Merge branch 'akpm' (patches from Andrew)
[linux-block.git] / mm / huge_memory.c
CommitLineData
20c8ccb1 1// SPDX-License-Identifier: GPL-2.0-only
71e3aac0
AA
2/*
3 * Copyright (C) 2009 Red Hat, Inc.
71e3aac0
AA
4 */
5
ae3a8c1c
AM
6#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7
71e3aac0
AA
8#include <linux/mm.h>
9#include <linux/sched.h>
f7ccbae4 10#include <linux/sched/coredump.h>
6a3827d7 11#include <linux/sched/numa_balancing.h>
71e3aac0
AA
12#include <linux/highmem.h>
13#include <linux/hugetlb.h>
14#include <linux/mmu_notifier.h>
15#include <linux/rmap.h>
16#include <linux/swap.h>
97ae1749 17#include <linux/shrinker.h>
ba76149f 18#include <linux/mm_inline.h>
e9b61f19 19#include <linux/swapops.h>
4897c765 20#include <linux/dax.h>
ba76149f 21#include <linux/khugepaged.h>
878aee7d 22#include <linux/freezer.h>
f25748e3 23#include <linux/pfn_t.h>
a664b2d8 24#include <linux/mman.h>
3565fce3 25#include <linux/memremap.h>
325adeb5 26#include <linux/pagemap.h>
49071d43 27#include <linux/debugfs.h>
4daae3b4 28#include <linux/migrate.h>
43b5fbbd 29#include <linux/hashtable.h>
6b251fc9 30#include <linux/userfaultfd_k.h>
33c3fc71 31#include <linux/page_idle.h>
baa355fd 32#include <linux/shmem_fs.h>
6b31d595 33#include <linux/oom.h>
98fa15f3 34#include <linux/numa.h>
f7da677b 35#include <linux/page_owner.h>
97ae1749 36
71e3aac0
AA
37#include <asm/tlb.h>
38#include <asm/pgalloc.h>
39#include "internal.h"
40
ba76149f 41/*
b14d595a
MD
42 * By default, transparent hugepage support is disabled in order to avoid
43 * risking an increased memory footprint for applications that are not
44 * guaranteed to benefit from it. When transparent hugepage support is
45 * enabled, it is for all mappings, and khugepaged scans all mappings.
8bfa3f9a
JW
46 * Defrag is invoked by khugepaged hugepage allocations and by page faults
47 * for all hugepage allocations.
ba76149f 48 */
71e3aac0 49unsigned long transparent_hugepage_flags __read_mostly =
13ece886 50#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
ba76149f 51 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
13ece886
AA
52#endif
53#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
54 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
55#endif
444eb2a4 56 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
79da5407
KS
57 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
58 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
ba76149f 59
9a982250 60static struct shrinker deferred_split_shrinker;
f000565a 61
97ae1749 62static atomic_t huge_zero_refcount;
56873f43 63struct page *huge_zero_page __read_mostly;
4a6c1297 64
7635d9cb
MH
65bool transparent_hugepage_enabled(struct vm_area_struct *vma)
66{
c0630669
YS
67 /* The addr is used to check if the vma size fits */
68 unsigned long addr = (vma->vm_end & HPAGE_PMD_MASK) - HPAGE_PMD_SIZE;
69
70 if (!transhuge_vma_suitable(vma, addr))
71 return false;
7635d9cb
MH
72 if (vma_is_anonymous(vma))
73 return __transparent_hugepage_enabled(vma);
c0630669
YS
74 if (vma_is_shmem(vma))
75 return shmem_huge_enabled(vma);
7635d9cb
MH
76
77 return false;
78}
79
6fcb52a5 80static struct page *get_huge_zero_page(void)
97ae1749
KS
81{
82 struct page *zero_page;
83retry:
84 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
4db0c3c2 85 return READ_ONCE(huge_zero_page);
97ae1749
KS
86
87 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
4a6c1297 88 HPAGE_PMD_ORDER);
d8a8e1f0
KS
89 if (!zero_page) {
90 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
5918d10a 91 return NULL;
d8a8e1f0
KS
92 }
93 count_vm_event(THP_ZERO_PAGE_ALLOC);
97ae1749 94 preempt_disable();
5918d10a 95 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
97ae1749 96 preempt_enable();
5ddacbe9 97 __free_pages(zero_page, compound_order(zero_page));
97ae1749
KS
98 goto retry;
99 }
100
101 /* We take additional reference here. It will be put back by shrinker */
102 atomic_set(&huge_zero_refcount, 2);
103 preempt_enable();
4db0c3c2 104 return READ_ONCE(huge_zero_page);
4a6c1297
KS
105}
106
6fcb52a5 107static void put_huge_zero_page(void)
4a6c1297 108{
97ae1749
KS
109 /*
110 * Counter should never go to zero here. Only shrinker can put
111 * last reference.
112 */
113 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
4a6c1297
KS
114}
115
6fcb52a5
AL
116struct page *mm_get_huge_zero_page(struct mm_struct *mm)
117{
118 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
119 return READ_ONCE(huge_zero_page);
120
121 if (!get_huge_zero_page())
122 return NULL;
123
124 if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
125 put_huge_zero_page();
126
127 return READ_ONCE(huge_zero_page);
128}
129
130void mm_put_huge_zero_page(struct mm_struct *mm)
131{
132 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
133 put_huge_zero_page();
134}
135
48896466
GC
136static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
137 struct shrink_control *sc)
4a6c1297 138{
48896466
GC
139 /* we can free zero page only if last reference remains */
140 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
141}
97ae1749 142
48896466
GC
143static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
144 struct shrink_control *sc)
145{
97ae1749 146 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
5918d10a
KS
147 struct page *zero_page = xchg(&huge_zero_page, NULL);
148 BUG_ON(zero_page == NULL);
5ddacbe9 149 __free_pages(zero_page, compound_order(zero_page));
48896466 150 return HPAGE_PMD_NR;
97ae1749
KS
151 }
152
153 return 0;
4a6c1297
KS
154}
155
97ae1749 156static struct shrinker huge_zero_page_shrinker = {
48896466
GC
157 .count_objects = shrink_huge_zero_page_count,
158 .scan_objects = shrink_huge_zero_page_scan,
97ae1749
KS
159 .seeks = DEFAULT_SEEKS,
160};
161
71e3aac0 162#ifdef CONFIG_SYSFS
71e3aac0
AA
163static ssize_t enabled_show(struct kobject *kobj,
164 struct kobj_attribute *attr, char *buf)
165{
bfb0ffeb
JP
166 const char *output;
167
444eb2a4 168 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
bfb0ffeb
JP
169 output = "[always] madvise never";
170 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
171 &transparent_hugepage_flags))
172 output = "always [madvise] never";
444eb2a4 173 else
bfb0ffeb
JP
174 output = "always madvise [never]";
175
176 return sysfs_emit(buf, "%s\n", output);
71e3aac0 177}
444eb2a4 178
71e3aac0
AA
179static ssize_t enabled_store(struct kobject *kobj,
180 struct kobj_attribute *attr,
181 const char *buf, size_t count)
182{
21440d7e 183 ssize_t ret = count;
ba76149f 184
f42f2552 185 if (sysfs_streq(buf, "always")) {
21440d7e
DR
186 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
187 set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
f42f2552 188 } else if (sysfs_streq(buf, "madvise")) {
21440d7e
DR
189 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
190 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
f42f2552 191 } else if (sysfs_streq(buf, "never")) {
21440d7e
DR
192 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
193 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
194 } else
195 ret = -EINVAL;
ba76149f
AA
196
197 if (ret > 0) {
b46e756f 198 int err = start_stop_khugepaged();
ba76149f
AA
199 if (err)
200 ret = err;
201 }
ba76149f 202 return ret;
71e3aac0
AA
203}
204static struct kobj_attribute enabled_attr =
205 __ATTR(enabled, 0644, enabled_show, enabled_store);
206
b46e756f 207ssize_t single_hugepage_flag_show(struct kobject *kobj,
bfb0ffeb
JP
208 struct kobj_attribute *attr, char *buf,
209 enum transparent_hugepage_flag flag)
71e3aac0 210{
bfb0ffeb
JP
211 return sysfs_emit(buf, "%d\n",
212 !!test_bit(flag, &transparent_hugepage_flags));
71e3aac0 213}
e27e6151 214
b46e756f 215ssize_t single_hugepage_flag_store(struct kobject *kobj,
71e3aac0
AA
216 struct kobj_attribute *attr,
217 const char *buf, size_t count,
218 enum transparent_hugepage_flag flag)
219{
e27e6151
BH
220 unsigned long value;
221 int ret;
222
223 ret = kstrtoul(buf, 10, &value);
224 if (ret < 0)
225 return ret;
226 if (value > 1)
227 return -EINVAL;
228
229 if (value)
71e3aac0 230 set_bit(flag, &transparent_hugepage_flags);
e27e6151 231 else
71e3aac0 232 clear_bit(flag, &transparent_hugepage_flags);
71e3aac0
AA
233
234 return count;
235}
236
71e3aac0
AA
237static ssize_t defrag_show(struct kobject *kobj,
238 struct kobj_attribute *attr, char *buf)
239{
bfb0ffeb
JP
240 const char *output;
241
242 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
243 &transparent_hugepage_flags))
244 output = "[always] defer defer+madvise madvise never";
245 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
246 &transparent_hugepage_flags))
247 output = "always [defer] defer+madvise madvise never";
248 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG,
249 &transparent_hugepage_flags))
250 output = "always defer [defer+madvise] madvise never";
251 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG,
252 &transparent_hugepage_flags))
253 output = "always defer defer+madvise [madvise] never";
254 else
255 output = "always defer defer+madvise madvise [never]";
256
257 return sysfs_emit(buf, "%s\n", output);
71e3aac0 258}
21440d7e 259
71e3aac0
AA
260static ssize_t defrag_store(struct kobject *kobj,
261 struct kobj_attribute *attr,
262 const char *buf, size_t count)
263{
f42f2552 264 if (sysfs_streq(buf, "always")) {
21440d7e
DR
265 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
266 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
267 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
268 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
f42f2552 269 } else if (sysfs_streq(buf, "defer+madvise")) {
21440d7e
DR
270 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
271 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
272 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
273 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
f42f2552 274 } else if (sysfs_streq(buf, "defer")) {
4fad7fb6
DR
275 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
276 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
277 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
278 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
f42f2552 279 } else if (sysfs_streq(buf, "madvise")) {
21440d7e
DR
280 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
281 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
282 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
283 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
f42f2552 284 } else if (sysfs_streq(buf, "never")) {
21440d7e
DR
285 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
286 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
287 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
288 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
289 } else
290 return -EINVAL;
291
292 return count;
71e3aac0
AA
293}
294static struct kobj_attribute defrag_attr =
295 __ATTR(defrag, 0644, defrag_show, defrag_store);
296
79da5407 297static ssize_t use_zero_page_show(struct kobject *kobj,
ae7a927d 298 struct kobj_attribute *attr, char *buf)
79da5407 299{
b46e756f 300 return single_hugepage_flag_show(kobj, attr, buf,
ae7a927d 301 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
79da5407
KS
302}
303static ssize_t use_zero_page_store(struct kobject *kobj,
304 struct kobj_attribute *attr, const char *buf, size_t count)
305{
b46e756f 306 return single_hugepage_flag_store(kobj, attr, buf, count,
79da5407
KS
307 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
308}
309static struct kobj_attribute use_zero_page_attr =
310 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
49920d28
HD
311
312static ssize_t hpage_pmd_size_show(struct kobject *kobj,
ae7a927d 313 struct kobj_attribute *attr, char *buf)
49920d28 314{
ae7a927d 315 return sysfs_emit(buf, "%lu\n", HPAGE_PMD_SIZE);
49920d28
HD
316}
317static struct kobj_attribute hpage_pmd_size_attr =
318 __ATTR_RO(hpage_pmd_size);
319
71e3aac0
AA
320static struct attribute *hugepage_attr[] = {
321 &enabled_attr.attr,
322 &defrag_attr.attr,
79da5407 323 &use_zero_page_attr.attr,
49920d28 324 &hpage_pmd_size_attr.attr,
396bcc52 325#ifdef CONFIG_SHMEM
5a6e75f8 326 &shmem_enabled_attr.attr,
71e3aac0
AA
327#endif
328 NULL,
329};
330
8aa95a21 331static const struct attribute_group hugepage_attr_group = {
71e3aac0 332 .attrs = hugepage_attr,
ba76149f
AA
333};
334
569e5590 335static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
71e3aac0 336{
71e3aac0
AA
337 int err;
338
569e5590
SL
339 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
340 if (unlikely(!*hugepage_kobj)) {
ae3a8c1c 341 pr_err("failed to create transparent hugepage kobject\n");
569e5590 342 return -ENOMEM;
ba76149f
AA
343 }
344
569e5590 345 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
ba76149f 346 if (err) {
ae3a8c1c 347 pr_err("failed to register transparent hugepage group\n");
569e5590 348 goto delete_obj;
ba76149f
AA
349 }
350
569e5590 351 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
ba76149f 352 if (err) {
ae3a8c1c 353 pr_err("failed to register transparent hugepage group\n");
569e5590 354 goto remove_hp_group;
ba76149f 355 }
569e5590
SL
356
357 return 0;
358
359remove_hp_group:
360 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
361delete_obj:
362 kobject_put(*hugepage_kobj);
363 return err;
364}
365
366static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
367{
368 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
369 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
370 kobject_put(hugepage_kobj);
371}
372#else
373static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
374{
375 return 0;
376}
377
378static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
379{
380}
381#endif /* CONFIG_SYSFS */
382
383static int __init hugepage_init(void)
384{
385 int err;
386 struct kobject *hugepage_kobj;
387
388 if (!has_transparent_hugepage()) {
389 transparent_hugepage_flags = 0;
390 return -EINVAL;
391 }
392
ff20c2e0
KS
393 /*
394 * hugepages can't be allocated by the buddy allocator
395 */
396 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
397 /*
398 * we use page->mapping and page->index in second tail page
399 * as list_head: assuming THP order >= 2
400 */
401 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
402
569e5590
SL
403 err = hugepage_init_sysfs(&hugepage_kobj);
404 if (err)
65ebb64f 405 goto err_sysfs;
ba76149f 406
b46e756f 407 err = khugepaged_init();
ba76149f 408 if (err)
65ebb64f 409 goto err_slab;
ba76149f 410
65ebb64f
KS
411 err = register_shrinker(&huge_zero_page_shrinker);
412 if (err)
413 goto err_hzp_shrinker;
9a982250
KS
414 err = register_shrinker(&deferred_split_shrinker);
415 if (err)
416 goto err_split_shrinker;
97ae1749 417
97562cd2
RR
418 /*
419 * By default disable transparent hugepages on smaller systems,
420 * where the extra memory used could hurt more than TLB overhead
421 * is likely to save. The admin can still enable it through /sys.
422 */
ca79b0c2 423 if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
97562cd2 424 transparent_hugepage_flags = 0;
79553da2
KS
425 return 0;
426 }
97562cd2 427
79553da2 428 err = start_stop_khugepaged();
65ebb64f
KS
429 if (err)
430 goto err_khugepaged;
ba76149f 431
569e5590 432 return 0;
65ebb64f 433err_khugepaged:
9a982250
KS
434 unregister_shrinker(&deferred_split_shrinker);
435err_split_shrinker:
65ebb64f
KS
436 unregister_shrinker(&huge_zero_page_shrinker);
437err_hzp_shrinker:
b46e756f 438 khugepaged_destroy();
65ebb64f 439err_slab:
569e5590 440 hugepage_exit_sysfs(hugepage_kobj);
65ebb64f 441err_sysfs:
ba76149f 442 return err;
71e3aac0 443}
a64fb3cd 444subsys_initcall(hugepage_init);
71e3aac0
AA
445
446static int __init setup_transparent_hugepage(char *str)
447{
448 int ret = 0;
449 if (!str)
450 goto out;
451 if (!strcmp(str, "always")) {
452 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
453 &transparent_hugepage_flags);
454 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
455 &transparent_hugepage_flags);
456 ret = 1;
457 } else if (!strcmp(str, "madvise")) {
458 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
459 &transparent_hugepage_flags);
460 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
461 &transparent_hugepage_flags);
462 ret = 1;
463 } else if (!strcmp(str, "never")) {
464 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
465 &transparent_hugepage_flags);
466 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
467 &transparent_hugepage_flags);
468 ret = 1;
469 }
470out:
471 if (!ret)
ae3a8c1c 472 pr_warn("transparent_hugepage= cannot parse, ignored\n");
71e3aac0
AA
473 return ret;
474}
475__setup("transparent_hugepage=", setup_transparent_hugepage);
476
f55e1014 477pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
71e3aac0 478{
f55e1014 479 if (likely(vma->vm_flags & VM_WRITE))
71e3aac0
AA
480 pmd = pmd_mkwrite(pmd);
481 return pmd;
482}
483
87eaceb3
YS
484#ifdef CONFIG_MEMCG
485static inline struct deferred_split *get_deferred_split_queue(struct page *page)
9a982250 486{
87eaceb3
YS
487 struct mem_cgroup *memcg = compound_head(page)->mem_cgroup;
488 struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
489
490 if (memcg)
491 return &memcg->deferred_split_queue;
492 else
493 return &pgdat->deferred_split_queue;
9a982250 494}
87eaceb3
YS
495#else
496static inline struct deferred_split *get_deferred_split_queue(struct page *page)
497{
498 struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
499
500 return &pgdat->deferred_split_queue;
501}
502#endif
9a982250
KS
503
504void prep_transhuge_page(struct page *page)
505{
506 /*
507 * we use page->mapping and page->indexlru in second tail page
508 * as list_head: assuming THP order >= 2
509 */
9a982250
KS
510
511 INIT_LIST_HEAD(page_deferred_list(page));
512 set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
513}
514
005ba37c
SC
515bool is_transparent_hugepage(struct page *page)
516{
517 if (!PageCompound(page))
fa1f68cc 518 return false;
005ba37c
SC
519
520 page = compound_head(page);
521 return is_huge_zero_page(page) ||
522 page[1].compound_dtor == TRANSHUGE_PAGE_DTOR;
523}
524EXPORT_SYMBOL_GPL(is_transparent_hugepage);
525
97d3d0f9
KS
526static unsigned long __thp_get_unmapped_area(struct file *filp,
527 unsigned long addr, unsigned long len,
74d2fad1
TK
528 loff_t off, unsigned long flags, unsigned long size)
529{
74d2fad1
TK
530 loff_t off_end = off + len;
531 loff_t off_align = round_up(off, size);
97d3d0f9 532 unsigned long len_pad, ret;
74d2fad1
TK
533
534 if (off_end <= off_align || (off_end - off_align) < size)
535 return 0;
536
537 len_pad = len + size;
538 if (len_pad < len || (off + len_pad) < off)
539 return 0;
540
97d3d0f9 541 ret = current->mm->get_unmapped_area(filp, addr, len_pad,
74d2fad1 542 off >> PAGE_SHIFT, flags);
97d3d0f9
KS
543
544 /*
545 * The failure might be due to length padding. The caller will retry
546 * without the padding.
547 */
548 if (IS_ERR_VALUE(ret))
74d2fad1
TK
549 return 0;
550
97d3d0f9
KS
551 /*
552 * Do not try to align to THP boundary if allocation at the address
553 * hint succeeds.
554 */
555 if (ret == addr)
556 return addr;
557
558 ret += (off - ret) & (size - 1);
559 return ret;
74d2fad1
TK
560}
561
562unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
563 unsigned long len, unsigned long pgoff, unsigned long flags)
564{
97d3d0f9 565 unsigned long ret;
74d2fad1
TK
566 loff_t off = (loff_t)pgoff << PAGE_SHIFT;
567
74d2fad1
TK
568 if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
569 goto out;
570
97d3d0f9
KS
571 ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE);
572 if (ret)
573 return ret;
574out:
74d2fad1
TK
575 return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
576}
577EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
578
2b740303
SJ
579static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
580 struct page *page, gfp_t gfp)
71e3aac0 581{
82b0f8c3 582 struct vm_area_struct *vma = vmf->vma;
71e3aac0 583 pgtable_t pgtable;
82b0f8c3 584 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
2b740303 585 vm_fault_t ret = 0;
71e3aac0 586
309381fe 587 VM_BUG_ON_PAGE(!PageCompound(page), page);
00501b53 588
d9eb1ea2 589 if (mem_cgroup_charge(page, vma->vm_mm, gfp)) {
6b251fc9
AA
590 put_page(page);
591 count_vm_event(THP_FAULT_FALLBACK);
85b9f46e 592 count_vm_event(THP_FAULT_FALLBACK_CHARGE);
6b251fc9
AA
593 return VM_FAULT_FALLBACK;
594 }
9d82c694 595 cgroup_throttle_swaprate(page, gfp);
00501b53 596
4cf58924 597 pgtable = pte_alloc_one(vma->vm_mm);
00501b53 598 if (unlikely(!pgtable)) {
6b31d595
MH
599 ret = VM_FAULT_OOM;
600 goto release;
00501b53 601 }
71e3aac0 602
c79b57e4 603 clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
52f37629
MK
604 /*
605 * The memory barrier inside __SetPageUptodate makes sure that
606 * clear_huge_page writes become visible before the set_pmd_at()
607 * write.
608 */
71e3aac0
AA
609 __SetPageUptodate(page);
610
82b0f8c3
JK
611 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
612 if (unlikely(!pmd_none(*vmf->pmd))) {
6b31d595 613 goto unlock_release;
71e3aac0
AA
614 } else {
615 pmd_t entry;
6b251fc9 616
6b31d595
MH
617 ret = check_stable_address_space(vma->vm_mm);
618 if (ret)
619 goto unlock_release;
620
6b251fc9
AA
621 /* Deliver the page fault to userland */
622 if (userfaultfd_missing(vma)) {
2b740303 623 vm_fault_t ret2;
6b251fc9 624
82b0f8c3 625 spin_unlock(vmf->ptl);
6b251fc9 626 put_page(page);
bae473a4 627 pte_free(vma->vm_mm, pgtable);
2b740303
SJ
628 ret2 = handle_userfault(vmf, VM_UFFD_MISSING);
629 VM_BUG_ON(ret2 & VM_FAULT_FALLBACK);
630 return ret2;
6b251fc9
AA
631 }
632
3122359a 633 entry = mk_huge_pmd(page, vma->vm_page_prot);
f55e1014 634 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
d281ee61 635 page_add_new_anon_rmap(page, vma, haddr, true);
b518154e 636 lru_cache_add_inactive_or_unevictable(page, vma);
82b0f8c3
JK
637 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
638 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
bae473a4 639 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
c4812909 640 mm_inc_nr_ptes(vma->vm_mm);
82b0f8c3 641 spin_unlock(vmf->ptl);
6b251fc9 642 count_vm_event(THP_FAULT_ALLOC);
9d82c694 643 count_memcg_event_mm(vma->vm_mm, THP_FAULT_ALLOC);
71e3aac0
AA
644 }
645
aa2e878e 646 return 0;
6b31d595
MH
647unlock_release:
648 spin_unlock(vmf->ptl);
649release:
650 if (pgtable)
651 pte_free(vma->vm_mm, pgtable);
6b31d595
MH
652 put_page(page);
653 return ret;
654
71e3aac0
AA
655}
656
444eb2a4 657/*
21440d7e
DR
658 * always: directly stall for all thp allocations
659 * defer: wake kswapd and fail if not immediately available
660 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
661 * fail if not immediately available
662 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
663 * available
664 * never: never stall for any thp allocation
444eb2a4 665 */
19deb769 666static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
444eb2a4 667{
21440d7e 668 const bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
2f0799a0 669
ac79f78d 670 /* Always do synchronous compaction */
a8282608
AA
671 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
672 return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
ac79f78d
DR
673
674 /* Kick kcompactd and fail quickly */
21440d7e 675 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
19deb769 676 return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
ac79f78d
DR
677
678 /* Synchronous compaction if madvised, otherwise kick kcompactd */
21440d7e 679 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
19deb769
DR
680 return GFP_TRANSHUGE_LIGHT |
681 (vma_madvised ? __GFP_DIRECT_RECLAIM :
682 __GFP_KSWAPD_RECLAIM);
ac79f78d
DR
683
684 /* Only do synchronous compaction if madvised */
21440d7e 685 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
19deb769
DR
686 return GFP_TRANSHUGE_LIGHT |
687 (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
ac79f78d 688
19deb769 689 return GFP_TRANSHUGE_LIGHT;
444eb2a4
MG
690}
691
c4088ebd 692/* Caller must hold page table lock. */
d295e341 693static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
97ae1749 694 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
5918d10a 695 struct page *zero_page)
fc9fe822
KS
696{
697 pmd_t entry;
7c414164
AM
698 if (!pmd_none(*pmd))
699 return false;
5918d10a 700 entry = mk_pmd(zero_page, vma->vm_page_prot);
fc9fe822 701 entry = pmd_mkhuge(entry);
12c9d70b
MW
702 if (pgtable)
703 pgtable_trans_huge_deposit(mm, pmd, pgtable);
fc9fe822 704 set_pmd_at(mm, haddr, pmd, entry);
c4812909 705 mm_inc_nr_ptes(mm);
7c414164 706 return true;
fc9fe822
KS
707}
708
2b740303 709vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
71e3aac0 710{
82b0f8c3 711 struct vm_area_struct *vma = vmf->vma;
077fcf11 712 gfp_t gfp;
71e3aac0 713 struct page *page;
82b0f8c3 714 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
71e3aac0 715
43675e6f 716 if (!transhuge_vma_suitable(vma, haddr))
c0292554 717 return VM_FAULT_FALLBACK;
128ec037
KS
718 if (unlikely(anon_vma_prepare(vma)))
719 return VM_FAULT_OOM;
6d50e60c 720 if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
128ec037 721 return VM_FAULT_OOM;
82b0f8c3 722 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
bae473a4 723 !mm_forbids_zeropage(vma->vm_mm) &&
128ec037
KS
724 transparent_hugepage_use_zero_page()) {
725 pgtable_t pgtable;
726 struct page *zero_page;
2b740303 727 vm_fault_t ret;
4cf58924 728 pgtable = pte_alloc_one(vma->vm_mm);
128ec037 729 if (unlikely(!pgtable))
ba76149f 730 return VM_FAULT_OOM;
6fcb52a5 731 zero_page = mm_get_huge_zero_page(vma->vm_mm);
128ec037 732 if (unlikely(!zero_page)) {
bae473a4 733 pte_free(vma->vm_mm, pgtable);
81ab4201 734 count_vm_event(THP_FAULT_FALLBACK);
c0292554 735 return VM_FAULT_FALLBACK;
b9bbfbe3 736 }
82b0f8c3 737 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
6b251fc9 738 ret = 0;
82b0f8c3 739 if (pmd_none(*vmf->pmd)) {
6b31d595
MH
740 ret = check_stable_address_space(vma->vm_mm);
741 if (ret) {
742 spin_unlock(vmf->ptl);
bfe8cc1d 743 pte_free(vma->vm_mm, pgtable);
6b31d595 744 } else if (userfaultfd_missing(vma)) {
82b0f8c3 745 spin_unlock(vmf->ptl);
bfe8cc1d 746 pte_free(vma->vm_mm, pgtable);
82b0f8c3 747 ret = handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9
AA
748 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
749 } else {
bae473a4 750 set_huge_zero_page(pgtable, vma->vm_mm, vma,
82b0f8c3
JK
751 haddr, vmf->pmd, zero_page);
752 spin_unlock(vmf->ptl);
6b251fc9 753 }
bfe8cc1d 754 } else {
82b0f8c3 755 spin_unlock(vmf->ptl);
bae473a4 756 pte_free(vma->vm_mm, pgtable);
bfe8cc1d 757 }
6b251fc9 758 return ret;
71e3aac0 759 }
19deb769
DR
760 gfp = alloc_hugepage_direct_gfpmask(vma);
761 page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
128ec037
KS
762 if (unlikely(!page)) {
763 count_vm_event(THP_FAULT_FALLBACK);
c0292554 764 return VM_FAULT_FALLBACK;
128ec037 765 }
9a982250 766 prep_transhuge_page(page);
82b0f8c3 767 return __do_huge_pmd_anonymous_page(vmf, page, gfp);
71e3aac0
AA
768}
769
ae18d6dc 770static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
3b6521f5
OH
771 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
772 pgtable_t pgtable)
5cad465d
MW
773{
774 struct mm_struct *mm = vma->vm_mm;
775 pmd_t entry;
776 spinlock_t *ptl;
777
778 ptl = pmd_lock(mm, pmd);
c6f3c5ee
AK
779 if (!pmd_none(*pmd)) {
780 if (write) {
781 if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
782 WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
783 goto out_unlock;
784 }
785 entry = pmd_mkyoung(*pmd);
786 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
787 if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
788 update_mmu_cache_pmd(vma, addr, pmd);
789 }
790
791 goto out_unlock;
792 }
793
f25748e3
DW
794 entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
795 if (pfn_t_devmap(pfn))
796 entry = pmd_mkdevmap(entry);
01871e59 797 if (write) {
f55e1014
LT
798 entry = pmd_mkyoung(pmd_mkdirty(entry));
799 entry = maybe_pmd_mkwrite(entry, vma);
5cad465d 800 }
3b6521f5
OH
801
802 if (pgtable) {
803 pgtable_trans_huge_deposit(mm, pmd, pgtable);
c4812909 804 mm_inc_nr_ptes(mm);
c6f3c5ee 805 pgtable = NULL;
3b6521f5
OH
806 }
807
01871e59
RZ
808 set_pmd_at(mm, addr, pmd, entry);
809 update_mmu_cache_pmd(vma, addr, pmd);
c6f3c5ee
AK
810
811out_unlock:
5cad465d 812 spin_unlock(ptl);
c6f3c5ee
AK
813 if (pgtable)
814 pte_free(mm, pgtable);
5cad465d
MW
815}
816
9a9731b1
THV
817/**
818 * vmf_insert_pfn_pmd_prot - insert a pmd size pfn
819 * @vmf: Structure describing the fault
820 * @pfn: pfn to insert
821 * @pgprot: page protection to use
822 * @write: whether it's a write fault
823 *
824 * Insert a pmd size pfn. See vmf_insert_pfn() for additional info and
825 * also consult the vmf_insert_mixed_prot() documentation when
826 * @pgprot != @vmf->vma->vm_page_prot.
827 *
828 * Return: vm_fault_t value.
829 */
830vm_fault_t vmf_insert_pfn_pmd_prot(struct vm_fault *vmf, pfn_t pfn,
831 pgprot_t pgprot, bool write)
5cad465d 832{
fce86ff5
DW
833 unsigned long addr = vmf->address & PMD_MASK;
834 struct vm_area_struct *vma = vmf->vma;
3b6521f5 835 pgtable_t pgtable = NULL;
fce86ff5 836
5cad465d
MW
837 /*
838 * If we had pmd_special, we could avoid all these restrictions,
839 * but we need to be consistent with PTEs and architectures that
840 * can't support a 'special' bit.
841 */
e1fb4a08
DJ
842 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
843 !pfn_t_devmap(pfn));
5cad465d
MW
844 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
845 (VM_PFNMAP|VM_MIXEDMAP));
846 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
5cad465d
MW
847
848 if (addr < vma->vm_start || addr >= vma->vm_end)
849 return VM_FAULT_SIGBUS;
308a047c 850
3b6521f5 851 if (arch_needs_pgtable_deposit()) {
4cf58924 852 pgtable = pte_alloc_one(vma->vm_mm);
3b6521f5
OH
853 if (!pgtable)
854 return VM_FAULT_OOM;
855 }
856
308a047c
BP
857 track_pfn_insert(vma, &pgprot, pfn);
858
fce86ff5 859 insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable);
ae18d6dc 860 return VM_FAULT_NOPAGE;
5cad465d 861}
9a9731b1 862EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd_prot);
5cad465d 863
a00cc7d9 864#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
f55e1014 865static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
a00cc7d9 866{
f55e1014 867 if (likely(vma->vm_flags & VM_WRITE))
a00cc7d9
MW
868 pud = pud_mkwrite(pud);
869 return pud;
870}
871
872static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
873 pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
874{
875 struct mm_struct *mm = vma->vm_mm;
876 pud_t entry;
877 spinlock_t *ptl;
878
879 ptl = pud_lock(mm, pud);
c6f3c5ee
AK
880 if (!pud_none(*pud)) {
881 if (write) {
882 if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) {
883 WARN_ON_ONCE(!is_huge_zero_pud(*pud));
884 goto out_unlock;
885 }
886 entry = pud_mkyoung(*pud);
887 entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
888 if (pudp_set_access_flags(vma, addr, pud, entry, 1))
889 update_mmu_cache_pud(vma, addr, pud);
890 }
891 goto out_unlock;
892 }
893
a00cc7d9
MW
894 entry = pud_mkhuge(pfn_t_pud(pfn, prot));
895 if (pfn_t_devmap(pfn))
896 entry = pud_mkdevmap(entry);
897 if (write) {
f55e1014
LT
898 entry = pud_mkyoung(pud_mkdirty(entry));
899 entry = maybe_pud_mkwrite(entry, vma);
a00cc7d9
MW
900 }
901 set_pud_at(mm, addr, pud, entry);
902 update_mmu_cache_pud(vma, addr, pud);
c6f3c5ee
AK
903
904out_unlock:
a00cc7d9
MW
905 spin_unlock(ptl);
906}
907
9a9731b1
THV
908/**
909 * vmf_insert_pfn_pud_prot - insert a pud size pfn
910 * @vmf: Structure describing the fault
911 * @pfn: pfn to insert
912 * @pgprot: page protection to use
913 * @write: whether it's a write fault
914 *
915 * Insert a pud size pfn. See vmf_insert_pfn() for additional info and
916 * also consult the vmf_insert_mixed_prot() documentation when
917 * @pgprot != @vmf->vma->vm_page_prot.
918 *
919 * Return: vm_fault_t value.
920 */
921vm_fault_t vmf_insert_pfn_pud_prot(struct vm_fault *vmf, pfn_t pfn,
922 pgprot_t pgprot, bool write)
a00cc7d9 923{
fce86ff5
DW
924 unsigned long addr = vmf->address & PUD_MASK;
925 struct vm_area_struct *vma = vmf->vma;
fce86ff5 926
a00cc7d9
MW
927 /*
928 * If we had pud_special, we could avoid all these restrictions,
929 * but we need to be consistent with PTEs and architectures that
930 * can't support a 'special' bit.
931 */
62ec0d8c
DJ
932 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
933 !pfn_t_devmap(pfn));
a00cc7d9
MW
934 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
935 (VM_PFNMAP|VM_MIXEDMAP));
936 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
a00cc7d9
MW
937
938 if (addr < vma->vm_start || addr >= vma->vm_end)
939 return VM_FAULT_SIGBUS;
940
941 track_pfn_insert(vma, &pgprot, pfn);
942
fce86ff5 943 insert_pfn_pud(vma, addr, vmf->pud, pfn, pgprot, write);
a00cc7d9
MW
944 return VM_FAULT_NOPAGE;
945}
9a9731b1 946EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud_prot);
a00cc7d9
MW
947#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
948
3565fce3 949static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
a8f97366 950 pmd_t *pmd, int flags)
3565fce3
DW
951{
952 pmd_t _pmd;
953
a8f97366
KS
954 _pmd = pmd_mkyoung(*pmd);
955 if (flags & FOLL_WRITE)
956 _pmd = pmd_mkdirty(_pmd);
3565fce3 957 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
a8f97366 958 pmd, _pmd, flags & FOLL_WRITE))
3565fce3
DW
959 update_mmu_cache_pmd(vma, addr, pmd);
960}
961
962struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
df06b37f 963 pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
3565fce3
DW
964{
965 unsigned long pfn = pmd_pfn(*pmd);
966 struct mm_struct *mm = vma->vm_mm;
3565fce3
DW
967 struct page *page;
968
969 assert_spin_locked(pmd_lockptr(mm, pmd));
970
8310d48b
KF
971 /*
972 * When we COW a devmap PMD entry, we split it into PTEs, so we should
973 * not be in this function with `flags & FOLL_COW` set.
974 */
975 WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");
976
3faa52c0
JH
977 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
978 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
979 (FOLL_PIN | FOLL_GET)))
980 return NULL;
981
f6f37321 982 if (flags & FOLL_WRITE && !pmd_write(*pmd))
3565fce3
DW
983 return NULL;
984
985 if (pmd_present(*pmd) && pmd_devmap(*pmd))
986 /* pass */;
987 else
988 return NULL;
989
990 if (flags & FOLL_TOUCH)
a8f97366 991 touch_pmd(vma, addr, pmd, flags);
3565fce3
DW
992
993 /*
994 * device mapped pages can only be returned if the
995 * caller will manage the page reference count.
996 */
3faa52c0 997 if (!(flags & (FOLL_GET | FOLL_PIN)))
3565fce3
DW
998 return ERR_PTR(-EEXIST);
999
1000 pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
df06b37f
KB
1001 *pgmap = get_dev_pagemap(pfn, *pgmap);
1002 if (!*pgmap)
3565fce3
DW
1003 return ERR_PTR(-EFAULT);
1004 page = pfn_to_page(pfn);
3faa52c0
JH
1005 if (!try_grab_page(page, flags))
1006 page = ERR_PTR(-ENOMEM);
3565fce3
DW
1007
1008 return page;
1009}
1010
71e3aac0
AA
1011int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1012 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1013 struct vm_area_struct *vma)
1014{
c4088ebd 1015 spinlock_t *dst_ptl, *src_ptl;
71e3aac0
AA
1016 struct page *src_page;
1017 pmd_t pmd;
12c9d70b 1018 pgtable_t pgtable = NULL;
628d47ce 1019 int ret = -ENOMEM;
71e3aac0 1020
628d47ce
KS
1021 /* Skip if can be re-fill on fault */
1022 if (!vma_is_anonymous(vma))
1023 return 0;
1024
4cf58924 1025 pgtable = pte_alloc_one(dst_mm);
628d47ce
KS
1026 if (unlikely(!pgtable))
1027 goto out;
71e3aac0 1028
c4088ebd
KS
1029 dst_ptl = pmd_lock(dst_mm, dst_pmd);
1030 src_ptl = pmd_lockptr(src_mm, src_pmd);
1031 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
71e3aac0
AA
1032
1033 ret = -EAGAIN;
1034 pmd = *src_pmd;
84c3fc4e 1035
b569a176
PX
1036 /*
1037 * Make sure the _PAGE_UFFD_WP bit is cleared if the new VMA
1038 * does not have the VM_UFFD_WP, which means that the uffd
1039 * fork event is not enabled.
1040 */
1041 if (!(vma->vm_flags & VM_UFFD_WP))
1042 pmd = pmd_clear_uffd_wp(pmd);
1043
84c3fc4e
ZY
1044#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1045 if (unlikely(is_swap_pmd(pmd))) {
1046 swp_entry_t entry = pmd_to_swp_entry(pmd);
1047
1048 VM_BUG_ON(!is_pmd_migration_entry(pmd));
1049 if (is_write_migration_entry(entry)) {
1050 make_migration_entry_read(&entry);
1051 pmd = swp_entry_to_pmd(entry);
ab6e3d09
NH
1052 if (pmd_swp_soft_dirty(*src_pmd))
1053 pmd = pmd_swp_mksoft_dirty(pmd);
84c3fc4e
ZY
1054 set_pmd_at(src_mm, addr, src_pmd, pmd);
1055 }
dd8a67f9 1056 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
af5b0f6a 1057 mm_inc_nr_ptes(dst_mm);
dd8a67f9 1058 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
84c3fc4e
ZY
1059 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1060 ret = 0;
1061 goto out_unlock;
1062 }
1063#endif
1064
628d47ce 1065 if (unlikely(!pmd_trans_huge(pmd))) {
71e3aac0
AA
1066 pte_free(dst_mm, pgtable);
1067 goto out_unlock;
1068 }
fc9fe822 1069 /*
c4088ebd 1070 * When page table lock is held, the huge zero pmd should not be
fc9fe822
KS
1071 * under splitting since we don't split the page itself, only pmd to
1072 * a page table.
1073 */
1074 if (is_huge_zero_pmd(pmd)) {
5918d10a 1075 struct page *zero_page;
97ae1749
KS
1076 /*
1077 * get_huge_zero_page() will never allocate a new page here,
1078 * since we already have a zero page to copy. It just takes a
1079 * reference.
1080 */
6fcb52a5 1081 zero_page = mm_get_huge_zero_page(dst_mm);
6b251fc9 1082 set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
5918d10a 1083 zero_page);
fc9fe822
KS
1084 ret = 0;
1085 goto out_unlock;
1086 }
de466bd6 1087
628d47ce
KS
1088 src_page = pmd_page(pmd);
1089 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
d042035e
PX
1090
1091 /*
1092 * If this page is a potentially pinned page, split and retry the fault
1093 * with smaller page size. Normally this should not happen because the
1094 * userspace should use MADV_DONTFORK upon pinned regions. This is a
1095 * best effort that the pinned pages won't be replaced by another
1096 * random page during the coming copy-on-write.
1097 */
1098 if (unlikely(is_cow_mapping(vma->vm_flags) &&
1099 atomic_read(&src_mm->has_pinned) &&
1100 page_maybe_dma_pinned(src_page))) {
1101 pte_free(dst_mm, pgtable);
1102 spin_unlock(src_ptl);
1103 spin_unlock(dst_ptl);
1104 __split_huge_pmd(vma, src_pmd, addr, false, NULL);
1105 return -EAGAIN;
1106 }
1107
628d47ce
KS
1108 get_page(src_page);
1109 page_dup_rmap(src_page, true);
1110 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
c4812909 1111 mm_inc_nr_ptes(dst_mm);
628d47ce 1112 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
71e3aac0
AA
1113
1114 pmdp_set_wrprotect(src_mm, addr, src_pmd);
1115 pmd = pmd_mkold(pmd_wrprotect(pmd));
1116 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
71e3aac0
AA
1117
1118 ret = 0;
1119out_unlock:
c4088ebd
KS
1120 spin_unlock(src_ptl);
1121 spin_unlock(dst_ptl);
71e3aac0
AA
1122out:
1123 return ret;
1124}
1125
a00cc7d9
MW
1126#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1127static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
a8f97366 1128 pud_t *pud, int flags)
a00cc7d9
MW
1129{
1130 pud_t _pud;
1131
a8f97366
KS
1132 _pud = pud_mkyoung(*pud);
1133 if (flags & FOLL_WRITE)
1134 _pud = pud_mkdirty(_pud);
a00cc7d9 1135 if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
a8f97366 1136 pud, _pud, flags & FOLL_WRITE))
a00cc7d9
MW
1137 update_mmu_cache_pud(vma, addr, pud);
1138}
1139
1140struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
df06b37f 1141 pud_t *pud, int flags, struct dev_pagemap **pgmap)
a00cc7d9
MW
1142{
1143 unsigned long pfn = pud_pfn(*pud);
1144 struct mm_struct *mm = vma->vm_mm;
a00cc7d9
MW
1145 struct page *page;
1146
1147 assert_spin_locked(pud_lockptr(mm, pud));
1148
f6f37321 1149 if (flags & FOLL_WRITE && !pud_write(*pud))
a00cc7d9
MW
1150 return NULL;
1151
3faa52c0
JH
1152 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
1153 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
1154 (FOLL_PIN | FOLL_GET)))
1155 return NULL;
1156
a00cc7d9
MW
1157 if (pud_present(*pud) && pud_devmap(*pud))
1158 /* pass */;
1159 else
1160 return NULL;
1161
1162 if (flags & FOLL_TOUCH)
a8f97366 1163 touch_pud(vma, addr, pud, flags);
a00cc7d9
MW
1164
1165 /*
1166 * device mapped pages can only be returned if the
1167 * caller will manage the page reference count.
3faa52c0
JH
1168 *
1169 * At least one of FOLL_GET | FOLL_PIN must be set, so assert that here:
a00cc7d9 1170 */
3faa52c0 1171 if (!(flags & (FOLL_GET | FOLL_PIN)))
a00cc7d9
MW
1172 return ERR_PTR(-EEXIST);
1173
1174 pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
df06b37f
KB
1175 *pgmap = get_dev_pagemap(pfn, *pgmap);
1176 if (!*pgmap)
a00cc7d9
MW
1177 return ERR_PTR(-EFAULT);
1178 page = pfn_to_page(pfn);
3faa52c0
JH
1179 if (!try_grab_page(page, flags))
1180 page = ERR_PTR(-ENOMEM);
a00cc7d9
MW
1181
1182 return page;
1183}
1184
1185int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1186 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1187 struct vm_area_struct *vma)
1188{
1189 spinlock_t *dst_ptl, *src_ptl;
1190 pud_t pud;
1191 int ret;
1192
1193 dst_ptl = pud_lock(dst_mm, dst_pud);
1194 src_ptl = pud_lockptr(src_mm, src_pud);
1195 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1196
1197 ret = -EAGAIN;
1198 pud = *src_pud;
1199 if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1200 goto out_unlock;
1201
1202 /*
1203 * When page table lock is held, the huge zero pud should not be
1204 * under splitting since we don't split the page itself, only pud to
1205 * a page table.
1206 */
1207 if (is_huge_zero_pud(pud)) {
1208 /* No huge zero pud yet */
1209 }
1210
d042035e
PX
1211 /* Please refer to comments in copy_huge_pmd() */
1212 if (unlikely(is_cow_mapping(vma->vm_flags) &&
1213 atomic_read(&src_mm->has_pinned) &&
1214 page_maybe_dma_pinned(pud_page(pud)))) {
1215 spin_unlock(src_ptl);
1216 spin_unlock(dst_ptl);
1217 __split_huge_pud(vma, src_pud, addr);
1218 return -EAGAIN;
1219 }
1220
a00cc7d9
MW
1221 pudp_set_wrprotect(src_mm, addr, src_pud);
1222 pud = pud_mkold(pud_wrprotect(pud));
1223 set_pud_at(dst_mm, addr, dst_pud, pud);
1224
1225 ret = 0;
1226out_unlock:
1227 spin_unlock(src_ptl);
1228 spin_unlock(dst_ptl);
1229 return ret;
1230}
1231
1232void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1233{
1234 pud_t entry;
1235 unsigned long haddr;
1236 bool write = vmf->flags & FAULT_FLAG_WRITE;
1237
1238 vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1239 if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1240 goto unlock;
1241
1242 entry = pud_mkyoung(orig_pud);
1243 if (write)
1244 entry = pud_mkdirty(entry);
1245 haddr = vmf->address & HPAGE_PUD_MASK;
1246 if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
1247 update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);
1248
1249unlock:
1250 spin_unlock(vmf->ptl);
1251}
1252#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1253
82b0f8c3 1254void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
a1dd450b
WD
1255{
1256 pmd_t entry;
1257 unsigned long haddr;
20f664aa 1258 bool write = vmf->flags & FAULT_FLAG_WRITE;
a1dd450b 1259
82b0f8c3
JK
1260 vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1261 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
a1dd450b
WD
1262 goto unlock;
1263
1264 entry = pmd_mkyoung(orig_pmd);
20f664aa
MK
1265 if (write)
1266 entry = pmd_mkdirty(entry);
82b0f8c3 1267 haddr = vmf->address & HPAGE_PMD_MASK;
20f664aa 1268 if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
82b0f8c3 1269 update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
a1dd450b
WD
1270
1271unlock:
82b0f8c3 1272 spin_unlock(vmf->ptl);
a1dd450b
WD
1273}
1274
2b740303 1275vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
71e3aac0 1276{
82b0f8c3 1277 struct vm_area_struct *vma = vmf->vma;
3917c802 1278 struct page *page;
82b0f8c3 1279 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
71e3aac0 1280
82b0f8c3 1281 vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
81d1b09c 1282 VM_BUG_ON_VMA(!vma->anon_vma, vma);
3917c802 1283
93b4796d 1284 if (is_huge_zero_pmd(orig_pmd))
3917c802
KS
1285 goto fallback;
1286
82b0f8c3 1287 spin_lock(vmf->ptl);
3917c802
KS
1288
1289 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1290 spin_unlock(vmf->ptl);
1291 return 0;
1292 }
71e3aac0
AA
1293
1294 page = pmd_page(orig_pmd);
309381fe 1295 VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
3917c802
KS
1296
1297 /* Lock page for reuse_swap_page() */
ba3c4ce6
HY
1298 if (!trylock_page(page)) {
1299 get_page(page);
1300 spin_unlock(vmf->ptl);
1301 lock_page(page);
1302 spin_lock(vmf->ptl);
1303 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
3917c802 1304 spin_unlock(vmf->ptl);
ba3c4ce6
HY
1305 unlock_page(page);
1306 put_page(page);
3917c802 1307 return 0;
ba3c4ce6
HY
1308 }
1309 put_page(page);
1310 }
3917c802
KS
1311
1312 /*
1313 * We can only reuse the page if nobody else maps the huge page or it's
1314 * part.
1315 */
ba3c4ce6 1316 if (reuse_swap_page(page, NULL)) {
71e3aac0
AA
1317 pmd_t entry;
1318 entry = pmd_mkyoung(orig_pmd);
f55e1014 1319 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3917c802 1320 if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
82b0f8c3 1321 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
ba3c4ce6 1322 unlock_page(page);
82b0f8c3 1323 spin_unlock(vmf->ptl);
3917c802 1324 return VM_FAULT_WRITE;
71e3aac0 1325 }
3917c802
KS
1326
1327 unlock_page(page);
82b0f8c3 1328 spin_unlock(vmf->ptl);
3917c802
KS
1329fallback:
1330 __split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
1331 return VM_FAULT_FALLBACK;
71e3aac0
AA
1332}
1333
8310d48b 1334/*
a308c71b
PX
1335 * FOLL_FORCE can write to even unwritable pmd's, but only
1336 * after we've gone through a COW cycle and they are dirty.
8310d48b
KF
1337 */
1338static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
1339{
a308c71b
PX
1340 return pmd_write(pmd) ||
1341 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
8310d48b
KF
1342}
1343
b676b293 1344struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
71e3aac0
AA
1345 unsigned long addr,
1346 pmd_t *pmd,
1347 unsigned int flags)
1348{
b676b293 1349 struct mm_struct *mm = vma->vm_mm;
71e3aac0
AA
1350 struct page *page = NULL;
1351
c4088ebd 1352 assert_spin_locked(pmd_lockptr(mm, pmd));
71e3aac0 1353
8310d48b 1354 if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
71e3aac0
AA
1355 goto out;
1356
85facf25
KS
1357 /* Avoid dumping huge zero page */
1358 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1359 return ERR_PTR(-EFAULT);
1360
2b4847e7 1361 /* Full NUMA hinting faults to serialise migration in fault paths */
8a0516ed 1362 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
2b4847e7
MG
1363 goto out;
1364
71e3aac0 1365 page = pmd_page(*pmd);
ca120cf6 1366 VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
3faa52c0
JH
1367
1368 if (!try_grab_page(page, flags))
1369 return ERR_PTR(-ENOMEM);
1370
3565fce3 1371 if (flags & FOLL_TOUCH)
a8f97366 1372 touch_pmd(vma, addr, pmd, flags);
3faa52c0 1373
de60f5f1 1374 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
e90309c9
KS
1375 /*
1376 * We don't mlock() pte-mapped THPs. This way we can avoid
1377 * leaking mlocked pages into non-VM_LOCKED VMAs.
1378 *
9a73f61b
KS
1379 * For anon THP:
1380 *
e90309c9
KS
1381 * In most cases the pmd is the only mapping of the page as we
1382 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1383 * writable private mappings in populate_vma_page_range().
1384 *
1385 * The only scenario when we have the page shared here is if we
1386 * mlocking read-only mapping shared over fork(). We skip
1387 * mlocking such pages.
9a73f61b
KS
1388 *
1389 * For file THP:
1390 *
1391 * We can expect PageDoubleMap() to be stable under page lock:
1392 * for file pages we set it in page_add_file_rmap(), which
1393 * requires page to be locked.
e90309c9 1394 */
9a73f61b
KS
1395
1396 if (PageAnon(page) && compound_mapcount(page) != 1)
1397 goto skip_mlock;
1398 if (PageDoubleMap(page) || !page->mapping)
1399 goto skip_mlock;
1400 if (!trylock_page(page))
1401 goto skip_mlock;
9a73f61b
KS
1402 if (page->mapping && !PageDoubleMap(page))
1403 mlock_vma_page(page);
1404 unlock_page(page);
b676b293 1405 }
9a73f61b 1406skip_mlock:
71e3aac0 1407 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
ca120cf6 1408 VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
71e3aac0
AA
1409
1410out:
1411 return page;
1412}
1413
d10e63f2 1414/* NUMA hinting page fault entry point for trans huge pmds */
2b740303 1415vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
d10e63f2 1416{
82b0f8c3 1417 struct vm_area_struct *vma = vmf->vma;
b8916634 1418 struct anon_vma *anon_vma = NULL;
b32967ff 1419 struct page *page;
82b0f8c3 1420 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
98fa15f3 1421 int page_nid = NUMA_NO_NODE, this_nid = numa_node_id();
90572890 1422 int target_nid, last_cpupid = -1;
8191acbd
MG
1423 bool page_locked;
1424 bool migrated = false;
b191f9b1 1425 bool was_writable;
6688cc05 1426 int flags = 0;
d10e63f2 1427
82b0f8c3
JK
1428 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1429 if (unlikely(!pmd_same(pmd, *vmf->pmd)))
d10e63f2
MG
1430 goto out_unlock;
1431
de466bd6
MG
1432 /*
1433 * If there are potential migrations, wait for completion and retry
1434 * without disrupting NUMA hinting information. Do not relock and
1435 * check_same as the page may no longer be mapped.
1436 */
82b0f8c3
JK
1437 if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
1438 page = pmd_page(*vmf->pmd);
3c226c63
MR
1439 if (!get_page_unless_zero(page))
1440 goto out_unlock;
82b0f8c3 1441 spin_unlock(vmf->ptl);
9a1ea439 1442 put_and_wait_on_page_locked(page);
de466bd6
MG
1443 goto out;
1444 }
1445
d10e63f2 1446 page = pmd_page(pmd);
a1a46184 1447 BUG_ON(is_huge_zero_page(page));
8191acbd 1448 page_nid = page_to_nid(page);
90572890 1449 last_cpupid = page_cpupid_last(page);
03c5a6e1 1450 count_vm_numa_event(NUMA_HINT_FAULTS);
04bb2f94 1451 if (page_nid == this_nid) {
03c5a6e1 1452 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
04bb2f94
RR
1453 flags |= TNF_FAULT_LOCAL;
1454 }
4daae3b4 1455
bea66fbd 1456 /* See similar comment in do_numa_page for explanation */
288bc549 1457 if (!pmd_savedwrite(pmd))
6688cc05
PZ
1458 flags |= TNF_NO_GROUP;
1459
ff9042b1
MG
1460 /*
1461 * Acquire the page lock to serialise THP migrations but avoid dropping
1462 * page_table_lock if at all possible
1463 */
b8916634
MG
1464 page_locked = trylock_page(page);
1465 target_nid = mpol_misplaced(page, vma, haddr);
98fa15f3 1466 if (target_nid == NUMA_NO_NODE) {
b8916634 1467 /* If the page was locked, there are no parallel migrations */
a54a407f 1468 if (page_locked)
b8916634 1469 goto clear_pmdnuma;
2b4847e7 1470 }
4daae3b4 1471
de466bd6 1472 /* Migration could have started since the pmd_trans_migrating check */
2b4847e7 1473 if (!page_locked) {
98fa15f3 1474 page_nid = NUMA_NO_NODE;
3c226c63
MR
1475 if (!get_page_unless_zero(page))
1476 goto out_unlock;
82b0f8c3 1477 spin_unlock(vmf->ptl);
9a1ea439 1478 put_and_wait_on_page_locked(page);
b8916634
MG
1479 goto out;
1480 }
1481
2b4847e7
MG
1482 /*
1483 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1484 * to serialises splits
1485 */
b8916634 1486 get_page(page);
82b0f8c3 1487 spin_unlock(vmf->ptl);
b8916634 1488 anon_vma = page_lock_anon_vma_read(page);
4daae3b4 1489
c69307d5 1490 /* Confirm the PMD did not change while page_table_lock was released */
82b0f8c3
JK
1491 spin_lock(vmf->ptl);
1492 if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
b32967ff
MG
1493 unlock_page(page);
1494 put_page(page);
98fa15f3 1495 page_nid = NUMA_NO_NODE;
4daae3b4 1496 goto out_unlock;
b32967ff 1497 }
ff9042b1 1498
c3a489ca
MG
1499 /* Bail if we fail to protect against THP splits for any reason */
1500 if (unlikely(!anon_vma)) {
1501 put_page(page);
98fa15f3 1502 page_nid = NUMA_NO_NODE;
c3a489ca
MG
1503 goto clear_pmdnuma;
1504 }
1505
8b1b436d
PZ
1506 /*
1507 * Since we took the NUMA fault, we must have observed the !accessible
1508 * bit. Make sure all other CPUs agree with that, to avoid them
1509 * modifying the page we're about to migrate.
1510 *
1511 * Must be done under PTL such that we'll observe the relevant
ccde85ba
PZ
1512 * inc_tlb_flush_pending().
1513 *
1514 * We are not sure a pending tlb flush here is for a huge page
1515 * mapping or not. Hence use the tlb range variant
8b1b436d 1516 */
7066f0f9 1517 if (mm_tlb_flush_pending(vma->vm_mm)) {
ccde85ba 1518 flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE);
7066f0f9
AA
1519 /*
1520 * change_huge_pmd() released the pmd lock before
1521 * invalidating the secondary MMUs sharing the primary
1522 * MMU pagetables (with ->invalidate_range()). The
1523 * mmu_notifier_invalidate_range_end() (which
1524 * internally calls ->invalidate_range()) in
1525 * change_pmd_range() will run after us, so we can't
1526 * rely on it here and we need an explicit invalidate.
1527 */
1528 mmu_notifier_invalidate_range(vma->vm_mm, haddr,
1529 haddr + HPAGE_PMD_SIZE);
1530 }
8b1b436d 1531
a54a407f
MG
1532 /*
1533 * Migrate the THP to the requested node, returns with page unlocked
8a0516ed 1534 * and access rights restored.
a54a407f 1535 */
82b0f8c3 1536 spin_unlock(vmf->ptl);
8b1b436d 1537
bae473a4 1538 migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
82b0f8c3 1539 vmf->pmd, pmd, vmf->address, page, target_nid);
6688cc05
PZ
1540 if (migrated) {
1541 flags |= TNF_MIGRATED;
8191acbd 1542 page_nid = target_nid;
074c2381
MG
1543 } else
1544 flags |= TNF_MIGRATE_FAIL;
b32967ff 1545
8191acbd 1546 goto out;
b32967ff 1547clear_pmdnuma:
a54a407f 1548 BUG_ON(!PageLocked(page));
288bc549 1549 was_writable = pmd_savedwrite(pmd);
4d942466 1550 pmd = pmd_modify(pmd, vma->vm_page_prot);
b7b04004 1551 pmd = pmd_mkyoung(pmd);
b191f9b1
MG
1552 if (was_writable)
1553 pmd = pmd_mkwrite(pmd);
82b0f8c3
JK
1554 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1555 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
a54a407f 1556 unlock_page(page);
d10e63f2 1557out_unlock:
82b0f8c3 1558 spin_unlock(vmf->ptl);
b8916634
MG
1559
1560out:
1561 if (anon_vma)
1562 page_unlock_anon_vma_read(anon_vma);
1563
98fa15f3 1564 if (page_nid != NUMA_NO_NODE)
82b0f8c3 1565 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
9a8b300f 1566 flags);
8191acbd 1567
d10e63f2
MG
1568 return 0;
1569}
1570
319904ad
HY
1571/*
1572 * Return true if we do MADV_FREE successfully on entire pmd page.
1573 * Otherwise, return false.
1574 */
1575bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
b8d3c4c3 1576 pmd_t *pmd, unsigned long addr, unsigned long next)
b8d3c4c3
MK
1577{
1578 spinlock_t *ptl;
1579 pmd_t orig_pmd;
1580 struct page *page;
1581 struct mm_struct *mm = tlb->mm;
319904ad 1582 bool ret = false;
b8d3c4c3 1583
ed6a7935 1584 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
07e32661 1585
b6ec57f4
KS
1586 ptl = pmd_trans_huge_lock(pmd, vma);
1587 if (!ptl)
25eedabe 1588 goto out_unlocked;
b8d3c4c3
MK
1589
1590 orig_pmd = *pmd;
319904ad 1591 if (is_huge_zero_pmd(orig_pmd))
b8d3c4c3 1592 goto out;
b8d3c4c3 1593
84c3fc4e
ZY
1594 if (unlikely(!pmd_present(orig_pmd))) {
1595 VM_BUG_ON(thp_migration_supported() &&
1596 !is_pmd_migration_entry(orig_pmd));
1597 goto out;
1598 }
1599
b8d3c4c3
MK
1600 page = pmd_page(orig_pmd);
1601 /*
1602 * If other processes are mapping this page, we couldn't discard
1603 * the page unless they all do MADV_FREE so let's skip the page.
1604 */
1605 if (page_mapcount(page) != 1)
1606 goto out;
1607
1608 if (!trylock_page(page))
1609 goto out;
1610
1611 /*
1612 * If user want to discard part-pages of THP, split it so MADV_FREE
1613 * will deactivate only them.
1614 */
1615 if (next - addr != HPAGE_PMD_SIZE) {
1616 get_page(page);
1617 spin_unlock(ptl);
9818b8cd 1618 split_huge_page(page);
b8d3c4c3 1619 unlock_page(page);
bbf29ffc 1620 put_page(page);
b8d3c4c3
MK
1621 goto out_unlocked;
1622 }
1623
1624 if (PageDirty(page))
1625 ClearPageDirty(page);
1626 unlock_page(page);
1627
b8d3c4c3 1628 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
58ceeb6b 1629 pmdp_invalidate(vma, addr, pmd);
b8d3c4c3
MK
1630 orig_pmd = pmd_mkold(orig_pmd);
1631 orig_pmd = pmd_mkclean(orig_pmd);
1632
1633 set_pmd_at(mm, addr, pmd, orig_pmd);
1634 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1635 }
802a3a92
SL
1636
1637 mark_page_lazyfree(page);
319904ad 1638 ret = true;
b8d3c4c3
MK
1639out:
1640 spin_unlock(ptl);
1641out_unlocked:
1642 return ret;
1643}
1644
953c66c2
AK
1645static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1646{
1647 pgtable_t pgtable;
1648
1649 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1650 pte_free(mm, pgtable);
c4812909 1651 mm_dec_nr_ptes(mm);
953c66c2
AK
1652}
1653
71e3aac0 1654int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
f21760b1 1655 pmd_t *pmd, unsigned long addr)
71e3aac0 1656{
da146769 1657 pmd_t orig_pmd;
bf929152 1658 spinlock_t *ptl;
71e3aac0 1659
ed6a7935 1660 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
07e32661 1661
b6ec57f4
KS
1662 ptl = __pmd_trans_huge_lock(pmd, vma);
1663 if (!ptl)
da146769
KS
1664 return 0;
1665 /*
1666 * For architectures like ppc64 we look at deposited pgtable
1667 * when calling pmdp_huge_get_and_clear. So do the
1668 * pgtable_trans_huge_withdraw after finishing pmdp related
1669 * operations.
1670 */
93a98695
AK
1671 orig_pmd = pmdp_huge_get_and_clear_full(vma, addr, pmd,
1672 tlb->fullmm);
da146769 1673 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
2484ca9b 1674 if (vma_is_special_huge(vma)) {
3b6521f5
OH
1675 if (arch_needs_pgtable_deposit())
1676 zap_deposited_table(tlb->mm, pmd);
da146769
KS
1677 spin_unlock(ptl);
1678 if (is_huge_zero_pmd(orig_pmd))
c0f2e176 1679 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
da146769 1680 } else if (is_huge_zero_pmd(orig_pmd)) {
c14a6eb4 1681 zap_deposited_table(tlb->mm, pmd);
da146769 1682 spin_unlock(ptl);
c0f2e176 1683 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
da146769 1684 } else {
616b8371
ZY
1685 struct page *page = NULL;
1686 int flush_needed = 1;
1687
1688 if (pmd_present(orig_pmd)) {
1689 page = pmd_page(orig_pmd);
1690 page_remove_rmap(page, true);
1691 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1692 VM_BUG_ON_PAGE(!PageHead(page), page);
1693 } else if (thp_migration_supported()) {
1694 swp_entry_t entry;
1695
1696 VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1697 entry = pmd_to_swp_entry(orig_pmd);
1698 page = pfn_to_page(swp_offset(entry));
1699 flush_needed = 0;
1700 } else
1701 WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1702
b5072380 1703 if (PageAnon(page)) {
c14a6eb4 1704 zap_deposited_table(tlb->mm, pmd);
b5072380
KS
1705 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1706 } else {
953c66c2
AK
1707 if (arch_needs_pgtable_deposit())
1708 zap_deposited_table(tlb->mm, pmd);
fadae295 1709 add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
b5072380 1710 }
616b8371 1711
da146769 1712 spin_unlock(ptl);
616b8371
ZY
1713 if (flush_needed)
1714 tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
025c5b24 1715 }
da146769 1716 return 1;
71e3aac0
AA
1717}
1718
1dd38b6c
AK
1719#ifndef pmd_move_must_withdraw
1720static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1721 spinlock_t *old_pmd_ptl,
1722 struct vm_area_struct *vma)
1723{
1724 /*
1725 * With split pmd lock we also need to move preallocated
1726 * PTE page table if new_pmd is on different PMD page table.
1727 *
1728 * We also don't deposit and withdraw tables for file pages.
1729 */
1730 return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1731}
1732#endif
1733
ab6e3d09
NH
1734static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1735{
1736#ifdef CONFIG_MEM_SOFT_DIRTY
1737 if (unlikely(is_pmd_migration_entry(pmd)))
1738 pmd = pmd_swp_mksoft_dirty(pmd);
1739 else if (pmd_present(pmd))
1740 pmd = pmd_mksoft_dirty(pmd);
1741#endif
1742 return pmd;
1743}
1744
bf8616d5 1745bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
b8aa9d9d 1746 unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd)
37a1c49a 1747{
bf929152 1748 spinlock_t *old_ptl, *new_ptl;
37a1c49a 1749 pmd_t pmd;
37a1c49a 1750 struct mm_struct *mm = vma->vm_mm;
5d190420 1751 bool force_flush = false;
37a1c49a 1752
37a1c49a
AA
1753 /*
1754 * The destination pmd shouldn't be established, free_pgtables()
1755 * should have release it.
1756 */
1757 if (WARN_ON(!pmd_none(*new_pmd))) {
1758 VM_BUG_ON(pmd_trans_huge(*new_pmd));
4b471e88 1759 return false;
37a1c49a
AA
1760 }
1761
bf929152
KS
1762 /*
1763 * We don't have to worry about the ordering of src and dst
c1e8d7c6 1764 * ptlocks because exclusive mmap_lock prevents deadlock.
bf929152 1765 */
b6ec57f4
KS
1766 old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1767 if (old_ptl) {
bf929152
KS
1768 new_ptl = pmd_lockptr(mm, new_pmd);
1769 if (new_ptl != old_ptl)
1770 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
8809aa2d 1771 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
eb66ae03 1772 if (pmd_present(pmd))
a2ce2666 1773 force_flush = true;
025c5b24 1774 VM_BUG_ON(!pmd_none(*new_pmd));
3592806c 1775
1dd38b6c 1776 if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
b3084f4d 1777 pgtable_t pgtable;
3592806c
KS
1778 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1779 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
3592806c 1780 }
ab6e3d09
NH
1781 pmd = move_soft_dirty_pmd(pmd);
1782 set_pmd_at(mm, new_addr, new_pmd, pmd);
5d190420
AL
1783 if (force_flush)
1784 flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
eb66ae03
LT
1785 if (new_ptl != old_ptl)
1786 spin_unlock(new_ptl);
bf929152 1787 spin_unlock(old_ptl);
4b471e88 1788 return true;
37a1c49a 1789 }
4b471e88 1790 return false;
37a1c49a
AA
1791}
1792
f123d74a
MG
1793/*
1794 * Returns
1795 * - 0 if PMD could not be locked
1796 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1797 * - HPAGE_PMD_NR is protections changed and TLB flush necessary
1798 */
cd7548ab 1799int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
58705444 1800 unsigned long addr, pgprot_t newprot, unsigned long cp_flags)
cd7548ab
JW
1801{
1802 struct mm_struct *mm = vma->vm_mm;
bf929152 1803 spinlock_t *ptl;
0a85e51d
KS
1804 pmd_t entry;
1805 bool preserve_write;
1806 int ret;
58705444 1807 bool prot_numa = cp_flags & MM_CP_PROT_NUMA;
292924b2
PX
1808 bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
1809 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
cd7548ab 1810
b6ec57f4 1811 ptl = __pmd_trans_huge_lock(pmd, vma);
0a85e51d
KS
1812 if (!ptl)
1813 return 0;
e944fd67 1814
0a85e51d
KS
1815 preserve_write = prot_numa && pmd_write(*pmd);
1816 ret = 1;
e944fd67 1817
84c3fc4e
ZY
1818#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1819 if (is_swap_pmd(*pmd)) {
1820 swp_entry_t entry = pmd_to_swp_entry(*pmd);
1821
1822 VM_BUG_ON(!is_pmd_migration_entry(*pmd));
1823 if (is_write_migration_entry(entry)) {
1824 pmd_t newpmd;
1825 /*
1826 * A protection check is difficult so
1827 * just be safe and disable write
1828 */
1829 make_migration_entry_read(&entry);
1830 newpmd = swp_entry_to_pmd(entry);
ab6e3d09
NH
1831 if (pmd_swp_soft_dirty(*pmd))
1832 newpmd = pmd_swp_mksoft_dirty(newpmd);
84c3fc4e
ZY
1833 set_pmd_at(mm, addr, pmd, newpmd);
1834 }
1835 goto unlock;
1836 }
1837#endif
1838
0a85e51d
KS
1839 /*
1840 * Avoid trapping faults against the zero page. The read-only
1841 * data is likely to be read-cached on the local CPU and
1842 * local/remote hits to the zero page are not interesting.
1843 */
1844 if (prot_numa && is_huge_zero_pmd(*pmd))
1845 goto unlock;
025c5b24 1846
0a85e51d
KS
1847 if (prot_numa && pmd_protnone(*pmd))
1848 goto unlock;
1849
ced10803 1850 /*
3e4e28c5 1851 * In case prot_numa, we are under mmap_read_lock(mm). It's critical
ced10803 1852 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
3e4e28c5 1853 * which is also under mmap_read_lock(mm):
ced10803
KS
1854 *
1855 * CPU0: CPU1:
1856 * change_huge_pmd(prot_numa=1)
1857 * pmdp_huge_get_and_clear_notify()
1858 * madvise_dontneed()
1859 * zap_pmd_range()
1860 * pmd_trans_huge(*pmd) == 0 (without ptl)
1861 * // skip the pmd
1862 * set_pmd_at();
1863 * // pmd is re-established
1864 *
1865 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1866 * which may break userspace.
1867 *
1868 * pmdp_invalidate() is required to make sure we don't miss
1869 * dirty/young flags set by hardware.
1870 */
a3cf988f 1871 entry = pmdp_invalidate(vma, addr, pmd);
ced10803 1872
0a85e51d
KS
1873 entry = pmd_modify(entry, newprot);
1874 if (preserve_write)
1875 entry = pmd_mk_savedwrite(entry);
292924b2
PX
1876 if (uffd_wp) {
1877 entry = pmd_wrprotect(entry);
1878 entry = pmd_mkuffd_wp(entry);
1879 } else if (uffd_wp_resolve) {
1880 /*
1881 * Leave the write bit to be handled by PF interrupt
1882 * handler, then things like COW could be properly
1883 * handled.
1884 */
1885 entry = pmd_clear_uffd_wp(entry);
1886 }
0a85e51d
KS
1887 ret = HPAGE_PMD_NR;
1888 set_pmd_at(mm, addr, pmd, entry);
1889 BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
1890unlock:
1891 spin_unlock(ptl);
025c5b24
NH
1892 return ret;
1893}
1894
1895/*
8f19b0c0 1896 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
025c5b24 1897 *
8f19b0c0
HY
1898 * Note that if it returns page table lock pointer, this routine returns without
1899 * unlocking page table lock. So callers must unlock it.
025c5b24 1900 */
b6ec57f4 1901spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
025c5b24 1902{
b6ec57f4
KS
1903 spinlock_t *ptl;
1904 ptl = pmd_lock(vma->vm_mm, pmd);
84c3fc4e
ZY
1905 if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
1906 pmd_devmap(*pmd)))
b6ec57f4
KS
1907 return ptl;
1908 spin_unlock(ptl);
1909 return NULL;
cd7548ab
JW
1910}
1911
a00cc7d9
MW
1912/*
1913 * Returns true if a given pud maps a thp, false otherwise.
1914 *
1915 * Note that if it returns true, this routine returns without unlocking page
1916 * table lock. So callers must unlock it.
1917 */
1918spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
1919{
1920 spinlock_t *ptl;
1921
1922 ptl = pud_lock(vma->vm_mm, pud);
1923 if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
1924 return ptl;
1925 spin_unlock(ptl);
1926 return NULL;
1927}
1928
1929#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1930int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
1931 pud_t *pud, unsigned long addr)
1932{
a00cc7d9
MW
1933 spinlock_t *ptl;
1934
1935 ptl = __pud_trans_huge_lock(pud, vma);
1936 if (!ptl)
1937 return 0;
1938 /*
1939 * For architectures like ppc64 we look at deposited pgtable
1940 * when calling pudp_huge_get_and_clear. So do the
1941 * pgtable_trans_huge_withdraw after finishing pudp related
1942 * operations.
1943 */
70516b93 1944 pudp_huge_get_and_clear_full(tlb->mm, addr, pud, tlb->fullmm);
a00cc7d9 1945 tlb_remove_pud_tlb_entry(tlb, pud, addr);
2484ca9b 1946 if (vma_is_special_huge(vma)) {
a00cc7d9
MW
1947 spin_unlock(ptl);
1948 /* No zero page support yet */
1949 } else {
1950 /* No support for anonymous PUD pages yet */
1951 BUG();
1952 }
1953 return 1;
1954}
1955
1956static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
1957 unsigned long haddr)
1958{
1959 VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
1960 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
1961 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
1962 VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
1963
ce9311cf 1964 count_vm_event(THP_SPLIT_PUD);
a00cc7d9
MW
1965
1966 pudp_huge_clear_flush_notify(vma, haddr, pud);
1967}
1968
1969void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
1970 unsigned long address)
1971{
1972 spinlock_t *ptl;
ac46d4f3 1973 struct mmu_notifier_range range;
a00cc7d9 1974
7269f999 1975 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
6f4f13e8 1976 address & HPAGE_PUD_MASK,
ac46d4f3
JG
1977 (address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
1978 mmu_notifier_invalidate_range_start(&range);
1979 ptl = pud_lock(vma->vm_mm, pud);
a00cc7d9
MW
1980 if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
1981 goto out;
ac46d4f3 1982 __split_huge_pud_locked(vma, pud, range.start);
a00cc7d9
MW
1983
1984out:
1985 spin_unlock(ptl);
4645b9fe
JG
1986 /*
1987 * No need to double call mmu_notifier->invalidate_range() callback as
1988 * the above pudp_huge_clear_flush_notify() did already call it.
1989 */
ac46d4f3 1990 mmu_notifier_invalidate_range_only_end(&range);
a00cc7d9
MW
1991}
1992#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1993
eef1b3ba
KS
1994static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
1995 unsigned long haddr, pmd_t *pmd)
1996{
1997 struct mm_struct *mm = vma->vm_mm;
1998 pgtable_t pgtable;
1999 pmd_t _pmd;
2000 int i;
2001
0f10851e
JG
2002 /*
2003 * Leave pmd empty until pte is filled note that it is fine to delay
2004 * notification until mmu_notifier_invalidate_range_end() as we are
2005 * replacing a zero pmd write protected page with a zero pte write
2006 * protected page.
2007 *
ad56b738 2008 * See Documentation/vm/mmu_notifier.rst
0f10851e
JG
2009 */
2010 pmdp_huge_clear_flush(vma, haddr, pmd);
eef1b3ba
KS
2011
2012 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2013 pmd_populate(mm, &_pmd, pgtable);
2014
2015 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2016 pte_t *pte, entry;
2017 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2018 entry = pte_mkspecial(entry);
2019 pte = pte_offset_map(&_pmd, haddr);
2020 VM_BUG_ON(!pte_none(*pte));
2021 set_pte_at(mm, haddr, pte, entry);
2022 pte_unmap(pte);
2023 }
2024 smp_wmb(); /* make pte visible before pmd */
2025 pmd_populate(mm, pmd, pgtable);
eef1b3ba
KS
2026}
2027
2028static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
ba988280 2029 unsigned long haddr, bool freeze)
eef1b3ba
KS
2030{
2031 struct mm_struct *mm = vma->vm_mm;
2032 struct page *page;
2033 pgtable_t pgtable;
423ac9af 2034 pmd_t old_pmd, _pmd;
292924b2 2035 bool young, write, soft_dirty, pmd_migration = false, uffd_wp = false;
2ac015e2 2036 unsigned long addr;
eef1b3ba
KS
2037 int i;
2038
2039 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2040 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2041 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
84c3fc4e
ZY
2042 VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
2043 && !pmd_devmap(*pmd));
eef1b3ba
KS
2044
2045 count_vm_event(THP_SPLIT_PMD);
2046
d21b9e57
KS
2047 if (!vma_is_anonymous(vma)) {
2048 _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
953c66c2
AK
2049 /*
2050 * We are going to unmap this huge page. So
2051 * just go ahead and zap it
2052 */
2053 if (arch_needs_pgtable_deposit())
2054 zap_deposited_table(mm, pmd);
2484ca9b 2055 if (vma_is_special_huge(vma))
d21b9e57
KS
2056 return;
2057 page = pmd_page(_pmd);
e1f1b157
HD
2058 if (!PageDirty(page) && pmd_dirty(_pmd))
2059 set_page_dirty(page);
d21b9e57
KS
2060 if (!PageReferenced(page) && pmd_young(_pmd))
2061 SetPageReferenced(page);
2062 page_remove_rmap(page, true);
2063 put_page(page);
fadae295 2064 add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
eef1b3ba 2065 return;
ec0abae6 2066 } else if (pmd_trans_huge(*pmd) && is_huge_zero_pmd(*pmd)) {
4645b9fe
JG
2067 /*
2068 * FIXME: Do we want to invalidate secondary mmu by calling
2069 * mmu_notifier_invalidate_range() see comments below inside
2070 * __split_huge_pmd() ?
2071 *
2072 * We are going from a zero huge page write protected to zero
2073 * small page also write protected so it does not seems useful
2074 * to invalidate secondary mmu at this time.
2075 */
eef1b3ba
KS
2076 return __split_huge_zero_page_pmd(vma, haddr, pmd);
2077 }
2078
423ac9af
AK
2079 /*
2080 * Up to this point the pmd is present and huge and userland has the
2081 * whole access to the hugepage during the split (which happens in
2082 * place). If we overwrite the pmd with the not-huge version pointing
2083 * to the pte here (which of course we could if all CPUs were bug
2084 * free), userland could trigger a small page size TLB miss on the
2085 * small sized TLB while the hugepage TLB entry is still established in
2086 * the huge TLB. Some CPU doesn't like that.
42742d9b
AK
2087 * See http://support.amd.com/TechDocs/41322_10h_Rev_Gd.pdf, Erratum
2088 * 383 on page 105. Intel should be safe but is also warns that it's
423ac9af
AK
2089 * only safe if the permission and cache attributes of the two entries
2090 * loaded in the two TLB is identical (which should be the case here).
2091 * But it is generally safer to never allow small and huge TLB entries
2092 * for the same virtual address to be loaded simultaneously. So instead
2093 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2094 * current pmd notpresent (atomically because here the pmd_trans_huge
2095 * must remain set at all times on the pmd until the split is complete
2096 * for this pmd), then we flush the SMP TLB and finally we write the
2097 * non-huge version of the pmd entry with pmd_populate.
2098 */
2099 old_pmd = pmdp_invalidate(vma, haddr, pmd);
2100
423ac9af 2101 pmd_migration = is_pmd_migration_entry(old_pmd);
2e83ee1d 2102 if (unlikely(pmd_migration)) {
84c3fc4e
ZY
2103 swp_entry_t entry;
2104
423ac9af 2105 entry = pmd_to_swp_entry(old_pmd);
84c3fc4e 2106 page = pfn_to_page(swp_offset(entry));
2e83ee1d
PX
2107 write = is_write_migration_entry(entry);
2108 young = false;
2109 soft_dirty = pmd_swp_soft_dirty(old_pmd);
f45ec5ff 2110 uffd_wp = pmd_swp_uffd_wp(old_pmd);
2e83ee1d 2111 } else {
423ac9af 2112 page = pmd_page(old_pmd);
2e83ee1d
PX
2113 if (pmd_dirty(old_pmd))
2114 SetPageDirty(page);
2115 write = pmd_write(old_pmd);
2116 young = pmd_young(old_pmd);
2117 soft_dirty = pmd_soft_dirty(old_pmd);
292924b2 2118 uffd_wp = pmd_uffd_wp(old_pmd);
2e83ee1d 2119 }
eef1b3ba 2120 VM_BUG_ON_PAGE(!page_count(page), page);
fe896d18 2121 page_ref_add(page, HPAGE_PMD_NR - 1);
eef1b3ba 2122
423ac9af
AK
2123 /*
2124 * Withdraw the table only after we mark the pmd entry invalid.
2125 * This's critical for some architectures (Power).
2126 */
eef1b3ba
KS
2127 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2128 pmd_populate(mm, &_pmd, pgtable);
2129
2ac015e2 2130 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
eef1b3ba
KS
2131 pte_t entry, *pte;
2132 /*
2133 * Note that NUMA hinting access restrictions are not
2134 * transferred to avoid any possibility of altering
2135 * permissions across VMAs.
2136 */
84c3fc4e 2137 if (freeze || pmd_migration) {
ba988280
KS
2138 swp_entry_t swp_entry;
2139 swp_entry = make_migration_entry(page + i, write);
2140 entry = swp_entry_to_pte(swp_entry);
804dd150
AA
2141 if (soft_dirty)
2142 entry = pte_swp_mksoft_dirty(entry);
f45ec5ff
PX
2143 if (uffd_wp)
2144 entry = pte_swp_mkuffd_wp(entry);
ba988280 2145 } else {
6d2329f8 2146 entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
b8d3c4c3 2147 entry = maybe_mkwrite(entry, vma);
ba988280
KS
2148 if (!write)
2149 entry = pte_wrprotect(entry);
2150 if (!young)
2151 entry = pte_mkold(entry);
804dd150
AA
2152 if (soft_dirty)
2153 entry = pte_mksoft_dirty(entry);
292924b2
PX
2154 if (uffd_wp)
2155 entry = pte_mkuffd_wp(entry);
ba988280 2156 }
2ac015e2 2157 pte = pte_offset_map(&_pmd, addr);
eef1b3ba 2158 BUG_ON(!pte_none(*pte));
2ac015e2 2159 set_pte_at(mm, addr, pte, entry);
ec0abae6 2160 if (!pmd_migration)
eef1b3ba 2161 atomic_inc(&page[i]._mapcount);
ec0abae6 2162 pte_unmap(pte);
eef1b3ba
KS
2163 }
2164
ec0abae6
RC
2165 if (!pmd_migration) {
2166 /*
2167 * Set PG_double_map before dropping compound_mapcount to avoid
2168 * false-negative page_mapped().
2169 */
2170 if (compound_mapcount(page) > 1 &&
2171 !TestSetPageDoubleMap(page)) {
eef1b3ba 2172 for (i = 0; i < HPAGE_PMD_NR; i++)
ec0abae6
RC
2173 atomic_inc(&page[i]._mapcount);
2174 }
2175
2176 lock_page_memcg(page);
2177 if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2178 /* Last compound_mapcount is gone. */
2179 __dec_lruvec_page_state(page, NR_ANON_THPS);
2180 if (TestClearPageDoubleMap(page)) {
2181 /* No need in mapcount reference anymore */
2182 for (i = 0; i < HPAGE_PMD_NR; i++)
2183 atomic_dec(&page[i]._mapcount);
2184 }
eef1b3ba 2185 }
ec0abae6 2186 unlock_page_memcg(page);
eef1b3ba
KS
2187 }
2188
2189 smp_wmb(); /* make pte visible before pmd */
2190 pmd_populate(mm, pmd, pgtable);
e9b61f19
KS
2191
2192 if (freeze) {
2ac015e2 2193 for (i = 0; i < HPAGE_PMD_NR; i++) {
e9b61f19
KS
2194 page_remove_rmap(page + i, false);
2195 put_page(page + i);
2196 }
2197 }
eef1b3ba
KS
2198}
2199
2200void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
33f4751e 2201 unsigned long address, bool freeze, struct page *page)
eef1b3ba
KS
2202{
2203 spinlock_t *ptl;
ac46d4f3 2204 struct mmu_notifier_range range;
c444eb56
AA
2205 bool was_locked = false;
2206 pmd_t _pmd;
eef1b3ba 2207
7269f999 2208 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
6f4f13e8 2209 address & HPAGE_PMD_MASK,
ac46d4f3
JG
2210 (address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
2211 mmu_notifier_invalidate_range_start(&range);
2212 ptl = pmd_lock(vma->vm_mm, pmd);
33f4751e
NH
2213
2214 /*
2215 * If caller asks to setup a migration entries, we need a page to check
2216 * pmd against. Otherwise we can end up replacing wrong page.
2217 */
2218 VM_BUG_ON(freeze && !page);
c444eb56
AA
2219 if (page) {
2220 VM_WARN_ON_ONCE(!PageLocked(page));
2221 was_locked = true;
2222 if (page != pmd_page(*pmd))
2223 goto out;
2224 }
33f4751e 2225
c444eb56 2226repeat:
5c7fb56e 2227 if (pmd_trans_huge(*pmd)) {
c444eb56
AA
2228 if (!page) {
2229 page = pmd_page(*pmd);
2230 if (unlikely(!trylock_page(page))) {
2231 get_page(page);
2232 _pmd = *pmd;
2233 spin_unlock(ptl);
2234 lock_page(page);
2235 spin_lock(ptl);
2236 if (unlikely(!pmd_same(*pmd, _pmd))) {
2237 unlock_page(page);
2238 put_page(page);
2239 page = NULL;
2240 goto repeat;
2241 }
2242 put_page(page);
2243 }
2244 }
5c7fb56e 2245 if (PageMlocked(page))
5f737714 2246 clear_page_mlock(page);
84c3fc4e 2247 } else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd)))
e90309c9 2248 goto out;
ac46d4f3 2249 __split_huge_pmd_locked(vma, pmd, range.start, freeze);
e90309c9 2250out:
eef1b3ba 2251 spin_unlock(ptl);
c444eb56
AA
2252 if (!was_locked && page)
2253 unlock_page(page);
4645b9fe
JG
2254 /*
2255 * No need to double call mmu_notifier->invalidate_range() callback.
2256 * They are 3 cases to consider inside __split_huge_pmd_locked():
2257 * 1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
2258 * 2) __split_huge_zero_page_pmd() read only zero page and any write
2259 * fault will trigger a flush_notify before pointing to a new page
2260 * (it is fine if the secondary mmu keeps pointing to the old zero
2261 * page in the meantime)
2262 * 3) Split a huge pmd into pte pointing to the same page. No need
2263 * to invalidate secondary tlb entry they are all still valid.
2264 * any further changes to individual pte will notify. So no need
2265 * to call mmu_notifier->invalidate_range()
2266 */
ac46d4f3 2267 mmu_notifier_invalidate_range_only_end(&range);
eef1b3ba
KS
2268}
2269
fec89c10
KS
2270void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2271 bool freeze, struct page *page)
94fcc585 2272{
f72e7dcd 2273 pgd_t *pgd;
c2febafc 2274 p4d_t *p4d;
f72e7dcd 2275 pud_t *pud;
94fcc585
AA
2276 pmd_t *pmd;
2277
78ddc534 2278 pgd = pgd_offset(vma->vm_mm, address);
f72e7dcd
HD
2279 if (!pgd_present(*pgd))
2280 return;
2281
c2febafc
KS
2282 p4d = p4d_offset(pgd, address);
2283 if (!p4d_present(*p4d))
2284 return;
2285
2286 pud = pud_offset(p4d, address);
f72e7dcd
HD
2287 if (!pud_present(*pud))
2288 return;
2289
2290 pmd = pmd_offset(pud, address);
fec89c10 2291
33f4751e 2292 __split_huge_pmd(vma, pmd, address, freeze, page);
94fcc585
AA
2293}
2294
e1b9996b 2295void vma_adjust_trans_huge(struct vm_area_struct *vma,
94fcc585
AA
2296 unsigned long start,
2297 unsigned long end,
2298 long adjust_next)
2299{
2300 /*
2301 * If the new start address isn't hpage aligned and it could
2302 * previously contain an hugepage: check if we need to split
2303 * an huge pmd.
2304 */
2305 if (start & ~HPAGE_PMD_MASK &&
2306 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2307 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
fec89c10 2308 split_huge_pmd_address(vma, start, false, NULL);
94fcc585
AA
2309
2310 /*
2311 * If the new end address isn't hpage aligned and it could
2312 * previously contain an hugepage: check if we need to split
2313 * an huge pmd.
2314 */
2315 if (end & ~HPAGE_PMD_MASK &&
2316 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2317 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
fec89c10 2318 split_huge_pmd_address(vma, end, false, NULL);
94fcc585
AA
2319
2320 /*
2321 * If we're also updating the vma->vm_next->vm_start, if the new
f9d86a60 2322 * vm_next->vm_start isn't hpage aligned and it could previously
94fcc585
AA
2323 * contain an hugepage: check if we need to split an huge pmd.
2324 */
2325 if (adjust_next > 0) {
2326 struct vm_area_struct *next = vma->vm_next;
2327 unsigned long nstart = next->vm_start;
f9d86a60 2328 nstart += adjust_next;
94fcc585
AA
2329 if (nstart & ~HPAGE_PMD_MASK &&
2330 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2331 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
fec89c10 2332 split_huge_pmd_address(next, nstart, false, NULL);
94fcc585
AA
2333 }
2334}
e9b61f19 2335
906f9cdf 2336static void unmap_page(struct page *page)
e9b61f19 2337{
013339df 2338 enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK |
c7ab0d2f 2339 TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD;
666e5a40 2340 bool unmap_success;
e9b61f19
KS
2341
2342 VM_BUG_ON_PAGE(!PageHead(page), page);
2343
baa355fd 2344 if (PageAnon(page))
b5ff8161 2345 ttu_flags |= TTU_SPLIT_FREEZE;
baa355fd 2346
666e5a40
MK
2347 unmap_success = try_to_unmap(page, ttu_flags);
2348 VM_BUG_ON_PAGE(!unmap_success, page);
e9b61f19
KS
2349}
2350
8cce5475 2351static void remap_page(struct page *page, unsigned int nr)
e9b61f19 2352{
fec89c10 2353 int i;
ace71a19
KS
2354 if (PageTransHuge(page)) {
2355 remove_migration_ptes(page, page, true);
2356 } else {
8cce5475 2357 for (i = 0; i < nr; i++)
ace71a19
KS
2358 remove_migration_ptes(page + i, page + i, true);
2359 }
e9b61f19
KS
2360}
2361
8df651c7 2362static void __split_huge_page_tail(struct page *head, int tail,
e9b61f19
KS
2363 struct lruvec *lruvec, struct list_head *list)
2364{
e9b61f19
KS
2365 struct page *page_tail = head + tail;
2366
8df651c7 2367 VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
e9b61f19
KS
2368
2369 /*
605ca5ed
KK
2370 * Clone page flags before unfreezing refcount.
2371 *
2372 * After successful get_page_unless_zero() might follow flags change,
2373 * for exmaple lock_page() which set PG_waiters.
e9b61f19 2374 */
e9b61f19
KS
2375 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2376 page_tail->flags |= (head->flags &
2377 ((1L << PG_referenced) |
2378 (1L << PG_swapbacked) |
38d8b4e6 2379 (1L << PG_swapcache) |
e9b61f19
KS
2380 (1L << PG_mlocked) |
2381 (1L << PG_uptodate) |
2382 (1L << PG_active) |
1899ad18 2383 (1L << PG_workingset) |
e9b61f19 2384 (1L << PG_locked) |
b8d3c4c3 2385 (1L << PG_unevictable) |
72e6afa0
CM
2386#ifdef CONFIG_64BIT
2387 (1L << PG_arch_2) |
2388#endif
b8d3c4c3 2389 (1L << PG_dirty)));
e9b61f19 2390
173d9d9f
HD
2391 /* ->mapping in first tail page is compound_mapcount */
2392 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2393 page_tail);
2394 page_tail->mapping = head->mapping;
2395 page_tail->index = head->index + tail;
2396
605ca5ed 2397 /* Page flags must be visible before we make the page non-compound. */
e9b61f19
KS
2398 smp_wmb();
2399
605ca5ed
KK
2400 /*
2401 * Clear PageTail before unfreezing page refcount.
2402 *
2403 * After successful get_page_unless_zero() might follow put_page()
2404 * which needs correct compound_head().
2405 */
e9b61f19
KS
2406 clear_compound_head(page_tail);
2407
605ca5ed
KK
2408 /* Finally unfreeze refcount. Additional reference from page cache. */
2409 page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
2410 PageSwapCache(head)));
2411
e9b61f19
KS
2412 if (page_is_young(head))
2413 set_page_young(page_tail);
2414 if (page_is_idle(head))
2415 set_page_idle(page_tail);
2416
e9b61f19 2417 page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
94723aaf
MH
2418
2419 /*
2420 * always add to the tail because some iterators expect new
2421 * pages to show after the currently processed elements - e.g.
2422 * migrate_pages
2423 */
e9b61f19 2424 lru_add_page_tail(head, page_tail, lruvec, list);
e9b61f19
KS
2425}
2426
baa355fd 2427static void __split_huge_page(struct page *page, struct list_head *list,
006d3ff2 2428 pgoff_t end, unsigned long flags)
e9b61f19
KS
2429{
2430 struct page *head = compound_head(page);
f4b7e272 2431 pg_data_t *pgdat = page_pgdat(head);
e9b61f19 2432 struct lruvec *lruvec;
4101196b
MWO
2433 struct address_space *swap_cache = NULL;
2434 unsigned long offset = 0;
8cce5475 2435 unsigned int nr = thp_nr_pages(head);
8df651c7 2436 int i;
e9b61f19 2437
f4b7e272 2438 lruvec = mem_cgroup_page_lruvec(head, pgdat);
e9b61f19
KS
2439
2440 /* complete memcg works before add pages to LRU */
2441 mem_cgroup_split_huge_fixup(head);
2442
4101196b
MWO
2443 if (PageAnon(head) && PageSwapCache(head)) {
2444 swp_entry_t entry = { .val = page_private(head) };
2445
2446 offset = swp_offset(entry);
2447 swap_cache = swap_address_space(entry);
2448 xa_lock(&swap_cache->i_pages);
2449 }
2450
8cce5475 2451 for (i = nr - 1; i >= 1; i--) {
8df651c7 2452 __split_huge_page_tail(head, i, lruvec, list);
baa355fd
KS
2453 /* Some pages can be beyond i_size: drop them from page cache */
2454 if (head[i].index >= end) {
2d077d4b 2455 ClearPageDirty(head + i);
baa355fd 2456 __delete_from_page_cache(head + i, NULL);
800d8c63
KS
2457 if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
2458 shmem_uncharge(head->mapping->host, 1);
baa355fd 2459 put_page(head + i);
4101196b
MWO
2460 } else if (!PageAnon(page)) {
2461 __xa_store(&head->mapping->i_pages, head[i].index,
2462 head + i, 0);
2463 } else if (swap_cache) {
2464 __xa_store(&swap_cache->i_pages, offset + i,
2465 head + i, 0);
baa355fd
KS
2466 }
2467 }
e9b61f19
KS
2468
2469 ClearPageCompound(head);
f7da677b 2470
8cce5475 2471 split_page_owner(head, nr);
f7da677b 2472
baa355fd
KS
2473 /* See comment in __split_huge_page_tail() */
2474 if (PageAnon(head)) {
aa5dc07f 2475 /* Additional pin to swap cache */
4101196b 2476 if (PageSwapCache(head)) {
38d8b4e6 2477 page_ref_add(head, 2);
4101196b
MWO
2478 xa_unlock(&swap_cache->i_pages);
2479 } else {
38d8b4e6 2480 page_ref_inc(head);
4101196b 2481 }
baa355fd 2482 } else {
aa5dc07f 2483 /* Additional pin to page cache */
baa355fd 2484 page_ref_add(head, 2);
b93b0163 2485 xa_unlock(&head->mapping->i_pages);
baa355fd
KS
2486 }
2487
f4b7e272 2488 spin_unlock_irqrestore(&pgdat->lru_lock, flags);
e9b61f19 2489
8cce5475 2490 remap_page(head, nr);
e9b61f19 2491
c4f9c701
HY
2492 if (PageSwapCache(head)) {
2493 swp_entry_t entry = { .val = page_private(head) };
2494
2495 split_swap_cluster(entry);
2496 }
2497
8cce5475 2498 for (i = 0; i < nr; i++) {
e9b61f19
KS
2499 struct page *subpage = head + i;
2500 if (subpage == page)
2501 continue;
2502 unlock_page(subpage);
2503
2504 /*
2505 * Subpages may be freed if there wasn't any mapping
2506 * like if add_to_swap() is running on a lru page that
2507 * had its mapping zapped. And freeing these pages
2508 * requires taking the lru_lock so we do the put_page
2509 * of the tail pages after the split is complete.
2510 */
2511 put_page(subpage);
2512 }
2513}
2514
b20ce5e0
KS
2515int total_mapcount(struct page *page)
2516{
86b562b6 2517 int i, compound, nr, ret;
b20ce5e0
KS
2518
2519 VM_BUG_ON_PAGE(PageTail(page), page);
2520
2521 if (likely(!PageCompound(page)))
2522 return atomic_read(&page->_mapcount) + 1;
2523
dd78fedd 2524 compound = compound_mapcount(page);
86b562b6 2525 nr = compound_nr(page);
b20ce5e0 2526 if (PageHuge(page))
dd78fedd
KS
2527 return compound;
2528 ret = compound;
86b562b6 2529 for (i = 0; i < nr; i++)
b20ce5e0 2530 ret += atomic_read(&page[i]._mapcount) + 1;
dd78fedd
KS
2531 /* File pages has compound_mapcount included in _mapcount */
2532 if (!PageAnon(page))
86b562b6 2533 return ret - compound * nr;
b20ce5e0 2534 if (PageDoubleMap(page))
86b562b6 2535 ret -= nr;
b20ce5e0
KS
2536 return ret;
2537}
2538
6d0a07ed
AA
2539/*
2540 * This calculates accurately how many mappings a transparent hugepage
2541 * has (unlike page_mapcount() which isn't fully accurate). This full
2542 * accuracy is primarily needed to know if copy-on-write faults can
2543 * reuse the page and change the mapping to read-write instead of
2544 * copying them. At the same time this returns the total_mapcount too.
2545 *
2546 * The function returns the highest mapcount any one of the subpages
2547 * has. If the return value is one, even if different processes are
2548 * mapping different subpages of the transparent hugepage, they can
2549 * all reuse it, because each process is reusing a different subpage.
2550 *
2551 * The total_mapcount is instead counting all virtual mappings of the
2552 * subpages. If the total_mapcount is equal to "one", it tells the
2553 * caller all mappings belong to the same "mm" and in turn the
2554 * anon_vma of the transparent hugepage can become the vma->anon_vma
2555 * local one as no other process may be mapping any of the subpages.
2556 *
2557 * It would be more accurate to replace page_mapcount() with
2558 * page_trans_huge_mapcount(), however we only use
2559 * page_trans_huge_mapcount() in the copy-on-write faults where we
2560 * need full accuracy to avoid breaking page pinning, because
2561 * page_trans_huge_mapcount() is slower than page_mapcount().
2562 */
2563int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
2564{
2565 int i, ret, _total_mapcount, mapcount;
2566
2567 /* hugetlbfs shouldn't call it */
2568 VM_BUG_ON_PAGE(PageHuge(page), page);
2569
2570 if (likely(!PageTransCompound(page))) {
2571 mapcount = atomic_read(&page->_mapcount) + 1;
2572 if (total_mapcount)
2573 *total_mapcount = mapcount;
2574 return mapcount;
2575 }
2576
2577 page = compound_head(page);
2578
2579 _total_mapcount = ret = 0;
65dfe3c3 2580 for (i = 0; i < thp_nr_pages(page); i++) {
6d0a07ed
AA
2581 mapcount = atomic_read(&page[i]._mapcount) + 1;
2582 ret = max(ret, mapcount);
2583 _total_mapcount += mapcount;
2584 }
2585 if (PageDoubleMap(page)) {
2586 ret -= 1;
65dfe3c3 2587 _total_mapcount -= thp_nr_pages(page);
6d0a07ed
AA
2588 }
2589 mapcount = compound_mapcount(page);
2590 ret += mapcount;
2591 _total_mapcount += mapcount;
2592 if (total_mapcount)
2593 *total_mapcount = _total_mapcount;
2594 return ret;
2595}
2596
b8f593cd
HY
2597/* Racy check whether the huge page can be split */
2598bool can_split_huge_page(struct page *page, int *pextra_pins)
2599{
2600 int extra_pins;
2601
aa5dc07f 2602 /* Additional pins from page cache */
b8f593cd 2603 if (PageAnon(page))
e2333dad 2604 extra_pins = PageSwapCache(page) ? thp_nr_pages(page) : 0;
b8f593cd 2605 else
e2333dad 2606 extra_pins = thp_nr_pages(page);
b8f593cd
HY
2607 if (pextra_pins)
2608 *pextra_pins = extra_pins;
2609 return total_mapcount(page) == page_count(page) - extra_pins - 1;
2610}
2611
e9b61f19
KS
2612/*
2613 * This function splits huge page into normal pages. @page can point to any
2614 * subpage of huge page to split. Split doesn't change the position of @page.
2615 *
2616 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2617 * The huge page must be locked.
2618 *
2619 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2620 *
2621 * Both head page and tail pages will inherit mapping, flags, and so on from
2622 * the hugepage.
2623 *
2624 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2625 * they are not mapped.
2626 *
2627 * Returns 0 if the hugepage is split successfully.
2628 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2629 * us.
2630 */
2631int split_huge_page_to_list(struct page *page, struct list_head *list)
2632{
2633 struct page *head = compound_head(page);
a3d0a918 2634 struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
a8803e6c 2635 struct deferred_split *ds_queue = get_deferred_split_queue(head);
baa355fd
KS
2636 struct anon_vma *anon_vma = NULL;
2637 struct address_space *mapping = NULL;
2638 int count, mapcount, extra_pins, ret;
0b9b6fff 2639 unsigned long flags;
006d3ff2 2640 pgoff_t end;
e9b61f19 2641
cb829624 2642 VM_BUG_ON_PAGE(is_huge_zero_page(head), head);
a8803e6c
WY
2643 VM_BUG_ON_PAGE(!PageLocked(head), head);
2644 VM_BUG_ON_PAGE(!PageCompound(head), head);
e9b61f19 2645
a8803e6c 2646 if (PageWriteback(head))
59807685
HY
2647 return -EBUSY;
2648
baa355fd
KS
2649 if (PageAnon(head)) {
2650 /*
c1e8d7c6 2651 * The caller does not necessarily hold an mmap_lock that would
baa355fd
KS
2652 * prevent the anon_vma disappearing so we first we take a
2653 * reference to it and then lock the anon_vma for write. This
2654 * is similar to page_lock_anon_vma_read except the write lock
2655 * is taken to serialise against parallel split or collapse
2656 * operations.
2657 */
2658 anon_vma = page_get_anon_vma(head);
2659 if (!anon_vma) {
2660 ret = -EBUSY;
2661 goto out;
2662 }
006d3ff2 2663 end = -1;
baa355fd
KS
2664 mapping = NULL;
2665 anon_vma_lock_write(anon_vma);
2666 } else {
2667 mapping = head->mapping;
2668
2669 /* Truncated ? */
2670 if (!mapping) {
2671 ret = -EBUSY;
2672 goto out;
2673 }
2674
baa355fd
KS
2675 anon_vma = NULL;
2676 i_mmap_lock_read(mapping);
006d3ff2
HD
2677
2678 /*
2679 *__split_huge_page() may need to trim off pages beyond EOF:
2680 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
2681 * which cannot be nested inside the page tree lock. So note
2682 * end now: i_size itself may be changed at any moment, but
2683 * head page lock is good enough to serialize the trimming.
2684 */
2685 end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
e9b61f19 2686 }
e9b61f19
KS
2687
2688 /*
906f9cdf 2689 * Racy check if we can split the page, before unmap_page() will
e9b61f19
KS
2690 * split PMDs
2691 */
b8f593cd 2692 if (!can_split_huge_page(head, &extra_pins)) {
e9b61f19
KS
2693 ret = -EBUSY;
2694 goto out_unlock;
2695 }
2696
906f9cdf 2697 unmap_page(head);
e9b61f19
KS
2698 VM_BUG_ON_PAGE(compound_mapcount(head), head);
2699
baa355fd 2700 /* prevent PageLRU to go away from under us, and freeze lru stats */
f4b7e272 2701 spin_lock_irqsave(&pgdata->lru_lock, flags);
baa355fd
KS
2702
2703 if (mapping) {
aa5dc07f 2704 XA_STATE(xas, &mapping->i_pages, page_index(head));
baa355fd 2705
baa355fd 2706 /*
aa5dc07f 2707 * Check if the head page is present in page cache.
baa355fd
KS
2708 * We assume all tail are present too, if head is there.
2709 */
aa5dc07f
MW
2710 xa_lock(&mapping->i_pages);
2711 if (xas_load(&xas) != head)
baa355fd
KS
2712 goto fail;
2713 }
2714
0139aa7b 2715 /* Prevent deferred_split_scan() touching ->_refcount */
364c1eeb 2716 spin_lock(&ds_queue->split_queue_lock);
e9b61f19
KS
2717 count = page_count(head);
2718 mapcount = total_mapcount(head);
baa355fd 2719 if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
9a982250 2720 if (!list_empty(page_deferred_list(head))) {
364c1eeb 2721 ds_queue->split_queue_len--;
9a982250
KS
2722 list_del(page_deferred_list(head));
2723 }
afb97172 2724 spin_unlock(&ds_queue->split_queue_lock);
06d3eff6 2725 if (mapping) {
a8803e6c 2726 if (PageSwapBacked(head))
b8eddff8 2727 __dec_lruvec_page_state(head, NR_SHMEM_THPS);
06d3eff6 2728 else
b8eddff8 2729 __dec_lruvec_page_state(head, NR_FILE_THPS);
06d3eff6
KS
2730 }
2731
006d3ff2 2732 __split_huge_page(page, list, end, flags);
c4f9c701 2733 ret = 0;
e9b61f19 2734 } else {
baa355fd
KS
2735 if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
2736 pr_alert("total_mapcount: %u, page_count(): %u\n",
2737 mapcount, count);
2738 if (PageTail(page))
2739 dump_page(head, NULL);
2740 dump_page(page, "total_mapcount(head) > 0");
2741 BUG();
2742 }
364c1eeb 2743 spin_unlock(&ds_queue->split_queue_lock);
baa355fd 2744fail: if (mapping)
b93b0163 2745 xa_unlock(&mapping->i_pages);
f4b7e272 2746 spin_unlock_irqrestore(&pgdata->lru_lock, flags);
8cce5475 2747 remap_page(head, thp_nr_pages(head));
e9b61f19
KS
2748 ret = -EBUSY;
2749 }
2750
2751out_unlock:
baa355fd
KS
2752 if (anon_vma) {
2753 anon_vma_unlock_write(anon_vma);
2754 put_anon_vma(anon_vma);
2755 }
2756 if (mapping)
2757 i_mmap_unlock_read(mapping);
e9b61f19
KS
2758out:
2759 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2760 return ret;
2761}
9a982250
KS
2762
2763void free_transhuge_page(struct page *page)
2764{
87eaceb3 2765 struct deferred_split *ds_queue = get_deferred_split_queue(page);
9a982250
KS
2766 unsigned long flags;
2767
364c1eeb 2768 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
9a982250 2769 if (!list_empty(page_deferred_list(page))) {
364c1eeb 2770 ds_queue->split_queue_len--;
9a982250
KS
2771 list_del(page_deferred_list(page));
2772 }
364c1eeb 2773 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
9a982250
KS
2774 free_compound_page(page);
2775}
2776
2777void deferred_split_huge_page(struct page *page)
2778{
87eaceb3
YS
2779 struct deferred_split *ds_queue = get_deferred_split_queue(page);
2780#ifdef CONFIG_MEMCG
2781 struct mem_cgroup *memcg = compound_head(page)->mem_cgroup;
2782#endif
9a982250
KS
2783 unsigned long flags;
2784
2785 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2786
87eaceb3
YS
2787 /*
2788 * The try_to_unmap() in page reclaim path might reach here too,
2789 * this may cause a race condition to corrupt deferred split queue.
2790 * And, if page reclaim is already handling the same page, it is
2791 * unnecessary to handle it again in shrinker.
2792 *
2793 * Check PageSwapCache to determine if the page is being
2794 * handled by page reclaim since THP swap would add the page into
2795 * swap cache before calling try_to_unmap().
2796 */
2797 if (PageSwapCache(page))
2798 return;
2799
364c1eeb 2800 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
9a982250 2801 if (list_empty(page_deferred_list(page))) {
f9719a03 2802 count_vm_event(THP_DEFERRED_SPLIT_PAGE);
364c1eeb
YS
2803 list_add_tail(page_deferred_list(page), &ds_queue->split_queue);
2804 ds_queue->split_queue_len++;
87eaceb3
YS
2805#ifdef CONFIG_MEMCG
2806 if (memcg)
2807 memcg_set_shrinker_bit(memcg, page_to_nid(page),
2808 deferred_split_shrinker.id);
2809#endif
9a982250 2810 }
364c1eeb 2811 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
9a982250
KS
2812}
2813
2814static unsigned long deferred_split_count(struct shrinker *shrink,
2815 struct shrink_control *sc)
2816{
a3d0a918 2817 struct pglist_data *pgdata = NODE_DATA(sc->nid);
364c1eeb 2818 struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
87eaceb3
YS
2819
2820#ifdef CONFIG_MEMCG
2821 if (sc->memcg)
2822 ds_queue = &sc->memcg->deferred_split_queue;
2823#endif
364c1eeb 2824 return READ_ONCE(ds_queue->split_queue_len);
9a982250
KS
2825}
2826
2827static unsigned long deferred_split_scan(struct shrinker *shrink,
2828 struct shrink_control *sc)
2829{
a3d0a918 2830 struct pglist_data *pgdata = NODE_DATA(sc->nid);
364c1eeb 2831 struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
9a982250
KS
2832 unsigned long flags;
2833 LIST_HEAD(list), *pos, *next;
2834 struct page *page;
2835 int split = 0;
2836
87eaceb3
YS
2837#ifdef CONFIG_MEMCG
2838 if (sc->memcg)
2839 ds_queue = &sc->memcg->deferred_split_queue;
2840#endif
2841
364c1eeb 2842 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
9a982250 2843 /* Take pin on all head pages to avoid freeing them under us */
364c1eeb 2844 list_for_each_safe(pos, next, &ds_queue->split_queue) {
9a982250
KS
2845 page = list_entry((void *)pos, struct page, mapping);
2846 page = compound_head(page);
e3ae1953
KS
2847 if (get_page_unless_zero(page)) {
2848 list_move(page_deferred_list(page), &list);
2849 } else {
2850 /* We lost race with put_compound_page() */
9a982250 2851 list_del_init(page_deferred_list(page));
364c1eeb 2852 ds_queue->split_queue_len--;
9a982250 2853 }
e3ae1953
KS
2854 if (!--sc->nr_to_scan)
2855 break;
9a982250 2856 }
364c1eeb 2857 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
9a982250
KS
2858
2859 list_for_each_safe(pos, next, &list) {
2860 page = list_entry((void *)pos, struct page, mapping);
fa41b900
KS
2861 if (!trylock_page(page))
2862 goto next;
9a982250
KS
2863 /* split_huge_page() removes page from list on success */
2864 if (!split_huge_page(page))
2865 split++;
2866 unlock_page(page);
fa41b900 2867next:
9a982250
KS
2868 put_page(page);
2869 }
2870
364c1eeb
YS
2871 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2872 list_splice_tail(&list, &ds_queue->split_queue);
2873 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
9a982250 2874
cb8d68ec
KS
2875 /*
2876 * Stop shrinker if we didn't split any page, but the queue is empty.
2877 * This can happen if pages were freed under us.
2878 */
364c1eeb 2879 if (!split && list_empty(&ds_queue->split_queue))
cb8d68ec
KS
2880 return SHRINK_STOP;
2881 return split;
9a982250
KS
2882}
2883
2884static struct shrinker deferred_split_shrinker = {
2885 .count_objects = deferred_split_count,
2886 .scan_objects = deferred_split_scan,
2887 .seeks = DEFAULT_SEEKS,
87eaceb3
YS
2888 .flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE |
2889 SHRINKER_NONSLAB,
9a982250 2890};
49071d43
KS
2891
2892#ifdef CONFIG_DEBUG_FS
2893static int split_huge_pages_set(void *data, u64 val)
2894{
2895 struct zone *zone;
2896 struct page *page;
2897 unsigned long pfn, max_zone_pfn;
2898 unsigned long total = 0, split = 0;
2899
2900 if (val != 1)
2901 return -EINVAL;
2902
2903 for_each_populated_zone(zone) {
2904 max_zone_pfn = zone_end_pfn(zone);
2905 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2906 if (!pfn_valid(pfn))
2907 continue;
2908
2909 page = pfn_to_page(pfn);
2910 if (!get_page_unless_zero(page))
2911 continue;
2912
2913 if (zone != page_zone(page))
2914 goto next;
2915
baa355fd 2916 if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
49071d43
KS
2917 goto next;
2918
2919 total++;
2920 lock_page(page);
2921 if (!split_huge_page(page))
2922 split++;
2923 unlock_page(page);
2924next:
2925 put_page(page);
2926 }
2927 }
2928
145bdaa1 2929 pr_info("%lu of %lu THP split\n", split, total);
49071d43
KS
2930
2931 return 0;
2932}
f1287869 2933DEFINE_DEBUGFS_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
49071d43
KS
2934 "%llu\n");
2935
2936static int __init split_huge_pages_debugfs(void)
2937{
d9f7979c
GKH
2938 debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
2939 &split_huge_pages_fops);
49071d43
KS
2940 return 0;
2941}
2942late_initcall(split_huge_pages_debugfs);
2943#endif
616b8371
ZY
2944
2945#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2946void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
2947 struct page *page)
2948{
2949 struct vm_area_struct *vma = pvmw->vma;
2950 struct mm_struct *mm = vma->vm_mm;
2951 unsigned long address = pvmw->address;
2952 pmd_t pmdval;
2953 swp_entry_t entry;
ab6e3d09 2954 pmd_t pmdswp;
616b8371
ZY
2955
2956 if (!(pvmw->pmd && !pvmw->pte))
2957 return;
2958
616b8371 2959 flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
8a8683ad 2960 pmdval = pmdp_invalidate(vma, address, pvmw->pmd);
616b8371
ZY
2961 if (pmd_dirty(pmdval))
2962 set_page_dirty(page);
2963 entry = make_migration_entry(page, pmd_write(pmdval));
ab6e3d09
NH
2964 pmdswp = swp_entry_to_pmd(entry);
2965 if (pmd_soft_dirty(pmdval))
2966 pmdswp = pmd_swp_mksoft_dirty(pmdswp);
2967 set_pmd_at(mm, address, pvmw->pmd, pmdswp);
616b8371
ZY
2968 page_remove_rmap(page, true);
2969 put_page(page);
616b8371
ZY
2970}
2971
2972void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
2973{
2974 struct vm_area_struct *vma = pvmw->vma;
2975 struct mm_struct *mm = vma->vm_mm;
2976 unsigned long address = pvmw->address;
2977 unsigned long mmun_start = address & HPAGE_PMD_MASK;
2978 pmd_t pmde;
2979 swp_entry_t entry;
2980
2981 if (!(pvmw->pmd && !pvmw->pte))
2982 return;
2983
2984 entry = pmd_to_swp_entry(*pvmw->pmd);
2985 get_page(new);
2986 pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
ab6e3d09
NH
2987 if (pmd_swp_soft_dirty(*pvmw->pmd))
2988 pmde = pmd_mksoft_dirty(pmde);
616b8371 2989 if (is_write_migration_entry(entry))
f55e1014 2990 pmde = maybe_pmd_mkwrite(pmde, vma);
616b8371
ZY
2991
2992 flush_cache_range(vma, mmun_start, mmun_start + HPAGE_PMD_SIZE);
e71769ae
NH
2993 if (PageAnon(new))
2994 page_add_anon_rmap(new, vma, mmun_start, true);
2995 else
2996 page_add_file_rmap(new, true);
616b8371 2997 set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
e125fe40 2998 if ((vma->vm_flags & VM_LOCKED) && !PageDoubleMap(new))
616b8371
ZY
2999 mlock_vma_page(new);
3000 update_mmu_cache_pmd(vma, address, pvmw->pmd);
3001}
3002#endif