_special_huge(vma)) {
a00cc7d9
MW
1951 spin_unlock(ptl);
1952 /* No zero page support yet */
1953 } else {
1954 /* No support for anonymous PUD pages yet */
1955 BUG();
1956 }
1957 return 1;
1958}
1959
1960static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
1961 unsigned long haddr)
1962{
1963 VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
1964 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
1965 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
1966 VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
1967
ce9311cf 1968 count_vm_event(THP_SPLIT_PUD);
a00cc7d9
MW
1969
1970 pudp_huge_clear_flush_notify(vma, haddr, pud);
1971}
1972
1973void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
1974 unsigned long address)
1975{
1976 spinlock_t *ptl;
ac46d4f3 1977 struct mmu_notifier_range range;
a00cc7d9 1978
7269f999 1979 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
6f4f13e8 1980 address & HPAGE_PUD_MASK,
ac46d4f3
JG
1981 (address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
1982 mmu_notifier_invalidate_range_start(&range);
1983 ptl = pud_lock(vma->vm_mm, pud);
a00cc7d9
MW
1984 if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
1985 goto out;
ac46d4f3 1986 __split_huge_pud_locked(vma, pud, range.start);
a00cc7d9
MW
1987
1988out:
1989 spin_unlock(ptl);
4645b9fe
JG
1990 /*
1991 * No need to double call mmu_notifier->invalidate_range() callback as
1992 * the above pudp_huge_clear_flush_notify() did already call it.
1993 */
ac46d4f3 1994 mmu_notifier_invalidate_range_only_end(&range);
a00cc7d9
MW
1995}
1996#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1997
eef1b3ba
KS
1998static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
1999 unsigned long haddr, pmd_t *pmd)
2000{
2001 struct mm_struct *mm = vma->vm_mm;
2002 pgtable_t pgtable;
2003 pmd_t _pmd;
2004 int i;
2005
0f10851e
JG
2006 /*
2007 * Leave pmd empty until pte is filled note that it is fine to delay
2008 * notification until mmu_notifier_invalidate_range_end() as we are
2009 * replacing a zero pmd write protected page with a zero pte write
2010 * protected page.
2011 *
ad56b738 2012 * See Documentation/vm/mmu_notifier.rst
0f10851e
JG
2013 */
2014 pmdp_huge_clear_flush(vma, haddr, pmd);
eef1b3ba
KS
2015
2016 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2017 pmd_populate(mm, &_pmd, pgtable);
2018
2019 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2020 pte_t *pte, entry;
2021 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2022 entry = pte_mkspecial(entry);
2023 pte = pte_offset_map(&_pmd, haddr);
2024 VM_BUG_ON(!pte_none(*pte));
2025 set_pte_at(mm, haddr, pte, entry);
2026 pte_unmap(pte);
2027 }
2028 smp_wmb(); /* make pte visible before pmd */
2029 pmd_populate(mm, pmd, pgtable);
eef1b3ba
KS
2030}
2031
2032static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
ba988280 2033 unsigned long haddr, bool freeze)
eef1b3ba
KS
2034{
2035 struct mm_struct *mm = vma->vm_mm;
2036 struct page *page;
2037 pgtable_t pgtable;
423ac9af 2038 pmd_t old_pmd, _pmd;
292924b2 2039 bool young, write, soft_dirty, pmd_migration = false, uffd_wp = false;
2ac015e2 2040 unsigned long addr;
eef1b3ba
KS
2041 int i;
2042
2043 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2044 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2045 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
84c3fc4e
ZY
2046 VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
2047 && !pmd_devmap(*pmd));
eef1b3ba
KS
2048
2049 count_vm_event(THP_SPLIT_PMD);
2050
d21b9e57 2051 if (!vma_is_anonymous(vma)) {
99fa8a48 2052 old_pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
953c66c2
AK
2053 /*
2054 * We are going to unmap this huge page. So
2055 * just go ahead and zap it
2056 */
2057 if (arch_needs_pgtable_deposit())
2058 zap_deposited_table(mm, pmd);
2484ca9b 2059 if (vma_is_special_huge(vma))
d21b9e57 2060 return;
99fa8a48
HD
2061 if (unlikely(is_pmd_migration_entry(old_pmd))) {
2062 swp_entry_t entry;
2063
2064 entry = pmd_to_swp_entry(old_pmd);
2065 page = migration_entry_to_page(entry);
2066 } else {
2067 page = pmd_page(old_pmd);
2068 if (!PageDirty(page) && pmd_dirty(old_pmd))
2069 set_page_dirty(page);
2070 if (!PageReferenced(page) && pmd_young(old_pmd))
2071 SetPageReferenced(page);
2072 page_remove_rmap(page, true);
2073 put_page(page);
2074 }
fadae295 2075 add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
eef1b3ba 2076 return;
99fa8a48
HD
2077 }
2078
3b77e8c8 2079 if (is_huge_zero_pmd(*pmd)) {
4645b9fe
JG
2080 /*
2081 * FIXME: Do we want to invalidate secondary mmu by calling
2082 * mmu_notifier_invalidate_range() see comments below inside
2083 * __split_huge_pmd() ?
2084 *
2085 * We are going from a zero huge page write protected to zero
2086 * small page also write protected so it does not seems useful
2087 * to invalidate secondary mmu at this time.
2088 */
eef1b3ba
KS
2089 return __split_huge_zero_page_pmd(vma, haddr, pmd);
2090 }
2091
423ac9af
AK
2092 /*
2093 * Up to this point the pmd is present and huge and userland has the
2094 * whole access to the hugepage during the split (which happens in
2095 * place). If we overwrite the pmd with the not-huge version pointing
2096 * to the pte here (which of course we could if all CPUs were bug
2097 * free), userland could trigger a small page size TLB miss on the
2098 * small sized TLB while the hugepage TLB entry is still established in
2099 * the huge TLB. Some CPU doesn't like that.
42742d9b
AK
2100 * See http://support.amd.com/TechDocs/41322_10h_Rev_Gd.pdf, Erratum
2101 * 383 on page 105. Intel should be safe but is also warns that it's
423ac9af
AK
2102 * only safe if the permission and cache attributes of the two entries
2103 * loaded in the two TLB is identical (which should be the case here).
2104 * But it is generally safer to never allow small and huge TLB entries
2105 * for the same virtual address to be loaded simultaneously. So instead
2106 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2107 * current pmd notpresent (atomically because here the pmd_trans_huge
2108 * must remain set at all times on the pmd until the split is complete
2109 * for this pmd), then we flush the SMP TLB and finally we write the
2110 * non-huge version of the pmd entry with pmd_populate.
2111 */
2112 old_pmd = pmdp_invalidate(vma, haddr, pmd);
2113
423ac9af 2114 pmd_migration = is_pmd_migration_entry(old_pmd);
2e83ee1d 2115 if (unlikely(pmd_migration)) {
84c3fc4e
ZY
2116 swp_entry_t entry;
2117
423ac9af 2118 entry = pmd_to_swp_entry(old_pmd);
a44f89dc 2119 page = migration_entry_to_page(entry);
2e83ee1d
PX
2120 write = is_write_migration_entry(entry);
2121 young = false;
2122 soft_dirty = pmd_swp_soft_dirty(old_pmd);
f45ec5ff 2123 uffd_wp = pmd_swp_uffd_wp(old_pmd);
2e83ee1d 2124 } else {
423ac9af 2125 page = pmd_page(old_pmd);
2e83ee1d
PX
2126 if (pmd_dirty(old_pmd))
2127 SetPageDirty(page);
2128 write = pmd_write(old_pmd);
2129 young = pmd_young(old_pmd);
2130 soft_dirty = pmd_soft_dirty(old_pmd);
292924b2 2131 uffd_wp = pmd_uffd_wp(old_pmd);
2e83ee1d 2132 }
eef1b3ba 2133 VM_BUG_ON_PAGE(!page_count(page), page);
fe896d18 2134 page_ref_add(page, HPAGE_PMD_NR - 1);
eef1b3ba 2135
423ac9af
AK
2136 /*
2137 * Withdraw the table only after we mark the pmd entry invalid.
2138 * This's critical for some architectures (Power).
2139 */
eef1b3ba
KS
2140 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2141 pmd_populate(mm, &_pmd, pgtable);
2142
2ac015e2 2143 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
eef1b3ba
KS
2144 pte_t entry, *pte;
2145 /*
2146 * Note that NUMA hinting access restrictions are not
2147 * transferred to avoid any possibility of altering
2148 * permissions across VMAs.
2149 */
84c3fc4e 2150 if (freeze || pmd_migration) {
ba988280
KS
2151 swp_entry_t swp_entry;
2152 swp_entry = make_migration_entry(page + i, write);
2153 entry = swp_entry_to_pte(swp_entry);
804dd150
AA
2154 if (soft_dirty)
2155 entry = pte_swp_mksoft_dirty(entry);
f45ec5ff
PX
2156 if (uffd_wp)
2157 entry = pte_swp_mkuffd_wp(entry);
ba988280 2158 } else {
6d2329f8 2159 entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
b8d3c4c3 2160 entry = maybe_mkwrite(entry, vma);
ba988280
KS
2161 if (!write)
2162 entry = pte_wrprotect(entry);
2163 if (!young)
2164 entry = pte_mkold(entry);
804dd150
AA
2165 if (soft_dirty)
2166 entry = pte_mksoft_dirty(entry);
292924b2
PX
2167 if (uffd_wp)
2168 entry = pte_mkuffd_wp(entry);
ba988280 2169 }
2ac015e2 2170 pte = pte_offset_map(&_pmd, addr);
eef1b3ba 2171 BUG_ON(!pte_none(*pte));
2ac015e2 2172 set_pte_at(mm, addr, pte, entry);
ec0abae6 2173 if (!pmd_migration)
eef1b3ba 2174 atomic_inc(&page[i]._mapcount);
ec0abae6 2175 pte_unmap(pte);
eef1b3ba
KS
2176 }
2177
ec0abae6
RC
2178 if (!pmd_migration) {
2179 /*
2180 * Set PG_double_map before dropping compound_mapcount to avoid
2181 * false-negative page_mapped().
2182 */
2183 if (compound_mapcount(page) > 1 &&
2184 !TestSetPageDoubleMap(page)) {
eef1b3ba 2185 for (i = 0; i < HPAGE_PMD_NR; i++)
ec0abae6
RC
2186 atomic_inc(&page[i]._mapcount);
2187 }
2188
2189 lock_page_memcg(page);
2190 if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2191 /* Last compound_mapcount is gone. */
69473e5d
MS
2192 __mod_lruvec_page_state(page, NR_ANON_THPS,
2193 -HPAGE_PMD_NR);
ec0abae6
RC
2194 if (TestClearPageDoubleMap(page)) {
2195 /* No need in mapcount reference anymore */
2196 for (i = 0; i < HPAGE_PMD_NR; i++)
2197 atomic_dec(&page[i]._mapcount);
2198 }
eef1b3ba 2199 }
ec0abae6 2200 unlock_page_memcg(page);
eef1b3ba
KS
2201 }
2202
2203 smp_wmb(); /* make pte visible before pmd */
2204 pmd_populate(mm, pmd, pgtable);
e9b61f19
KS
2205
2206 if (freeze) {
2ac015e2 2207 for (i = 0; i < HPAGE_PMD_NR; i++) {
e9b61f19
KS
2208 page_remove_rmap(page + i, false);
2209 put_page(page + i);
2210 }
2211 }
eef1b3ba
KS
2212}
2213
2214void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
33f4751e 2215 unsigned long address, bool freeze, struct page *page)
eef1b3ba
KS
2216{
2217 spinlock_t *ptl;
ac46d4f3 2218 struct mmu_notifier_range range;
1c2f6730 2219 bool do_unlock_page = false;
c444eb56 2220 pmd_t _pmd;
eef1b3ba 2221
7269f999 2222 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
6f4f13e8 2223 address & HPAGE_PMD_MASK,
ac46d4f3
JG
2224 (address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
2225 mmu_notifier_invalidate_range_start(&range);
2226 ptl = pmd_lock(vma->vm_mm, pmd);
33f4751e
NH
2227
2228 /*
2229 * If caller asks to setup a migration entries, we need a page to check
2230 * pmd against. Otherwise we can end up replacing wrong page.
2231 */
2232 VM_BUG_ON(freeze && !page);
c444eb56
AA
2233 if (page) {
2234 VM_WARN_ON_ONCE(!PageLocked(page));
c444eb56
AA
2235 if (page != pmd_page(*pmd))
2236 goto out;
2237 }
33f4751e 2238
c444eb56 2239repeat:
5c7fb56e 2240 if (pmd_trans_huge(*pmd)) {
c444eb56
AA
2241 if (!page) {
2242 page = pmd_page(*pmd);
1c2f6730
HD
2243 /*
2244 * An anonymous page must be locked, to ensure that a
2245 * concurrent reuse_swap_page() sees stable mapcount;
2246 * but reuse_swap_page() is not used on shmem or file,
2247 * and page lock must not be taken when zap_pmd_range()
2248 * calls __split_huge_pmd() while i_mmap_lock is held.
2249 */
2250 if (PageAnon(page)) {
2251 if (unlikely(!trylock_page(page))) {
2252 get_page(page);
2253 _pmd = *pmd;
2254 spin_unlock(ptl);
2255 lock_page(page);
2256 spin_lock(ptl);
2257 if (unlikely(!pmd_same(*pmd, _pmd))) {
2258 unlock_page(page);
2259 put_page(page);
2260 page = NULL;
2261 goto repeat;
2262 }
c444eb56 2263 put_page(page);
c444eb56 2264 }
1c2f6730 2265 do_unlock_page = true;
c444eb56
AA
2266 }
2267 }
5c7fb56e 2268 if (PageMlocked(page))
5f737714 2269 clear_page_mlock(page);
84c3fc4e 2270 } else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd)))
e90309c9 2271 goto out;
ac46d4f3 2272 __split_huge_pmd_locked(vma, pmd, range.start, freeze);
e90309c9 2273out:
eef1b3ba 2274 spin_unlock(ptl);
1c2f6730 2275 if (do_unlock_page)
c444eb56 2276 unlock_page(page);
4645b9fe
JG
2277 /*
2278 * No need to double call mmu_notifier->invalidate_range() callback.
2279 * They are 3 cases to consider inside __split_huge_pmd_locked():
2280 * 1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
2281 * 2) __split_huge_zero_page_pmd() read only zero page and any write
2282 * fault will trigger a flush_notify before pointing to a new page
2283 * (it is fine if the secondary mmu keeps pointing to the old zero
2284 * page in the meantime)
2285 * 3) Split a huge pmd into pte pointing to the same page. No need
2286 * to invalidate secondary tlb entry they are all still valid.
2287 * any further changes to individual pte will notify. So no need
2288 * to call mmu_notifier->invalidate_range()
2289 */
ac46d4f3 2290 mmu_notifier_invalidate_range_only_end(&range);
eef1b3ba
KS
2291}
2292
fec89c10
KS
2293void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2294 bool freeze, struct page *page)
94fcc585 2295{
f72e7dcd 2296 pgd_t *pgd;
c2febafc 2297 p4d_t *p4d;
f72e7dcd 2298 pud_t *pud;
94fcc585
AA
2299 pmd_t *pmd;
2300
78ddc534 2301 pgd = pgd_offset(vma->vm_mm, address);
f72e7dcd
HD
2302 if (!pgd_present(*pgd))
2303 return;
2304
c2febafc
KS
2305 p4d = p4d_offset(pgd, address);
2306 if (!p4d_present(*p4d))
2307 return;
2308
2309 pud = pud_offset(p4d, address);
f72e7dcd
HD
2310 if (!pud_present(*pud))
2311 return;
2312
2313 pmd = pmd_offset(pud, address);
fec89c10 2314
33f4751e 2315 __split_huge_pmd(vma, pmd, address, freeze, page);
94fcc585
AA
2316}
2317
71f9e58e
ML
2318static inline void split_huge_pmd_if_needed(struct vm_area_struct *vma, unsigned long address)
2319{
2320 /*
2321 * If the new address isn't hpage aligned and it could previously
2322 * contain an hugepage: check if we need to split an huge pmd.
2323 */
2324 if (!IS_ALIGNED(address, HPAGE_PMD_SIZE) &&
2325 range_in_vma(vma, ALIGN_DOWN(address, HPAGE_PMD_SIZE),
2326 ALIGN(address, HPAGE_PMD_SIZE)))
2327 split_huge_pmd_address(vma, address, false, NULL);
2328}
2329
e1b9996b 2330void vma_adjust_trans_huge(struct vm_area_struct *vma,
94fcc585
AA
2331 unsigned long start,
2332 unsigned long end,
2333 long adjust_next)
2334{
71f9e58e
ML
2335 /* Check if we need to split start first. */
2336 split_huge_pmd_if_needed(vma, start);
94fcc585 2337
71f9e58e
ML
2338 /* Check if we need to split end next. */
2339 split_huge_pmd_if_needed(vma, end);
94fcc585
AA
2340
2341 /*
71f9e58e
ML
2342 * If we're also updating the vma->vm_next->vm_start,
2343 * check if we need to split it.
94fcc585
AA
2344 */
2345 if (adjust_next > 0) {
2346 struct vm_area_struct *next = vma->vm_next;
2347 unsigned long nstart = next->vm_start;
f9d86a60 2348 nstart += adjust_next;
71f9e58e 2349 split_huge_pmd_if_needed(next, nstart);
94fcc585
AA
2350 }
2351}
e9b61f19 2352
906f9cdf 2353static void unmap_page(struct page *page)
e9b61f19 2354{
732ed558 2355 enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_SYNC |
c7ab0d2f 2356 TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD;
e9b61f19
KS
2357
2358 VM_BUG_ON_PAGE(!PageHead(page), page);
2359
baa355fd 2360 if (PageAnon(page))
b5ff8161 2361 ttu_flags |= TTU_SPLIT_FREEZE;
baa355fd 2362
504e070d
YS
2363 try_to_unmap(page, ttu_flags);
2364
2365 VM_WARN_ON_ONCE_PAGE(page_mapped(page), page);
e9b61f19
KS
2366}
2367
8cce5475 2368static void remap_page(struct page *page, unsigned int nr)
e9b61f19 2369{
fec89c10 2370 int i;
ace71a19
KS
2371 if (PageTransHuge(page)) {
2372 remove_migration_ptes(page, page, true);
2373 } else {
8cce5475 2374 for (i = 0; i < nr; i++)
ace71a19
KS
2375 remove_migration_ptes(page + i, page + i, true);
2376 }
e9b61f19
KS
2377}
2378
94866635 2379static void lru_add_page_tail(struct page *head, struct page *tail,
88dcb9a3
AS
2380 struct lruvec *lruvec, struct list_head *list)
2381{
94866635
AS
2382 VM_BUG_ON_PAGE(!PageHead(head), head);
2383 VM_BUG_ON_PAGE(PageCompound(tail), head);
2384 VM_BUG_ON_PAGE(PageLRU(tail), head);
6168d0da 2385 lockdep_assert_held(&lruvec->lru_lock);
88dcb9a3 2386
6dbb5741 2387 if (list) {
88dcb9a3 2388 /* page reclaim is reclaiming a huge page */
6dbb5741 2389 VM_WARN_ON(PageLRU(head));
94866635
AS
2390 get_page(tail);
2391 list_add_tail(&tail->lru, list);
88dcb9a3 2392 } else {
6dbb5741
AS
2393 /* head is still on lru (and we have it frozen) */
2394 VM_WARN_ON(!PageLRU(head));
2395 SetPageLRU(tail);
2396 list_add_tail(&tail->lru, &head->lru);
88dcb9a3
AS
2397 }
2398}
2399
8df651c7 2400static void __split_huge_page_tail(struct page *head, int tail,
e9b61f19
KS
2401 struct lruvec *lruvec, struct list_head *list)
2402{
e9b61f19
KS
2403 struct page *page_tail = head + tail;
2404
8df651c7 2405 VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
e9b61f19
KS
2406
2407 /*
605ca5ed
KK
2408 * Clone page flags before unfreezing refcount.
2409 *
2410 * After successful get_page_unless_zero() might follow flags change,
8958b249 2411 * for example lock_page() which set PG_waiters.
e9b61f19 2412 */
e9b61f19
KS
2413 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2414 page_tail->flags |= (head->flags &
2415 ((1L << PG_referenced) |
2416 (1L << PG_swapbacked) |
38d8b4e6 2417 (1L << PG_swapcache) |
e9b61f19
KS
2418 (1L << PG_mlocked) |
2419 (1L << PG_uptodate) |
2420 (1L << PG_active) |
1899ad18 2421 (1L << PG_workingset) |
e9b61f19 2422 (1L << PG_locked) |
b8d3c4c3 2423 (1L << PG_unevictable) |
72e6afa0
CM
2424#ifdef CONFIG_64BIT
2425 (1L << PG_arch_2) |
2426#endif
b8d3c4c3 2427 (1L << PG_dirty)));
e9b61f19 2428
173d9d9f
HD
2429 /* ->mapping in first tail page is compound_mapcount */
2430 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2431 page_tail);
2432 page_tail->mapping = head->mapping;
2433 page_tail->index = head->index + tail;
2434
605ca5ed 2435 /* Page flags must be visible before we make the page non-compound. */
e9b61f19
KS
2436 smp_wmb();
2437
605ca5ed
KK
2438 /*
2439 * Clear PageTail before unfreezing page refcount.
2440 *
2441 * After successful get_page_unless_zero() might follow put_page()
2442 * which needs correct compound_head().
2443 */
e9b61f19
KS
2444 clear_compound_head(page_tail);
2445
605ca5ed
KK
2446 /* Finally unfreeze refcount. Additional reference from page cache. */
2447 page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
2448 PageSwapCache(head)));
2449
e9b61f19
KS
2450 if (page_is_young(head))
2451 set_page_young(page_tail);
2452 if (page_is_idle(head))
2453 set_page_idle(page_tail);
2454
e9b61f19 2455 page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
94723aaf
MH
2456
2457 /*
2458 * always add to the tail because some iterators expect new
2459 * pages to show after the currently processed elements - e.g.
2460 * migrate_pages
2461 */
e9b61f19 2462 lru_add_page_tail(head, page_tail, lruvec, list);
e9b61f19
KS
2463}
2464
baa355fd 2465static void __split_huge_page(struct page *page, struct list_head *list,
b6769834 2466 pgoff_t end)
e9b61f19
KS
2467{
2468 struct page *head = compound_head(page);
e9b61f19 2469 struct lruvec *lruvec;
4101196b
MWO
2470 struct address_space *swap_cache = NULL;
2471 unsigned long offset = 0;
8cce5475 2472 unsigned int nr = thp_nr_pages(head);
8df651c7 2473 int i;
e9b61f19 2474
e9b61f19 2475 /* complete memcg works before add pages to LRU */
be6c8982 2476 split_page_memcg(head, nr);
e9b61f19 2477
4101196b
MWO
2478 if (PageAnon(head) && PageSwapCache(head)) {
2479 swp_entry_t entry = { .val = page_private(head) };
2480
2481 offset = swp_offset(entry);
2482 swap_cache = swap_address_space(entry);
2483 xa_lock(&swap_cache->i_pages);
2484 }
2485
f0953a1b 2486 /* lock lru list/PageCompound, ref frozen by page_ref_freeze */
6168d0da 2487 lruvec = lock_page_lruvec(head);
b6769834 2488
8cce5475 2489 for (i = nr - 1; i >= 1; i--) {
8df651c7 2490 __split_huge_page_tail(head, i, lruvec, list);
baa355fd
KS
2491 /* Some pages can be beyond i_size: drop them from page cache */
2492 if (head[i].index >= end) {
2d077d4b 2493 ClearPageDirty(head + i);
baa355fd 2494 __delete_from_page_cache(head + i, NULL);
800d8c63
KS
2495 if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
2496 shmem_uncharge(head->mapping->host, 1);
baa355fd 2497 put_page(head + i);
4101196b
MWO
2498 } else if (!PageAnon(page)) {
2499 __xa_store(&head->mapping->i_pages, head[i].index,
2500 head + i, 0);
2501 } else if (swap_cache) {
2502 __xa_store(&swap_cache->i_pages, offset + i,
2503 head + i, 0);
baa355fd
KS
2504 }
2505 }
e9b61f19
KS
2506
2507 ClearPageCompound(head);
6168d0da 2508 unlock_page_lruvec(lruvec);
b6769834 2509 /* Caller disabled irqs, so they are still disabled here */
f7da677b 2510
8cce5475 2511 split_page_owner(head, nr);
f7da677b 2512
baa355fd
KS
2513 /* See comment in __split_huge_page_tail() */
2514 if (PageAnon(head)) {
aa5dc07f 2515 /* Additional pin to swap cache */
4101196b 2516 if (PageSwapCache(head)) {
38d8b4e6 2517 page_ref_add(head, 2);
4101196b
MWO
2518 xa_unlock(&swap_cache->i_pages);
2519 } else {
38d8b4e6 2520 page_ref_inc(head);
4101196b 2521 }
baa355fd 2522 } else {
aa5dc07f 2523 /* Additional pin to page cache */
baa355fd 2524 page_ref_add(head, 2);
b93b0163 2525 xa_unlock(&head->mapping->i_pages);
baa355fd 2526 }
b6769834 2527 local_irq_enable();
e9b61f19 2528
8cce5475 2529 remap_page(head, nr);
e9b61f19 2530
c4f9c701
HY
2531 if (PageSwapCache(head)) {
2532 swp_entry_t entry = { .val = page_private(head) };
2533
2534 split_swap_cluster(entry);
2535 }
2536
8cce5475 2537 for (i = 0; i < nr; i++) {
e9b61f19
KS
2538 struct page *subpage = head + i;
2539 if (subpage == page)
2540 continue;
2541 unlock_page(subpage);
2542
2543 /*
2544 * Subpages may be freed if there wasn't any mapping
2545 * like if add_to_swap() is running on a lru page that
2546 * had its mapping zapped. And freeing these pages
2547 * requires taking the lru_lock so we do the put_page
2548 * of the tail pages after the split is complete.
2549 */
2550 put_page(subpage);
2551 }
2552}
2553
b20ce5e0
KS
2554int total_mapcount(struct page *page)
2555{
86b562b6 2556 int i, compound, nr, ret;
b20ce5e0
KS
2557
2558 VM_BUG_ON_PAGE(PageTail(page), page);
2559
2560 if (likely(!PageCompound(page)))
2561 return atomic_read(&page->_mapcount) + 1;
2562
dd78fedd 2563 compound = compound_mapcount(page);
86b562b6 2564 nr = compound_nr(page);
b20ce5e0 2565 if (PageHuge(page))
dd78fedd
KS
2566 return compound;
2567 ret = compound;
86b562b6 2568 for (i = 0; i < nr; i++)
b20ce5e0 2569 ret += atomic_read(&page[i]._mapcount) + 1;
dd78fedd
KS
2570 /* File pages has compound_mapcount included in _mapcount */
2571 if (!PageAnon(page))
86b562b6 2572 return ret - compound * nr;
b20ce5e0 2573 if (PageDoubleMap(page))
86b562b6 2574 ret -= nr;
b20ce5e0
KS
2575 return ret;
2576}
2577
6d0a07ed
AA
2578/*
2579 * This calculates accurately how many mappings a transparent hugepage
2580 * has (unlike page_mapcount() which isn't fully accurate). This full
2581 * accuracy is primarily needed to know if copy-on-write faults can
2582 * reuse the page and change the mapping to read-write instead of
2583 * copying them. At the same time this returns the total_mapcount too.
2584 *
2585 * The function returns the highest mapcount any one of the subpages
2586 * has. If the return value is one, even if different processes are
2587 * mapping different subpages of the transparent hugepage, they can
2588 * all reuse it, because each process is reusing a different subpage.
2589 *
2590 * The total_mapcount is instead counting all virtual mappings of the
2591 * subpages. If the total_mapcount is equal to "one", it tells the
2592 * caller all mappings belong to the same "mm" and in turn the
2593 * anon_vma of the transparent hugepage can become the vma->anon_vma
2594 * local one as no other process may be mapping any of the subpages.
2595 *
2596 * It would be more accurate to replace page_mapcount() with
2597 * page_trans_huge_mapcount(), however we only use
2598 * page_trans_huge_mapcount() in the copy-on-write faults where we
2599 * need full accuracy to avoid breaking page pinning, because
2600 * page_trans_huge_mapcount() is slower than page_mapcount().
2601 */
2602int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
2603{
2604 int i, ret, _total_mapcount, mapcount;
2605
2606 /* hugetlbfs shouldn't call it */
2607 VM_BUG_ON_PAGE(PageHuge(page), page);
2608
2609 if (likely(!PageTransCompound(page))) {
2610 mapcount = atomic_read(&page->_mapcount) + 1;
2611 if (total_mapcount)
2612 *total_mapcount = mapcount;
2613 return mapcount;
2614 }
2615
2616 page = compound_head(page);
2617
2618 _total_mapcount = ret = 0;
65dfe3c3 2619 for (i = 0; i < thp_nr_pages(page); i++) {
6d0a07ed
AA
2620 mapcount = atomic_read(&page[i]._mapcount) + 1;
2621 ret = max(ret, mapcount);
2622 _total_mapcount += mapcount;
2623 }
2624 if (PageDoubleMap(page)) {
2625 ret -= 1;
65dfe3c3 2626 _total_mapcount -= thp_nr_pages(page);
6d0a07ed
AA
2627 }
2628 mapcount = compound_mapcount(page);
2629 ret += mapcount;
2630 _total_mapcount += mapcount;
2631 if (total_mapcount)
2632 *total_mapcount = _total_mapcount;
2633 return ret;
2634}
2635
b8f593cd
HY
2636/* Racy check whether the huge page can be split */
2637bool can_split_huge_page(struct page *page, int *pextra_pins)
2638{
2639 int extra_pins;
2640
aa5dc07f 2641 /* Additional pins from page cache */
b8f593cd 2642 if (PageAnon(page))
e2333dad 2643 extra_pins = PageSwapCache(page) ? thp_nr_pages(page) : 0;
b8f593cd 2644 else
e2333dad 2645 extra_pins = thp_nr_pages(page);
b8f593cd
HY
2646 if (pextra_pins)
2647 *pextra_pins = extra_pins;
2648 return total_mapcount(page) == page_count(page) - extra_pins - 1;
2649}
2650
e9b61f19
KS
2651/*
2652 * This function splits huge page into normal pages. @page can point to any
2653 * subpage of huge page to split. Split doesn't change the position of @page.
2654 *
2655 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2656 * The huge page must be locked.
2657 *
2658 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2659 *
2660 * Both head page and tail pages will inherit mapping, flags, and so on from
2661 * the hugepage.
2662 *
2663 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2664 * they are not mapped.
2665 *
2666 * Returns 0 if the hugepage is split successfully.
2667 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2668 * us.
2669 */
2670int split_huge_page_to_list(struct page *page, struct list_head *list)
2671{
2672 struct page *head = compound_head(page);
a8803e6c 2673 struct deferred_split *ds_queue = get_deferred_split_queue(head);
baa355fd
KS
2674 struct anon_vma *anon_vma = NULL;
2675 struct address_space *mapping = NULL;
504e070d 2676 int extra_pins, ret;
006d3ff2 2677 pgoff_t end;
e9b61f19 2678
cb829624 2679 VM_BUG_ON_PAGE(is_huge_zero_page(head), head);
a8803e6c
WY
2680 VM_BUG_ON_PAGE(!PageLocked(head), head);
2681 VM_BUG_ON_PAGE(!PageCompound(head), head);
e9b61f19 2682
a8803e6c 2683 if (PageWriteback(head))
59807685
HY
2684 return -EBUSY;
2685
baa355fd
KS
2686 if (PageAnon(head)) {
2687 /*
c1e8d7c6 2688 * The caller does not necessarily hold an mmap_lock that would
baa355fd
KS
2689 * prevent the anon_vma disappearing so we first we take a
2690 * reference to it and then lock the anon_vma for write. This
2691 * is similar to page_lock_anon_vma_read except the write lock
2692 * is taken to serialise against parallel split or collapse
2693 * operations.
2694 */
2695 anon_vma = page_get_anon_vma(head);
2696 if (!anon_vma) {
2697 ret = -EBUSY;
2698 goto out;
2699 }
006d3ff2 2700 end = -1;
baa355fd
KS
2701 mapping = NULL;
2702 anon_vma_lock_write(anon_vma);
2703 } else {
2704 mapping = head->mapping;
2705
2706 /* Truncated ? */
2707 if (!mapping) {
2708 ret = -EBUSY;
2709 goto out;
2710 }
2711
baa355fd
KS
2712 anon_vma = NULL;
2713 i_mmap_lock_read(mapping);
006d3ff2
HD
2714
2715 /*
2716 *__split_huge_page() may need to trim off pages beyond EOF:
2717 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
2718 * which cannot be nested inside the page tree lock. So note
2719 * end now: i_size itself may be changed at any moment, but
2720 * head page lock is good enough to serialize the trimming.
2721 */
2722 end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
e9b61f19 2723 }
e9b61f19
KS
2724
2725 /*
906f9cdf 2726 * Racy check if we can split the page, before unmap_page() will
e9b61f19
KS
2727 * split PMDs
2728 */
b8f593cd 2729 if (!can_split_huge_page(head, &extra_pins)) {
e9b61f19
KS
2730 ret = -EBUSY;
2731 goto out_unlock;
2732 }
2733
906f9cdf 2734 unmap_page(head);
e9b61f19 2735
b6769834
AS
2736 /* block interrupt reentry in xa_lock and spinlock */
2737 local_irq_disable();
baa355fd 2738 if (mapping) {
aa5dc07f 2739 XA_STATE(xas, &mapping->i_pages, page_index(head));
baa355fd 2740
baa355fd 2741 /*
aa5dc07f 2742 * Check if the head page is present in page cache.
baa355fd
KS
2743 * We assume all tail are present too, if head is there.
2744 */
aa5dc07f
MW
2745 xa_lock(&mapping->i_pages);
2746 if (xas_load(&xas) != head)
baa355fd
KS
2747 goto fail;
2748 }
2749
0139aa7b 2750 /* Prevent deferred_split_scan() touching ->_refcount */
364c1eeb 2751 spin_lock(&ds_queue->split_queue_lock);
504e070d 2752 if (page_ref_freeze(head, 1 + extra_pins)) {
9a982250 2753 if (!list_empty(page_deferred_list(head))) {
364c1eeb 2754 ds_queue->split_queue_len--;
9a982250
KS
2755 list_del(page_deferred_list(head));
2756 }
afb97172 2757 spin_unlock(&ds_queue->split_queue_lock);
06d3eff6 2758 if (mapping) {
bf9ecead
MS
2759 int nr = thp_nr_pages(head);
2760
a8803e6c 2761 if (PageSwapBacked(head))
57b2847d
MS
2762 __mod_lruvec_page_state(head, NR_SHMEM_THPS,
2763 -nr);
06d3eff6 2764 else
bf9ecead
MS
2765 __mod_lruvec_page_state(head, NR_FILE_THPS,
2766 -nr);
06d3eff6
KS
2767 }
2768
b6769834 2769 __split_huge_page(page, list, end);
c4f9c701 2770 ret = 0;
e9b61f19 2771 } else {
364c1eeb 2772 spin_unlock(&ds_queue->split_queue_lock);
504e070d
YS
2773fail:
2774 if (mapping)
b93b0163 2775 xa_unlock(&mapping->i_pages);
b6769834 2776 local_irq_enable();
8cce5475 2777 remap_page(head, thp_nr_pages(head));
e9b61f19
KS
2778 ret = -EBUSY;
2779 }
2780
2781out_unlock:
baa355fd
KS
2782 if (anon_vma) {
2783 anon_vma_unlock_write(anon_vma);
2784 put_anon_vma(anon_vma);
2785 }
2786 if (mapping)
2787 i_mmap_unlock_read(mapping);
e9b61f19
KS
2788out:
2789 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2790 return ret;
2791}
9a982250
KS
2792
2793void free_transhuge_page(struct page *page)
2794{
87eaceb3 2795 struct deferred_split *ds_queue = get_deferred_split_queue(page);
9a982250
KS
2796 unsigned long flags;
2797
364c1eeb 2798 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
9a982250 2799 if (!list_empty(page_deferred_list(page))) {
364c1eeb 2800 ds_queue->split_queue_len--;
9a982250
KS
2801 list_del(page_deferred_list(page));
2802 }
364c1eeb 2803 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
9a982250
KS
2804 free_compound_page(page);
2805}
2806
2807void deferred_split_huge_page(struct page *page)
2808{
87eaceb3
YS
2809 struct deferred_split *ds_queue = get_deferred_split_queue(page);
2810#ifdef CONFIG_MEMCG
bcfe06bf 2811 struct mem_cgroup *memcg = page_memcg(compound_head(page));
87eaceb3 2812#endif
9a982250
KS
2813 unsigned long flags;
2814
2815 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2816
87eaceb3
YS
2817 /*
2818 * The try_to_unmap() in page reclaim path might reach here too,
2819 * this may cause a race condition to corrupt deferred split queue.
2820 * And, if page reclaim is already handling the same page, it is
2821 * unnecessary to handle it again in shrinker.
2822 *
2823 * Check PageSwapCache to determine if the page is being
2824 * handled by page reclaim since THP swap would add the page into
2825 * swap cache before calling try_to_unmap().
2826 */
2827 if (PageSwapCache(page))
2828 return;
2829
364c1eeb 2830 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
9a982250 2831 if (list_empty(page_deferred_list(page))) {
f9719a03 2832 count_vm_event(THP_DEFERRED_SPLIT_PAGE);
364c1eeb
YS
2833 list_add_tail(page_deferred_list(page), &ds_queue->split_queue);
2834 ds_queue->split_queue_len++;
87eaceb3
YS
2835#ifdef CONFIG_MEMCG
2836 if (memcg)
2bfd3637
YS
2837 set_shrinker_bit(memcg, page_to_nid(page),
2838 deferred_split_shrinker.id);
87eaceb3 2839#endif
9a982250 2840 }
364c1eeb 2841 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
9a982250
KS
2842}
2843
2844static unsigned long deferred_split_count(struct shrinker *shrink,
2845 struct shrink_control *sc)
2846{
a3d0a918 2847 struct pglist_data *pgdata = NODE_DATA(sc->nid);
364c1eeb 2848 struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
87eaceb3
YS
2849
2850#ifdef CONFIG_MEMCG
2851 if (sc->memcg)
2852 ds_queue = &sc->memcg->deferred_split_queue;
2853#endif
364c1eeb 2854 return READ_ONCE(ds_queue->split_queue_len);
9a982250
KS
2855}
2856
2857static unsigned long deferred_split_scan(struct shrinker *shrink,
2858 struct shrink_control *sc)
2859{
a3d0a918 2860 struct pglist_data *pgdata = NODE_DATA(sc->nid);
364c1eeb 2861 struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
9a982250
KS
2862 unsigned long flags;
2863 LIST_HEAD(list), *pos, *next;
2864 struct page *page;
2865 int split = 0;
2866
87eaceb3
YS
2867#ifdef CONFIG_MEMCG
2868 if (sc->memcg)
2869 ds_queue = &sc->memcg->deferred_split_queue;
2870#endif
2871
364c1eeb 2872 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
9a982250 2873 /* Take pin on all head pages to avoid freeing them under us */
364c1eeb 2874 list_for_each_safe(pos, next, &ds_queue->split_queue) {
dfe5c51c 2875 page = list_entry((void *)pos, struct page, deferred_list);
9a982250 2876 page = compound_head(page);
e3ae1953
KS
2877 if (get_page_unless_zero(page)) {
2878 list_move(page_deferred_list(page), &list);
2879 } else {
2880 /* We lost race with put_compound_page() */
9a982250 2881 list_del_init(page_deferred_list(page));
364c1eeb 2882 ds_queue->split_queue_len--;
9a982250 2883 }
e3ae1953
KS
2884 if (!--sc->nr_to_scan)
2885 break;
9a982250 2886 }
364c1eeb 2887 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
9a982250
KS
2888
2889 list_for_each_safe(pos, next, &list) {
dfe5c51c 2890 page = list_entry((void *)pos, struct page, deferred_list);
fa41b900
KS
2891 if (!trylock_page(page))
2892 goto next;
9a982250
KS
2893 /* split_huge_page() removes page from list on success */
2894 if (!split_huge_page(page))
2895 split++;
2896 unlock_page(page);
fa41b900 2897next:
9a982250
KS
2898 put_page(page);
2899 }
2900
364c1eeb
YS
2901 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2902 list_splice_tail(&list, &ds_queue->split_queue);
2903 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
9a982250 2904
cb8d68ec
KS
2905 /*
2906 * Stop shrinker if we didn't split any page, but the queue is empty.
2907 * This can happen if pages were freed under us.
2908 */
364c1eeb 2909 if (!split && list_empty(&ds_queue->split_queue))
cb8d68ec
KS
2910 return SHRINK_STOP;
2911 return split;
9a982250
KS
2912}
2913
2914static struct shrinker deferred_split_shrinker = {
2915 .count_objects = deferred_split_count,
2916 .scan_objects = deferred_split_scan,
2917 .seeks = DEFAULT_SEEKS,
87eaceb3
YS
2918 .flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE |
2919 SHRINKER_NONSLAB,
9a982250 2920};
49071d43
KS
2921
2922#ifdef CONFIG_DEBUG_FS
fa6c0231 2923static void split_huge_pages_all(void)
49071d43
KS
2924{
2925 struct zone *zone;
2926 struct page *page;
2927 unsigned long pfn, max_zone_pfn;
2928 unsigned long total = 0, split = 0;
2929
fa6c0231 2930 pr_debug("Split all THPs\n");
49071d43
KS
2931 for_each_populated_zone(zone) {
2932 max_zone_pfn = zone_end_pfn(zone);
2933 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2934 if (!pfn_valid(pfn))
2935 continue;
2936
2937 page = pfn_to_page(pfn);
2938 if (!get_page_unless_zero(page))
2939 continue;
2940
2941 if (zone != page_zone(page))
2942 goto next;
2943
baa355fd 2944 if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
49071d43
KS
2945 goto next;
2946
2947 total++;
2948 lock_page(page);
2949 if (!split_huge_page(page))
2950 split++;
2951 unlock_page(page);
2952next:
2953 put_page(page);
fa6c0231 2954 cond_resched();
49071d43
KS
2955 }
2956 }
2957
fa6c0231
ZY
2958 pr_debug("%lu of %lu THP split\n", split, total);
2959}
49071d43 2960
fa6c0231
ZY
2961static inline bool vma_not_suitable_for_thp_split(struct vm_area_struct *vma)
2962{
2963 return vma_is_special_huge(vma) || (vma->vm_flags & VM_IO) ||
2964 is_vm_hugetlb_page(vma);
2965}
2966
2967static int split_huge_pages_pid(int pid, unsigned long vaddr_start,
2968 unsigned long vaddr_end)
2969{
2970 int ret = 0;
2971 struct task_struct *task;
2972 struct mm_struct *mm;
2973 unsigned long total = 0, split = 0;
2974 unsigned long addr;
2975
2976 vaddr_start &= PAGE_MASK;
2977 vaddr_end &= PAGE_MASK;
2978
2979 /* Find the task_struct from pid */
2980 rcu_read_lock();
2981 task = find_task_by_vpid(pid);
2982 if (!task) {
2983 rcu_read_unlock();
2984 ret = -ESRCH;
2985 goto out;
2986 }
2987 get_task_struct(task);
2988 rcu_read_unlock();
2989
2990 /* Find the mm_struct */
2991 mm = get_task_mm(task);
2992 put_task_struct(task);
2993
2994 if (!mm) {
2995 ret = -EINVAL;
2996 goto out;
2997 }
2998
2999 pr_debug("Split huge pages in pid: %d, vaddr: [0x%lx - 0x%lx]\n",
3000 pid, vaddr_start, vaddr_end);
3001
3002 mmap_read_lock(mm);
3003 /*
3004 * always increase addr by PAGE_SIZE, since we could have a PTE page
3005 * table filled with PTE-mapped THPs, each of which is distinct.
3006 */
3007 for (addr = vaddr_start; addr < vaddr_end; addr += PAGE_SIZE) {
3008 struct vm_area_struct *vma = find_vma(mm, addr);
3009 unsigned int follflags;
3010 struct page *page;
3011
3012 if (!vma || addr < vma->vm_start)
3013 break;
3014
3015 /* skip special VMA and hugetlb VMA */
3016 if (vma_not_suitable_for_thp_split(vma)) {
3017 addr = vma->vm_end;
3018 continue;
3019 }
3020
3021 /* FOLL_DUMP to ignore special (like zero) pages */
3022 follflags = FOLL_GET | FOLL_DUMP;
3023 page = follow_page(vma, addr, follflags);
3024
3025 if (IS_ERR(page))
3026 continue;
3027 if (!page)
3028 continue;
3029
3030 if (!is_transparent_hugepage(page))
3031 goto next;
3032
3033 total++;
3034 if (!can_split_huge_page(compound_head(page), NULL))
3035 goto next;
3036
3037 if (!trylock_page(page))
3038 goto next;
3039
3040 if (!split_huge_page(page))
3041 split++;
3042
3043 unlock_page(page);
3044next:
3045 put_page(page);
3046 cond_resched();
3047 }
3048 mmap_read_unlock(mm);
3049 mmput(mm);
3050
3051 pr_debug("%lu of %lu THP split\n", split, total);
3052
3053out:
3054 return ret;
49071d43 3055}
fa6c0231 3056
fbe37501
ZY
3057static int split_huge_pages_in_file(const char *file_path, pgoff_t off_start,
3058 pgoff_t off_end)
3059{
3060 struct filename *file;
3061 struct file *candidate;
3062 struct address_space *mapping;
3063 int ret = -EINVAL;
3064 pgoff_t index;
3065 int nr_pages = 1;
3066 unsigned long total = 0, split = 0;
3067
3068 file = getname_kernel(file_path);
3069 if (IS_ERR(file))
3070 return ret;
3071
3072 candidate = file_open_name(file, O_RDONLY, 0);
3073 if (IS_ERR(candidate))
3074 goto out;
3075
3076 pr_debug("split file-backed THPs in file: %s, page offset: [0x%lx - 0x%lx]\n",
3077 file_path, off_start, off_end);
3078
3079 mapping = candidate->f_mapping;
3080
3081 for (index = off_start; index < off_end; index += nr_pages) {
3082 struct page *fpage = pagecache_get_page(mapping, index,
3083 FGP_ENTRY | FGP_HEAD, 0);
3084
3085 nr_pages = 1;
3086 if (xa_is_value(fpage) || !fpage)
3087 continue;
3088
3089 if (!is_transparent_hugepage(fpage))
3090 goto next;
3091
3092 total++;
3093 nr_pages = thp_nr_pages(fpage);
3094
3095 if (!trylock_page(fpage))
3096 goto next;
3097
3098 if (!split_huge_page(fpage))
3099 split++;
3100
3101 unlock_page(fpage);
3102next:
3103 put_page(fpage);
3104 cond_resched();
3105 }
3106
3107 filp_close(candidate, NULL);
3108 ret = 0;
3109
3110 pr_debug("%lu of %lu file-backed THP split\n", split, total);
3111out:
3112 putname(file);
3113 return ret;
3114}
3115
fa6c0231
ZY
3116#define MAX_INPUT_BUF_SZ 255
3117
3118static ssize_t split_huge_pages_write(struct file *file, const char __user *buf,
3119 size_t count, loff_t *ppops)
3120{
3121 static DEFINE_MUTEX(split_debug_mutex);
3122 ssize_t ret;
fbe37501
ZY
3123 /* hold pid, start_vaddr, end_vaddr or file_path, off_start, off_end */
3124 char input_buf[MAX_INPUT_BUF_SZ];
fa6c0231
ZY
3125 int pid;
3126 unsigned long vaddr_start, vaddr_end;
3127
3128 ret = mutex_lock_interruptible(&split_debug_mutex);
3129 if (ret)
3130 return ret;
3131
3132 ret = -EFAULT;
3133
3134 memset(input_buf, 0, MAX_INPUT_BUF_SZ);
3135 if (copy_from_user(input_buf, buf, min_t(size_t, count, MAX_INPUT_BUF_SZ)))
3136 goto out;
3137
3138 input_buf[MAX_INPUT_BUF_SZ - 1] = '\0';
fbe37501
ZY
3139
3140 if (input_buf[0] == '/') {
3141 char *tok;
3142 char *buf = input_buf;
3143 char file_path[MAX_INPUT_BUF_SZ];
3144 pgoff_t off_start = 0, off_end = 0;
3145 size_t input_len = strlen(input_buf);
3146
3147 tok = strsep(&buf, ",");
3148 if (tok) {
3149 strncpy(file_path, tok, MAX_INPUT_BUF_SZ);
3150 } else {
3151 ret = -EINVAL;
3152 goto out;
3153 }
3154
3155 ret = sscanf(buf, "0x%lx,0x%lx", &off_start, &off_end);
3156 if (ret != 2) {
3157 ret = -EINVAL;
3158 goto out;
3159 }
3160 ret = split_huge_pages_in_file(file_path, off_start, off_end);
3161 if (!ret)
3162 ret = input_len;
3163
3164 goto out;
3165 }
3166
fa6c0231
ZY
3167 ret = sscanf(input_buf, "%d,0x%lx,0x%lx", &pid, &vaddr_start, &vaddr_end);
3168 if (ret == 1 && pid == 1) {
3169 split_huge_pages_all();
3170 ret = strlen(input_buf);
3171 goto out;
3172 } else if (ret != 3) {
3173 ret = -EINVAL;
3174 goto out;
3175 }
3176
3177 ret = split_huge_pages_pid(pid, vaddr_start, vaddr_end);
3178 if (!ret)
3179 ret = strlen(input_buf);
3180out:
3181 mutex_unlock(&split_debug_mutex);
3182 return ret;
3183
3184}
3185
3186static const struct file_operations split_huge_pages_fops = {
3187 .owner = THIS_MODULE,
3188 .write = split_huge_pages_write,
3189 .llseek = no_llseek,
3190};
49071d43
KS
3191
3192static int __init split_huge_pages_debugfs(void)
3193{
d9f7979c
GKH
3194 debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
3195 &split_huge_pages_fops);
49071d43
KS
3196 return 0;
3197}
3198late_initcall(split_huge_pages_debugfs);
3199#endif
616b8371
ZY
3200
3201#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
3202void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
3203 struct page *page)
3204{
3205 struct vm_area_struct *vma = pvmw->vma;
3206 struct mm_struct *mm = vma->vm_mm;
3207 unsigned long address = pvmw->address;
3208 pmd_t pmdval;
3209 swp_entry_t entry;
ab6e3d09 3210 pmd_t pmdswp;
616b8371
ZY
3211
3212 if (!(pvmw->pmd && !pvmw->pte))
3213 return;
3214
616b8371 3215 flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
8a8683ad 3216 pmdval = pmdp_invalidate(vma, address, pvmw->pmd);
616b8371
ZY
3217 if (pmd_dirty(pmdval))
3218 set_page_dirty(page);
3219 entry = make_migration_entry(page, pmd_write(pmdval));
ab6e3d09
NH
3220 pmdswp = swp_entry_to_pmd(entry);
3221 if (pmd_soft_dirty(pmdval))
3222 pmdswp = pmd_swp_mksoft_dirty(pmdswp);
3223 set_pmd_at(mm, address, pvmw->pmd, pmdswp);
616b8371
ZY
3224 page_remove_rmap(page, true);
3225 put_page(page);
616b8371
ZY
3226}
3227
3228void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
3229{
3230 struct vm_area_struct *vma = pvmw->vma;
3231 struct mm_struct *mm = vma->vm_mm;
3232 unsigned long address = pvmw->address;
3233 unsigned long mmun_start = address & HPAGE_PMD_MASK;
3234 pmd_t pmde;
3235 swp_entry_t entry;
3236
3237 if (!(pvmw->pmd && !pvmw->pte))
3238 return;
3239
3240 entry = pmd_to_swp_entry(*pvmw->pmd);
3241 get_page(new);
3242 pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
ab6e3d09
NH
3243 if (pmd_swp_soft_dirty(*pvmw->pmd))
3244 pmde = pmd_mksoft_dirty(pmde);
616b8371 3245 if (is_write_migration_entry(entry))
f55e1014 3246 pmde = maybe_pmd_mkwrite(pmde, vma);
8f34f1ea
PX
3247 if (pmd_swp_uffd_wp(*pvmw->pmd))
3248 pmde = pmd_wrprotect(pmd_mkuffd_wp(pmde));
616b8371
ZY
3249
3250 flush_cache_range(vma, mmun_start, mmun_start + HPAGE_PMD_SIZE);
e71769ae
NH
3251 if (PageAnon(new))
3252 page_add_anon_rmap(new, vma, mmun_start, true);
3253 else
3254 page_add_file_rmap(new, true);
616b8371 3255 set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
e125fe40 3256 if ((vma->vm_flags & VM_LOCKED) && !PageDoubleMap(new))
616b8371
ZY
3257 mlock_vma_page(new);
3258 update_mmu_cache_pmd(vma, address, pvmw->pmd);
3259}
3260#endif