thp: handle file COW faults
[linux-2.6-block.git] / mm / huge_memory.c
CommitLineData
71e3aac0
AA
1/*
2 * Copyright (C) 2009 Red Hat, Inc.
3 *
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
6 */
7
ae3a8c1c
AM
8#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
71e3aac0
AA
10#include <linux/mm.h>
11#include <linux/sched.h>
12#include <linux/highmem.h>
13#include <linux/hugetlb.h>
14#include <linux/mmu_notifier.h>
15#include <linux/rmap.h>
16#include <linux/swap.h>
97ae1749 17#include <linux/shrinker.h>
ba76149f 18#include <linux/mm_inline.h>
e9b61f19 19#include <linux/swapops.h>
4897c765 20#include <linux/dax.h>
ba76149f
AA
21#include <linux/kthread.h>
22#include <linux/khugepaged.h>
878aee7d 23#include <linux/freezer.h>
f25748e3 24#include <linux/pfn_t.h>
a664b2d8 25#include <linux/mman.h>
3565fce3 26#include <linux/memremap.h>
325adeb5 27#include <linux/pagemap.h>
49071d43 28#include <linux/debugfs.h>
4daae3b4 29#include <linux/migrate.h>
43b5fbbd 30#include <linux/hashtable.h>
6b251fc9 31#include <linux/userfaultfd_k.h>
33c3fc71 32#include <linux/page_idle.h>
97ae1749 33
71e3aac0
AA
34#include <asm/tlb.h>
35#include <asm/pgalloc.h>
36#include "internal.h"
37
7d2eba05
EA
38enum scan_result {
39 SCAN_FAIL,
40 SCAN_SUCCEED,
41 SCAN_PMD_NULL,
42 SCAN_EXCEED_NONE_PTE,
43 SCAN_PTE_NON_PRESENT,
44 SCAN_PAGE_RO,
45 SCAN_NO_REFERENCED_PAGE,
46 SCAN_PAGE_NULL,
47 SCAN_SCAN_ABORT,
48 SCAN_PAGE_COUNT,
49 SCAN_PAGE_LRU,
50 SCAN_PAGE_LOCK,
51 SCAN_PAGE_ANON,
b1caa957 52 SCAN_PAGE_COMPOUND,
7d2eba05
EA
53 SCAN_ANY_PROCESS,
54 SCAN_VMA_NULL,
55 SCAN_VMA_CHECK,
56 SCAN_ADDRESS_RANGE,
57 SCAN_SWAP_CACHE_PAGE,
58 SCAN_DEL_PAGE_LRU,
59 SCAN_ALLOC_HUGE_PAGE_FAIL,
70652f6e
EA
60 SCAN_CGROUP_CHARGE_FAIL,
61 SCAN_EXCEED_SWAP_PTE
7d2eba05
EA
62};
63
64#define CREATE_TRACE_POINTS
65#include <trace/events/huge_memory.h>
66
ba76149f 67/*
8bfa3f9a
JW
68 * By default transparent hugepage support is disabled in order that avoid
69 * to risk increase the memory footprint of applications without a guaranteed
70 * benefit. When transparent hugepage support is enabled, is for all mappings,
71 * and khugepaged scans all mappings.
72 * Defrag is invoked by khugepaged hugepage allocations and by page faults
73 * for all hugepage allocations.
ba76149f 74 */
71e3aac0 75unsigned long transparent_hugepage_flags __read_mostly =
13ece886 76#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
ba76149f 77 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
13ece886
AA
78#endif
79#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
80 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
81#endif
444eb2a4 82 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
79da5407
KS
83 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
84 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
ba76149f
AA
85
86/* default scan 8*512 pte (or vmas) every 30 second */
ff20c2e0 87static unsigned int khugepaged_pages_to_scan __read_mostly;
ba76149f
AA
88static unsigned int khugepaged_pages_collapsed;
89static unsigned int khugepaged_full_scans;
90static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
91/* during fragmentation poll the hugepage allocator once every minute */
92static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
f0508977 93static unsigned long khugepaged_sleep_expire;
ba76149f
AA
94static struct task_struct *khugepaged_thread __read_mostly;
95static DEFINE_MUTEX(khugepaged_mutex);
96static DEFINE_SPINLOCK(khugepaged_mm_lock);
97static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
98/*
99 * default collapse hugepages if there is at least one pte mapped like
100 * it would have happened if the vma was large enough during page
101 * fault.
102 */
ff20c2e0 103static unsigned int khugepaged_max_ptes_none __read_mostly;
70652f6e 104static unsigned int khugepaged_max_ptes_swap __read_mostly;
ba76149f
AA
105
106static int khugepaged(void *none);
ba76149f 107static int khugepaged_slab_init(void);
65ebb64f 108static void khugepaged_slab_exit(void);
ba76149f 109
43b5fbbd
SL
110#define MM_SLOTS_HASH_BITS 10
111static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
112
ba76149f
AA
113static struct kmem_cache *mm_slot_cache __read_mostly;
114
115/**
116 * struct mm_slot - hash lookup from mm to mm_slot
117 * @hash: hash collision list
118 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
119 * @mm: the mm that this information is valid for
120 */
121struct mm_slot {
122 struct hlist_node hash;
123 struct list_head mm_node;
124 struct mm_struct *mm;
125};
126
127/**
128 * struct khugepaged_scan - cursor for scanning
129 * @mm_head: the head of the mm list to scan
130 * @mm_slot: the current mm_slot we are scanning
131 * @address: the next address inside that to be scanned
132 *
133 * There is only the one khugepaged_scan instance of this cursor structure.
134 */
135struct khugepaged_scan {
136 struct list_head mm_head;
137 struct mm_slot *mm_slot;
138 unsigned long address;
2f1da642
HS
139};
140static struct khugepaged_scan khugepaged_scan = {
ba76149f
AA
141 .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
142};
143
9a982250 144static struct shrinker deferred_split_shrinker;
f000565a 145
2c0b80d4 146static void set_recommended_min_free_kbytes(void)
f000565a
AA
147{
148 struct zone *zone;
149 int nr_zones = 0;
150 unsigned long recommended_min;
f000565a 151
f000565a
AA
152 for_each_populated_zone(zone)
153 nr_zones++;
154
974a786e 155 /* Ensure 2 pageblocks are free to assist fragmentation avoidance */
f000565a
AA
156 recommended_min = pageblock_nr_pages * nr_zones * 2;
157
158 /*
159 * Make sure that on average at least two pageblocks are almost free
160 * of another type, one for a migratetype to fall back to and a
161 * second to avoid subsequent fallbacks of other types There are 3
162 * MIGRATE_TYPES we care about.
163 */
164 recommended_min += pageblock_nr_pages * nr_zones *
165 MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
166
167 /* don't ever allow to reserve more than 5% of the lowmem */
168 recommended_min = min(recommended_min,
169 (unsigned long) nr_free_buffer_pages() / 20);
170 recommended_min <<= (PAGE_SHIFT-10);
171
42aa83cb
HP
172 if (recommended_min > min_free_kbytes) {
173 if (user_min_free_kbytes >= 0)
756a025f 174 pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n",
42aa83cb
HP
175 min_free_kbytes, recommended_min);
176
f000565a 177 min_free_kbytes = recommended_min;
42aa83cb 178 }
f000565a 179 setup_per_zone_wmarks();
f000565a 180}
f000565a 181
79553da2 182static int start_stop_khugepaged(void)
ba76149f
AA
183{
184 int err = 0;
185 if (khugepaged_enabled()) {
ba76149f
AA
186 if (!khugepaged_thread)
187 khugepaged_thread = kthread_run(khugepaged, NULL,
188 "khugepaged");
18e8e5c7 189 if (IS_ERR(khugepaged_thread)) {
ae3a8c1c 190 pr_err("khugepaged: kthread_run(khugepaged) failed\n");
ba76149f
AA
191 err = PTR_ERR(khugepaged_thread);
192 khugepaged_thread = NULL;
79553da2 193 goto fail;
ba76149f 194 }
911891af
XG
195
196 if (!list_empty(&khugepaged_scan.mm_head))
ba76149f 197 wake_up_interruptible(&khugepaged_wait);
f000565a
AA
198
199 set_recommended_min_free_kbytes();
911891af 200 } else if (khugepaged_thread) {
911891af
XG
201 kthread_stop(khugepaged_thread);
202 khugepaged_thread = NULL;
203 }
79553da2 204fail:
ba76149f
AA
205 return err;
206}
71e3aac0 207
97ae1749 208static atomic_t huge_zero_refcount;
56873f43 209struct page *huge_zero_page __read_mostly;
4a6c1297 210
fc437044 211struct page *get_huge_zero_page(void)
97ae1749
KS
212{
213 struct page *zero_page;
214retry:
215 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
4db0c3c2 216 return READ_ONCE(huge_zero_page);
97ae1749
KS
217
218 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
4a6c1297 219 HPAGE_PMD_ORDER);
d8a8e1f0
KS
220 if (!zero_page) {
221 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
5918d10a 222 return NULL;
d8a8e1f0
KS
223 }
224 count_vm_event(THP_ZERO_PAGE_ALLOC);
97ae1749 225 preempt_disable();
5918d10a 226 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
97ae1749 227 preempt_enable();
5ddacbe9 228 __free_pages(zero_page, compound_order(zero_page));
97ae1749
KS
229 goto retry;
230 }
231
232 /* We take additional reference here. It will be put back by shrinker */
233 atomic_set(&huge_zero_refcount, 2);
234 preempt_enable();
4db0c3c2 235 return READ_ONCE(huge_zero_page);
4a6c1297
KS
236}
237
aa88b68c 238void put_huge_zero_page(void)
4a6c1297 239{
97ae1749
KS
240 /*
241 * Counter should never go to zero here. Only shrinker can put
242 * last reference.
243 */
244 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
4a6c1297
KS
245}
246
48896466
GC
247static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
248 struct shrink_control *sc)
4a6c1297 249{
48896466
GC
250 /* we can free zero page only if last reference remains */
251 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
252}
97ae1749 253
48896466
GC
254static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
255 struct shrink_control *sc)
256{
97ae1749 257 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
5918d10a
KS
258 struct page *zero_page = xchg(&huge_zero_page, NULL);
259 BUG_ON(zero_page == NULL);
5ddacbe9 260 __free_pages(zero_page, compound_order(zero_page));
48896466 261 return HPAGE_PMD_NR;
97ae1749
KS
262 }
263
264 return 0;
4a6c1297
KS
265}
266
97ae1749 267static struct shrinker huge_zero_page_shrinker = {
48896466
GC
268 .count_objects = shrink_huge_zero_page_count,
269 .scan_objects = shrink_huge_zero_page_scan,
97ae1749
KS
270 .seeks = DEFAULT_SEEKS,
271};
272
71e3aac0 273#ifdef CONFIG_SYSFS
ba76149f 274
444eb2a4 275static ssize_t triple_flag_store(struct kobject *kobj,
71e3aac0
AA
276 struct kobj_attribute *attr,
277 const char *buf, size_t count,
278 enum transparent_hugepage_flag enabled,
444eb2a4 279 enum transparent_hugepage_flag deferred,
71e3aac0
AA
280 enum transparent_hugepage_flag req_madv)
281{
444eb2a4
MG
282 if (!memcmp("defer", buf,
283 min(sizeof("defer")-1, count))) {
284 if (enabled == deferred)
285 return -EINVAL;
286 clear_bit(enabled, &transparent_hugepage_flags);
287 clear_bit(req_madv, &transparent_hugepage_flags);
288 set_bit(deferred, &transparent_hugepage_flags);
289 } else if (!memcmp("always", buf,
71e3aac0 290 min(sizeof("always")-1, count))) {
444eb2a4 291 clear_bit(deferred, &transparent_hugepage_flags);
71e3aac0 292 clear_bit(req_madv, &transparent_hugepage_flags);
444eb2a4 293 set_bit(enabled, &transparent_hugepage_flags);
71e3aac0
AA
294 } else if (!memcmp("madvise", buf,
295 min(sizeof("madvise")-1, count))) {
296 clear_bit(enabled, &transparent_hugepage_flags);
444eb2a4 297 clear_bit(deferred, &transparent_hugepage_flags);
71e3aac0
AA
298 set_bit(req_madv, &transparent_hugepage_flags);
299 } else if (!memcmp("never", buf,
300 min(sizeof("never")-1, count))) {
301 clear_bit(enabled, &transparent_hugepage_flags);
302 clear_bit(req_madv, &transparent_hugepage_flags);
444eb2a4 303 clear_bit(deferred, &transparent_hugepage_flags);
71e3aac0
AA
304 } else
305 return -EINVAL;
306
307 return count;
308}
309
310static ssize_t enabled_show(struct kobject *kobj,
311 struct kobj_attribute *attr, char *buf)
312{
444eb2a4
MG
313 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
314 return sprintf(buf, "[always] madvise never\n");
315 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
316 return sprintf(buf, "always [madvise] never\n");
317 else
318 return sprintf(buf, "always madvise [never]\n");
71e3aac0 319}
444eb2a4 320
71e3aac0
AA
321static ssize_t enabled_store(struct kobject *kobj,
322 struct kobj_attribute *attr,
323 const char *buf, size_t count)
324{
ba76149f
AA
325 ssize_t ret;
326
444eb2a4
MG
327 ret = triple_flag_store(kobj, attr, buf, count,
328 TRANSPARENT_HUGEPAGE_FLAG,
ba76149f
AA
329 TRANSPARENT_HUGEPAGE_FLAG,
330 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
331
332 if (ret > 0) {
911891af
XG
333 int err;
334
335 mutex_lock(&khugepaged_mutex);
79553da2 336 err = start_stop_khugepaged();
911891af
XG
337 mutex_unlock(&khugepaged_mutex);
338
ba76149f
AA
339 if (err)
340 ret = err;
341 }
342
343 return ret;
71e3aac0
AA
344}
345static struct kobj_attribute enabled_attr =
346 __ATTR(enabled, 0644, enabled_show, enabled_store);
347
348static ssize_t single_flag_show(struct kobject *kobj,
349 struct kobj_attribute *attr, char *buf,
350 enum transparent_hugepage_flag flag)
351{
e27e6151
BH
352 return sprintf(buf, "%d\n",
353 !!test_bit(flag, &transparent_hugepage_flags));
71e3aac0 354}
e27e6151 355
71e3aac0
AA
356static ssize_t single_flag_store(struct kobject *kobj,
357 struct kobj_attribute *attr,
358 const char *buf, size_t count,
359 enum transparent_hugepage_flag flag)
360{
e27e6151
BH
361 unsigned long value;
362 int ret;
363
364 ret = kstrtoul(buf, 10, &value);
365 if (ret < 0)
366 return ret;
367 if (value > 1)
368 return -EINVAL;
369
370 if (value)
71e3aac0 371 set_bit(flag, &transparent_hugepage_flags);
e27e6151 372 else
71e3aac0 373 clear_bit(flag, &transparent_hugepage_flags);
71e3aac0
AA
374
375 return count;
376}
377
378/*
379 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
380 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
381 * memory just to allocate one more hugepage.
382 */
383static ssize_t defrag_show(struct kobject *kobj,
384 struct kobj_attribute *attr, char *buf)
385{
444eb2a4
MG
386 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
387 return sprintf(buf, "[always] defer madvise never\n");
388 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
389 return sprintf(buf, "always [defer] madvise never\n");
390 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
391 return sprintf(buf, "always defer [madvise] never\n");
392 else
393 return sprintf(buf, "always defer madvise [never]\n");
394
71e3aac0
AA
395}
396static ssize_t defrag_store(struct kobject *kobj,
397 struct kobj_attribute *attr,
398 const char *buf, size_t count)
399{
444eb2a4
MG
400 return triple_flag_store(kobj, attr, buf, count,
401 TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
402 TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
71e3aac0
AA
403 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
404}
405static struct kobj_attribute defrag_attr =
406 __ATTR(defrag, 0644, defrag_show, defrag_store);
407
79da5407
KS
408static ssize_t use_zero_page_show(struct kobject *kobj,
409 struct kobj_attribute *attr, char *buf)
410{
411 return single_flag_show(kobj, attr, buf,
412 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
413}
414static ssize_t use_zero_page_store(struct kobject *kobj,
415 struct kobj_attribute *attr, const char *buf, size_t count)
416{
417 return single_flag_store(kobj, attr, buf, count,
418 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
419}
420static struct kobj_attribute use_zero_page_attr =
421 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
71e3aac0
AA
422#ifdef CONFIG_DEBUG_VM
423static ssize_t debug_cow_show(struct kobject *kobj,
424 struct kobj_attribute *attr, char *buf)
425{
426 return single_flag_show(kobj, attr, buf,
427 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
428}
429static ssize_t debug_cow_store(struct kobject *kobj,
430 struct kobj_attribute *attr,
431 const char *buf, size_t count)
432{
433 return single_flag_store(kobj, attr, buf, count,
434 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
435}
436static struct kobj_attribute debug_cow_attr =
437 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
438#endif /* CONFIG_DEBUG_VM */
439
440static struct attribute *hugepage_attr[] = {
441 &enabled_attr.attr,
442 &defrag_attr.attr,
79da5407 443 &use_zero_page_attr.attr,
71e3aac0
AA
444#ifdef CONFIG_DEBUG_VM
445 &debug_cow_attr.attr,
446#endif
447 NULL,
448};
449
450static struct attribute_group hugepage_attr_group = {
451 .attrs = hugepage_attr,
ba76149f
AA
452};
453
454static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
455 struct kobj_attribute *attr,
456 char *buf)
457{
458 return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
459}
460
461static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
462 struct kobj_attribute *attr,
463 const char *buf, size_t count)
464{
465 unsigned long msecs;
466 int err;
467
3dbb95f7 468 err = kstrtoul(buf, 10, &msecs);
ba76149f
AA
469 if (err || msecs > UINT_MAX)
470 return -EINVAL;
471
472 khugepaged_scan_sleep_millisecs = msecs;
f0508977 473 khugepaged_sleep_expire = 0;
ba76149f
AA
474 wake_up_interruptible(&khugepaged_wait);
475
476 return count;
477}
478static struct kobj_attribute scan_sleep_millisecs_attr =
479 __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
480 scan_sleep_millisecs_store);
481
482static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
483 struct kobj_attribute *attr,
484 char *buf)
485{
486 return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
487}
488
489static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
490 struct kobj_attribute *attr,
491 const char *buf, size_t count)
492{
493 unsigned long msecs;
494 int err;
495
3dbb95f7 496 err = kstrtoul(buf, 10, &msecs);
ba76149f
AA
497 if (err || msecs > UINT_MAX)
498 return -EINVAL;
499
500 khugepaged_alloc_sleep_millisecs = msecs;
f0508977 501 khugepaged_sleep_expire = 0;
ba76149f
AA
502 wake_up_interruptible(&khugepaged_wait);
503
504 return count;
505}
506static struct kobj_attribute alloc_sleep_millisecs_attr =
507 __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
508 alloc_sleep_millisecs_store);
509
510static ssize_t pages_to_scan_show(struct kobject *kobj,
511 struct kobj_attribute *attr,
512 char *buf)
513{
514 return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
515}
516static ssize_t pages_to_scan_store(struct kobject *kobj,
517 struct kobj_attribute *attr,
518 const char *buf, size_t count)
519{
520 int err;
521 unsigned long pages;
522
3dbb95f7 523 err = kstrtoul(buf, 10, &pages);
ba76149f
AA
524 if (err || !pages || pages > UINT_MAX)
525 return -EINVAL;
526
527 khugepaged_pages_to_scan = pages;
528
529 return count;
530}
531static struct kobj_attribute pages_to_scan_attr =
532 __ATTR(pages_to_scan, 0644, pages_to_scan_show,
533 pages_to_scan_store);
534
535static ssize_t pages_collapsed_show(struct kobject *kobj,
536 struct kobj_attribute *attr,
537 char *buf)
538{
539 return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
540}
541static struct kobj_attribute pages_collapsed_attr =
542 __ATTR_RO(pages_collapsed);
543
544static ssize_t full_scans_show(struct kobject *kobj,
545 struct kobj_attribute *attr,
546 char *buf)
547{
548 return sprintf(buf, "%u\n", khugepaged_full_scans);
549}
550static struct kobj_attribute full_scans_attr =
551 __ATTR_RO(full_scans);
552
553static ssize_t khugepaged_defrag_show(struct kobject *kobj,
554 struct kobj_attribute *attr, char *buf)
555{
556 return single_flag_show(kobj, attr, buf,
557 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
558}
559static ssize_t khugepaged_defrag_store(struct kobject *kobj,
560 struct kobj_attribute *attr,
561 const char *buf, size_t count)
562{
563 return single_flag_store(kobj, attr, buf, count,
564 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
565}
566static struct kobj_attribute khugepaged_defrag_attr =
567 __ATTR(defrag, 0644, khugepaged_defrag_show,
568 khugepaged_defrag_store);
569
570/*
571 * max_ptes_none controls if khugepaged should collapse hugepages over
572 * any unmapped ptes in turn potentially increasing the memory
573 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
574 * reduce the available free memory in the system as it
575 * runs. Increasing max_ptes_none will instead potentially reduce the
576 * free memory in the system during the khugepaged scan.
577 */
578static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
579 struct kobj_attribute *attr,
580 char *buf)
581{
582 return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
583}
584static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
585 struct kobj_attribute *attr,
586 const char *buf, size_t count)
587{
588 int err;
589 unsigned long max_ptes_none;
590
3dbb95f7 591 err = kstrtoul(buf, 10, &max_ptes_none);
ba76149f
AA
592 if (err || max_ptes_none > HPAGE_PMD_NR-1)
593 return -EINVAL;
594
595 khugepaged_max_ptes_none = max_ptes_none;
596
597 return count;
598}
599static struct kobj_attribute khugepaged_max_ptes_none_attr =
600 __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
601 khugepaged_max_ptes_none_store);
602
70652f6e
EA
603static ssize_t khugepaged_max_ptes_swap_show(struct kobject *kobj,
604 struct kobj_attribute *attr,
605 char *buf)
606{
607 return sprintf(buf, "%u\n", khugepaged_max_ptes_swap);
608}
609
610static ssize_t khugepaged_max_ptes_swap_store(struct kobject *kobj,
611 struct kobj_attribute *attr,
612 const char *buf, size_t count)
613{
614 int err;
615 unsigned long max_ptes_swap;
616
617 err = kstrtoul(buf, 10, &max_ptes_swap);
618 if (err || max_ptes_swap > HPAGE_PMD_NR-1)
619 return -EINVAL;
620
621 khugepaged_max_ptes_swap = max_ptes_swap;
622
623 return count;
624}
625
626static struct kobj_attribute khugepaged_max_ptes_swap_attr =
627 __ATTR(max_ptes_swap, 0644, khugepaged_max_ptes_swap_show,
628 khugepaged_max_ptes_swap_store);
629
ba76149f
AA
630static struct attribute *khugepaged_attr[] = {
631 &khugepaged_defrag_attr.attr,
632 &khugepaged_max_ptes_none_attr.attr,
633 &pages_to_scan_attr.attr,
634 &pages_collapsed_attr.attr,
635 &full_scans_attr.attr,
636 &scan_sleep_millisecs_attr.attr,
637 &alloc_sleep_millisecs_attr.attr,
70652f6e 638 &khugepaged_max_ptes_swap_attr.attr,
ba76149f
AA
639 NULL,
640};
641
642static struct attribute_group khugepaged_attr_group = {
643 .attrs = khugepaged_attr,
644 .name = "khugepaged",
71e3aac0 645};
71e3aac0 646
569e5590 647static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
71e3aac0 648{
71e3aac0
AA
649 int err;
650
569e5590
SL
651 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
652 if (unlikely(!*hugepage_kobj)) {
ae3a8c1c 653 pr_err("failed to create transparent hugepage kobject\n");
569e5590 654 return -ENOMEM;
ba76149f
AA
655 }
656
569e5590 657 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
ba76149f 658 if (err) {
ae3a8c1c 659 pr_err("failed to register transparent hugepage group\n");
569e5590 660 goto delete_obj;
ba76149f
AA
661 }
662
569e5590 663 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
ba76149f 664 if (err) {
ae3a8c1c 665 pr_err("failed to register transparent hugepage group\n");
569e5590 666 goto remove_hp_group;
ba76149f 667 }
569e5590
SL
668
669 return 0;
670
671remove_hp_group:
672 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
673delete_obj:
674 kobject_put(*hugepage_kobj);
675 return err;
676}
677
678static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
679{
680 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
681 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
682 kobject_put(hugepage_kobj);
683}
684#else
685static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
686{
687 return 0;
688}
689
690static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
691{
692}
693#endif /* CONFIG_SYSFS */
694
695static int __init hugepage_init(void)
696{
697 int err;
698 struct kobject *hugepage_kobj;
699
700 if (!has_transparent_hugepage()) {
701 transparent_hugepage_flags = 0;
702 return -EINVAL;
703 }
704
ff20c2e0
KS
705 khugepaged_pages_to_scan = HPAGE_PMD_NR * 8;
706 khugepaged_max_ptes_none = HPAGE_PMD_NR - 1;
70652f6e 707 khugepaged_max_ptes_swap = HPAGE_PMD_NR / 8;
ff20c2e0
KS
708 /*
709 * hugepages can't be allocated by the buddy allocator
710 */
711 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
712 /*
713 * we use page->mapping and page->index in second tail page
714 * as list_head: assuming THP order >= 2
715 */
716 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
717
569e5590
SL
718 err = hugepage_init_sysfs(&hugepage_kobj);
719 if (err)
65ebb64f 720 goto err_sysfs;
ba76149f
AA
721
722 err = khugepaged_slab_init();
723 if (err)
65ebb64f 724 goto err_slab;
ba76149f 725
65ebb64f
KS
726 err = register_shrinker(&huge_zero_page_shrinker);
727 if (err)
728 goto err_hzp_shrinker;
9a982250
KS
729 err = register_shrinker(&deferred_split_shrinker);
730 if (err)
731 goto err_split_shrinker;
97ae1749 732
97562cd2
RR
733 /*
734 * By default disable transparent hugepages on smaller systems,
735 * where the extra memory used could hurt more than TLB overhead
736 * is likely to save. The admin can still enable it through /sys.
737 */
79553da2 738 if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
97562cd2 739 transparent_hugepage_flags = 0;
79553da2
KS
740 return 0;
741 }
97562cd2 742
79553da2 743 err = start_stop_khugepaged();
65ebb64f
KS
744 if (err)
745 goto err_khugepaged;
ba76149f 746
569e5590 747 return 0;
65ebb64f 748err_khugepaged:
9a982250
KS
749 unregister_shrinker(&deferred_split_shrinker);
750err_split_shrinker:
65ebb64f
KS
751 unregister_shrinker(&huge_zero_page_shrinker);
752err_hzp_shrinker:
753 khugepaged_slab_exit();
754err_slab:
569e5590 755 hugepage_exit_sysfs(hugepage_kobj);
65ebb64f 756err_sysfs:
ba76149f 757 return err;
71e3aac0 758}
a64fb3cd 759subsys_initcall(hugepage_init);
71e3aac0
AA
760
761static int __init setup_transparent_hugepage(char *str)
762{
763 int ret = 0;
764 if (!str)
765 goto out;
766 if (!strcmp(str, "always")) {
767 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
768 &transparent_hugepage_flags);
769 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
770 &transparent_hugepage_flags);
771 ret = 1;
772 } else if (!strcmp(str, "madvise")) {
773 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
774 &transparent_hugepage_flags);
775 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
776 &transparent_hugepage_flags);
777 ret = 1;
778 } else if (!strcmp(str, "never")) {
779 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
780 &transparent_hugepage_flags);
781 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
782 &transparent_hugepage_flags);
783 ret = 1;
784 }
785out:
786 if (!ret)
ae3a8c1c 787 pr_warn("transparent_hugepage= cannot parse, ignored\n");
71e3aac0
AA
788 return ret;
789}
790__setup("transparent_hugepage=", setup_transparent_hugepage);
791
b32967ff 792pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
71e3aac0
AA
793{
794 if (likely(vma->vm_flags & VM_WRITE))
795 pmd = pmd_mkwrite(pmd);
796 return pmd;
797}
798
9a982250
KS
799static inline struct list_head *page_deferred_list(struct page *page)
800{
801 /*
802 * ->lru in the tail pages is occupied by compound_head.
803 * Let's use ->mapping + ->index in the second tail page as list_head.
804 */
805 return (struct list_head *)&page[2].mapping;
806}
807
808void prep_transhuge_page(struct page *page)
809{
810 /*
811 * we use page->mapping and page->indexlru in second tail page
812 * as list_head: assuming THP order >= 2
813 */
9a982250
KS
814
815 INIT_LIST_HEAD(page_deferred_list(page));
816 set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
817}
818
bae473a4
KS
819static int __do_huge_pmd_anonymous_page(struct fault_env *fe, struct page *page,
820 gfp_t gfp)
71e3aac0 821{
bae473a4 822 struct vm_area_struct *vma = fe->vma;
00501b53 823 struct mem_cgroup *memcg;
71e3aac0 824 pgtable_t pgtable;
bae473a4 825 unsigned long haddr = fe->address & HPAGE_PMD_MASK;
71e3aac0 826
309381fe 827 VM_BUG_ON_PAGE(!PageCompound(page), page);
00501b53 828
bae473a4 829 if (mem_cgroup_try_charge(page, vma->vm_mm, gfp, &memcg, true)) {
6b251fc9
AA
830 put_page(page);
831 count_vm_event(THP_FAULT_FALLBACK);
832 return VM_FAULT_FALLBACK;
833 }
00501b53 834
bae473a4 835 pgtable = pte_alloc_one(vma->vm_mm, haddr);
00501b53 836 if (unlikely(!pgtable)) {
f627c2f5 837 mem_cgroup_cancel_charge(page, memcg, true);
6b251fc9 838 put_page(page);
71e3aac0 839 return VM_FAULT_OOM;
00501b53 840 }
71e3aac0
AA
841
842 clear_huge_page(page, haddr, HPAGE_PMD_NR);
52f37629
MK
843 /*
844 * The memory barrier inside __SetPageUptodate makes sure that
845 * clear_huge_page writes become visible before the set_pmd_at()
846 * write.
847 */
71e3aac0
AA
848 __SetPageUptodate(page);
849
bae473a4
KS
850 fe->ptl = pmd_lock(vma->vm_mm, fe->pmd);
851 if (unlikely(!pmd_none(*fe->pmd))) {
852 spin_unlock(fe->ptl);
f627c2f5 853 mem_cgroup_cancel_charge(page, memcg, true);
71e3aac0 854 put_page(page);
bae473a4 855 pte_free(vma->vm_mm, pgtable);
71e3aac0
AA
856 } else {
857 pmd_t entry;
6b251fc9
AA
858
859 /* Deliver the page fault to userland */
860 if (userfaultfd_missing(vma)) {
861 int ret;
862
bae473a4 863 spin_unlock(fe->ptl);
f627c2f5 864 mem_cgroup_cancel_charge(page, memcg, true);
6b251fc9 865 put_page(page);
bae473a4
KS
866 pte_free(vma->vm_mm, pgtable);
867 ret = handle_userfault(fe, VM_UFFD_MISSING);
6b251fc9
AA
868 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
869 return ret;
870 }
871
3122359a
KS
872 entry = mk_huge_pmd(page, vma->vm_page_prot);
873 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
d281ee61 874 page_add_new_anon_rmap(page, vma, haddr, true);
f627c2f5 875 mem_cgroup_commit_charge(page, memcg, false, true);
00501b53 876 lru_cache_add_active_or_unevictable(page, vma);
bae473a4
KS
877 pgtable_trans_huge_deposit(vma->vm_mm, fe->pmd, pgtable);
878 set_pmd_at(vma->vm_mm, haddr, fe->pmd, entry);
879 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
880 atomic_long_inc(&vma->vm_mm->nr_ptes);
881 spin_unlock(fe->ptl);
6b251fc9 882 count_vm_event(THP_FAULT_ALLOC);
71e3aac0
AA
883 }
884
aa2e878e 885 return 0;
71e3aac0
AA
886}
887
444eb2a4
MG
888/*
889 * If THP is set to always then directly reclaim/compact as necessary
890 * If set to defer then do no reclaim and defer to khugepaged
891 * If set to madvise and the VMA is flagged then directly reclaim/compact
892 */
893static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
894{
895 gfp_t reclaim_flags = 0;
896
897 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags) &&
898 (vma->vm_flags & VM_HUGEPAGE))
899 reclaim_flags = __GFP_DIRECT_RECLAIM;
900 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
901 reclaim_flags = __GFP_KSWAPD_RECLAIM;
902 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
903 reclaim_flags = __GFP_DIRECT_RECLAIM;
904
905 return GFP_TRANSHUGE | reclaim_flags;
906}
907
908/* Defrag for khugepaged will enter direct reclaim/compaction if necessary */
909static inline gfp_t alloc_hugepage_khugepaged_gfpmask(void)
0bbbc0b3 910{
444eb2a4 911 return GFP_TRANSHUGE | (khugepaged_defrag() ? __GFP_DIRECT_RECLAIM : 0);
0bbbc0b3
AA
912}
913
c4088ebd 914/* Caller must hold page table lock. */
d295e341 915static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
97ae1749 916 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
5918d10a 917 struct page *zero_page)
fc9fe822
KS
918{
919 pmd_t entry;
7c414164
AM
920 if (!pmd_none(*pmd))
921 return false;
5918d10a 922 entry = mk_pmd(zero_page, vma->vm_page_prot);
fc9fe822 923 entry = pmd_mkhuge(entry);
12c9d70b
MW
924 if (pgtable)
925 pgtable_trans_huge_deposit(mm, pmd, pgtable);
fc9fe822 926 set_pmd_at(mm, haddr, pmd, entry);
e1f56c89 927 atomic_long_inc(&mm->nr_ptes);
7c414164 928 return true;
fc9fe822
KS
929}
930
bae473a4 931int do_huge_pmd_anonymous_page(struct fault_env *fe)
71e3aac0 932{
bae473a4 933 struct vm_area_struct *vma = fe->vma;
077fcf11 934 gfp_t gfp;
71e3aac0 935 struct page *page;
bae473a4 936 unsigned long haddr = fe->address & HPAGE_PMD_MASK;
71e3aac0 937
128ec037 938 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
c0292554 939 return VM_FAULT_FALLBACK;
128ec037
KS
940 if (unlikely(anon_vma_prepare(vma)))
941 return VM_FAULT_OOM;
6d50e60c 942 if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
128ec037 943 return VM_FAULT_OOM;
bae473a4
KS
944 if (!(fe->flags & FAULT_FLAG_WRITE) &&
945 !mm_forbids_zeropage(vma->vm_mm) &&
128ec037
KS
946 transparent_hugepage_use_zero_page()) {
947 pgtable_t pgtable;
948 struct page *zero_page;
949 bool set;
6b251fc9 950 int ret;
bae473a4 951 pgtable = pte_alloc_one(vma->vm_mm, haddr);
128ec037 952 if (unlikely(!pgtable))
ba76149f 953 return VM_FAULT_OOM;
128ec037
KS
954 zero_page = get_huge_zero_page();
955 if (unlikely(!zero_page)) {
bae473a4 956 pte_free(vma->vm_mm, pgtable);
81ab4201 957 count_vm_event(THP_FAULT_FALLBACK);
c0292554 958 return VM_FAULT_FALLBACK;
b9bbfbe3 959 }
bae473a4 960 fe->ptl = pmd_lock(vma->vm_mm, fe->pmd);
6b251fc9
AA
961 ret = 0;
962 set = false;
bae473a4 963 if (pmd_none(*fe->pmd)) {
6b251fc9 964 if (userfaultfd_missing(vma)) {
bae473a4
KS
965 spin_unlock(fe->ptl);
966 ret = handle_userfault(fe, VM_UFFD_MISSING);
6b251fc9
AA
967 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
968 } else {
bae473a4
KS
969 set_huge_zero_page(pgtable, vma->vm_mm, vma,
970 haddr, fe->pmd, zero_page);
971 spin_unlock(fe->ptl);
6b251fc9
AA
972 set = true;
973 }
974 } else
bae473a4 975 spin_unlock(fe->ptl);
128ec037 976 if (!set) {
bae473a4 977 pte_free(vma->vm_mm, pgtable);
128ec037 978 put_huge_zero_page();
edad9d2c 979 }
6b251fc9 980 return ret;
71e3aac0 981 }
444eb2a4 982 gfp = alloc_hugepage_direct_gfpmask(vma);
077fcf11 983 page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
128ec037
KS
984 if (unlikely(!page)) {
985 count_vm_event(THP_FAULT_FALLBACK);
c0292554 986 return VM_FAULT_FALLBACK;
128ec037 987 }
9a982250 988 prep_transhuge_page(page);
bae473a4 989 return __do_huge_pmd_anonymous_page(fe, page, gfp);
71e3aac0
AA
990}
991
ae18d6dc 992static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
f25748e3 993 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write)
5cad465d
MW
994{
995 struct mm_struct *mm = vma->vm_mm;
996 pmd_t entry;
997 spinlock_t *ptl;
998
999 ptl = pmd_lock(mm, pmd);
f25748e3
DW
1000 entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
1001 if (pfn_t_devmap(pfn))
1002 entry = pmd_mkdevmap(entry);
01871e59
RZ
1003 if (write) {
1004 entry = pmd_mkyoung(pmd_mkdirty(entry));
1005 entry = maybe_pmd_mkwrite(entry, vma);
5cad465d 1006 }
01871e59
RZ
1007 set_pmd_at(mm, addr, pmd, entry);
1008 update_mmu_cache_pmd(vma, addr, pmd);
5cad465d 1009 spin_unlock(ptl);
5cad465d
MW
1010}
1011
1012int vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
f25748e3 1013 pmd_t *pmd, pfn_t pfn, bool write)
5cad465d
MW
1014{
1015 pgprot_t pgprot = vma->vm_page_prot;
1016 /*
1017 * If we had pmd_special, we could avoid all these restrictions,
1018 * but we need to be consistent with PTEs and architectures that
1019 * can't support a 'special' bit.
1020 */
1021 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1022 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1023 (VM_PFNMAP|VM_MIXEDMAP));
1024 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
f25748e3 1025 BUG_ON(!pfn_t_devmap(pfn));
5cad465d
MW
1026
1027 if (addr < vma->vm_start || addr >= vma->vm_end)
1028 return VM_FAULT_SIGBUS;
1029 if (track_pfn_insert(vma, &pgprot, pfn))
1030 return VM_FAULT_SIGBUS;
ae18d6dc
MW
1031 insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write);
1032 return VM_FAULT_NOPAGE;
5cad465d 1033}
dee41079 1034EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
5cad465d 1035
3565fce3
DW
1036static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
1037 pmd_t *pmd)
1038{
1039 pmd_t _pmd;
1040
1041 /*
1042 * We should set the dirty bit only for FOLL_WRITE but for now
1043 * the dirty bit in the pmd is meaningless. And if the dirty
1044 * bit will become meaningful and we'll only set it with
1045 * FOLL_WRITE, an atomic set_bit will be required on the pmd to
1046 * set the young bit, instead of the current set_pmd_at.
1047 */
1048 _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
1049 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
1050 pmd, _pmd, 1))
1051 update_mmu_cache_pmd(vma, addr, pmd);
1052}
1053
1054struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
1055 pmd_t *pmd, int flags)
1056{
1057 unsigned long pfn = pmd_pfn(*pmd);
1058 struct mm_struct *mm = vma->vm_mm;
1059 struct dev_pagemap *pgmap;
1060 struct page *page;
1061
1062 assert_spin_locked(pmd_lockptr(mm, pmd));
1063
1064 if (flags & FOLL_WRITE && !pmd_write(*pmd))
1065 return NULL;
1066
1067 if (pmd_present(*pmd) && pmd_devmap(*pmd))
1068 /* pass */;
1069 else
1070 return NULL;
1071
1072 if (flags & FOLL_TOUCH)
1073 touch_pmd(vma, addr, pmd);
1074
1075 /*
1076 * device mapped pages can only be returned if the
1077 * caller will manage the page reference count.
1078 */
1079 if (!(flags & FOLL_GET))
1080 return ERR_PTR(-EEXIST);
1081
1082 pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
1083 pgmap = get_dev_pagemap(pfn, NULL);
1084 if (!pgmap)
1085 return ERR_PTR(-EFAULT);
1086 page = pfn_to_page(pfn);
1087 get_page(page);
1088 put_dev_pagemap(pgmap);
1089
1090 return page;
1091}
1092
71e3aac0
AA
1093int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1094 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1095 struct vm_area_struct *vma)
1096{
c4088ebd 1097 spinlock_t *dst_ptl, *src_ptl;
71e3aac0
AA
1098 struct page *src_page;
1099 pmd_t pmd;
12c9d70b 1100 pgtable_t pgtable = NULL;
71e3aac0
AA
1101 int ret;
1102
12c9d70b
MW
1103 if (!vma_is_dax(vma)) {
1104 ret = -ENOMEM;
1105 pgtable = pte_alloc_one(dst_mm, addr);
1106 if (unlikely(!pgtable))
1107 goto out;
1108 }
71e3aac0 1109
c4088ebd
KS
1110 dst_ptl = pmd_lock(dst_mm, dst_pmd);
1111 src_ptl = pmd_lockptr(src_mm, src_pmd);
1112 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
71e3aac0
AA
1113
1114 ret = -EAGAIN;
1115 pmd = *src_pmd;
5c7fb56e 1116 if (unlikely(!pmd_trans_huge(pmd) && !pmd_devmap(pmd))) {
71e3aac0
AA
1117 pte_free(dst_mm, pgtable);
1118 goto out_unlock;
1119 }
fc9fe822 1120 /*
c4088ebd 1121 * When page table lock is held, the huge zero pmd should not be
fc9fe822
KS
1122 * under splitting since we don't split the page itself, only pmd to
1123 * a page table.
1124 */
1125 if (is_huge_zero_pmd(pmd)) {
5918d10a 1126 struct page *zero_page;
97ae1749
KS
1127 /*
1128 * get_huge_zero_page() will never allocate a new page here,
1129 * since we already have a zero page to copy. It just takes a
1130 * reference.
1131 */
5918d10a 1132 zero_page = get_huge_zero_page();
6b251fc9 1133 set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
5918d10a 1134 zero_page);
fc9fe822
KS
1135 ret = 0;
1136 goto out_unlock;
1137 }
de466bd6 1138
12c9d70b 1139 if (!vma_is_dax(vma)) {
5c7fb56e
DW
1140 /* thp accounting separate from pmd_devmap accounting */
1141 src_page = pmd_page(pmd);
1142 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1143 get_page(src_page);
1144 page_dup_rmap(src_page, true);
1145 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1146 atomic_long_inc(&dst_mm->nr_ptes);
1147 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1148 }
71e3aac0
AA
1149
1150 pmdp_set_wrprotect(src_mm, addr, src_pmd);
1151 pmd = pmd_mkold(pmd_wrprotect(pmd));
1152 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
71e3aac0
AA
1153
1154 ret = 0;
1155out_unlock:
c4088ebd
KS
1156 spin_unlock(src_ptl);
1157 spin_unlock(dst_ptl);
71e3aac0
AA
1158out:
1159 return ret;
1160}
1161
bae473a4 1162void huge_pmd_set_accessed(struct fault_env *fe, pmd_t orig_pmd)
a1dd450b
WD
1163{
1164 pmd_t entry;
1165 unsigned long haddr;
1166
bae473a4
KS
1167 fe->ptl = pmd_lock(fe->vma->vm_mm, fe->pmd);
1168 if (unlikely(!pmd_same(*fe->pmd, orig_pmd)))
a1dd450b
WD
1169 goto unlock;
1170
1171 entry = pmd_mkyoung(orig_pmd);
bae473a4
KS
1172 haddr = fe->address & HPAGE_PMD_MASK;
1173 if (pmdp_set_access_flags(fe->vma, haddr, fe->pmd, entry,
1174 fe->flags & FAULT_FLAG_WRITE))
1175 update_mmu_cache_pmd(fe->vma, fe->address, fe->pmd);
a1dd450b
WD
1176
1177unlock:
bae473a4 1178 spin_unlock(fe->ptl);
a1dd450b
WD
1179}
1180
bae473a4
KS
1181static int do_huge_pmd_wp_page_fallback(struct fault_env *fe, pmd_t orig_pmd,
1182 struct page *page)
71e3aac0 1183{
bae473a4
KS
1184 struct vm_area_struct *vma = fe->vma;
1185 unsigned long haddr = fe->address & HPAGE_PMD_MASK;
00501b53 1186 struct mem_cgroup *memcg;
71e3aac0
AA
1187 pgtable_t pgtable;
1188 pmd_t _pmd;
1189 int ret = 0, i;
1190 struct page **pages;
2ec74c3e
SG
1191 unsigned long mmun_start; /* For mmu_notifiers */
1192 unsigned long mmun_end; /* For mmu_notifiers */
71e3aac0
AA
1193
1194 pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
1195 GFP_KERNEL);
1196 if (unlikely(!pages)) {
1197 ret |= VM_FAULT_OOM;
1198 goto out;
1199 }
1200
1201 for (i = 0; i < HPAGE_PMD_NR; i++) {
cc5d462f 1202 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
bae473a4
KS
1203 __GFP_OTHER_NODE, vma,
1204 fe->address, page_to_nid(page));
b9bbfbe3 1205 if (unlikely(!pages[i] ||
bae473a4
KS
1206 mem_cgroup_try_charge(pages[i], vma->vm_mm,
1207 GFP_KERNEL, &memcg, false))) {
b9bbfbe3 1208 if (pages[i])
71e3aac0 1209 put_page(pages[i]);
b9bbfbe3 1210 while (--i >= 0) {
00501b53
JW
1211 memcg = (void *)page_private(pages[i]);
1212 set_page_private(pages[i], 0);
f627c2f5
KS
1213 mem_cgroup_cancel_charge(pages[i], memcg,
1214 false);
b9bbfbe3
AA
1215 put_page(pages[i]);
1216 }
71e3aac0
AA
1217 kfree(pages);
1218 ret |= VM_FAULT_OOM;
1219 goto out;
1220 }
00501b53 1221 set_page_private(pages[i], (unsigned long)memcg);
71e3aac0
AA
1222 }
1223
1224 for (i = 0; i < HPAGE_PMD_NR; i++) {
1225 copy_user_highpage(pages[i], page + i,
0089e485 1226 haddr + PAGE_SIZE * i, vma);
71e3aac0
AA
1227 __SetPageUptodate(pages[i]);
1228 cond_resched();
1229 }
1230
2ec74c3e
SG
1231 mmun_start = haddr;
1232 mmun_end = haddr + HPAGE_PMD_SIZE;
bae473a4 1233 mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
2ec74c3e 1234
bae473a4
KS
1235 fe->ptl = pmd_lock(vma->vm_mm, fe->pmd);
1236 if (unlikely(!pmd_same(*fe->pmd, orig_pmd)))
71e3aac0 1237 goto out_free_pages;
309381fe 1238 VM_BUG_ON_PAGE(!PageHead(page), page);
71e3aac0 1239
bae473a4 1240 pmdp_huge_clear_flush_notify(vma, haddr, fe->pmd);
71e3aac0
AA
1241 /* leave pmd empty until pte is filled */
1242
bae473a4
KS
1243 pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, fe->pmd);
1244 pmd_populate(vma->vm_mm, &_pmd, pgtable);
71e3aac0
AA
1245
1246 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
bae473a4 1247 pte_t entry;
71e3aac0
AA
1248 entry = mk_pte(pages[i], vma->vm_page_prot);
1249 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
00501b53
JW
1250 memcg = (void *)page_private(pages[i]);
1251 set_page_private(pages[i], 0);
bae473a4 1252 page_add_new_anon_rmap(pages[i], fe->vma, haddr, false);
f627c2f5 1253 mem_cgroup_commit_charge(pages[i], memcg, false, false);
00501b53 1254 lru_cache_add_active_or_unevictable(pages[i], vma);
bae473a4
KS
1255 fe->pte = pte_offset_map(&_pmd, haddr);
1256 VM_BUG_ON(!pte_none(*fe->pte));
1257 set_pte_at(vma->vm_mm, haddr, fe->pte, entry);
1258 pte_unmap(fe->pte);
71e3aac0
AA
1259 }
1260 kfree(pages);
1261
71e3aac0 1262 smp_wmb(); /* make pte visible before pmd */
bae473a4 1263 pmd_populate(vma->vm_mm, fe->pmd, pgtable);
d281ee61 1264 page_remove_rmap(page, true);
bae473a4 1265 spin_unlock(fe->ptl);
71e3aac0 1266
bae473a4 1267 mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
2ec74c3e 1268
71e3aac0
AA
1269 ret |= VM_FAULT_WRITE;
1270 put_page(page);
1271
1272out:
1273 return ret;
1274
1275out_free_pages:
bae473a4
KS
1276 spin_unlock(fe->ptl);
1277 mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
b9bbfbe3 1278 for (i = 0; i < HPAGE_PMD_NR; i++) {
00501b53
JW
1279 memcg = (void *)page_private(pages[i]);
1280 set_page_private(pages[i], 0);
f627c2f5 1281 mem_cgroup_cancel_charge(pages[i], memcg, false);
71e3aac0 1282 put_page(pages[i]);
b9bbfbe3 1283 }
71e3aac0
AA
1284 kfree(pages);
1285 goto out;
1286}
1287
bae473a4 1288int do_huge_pmd_wp_page(struct fault_env *fe, pmd_t orig_pmd)
71e3aac0 1289{
bae473a4 1290 struct vm_area_struct *vma = fe->vma;
93b4796d 1291 struct page *page = NULL, *new_page;
00501b53 1292 struct mem_cgroup *memcg;
bae473a4 1293 unsigned long haddr = fe->address & HPAGE_PMD_MASK;
2ec74c3e
SG
1294 unsigned long mmun_start; /* For mmu_notifiers */
1295 unsigned long mmun_end; /* For mmu_notifiers */
3b363692 1296 gfp_t huge_gfp; /* for allocation and charge */
bae473a4 1297 int ret = 0;
71e3aac0 1298
bae473a4 1299 fe->ptl = pmd_lockptr(vma->vm_mm, fe->pmd);
81d1b09c 1300 VM_BUG_ON_VMA(!vma->anon_vma, vma);
93b4796d
KS
1301 if (is_huge_zero_pmd(orig_pmd))
1302 goto alloc;
bae473a4
KS
1303 spin_lock(fe->ptl);
1304 if (unlikely(!pmd_same(*fe->pmd, orig_pmd)))
71e3aac0
AA
1305 goto out_unlock;
1306
1307 page = pmd_page(orig_pmd);
309381fe 1308 VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1f25fe20
KS
1309 /*
1310 * We can only reuse the page if nobody else maps the huge page or it's
6d0a07ed 1311 * part.
1f25fe20 1312 */
6d0a07ed 1313 if (page_trans_huge_mapcount(page, NULL) == 1) {
71e3aac0
AA
1314 pmd_t entry;
1315 entry = pmd_mkyoung(orig_pmd);
1316 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
bae473a4
KS
1317 if (pmdp_set_access_flags(vma, haddr, fe->pmd, entry, 1))
1318 update_mmu_cache_pmd(vma, fe->address, fe->pmd);
71e3aac0
AA
1319 ret |= VM_FAULT_WRITE;
1320 goto out_unlock;
1321 }
ddc58f27 1322 get_page(page);
bae473a4 1323 spin_unlock(fe->ptl);
93b4796d 1324alloc:
71e3aac0 1325 if (transparent_hugepage_enabled(vma) &&
077fcf11 1326 !transparent_hugepage_debug_cow()) {
444eb2a4 1327 huge_gfp = alloc_hugepage_direct_gfpmask(vma);
3b363692 1328 new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
077fcf11 1329 } else
71e3aac0
AA
1330 new_page = NULL;
1331
9a982250
KS
1332 if (likely(new_page)) {
1333 prep_transhuge_page(new_page);
1334 } else {
eecc1e42 1335 if (!page) {
bae473a4 1336 split_huge_pmd(vma, fe->pmd, fe->address);
e9b71ca9 1337 ret |= VM_FAULT_FALLBACK;
93b4796d 1338 } else {
bae473a4 1339 ret = do_huge_pmd_wp_page_fallback(fe, orig_pmd, page);
9845cbbd 1340 if (ret & VM_FAULT_OOM) {
bae473a4 1341 split_huge_pmd(vma, fe->pmd, fe->address);
9845cbbd
KS
1342 ret |= VM_FAULT_FALLBACK;
1343 }
ddc58f27 1344 put_page(page);
93b4796d 1345 }
17766dde 1346 count_vm_event(THP_FAULT_FALLBACK);
71e3aac0
AA
1347 goto out;
1348 }
1349
bae473a4
KS
1350 if (unlikely(mem_cgroup_try_charge(new_page, vma->vm_mm,
1351 huge_gfp, &memcg, true))) {
b9bbfbe3 1352 put_page(new_page);
bae473a4
KS
1353 split_huge_pmd(vma, fe->pmd, fe->address);
1354 if (page)
ddc58f27 1355 put_page(page);
9845cbbd 1356 ret |= VM_FAULT_FALLBACK;
17766dde 1357 count_vm_event(THP_FAULT_FALLBACK);
b9bbfbe3
AA
1358 goto out;
1359 }
1360
17766dde
DR
1361 count_vm_event(THP_FAULT_ALLOC);
1362
eecc1e42 1363 if (!page)
93b4796d
KS
1364 clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
1365 else
1366 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
71e3aac0
AA
1367 __SetPageUptodate(new_page);
1368
2ec74c3e
SG
1369 mmun_start = haddr;
1370 mmun_end = haddr + HPAGE_PMD_SIZE;
bae473a4 1371 mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
2ec74c3e 1372
bae473a4 1373 spin_lock(fe->ptl);
93b4796d 1374 if (page)
ddc58f27 1375 put_page(page);
bae473a4
KS
1376 if (unlikely(!pmd_same(*fe->pmd, orig_pmd))) {
1377 spin_unlock(fe->ptl);
f627c2f5 1378 mem_cgroup_cancel_charge(new_page, memcg, true);
71e3aac0 1379 put_page(new_page);
2ec74c3e 1380 goto out_mn;
b9bbfbe3 1381 } else {
71e3aac0 1382 pmd_t entry;
3122359a
KS
1383 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1384 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
bae473a4 1385 pmdp_huge_clear_flush_notify(vma, haddr, fe->pmd);
d281ee61 1386 page_add_new_anon_rmap(new_page, vma, haddr, true);
f627c2f5 1387 mem_cgroup_commit_charge(new_page, memcg, false, true);
00501b53 1388 lru_cache_add_active_or_unevictable(new_page, vma);
bae473a4
KS
1389 set_pmd_at(vma->vm_mm, haddr, fe->pmd, entry);
1390 update_mmu_cache_pmd(vma, fe->address, fe->pmd);
eecc1e42 1391 if (!page) {
bae473a4 1392 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
97ae1749
KS
1393 put_huge_zero_page();
1394 } else {
309381fe 1395 VM_BUG_ON_PAGE(!PageHead(page), page);
d281ee61 1396 page_remove_rmap(page, true);
93b4796d
KS
1397 put_page(page);
1398 }
71e3aac0
AA
1399 ret |= VM_FAULT_WRITE;
1400 }
bae473a4 1401 spin_unlock(fe->ptl);
2ec74c3e 1402out_mn:
bae473a4 1403 mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
71e3aac0
AA
1404out:
1405 return ret;
2ec74c3e 1406out_unlock:
bae473a4 1407 spin_unlock(fe->ptl);
2ec74c3e 1408 return ret;
71e3aac0
AA
1409}
1410
b676b293 1411struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
71e3aac0
AA
1412 unsigned long addr,
1413 pmd_t *pmd,
1414 unsigned int flags)
1415{
b676b293 1416 struct mm_struct *mm = vma->vm_mm;
71e3aac0
AA
1417 struct page *page = NULL;
1418
c4088ebd 1419 assert_spin_locked(pmd_lockptr(mm, pmd));
71e3aac0
AA
1420
1421 if (flags & FOLL_WRITE && !pmd_write(*pmd))
1422 goto out;
1423
85facf25
KS
1424 /* Avoid dumping huge zero page */
1425 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1426 return ERR_PTR(-EFAULT);
1427
2b4847e7 1428 /* Full NUMA hinting faults to serialise migration in fault paths */
8a0516ed 1429 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
2b4847e7
MG
1430 goto out;
1431
71e3aac0 1432 page = pmd_page(*pmd);
309381fe 1433 VM_BUG_ON_PAGE(!PageHead(page), page);
3565fce3
DW
1434 if (flags & FOLL_TOUCH)
1435 touch_pmd(vma, addr, pmd);
de60f5f1 1436 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
e90309c9
KS
1437 /*
1438 * We don't mlock() pte-mapped THPs. This way we can avoid
1439 * leaking mlocked pages into non-VM_LOCKED VMAs.
1440 *
1441 * In most cases the pmd is the only mapping of the page as we
1442 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1443 * writable private mappings in populate_vma_page_range().
1444 *
1445 * The only scenario when we have the page shared here is if we
1446 * mlocking read-only mapping shared over fork(). We skip
1447 * mlocking such pages.
1448 */
1449 if (compound_mapcount(page) == 1 && !PageDoubleMap(page) &&
1450 page->mapping && trylock_page(page)) {
b676b293
DR
1451 lru_add_drain();
1452 if (page->mapping)
1453 mlock_vma_page(page);
1454 unlock_page(page);
1455 }
1456 }
71e3aac0 1457 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
309381fe 1458 VM_BUG_ON_PAGE(!PageCompound(page), page);
71e3aac0 1459 if (flags & FOLL_GET)
ddc58f27 1460 get_page(page);
71e3aac0
AA
1461
1462out:
1463 return page;
1464}
1465
d10e63f2 1466/* NUMA hinting page fault entry point for trans huge pmds */
bae473a4 1467int do_huge_pmd_numa_page(struct fault_env *fe, pmd_t pmd)
d10e63f2 1468{
bae473a4 1469 struct vm_area_struct *vma = fe->vma;
b8916634 1470 struct anon_vma *anon_vma = NULL;
b32967ff 1471 struct page *page;
bae473a4 1472 unsigned long haddr = fe->address & HPAGE_PMD_MASK;
8191acbd 1473 int page_nid = -1, this_nid = numa_node_id();
90572890 1474 int target_nid, last_cpupid = -1;
8191acbd
MG
1475 bool page_locked;
1476 bool migrated = false;
b191f9b1 1477 bool was_writable;
6688cc05 1478 int flags = 0;
d10e63f2 1479
c0e7cad9
MG
1480 /* A PROT_NONE fault should not end up here */
1481 BUG_ON(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)));
1482
bae473a4
KS
1483 fe->ptl = pmd_lock(vma->vm_mm, fe->pmd);
1484 if (unlikely(!pmd_same(pmd, *fe->pmd)))
d10e63f2
MG
1485 goto out_unlock;
1486
de466bd6
MG
1487 /*
1488 * If there are potential migrations, wait for completion and retry
1489 * without disrupting NUMA hinting information. Do not relock and
1490 * check_same as the page may no longer be mapped.
1491 */
bae473a4
KS
1492 if (unlikely(pmd_trans_migrating(*fe->pmd))) {
1493 page = pmd_page(*fe->pmd);
1494 spin_unlock(fe->ptl);
5d833062 1495 wait_on_page_locked(page);
de466bd6
MG
1496 goto out;
1497 }
1498
d10e63f2 1499 page = pmd_page(pmd);
a1a46184 1500 BUG_ON(is_huge_zero_page(page));
8191acbd 1501 page_nid = page_to_nid(page);
90572890 1502 last_cpupid = page_cpupid_last(page);
03c5a6e1 1503 count_vm_numa_event(NUMA_HINT_FAULTS);
04bb2f94 1504 if (page_nid == this_nid) {
03c5a6e1 1505 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
04bb2f94
RR
1506 flags |= TNF_FAULT_LOCAL;
1507 }
4daae3b4 1508
bea66fbd
MG
1509 /* See similar comment in do_numa_page for explanation */
1510 if (!(vma->vm_flags & VM_WRITE))
6688cc05
PZ
1511 flags |= TNF_NO_GROUP;
1512
ff9042b1
MG
1513 /*
1514 * Acquire the page lock to serialise THP migrations but avoid dropping
1515 * page_table_lock if at all possible
1516 */
b8916634
MG
1517 page_locked = trylock_page(page);
1518 target_nid = mpol_misplaced(page, vma, haddr);
1519 if (target_nid == -1) {
1520 /* If the page was locked, there are no parallel migrations */
a54a407f 1521 if (page_locked)
b8916634 1522 goto clear_pmdnuma;
2b4847e7 1523 }
4daae3b4 1524
de466bd6 1525 /* Migration could have started since the pmd_trans_migrating check */
2b4847e7 1526 if (!page_locked) {
bae473a4 1527 spin_unlock(fe->ptl);
b8916634 1528 wait_on_page_locked(page);
a54a407f 1529 page_nid = -1;
b8916634
MG
1530 goto out;
1531 }
1532
2b4847e7
MG
1533 /*
1534 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1535 * to serialises splits
1536 */
b8916634 1537 get_page(page);
bae473a4 1538 spin_unlock(fe->ptl);
b8916634 1539 anon_vma = page_lock_anon_vma_read(page);
4daae3b4 1540
c69307d5 1541 /* Confirm the PMD did not change while page_table_lock was released */
bae473a4
KS
1542 spin_lock(fe->ptl);
1543 if (unlikely(!pmd_same(pmd, *fe->pmd))) {
b32967ff
MG
1544 unlock_page(page);
1545 put_page(page);
a54a407f 1546 page_nid = -1;
4daae3b4 1547 goto out_unlock;
b32967ff 1548 }
ff9042b1 1549
c3a489ca
MG
1550 /* Bail if we fail to protect against THP splits for any reason */
1551 if (unlikely(!anon_vma)) {
1552 put_page(page);
1553 page_nid = -1;
1554 goto clear_pmdnuma;
1555 }
1556
a54a407f
MG
1557 /*
1558 * Migrate the THP to the requested node, returns with page unlocked
8a0516ed 1559 * and access rights restored.
a54a407f 1560 */
bae473a4
KS
1561 spin_unlock(fe->ptl);
1562 migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
1563 fe->pmd, pmd, fe->address, page, target_nid);
6688cc05
PZ
1564 if (migrated) {
1565 flags |= TNF_MIGRATED;
8191acbd 1566 page_nid = target_nid;
074c2381
MG
1567 } else
1568 flags |= TNF_MIGRATE_FAIL;
b32967ff 1569
8191acbd 1570 goto out;
b32967ff 1571clear_pmdnuma:
a54a407f 1572 BUG_ON(!PageLocked(page));
b191f9b1 1573 was_writable = pmd_write(pmd);
4d942466 1574 pmd = pmd_modify(pmd, vma->vm_page_prot);
b7b04004 1575 pmd = pmd_mkyoung(pmd);
b191f9b1
MG
1576 if (was_writable)
1577 pmd = pmd_mkwrite(pmd);
bae473a4
KS
1578 set_pmd_at(vma->vm_mm, haddr, fe->pmd, pmd);
1579 update_mmu_cache_pmd(vma, fe->address, fe->pmd);
a54a407f 1580 unlock_page(page);
d10e63f2 1581out_unlock:
bae473a4 1582 spin_unlock(fe->ptl);
b8916634
MG
1583
1584out:
1585 if (anon_vma)
1586 page_unlock_anon_vma_read(anon_vma);
1587
8191acbd 1588 if (page_nid != -1)
bae473a4 1589 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, fe->flags);
8191acbd 1590
d10e63f2
MG
1591 return 0;
1592}
1593
b8d3c4c3
MK
1594int madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1595 pmd_t *pmd, unsigned long addr, unsigned long next)
1596
1597{
1598 spinlock_t *ptl;
1599 pmd_t orig_pmd;
1600 struct page *page;
1601 struct mm_struct *mm = tlb->mm;
1602 int ret = 0;
1603
b6ec57f4
KS
1604 ptl = pmd_trans_huge_lock(pmd, vma);
1605 if (!ptl)
25eedabe 1606 goto out_unlocked;
b8d3c4c3
MK
1607
1608 orig_pmd = *pmd;
1609 if (is_huge_zero_pmd(orig_pmd)) {
1610 ret = 1;
1611 goto out;
1612 }
1613
1614 page = pmd_page(orig_pmd);
1615 /*
1616 * If other processes are mapping this page, we couldn't discard
1617 * the page unless they all do MADV_FREE so let's skip the page.
1618 */
1619 if (page_mapcount(page) != 1)
1620 goto out;
1621
1622 if (!trylock_page(page))
1623 goto out;
1624
1625 /*
1626 * If user want to discard part-pages of THP, split it so MADV_FREE
1627 * will deactivate only them.
1628 */
1629 if (next - addr != HPAGE_PMD_SIZE) {
1630 get_page(page);
1631 spin_unlock(ptl);
9818b8cd 1632 split_huge_page(page);
b8d3c4c3
MK
1633 put_page(page);
1634 unlock_page(page);
b8d3c4c3
MK
1635 goto out_unlocked;
1636 }
1637
1638 if (PageDirty(page))
1639 ClearPageDirty(page);
1640 unlock_page(page);
1641
1642 if (PageActive(page))
1643 deactivate_page(page);
1644
1645 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1646 orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1647 tlb->fullmm);
1648 orig_pmd = pmd_mkold(orig_pmd);
1649 orig_pmd = pmd_mkclean(orig_pmd);
1650
1651 set_pmd_at(mm, addr, pmd, orig_pmd);
1652 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1653 }
1654 ret = 1;
1655out:
1656 spin_unlock(ptl);
1657out_unlocked:
1658 return ret;
1659}
1660
71e3aac0 1661int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
f21760b1 1662 pmd_t *pmd, unsigned long addr)
71e3aac0 1663{
da146769 1664 pmd_t orig_pmd;
bf929152 1665 spinlock_t *ptl;
71e3aac0 1666
b6ec57f4
KS
1667 ptl = __pmd_trans_huge_lock(pmd, vma);
1668 if (!ptl)
da146769
KS
1669 return 0;
1670 /*
1671 * For architectures like ppc64 we look at deposited pgtable
1672 * when calling pmdp_huge_get_and_clear. So do the
1673 * pgtable_trans_huge_withdraw after finishing pmdp related
1674 * operations.
1675 */
1676 orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1677 tlb->fullmm);
1678 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1679 if (vma_is_dax(vma)) {
1680 spin_unlock(ptl);
1681 if (is_huge_zero_pmd(orig_pmd))
aa88b68c 1682 tlb_remove_page(tlb, pmd_page(orig_pmd));
da146769
KS
1683 } else if (is_huge_zero_pmd(orig_pmd)) {
1684 pte_free(tlb->mm, pgtable_trans_huge_withdraw(tlb->mm, pmd));
1685 atomic_long_dec(&tlb->mm->nr_ptes);
1686 spin_unlock(ptl);
aa88b68c 1687 tlb_remove_page(tlb, pmd_page(orig_pmd));
da146769
KS
1688 } else {
1689 struct page *page = pmd_page(orig_pmd);
d281ee61 1690 page_remove_rmap(page, true);
da146769 1691 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
da146769 1692 VM_BUG_ON_PAGE(!PageHead(page), page);
b5072380
KS
1693 if (PageAnon(page)) {
1694 pgtable_t pgtable;
1695 pgtable = pgtable_trans_huge_withdraw(tlb->mm, pmd);
1696 pte_free(tlb->mm, pgtable);
1697 atomic_long_dec(&tlb->mm->nr_ptes);
1698 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1699 } else {
1700 add_mm_counter(tlb->mm, MM_FILEPAGES, -HPAGE_PMD_NR);
1701 }
da146769 1702 spin_unlock(ptl);
e77b0852 1703 tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
025c5b24 1704 }
da146769 1705 return 1;
71e3aac0
AA
1706}
1707
bf8616d5 1708bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
37a1c49a
AA
1709 unsigned long new_addr, unsigned long old_end,
1710 pmd_t *old_pmd, pmd_t *new_pmd)
1711{
bf929152 1712 spinlock_t *old_ptl, *new_ptl;
37a1c49a 1713 pmd_t pmd;
37a1c49a
AA
1714 struct mm_struct *mm = vma->vm_mm;
1715
1716 if ((old_addr & ~HPAGE_PMD_MASK) ||
1717 (new_addr & ~HPAGE_PMD_MASK) ||
bf8616d5 1718 old_end - old_addr < HPAGE_PMD_SIZE)
4b471e88 1719 return false;
37a1c49a
AA
1720
1721 /*
1722 * The destination pmd shouldn't be established, free_pgtables()
1723 * should have release it.
1724 */
1725 if (WARN_ON(!pmd_none(*new_pmd))) {
1726 VM_BUG_ON(pmd_trans_huge(*new_pmd));
4b471e88 1727 return false;
37a1c49a
AA
1728 }
1729
bf929152
KS
1730 /*
1731 * We don't have to worry about the ordering of src and dst
1732 * ptlocks because exclusive mmap_sem prevents deadlock.
1733 */
b6ec57f4
KS
1734 old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1735 if (old_ptl) {
bf929152
KS
1736 new_ptl = pmd_lockptr(mm, new_pmd);
1737 if (new_ptl != old_ptl)
1738 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
8809aa2d 1739 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
025c5b24 1740 VM_BUG_ON(!pmd_none(*new_pmd));
3592806c 1741
69a8ec2d
KS
1742 if (pmd_move_must_withdraw(new_ptl, old_ptl) &&
1743 vma_is_anonymous(vma)) {
b3084f4d 1744 pgtable_t pgtable;
3592806c
KS
1745 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1746 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
3592806c 1747 }
b3084f4d
AK
1748 set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
1749 if (new_ptl != old_ptl)
1750 spin_unlock(new_ptl);
bf929152 1751 spin_unlock(old_ptl);
4b471e88 1752 return true;
37a1c49a 1753 }
4b471e88 1754 return false;
37a1c49a
AA
1755}
1756
f123d74a
MG
1757/*
1758 * Returns
1759 * - 0 if PMD could not be locked
1760 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1761 * - HPAGE_PMD_NR is protections changed and TLB flush necessary
1762 */
cd7548ab 1763int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
e944fd67 1764 unsigned long addr, pgprot_t newprot, int prot_numa)
cd7548ab
JW
1765{
1766 struct mm_struct *mm = vma->vm_mm;
bf929152 1767 spinlock_t *ptl;
cd7548ab
JW
1768 int ret = 0;
1769
b6ec57f4
KS
1770 ptl = __pmd_trans_huge_lock(pmd, vma);
1771 if (ptl) {
025c5b24 1772 pmd_t entry;
b191f9b1 1773 bool preserve_write = prot_numa && pmd_write(*pmd);
ba68bc01 1774 ret = 1;
e944fd67
MG
1775
1776 /*
1777 * Avoid trapping faults against the zero page. The read-only
1778 * data is likely to be read-cached on the local CPU and
1779 * local/remote hits to the zero page are not interesting.
1780 */
1781 if (prot_numa && is_huge_zero_pmd(*pmd)) {
1782 spin_unlock(ptl);
ba68bc01 1783 return ret;
e944fd67
MG
1784 }
1785
10c1045f 1786 if (!prot_numa || !pmd_protnone(*pmd)) {
8809aa2d 1787 entry = pmdp_huge_get_and_clear_notify(mm, addr, pmd);
10c1045f 1788 entry = pmd_modify(entry, newprot);
b191f9b1
MG
1789 if (preserve_write)
1790 entry = pmd_mkwrite(entry);
10c1045f
MG
1791 ret = HPAGE_PMD_NR;
1792 set_pmd_at(mm, addr, pmd, entry);
b191f9b1 1793 BUG_ON(!preserve_write && pmd_write(entry));
10c1045f 1794 }
bf929152 1795 spin_unlock(ptl);
025c5b24
NH
1796 }
1797
1798 return ret;
1799}
1800
1801/*
4b471e88 1802 * Returns true if a given pmd maps a thp, false otherwise.
025c5b24 1803 *
4b471e88
KS
1804 * Note that if it returns true, this routine returns without unlocking page
1805 * table lock. So callers must unlock it.
025c5b24 1806 */
b6ec57f4 1807spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
025c5b24 1808{
b6ec57f4
KS
1809 spinlock_t *ptl;
1810 ptl = pmd_lock(vma->vm_mm, pmd);
5c7fb56e 1811 if (likely(pmd_trans_huge(*pmd) || pmd_devmap(*pmd)))
b6ec57f4
KS
1812 return ptl;
1813 spin_unlock(ptl);
1814 return NULL;
cd7548ab
JW
1815}
1816
9050d7eb 1817#define VM_NO_THP (VM_SPECIAL | VM_HUGETLB | VM_SHARED | VM_MAYSHARE)
78f11a25 1818
60ab3244
AA
1819int hugepage_madvise(struct vm_area_struct *vma,
1820 unsigned long *vm_flags, int advice)
0af4e98b 1821{
a664b2d8
AA
1822 switch (advice) {
1823 case MADV_HUGEPAGE:
1e1836e8
AT
1824#ifdef CONFIG_S390
1825 /*
1826 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
1827 * can't handle this properly after s390_enable_sie, so we simply
1828 * ignore the madvise to prevent qemu from causing a SIGSEGV.
1829 */
1830 if (mm_has_pgste(vma->vm_mm))
1831 return 0;
1832#endif
a664b2d8
AA
1833 /*
1834 * Be somewhat over-protective like KSM for now!
1835 */
1a763615 1836 if (*vm_flags & VM_NO_THP)
a664b2d8
AA
1837 return -EINVAL;
1838 *vm_flags &= ~VM_NOHUGEPAGE;
1839 *vm_flags |= VM_HUGEPAGE;
60ab3244
AA
1840 /*
1841 * If the vma become good for khugepaged to scan,
1842 * register it here without waiting a page fault that
1843 * may not happen any time soon.
1844 */
6d50e60c 1845 if (unlikely(khugepaged_enter_vma_merge(vma, *vm_flags)))
60ab3244 1846 return -ENOMEM;
a664b2d8
AA
1847 break;
1848 case MADV_NOHUGEPAGE:
1849 /*
1850 * Be somewhat over-protective like KSM for now!
1851 */
1a763615 1852 if (*vm_flags & VM_NO_THP)
a664b2d8
AA
1853 return -EINVAL;
1854 *vm_flags &= ~VM_HUGEPAGE;
1855 *vm_flags |= VM_NOHUGEPAGE;
60ab3244
AA
1856 /*
1857 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
1858 * this vma even if we leave the mm registered in khugepaged if
1859 * it got registered before VM_NOHUGEPAGE was set.
1860 */
a664b2d8
AA
1861 break;
1862 }
0af4e98b
AA
1863
1864 return 0;
1865}
1866
ba76149f
AA
1867static int __init khugepaged_slab_init(void)
1868{
1869 mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
1870 sizeof(struct mm_slot),
1871 __alignof__(struct mm_slot), 0, NULL);
1872 if (!mm_slot_cache)
1873 return -ENOMEM;
1874
1875 return 0;
1876}
1877
65ebb64f
KS
1878static void __init khugepaged_slab_exit(void)
1879{
1880 kmem_cache_destroy(mm_slot_cache);
1881}
1882
ba76149f
AA
1883static inline struct mm_slot *alloc_mm_slot(void)
1884{
1885 if (!mm_slot_cache) /* initialization failed */
1886 return NULL;
1887 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
1888}
1889
1890static inline void free_mm_slot(struct mm_slot *mm_slot)
1891{
1892 kmem_cache_free(mm_slot_cache, mm_slot);
1893}
1894
ba76149f
AA
1895static struct mm_slot *get_mm_slot(struct mm_struct *mm)
1896{
1897 struct mm_slot *mm_slot;
ba76149f 1898
b67bfe0d 1899 hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
ba76149f
AA
1900 if (mm == mm_slot->mm)
1901 return mm_slot;
43b5fbbd 1902
ba76149f
AA
1903 return NULL;
1904}
1905
1906static void insert_to_mm_slots_hash(struct mm_struct *mm,
1907 struct mm_slot *mm_slot)
1908{
ba76149f 1909 mm_slot->mm = mm;
43b5fbbd 1910 hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
ba76149f
AA
1911}
1912
1913static inline int khugepaged_test_exit(struct mm_struct *mm)
1914{
1915 return atomic_read(&mm->mm_users) == 0;
1916}
1917
1918int __khugepaged_enter(struct mm_struct *mm)
1919{
1920 struct mm_slot *mm_slot;
1921 int wakeup;
1922
1923 mm_slot = alloc_mm_slot();
1924 if (!mm_slot)
1925 return -ENOMEM;
1926
1927 /* __khugepaged_exit() must not run from under us */
96dad67f 1928 VM_BUG_ON_MM(khugepaged_test_exit(mm), mm);
ba76149f
AA
1929 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
1930 free_mm_slot(mm_slot);
1931 return 0;
1932 }
1933
1934 spin_lock(&khugepaged_mm_lock);
1935 insert_to_mm_slots_hash(mm, mm_slot);
1936 /*
1937 * Insert just behind the scanning cursor, to let the area settle
1938 * down a little.
1939 */
1940 wakeup = list_empty(&khugepaged_scan.mm_head);
1941 list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
1942 spin_unlock(&khugepaged_mm_lock);
1943
1944 atomic_inc(&mm->mm_count);
1945 if (wakeup)
1946 wake_up_interruptible(&khugepaged_wait);
1947
1948 return 0;
1949}
1950
6d50e60c
DR
1951int khugepaged_enter_vma_merge(struct vm_area_struct *vma,
1952 unsigned long vm_flags)
ba76149f
AA
1953{
1954 unsigned long hstart, hend;
1955 if (!vma->anon_vma)
1956 /*
1957 * Not yet faulted in so we will register later in the
1958 * page fault if needed.
1959 */
1960 return 0;
3486b85a 1961 if (vma->vm_ops || (vm_flags & VM_NO_THP))
ba76149f
AA
1962 /* khugepaged not yet working on file or special mappings */
1963 return 0;
ba76149f
AA
1964 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1965 hend = vma->vm_end & HPAGE_PMD_MASK;
1966 if (hstart < hend)
6d50e60c 1967 return khugepaged_enter(vma, vm_flags);
ba76149f
AA
1968 return 0;
1969}
1970
1971void __khugepaged_exit(struct mm_struct *mm)
1972{
1973 struct mm_slot *mm_slot;
1974 int free = 0;
1975
1976 spin_lock(&khugepaged_mm_lock);
1977 mm_slot = get_mm_slot(mm);
1978 if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
43b5fbbd 1979 hash_del(&mm_slot->hash);
ba76149f
AA
1980 list_del(&mm_slot->mm_node);
1981 free = 1;
1982 }
d788e80a 1983 spin_unlock(&khugepaged_mm_lock);
ba76149f
AA
1984
1985 if (free) {
ba76149f
AA
1986 clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1987 free_mm_slot(mm_slot);
1988 mmdrop(mm);
1989 } else if (mm_slot) {
ba76149f
AA
1990 /*
1991 * This is required to serialize against
1992 * khugepaged_test_exit() (which is guaranteed to run
1993 * under mmap sem read mode). Stop here (after we
1994 * return all pagetables will be destroyed) until
1995 * khugepaged has finished working on the pagetables
1996 * under the mmap_sem.
1997 */
1998 down_write(&mm->mmap_sem);
1999 up_write(&mm->mmap_sem);
d788e80a 2000 }
ba76149f
AA
2001}
2002
2003static void release_pte_page(struct page *page)
2004{
2005 /* 0 stands for page_is_file_cache(page) == false */
2006 dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
2007 unlock_page(page);
2008 putback_lru_page(page);
2009}
2010
2011static void release_pte_pages(pte_t *pte, pte_t *_pte)
2012{
2013 while (--_pte >= pte) {
2014 pte_t pteval = *_pte;
ca0984ca 2015 if (!pte_none(pteval) && !is_zero_pfn(pte_pfn(pteval)))
ba76149f
AA
2016 release_pte_page(pte_page(pteval));
2017 }
2018}
2019
ba76149f
AA
2020static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
2021 unsigned long address,
2022 pte_t *pte)
2023{
7d2eba05 2024 struct page *page = NULL;
ba76149f 2025 pte_t *_pte;
7d2eba05 2026 int none_or_zero = 0, result = 0;
10359213 2027 bool referenced = false, writable = false;
7d2eba05 2028
ba76149f
AA
2029 for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
2030 _pte++, address += PAGE_SIZE) {
2031 pte_t pteval = *_pte;
47aee4d8
MK
2032 if (pte_none(pteval) || (pte_present(pteval) &&
2033 is_zero_pfn(pte_pfn(pteval)))) {
c1294d05 2034 if (!userfaultfd_armed(vma) &&
7d2eba05 2035 ++none_or_zero <= khugepaged_max_ptes_none) {
ba76149f 2036 continue;
7d2eba05
EA
2037 } else {
2038 result = SCAN_EXCEED_NONE_PTE;
ba76149f 2039 goto out;
7d2eba05 2040 }
ba76149f 2041 }
7d2eba05
EA
2042 if (!pte_present(pteval)) {
2043 result = SCAN_PTE_NON_PRESENT;
ba76149f 2044 goto out;
7d2eba05 2045 }
ba76149f 2046 page = vm_normal_page(vma, address, pteval);
7d2eba05
EA
2047 if (unlikely(!page)) {
2048 result = SCAN_PAGE_NULL;
ba76149f 2049 goto out;
7d2eba05 2050 }
344aa35c 2051
309381fe
SL
2052 VM_BUG_ON_PAGE(PageCompound(page), page);
2053 VM_BUG_ON_PAGE(!PageAnon(page), page);
2054 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
ba76149f 2055
ba76149f
AA
2056 /*
2057 * We can do it before isolate_lru_page because the
2058 * page can't be freed from under us. NOTE: PG_lock
2059 * is needed to serialize against split_huge_page
2060 * when invoked from the VM.
2061 */
7d2eba05
EA
2062 if (!trylock_page(page)) {
2063 result = SCAN_PAGE_LOCK;
ba76149f 2064 goto out;
7d2eba05 2065 }
10359213
EA
2066
2067 /*
2068 * cannot use mapcount: can't collapse if there's a gup pin.
2069 * The page must only be referenced by the scanned process
2070 * and page swap cache.
2071 */
2072 if (page_count(page) != 1 + !!PageSwapCache(page)) {
2073 unlock_page(page);
7d2eba05 2074 result = SCAN_PAGE_COUNT;
10359213
EA
2075 goto out;
2076 }
2077 if (pte_write(pteval)) {
2078 writable = true;
2079 } else {
6d0a07ed
AA
2080 if (PageSwapCache(page) &&
2081 !reuse_swap_page(page, NULL)) {
10359213 2082 unlock_page(page);
7d2eba05 2083 result = SCAN_SWAP_CACHE_PAGE;
10359213
EA
2084 goto out;
2085 }
2086 /*
2087 * Page is not in the swap cache. It can be collapsed
2088 * into a THP.
2089 */
2090 }
2091
ba76149f
AA
2092 /*
2093 * Isolate the page to avoid collapsing an hugepage
2094 * currently in use by the VM.
2095 */
2096 if (isolate_lru_page(page)) {
2097 unlock_page(page);
7d2eba05 2098 result = SCAN_DEL_PAGE_LRU;
ba76149f
AA
2099 goto out;
2100 }
2101 /* 0 stands for page_is_file_cache(page) == false */
2102 inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
309381fe
SL
2103 VM_BUG_ON_PAGE(!PageLocked(page), page);
2104 VM_BUG_ON_PAGE(PageLRU(page), page);
ba76149f
AA
2105
2106 /* If there is no mapped pte young don't collapse the page */
33c3fc71
VD
2107 if (pte_young(pteval) ||
2108 page_is_young(page) || PageReferenced(page) ||
8ee53820 2109 mmu_notifier_test_young(vma->vm_mm, address))
10359213 2110 referenced = true;
ba76149f 2111 }
7d2eba05
EA
2112 if (likely(writable)) {
2113 if (likely(referenced)) {
2114 result = SCAN_SUCCEED;
16fd0fe4 2115 trace_mm_collapse_huge_page_isolate(page, none_or_zero,
7d2eba05
EA
2116 referenced, writable, result);
2117 return 1;
2118 }
2119 } else {
2120 result = SCAN_PAGE_RO;
2121 }
2122
ba76149f 2123out:
344aa35c 2124 release_pte_pages(pte, _pte);
16fd0fe4 2125 trace_mm_collapse_huge_page_isolate(page, none_or_zero,
7d2eba05 2126 referenced, writable, result);
344aa35c 2127 return 0;
ba76149f
AA
2128}
2129
2130static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
2131 struct vm_area_struct *vma,
2132 unsigned long address,
2133 spinlock_t *ptl)
2134{
2135 pte_t *_pte;
2136 for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
2137 pte_t pteval = *_pte;
2138 struct page *src_page;
2139
ca0984ca 2140 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
ba76149f
AA
2141 clear_user_highpage(page, address);
2142 add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
ca0984ca
EA
2143 if (is_zero_pfn(pte_pfn(pteval))) {
2144 /*
2145 * ptl mostly unnecessary.
2146 */
2147 spin_lock(ptl);
2148 /*
2149 * paravirt calls inside pte_clear here are
2150 * superfluous.
2151 */
2152 pte_clear(vma->vm_mm, address, _pte);
2153 spin_unlock(ptl);
2154 }
ba76149f
AA
2155 } else {
2156 src_page = pte_page(pteval);
2157 copy_user_highpage(page, src_page, address, vma);
309381fe 2158 VM_BUG_ON_PAGE(page_mapcount(src_page) != 1, src_page);
ba76149f
AA
2159 release_pte_page(src_page);
2160 /*
2161 * ptl mostly unnecessary, but preempt has to
2162 * be disabled to update the per-cpu stats
2163 * inside page_remove_rmap().
2164 */
2165 spin_lock(ptl);
2166 /*
2167 * paravirt calls inside pte_clear here are
2168 * superfluous.
2169 */
2170 pte_clear(vma->vm_mm, address, _pte);
d281ee61 2171 page_remove_rmap(src_page, false);
ba76149f
AA
2172 spin_unlock(ptl);
2173 free_page_and_swap_cache(src_page);
2174 }
2175
2176 address += PAGE_SIZE;
2177 page++;
2178 }
2179}
2180
26234f36 2181static void khugepaged_alloc_sleep(void)
ba76149f 2182{
bde43c6c
PM
2183 DEFINE_WAIT(wait);
2184
2185 add_wait_queue(&khugepaged_wait, &wait);
2186 freezable_schedule_timeout_interruptible(
2187 msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
2188 remove_wait_queue(&khugepaged_wait, &wait);
26234f36 2189}
ba76149f 2190
9f1b868a
BL
2191static int khugepaged_node_load[MAX_NUMNODES];
2192
14a4e214
DR
2193static bool khugepaged_scan_abort(int nid)
2194{
2195 int i;
2196
2197 /*
2198 * If zone_reclaim_mode is disabled, then no extra effort is made to
2199 * allocate memory locally.
2200 */
2201 if (!zone_reclaim_mode)
2202 return false;
2203
2204 /* If there is a count for this node already, it must be acceptable */
2205 if (khugepaged_node_load[nid])
2206 return false;
2207
2208 for (i = 0; i < MAX_NUMNODES; i++) {
2209 if (!khugepaged_node_load[i])
2210 continue;
2211 if (node_distance(nid, i) > RECLAIM_DISTANCE)
2212 return true;
2213 }
2214 return false;
2215}
2216
26234f36 2217#ifdef CONFIG_NUMA
9f1b868a
BL
2218static int khugepaged_find_target_node(void)
2219{
2220 static int last_khugepaged_target_node = NUMA_NO_NODE;
2221 int nid, target_node = 0, max_value = 0;
2222
2223 /* find first node with max normal pages hit */
2224 for (nid = 0; nid < MAX_NUMNODES; nid++)
2225 if (khugepaged_node_load[nid] > max_value) {
2226 max_value = khugepaged_node_load[nid];
2227 target_node = nid;
2228 }
2229
2230 /* do some balance if several nodes have the same hit record */
2231 if (target_node <= last_khugepaged_target_node)
2232 for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
2233 nid++)
2234 if (max_value == khugepaged_node_load[nid]) {
2235 target_node = nid;
2236 break;
2237 }
2238
2239 last_khugepaged_target_node = target_node;
2240 return target_node;
2241}
2242
26234f36
XG
2243static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2244{
2245 if (IS_ERR(*hpage)) {
2246 if (!*wait)
2247 return false;
2248
2249 *wait = false;
e3b4126c 2250 *hpage = NULL;
26234f36
XG
2251 khugepaged_alloc_sleep();
2252 } else if (*hpage) {
2253 put_page(*hpage);
2254 *hpage = NULL;
2255 }
2256
2257 return true;
2258}
2259
3b363692
MH
2260static struct page *
2261khugepaged_alloc_page(struct page **hpage, gfp_t gfp, struct mm_struct *mm,
d6669d68 2262 unsigned long address, int node)
26234f36 2263{
309381fe 2264 VM_BUG_ON_PAGE(*hpage, *hpage);
8b164568 2265
ce83d217 2266 /*
8b164568
VB
2267 * Before allocating the hugepage, release the mmap_sem read lock.
2268 * The allocation can take potentially a long time if it involves
2269 * sync compaction, and we do not need to hold the mmap_sem during
2270 * that. We will recheck the vma after taking it again in write mode.
ce83d217 2271 */
8b164568
VB
2272 up_read(&mm->mmap_sem);
2273
96db800f 2274 *hpage = __alloc_pages_node(node, gfp, HPAGE_PMD_ORDER);
26234f36 2275 if (unlikely(!*hpage)) {
81ab4201 2276 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
ce83d217 2277 *hpage = ERR_PTR(-ENOMEM);
26234f36 2278 return NULL;
ce83d217 2279 }
26234f36 2280
9a982250 2281 prep_transhuge_page(*hpage);
65b3c07b 2282 count_vm_event(THP_COLLAPSE_ALLOC);
26234f36
XG
2283 return *hpage;
2284}
2285#else
9f1b868a
BL
2286static int khugepaged_find_target_node(void)
2287{
2288 return 0;
2289}
2290
444eb2a4 2291static inline struct page *alloc_khugepaged_hugepage(void)
10dc4155 2292{
9a982250
KS
2293 struct page *page;
2294
444eb2a4
MG
2295 page = alloc_pages(alloc_hugepage_khugepaged_gfpmask(),
2296 HPAGE_PMD_ORDER);
9a982250
KS
2297 if (page)
2298 prep_transhuge_page(page);
2299 return page;
10dc4155
BL
2300}
2301
26234f36
XG
2302static struct page *khugepaged_alloc_hugepage(bool *wait)
2303{
2304 struct page *hpage;
2305
2306 do {
444eb2a4 2307 hpage = alloc_khugepaged_hugepage();
26234f36
XG
2308 if (!hpage) {
2309 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2310 if (!*wait)
2311 return NULL;
2312
2313 *wait = false;
2314 khugepaged_alloc_sleep();
2315 } else
2316 count_vm_event(THP_COLLAPSE_ALLOC);
2317 } while (unlikely(!hpage) && likely(khugepaged_enabled()));
2318
2319 return hpage;
2320}
2321
2322static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2323{
2324 if (!*hpage)
2325 *hpage = khugepaged_alloc_hugepage(wait);
2326
2327 if (unlikely(!*hpage))
2328 return false;
2329
2330 return true;
2331}
2332
3b363692
MH
2333static struct page *
2334khugepaged_alloc_page(struct page **hpage, gfp_t gfp, struct mm_struct *mm,
d6669d68 2335 unsigned long address, int node)
26234f36
XG
2336{
2337 up_read(&mm->mmap_sem);
2338 VM_BUG_ON(!*hpage);
3b363692 2339
26234f36
XG
2340 return *hpage;
2341}
692e0b35
AA
2342#endif
2343
fa475e51
BL
2344static bool hugepage_vma_check(struct vm_area_struct *vma)
2345{
2346 if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
2347 (vma->vm_flags & VM_NOHUGEPAGE))
2348 return false;
fa475e51
BL
2349 if (!vma->anon_vma || vma->vm_ops)
2350 return false;
2351 if (is_vma_temporary_stack(vma))
2352 return false;
3486b85a 2353 return !(vma->vm_flags & VM_NO_THP);
fa475e51
BL
2354}
2355
72695862
EA
2356/*
2357 * If mmap_sem temporarily dropped, revalidate vma
2358 * before taking mmap_sem.
2359 * Return 0 if succeeds, otherwise return none-zero
2360 * value (scan code).
2361 */
2362
2363static int hugepage_vma_revalidate(struct mm_struct *mm, unsigned long address)
2364{
2365 struct vm_area_struct *vma;
2366 unsigned long hstart, hend;
2367
2368 if (unlikely(khugepaged_test_exit(mm)))
2369 return SCAN_ANY_PROCESS;
2370
2371 vma = find_vma(mm, address);
2372 if (!vma)
2373 return SCAN_VMA_NULL;
2374
2375 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2376 hend = vma->vm_end & HPAGE_PMD_MASK;
2377 if (address < hstart || address + HPAGE_PMD_SIZE > hend)
2378 return SCAN_ADDRESS_RANGE;
2379 if (!hugepage_vma_check(vma))
2380 return SCAN_VMA_CHECK;
2381 return 0;
2382}
2383
8a966ed7
EA
2384/*
2385 * Bring missing pages in from swap, to complete THP collapse.
2386 * Only done if khugepaged_scan_pmd believes it is worthwhile.
2387 *
2388 * Called and returns without pte mapped or spinlocks held,
2389 * but with mmap_sem held to protect against vma changes.
2390 */
2391
72695862 2392static bool __collapse_huge_page_swapin(struct mm_struct *mm,
8a966ed7
EA
2393 struct vm_area_struct *vma,
2394 unsigned long address, pmd_t *pmd)
2395{
bae473a4 2396 pte_t pteval;
8a966ed7 2397 int swapped_in = 0, ret = 0;
bae473a4
KS
2398 struct fault_env fe = {
2399 .vma = vma,
2400 .address = address,
2401 .flags = FAULT_FLAG_ALLOW_RETRY,
2402 .pmd = pmd,
2403 };
2404
2405 fe.pte = pte_offset_map(pmd, address);
2406 for (; fe.address < address + HPAGE_PMD_NR*PAGE_SIZE;
2407 fe.pte++, fe.address += PAGE_SIZE) {
2408 pteval = *fe.pte;
8a966ed7
EA
2409 if (!is_swap_pte(pteval))
2410 continue;
2411 swapped_in++;
bae473a4 2412 ret = do_swap_page(&fe, pteval);
72695862
EA
2413 /* do_swap_page returns VM_FAULT_RETRY with released mmap_sem */
2414 if (ret & VM_FAULT_RETRY) {
2415 down_read(&mm->mmap_sem);
2416 /* vma is no longer available, don't continue to swapin */
2417 if (hugepage_vma_revalidate(mm, address))
2418 return false;
1f52e67e
KS
2419 /* check if the pmd is still valid */
2420 if (mm_find_pmd(mm, address) != pmd)
2421 return false;
72695862 2422 }
8a966ed7
EA
2423 if (ret & VM_FAULT_ERROR) {
2424 trace_mm_collapse_huge_page_swapin(mm, swapped_in, 0);
72695862 2425 return false;
8a966ed7
EA
2426 }
2427 /* pte is unmapped now, we need to map it */
bae473a4 2428 fe.pte = pte_offset_map(pmd, fe.address);
8a966ed7 2429 }
bae473a4
KS
2430 fe.pte--;
2431 pte_unmap(fe.pte);
8a966ed7 2432 trace_mm_collapse_huge_page_swapin(mm, swapped_in, 1);
72695862 2433 return true;
8a966ed7
EA
2434}
2435
26234f36
XG
2436static void collapse_huge_page(struct mm_struct *mm,
2437 unsigned long address,
2438 struct page **hpage,
2439 struct vm_area_struct *vma,
2440 int node)
2441{
26234f36
XG
2442 pmd_t *pmd, _pmd;
2443 pte_t *pte;
2444 pgtable_t pgtable;
2445 struct page *new_page;
c4088ebd 2446 spinlock_t *pmd_ptl, *pte_ptl;
629d9d1c 2447 int isolated = 0, result = 0;
00501b53 2448 struct mem_cgroup *memcg;
2ec74c3e
SG
2449 unsigned long mmun_start; /* For mmu_notifiers */
2450 unsigned long mmun_end; /* For mmu_notifiers */
3b363692 2451 gfp_t gfp;
26234f36
XG
2452
2453 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2454
3b363692 2455 /* Only allocate from the target node */
444eb2a4 2456 gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_OTHER_NODE | __GFP_THISNODE;
3b363692 2457
26234f36 2458 /* release the mmap_sem read lock. */
d6669d68 2459 new_page = khugepaged_alloc_page(hpage, gfp, mm, address, node);
7d2eba05
EA
2460 if (!new_page) {
2461 result = SCAN_ALLOC_HUGE_PAGE_FAIL;
2462 goto out_nolock;
2463 }
26234f36 2464
f627c2f5 2465 if (unlikely(mem_cgroup_try_charge(new_page, mm, gfp, &memcg, true))) {
7d2eba05
EA
2466 result = SCAN_CGROUP_CHARGE_FAIL;
2467 goto out_nolock;
2468 }
ba76149f 2469
72695862
EA
2470 down_read(&mm->mmap_sem);
2471 result = hugepage_vma_revalidate(mm, address);
8024ee2a
EA
2472 if (result) {
2473 mem_cgroup_cancel_charge(new_page, memcg, true);
2474 up_read(&mm->mmap_sem);
2475 goto out_nolock;
2476 }
ba76149f 2477
6219049a 2478 pmd = mm_find_pmd(mm, address);
7d2eba05
EA
2479 if (!pmd) {
2480 result = SCAN_PMD_NULL;
8024ee2a
EA
2481 mem_cgroup_cancel_charge(new_page, memcg, true);
2482 up_read(&mm->mmap_sem);
2483 goto out_nolock;
7d2eba05 2484 }
ba76149f 2485
72695862
EA
2486 /*
2487 * __collapse_huge_page_swapin always returns with mmap_sem locked.
2488 * If it fails, release mmap_sem and jump directly out.
2489 * Continuing to collapse causes inconsistency.
2490 */
2491 if (!__collapse_huge_page_swapin(mm, vma, address, pmd)) {
8024ee2a 2492 mem_cgroup_cancel_charge(new_page, memcg, true);
72695862 2493 up_read(&mm->mmap_sem);
8024ee2a 2494 goto out_nolock;
72695862
EA
2495 }
2496
2497 up_read(&mm->mmap_sem);
2498 /*
2499 * Prevent all access to pagetables with the exception of
2500 * gup_fast later handled by the ptep_clear_flush and the VM
2501 * handled by the anon_vma lock + PG_lock.
2502 */
2503 down_write(&mm->mmap_sem);
2504 result = hugepage_vma_revalidate(mm, address);
2505 if (result)
2506 goto out;
1f52e67e
KS
2507 /* check if the pmd is still valid */
2508 if (mm_find_pmd(mm, address) != pmd)
2509 goto out;
8a966ed7 2510
4fc3f1d6 2511 anon_vma_lock_write(vma->anon_vma);
ba76149f
AA
2512
2513 pte = pte_offset_map(pmd, address);
c4088ebd 2514 pte_ptl = pte_lockptr(mm, pmd);
ba76149f 2515
2ec74c3e
SG
2516 mmun_start = address;
2517 mmun_end = address + HPAGE_PMD_SIZE;
2518 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
c4088ebd 2519 pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
ba76149f
AA
2520 /*
2521 * After this gup_fast can't run anymore. This also removes
2522 * any huge TLB entry from the CPU so we won't allow
2523 * huge and small TLB entries for the same virtual address
2524 * to avoid the risk of CPU bugs in that area.
2525 */
15a25b2e 2526 _pmd = pmdp_collapse_flush(vma, address, pmd);
c4088ebd 2527 spin_unlock(pmd_ptl);
2ec74c3e 2528 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
ba76149f 2529
c4088ebd 2530 spin_lock(pte_ptl);
ba76149f 2531 isolated = __collapse_huge_page_isolate(vma, address, pte);
c4088ebd 2532 spin_unlock(pte_ptl);
ba76149f
AA
2533
2534 if (unlikely(!isolated)) {
453c7192 2535 pte_unmap(pte);
c4088ebd 2536 spin_lock(pmd_ptl);
ba76149f 2537 BUG_ON(!pmd_none(*pmd));
7c342512
AK
2538 /*
2539 * We can only use set_pmd_at when establishing
2540 * hugepmds and never for establishing regular pmds that
2541 * points to regular pagetables. Use pmd_populate for that
2542 */
2543 pmd_populate(mm, pmd, pmd_pgtable(_pmd));
c4088ebd 2544 spin_unlock(pmd_ptl);
08b52706 2545 anon_vma_unlock_write(vma->anon_vma);
7d2eba05 2546 result = SCAN_FAIL;
ce83d217 2547 goto out;
ba76149f
AA
2548 }
2549
2550 /*
2551 * All pages are isolated and locked so anon_vma rmap
2552 * can't run anymore.
2553 */
08b52706 2554 anon_vma_unlock_write(vma->anon_vma);
ba76149f 2555
c4088ebd 2556 __collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl);
453c7192 2557 pte_unmap(pte);
ba76149f
AA
2558 __SetPageUptodate(new_page);
2559 pgtable = pmd_pgtable(_pmd);
ba76149f 2560
3122359a
KS
2561 _pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
2562 _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
ba76149f
AA
2563
2564 /*
2565 * spin_lock() below is not the equivalent of smp_wmb(), so
2566 * this is needed to avoid the copy_huge_page writes to become
2567 * visible after the set_pmd_at() write.
2568 */
2569 smp_wmb();
2570
c4088ebd 2571 spin_lock(pmd_ptl);
ba76149f 2572 BUG_ON(!pmd_none(*pmd));
d281ee61 2573 page_add_new_anon_rmap(new_page, vma, address, true);
f627c2f5 2574 mem_cgroup_commit_charge(new_page, memcg, false, true);
00501b53 2575 lru_cache_add_active_or_unevictable(new_page, vma);
fce144b4 2576 pgtable_trans_huge_deposit(mm, pmd, pgtable);
ba76149f 2577 set_pmd_at(mm, address, pmd, _pmd);
b113da65 2578 update_mmu_cache_pmd(vma, address, pmd);
c4088ebd 2579 spin_unlock(pmd_ptl);
ba76149f
AA
2580
2581 *hpage = NULL;
420256ef 2582
ba76149f 2583 khugepaged_pages_collapsed++;
7d2eba05 2584 result = SCAN_SUCCEED;
ce83d217 2585out_up_write:
ba76149f 2586 up_write(&mm->mmap_sem);
7d2eba05
EA
2587out_nolock:
2588 trace_mm_collapse_huge_page(mm, isolated, result);
2589 return;
ce83d217 2590out:
f627c2f5 2591 mem_cgroup_cancel_charge(new_page, memcg, true);
ce83d217 2592 goto out_up_write;
ba76149f
AA
2593}
2594
2595static int khugepaged_scan_pmd(struct mm_struct *mm,
2596 struct vm_area_struct *vma,
2597 unsigned long address,
2598 struct page **hpage)
2599{
ba76149f
AA
2600 pmd_t *pmd;
2601 pte_t *pte, *_pte;
7d2eba05
EA
2602 int ret = 0, none_or_zero = 0, result = 0;
2603 struct page *page = NULL;
ba76149f
AA
2604 unsigned long _address;
2605 spinlock_t *ptl;
70652f6e 2606 int node = NUMA_NO_NODE, unmapped = 0;
10359213 2607 bool writable = false, referenced = false;
ba76149f
AA
2608
2609 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2610
6219049a 2611 pmd = mm_find_pmd(mm, address);
7d2eba05
EA
2612 if (!pmd) {
2613 result = SCAN_PMD_NULL;
ba76149f 2614 goto out;
7d2eba05 2615 }
ba76149f 2616
9f1b868a 2617 memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
ba76149f
AA
2618 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2619 for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
2620 _pte++, _address += PAGE_SIZE) {
2621 pte_t pteval = *_pte;
70652f6e
EA
2622 if (is_swap_pte(pteval)) {
2623 if (++unmapped <= khugepaged_max_ptes_swap) {
2624 continue;
2625 } else {
2626 result = SCAN_EXCEED_SWAP_PTE;
2627 goto out_unmap;
2628 }
2629 }
ca0984ca 2630 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
c1294d05 2631 if (!userfaultfd_armed(vma) &&
7d2eba05 2632 ++none_or_zero <= khugepaged_max_ptes_none) {
ba76149f 2633 continue;
7d2eba05
EA
2634 } else {
2635 result = SCAN_EXCEED_NONE_PTE;
ba76149f 2636 goto out_unmap;
7d2eba05 2637 }
ba76149f 2638 }
7d2eba05
EA
2639 if (!pte_present(pteval)) {
2640 result = SCAN_PTE_NON_PRESENT;
ba76149f 2641 goto out_unmap;
7d2eba05 2642 }
10359213
EA
2643 if (pte_write(pteval))
2644 writable = true;
2645
ba76149f 2646 page = vm_normal_page(vma, _address, pteval);
7d2eba05
EA
2647 if (unlikely(!page)) {
2648 result = SCAN_PAGE_NULL;
ba76149f 2649 goto out_unmap;
7d2eba05 2650 }
b1caa957
KS
2651
2652 /* TODO: teach khugepaged to collapse THP mapped with pte */
2653 if (PageCompound(page)) {
2654 result = SCAN_PAGE_COMPOUND;
2655 goto out_unmap;
2656 }
2657
5c4b4be3 2658 /*
9f1b868a
BL
2659 * Record which node the original page is from and save this
2660 * information to khugepaged_node_load[].
2661 * Khupaged will allocate hugepage from the node has the max
2662 * hit record.
5c4b4be3 2663 */
9f1b868a 2664 node = page_to_nid(page);
7d2eba05
EA
2665 if (khugepaged_scan_abort(node)) {
2666 result = SCAN_SCAN_ABORT;
14a4e214 2667 goto out_unmap;
7d2eba05 2668 }
9f1b868a 2669 khugepaged_node_load[node]++;
7d2eba05 2670 if (!PageLRU(page)) {
0fda2788 2671 result = SCAN_PAGE_LRU;
7d2eba05
EA
2672 goto out_unmap;
2673 }
2674 if (PageLocked(page)) {
2675 result = SCAN_PAGE_LOCK;
ba76149f 2676 goto out_unmap;
7d2eba05
EA
2677 }
2678 if (!PageAnon(page)) {
2679 result = SCAN_PAGE_ANON;
2680 goto out_unmap;
2681 }
2682
10359213
EA
2683 /*
2684 * cannot use mapcount: can't collapse if there's a gup pin.
2685 * The page must only be referenced by the scanned process
2686 * and page swap cache.
2687 */
7d2eba05
EA
2688 if (page_count(page) != 1 + !!PageSwapCache(page)) {
2689 result = SCAN_PAGE_COUNT;
ba76149f 2690 goto out_unmap;
7d2eba05 2691 }
33c3fc71
VD
2692 if (pte_young(pteval) ||
2693 page_is_young(page) || PageReferenced(page) ||
8ee53820 2694 mmu_notifier_test_young(vma->vm_mm, address))
10359213 2695 referenced = true;
ba76149f 2696 }
7d2eba05
EA
2697 if (writable) {
2698 if (referenced) {
2699 result = SCAN_SUCCEED;
2700 ret = 1;
2701 } else {
2702 result = SCAN_NO_REFERENCED_PAGE;
2703 }
2704 } else {
2705 result = SCAN_PAGE_RO;
2706 }
ba76149f
AA
2707out_unmap:
2708 pte_unmap_unlock(pte, ptl);
9f1b868a
BL
2709 if (ret) {
2710 node = khugepaged_find_target_node();
ce83d217 2711 /* collapse_huge_page will return with the mmap_sem released */
5c4b4be3 2712 collapse_huge_page(mm, address, hpage, vma, node);
9f1b868a 2713 }
ba76149f 2714out:
16fd0fe4 2715 trace_mm_khugepaged_scan_pmd(mm, page, writable, referenced,
70652f6e 2716 none_or_zero, result, unmapped);
ba76149f
AA
2717 return ret;
2718}
2719
2720static void collect_mm_slot(struct mm_slot *mm_slot)
2721{
2722 struct mm_struct *mm = mm_slot->mm;
2723
b9980cdc 2724 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
ba76149f
AA
2725
2726 if (khugepaged_test_exit(mm)) {
2727 /* free mm_slot */
43b5fbbd 2728 hash_del(&mm_slot->hash);
ba76149f
AA
2729 list_del(&mm_slot->mm_node);
2730
2731 /*
2732 * Not strictly needed because the mm exited already.
2733 *
2734 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2735 */
2736
2737 /* khugepaged_mm_lock actually not necessary for the below */
2738 free_mm_slot(mm_slot);
2739 mmdrop(mm);
2740 }
2741}
2742
2743static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2744 struct page **hpage)
2f1da642
HS
2745 __releases(&khugepaged_mm_lock)
2746 __acquires(&khugepaged_mm_lock)
ba76149f
AA
2747{
2748 struct mm_slot *mm_slot;
2749 struct mm_struct *mm;
2750 struct vm_area_struct *vma;
2751 int progress = 0;
2752
2753 VM_BUG_ON(!pages);
b9980cdc 2754 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
ba76149f
AA
2755
2756 if (khugepaged_scan.mm_slot)
2757 mm_slot = khugepaged_scan.mm_slot;
2758 else {
2759 mm_slot = list_entry(khugepaged_scan.mm_head.next,
2760 struct mm_slot, mm_node);
2761 khugepaged_scan.address = 0;
2762 khugepaged_scan.mm_slot = mm_slot;
2763 }
2764 spin_unlock(&khugepaged_mm_lock);
2765
2766 mm = mm_slot->mm;
2767 down_read(&mm->mmap_sem);
2768 if (unlikely(khugepaged_test_exit(mm)))
2769 vma = NULL;
2770 else
2771 vma = find_vma(mm, khugepaged_scan.address);
2772
2773 progress++;
2774 for (; vma; vma = vma->vm_next) {
2775 unsigned long hstart, hend;
2776
2777 cond_resched();
2778 if (unlikely(khugepaged_test_exit(mm))) {
2779 progress++;
2780 break;
2781 }
fa475e51
BL
2782 if (!hugepage_vma_check(vma)) {
2783skip:
ba76149f
AA
2784 progress++;
2785 continue;
2786 }
ba76149f
AA
2787 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2788 hend = vma->vm_end & HPAGE_PMD_MASK;
a7d6e4ec
AA
2789 if (hstart >= hend)
2790 goto skip;
2791 if (khugepaged_scan.address > hend)
2792 goto skip;
ba76149f
AA
2793 if (khugepaged_scan.address < hstart)
2794 khugepaged_scan.address = hstart;
a7d6e4ec 2795 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
ba76149f
AA
2796
2797 while (khugepaged_scan.address < hend) {
2798 int ret;
2799 cond_resched();
2800 if (unlikely(khugepaged_test_exit(mm)))
2801 goto breakouterloop;
2802
2803 VM_BUG_ON(khugepaged_scan.address < hstart ||
2804 khugepaged_scan.address + HPAGE_PMD_SIZE >
2805 hend);
2806 ret = khugepaged_scan_pmd(mm, vma,
2807 khugepaged_scan.address,
2808 hpage);
2809 /* move to next address */
2810 khugepaged_scan.address += HPAGE_PMD_SIZE;
2811 progress += HPAGE_PMD_NR;
2812 if (ret)
2813 /* we released mmap_sem so break loop */
2814 goto breakouterloop_mmap_sem;
2815 if (progress >= pages)
2816 goto breakouterloop;
2817 }
2818 }
2819breakouterloop:
2820 up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2821breakouterloop_mmap_sem:
2822
2823 spin_lock(&khugepaged_mm_lock);
a7d6e4ec 2824 VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
ba76149f
AA
2825 /*
2826 * Release the current mm_slot if this mm is about to die, or
2827 * if we scanned all vmas of this mm.
2828 */
2829 if (khugepaged_test_exit(mm) || !vma) {
2830 /*
2831 * Make sure that if mm_users is reaching zero while
2832 * khugepaged runs here, khugepaged_exit will find
2833 * mm_slot not pointing to the exiting mm.
2834 */
2835 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2836 khugepaged_scan.mm_slot = list_entry(
2837 mm_slot->mm_node.next,
2838 struct mm_slot, mm_node);
2839 khugepaged_scan.address = 0;
2840 } else {
2841 khugepaged_scan.mm_slot = NULL;
2842 khugepaged_full_scans++;
2843 }
2844
2845 collect_mm_slot(mm_slot);
2846 }
2847
2848 return progress;
2849}
2850
2851static int khugepaged_has_work(void)
2852{
2853 return !list_empty(&khugepaged_scan.mm_head) &&
2854 khugepaged_enabled();
2855}
2856
2857static int khugepaged_wait_event(void)
2858{
2859 return !list_empty(&khugepaged_scan.mm_head) ||
2017c0bf 2860 kthread_should_stop();
ba76149f
AA
2861}
2862
d516904b 2863static void khugepaged_do_scan(void)
ba76149f 2864{
d516904b 2865 struct page *hpage = NULL;
ba76149f
AA
2866 unsigned int progress = 0, pass_through_head = 0;
2867 unsigned int pages = khugepaged_pages_to_scan;
d516904b 2868 bool wait = true;
ba76149f
AA
2869
2870 barrier(); /* write khugepaged_pages_to_scan to local stack */
2871
2872 while (progress < pages) {
26234f36 2873 if (!khugepaged_prealloc_page(&hpage, &wait))
d516904b 2874 break;
26234f36 2875
420256ef 2876 cond_resched();
ba76149f 2877
cd092411 2878 if (unlikely(kthread_should_stop() || try_to_freeze()))
878aee7d
AA
2879 break;
2880
ba76149f
AA
2881 spin_lock(&khugepaged_mm_lock);
2882 if (!khugepaged_scan.mm_slot)
2883 pass_through_head++;
2884 if (khugepaged_has_work() &&
2885 pass_through_head < 2)
2886 progress += khugepaged_scan_mm_slot(pages - progress,
d516904b 2887 &hpage);
ba76149f
AA
2888 else
2889 progress = pages;
2890 spin_unlock(&khugepaged_mm_lock);
2891 }
ba76149f 2892
d516904b
XG
2893 if (!IS_ERR_OR_NULL(hpage))
2894 put_page(hpage);
0bbbc0b3
AA
2895}
2896
f0508977
DR
2897static bool khugepaged_should_wakeup(void)
2898{
2899 return kthread_should_stop() ||
2900 time_after_eq(jiffies, khugepaged_sleep_expire);
2901}
2902
2017c0bf
XG
2903static void khugepaged_wait_work(void)
2904{
2017c0bf 2905 if (khugepaged_has_work()) {
f0508977
DR
2906 const unsigned long scan_sleep_jiffies =
2907 msecs_to_jiffies(khugepaged_scan_sleep_millisecs);
2908
2909 if (!scan_sleep_jiffies)
2017c0bf
XG
2910 return;
2911
f0508977 2912 khugepaged_sleep_expire = jiffies + scan_sleep_jiffies;
2017c0bf 2913 wait_event_freezable_timeout(khugepaged_wait,
f0508977
DR
2914 khugepaged_should_wakeup(),
2915 scan_sleep_jiffies);
2017c0bf
XG
2916 return;
2917 }
2918
2919 if (khugepaged_enabled())
2920 wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2921}
2922
ba76149f
AA
2923static int khugepaged(void *none)
2924{
2925 struct mm_slot *mm_slot;
2926
878aee7d 2927 set_freezable();
8698a745 2928 set_user_nice(current, MAX_NICE);
ba76149f 2929
b7231789
XG
2930 while (!kthread_should_stop()) {
2931 khugepaged_do_scan();
2932 khugepaged_wait_work();
2933 }
ba76149f
AA
2934
2935 spin_lock(&khugepaged_mm_lock);
2936 mm_slot = khugepaged_scan.mm_slot;
2937 khugepaged_scan.mm_slot = NULL;
2938 if (mm_slot)
2939 collect_mm_slot(mm_slot);
2940 spin_unlock(&khugepaged_mm_lock);
ba76149f
AA
2941 return 0;
2942}
2943
eef1b3ba
KS
2944static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2945 unsigned long haddr, pmd_t *pmd)
2946{
2947 struct mm_struct *mm = vma->vm_mm;
2948 pgtable_t pgtable;
2949 pmd_t _pmd;
2950 int i;
2951
2952 /* leave pmd empty until pte is filled */
2953 pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2954
2955 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2956 pmd_populate(mm, &_pmd, pgtable);
2957
2958 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2959 pte_t *pte, entry;
2960 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2961 entry = pte_mkspecial(entry);
2962 pte = pte_offset_map(&_pmd, haddr);
2963 VM_BUG_ON(!pte_none(*pte));
2964 set_pte_at(mm, haddr, pte, entry);
2965 pte_unmap(pte);
2966 }
2967 smp_wmb(); /* make pte visible before pmd */
2968 pmd_populate(mm, pmd, pgtable);
2969 put_huge_zero_page();
2970}
2971
2972static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
ba988280 2973 unsigned long haddr, bool freeze)
eef1b3ba
KS
2974{
2975 struct mm_struct *mm = vma->vm_mm;
2976 struct page *page;
2977 pgtable_t pgtable;
2978 pmd_t _pmd;
b8d3c4c3 2979 bool young, write, dirty;
2ac015e2 2980 unsigned long addr;
eef1b3ba
KS
2981 int i;
2982
2983 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2984 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2985 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
5c7fb56e 2986 VM_BUG_ON(!pmd_trans_huge(*pmd) && !pmd_devmap(*pmd));
eef1b3ba
KS
2987
2988 count_vm_event(THP_SPLIT_PMD);
2989
d21b9e57
KS
2990 if (!vma_is_anonymous(vma)) {
2991 _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
eef1b3ba
KS
2992 if (is_huge_zero_pmd(_pmd))
2993 put_huge_zero_page();
d21b9e57
KS
2994 if (vma_is_dax(vma))
2995 return;
2996 page = pmd_page(_pmd);
2997 if (!PageReferenced(page) && pmd_young(_pmd))
2998 SetPageReferenced(page);
2999 page_remove_rmap(page, true);
3000 put_page(page);
3001 add_mm_counter(mm, MM_FILEPAGES, -HPAGE_PMD_NR);
eef1b3ba
KS
3002 return;
3003 } else if (is_huge_zero_pmd(*pmd)) {
3004 return __split_huge_zero_page_pmd(vma, haddr, pmd);
3005 }
3006
3007 page = pmd_page(*pmd);
3008 VM_BUG_ON_PAGE(!page_count(page), page);
fe896d18 3009 page_ref_add(page, HPAGE_PMD_NR - 1);
eef1b3ba
KS
3010 write = pmd_write(*pmd);
3011 young = pmd_young(*pmd);
b8d3c4c3 3012 dirty = pmd_dirty(*pmd);
eef1b3ba 3013
c777e2a8 3014 pmdp_huge_split_prepare(vma, haddr, pmd);
eef1b3ba
KS
3015 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
3016 pmd_populate(mm, &_pmd, pgtable);
3017
2ac015e2 3018 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
eef1b3ba
KS
3019 pte_t entry, *pte;
3020 /*
3021 * Note that NUMA hinting access restrictions are not
3022 * transferred to avoid any possibility of altering
3023 * permissions across VMAs.
3024 */
ba988280
KS
3025 if (freeze) {
3026 swp_entry_t swp_entry;
3027 swp_entry = make_migration_entry(page + i, write);
3028 entry = swp_entry_to_pte(swp_entry);
3029 } else {
3030 entry = mk_pte(page + i, vma->vm_page_prot);
b8d3c4c3 3031 entry = maybe_mkwrite(entry, vma);
ba988280
KS
3032 if (!write)
3033 entry = pte_wrprotect(entry);
3034 if (!young)
3035 entry = pte_mkold(entry);
3036 }
b8d3c4c3
MK
3037 if (dirty)
3038 SetPageDirty(page + i);
2ac015e2 3039 pte = pte_offset_map(&_pmd, addr);
eef1b3ba 3040 BUG_ON(!pte_none(*pte));
2ac015e2 3041 set_pte_at(mm, addr, pte, entry);
eef1b3ba
KS
3042 atomic_inc(&page[i]._mapcount);
3043 pte_unmap(pte);
3044 }
3045
3046 /*
3047 * Set PG_double_map before dropping compound_mapcount to avoid
3048 * false-negative page_mapped().
3049 */
3050 if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
3051 for (i = 0; i < HPAGE_PMD_NR; i++)
3052 atomic_inc(&page[i]._mapcount);
3053 }
3054
3055 if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
3056 /* Last compound_mapcount is gone. */
3057 __dec_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
3058 if (TestClearPageDoubleMap(page)) {
3059 /* No need in mapcount reference anymore */
3060 for (i = 0; i < HPAGE_PMD_NR; i++)
3061 atomic_dec(&page[i]._mapcount);
3062 }
3063 }
3064
3065 smp_wmb(); /* make pte visible before pmd */
e9b61f19
KS
3066 /*
3067 * Up to this point the pmd is present and huge and userland has the
3068 * whole access to the hugepage during the split (which happens in
3069 * place). If we overwrite the pmd with the not-huge version pointing
3070 * to the pte here (which of course we could if all CPUs were bug
3071 * free), userland could trigger a small page size TLB miss on the
3072 * small sized TLB while the hugepage TLB entry is still established in
3073 * the huge TLB. Some CPU doesn't like that.
3074 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
3075 * 383 on page 93. Intel should be safe but is also warns that it's
3076 * only safe if the permission and cache attributes of the two entries
3077 * loaded in the two TLB is identical (which should be the case here).
3078 * But it is generally safer to never allow small and huge TLB entries
3079 * for the same virtual address to be loaded simultaneously. So instead
3080 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
3081 * current pmd notpresent (atomically because here the pmd_trans_huge
3082 * and pmd_trans_splitting must remain set at all times on the pmd
3083 * until the split is complete for this pmd), then we flush the SMP TLB
3084 * and finally we write the non-huge version of the pmd entry with
3085 * pmd_populate.
3086 */
3087 pmdp_invalidate(vma, haddr, pmd);
eef1b3ba 3088 pmd_populate(mm, pmd, pgtable);
e9b61f19
KS
3089
3090 if (freeze) {
2ac015e2 3091 for (i = 0; i < HPAGE_PMD_NR; i++) {
e9b61f19
KS
3092 page_remove_rmap(page + i, false);
3093 put_page(page + i);
3094 }
3095 }
eef1b3ba
KS
3096}
3097
3098void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
33f4751e 3099 unsigned long address, bool freeze, struct page *page)
eef1b3ba
KS
3100{
3101 spinlock_t *ptl;
3102 struct mm_struct *mm = vma->vm_mm;
3103 unsigned long haddr = address & HPAGE_PMD_MASK;
3104
3105 mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PMD_SIZE);
3106 ptl = pmd_lock(mm, pmd);
33f4751e
NH
3107
3108 /*
3109 * If caller asks to setup a migration entries, we need a page to check
3110 * pmd against. Otherwise we can end up replacing wrong page.
3111 */
3112 VM_BUG_ON(freeze && !page);
3113 if (page && page != pmd_page(*pmd))
3114 goto out;
3115
5c7fb56e 3116 if (pmd_trans_huge(*pmd)) {
33f4751e 3117 page = pmd_page(*pmd);
5c7fb56e 3118 if (PageMlocked(page))
5f737714 3119 clear_page_mlock(page);
5c7fb56e 3120 } else if (!pmd_devmap(*pmd))
e90309c9 3121 goto out;
fec89c10 3122 __split_huge_pmd_locked(vma, pmd, haddr, freeze);
e90309c9 3123out:
eef1b3ba
KS
3124 spin_unlock(ptl);
3125 mmu_notifier_invalidate_range_end(mm, haddr, haddr + HPAGE_PMD_SIZE);
3126}
3127
fec89c10
KS
3128void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
3129 bool freeze, struct page *page)
94fcc585 3130{
f72e7dcd
HD
3131 pgd_t *pgd;
3132 pud_t *pud;
94fcc585
AA
3133 pmd_t *pmd;
3134
78ddc534 3135 pgd = pgd_offset(vma->vm_mm, address);
f72e7dcd
HD
3136 if (!pgd_present(*pgd))
3137 return;
3138
3139 pud = pud_offset(pgd, address);
3140 if (!pud_present(*pud))
3141 return;
3142
3143 pmd = pmd_offset(pud, address);
fec89c10 3144
33f4751e 3145 __split_huge_pmd(vma, pmd, address, freeze, page);
94fcc585
AA
3146}
3147
e1b9996b 3148void vma_adjust_trans_huge(struct vm_area_struct *vma,
94fcc585
AA
3149 unsigned long start,
3150 unsigned long end,
3151 long adjust_next)
3152{
3153 /*
3154 * If the new start address isn't hpage aligned and it could
3155 * previously contain an hugepage: check if we need to split
3156 * an huge pmd.
3157 */
3158 if (start & ~HPAGE_PMD_MASK &&
3159 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
3160 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
fec89c10 3161 split_huge_pmd_address(vma, start, false, NULL);
94fcc585
AA
3162
3163 /*
3164 * If the new end address isn't hpage aligned and it could
3165 * previously contain an hugepage: check if we need to split
3166 * an huge pmd.
3167 */
3168 if (end & ~HPAGE_PMD_MASK &&
3169 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
3170 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
fec89c10 3171 split_huge_pmd_address(vma, end, false, NULL);
94fcc585
AA
3172
3173 /*
3174 * If we're also updating the vma->vm_next->vm_start, if the new
3175 * vm_next->vm_start isn't page aligned and it could previously
3176 * contain an hugepage: check if we need to split an huge pmd.
3177 */
3178 if (adjust_next > 0) {
3179 struct vm_area_struct *next = vma->vm_next;
3180 unsigned long nstart = next->vm_start;
3181 nstart += adjust_next << PAGE_SHIFT;
3182 if (nstart & ~HPAGE_PMD_MASK &&
3183 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
3184 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
fec89c10 3185 split_huge_pmd_address(next, nstart, false, NULL);
94fcc585
AA
3186 }
3187}
e9b61f19 3188
fec89c10 3189static void freeze_page(struct page *page)
e9b61f19 3190{
fec89c10
KS
3191 enum ttu_flags ttu_flags = TTU_MIGRATION | TTU_IGNORE_MLOCK |
3192 TTU_IGNORE_ACCESS | TTU_RMAP_LOCKED;
3193 int i, ret;
e9b61f19
KS
3194
3195 VM_BUG_ON_PAGE(!PageHead(page), page);
3196
fec89c10
KS
3197 /* We only need TTU_SPLIT_HUGE_PMD once */
3198 ret = try_to_unmap(page, ttu_flags | TTU_SPLIT_HUGE_PMD);
3199 for (i = 1; !ret && i < HPAGE_PMD_NR; i++) {
3200 /* Cut short if the page is unmapped */
3201 if (page_count(page) == 1)
3202 return;
e9b61f19 3203
fec89c10 3204 ret = try_to_unmap(page + i, ttu_flags);
e9b61f19 3205 }
fec89c10 3206 VM_BUG_ON(ret);
e9b61f19
KS
3207}
3208
fec89c10 3209static void unfreeze_page(struct page *page)
e9b61f19 3210{
fec89c10 3211 int i;
e9b61f19 3212
fec89c10
KS
3213 for (i = 0; i < HPAGE_PMD_NR; i++)
3214 remove_migration_ptes(page + i, page + i, true);
e9b61f19
KS
3215}
3216
8df651c7 3217static void __split_huge_page_tail(struct page *head, int tail,
e9b61f19
KS
3218 struct lruvec *lruvec, struct list_head *list)
3219{
e9b61f19
KS
3220 struct page *page_tail = head + tail;
3221
8df651c7 3222 VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
fe896d18 3223 VM_BUG_ON_PAGE(page_ref_count(page_tail) != 0, page_tail);
e9b61f19
KS
3224
3225 /*
0139aa7b 3226 * tail_page->_refcount is zero and not changing from under us. But
e9b61f19 3227 * get_page_unless_zero() may be running from under us on the
8df651c7 3228 * tail_page. If we used atomic_set() below instead of atomic_inc(), we
e9b61f19
KS
3229 * would then run atomic_set() concurrently with
3230 * get_page_unless_zero(), and atomic_set() is implemented in C not
3231 * using locked ops. spin_unlock on x86 sometime uses locked ops
3232 * because of PPro errata 66, 92, so unless somebody can guarantee
3233 * atomic_set() here would be safe on all archs (and not only on x86),
8df651c7 3234 * it's safer to use atomic_inc().
e9b61f19 3235 */
fe896d18 3236 page_ref_inc(page_tail);
e9b61f19
KS
3237
3238 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
3239 page_tail->flags |= (head->flags &
3240 ((1L << PG_referenced) |
3241 (1L << PG_swapbacked) |
3242 (1L << PG_mlocked) |
3243 (1L << PG_uptodate) |
3244 (1L << PG_active) |
3245 (1L << PG_locked) |
b8d3c4c3
MK
3246 (1L << PG_unevictable) |
3247 (1L << PG_dirty)));
e9b61f19
KS
3248
3249 /*
3250 * After clearing PageTail the gup refcount can be released.
3251 * Page flags also must be visible before we make the page non-compound.
3252 */
3253 smp_wmb();
3254
3255 clear_compound_head(page_tail);
3256
3257 if (page_is_young(head))
3258 set_page_young(page_tail);
3259 if (page_is_idle(head))
3260 set_page_idle(page_tail);
3261
3262 /* ->mapping in first tail page is compound_mapcount */
9a982250 3263 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
e9b61f19
KS
3264 page_tail);
3265 page_tail->mapping = head->mapping;
3266
3267 page_tail->index = head->index + tail;
3268 page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
3269 lru_add_page_tail(head, page_tail, lruvec, list);
e9b61f19
KS
3270}
3271
3272static void __split_huge_page(struct page *page, struct list_head *list)
3273{
3274 struct page *head = compound_head(page);
3275 struct zone *zone = page_zone(head);
3276 struct lruvec *lruvec;
8df651c7 3277 int i;
e9b61f19
KS
3278
3279 /* prevent PageLRU to go away from under us, and freeze lru stats */
3280 spin_lock_irq(&zone->lru_lock);
3281 lruvec = mem_cgroup_page_lruvec(head, zone);
3282
3283 /* complete memcg works before add pages to LRU */
3284 mem_cgroup_split_huge_fixup(head);
3285
e9b61f19 3286 for (i = HPAGE_PMD_NR - 1; i >= 1; i--)
8df651c7 3287 __split_huge_page_tail(head, i, lruvec, list);
e9b61f19
KS
3288
3289 ClearPageCompound(head);
3290 spin_unlock_irq(&zone->lru_lock);
3291
fec89c10 3292 unfreeze_page(head);
e9b61f19
KS
3293
3294 for (i = 0; i < HPAGE_PMD_NR; i++) {
3295 struct page *subpage = head + i;
3296 if (subpage == page)
3297 continue;
3298 unlock_page(subpage);
3299
3300 /*
3301 * Subpages may be freed if there wasn't any mapping
3302 * like if add_to_swap() is running on a lru page that
3303 * had its mapping zapped. And freeing these pages
3304 * requires taking the lru_lock so we do the put_page
3305 * of the tail pages after the split is complete.
3306 */
3307 put_page(subpage);
3308 }
3309}
3310
b20ce5e0
KS
3311int total_mapcount(struct page *page)
3312{
dd78fedd 3313 int i, compound, ret;
b20ce5e0
KS
3314
3315 VM_BUG_ON_PAGE(PageTail(page), page);
3316
3317 if (likely(!PageCompound(page)))
3318 return atomic_read(&page->_mapcount) + 1;
3319
dd78fedd 3320 compound = compound_mapcount(page);
b20ce5e0 3321 if (PageHuge(page))
dd78fedd
KS
3322 return compound;
3323 ret = compound;
b20ce5e0
KS
3324 for (i = 0; i < HPAGE_PMD_NR; i++)
3325 ret += atomic_read(&page[i]._mapcount) + 1;
dd78fedd
KS
3326 /* File pages has compound_mapcount included in _mapcount */
3327 if (!PageAnon(page))
3328 return ret - compound * HPAGE_PMD_NR;
b20ce5e0
KS
3329 if (PageDoubleMap(page))
3330 ret -= HPAGE_PMD_NR;
3331 return ret;
3332}
3333
6d0a07ed
AA
3334/*
3335 * This calculates accurately how many mappings a transparent hugepage
3336 * has (unlike page_mapcount() which isn't fully accurate). This full
3337 * accuracy is primarily needed to know if copy-on-write faults can
3338 * reuse the page and change the mapping to read-write instead of
3339 * copying them. At the same time this returns the total_mapcount too.
3340 *
3341 * The function returns the highest mapcount any one of the subpages
3342 * has. If the return value is one, even if different processes are
3343 * mapping different subpages of the transparent hugepage, they can
3344 * all reuse it, because each process is reusing a different subpage.
3345 *
3346 * The total_mapcount is instead counting all virtual mappings of the
3347 * subpages. If the total_mapcount is equal to "one", it tells the
3348 * caller all mappings belong to the same "mm" and in turn the
3349 * anon_vma of the transparent hugepage can become the vma->anon_vma
3350 * local one as no other process may be mapping any of the subpages.
3351 *
3352 * It would be more accurate to replace page_mapcount() with
3353 * page_trans_huge_mapcount(), however we only use
3354 * page_trans_huge_mapcount() in the copy-on-write faults where we
3355 * need full accuracy to avoid breaking page pinning, because
3356 * page_trans_huge_mapcount() is slower than page_mapcount().
3357 */
3358int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
3359{
3360 int i, ret, _total_mapcount, mapcount;
3361
3362 /* hugetlbfs shouldn't call it */
3363 VM_BUG_ON_PAGE(PageHuge(page), page);
3364
3365 if (likely(!PageTransCompound(page))) {
3366 mapcount = atomic_read(&page->_mapcount) + 1;
3367 if (total_mapcount)
3368 *total_mapcount = mapcount;
3369 return mapcount;
3370 }
3371
3372 page = compound_head(page);
3373
3374 _total_mapcount = ret = 0;
3375 for (i = 0; i < HPAGE_PMD_NR; i++) {
3376 mapcount = atomic_read(&page[i]._mapcount) + 1;
3377 ret = max(ret, mapcount);
3378 _total_mapcount += mapcount;
3379 }
3380 if (PageDoubleMap(page)) {
3381 ret -= 1;
3382 _total_mapcount -= HPAGE_PMD_NR;
3383 }
3384 mapcount = compound_mapcount(page);
3385 ret += mapcount;
3386 _total_mapcount += mapcount;
3387 if (total_mapcount)
3388 *total_mapcount = _total_mapcount;
3389 return ret;
3390}
3391
e9b61f19
KS
3392/*
3393 * This function splits huge page into normal pages. @page can point to any
3394 * subpage of huge page to split. Split doesn't change the position of @page.
3395 *
3396 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
3397 * The huge page must be locked.
3398 *
3399 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
3400 *
3401 * Both head page and tail pages will inherit mapping, flags, and so on from
3402 * the hugepage.
3403 *
3404 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
3405 * they are not mapped.
3406 *
3407 * Returns 0 if the hugepage is split successfully.
3408 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
3409 * us.
3410 */
3411int split_huge_page_to_list(struct page *page, struct list_head *list)
3412{
3413 struct page *head = compound_head(page);
a3d0a918 3414 struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
e9b61f19
KS
3415 struct anon_vma *anon_vma;
3416 int count, mapcount, ret;
d9654322 3417 bool mlocked;
0b9b6fff 3418 unsigned long flags;
e9b61f19
KS
3419
3420 VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
3421 VM_BUG_ON_PAGE(!PageAnon(page), page);
3422 VM_BUG_ON_PAGE(!PageLocked(page), page);
3423 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
3424 VM_BUG_ON_PAGE(!PageCompound(page), page);
3425
3426 /*
3427 * The caller does not necessarily hold an mmap_sem that would prevent
3428 * the anon_vma disappearing so we first we take a reference to it
3429 * and then lock the anon_vma for write. This is similar to
3430 * page_lock_anon_vma_read except the write lock is taken to serialise
3431 * against parallel split or collapse operations.
3432 */
3433 anon_vma = page_get_anon_vma(head);
3434 if (!anon_vma) {
3435 ret = -EBUSY;
3436 goto out;
3437 }
3438 anon_vma_lock_write(anon_vma);
3439
3440 /*
3441 * Racy check if we can split the page, before freeze_page() will
3442 * split PMDs
3443 */
3444 if (total_mapcount(head) != page_count(head) - 1) {
3445 ret = -EBUSY;
3446 goto out_unlock;
3447 }
3448
d9654322 3449 mlocked = PageMlocked(page);
fec89c10 3450 freeze_page(head);
e9b61f19
KS
3451 VM_BUG_ON_PAGE(compound_mapcount(head), head);
3452
d9654322
KS
3453 /* Make sure the page is not on per-CPU pagevec as it takes pin */
3454 if (mlocked)
3455 lru_add_drain();
3456
0139aa7b 3457 /* Prevent deferred_split_scan() touching ->_refcount */
a3d0a918 3458 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
e9b61f19
KS
3459 count = page_count(head);
3460 mapcount = total_mapcount(head);
bd56086f 3461 if (!mapcount && count == 1) {
9a982250 3462 if (!list_empty(page_deferred_list(head))) {
a3d0a918 3463 pgdata->split_queue_len--;
9a982250
KS
3464 list_del(page_deferred_list(head));
3465 }
a3d0a918 3466 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
e9b61f19
KS
3467 __split_huge_page(page, list);
3468 ret = 0;
bd56086f 3469 } else if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
a3d0a918 3470 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
e9b61f19
KS
3471 pr_alert("total_mapcount: %u, page_count(): %u\n",
3472 mapcount, count);
3473 if (PageTail(page))
3474 dump_page(head, NULL);
bd56086f 3475 dump_page(page, "total_mapcount(head) > 0");
e9b61f19
KS
3476 BUG();
3477 } else {
a3d0a918 3478 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
fec89c10 3479 unfreeze_page(head);
e9b61f19
KS
3480 ret = -EBUSY;
3481 }
3482
3483out_unlock:
3484 anon_vma_unlock_write(anon_vma);
3485 put_anon_vma(anon_vma);
3486out:
3487 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
3488 return ret;
3489}
9a982250
KS
3490
3491void free_transhuge_page(struct page *page)
3492{
a3d0a918 3493 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
9a982250
KS
3494 unsigned long flags;
3495
a3d0a918 3496 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
9a982250 3497 if (!list_empty(page_deferred_list(page))) {
a3d0a918 3498 pgdata->split_queue_len--;
9a982250
KS
3499 list_del(page_deferred_list(page));
3500 }
a3d0a918 3501 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
9a982250
KS
3502 free_compound_page(page);
3503}
3504
3505void deferred_split_huge_page(struct page *page)
3506{
a3d0a918 3507 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
9a982250
KS
3508 unsigned long flags;
3509
3510 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
3511
a3d0a918 3512 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
9a982250 3513 if (list_empty(page_deferred_list(page))) {
f9719a03 3514 count_vm_event(THP_DEFERRED_SPLIT_PAGE);
a3d0a918
KS
3515 list_add_tail(page_deferred_list(page), &pgdata->split_queue);
3516 pgdata->split_queue_len++;
9a982250 3517 }
a3d0a918 3518 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
9a982250
KS
3519}
3520
3521static unsigned long deferred_split_count(struct shrinker *shrink,
3522 struct shrink_control *sc)
3523{
a3d0a918 3524 struct pglist_data *pgdata = NODE_DATA(sc->nid);
cb8d68ec 3525 return ACCESS_ONCE(pgdata->split_queue_len);
9a982250
KS
3526}
3527
3528static unsigned long deferred_split_scan(struct shrinker *shrink,
3529 struct shrink_control *sc)
3530{
a3d0a918 3531 struct pglist_data *pgdata = NODE_DATA(sc->nid);
9a982250
KS
3532 unsigned long flags;
3533 LIST_HEAD(list), *pos, *next;
3534 struct page *page;
3535 int split = 0;
3536
a3d0a918 3537 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
9a982250 3538 /* Take pin on all head pages to avoid freeing them under us */
ae026204 3539 list_for_each_safe(pos, next, &pgdata->split_queue) {
9a982250
KS
3540 page = list_entry((void *)pos, struct page, mapping);
3541 page = compound_head(page);
e3ae1953
KS
3542 if (get_page_unless_zero(page)) {
3543 list_move(page_deferred_list(page), &list);
3544 } else {
3545 /* We lost race with put_compound_page() */
9a982250 3546 list_del_init(page_deferred_list(page));
a3d0a918 3547 pgdata->split_queue_len--;
9a982250 3548 }
e3ae1953
KS
3549 if (!--sc->nr_to_scan)
3550 break;
9a982250 3551 }
a3d0a918 3552 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
9a982250
KS
3553
3554 list_for_each_safe(pos, next, &list) {
3555 page = list_entry((void *)pos, struct page, mapping);
3556 lock_page(page);
3557 /* split_huge_page() removes page from list on success */
3558 if (!split_huge_page(page))
3559 split++;
3560 unlock_page(page);
3561 put_page(page);
3562 }
3563
a3d0a918
KS
3564 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
3565 list_splice_tail(&list, &pgdata->split_queue);
3566 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
9a982250 3567
cb8d68ec
KS
3568 /*
3569 * Stop shrinker if we didn't split any page, but the queue is empty.
3570 * This can happen if pages were freed under us.
3571 */
3572 if (!split && list_empty(&pgdata->split_queue))
3573 return SHRINK_STOP;
3574 return split;
9a982250
KS
3575}
3576
3577static struct shrinker deferred_split_shrinker = {
3578 .count_objects = deferred_split_count,
3579 .scan_objects = deferred_split_scan,
3580 .seeks = DEFAULT_SEEKS,
a3d0a918 3581 .flags = SHRINKER_NUMA_AWARE,
9a982250 3582};
49071d43
KS
3583
3584#ifdef CONFIG_DEBUG_FS
3585static int split_huge_pages_set(void *data, u64 val)
3586{
3587 struct zone *zone;
3588 struct page *page;
3589 unsigned long pfn, max_zone_pfn;
3590 unsigned long total = 0, split = 0;
3591
3592 if (val != 1)
3593 return -EINVAL;
3594
3595 for_each_populated_zone(zone) {
3596 max_zone_pfn = zone_end_pfn(zone);
3597 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
3598 if (!pfn_valid(pfn))
3599 continue;
3600
3601 page = pfn_to_page(pfn);
3602 if (!get_page_unless_zero(page))
3603 continue;
3604
3605 if (zone != page_zone(page))
3606 goto next;
3607
3608 if (!PageHead(page) || !PageAnon(page) ||
3609 PageHuge(page))
3610 goto next;
3611
3612 total++;
3613 lock_page(page);
3614 if (!split_huge_page(page))
3615 split++;
3616 unlock_page(page);
3617next:
3618 put_page(page);
3619 }
3620 }
3621
145bdaa1 3622 pr_info("%lu of %lu THP split\n", split, total);
49071d43
KS
3623
3624 return 0;
3625}
3626DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
3627 "%llu\n");
3628
3629static int __init split_huge_pages_debugfs(void)
3630{
3631 void *ret;
3632
145bdaa1 3633 ret = debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
49071d43
KS
3634 &split_huge_pages_fops);
3635 if (!ret)
3636 pr_warn("Failed to create split_huge_pages in debugfs");
3637 return 0;
3638}
3639late_initcall(split_huge_pages_debugfs);
3640#endif