mm/mmu_notifier: use structure for invalidate_range_start/end calls v2
[linux-2.6-block.git] / mm / huge_memory.c
CommitLineData
71e3aac0
AA
1/*
2 * Copyright (C) 2009 Red Hat, Inc.
3 *
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
6 */
7
ae3a8c1c
AM
8#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
71e3aac0
AA
10#include <linux/mm.h>
11#include <linux/sched.h>
f7ccbae4 12#include <linux/sched/coredump.h>
6a3827d7 13#include <linux/sched/numa_balancing.h>
71e3aac0
AA
14#include <linux/highmem.h>
15#include <linux/hugetlb.h>
16#include <linux/mmu_notifier.h>
17#include <linux/rmap.h>
18#include <linux/swap.h>
97ae1749 19#include <linux/shrinker.h>
ba76149f 20#include <linux/mm_inline.h>
e9b61f19 21#include <linux/swapops.h>
4897c765 22#include <linux/dax.h>
ba76149f 23#include <linux/khugepaged.h>
878aee7d 24#include <linux/freezer.h>
f25748e3 25#include <linux/pfn_t.h>
a664b2d8 26#include <linux/mman.h>
3565fce3 27#include <linux/memremap.h>
325adeb5 28#include <linux/pagemap.h>
49071d43 29#include <linux/debugfs.h>
4daae3b4 30#include <linux/migrate.h>
43b5fbbd 31#include <linux/hashtable.h>
6b251fc9 32#include <linux/userfaultfd_k.h>
33c3fc71 33#include <linux/page_idle.h>
baa355fd 34#include <linux/shmem_fs.h>
6b31d595 35#include <linux/oom.h>
97ae1749 36
71e3aac0
AA
37#include <asm/tlb.h>
38#include <asm/pgalloc.h>
39#include "internal.h"
40
ba76149f 41/*
b14d595a
MD
42 * By default, transparent hugepage support is disabled in order to avoid
43 * risking an increased memory footprint for applications that are not
44 * guaranteed to benefit from it. When transparent hugepage support is
45 * enabled, it is for all mappings, and khugepaged scans all mappings.
8bfa3f9a
JW
46 * Defrag is invoked by khugepaged hugepage allocations and by page faults
47 * for all hugepage allocations.
ba76149f 48 */
71e3aac0 49unsigned long transparent_hugepage_flags __read_mostly =
13ece886 50#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
ba76149f 51 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
13ece886
AA
52#endif
53#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
54 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
55#endif
444eb2a4 56 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
79da5407
KS
57 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
58 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
ba76149f 59
9a982250 60static struct shrinker deferred_split_shrinker;
f000565a 61
97ae1749 62static atomic_t huge_zero_refcount;
56873f43 63struct page *huge_zero_page __read_mostly;
4a6c1297 64
6fcb52a5 65static struct page *get_huge_zero_page(void)
97ae1749
KS
66{
67 struct page *zero_page;
68retry:
69 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
4db0c3c2 70 return READ_ONCE(huge_zero_page);
97ae1749
KS
71
72 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
4a6c1297 73 HPAGE_PMD_ORDER);
d8a8e1f0
KS
74 if (!zero_page) {
75 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
5918d10a 76 return NULL;
d8a8e1f0
KS
77 }
78 count_vm_event(THP_ZERO_PAGE_ALLOC);
97ae1749 79 preempt_disable();
5918d10a 80 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
97ae1749 81 preempt_enable();
5ddacbe9 82 __free_pages(zero_page, compound_order(zero_page));
97ae1749
KS
83 goto retry;
84 }
85
86 /* We take additional reference here. It will be put back by shrinker */
87 atomic_set(&huge_zero_refcount, 2);
88 preempt_enable();
4db0c3c2 89 return READ_ONCE(huge_zero_page);
4a6c1297
KS
90}
91
6fcb52a5 92static void put_huge_zero_page(void)
4a6c1297 93{
97ae1749
KS
94 /*
95 * Counter should never go to zero here. Only shrinker can put
96 * last reference.
97 */
98 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
4a6c1297
KS
99}
100
6fcb52a5
AL
101struct page *mm_get_huge_zero_page(struct mm_struct *mm)
102{
103 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
104 return READ_ONCE(huge_zero_page);
105
106 if (!get_huge_zero_page())
107 return NULL;
108
109 if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
110 put_huge_zero_page();
111
112 return READ_ONCE(huge_zero_page);
113}
114
115void mm_put_huge_zero_page(struct mm_struct *mm)
116{
117 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
118 put_huge_zero_page();
119}
120
48896466
GC
121static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
122 struct shrink_control *sc)
4a6c1297 123{
48896466
GC
124 /* we can free zero page only if last reference remains */
125 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
126}
97ae1749 127
48896466
GC
128static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
129 struct shrink_control *sc)
130{
97ae1749 131 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
5918d10a
KS
132 struct page *zero_page = xchg(&huge_zero_page, NULL);
133 BUG_ON(zero_page == NULL);
5ddacbe9 134 __free_pages(zero_page, compound_order(zero_page));
48896466 135 return HPAGE_PMD_NR;
97ae1749
KS
136 }
137
138 return 0;
4a6c1297
KS
139}
140
97ae1749 141static struct shrinker huge_zero_page_shrinker = {
48896466
GC
142 .count_objects = shrink_huge_zero_page_count,
143 .scan_objects = shrink_huge_zero_page_scan,
97ae1749
KS
144 .seeks = DEFAULT_SEEKS,
145};
146
71e3aac0 147#ifdef CONFIG_SYSFS
71e3aac0
AA
148static ssize_t enabled_show(struct kobject *kobj,
149 struct kobj_attribute *attr, char *buf)
150{
444eb2a4
MG
151 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
152 return sprintf(buf, "[always] madvise never\n");
153 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
154 return sprintf(buf, "always [madvise] never\n");
155 else
156 return sprintf(buf, "always madvise [never]\n");
71e3aac0 157}
444eb2a4 158
71e3aac0
AA
159static ssize_t enabled_store(struct kobject *kobj,
160 struct kobj_attribute *attr,
161 const char *buf, size_t count)
162{
21440d7e 163 ssize_t ret = count;
ba76149f 164
21440d7e
DR
165 if (!memcmp("always", buf,
166 min(sizeof("always")-1, count))) {
167 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
168 set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
169 } else if (!memcmp("madvise", buf,
170 min(sizeof("madvise")-1, count))) {
171 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
172 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
173 } else if (!memcmp("never", buf,
174 min(sizeof("never")-1, count))) {
175 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
176 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
177 } else
178 ret = -EINVAL;
ba76149f
AA
179
180 if (ret > 0) {
b46e756f 181 int err = start_stop_khugepaged();
ba76149f
AA
182 if (err)
183 ret = err;
184 }
ba76149f 185 return ret;
71e3aac0
AA
186}
187static struct kobj_attribute enabled_attr =
188 __ATTR(enabled, 0644, enabled_show, enabled_store);
189
b46e756f 190ssize_t single_hugepage_flag_show(struct kobject *kobj,
71e3aac0
AA
191 struct kobj_attribute *attr, char *buf,
192 enum transparent_hugepage_flag flag)
193{
e27e6151
BH
194 return sprintf(buf, "%d\n",
195 !!test_bit(flag, &transparent_hugepage_flags));
71e3aac0 196}
e27e6151 197
b46e756f 198ssize_t single_hugepage_flag_store(struct kobject *kobj,
71e3aac0
AA
199 struct kobj_attribute *attr,
200 const char *buf, size_t count,
201 enum transparent_hugepage_flag flag)
202{
e27e6151
BH
203 unsigned long value;
204 int ret;
205
206 ret = kstrtoul(buf, 10, &value);
207 if (ret < 0)
208 return ret;
209 if (value > 1)
210 return -EINVAL;
211
212 if (value)
71e3aac0 213 set_bit(flag, &transparent_hugepage_flags);
e27e6151 214 else
71e3aac0 215 clear_bit(flag, &transparent_hugepage_flags);
71e3aac0
AA
216
217 return count;
218}
219
71e3aac0
AA
220static ssize_t defrag_show(struct kobject *kobj,
221 struct kobj_attribute *attr, char *buf)
222{
444eb2a4 223 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
21440d7e 224 return sprintf(buf, "[always] defer defer+madvise madvise never\n");
444eb2a4 225 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
21440d7e
DR
226 return sprintf(buf, "always [defer] defer+madvise madvise never\n");
227 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
228 return sprintf(buf, "always defer [defer+madvise] madvise never\n");
229 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
230 return sprintf(buf, "always defer defer+madvise [madvise] never\n");
231 return sprintf(buf, "always defer defer+madvise madvise [never]\n");
71e3aac0 232}
21440d7e 233
71e3aac0
AA
234static ssize_t defrag_store(struct kobject *kobj,
235 struct kobj_attribute *attr,
236 const char *buf, size_t count)
237{
21440d7e
DR
238 if (!memcmp("always", buf,
239 min(sizeof("always")-1, count))) {
240 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
241 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
242 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
243 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
21440d7e
DR
244 } else if (!memcmp("defer+madvise", buf,
245 min(sizeof("defer+madvise")-1, count))) {
246 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
247 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
248 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
249 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
4fad7fb6
DR
250 } else if (!memcmp("defer", buf,
251 min(sizeof("defer")-1, count))) {
252 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
253 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
254 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
255 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
21440d7e
DR
256 } else if (!memcmp("madvise", buf,
257 min(sizeof("madvise")-1, count))) {
258 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
259 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
260 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
261 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
262 } else if (!memcmp("never", buf,
263 min(sizeof("never")-1, count))) {
264 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
265 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
266 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
267 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
268 } else
269 return -EINVAL;
270
271 return count;
71e3aac0
AA
272}
273static struct kobj_attribute defrag_attr =
274 __ATTR(defrag, 0644, defrag_show, defrag_store);
275
79da5407
KS
276static ssize_t use_zero_page_show(struct kobject *kobj,
277 struct kobj_attribute *attr, char *buf)
278{
b46e756f 279 return single_hugepage_flag_show(kobj, attr, buf,
79da5407
KS
280 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
281}
282static ssize_t use_zero_page_store(struct kobject *kobj,
283 struct kobj_attribute *attr, const char *buf, size_t count)
284{
b46e756f 285 return single_hugepage_flag_store(kobj, attr, buf, count,
79da5407
KS
286 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
287}
288static struct kobj_attribute use_zero_page_attr =
289 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
49920d28
HD
290
291static ssize_t hpage_pmd_size_show(struct kobject *kobj,
292 struct kobj_attribute *attr, char *buf)
293{
294 return sprintf(buf, "%lu\n", HPAGE_PMD_SIZE);
295}
296static struct kobj_attribute hpage_pmd_size_attr =
297 __ATTR_RO(hpage_pmd_size);
298
71e3aac0
AA
299#ifdef CONFIG_DEBUG_VM
300static ssize_t debug_cow_show(struct kobject *kobj,
301 struct kobj_attribute *attr, char *buf)
302{
b46e756f 303 return single_hugepage_flag_show(kobj, attr, buf,
71e3aac0
AA
304 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
305}
306static ssize_t debug_cow_store(struct kobject *kobj,
307 struct kobj_attribute *attr,
308 const char *buf, size_t count)
309{
b46e756f 310 return single_hugepage_flag_store(kobj, attr, buf, count,
71e3aac0
AA
311 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
312}
313static struct kobj_attribute debug_cow_attr =
314 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
315#endif /* CONFIG_DEBUG_VM */
316
317static struct attribute *hugepage_attr[] = {
318 &enabled_attr.attr,
319 &defrag_attr.attr,
79da5407 320 &use_zero_page_attr.attr,
49920d28 321 &hpage_pmd_size_attr.attr,
e496cf3d 322#if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
5a6e75f8
KS
323 &shmem_enabled_attr.attr,
324#endif
71e3aac0
AA
325#ifdef CONFIG_DEBUG_VM
326 &debug_cow_attr.attr,
327#endif
328 NULL,
329};
330
8aa95a21 331static const struct attribute_group hugepage_attr_group = {
71e3aac0 332 .attrs = hugepage_attr,
ba76149f
AA
333};
334
569e5590 335static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
71e3aac0 336{
71e3aac0
AA
337 int err;
338
569e5590
SL
339 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
340 if (unlikely(!*hugepage_kobj)) {
ae3a8c1c 341 pr_err("failed to create transparent hugepage kobject\n");
569e5590 342 return -ENOMEM;
ba76149f
AA
343 }
344
569e5590 345 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
ba76149f 346 if (err) {
ae3a8c1c 347 pr_err("failed to register transparent hugepage group\n");
569e5590 348 goto delete_obj;
ba76149f
AA
349 }
350
569e5590 351 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
ba76149f 352 if (err) {
ae3a8c1c 353 pr_err("failed to register transparent hugepage group\n");
569e5590 354 goto remove_hp_group;
ba76149f 355 }
569e5590
SL
356
357 return 0;
358
359remove_hp_group:
360 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
361delete_obj:
362 kobject_put(*hugepage_kobj);
363 return err;
364}
365
366static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
367{
368 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
369 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
370 kobject_put(hugepage_kobj);
371}
372#else
373static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
374{
375 return 0;
376}
377
378static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
379{
380}
381#endif /* CONFIG_SYSFS */
382
383static int __init hugepage_init(void)
384{
385 int err;
386 struct kobject *hugepage_kobj;
387
388 if (!has_transparent_hugepage()) {
389 transparent_hugepage_flags = 0;
390 return -EINVAL;
391 }
392
ff20c2e0
KS
393 /*
394 * hugepages can't be allocated by the buddy allocator
395 */
396 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
397 /*
398 * we use page->mapping and page->index in second tail page
399 * as list_head: assuming THP order >= 2
400 */
401 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
402
569e5590
SL
403 err = hugepage_init_sysfs(&hugepage_kobj);
404 if (err)
65ebb64f 405 goto err_sysfs;
ba76149f 406
b46e756f 407 err = khugepaged_init();
ba76149f 408 if (err)
65ebb64f 409 goto err_slab;
ba76149f 410
65ebb64f
KS
411 err = register_shrinker(&huge_zero_page_shrinker);
412 if (err)
413 goto err_hzp_shrinker;
9a982250
KS
414 err = register_shrinker(&deferred_split_shrinker);
415 if (err)
416 goto err_split_shrinker;
97ae1749 417
97562cd2
RR
418 /*
419 * By default disable transparent hugepages on smaller systems,
420 * where the extra memory used could hurt more than TLB overhead
421 * is likely to save. The admin can still enable it through /sys.
422 */
ca79b0c2 423 if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
97562cd2 424 transparent_hugepage_flags = 0;
79553da2
KS
425 return 0;
426 }
97562cd2 427
79553da2 428 err = start_stop_khugepaged();
65ebb64f
KS
429 if (err)
430 goto err_khugepaged;
ba76149f 431
569e5590 432 return 0;
65ebb64f 433err_khugepaged:
9a982250
KS
434 unregister_shrinker(&deferred_split_shrinker);
435err_split_shrinker:
65ebb64f
KS
436 unregister_shrinker(&huge_zero_page_shrinker);
437err_hzp_shrinker:
b46e756f 438 khugepaged_destroy();
65ebb64f 439err_slab:
569e5590 440 hugepage_exit_sysfs(hugepage_kobj);
65ebb64f 441err_sysfs:
ba76149f 442 return err;
71e3aac0 443}
a64fb3cd 444subsys_initcall(hugepage_init);
71e3aac0
AA
445
446static int __init setup_transparent_hugepage(char *str)
447{
448 int ret = 0;
449 if (!str)
450 goto out;
451 if (!strcmp(str, "always")) {
452 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
453 &transparent_hugepage_flags);
454 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
455 &transparent_hugepage_flags);
456 ret = 1;
457 } else if (!strcmp(str, "madvise")) {
458 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
459 &transparent_hugepage_flags);
460 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
461 &transparent_hugepage_flags);
462 ret = 1;
463 } else if (!strcmp(str, "never")) {
464 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
465 &transparent_hugepage_flags);
466 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
467 &transparent_hugepage_flags);
468 ret = 1;
469 }
470out:
471 if (!ret)
ae3a8c1c 472 pr_warn("transparent_hugepage= cannot parse, ignored\n");
71e3aac0
AA
473 return ret;
474}
475__setup("transparent_hugepage=", setup_transparent_hugepage);
476
f55e1014 477pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
71e3aac0 478{
f55e1014 479 if (likely(vma->vm_flags & VM_WRITE))
71e3aac0
AA
480 pmd = pmd_mkwrite(pmd);
481 return pmd;
482}
483
9a982250
KS
484static inline struct list_head *page_deferred_list(struct page *page)
485{
fa3015b7
MW
486 /* ->lru in the tail pages is occupied by compound_head. */
487 return &page[2].deferred_list;
9a982250
KS
488}
489
490void prep_transhuge_page(struct page *page)
491{
492 /*
493 * we use page->mapping and page->indexlru in second tail page
494 * as list_head: assuming THP order >= 2
495 */
9a982250
KS
496
497 INIT_LIST_HEAD(page_deferred_list(page));
498 set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
499}
500
74d2fad1
TK
501unsigned long __thp_get_unmapped_area(struct file *filp, unsigned long len,
502 loff_t off, unsigned long flags, unsigned long size)
503{
504 unsigned long addr;
505 loff_t off_end = off + len;
506 loff_t off_align = round_up(off, size);
507 unsigned long len_pad;
508
509 if (off_end <= off_align || (off_end - off_align) < size)
510 return 0;
511
512 len_pad = len + size;
513 if (len_pad < len || (off + len_pad) < off)
514 return 0;
515
516 addr = current->mm->get_unmapped_area(filp, 0, len_pad,
517 off >> PAGE_SHIFT, flags);
518 if (IS_ERR_VALUE(addr))
519 return 0;
520
521 addr += (off - addr) & (size - 1);
522 return addr;
523}
524
525unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
526 unsigned long len, unsigned long pgoff, unsigned long flags)
527{
528 loff_t off = (loff_t)pgoff << PAGE_SHIFT;
529
530 if (addr)
531 goto out;
532 if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
533 goto out;
534
535 addr = __thp_get_unmapped_area(filp, len, off, flags, PMD_SIZE);
536 if (addr)
537 return addr;
538
539 out:
540 return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
541}
542EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
543
2b740303
SJ
544static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
545 struct page *page, gfp_t gfp)
71e3aac0 546{
82b0f8c3 547 struct vm_area_struct *vma = vmf->vma;
00501b53 548 struct mem_cgroup *memcg;
71e3aac0 549 pgtable_t pgtable;
82b0f8c3 550 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
2b740303 551 vm_fault_t ret = 0;
71e3aac0 552
309381fe 553 VM_BUG_ON_PAGE(!PageCompound(page), page);
00501b53 554
2cf85583 555 if (mem_cgroup_try_charge_delay(page, vma->vm_mm, gfp, &memcg, true)) {
6b251fc9
AA
556 put_page(page);
557 count_vm_event(THP_FAULT_FALLBACK);
558 return VM_FAULT_FALLBACK;
559 }
00501b53 560
bae473a4 561 pgtable = pte_alloc_one(vma->vm_mm, haddr);
00501b53 562 if (unlikely(!pgtable)) {
6b31d595
MH
563 ret = VM_FAULT_OOM;
564 goto release;
00501b53 565 }
71e3aac0 566
c79b57e4 567 clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
52f37629
MK
568 /*
569 * The memory barrier inside __SetPageUptodate makes sure that
570 * clear_huge_page writes become visible before the set_pmd_at()
571 * write.
572 */
71e3aac0
AA
573 __SetPageUptodate(page);
574
82b0f8c3
JK
575 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
576 if (unlikely(!pmd_none(*vmf->pmd))) {
6b31d595 577 goto unlock_release;
71e3aac0
AA
578 } else {
579 pmd_t entry;
6b251fc9 580
6b31d595
MH
581 ret = check_stable_address_space(vma->vm_mm);
582 if (ret)
583 goto unlock_release;
584
6b251fc9
AA
585 /* Deliver the page fault to userland */
586 if (userfaultfd_missing(vma)) {
2b740303 587 vm_fault_t ret2;
6b251fc9 588
82b0f8c3 589 spin_unlock(vmf->ptl);
f627c2f5 590 mem_cgroup_cancel_charge(page, memcg, true);
6b251fc9 591 put_page(page);
bae473a4 592 pte_free(vma->vm_mm, pgtable);
2b740303
SJ
593 ret2 = handle_userfault(vmf, VM_UFFD_MISSING);
594 VM_BUG_ON(ret2 & VM_FAULT_FALLBACK);
595 return ret2;
6b251fc9
AA
596 }
597
3122359a 598 entry = mk_huge_pmd(page, vma->vm_page_prot);
f55e1014 599 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
d281ee61 600 page_add_new_anon_rmap(page, vma, haddr, true);
f627c2f5 601 mem_cgroup_commit_charge(page, memcg, false, true);
00501b53 602 lru_cache_add_active_or_unevictable(page, vma);
82b0f8c3
JK
603 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
604 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
bae473a4 605 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
c4812909 606 mm_inc_nr_ptes(vma->vm_mm);
82b0f8c3 607 spin_unlock(vmf->ptl);
6b251fc9 608 count_vm_event(THP_FAULT_ALLOC);
71e3aac0
AA
609 }
610
aa2e878e 611 return 0;
6b31d595
MH
612unlock_release:
613 spin_unlock(vmf->ptl);
614release:
615 if (pgtable)
616 pte_free(vma->vm_mm, pgtable);
617 mem_cgroup_cancel_charge(page, memcg, true);
618 put_page(page);
619 return ret;
620
71e3aac0
AA
621}
622
444eb2a4 623/*
21440d7e
DR
624 * always: directly stall for all thp allocations
625 * defer: wake kswapd and fail if not immediately available
626 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
627 * fail if not immediately available
628 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
629 * available
630 * never: never stall for any thp allocation
444eb2a4 631 */
356ff8a9 632static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
444eb2a4 633{
21440d7e 634 const bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
25160354 635
2f0799a0 636 /* Always do synchronous compaction */
21440d7e 637 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
356ff8a9 638 return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
2f0799a0
DR
639
640 /* Kick kcompactd and fail quickly */
21440d7e 641 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
356ff8a9 642 return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
2f0799a0
DR
643
644 /* Synchronous compaction if madvised, otherwise kick kcompactd */
21440d7e 645 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
356ff8a9
DR
646 return GFP_TRANSHUGE_LIGHT |
647 (vma_madvised ? __GFP_DIRECT_RECLAIM :
648 __GFP_KSWAPD_RECLAIM);
2f0799a0
DR
649
650 /* Only do synchronous compaction if madvised */
21440d7e 651 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
356ff8a9
DR
652 return GFP_TRANSHUGE_LIGHT |
653 (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
2f0799a0 654
356ff8a9 655 return GFP_TRANSHUGE_LIGHT;
444eb2a4
MG
656}
657
c4088ebd 658/* Caller must hold page table lock. */
d295e341 659static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
97ae1749 660 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
5918d10a 661 struct page *zero_page)
fc9fe822
KS
662{
663 pmd_t entry;
7c414164
AM
664 if (!pmd_none(*pmd))
665 return false;
5918d10a 666 entry = mk_pmd(zero_page, vma->vm_page_prot);
fc9fe822 667 entry = pmd_mkhuge(entry);
12c9d70b
MW
668 if (pgtable)
669 pgtable_trans_huge_deposit(mm, pmd, pgtable);
fc9fe822 670 set_pmd_at(mm, haddr, pmd, entry);
c4812909 671 mm_inc_nr_ptes(mm);
7c414164 672 return true;
fc9fe822
KS
673}
674
2b740303 675vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
71e3aac0 676{
82b0f8c3 677 struct vm_area_struct *vma = vmf->vma;
077fcf11 678 gfp_t gfp;
71e3aac0 679 struct page *page;
82b0f8c3 680 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
71e3aac0 681
128ec037 682 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
c0292554 683 return VM_FAULT_FALLBACK;
128ec037
KS
684 if (unlikely(anon_vma_prepare(vma)))
685 return VM_FAULT_OOM;
6d50e60c 686 if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
128ec037 687 return VM_FAULT_OOM;
82b0f8c3 688 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
bae473a4 689 !mm_forbids_zeropage(vma->vm_mm) &&
128ec037
KS
690 transparent_hugepage_use_zero_page()) {
691 pgtable_t pgtable;
692 struct page *zero_page;
693 bool set;
2b740303 694 vm_fault_t ret;
bae473a4 695 pgtable = pte_alloc_one(vma->vm_mm, haddr);
128ec037 696 if (unlikely(!pgtable))
ba76149f 697 return VM_FAULT_OOM;
6fcb52a5 698 zero_page = mm_get_huge_zero_page(vma->vm_mm);
128ec037 699 if (unlikely(!zero_page)) {
bae473a4 700 pte_free(vma->vm_mm, pgtable);
81ab4201 701 count_vm_event(THP_FAULT_FALLBACK);
c0292554 702 return VM_FAULT_FALLBACK;
b9bbfbe3 703 }
82b0f8c3 704 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
6b251fc9
AA
705 ret = 0;
706 set = false;
82b0f8c3 707 if (pmd_none(*vmf->pmd)) {
6b31d595
MH
708 ret = check_stable_address_space(vma->vm_mm);
709 if (ret) {
710 spin_unlock(vmf->ptl);
711 } else if (userfaultfd_missing(vma)) {
82b0f8c3
JK
712 spin_unlock(vmf->ptl);
713 ret = handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9
AA
714 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
715 } else {
bae473a4 716 set_huge_zero_page(pgtable, vma->vm_mm, vma,
82b0f8c3
JK
717 haddr, vmf->pmd, zero_page);
718 spin_unlock(vmf->ptl);
6b251fc9
AA
719 set = true;
720 }
721 } else
82b0f8c3 722 spin_unlock(vmf->ptl);
6fcb52a5 723 if (!set)
bae473a4 724 pte_free(vma->vm_mm, pgtable);
6b251fc9 725 return ret;
71e3aac0 726 }
356ff8a9
DR
727 gfp = alloc_hugepage_direct_gfpmask(vma);
728 page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
128ec037
KS
729 if (unlikely(!page)) {
730 count_vm_event(THP_FAULT_FALLBACK);
c0292554 731 return VM_FAULT_FALLBACK;
128ec037 732 }
9a982250 733 prep_transhuge_page(page);
82b0f8c3 734 return __do_huge_pmd_anonymous_page(vmf, page, gfp);
71e3aac0
AA
735}
736
ae18d6dc 737static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
3b6521f5
OH
738 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
739 pgtable_t pgtable)
5cad465d
MW
740{
741 struct mm_struct *mm = vma->vm_mm;
742 pmd_t entry;
743 spinlock_t *ptl;
744
745 ptl = pmd_lock(mm, pmd);
f25748e3
DW
746 entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
747 if (pfn_t_devmap(pfn))
748 entry = pmd_mkdevmap(entry);
01871e59 749 if (write) {
f55e1014
LT
750 entry = pmd_mkyoung(pmd_mkdirty(entry));
751 entry = maybe_pmd_mkwrite(entry, vma);
5cad465d 752 }
3b6521f5
OH
753
754 if (pgtable) {
755 pgtable_trans_huge_deposit(mm, pmd, pgtable);
c4812909 756 mm_inc_nr_ptes(mm);
3b6521f5
OH
757 }
758
01871e59
RZ
759 set_pmd_at(mm, addr, pmd, entry);
760 update_mmu_cache_pmd(vma, addr, pmd);
5cad465d 761 spin_unlock(ptl);
5cad465d
MW
762}
763
226ab561 764vm_fault_t vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
f25748e3 765 pmd_t *pmd, pfn_t pfn, bool write)
5cad465d
MW
766{
767 pgprot_t pgprot = vma->vm_page_prot;
3b6521f5 768 pgtable_t pgtable = NULL;
5cad465d
MW
769 /*
770 * If we had pmd_special, we could avoid all these restrictions,
771 * but we need to be consistent with PTEs and architectures that
772 * can't support a 'special' bit.
773 */
e1fb4a08
DJ
774 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
775 !pfn_t_devmap(pfn));
5cad465d
MW
776 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
777 (VM_PFNMAP|VM_MIXEDMAP));
778 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
5cad465d
MW
779
780 if (addr < vma->vm_start || addr >= vma->vm_end)
781 return VM_FAULT_SIGBUS;
308a047c 782
3b6521f5
OH
783 if (arch_needs_pgtable_deposit()) {
784 pgtable = pte_alloc_one(vma->vm_mm, addr);
785 if (!pgtable)
786 return VM_FAULT_OOM;
787 }
788
308a047c
BP
789 track_pfn_insert(vma, &pgprot, pfn);
790
3b6521f5 791 insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write, pgtable);
ae18d6dc 792 return VM_FAULT_NOPAGE;
5cad465d 793}
dee41079 794EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
5cad465d 795
a00cc7d9 796#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
f55e1014 797static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
a00cc7d9 798{
f55e1014 799 if (likely(vma->vm_flags & VM_WRITE))
a00cc7d9
MW
800 pud = pud_mkwrite(pud);
801 return pud;
802}
803
804static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
805 pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
806{
807 struct mm_struct *mm = vma->vm_mm;
808 pud_t entry;
809 spinlock_t *ptl;
810
811 ptl = pud_lock(mm, pud);
812 entry = pud_mkhuge(pfn_t_pud(pfn, prot));
813 if (pfn_t_devmap(pfn))
814 entry = pud_mkdevmap(entry);
815 if (write) {
f55e1014
LT
816 entry = pud_mkyoung(pud_mkdirty(entry));
817 entry = maybe_pud_mkwrite(entry, vma);
a00cc7d9
MW
818 }
819 set_pud_at(mm, addr, pud, entry);
820 update_mmu_cache_pud(vma, addr, pud);
821 spin_unlock(ptl);
822}
823
226ab561 824vm_fault_t vmf_insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
a00cc7d9
MW
825 pud_t *pud, pfn_t pfn, bool write)
826{
827 pgprot_t pgprot = vma->vm_page_prot;
828 /*
829 * If we had pud_special, we could avoid all these restrictions,
830 * but we need to be consistent with PTEs and architectures that
831 * can't support a 'special' bit.
832 */
62ec0d8c
DJ
833 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
834 !pfn_t_devmap(pfn));
a00cc7d9
MW
835 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
836 (VM_PFNMAP|VM_MIXEDMAP));
837 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
a00cc7d9
MW
838
839 if (addr < vma->vm_start || addr >= vma->vm_end)
840 return VM_FAULT_SIGBUS;
841
842 track_pfn_insert(vma, &pgprot, pfn);
843
844 insert_pfn_pud(vma, addr, pud, pfn, pgprot, write);
845 return VM_FAULT_NOPAGE;
846}
847EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud);
848#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
849
3565fce3 850static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
a8f97366 851 pmd_t *pmd, int flags)
3565fce3
DW
852{
853 pmd_t _pmd;
854
a8f97366
KS
855 _pmd = pmd_mkyoung(*pmd);
856 if (flags & FOLL_WRITE)
857 _pmd = pmd_mkdirty(_pmd);
3565fce3 858 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
a8f97366 859 pmd, _pmd, flags & FOLL_WRITE))
3565fce3
DW
860 update_mmu_cache_pmd(vma, addr, pmd);
861}
862
863struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
df06b37f 864 pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
3565fce3
DW
865{
866 unsigned long pfn = pmd_pfn(*pmd);
867 struct mm_struct *mm = vma->vm_mm;
3565fce3
DW
868 struct page *page;
869
870 assert_spin_locked(pmd_lockptr(mm, pmd));
871
8310d48b
KF
872 /*
873 * When we COW a devmap PMD entry, we split it into PTEs, so we should
874 * not be in this function with `flags & FOLL_COW` set.
875 */
876 WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");
877
f6f37321 878 if (flags & FOLL_WRITE && !pmd_write(*pmd))
3565fce3
DW
879 return NULL;
880
881 if (pmd_present(*pmd) && pmd_devmap(*pmd))
882 /* pass */;
883 else
884 return NULL;
885
886 if (flags & FOLL_TOUCH)
a8f97366 887 touch_pmd(vma, addr, pmd, flags);
3565fce3
DW
888
889 /*
890 * device mapped pages can only be returned if the
891 * caller will manage the page reference count.
892 */
893 if (!(flags & FOLL_GET))
894 return ERR_PTR(-EEXIST);
895
896 pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
df06b37f
KB
897 *pgmap = get_dev_pagemap(pfn, *pgmap);
898 if (!*pgmap)
3565fce3
DW
899 return ERR_PTR(-EFAULT);
900 page = pfn_to_page(pfn);
901 get_page(page);
3565fce3
DW
902
903 return page;
904}
905
71e3aac0
AA
906int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
907 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
908 struct vm_area_struct *vma)
909{
c4088ebd 910 spinlock_t *dst_ptl, *src_ptl;
71e3aac0
AA
911 struct page *src_page;
912 pmd_t pmd;
12c9d70b 913 pgtable_t pgtable = NULL;
628d47ce 914 int ret = -ENOMEM;
71e3aac0 915
628d47ce
KS
916 /* Skip if can be re-fill on fault */
917 if (!vma_is_anonymous(vma))
918 return 0;
919
920 pgtable = pte_alloc_one(dst_mm, addr);
921 if (unlikely(!pgtable))
922 goto out;
71e3aac0 923
c4088ebd
KS
924 dst_ptl = pmd_lock(dst_mm, dst_pmd);
925 src_ptl = pmd_lockptr(src_mm, src_pmd);
926 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
71e3aac0
AA
927
928 ret = -EAGAIN;
929 pmd = *src_pmd;
84c3fc4e
ZY
930
931#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
932 if (unlikely(is_swap_pmd(pmd))) {
933 swp_entry_t entry = pmd_to_swp_entry(pmd);
934
935 VM_BUG_ON(!is_pmd_migration_entry(pmd));
936 if (is_write_migration_entry(entry)) {
937 make_migration_entry_read(&entry);
938 pmd = swp_entry_to_pmd(entry);
ab6e3d09
NH
939 if (pmd_swp_soft_dirty(*src_pmd))
940 pmd = pmd_swp_mksoft_dirty(pmd);
84c3fc4e
ZY
941 set_pmd_at(src_mm, addr, src_pmd, pmd);
942 }
dd8a67f9 943 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
af5b0f6a 944 mm_inc_nr_ptes(dst_mm);
dd8a67f9 945 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
84c3fc4e
ZY
946 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
947 ret = 0;
948 goto out_unlock;
949 }
950#endif
951
628d47ce 952 if (unlikely(!pmd_trans_huge(pmd))) {
71e3aac0
AA
953 pte_free(dst_mm, pgtable);
954 goto out_unlock;
955 }
fc9fe822 956 /*
c4088ebd 957 * When page table lock is held, the huge zero pmd should not be
fc9fe822
KS
958 * under splitting since we don't split the page itself, only pmd to
959 * a page table.
960 */
961 if (is_huge_zero_pmd(pmd)) {
5918d10a 962 struct page *zero_page;
97ae1749
KS
963 /*
964 * get_huge_zero_page() will never allocate a new page here,
965 * since we already have a zero page to copy. It just takes a
966 * reference.
967 */
6fcb52a5 968 zero_page = mm_get_huge_zero_page(dst_mm);
6b251fc9 969 set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
5918d10a 970 zero_page);
fc9fe822
KS
971 ret = 0;
972 goto out_unlock;
973 }
de466bd6 974
628d47ce
KS
975 src_page = pmd_page(pmd);
976 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
977 get_page(src_page);
978 page_dup_rmap(src_page, true);
979 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
c4812909 980 mm_inc_nr_ptes(dst_mm);
628d47ce 981 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
71e3aac0
AA
982
983 pmdp_set_wrprotect(src_mm, addr, src_pmd);
984 pmd = pmd_mkold(pmd_wrprotect(pmd));
985 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
71e3aac0
AA
986
987 ret = 0;
988out_unlock:
c4088ebd
KS
989 spin_unlock(src_ptl);
990 spin_unlock(dst_ptl);
71e3aac0
AA
991out:
992 return ret;
993}
994
a00cc7d9
MW
995#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
996static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
a8f97366 997 pud_t *pud, int flags)
a00cc7d9
MW
998{
999 pud_t _pud;
1000
a8f97366
KS
1001 _pud = pud_mkyoung(*pud);
1002 if (flags & FOLL_WRITE)
1003 _pud = pud_mkdirty(_pud);
a00cc7d9 1004 if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
a8f97366 1005 pud, _pud, flags & FOLL_WRITE))
a00cc7d9
MW
1006 update_mmu_cache_pud(vma, addr, pud);
1007}
1008
1009struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
df06b37f 1010 pud_t *pud, int flags, struct dev_pagemap **pgmap)
a00cc7d9
MW
1011{
1012 unsigned long pfn = pud_pfn(*pud);
1013 struct mm_struct *mm = vma->vm_mm;
a00cc7d9
MW
1014 struct page *page;
1015
1016 assert_spin_locked(pud_lockptr(mm, pud));
1017
f6f37321 1018 if (flags & FOLL_WRITE && !pud_write(*pud))
a00cc7d9
MW
1019 return NULL;
1020
1021 if (pud_present(*pud) && pud_devmap(*pud))
1022 /* pass */;
1023 else
1024 return NULL;
1025
1026 if (flags & FOLL_TOUCH)
a8f97366 1027 touch_pud(vma, addr, pud, flags);
a00cc7d9
MW
1028
1029 /*
1030 * device mapped pages can only be returned if the
1031 * caller will manage the page reference count.
1032 */
1033 if (!(flags & FOLL_GET))
1034 return ERR_PTR(-EEXIST);
1035
1036 pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
df06b37f
KB
1037 *pgmap = get_dev_pagemap(pfn, *pgmap);
1038 if (!*pgmap)
a00cc7d9
MW
1039 return ERR_PTR(-EFAULT);
1040 page = pfn_to_page(pfn);
1041 get_page(page);
a00cc7d9
MW
1042
1043 return page;
1044}
1045
1046int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1047 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1048 struct vm_area_struct *vma)
1049{
1050 spinlock_t *dst_ptl, *src_ptl;
1051 pud_t pud;
1052 int ret;
1053
1054 dst_ptl = pud_lock(dst_mm, dst_pud);
1055 src_ptl = pud_lockptr(src_mm, src_pud);
1056 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1057
1058 ret = -EAGAIN;
1059 pud = *src_pud;
1060 if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1061 goto out_unlock;
1062
1063 /*
1064 * When page table lock is held, the huge zero pud should not be
1065 * under splitting since we don't split the page itself, only pud to
1066 * a page table.
1067 */
1068 if (is_huge_zero_pud(pud)) {
1069 /* No huge zero pud yet */
1070 }
1071
1072 pudp_set_wrprotect(src_mm, addr, src_pud);
1073 pud = pud_mkold(pud_wrprotect(pud));
1074 set_pud_at(dst_mm, addr, dst_pud, pud);
1075
1076 ret = 0;
1077out_unlock:
1078 spin_unlock(src_ptl);
1079 spin_unlock(dst_ptl);
1080 return ret;
1081}
1082
1083void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1084{
1085 pud_t entry;
1086 unsigned long haddr;
1087 bool write = vmf->flags & FAULT_FLAG_WRITE;
1088
1089 vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1090 if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1091 goto unlock;
1092
1093 entry = pud_mkyoung(orig_pud);
1094 if (write)
1095 entry = pud_mkdirty(entry);
1096 haddr = vmf->address & HPAGE_PUD_MASK;
1097 if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
1098 update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);
1099
1100unlock:
1101 spin_unlock(vmf->ptl);
1102}
1103#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1104
82b0f8c3 1105void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
a1dd450b
WD
1106{
1107 pmd_t entry;
1108 unsigned long haddr;
20f664aa 1109 bool write = vmf->flags & FAULT_FLAG_WRITE;
a1dd450b 1110
82b0f8c3
JK
1111 vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1112 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
a1dd450b
WD
1113 goto unlock;
1114
1115 entry = pmd_mkyoung(orig_pmd);
20f664aa
MK
1116 if (write)
1117 entry = pmd_mkdirty(entry);
82b0f8c3 1118 haddr = vmf->address & HPAGE_PMD_MASK;
20f664aa 1119 if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
82b0f8c3 1120 update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
a1dd450b
WD
1121
1122unlock:
82b0f8c3 1123 spin_unlock(vmf->ptl);
a1dd450b
WD
1124}
1125
2b740303
SJ
1126static vm_fault_t do_huge_pmd_wp_page_fallback(struct vm_fault *vmf,
1127 pmd_t orig_pmd, struct page *page)
71e3aac0 1128{
82b0f8c3
JK
1129 struct vm_area_struct *vma = vmf->vma;
1130 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
00501b53 1131 struct mem_cgroup *memcg;
71e3aac0
AA
1132 pgtable_t pgtable;
1133 pmd_t _pmd;
2b740303
SJ
1134 int i;
1135 vm_fault_t ret = 0;
71e3aac0 1136 struct page **pages;
ac46d4f3 1137 struct mmu_notifier_range range;
71e3aac0 1138
6da2ec56
KC
1139 pages = kmalloc_array(HPAGE_PMD_NR, sizeof(struct page *),
1140 GFP_KERNEL);
71e3aac0
AA
1141 if (unlikely(!pages)) {
1142 ret |= VM_FAULT_OOM;
1143 goto out;
1144 }
1145
1146 for (i = 0; i < HPAGE_PMD_NR; i++) {
41b6167e 1147 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE, vma,
82b0f8c3 1148 vmf->address, page_to_nid(page));
b9bbfbe3 1149 if (unlikely(!pages[i] ||
2cf85583 1150 mem_cgroup_try_charge_delay(pages[i], vma->vm_mm,
bae473a4 1151 GFP_KERNEL, &memcg, false))) {
b9bbfbe3 1152 if (pages[i])
71e3aac0 1153 put_page(pages[i]);
b9bbfbe3 1154 while (--i >= 0) {
00501b53
JW
1155 memcg = (void *)page_private(pages[i]);
1156 set_page_private(pages[i], 0);
f627c2f5
KS
1157 mem_cgroup_cancel_charge(pages[i], memcg,
1158 false);
b9bbfbe3
AA
1159 put_page(pages[i]);
1160 }
71e3aac0
AA
1161 kfree(pages);
1162 ret |= VM_FAULT_OOM;
1163 goto out;
1164 }
00501b53 1165 set_page_private(pages[i], (unsigned long)memcg);
71e3aac0
AA
1166 }
1167
1168 for (i = 0; i < HPAGE_PMD_NR; i++) {
1169 copy_user_highpage(pages[i], page + i,
0089e485 1170 haddr + PAGE_SIZE * i, vma);
71e3aac0
AA
1171 __SetPageUptodate(pages[i]);
1172 cond_resched();
1173 }
1174
ac46d4f3
JG
1175 mmu_notifier_range_init(&range, vma->vm_mm, haddr,
1176 haddr + HPAGE_PMD_SIZE);
1177 mmu_notifier_invalidate_range_start(&range);
2ec74c3e 1178
82b0f8c3
JK
1179 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1180 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
71e3aac0 1181 goto out_free_pages;
309381fe 1182 VM_BUG_ON_PAGE(!PageHead(page), page);
71e3aac0 1183
0f10851e
JG
1184 /*
1185 * Leave pmd empty until pte is filled note we must notify here as
1186 * concurrent CPU thread might write to new page before the call to
1187 * mmu_notifier_invalidate_range_end() happens which can lead to a
1188 * device seeing memory write in different order than CPU.
1189 *
ad56b738 1190 * See Documentation/vm/mmu_notifier.rst
0f10851e 1191 */
82b0f8c3 1192 pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
71e3aac0 1193
82b0f8c3 1194 pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, vmf->pmd);
bae473a4 1195 pmd_populate(vma->vm_mm, &_pmd, pgtable);
71e3aac0
AA
1196
1197 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
bae473a4 1198 pte_t entry;
71e3aac0
AA
1199 entry = mk_pte(pages[i], vma->vm_page_prot);
1200 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
00501b53
JW
1201 memcg = (void *)page_private(pages[i]);
1202 set_page_private(pages[i], 0);
82b0f8c3 1203 page_add_new_anon_rmap(pages[i], vmf->vma, haddr, false);
f627c2f5 1204 mem_cgroup_commit_charge(pages[i], memcg, false, false);
00501b53 1205 lru_cache_add_active_or_unevictable(pages[i], vma);
82b0f8c3
JK
1206 vmf->pte = pte_offset_map(&_pmd, haddr);
1207 VM_BUG_ON(!pte_none(*vmf->pte));
1208 set_pte_at(vma->vm_mm, haddr, vmf->pte, entry);
1209 pte_unmap(vmf->pte);
71e3aac0
AA
1210 }
1211 kfree(pages);
1212
71e3aac0 1213 smp_wmb(); /* make pte visible before pmd */
82b0f8c3 1214 pmd_populate(vma->vm_mm, vmf->pmd, pgtable);
d281ee61 1215 page_remove_rmap(page, true);
82b0f8c3 1216 spin_unlock(vmf->ptl);
71e3aac0 1217
4645b9fe
JG
1218 /*
1219 * No need to double call mmu_notifier->invalidate_range() callback as
1220 * the above pmdp_huge_clear_flush_notify() did already call it.
1221 */
ac46d4f3 1222 mmu_notifier_invalidate_range_only_end(&range);
2ec74c3e 1223
71e3aac0
AA
1224 ret |= VM_FAULT_WRITE;
1225 put_page(page);
1226
1227out:
1228 return ret;
1229
1230out_free_pages:
82b0f8c3 1231 spin_unlock(vmf->ptl);
ac46d4f3 1232 mmu_notifier_invalidate_range_end(&range);
b9bbfbe3 1233 for (i = 0; i < HPAGE_PMD_NR; i++) {
00501b53
JW
1234 memcg = (void *)page_private(pages[i]);
1235 set_page_private(pages[i], 0);
f627c2f5 1236 mem_cgroup_cancel_charge(pages[i], memcg, false);
71e3aac0 1237 put_page(pages[i]);
b9bbfbe3 1238 }
71e3aac0
AA
1239 kfree(pages);
1240 goto out;
1241}
1242
2b740303 1243vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
71e3aac0 1244{
82b0f8c3 1245 struct vm_area_struct *vma = vmf->vma;
93b4796d 1246 struct page *page = NULL, *new_page;
00501b53 1247 struct mem_cgroup *memcg;
82b0f8c3 1248 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
ac46d4f3 1249 struct mmu_notifier_range range;
3b363692 1250 gfp_t huge_gfp; /* for allocation and charge */
2b740303 1251 vm_fault_t ret = 0;
71e3aac0 1252
82b0f8c3 1253 vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
81d1b09c 1254 VM_BUG_ON_VMA(!vma->anon_vma, vma);
93b4796d
KS
1255 if (is_huge_zero_pmd(orig_pmd))
1256 goto alloc;
82b0f8c3
JK
1257 spin_lock(vmf->ptl);
1258 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
71e3aac0
AA
1259 goto out_unlock;
1260
1261 page = pmd_page(orig_pmd);
309381fe 1262 VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1f25fe20
KS
1263 /*
1264 * We can only reuse the page if nobody else maps the huge page or it's
6d0a07ed 1265 * part.
1f25fe20 1266 */
ba3c4ce6
HY
1267 if (!trylock_page(page)) {
1268 get_page(page);
1269 spin_unlock(vmf->ptl);
1270 lock_page(page);
1271 spin_lock(vmf->ptl);
1272 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1273 unlock_page(page);
1274 put_page(page);
1275 goto out_unlock;
1276 }
1277 put_page(page);
1278 }
1279 if (reuse_swap_page(page, NULL)) {
71e3aac0
AA
1280 pmd_t entry;
1281 entry = pmd_mkyoung(orig_pmd);
f55e1014 1282 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
82b0f8c3
JK
1283 if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
1284 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
71e3aac0 1285 ret |= VM_FAULT_WRITE;
ba3c4ce6 1286 unlock_page(page);
71e3aac0
AA
1287 goto out_unlock;
1288 }
ba3c4ce6 1289 unlock_page(page);
ddc58f27 1290 get_page(page);
82b0f8c3 1291 spin_unlock(vmf->ptl);
93b4796d 1292alloc:
71e3aac0 1293 if (transparent_hugepage_enabled(vma) &&
077fcf11 1294 !transparent_hugepage_debug_cow()) {
356ff8a9
DR
1295 huge_gfp = alloc_hugepage_direct_gfpmask(vma);
1296 new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
077fcf11 1297 } else
71e3aac0
AA
1298 new_page = NULL;
1299
9a982250
KS
1300 if (likely(new_page)) {
1301 prep_transhuge_page(new_page);
1302 } else {
eecc1e42 1303 if (!page) {
82b0f8c3 1304 split_huge_pmd(vma, vmf->pmd, vmf->address);
e9b71ca9 1305 ret |= VM_FAULT_FALLBACK;
93b4796d 1306 } else {
82b0f8c3 1307 ret = do_huge_pmd_wp_page_fallback(vmf, orig_pmd, page);
9845cbbd 1308 if (ret & VM_FAULT_OOM) {
82b0f8c3 1309 split_huge_pmd(vma, vmf->pmd, vmf->address);
9845cbbd
KS
1310 ret |= VM_FAULT_FALLBACK;
1311 }
ddc58f27 1312 put_page(page);
93b4796d 1313 }
17766dde 1314 count_vm_event(THP_FAULT_FALLBACK);
71e3aac0
AA
1315 goto out;
1316 }
1317
2cf85583 1318 if (unlikely(mem_cgroup_try_charge_delay(new_page, vma->vm_mm,
2a70f6a7 1319 huge_gfp, &memcg, true))) {
b9bbfbe3 1320 put_page(new_page);
82b0f8c3 1321 split_huge_pmd(vma, vmf->pmd, vmf->address);
bae473a4 1322 if (page)
ddc58f27 1323 put_page(page);
9845cbbd 1324 ret |= VM_FAULT_FALLBACK;
17766dde 1325 count_vm_event(THP_FAULT_FALLBACK);
b9bbfbe3
AA
1326 goto out;
1327 }
1328
17766dde
DR
1329 count_vm_event(THP_FAULT_ALLOC);
1330
eecc1e42 1331 if (!page)
c79b57e4 1332 clear_huge_page(new_page, vmf->address, HPAGE_PMD_NR);
93b4796d 1333 else
c9f4cd71
HY
1334 copy_user_huge_page(new_page, page, vmf->address,
1335 vma, HPAGE_PMD_NR);
71e3aac0
AA
1336 __SetPageUptodate(new_page);
1337
ac46d4f3
JG
1338 mmu_notifier_range_init(&range, vma->vm_mm, haddr,
1339 haddr + HPAGE_PMD_SIZE);
1340 mmu_notifier_invalidate_range_start(&range);
2ec74c3e 1341
82b0f8c3 1342 spin_lock(vmf->ptl);
93b4796d 1343 if (page)
ddc58f27 1344 put_page(page);
82b0f8c3
JK
1345 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1346 spin_unlock(vmf->ptl);
f627c2f5 1347 mem_cgroup_cancel_charge(new_page, memcg, true);
71e3aac0 1348 put_page(new_page);
2ec74c3e 1349 goto out_mn;
b9bbfbe3 1350 } else {
71e3aac0 1351 pmd_t entry;
3122359a 1352 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
f55e1014 1353 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
82b0f8c3 1354 pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
d281ee61 1355 page_add_new_anon_rmap(new_page, vma, haddr, true);
f627c2f5 1356 mem_cgroup_commit_charge(new_page, memcg, false, true);
00501b53 1357 lru_cache_add_active_or_unevictable(new_page, vma);
82b0f8c3
JK
1358 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
1359 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
eecc1e42 1360 if (!page) {
bae473a4 1361 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
97ae1749 1362 } else {
309381fe 1363 VM_BUG_ON_PAGE(!PageHead(page), page);
d281ee61 1364 page_remove_rmap(page, true);
93b4796d
KS
1365 put_page(page);
1366 }
71e3aac0
AA
1367 ret |= VM_FAULT_WRITE;
1368 }
82b0f8c3 1369 spin_unlock(vmf->ptl);
2ec74c3e 1370out_mn:
4645b9fe
JG
1371 /*
1372 * No need to double call mmu_notifier->invalidate_range() callback as
1373 * the above pmdp_huge_clear_flush_notify() did already call it.
1374 */
ac46d4f3 1375 mmu_notifier_invalidate_range_only_end(&range);
71e3aac0
AA
1376out:
1377 return ret;
2ec74c3e 1378out_unlock:
82b0f8c3 1379 spin_unlock(vmf->ptl);
2ec74c3e 1380 return ret;
71e3aac0
AA
1381}
1382
8310d48b
KF
1383/*
1384 * FOLL_FORCE can write to even unwritable pmd's, but only
1385 * after we've gone through a COW cycle and they are dirty.
1386 */
1387static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
1388{
f6f37321 1389 return pmd_write(pmd) ||
8310d48b
KF
1390 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
1391}
1392
b676b293 1393struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
71e3aac0
AA
1394 unsigned long addr,
1395 pmd_t *pmd,
1396 unsigned int flags)
1397{
b676b293 1398 struct mm_struct *mm = vma->vm_mm;
71e3aac0
AA
1399 struct page *page = NULL;
1400
c4088ebd 1401 assert_spin_locked(pmd_lockptr(mm, pmd));
71e3aac0 1402
8310d48b 1403 if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
71e3aac0
AA
1404 goto out;
1405
85facf25
KS
1406 /* Avoid dumping huge zero page */
1407 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1408 return ERR_PTR(-EFAULT);
1409
2b4847e7 1410 /* Full NUMA hinting faults to serialise migration in fault paths */
8a0516ed 1411 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
2b4847e7
MG
1412 goto out;
1413
71e3aac0 1414 page = pmd_page(*pmd);
ca120cf6 1415 VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
3565fce3 1416 if (flags & FOLL_TOUCH)
a8f97366 1417 touch_pmd(vma, addr, pmd, flags);
de60f5f1 1418 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
e90309c9
KS
1419 /*
1420 * We don't mlock() pte-mapped THPs. This way we can avoid
1421 * leaking mlocked pages into non-VM_LOCKED VMAs.
1422 *
9a73f61b
KS
1423 * For anon THP:
1424 *
e90309c9
KS
1425 * In most cases the pmd is the only mapping of the page as we
1426 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1427 * writable private mappings in populate_vma_page_range().
1428 *
1429 * The only scenario when we have the page shared here is if we
1430 * mlocking read-only mapping shared over fork(). We skip
1431 * mlocking such pages.
9a73f61b
KS
1432 *
1433 * For file THP:
1434 *
1435 * We can expect PageDoubleMap() to be stable under page lock:
1436 * for file pages we set it in page_add_file_rmap(), which
1437 * requires page to be locked.
e90309c9 1438 */
9a73f61b
KS
1439
1440 if (PageAnon(page) && compound_mapcount(page) != 1)
1441 goto skip_mlock;
1442 if (PageDoubleMap(page) || !page->mapping)
1443 goto skip_mlock;
1444 if (!trylock_page(page))
1445 goto skip_mlock;
1446 lru_add_drain();
1447 if (page->mapping && !PageDoubleMap(page))
1448 mlock_vma_page(page);
1449 unlock_page(page);
b676b293 1450 }
9a73f61b 1451skip_mlock:
71e3aac0 1452 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
ca120cf6 1453 VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
71e3aac0 1454 if (flags & FOLL_GET)
ddc58f27 1455 get_page(page);
71e3aac0
AA
1456
1457out:
1458 return page;
1459}
1460
d10e63f2 1461/* NUMA hinting page fault entry point for trans huge pmds */
2b740303 1462vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
d10e63f2 1463{
82b0f8c3 1464 struct vm_area_struct *vma = vmf->vma;
b8916634 1465 struct anon_vma *anon_vma = NULL;
b32967ff 1466 struct page *page;
82b0f8c3 1467 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
8191acbd 1468 int page_nid = -1, this_nid = numa_node_id();
90572890 1469 int target_nid, last_cpupid = -1;
8191acbd
MG
1470 bool page_locked;
1471 bool migrated = false;
b191f9b1 1472 bool was_writable;
6688cc05 1473 int flags = 0;
d10e63f2 1474
82b0f8c3
JK
1475 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1476 if (unlikely(!pmd_same(pmd, *vmf->pmd)))
d10e63f2
MG
1477 goto out_unlock;
1478
de466bd6
MG
1479 /*
1480 * If there are potential migrations, wait for completion and retry
1481 * without disrupting NUMA hinting information. Do not relock and
1482 * check_same as the page may no longer be mapped.
1483 */
82b0f8c3
JK
1484 if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
1485 page = pmd_page(*vmf->pmd);
3c226c63
MR
1486 if (!get_page_unless_zero(page))
1487 goto out_unlock;
82b0f8c3 1488 spin_unlock(vmf->ptl);
9a1ea439 1489 put_and_wait_on_page_locked(page);
de466bd6
MG
1490 goto out;
1491 }
1492
d10e63f2 1493 page = pmd_page(pmd);
a1a46184 1494 BUG_ON(is_huge_zero_page(page));
8191acbd 1495 page_nid = page_to_nid(page);
90572890 1496 last_cpupid = page_cpupid_last(page);
03c5a6e1 1497 count_vm_numa_event(NUMA_HINT_FAULTS);
04bb2f94 1498 if (page_nid == this_nid) {
03c5a6e1 1499 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
04bb2f94
RR
1500 flags |= TNF_FAULT_LOCAL;
1501 }
4daae3b4 1502
bea66fbd 1503 /* See similar comment in do_numa_page for explanation */
288bc549 1504 if (!pmd_savedwrite(pmd))
6688cc05
PZ
1505 flags |= TNF_NO_GROUP;
1506
ff9042b1
MG
1507 /*
1508 * Acquire the page lock to serialise THP migrations but avoid dropping
1509 * page_table_lock if at all possible
1510 */
b8916634
MG
1511 page_locked = trylock_page(page);
1512 target_nid = mpol_misplaced(page, vma, haddr);
1513 if (target_nid == -1) {
1514 /* If the page was locked, there are no parallel migrations */
a54a407f 1515 if (page_locked)
b8916634 1516 goto clear_pmdnuma;
2b4847e7 1517 }
4daae3b4 1518
de466bd6 1519 /* Migration could have started since the pmd_trans_migrating check */
2b4847e7 1520 if (!page_locked) {
3c226c63
MR
1521 page_nid = -1;
1522 if (!get_page_unless_zero(page))
1523 goto out_unlock;
82b0f8c3 1524 spin_unlock(vmf->ptl);
9a1ea439 1525 put_and_wait_on_page_locked(page);
b8916634
MG
1526 goto out;
1527 }
1528
2b4847e7
MG
1529 /*
1530 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1531 * to serialises splits
1532 */
b8916634 1533 get_page(page);
82b0f8c3 1534 spin_unlock(vmf->ptl);
b8916634 1535 anon_vma = page_lock_anon_vma_read(page);
4daae3b4 1536
c69307d5 1537 /* Confirm the PMD did not change while page_table_lock was released */
82b0f8c3
JK
1538 spin_lock(vmf->ptl);
1539 if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
b32967ff
MG
1540 unlock_page(page);
1541 put_page(page);
a54a407f 1542 page_nid = -1;
4daae3b4 1543 goto out_unlock;
b32967ff 1544 }
ff9042b1 1545
c3a489ca
MG
1546 /* Bail if we fail to protect against THP splits for any reason */
1547 if (unlikely(!anon_vma)) {
1548 put_page(page);
1549 page_nid = -1;
1550 goto clear_pmdnuma;
1551 }
1552
8b1b436d
PZ
1553 /*
1554 * Since we took the NUMA fault, we must have observed the !accessible
1555 * bit. Make sure all other CPUs agree with that, to avoid them
1556 * modifying the page we're about to migrate.
1557 *
1558 * Must be done under PTL such that we'll observe the relevant
ccde85ba
PZ
1559 * inc_tlb_flush_pending().
1560 *
1561 * We are not sure a pending tlb flush here is for a huge page
1562 * mapping or not. Hence use the tlb range variant
8b1b436d 1563 */
7066f0f9 1564 if (mm_tlb_flush_pending(vma->vm_mm)) {
ccde85ba 1565 flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE);
7066f0f9
AA
1566 /*
1567 * change_huge_pmd() released the pmd lock before
1568 * invalidating the secondary MMUs sharing the primary
1569 * MMU pagetables (with ->invalidate_range()). The
1570 * mmu_notifier_invalidate_range_end() (which
1571 * internally calls ->invalidate_range()) in
1572 * change_pmd_range() will run after us, so we can't
1573 * rely on it here and we need an explicit invalidate.
1574 */
1575 mmu_notifier_invalidate_range(vma->vm_mm, haddr,
1576 haddr + HPAGE_PMD_SIZE);
1577 }
8b1b436d 1578
a54a407f
MG
1579 /*
1580 * Migrate the THP to the requested node, returns with page unlocked
8a0516ed 1581 * and access rights restored.
a54a407f 1582 */
82b0f8c3 1583 spin_unlock(vmf->ptl);
8b1b436d 1584
bae473a4 1585 migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
82b0f8c3 1586 vmf->pmd, pmd, vmf->address, page, target_nid);
6688cc05
PZ
1587 if (migrated) {
1588 flags |= TNF_MIGRATED;
8191acbd 1589 page_nid = target_nid;
074c2381
MG
1590 } else
1591 flags |= TNF_MIGRATE_FAIL;
b32967ff 1592
8191acbd 1593 goto out;
b32967ff 1594clear_pmdnuma:
a54a407f 1595 BUG_ON(!PageLocked(page));
288bc549 1596 was_writable = pmd_savedwrite(pmd);
4d942466 1597 pmd = pmd_modify(pmd, vma->vm_page_prot);
b7b04004 1598 pmd = pmd_mkyoung(pmd);
b191f9b1
MG
1599 if (was_writable)
1600 pmd = pmd_mkwrite(pmd);
82b0f8c3
JK
1601 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1602 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
a54a407f 1603 unlock_page(page);
d10e63f2 1604out_unlock:
82b0f8c3 1605 spin_unlock(vmf->ptl);
b8916634
MG
1606
1607out:
1608 if (anon_vma)
1609 page_unlock_anon_vma_read(anon_vma);
1610
8191acbd 1611 if (page_nid != -1)
82b0f8c3 1612 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
9a8b300f 1613 flags);
8191acbd 1614
d10e63f2
MG
1615 return 0;
1616}
1617
319904ad
HY
1618/*
1619 * Return true if we do MADV_FREE successfully on entire pmd page.
1620 * Otherwise, return false.
1621 */
1622bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
b8d3c4c3 1623 pmd_t *pmd, unsigned long addr, unsigned long next)
b8d3c4c3
MK
1624{
1625 spinlock_t *ptl;
1626 pmd_t orig_pmd;
1627 struct page *page;
1628 struct mm_struct *mm = tlb->mm;
319904ad 1629 bool ret = false;
b8d3c4c3 1630
07e32661
AK
1631 tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);
1632
b6ec57f4
KS
1633 ptl = pmd_trans_huge_lock(pmd, vma);
1634 if (!ptl)
25eedabe 1635 goto out_unlocked;
b8d3c4c3
MK
1636
1637 orig_pmd = *pmd;
319904ad 1638 if (is_huge_zero_pmd(orig_pmd))
b8d3c4c3 1639 goto out;
b8d3c4c3 1640
84c3fc4e
ZY
1641 if (unlikely(!pmd_present(orig_pmd))) {
1642 VM_BUG_ON(thp_migration_supported() &&
1643 !is_pmd_migration_entry(orig_pmd));
1644 goto out;
1645 }
1646
b8d3c4c3
MK
1647 page = pmd_page(orig_pmd);
1648 /*
1649 * If other processes are mapping this page, we couldn't discard
1650 * the page unless they all do MADV_FREE so let's skip the page.
1651 */
1652 if (page_mapcount(page) != 1)
1653 goto out;
1654
1655 if (!trylock_page(page))
1656 goto out;
1657
1658 /*
1659 * If user want to discard part-pages of THP, split it so MADV_FREE
1660 * will deactivate only them.
1661 */
1662 if (next - addr != HPAGE_PMD_SIZE) {
1663 get_page(page);
1664 spin_unlock(ptl);
9818b8cd 1665 split_huge_page(page);
b8d3c4c3 1666 unlock_page(page);
bbf29ffc 1667 put_page(page);
b8d3c4c3
MK
1668 goto out_unlocked;
1669 }
1670
1671 if (PageDirty(page))
1672 ClearPageDirty(page);
1673 unlock_page(page);
1674
b8d3c4c3 1675 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
58ceeb6b 1676 pmdp_invalidate(vma, addr, pmd);
b8d3c4c3
MK
1677 orig_pmd = pmd_mkold(orig_pmd);
1678 orig_pmd = pmd_mkclean(orig_pmd);
1679
1680 set_pmd_at(mm, addr, pmd, orig_pmd);
1681 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1682 }
802a3a92
SL
1683
1684 mark_page_lazyfree(page);
319904ad 1685 ret = true;
b8d3c4c3
MK
1686out:
1687 spin_unlock(ptl);
1688out_unlocked:
1689 return ret;
1690}
1691
953c66c2
AK
1692static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1693{
1694 pgtable_t pgtable;
1695
1696 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1697 pte_free(mm, pgtable);
c4812909 1698 mm_dec_nr_ptes(mm);
953c66c2
AK
1699}
1700
71e3aac0 1701int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
f21760b1 1702 pmd_t *pmd, unsigned long addr)
71e3aac0 1703{
da146769 1704 pmd_t orig_pmd;
bf929152 1705 spinlock_t *ptl;
71e3aac0 1706
07e32661
AK
1707 tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);
1708
b6ec57f4
KS
1709 ptl = __pmd_trans_huge_lock(pmd, vma);
1710 if (!ptl)
da146769
KS
1711 return 0;
1712 /*
1713 * For architectures like ppc64 we look at deposited pgtable
1714 * when calling pmdp_huge_get_and_clear. So do the
1715 * pgtable_trans_huge_withdraw after finishing pmdp related
1716 * operations.
1717 */
1718 orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1719 tlb->fullmm);
1720 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1721 if (vma_is_dax(vma)) {
3b6521f5
OH
1722 if (arch_needs_pgtable_deposit())
1723 zap_deposited_table(tlb->mm, pmd);
da146769
KS
1724 spin_unlock(ptl);
1725 if (is_huge_zero_pmd(orig_pmd))
c0f2e176 1726 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
da146769 1727 } else if (is_huge_zero_pmd(orig_pmd)) {
c14a6eb4 1728 zap_deposited_table(tlb->mm, pmd);
da146769 1729 spin_unlock(ptl);
c0f2e176 1730 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
da146769 1731 } else {
616b8371
ZY
1732 struct page *page = NULL;
1733 int flush_needed = 1;
1734
1735 if (pmd_present(orig_pmd)) {
1736 page = pmd_page(orig_pmd);
1737 page_remove_rmap(page, true);
1738 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1739 VM_BUG_ON_PAGE(!PageHead(page), page);
1740 } else if (thp_migration_supported()) {
1741 swp_entry_t entry;
1742
1743 VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1744 entry = pmd_to_swp_entry(orig_pmd);
1745 page = pfn_to_page(swp_offset(entry));
1746 flush_needed = 0;
1747 } else
1748 WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1749
b5072380 1750 if (PageAnon(page)) {
c14a6eb4 1751 zap_deposited_table(tlb->mm, pmd);
b5072380
KS
1752 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1753 } else {
953c66c2
AK
1754 if (arch_needs_pgtable_deposit())
1755 zap_deposited_table(tlb->mm, pmd);
fadae295 1756 add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
b5072380 1757 }
616b8371 1758
da146769 1759 spin_unlock(ptl);
616b8371
ZY
1760 if (flush_needed)
1761 tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
025c5b24 1762 }
da146769 1763 return 1;
71e3aac0
AA
1764}
1765
1dd38b6c
AK
1766#ifndef pmd_move_must_withdraw
1767static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1768 spinlock_t *old_pmd_ptl,
1769 struct vm_area_struct *vma)
1770{
1771 /*
1772 * With split pmd lock we also need to move preallocated
1773 * PTE page table if new_pmd is on different PMD page table.
1774 *
1775 * We also don't deposit and withdraw tables for file pages.
1776 */
1777 return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1778}
1779#endif
1780
ab6e3d09
NH
1781static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1782{
1783#ifdef CONFIG_MEM_SOFT_DIRTY
1784 if (unlikely(is_pmd_migration_entry(pmd)))
1785 pmd = pmd_swp_mksoft_dirty(pmd);
1786 else if (pmd_present(pmd))
1787 pmd = pmd_mksoft_dirty(pmd);
1788#endif
1789 return pmd;
1790}
1791
bf8616d5 1792bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
37a1c49a 1793 unsigned long new_addr, unsigned long old_end,
eb66ae03 1794 pmd_t *old_pmd, pmd_t *new_pmd)
37a1c49a 1795{
bf929152 1796 spinlock_t *old_ptl, *new_ptl;
37a1c49a 1797 pmd_t pmd;
37a1c49a 1798 struct mm_struct *mm = vma->vm_mm;
5d190420 1799 bool force_flush = false;
37a1c49a
AA
1800
1801 if ((old_addr & ~HPAGE_PMD_MASK) ||
1802 (new_addr & ~HPAGE_PMD_MASK) ||
bf8616d5 1803 old_end - old_addr < HPAGE_PMD_SIZE)
4b471e88 1804 return false;
37a1c49a
AA
1805
1806 /*
1807 * The destination pmd shouldn't be established, free_pgtables()
1808 * should have release it.
1809 */
1810 if (WARN_ON(!pmd_none(*new_pmd))) {
1811 VM_BUG_ON(pmd_trans_huge(*new_pmd));
4b471e88 1812 return false;
37a1c49a
AA
1813 }
1814
bf929152
KS
1815 /*
1816 * We don't have to worry about the ordering of src and dst
1817 * ptlocks because exclusive mmap_sem prevents deadlock.
1818 */
b6ec57f4
KS
1819 old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1820 if (old_ptl) {
bf929152
KS
1821 new_ptl = pmd_lockptr(mm, new_pmd);
1822 if (new_ptl != old_ptl)
1823 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
8809aa2d 1824 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
eb66ae03 1825 if (pmd_present(pmd))
a2ce2666 1826 force_flush = true;
025c5b24 1827 VM_BUG_ON(!pmd_none(*new_pmd));
3592806c 1828
1dd38b6c 1829 if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
b3084f4d 1830 pgtable_t pgtable;
3592806c
KS
1831 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1832 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
3592806c 1833 }
ab6e3d09
NH
1834 pmd = move_soft_dirty_pmd(pmd);
1835 set_pmd_at(mm, new_addr, new_pmd, pmd);
5d190420
AL
1836 if (force_flush)
1837 flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
eb66ae03
LT
1838 if (new_ptl != old_ptl)
1839 spin_unlock(new_ptl);
bf929152 1840 spin_unlock(old_ptl);
4b471e88 1841 return true;
37a1c49a 1842 }
4b471e88 1843 return false;
37a1c49a
AA
1844}
1845
f123d74a
MG
1846/*
1847 * Returns
1848 * - 0 if PMD could not be locked
1849 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1850 * - HPAGE_PMD_NR is protections changed and TLB flush necessary
1851 */
cd7548ab 1852int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
e944fd67 1853 unsigned long addr, pgprot_t newprot, int prot_numa)
cd7548ab
JW
1854{
1855 struct mm_struct *mm = vma->vm_mm;
bf929152 1856 spinlock_t *ptl;
0a85e51d
KS
1857 pmd_t entry;
1858 bool preserve_write;
1859 int ret;
cd7548ab 1860
b6ec57f4 1861 ptl = __pmd_trans_huge_lock(pmd, vma);
0a85e51d
KS
1862 if (!ptl)
1863 return 0;
e944fd67 1864
0a85e51d
KS
1865 preserve_write = prot_numa && pmd_write(*pmd);
1866 ret = 1;
e944fd67 1867
84c3fc4e
ZY
1868#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1869 if (is_swap_pmd(*pmd)) {
1870 swp_entry_t entry = pmd_to_swp_entry(*pmd);
1871
1872 VM_BUG_ON(!is_pmd_migration_entry(*pmd));
1873 if (is_write_migration_entry(entry)) {
1874 pmd_t newpmd;
1875 /*
1876 * A protection check is difficult so
1877 * just be safe and disable write
1878 */
1879 make_migration_entry_read(&entry);
1880 newpmd = swp_entry_to_pmd(entry);
ab6e3d09
NH
1881 if (pmd_swp_soft_dirty(*pmd))
1882 newpmd = pmd_swp_mksoft_dirty(newpmd);
84c3fc4e
ZY
1883 set_pmd_at(mm, addr, pmd, newpmd);
1884 }
1885 goto unlock;
1886 }
1887#endif
1888
0a85e51d
KS
1889 /*
1890 * Avoid trapping faults against the zero page. The read-only
1891 * data is likely to be read-cached on the local CPU and
1892 * local/remote hits to the zero page are not interesting.
1893 */
1894 if (prot_numa && is_huge_zero_pmd(*pmd))
1895 goto unlock;
025c5b24 1896
0a85e51d
KS
1897 if (prot_numa && pmd_protnone(*pmd))
1898 goto unlock;
1899
ced10803
KS
1900 /*
1901 * In case prot_numa, we are under down_read(mmap_sem). It's critical
1902 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1903 * which is also under down_read(mmap_sem):
1904 *
1905 * CPU0: CPU1:
1906 * change_huge_pmd(prot_numa=1)
1907 * pmdp_huge_get_and_clear_notify()
1908 * madvise_dontneed()
1909 * zap_pmd_range()
1910 * pmd_trans_huge(*pmd) == 0 (without ptl)
1911 * // skip the pmd
1912 * set_pmd_at();
1913 * // pmd is re-established
1914 *
1915 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1916 * which may break userspace.
1917 *
1918 * pmdp_invalidate() is required to make sure we don't miss
1919 * dirty/young flags set by hardware.
1920 */
a3cf988f 1921 entry = pmdp_invalidate(vma, addr, pmd);
ced10803 1922
0a85e51d
KS
1923 entry = pmd_modify(entry, newprot);
1924 if (preserve_write)
1925 entry = pmd_mk_savedwrite(entry);
1926 ret = HPAGE_PMD_NR;
1927 set_pmd_at(mm, addr, pmd, entry);
1928 BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
1929unlock:
1930 spin_unlock(ptl);
025c5b24
NH
1931 return ret;
1932}
1933
1934/*
8f19b0c0 1935 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
025c5b24 1936 *
8f19b0c0
HY
1937 * Note that if it returns page table lock pointer, this routine returns without
1938 * unlocking page table lock. So callers must unlock it.
025c5b24 1939 */
b6ec57f4 1940spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
025c5b24 1941{
b6ec57f4
KS
1942 spinlock_t *ptl;
1943 ptl = pmd_lock(vma->vm_mm, pmd);
84c3fc4e
ZY
1944 if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
1945 pmd_devmap(*pmd)))
b6ec57f4
KS
1946 return ptl;
1947 spin_unlock(ptl);
1948 return NULL;
cd7548ab
JW
1949}
1950
a00cc7d9
MW
1951/*
1952 * Returns true if a given pud maps a thp, false otherwise.
1953 *
1954 * Note that if it returns true, this routine returns without unlocking page
1955 * table lock. So callers must unlock it.
1956 */
1957spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
1958{
1959 spinlock_t *ptl;
1960
1961 ptl = pud_lock(vma->vm_mm, pud);
1962 if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
1963 return ptl;
1964 spin_unlock(ptl);
1965 return NULL;
1966}
1967
1968#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1969int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
1970 pud_t *pud, unsigned long addr)
1971{
1972 pud_t orig_pud;
1973 spinlock_t *ptl;
1974
1975 ptl = __pud_trans_huge_lock(pud, vma);
1976 if (!ptl)
1977 return 0;
1978 /*
1979 * For architectures like ppc64 we look at deposited pgtable
1980 * when calling pudp_huge_get_and_clear. So do the
1981 * pgtable_trans_huge_withdraw after finishing pudp related
1982 * operations.
1983 */
1984 orig_pud = pudp_huge_get_and_clear_full(tlb->mm, addr, pud,
1985 tlb->fullmm);
1986 tlb_remove_pud_tlb_entry(tlb, pud, addr);
1987 if (vma_is_dax(vma)) {
1988 spin_unlock(ptl);
1989 /* No zero page support yet */
1990 } else {
1991 /* No support for anonymous PUD pages yet */
1992 BUG();
1993 }
1994 return 1;
1995}
1996
1997static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
1998 unsigned long haddr)
1999{
2000 VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
2001 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2002 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
2003 VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
2004
ce9311cf 2005 count_vm_event(THP_SPLIT_PUD);
a00cc7d9
MW
2006
2007 pudp_huge_clear_flush_notify(vma, haddr, pud);
2008}
2009
2010void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
2011 unsigned long address)
2012{
2013 spinlock_t *ptl;
ac46d4f3 2014 struct mmu_notifier_range range;
a00cc7d9 2015
ac46d4f3
JG
2016 mmu_notifier_range_init(&range, vma->vm_mm, address & HPAGE_PUD_MASK,
2017 (address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
2018 mmu_notifier_invalidate_range_start(&range);
2019 ptl = pud_lock(vma->vm_mm, pud);
a00cc7d9
MW
2020 if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
2021 goto out;
ac46d4f3 2022 __split_huge_pud_locked(vma, pud, range.start);
a00cc7d9
MW
2023
2024out:
2025 spin_unlock(ptl);
4645b9fe
JG
2026 /*
2027 * No need to double call mmu_notifier->invalidate_range() callback as
2028 * the above pudp_huge_clear_flush_notify() did already call it.
2029 */
ac46d4f3 2030 mmu_notifier_invalidate_range_only_end(&range);
a00cc7d9
MW
2031}
2032#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
2033
eef1b3ba
KS
2034static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2035 unsigned long haddr, pmd_t *pmd)
2036{
2037 struct mm_struct *mm = vma->vm_mm;
2038 pgtable_t pgtable;
2039 pmd_t _pmd;
2040 int i;
2041
0f10851e
JG
2042 /*
2043 * Leave pmd empty until pte is filled note that it is fine to delay
2044 * notification until mmu_notifier_invalidate_range_end() as we are
2045 * replacing a zero pmd write protected page with a zero pte write
2046 * protected page.
2047 *
ad56b738 2048 * See Documentation/vm/mmu_notifier.rst
0f10851e
JG
2049 */
2050 pmdp_huge_clear_flush(vma, haddr, pmd);
eef1b3ba
KS
2051
2052 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2053 pmd_populate(mm, &_pmd, pgtable);
2054
2055 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2056 pte_t *pte, entry;
2057 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2058 entry = pte_mkspecial(entry);
2059 pte = pte_offset_map(&_pmd, haddr);
2060 VM_BUG_ON(!pte_none(*pte));
2061 set_pte_at(mm, haddr, pte, entry);
2062 pte_unmap(pte);
2063 }
2064 smp_wmb(); /* make pte visible before pmd */
2065 pmd_populate(mm, pmd, pgtable);
eef1b3ba
KS
2066}
2067
2068static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
ba988280 2069 unsigned long haddr, bool freeze)
eef1b3ba
KS
2070{
2071 struct mm_struct *mm = vma->vm_mm;
2072 struct page *page;
2073 pgtable_t pgtable;
423ac9af 2074 pmd_t old_pmd, _pmd;
a3cf988f 2075 bool young, write, soft_dirty, pmd_migration = false;
2ac015e2 2076 unsigned long addr;
eef1b3ba
KS
2077 int i;
2078
2079 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2080 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2081 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
84c3fc4e
ZY
2082 VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
2083 && !pmd_devmap(*pmd));
eef1b3ba
KS
2084
2085 count_vm_event(THP_SPLIT_PMD);
2086
d21b9e57
KS
2087 if (!vma_is_anonymous(vma)) {
2088 _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
953c66c2
AK
2089 /*
2090 * We are going to unmap this huge page. So
2091 * just go ahead and zap it
2092 */
2093 if (arch_needs_pgtable_deposit())
2094 zap_deposited_table(mm, pmd);
d21b9e57
KS
2095 if (vma_is_dax(vma))
2096 return;
2097 page = pmd_page(_pmd);
e1f1b157
HD
2098 if (!PageDirty(page) && pmd_dirty(_pmd))
2099 set_page_dirty(page);
d21b9e57
KS
2100 if (!PageReferenced(page) && pmd_young(_pmd))
2101 SetPageReferenced(page);
2102 page_remove_rmap(page, true);
2103 put_page(page);
fadae295 2104 add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
eef1b3ba
KS
2105 return;
2106 } else if (is_huge_zero_pmd(*pmd)) {
4645b9fe
JG
2107 /*
2108 * FIXME: Do we want to invalidate secondary mmu by calling
2109 * mmu_notifier_invalidate_range() see comments below inside
2110 * __split_huge_pmd() ?
2111 *
2112 * We are going from a zero huge page write protected to zero
2113 * small page also write protected so it does not seems useful
2114 * to invalidate secondary mmu at this time.
2115 */
eef1b3ba
KS
2116 return __split_huge_zero_page_pmd(vma, haddr, pmd);
2117 }
2118
423ac9af
AK
2119 /*
2120 * Up to this point the pmd is present and huge and userland has the
2121 * whole access to the hugepage during the split (which happens in
2122 * place). If we overwrite the pmd with the not-huge version pointing
2123 * to the pte here (which of course we could if all CPUs were bug
2124 * free), userland could trigger a small page size TLB miss on the
2125 * small sized TLB while the hugepage TLB entry is still established in
2126 * the huge TLB. Some CPU doesn't like that.
2127 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
2128 * 383 on page 93. Intel should be safe but is also warns that it's
2129 * only safe if the permission and cache attributes of the two entries
2130 * loaded in the two TLB is identical (which should be the case here).
2131 * But it is generally safer to never allow small and huge TLB entries
2132 * for the same virtual address to be loaded simultaneously. So instead
2133 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2134 * current pmd notpresent (atomically because here the pmd_trans_huge
2135 * must remain set at all times on the pmd until the split is complete
2136 * for this pmd), then we flush the SMP TLB and finally we write the
2137 * non-huge version of the pmd entry with pmd_populate.
2138 */
2139 old_pmd = pmdp_invalidate(vma, haddr, pmd);
2140
423ac9af 2141 pmd_migration = is_pmd_migration_entry(old_pmd);
2e83ee1d 2142 if (unlikely(pmd_migration)) {
84c3fc4e
ZY
2143 swp_entry_t entry;
2144
423ac9af 2145 entry = pmd_to_swp_entry(old_pmd);
84c3fc4e 2146 page = pfn_to_page(swp_offset(entry));
2e83ee1d
PX
2147 write = is_write_migration_entry(entry);
2148 young = false;
2149 soft_dirty = pmd_swp_soft_dirty(old_pmd);
2150 } else {
423ac9af 2151 page = pmd_page(old_pmd);
2e83ee1d
PX
2152 if (pmd_dirty(old_pmd))
2153 SetPageDirty(page);
2154 write = pmd_write(old_pmd);
2155 young = pmd_young(old_pmd);
2156 soft_dirty = pmd_soft_dirty(old_pmd);
2157 }
eef1b3ba 2158 VM_BUG_ON_PAGE(!page_count(page), page);
fe896d18 2159 page_ref_add(page, HPAGE_PMD_NR - 1);
eef1b3ba 2160
423ac9af
AK
2161 /*
2162 * Withdraw the table only after we mark the pmd entry invalid.
2163 * This's critical for some architectures (Power).
2164 */
eef1b3ba
KS
2165 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2166 pmd_populate(mm, &_pmd, pgtable);
2167
2ac015e2 2168 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
eef1b3ba
KS
2169 pte_t entry, *pte;
2170 /*
2171 * Note that NUMA hinting access restrictions are not
2172 * transferred to avoid any possibility of altering
2173 * permissions across VMAs.
2174 */
84c3fc4e 2175 if (freeze || pmd_migration) {
ba988280
KS
2176 swp_entry_t swp_entry;
2177 swp_entry = make_migration_entry(page + i, write);
2178 entry = swp_entry_to_pte(swp_entry);
804dd150
AA
2179 if (soft_dirty)
2180 entry = pte_swp_mksoft_dirty(entry);
ba988280 2181 } else {
6d2329f8 2182 entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
b8d3c4c3 2183 entry = maybe_mkwrite(entry, vma);
ba988280
KS
2184 if (!write)
2185 entry = pte_wrprotect(entry);
2186 if (!young)
2187 entry = pte_mkold(entry);
804dd150
AA
2188 if (soft_dirty)
2189 entry = pte_mksoft_dirty(entry);
ba988280 2190 }
2ac015e2 2191 pte = pte_offset_map(&_pmd, addr);
eef1b3ba 2192 BUG_ON(!pte_none(*pte));
2ac015e2 2193 set_pte_at(mm, addr, pte, entry);
eef1b3ba
KS
2194 atomic_inc(&page[i]._mapcount);
2195 pte_unmap(pte);
2196 }
2197
2198 /*
2199 * Set PG_double_map before dropping compound_mapcount to avoid
2200 * false-negative page_mapped().
2201 */
2202 if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
2203 for (i = 0; i < HPAGE_PMD_NR; i++)
2204 atomic_inc(&page[i]._mapcount);
2205 }
2206
2207 if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2208 /* Last compound_mapcount is gone. */
11fb9989 2209 __dec_node_page_state(page, NR_ANON_THPS);
eef1b3ba
KS
2210 if (TestClearPageDoubleMap(page)) {
2211 /* No need in mapcount reference anymore */
2212 for (i = 0; i < HPAGE_PMD_NR; i++)
2213 atomic_dec(&page[i]._mapcount);
2214 }
2215 }
2216
2217 smp_wmb(); /* make pte visible before pmd */
2218 pmd_populate(mm, pmd, pgtable);
e9b61f19
KS
2219
2220 if (freeze) {
2ac015e2 2221 for (i = 0; i < HPAGE_PMD_NR; i++) {
e9b61f19
KS
2222 page_remove_rmap(page + i, false);
2223 put_page(page + i);
2224 }
2225 }
eef1b3ba
KS
2226}
2227
2228void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
33f4751e 2229 unsigned long address, bool freeze, struct page *page)
eef1b3ba
KS
2230{
2231 spinlock_t *ptl;
ac46d4f3 2232 struct mmu_notifier_range range;
eef1b3ba 2233
ac46d4f3
JG
2234 mmu_notifier_range_init(&range, vma->vm_mm, address & HPAGE_PMD_MASK,
2235 (address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
2236 mmu_notifier_invalidate_range_start(&range);
2237 ptl = pmd_lock(vma->vm_mm, pmd);
33f4751e
NH
2238
2239 /*
2240 * If caller asks to setup a migration entries, we need a page to check
2241 * pmd against. Otherwise we can end up replacing wrong page.
2242 */
2243 VM_BUG_ON(freeze && !page);
2244 if (page && page != pmd_page(*pmd))
2245 goto out;
2246
5c7fb56e 2247 if (pmd_trans_huge(*pmd)) {
33f4751e 2248 page = pmd_page(*pmd);
5c7fb56e 2249 if (PageMlocked(page))
5f737714 2250 clear_page_mlock(page);
84c3fc4e 2251 } else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd)))
e90309c9 2252 goto out;
ac46d4f3 2253 __split_huge_pmd_locked(vma, pmd, range.start, freeze);
e90309c9 2254out:
eef1b3ba 2255 spin_unlock(ptl);
4645b9fe
JG
2256 /*
2257 * No need to double call mmu_notifier->invalidate_range() callback.
2258 * They are 3 cases to consider inside __split_huge_pmd_locked():
2259 * 1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
2260 * 2) __split_huge_zero_page_pmd() read only zero page and any write
2261 * fault will trigger a flush_notify before pointing to a new page
2262 * (it is fine if the secondary mmu keeps pointing to the old zero
2263 * page in the meantime)
2264 * 3) Split a huge pmd into pte pointing to the same page. No need
2265 * to invalidate secondary tlb entry they are all still valid.
2266 * any further changes to individual pte will notify. So no need
2267 * to call mmu_notifier->invalidate_range()
2268 */
ac46d4f3 2269 mmu_notifier_invalidate_range_only_end(&range);
eef1b3ba
KS
2270}
2271
fec89c10
KS
2272void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2273 bool freeze, struct page *page)
94fcc585 2274{
f72e7dcd 2275 pgd_t *pgd;
c2febafc 2276 p4d_t *p4d;
f72e7dcd 2277 pud_t *pud;
94fcc585
AA
2278 pmd_t *pmd;
2279
78ddc534 2280 pgd = pgd_offset(vma->vm_mm, address);
f72e7dcd
HD
2281 if (!pgd_present(*pgd))
2282 return;
2283
c2febafc
KS
2284 p4d = p4d_offset(pgd, address);
2285 if (!p4d_present(*p4d))
2286 return;
2287
2288 pud = pud_offset(p4d, address);
f72e7dcd
HD
2289 if (!pud_present(*pud))
2290 return;
2291
2292 pmd = pmd_offset(pud, address);
fec89c10 2293
33f4751e 2294 __split_huge_pmd(vma, pmd, address, freeze, page);
94fcc585
AA
2295}
2296
e1b9996b 2297void vma_adjust_trans_huge(struct vm_area_struct *vma,
94fcc585
AA
2298 unsigned long start,
2299 unsigned long end,
2300 long adjust_next)
2301{
2302 /*
2303 * If the new start address isn't hpage aligned and it could
2304 * previously contain an hugepage: check if we need to split
2305 * an huge pmd.
2306 */
2307 if (start & ~HPAGE_PMD_MASK &&
2308 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2309 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
fec89c10 2310 split_huge_pmd_address(vma, start, false, NULL);
94fcc585
AA
2311
2312 /*
2313 * If the new end address isn't hpage aligned and it could
2314 * previously contain an hugepage: check if we need to split
2315 * an huge pmd.
2316 */
2317 if (end & ~HPAGE_PMD_MASK &&
2318 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2319 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
fec89c10 2320 split_huge_pmd_address(vma, end, false, NULL);
94fcc585
AA
2321
2322 /*
2323 * If we're also updating the vma->vm_next->vm_start, if the new
2324 * vm_next->vm_start isn't page aligned and it could previously
2325 * contain an hugepage: check if we need to split an huge pmd.
2326 */
2327 if (adjust_next > 0) {
2328 struct vm_area_struct *next = vma->vm_next;
2329 unsigned long nstart = next->vm_start;
2330 nstart += adjust_next << PAGE_SHIFT;
2331 if (nstart & ~HPAGE_PMD_MASK &&
2332 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2333 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
fec89c10 2334 split_huge_pmd_address(next, nstart, false, NULL);
94fcc585
AA
2335 }
2336}
e9b61f19 2337
906f9cdf 2338static void unmap_page(struct page *page)
e9b61f19 2339{
baa355fd 2340 enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS |
c7ab0d2f 2341 TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD;
666e5a40 2342 bool unmap_success;
e9b61f19
KS
2343
2344 VM_BUG_ON_PAGE(!PageHead(page), page);
2345
baa355fd 2346 if (PageAnon(page))
b5ff8161 2347 ttu_flags |= TTU_SPLIT_FREEZE;
baa355fd 2348
666e5a40
MK
2349 unmap_success = try_to_unmap(page, ttu_flags);
2350 VM_BUG_ON_PAGE(!unmap_success, page);
e9b61f19
KS
2351}
2352
906f9cdf 2353static void remap_page(struct page *page)
e9b61f19 2354{
fec89c10 2355 int i;
ace71a19
KS
2356 if (PageTransHuge(page)) {
2357 remove_migration_ptes(page, page, true);
2358 } else {
2359 for (i = 0; i < HPAGE_PMD_NR; i++)
2360 remove_migration_ptes(page + i, page + i, true);
2361 }
e9b61f19
KS
2362}
2363
8df651c7 2364static void __split_huge_page_tail(struct page *head, int tail,
e9b61f19
KS
2365 struct lruvec *lruvec, struct list_head *list)
2366{
e9b61f19
KS
2367 struct page *page_tail = head + tail;
2368
8df651c7 2369 VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
e9b61f19
KS
2370
2371 /*
605ca5ed
KK
2372 * Clone page flags before unfreezing refcount.
2373 *
2374 * After successful get_page_unless_zero() might follow flags change,
2375 * for exmaple lock_page() which set PG_waiters.
e9b61f19 2376 */
e9b61f19
KS
2377 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2378 page_tail->flags |= (head->flags &
2379 ((1L << PG_referenced) |
2380 (1L << PG_swapbacked) |
38d8b4e6 2381 (1L << PG_swapcache) |
e9b61f19
KS
2382 (1L << PG_mlocked) |
2383 (1L << PG_uptodate) |
2384 (1L << PG_active) |
1899ad18 2385 (1L << PG_workingset) |
e9b61f19 2386 (1L << PG_locked) |
b8d3c4c3
MK
2387 (1L << PG_unevictable) |
2388 (1L << PG_dirty)));
e9b61f19 2389
173d9d9f
HD
2390 /* ->mapping in first tail page is compound_mapcount */
2391 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2392 page_tail);
2393 page_tail->mapping = head->mapping;
2394 page_tail->index = head->index + tail;
2395
605ca5ed 2396 /* Page flags must be visible before we make the page non-compound. */
e9b61f19
KS
2397 smp_wmb();
2398
605ca5ed
KK
2399 /*
2400 * Clear PageTail before unfreezing page refcount.
2401 *
2402 * After successful get_page_unless_zero() might follow put_page()
2403 * which needs correct compound_head().
2404 */
e9b61f19
KS
2405 clear_compound_head(page_tail);
2406
605ca5ed
KK
2407 /* Finally unfreeze refcount. Additional reference from page cache. */
2408 page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
2409 PageSwapCache(head)));
2410
e9b61f19
KS
2411 if (page_is_young(head))
2412 set_page_young(page_tail);
2413 if (page_is_idle(head))
2414 set_page_idle(page_tail);
2415
e9b61f19 2416 page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
94723aaf
MH
2417
2418 /*
2419 * always add to the tail because some iterators expect new
2420 * pages to show after the currently processed elements - e.g.
2421 * migrate_pages
2422 */
e9b61f19 2423 lru_add_page_tail(head, page_tail, lruvec, list);
e9b61f19
KS
2424}
2425
baa355fd 2426static void __split_huge_page(struct page *page, struct list_head *list,
006d3ff2 2427 pgoff_t end, unsigned long flags)
e9b61f19
KS
2428{
2429 struct page *head = compound_head(page);
2430 struct zone *zone = page_zone(head);
2431 struct lruvec *lruvec;
8df651c7 2432 int i;
e9b61f19 2433
599d0c95 2434 lruvec = mem_cgroup_page_lruvec(head, zone->zone_pgdat);
e9b61f19
KS
2435
2436 /* complete memcg works before add pages to LRU */
2437 mem_cgroup_split_huge_fixup(head);
2438
baa355fd 2439 for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
8df651c7 2440 __split_huge_page_tail(head, i, lruvec, list);
baa355fd
KS
2441 /* Some pages can be beyond i_size: drop them from page cache */
2442 if (head[i].index >= end) {
2d077d4b 2443 ClearPageDirty(head + i);
baa355fd 2444 __delete_from_page_cache(head + i, NULL);
800d8c63
KS
2445 if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
2446 shmem_uncharge(head->mapping->host, 1);
baa355fd
KS
2447 put_page(head + i);
2448 }
2449 }
e9b61f19
KS
2450
2451 ClearPageCompound(head);
baa355fd
KS
2452 /* See comment in __split_huge_page_tail() */
2453 if (PageAnon(head)) {
aa5dc07f 2454 /* Additional pin to swap cache */
38d8b4e6
HY
2455 if (PageSwapCache(head))
2456 page_ref_add(head, 2);
2457 else
2458 page_ref_inc(head);
baa355fd 2459 } else {
aa5dc07f 2460 /* Additional pin to page cache */
baa355fd 2461 page_ref_add(head, 2);
b93b0163 2462 xa_unlock(&head->mapping->i_pages);
baa355fd
KS
2463 }
2464
a52633d8 2465 spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
e9b61f19 2466
906f9cdf 2467 remap_page(head);
e9b61f19
KS
2468
2469 for (i = 0; i < HPAGE_PMD_NR; i++) {
2470 struct page *subpage = head + i;
2471 if (subpage == page)
2472 continue;
2473 unlock_page(subpage);
2474
2475 /*
2476 * Subpages may be freed if there wasn't any mapping
2477 * like if add_to_swap() is running on a lru page that
2478 * had its mapping zapped. And freeing these pages
2479 * requires taking the lru_lock so we do the put_page
2480 * of the tail pages after the split is complete.
2481 */
2482 put_page(subpage);
2483 }
2484}
2485
b20ce5e0
KS
2486int total_mapcount(struct page *page)
2487{
dd78fedd 2488 int i, compound, ret;
b20ce5e0
KS
2489
2490 VM_BUG_ON_PAGE(PageTail(page), page);
2491
2492 if (likely(!PageCompound(page)))
2493 return atomic_read(&page->_mapcount) + 1;
2494
dd78fedd 2495 compound = compound_mapcount(page);
b20ce5e0 2496 if (PageHuge(page))
dd78fedd
KS
2497 return compound;
2498 ret = compound;
b20ce5e0
KS
2499 for (i = 0; i < HPAGE_PMD_NR; i++)
2500 ret += atomic_read(&page[i]._mapcount) + 1;
dd78fedd
KS
2501 /* File pages has compound_mapcount included in _mapcount */
2502 if (!PageAnon(page))
2503 return ret - compound * HPAGE_PMD_NR;
b20ce5e0
KS
2504 if (PageDoubleMap(page))
2505 ret -= HPAGE_PMD_NR;
2506 return ret;
2507}
2508
6d0a07ed
AA
2509/*
2510 * This calculates accurately how many mappings a transparent hugepage
2511 * has (unlike page_mapcount() which isn't fully accurate). This full
2512 * accuracy is primarily needed to know if copy-on-write faults can
2513 * reuse the page and change the mapping to read-write instead of
2514 * copying them. At the same time this returns the total_mapcount too.
2515 *
2516 * The function returns the highest mapcount any one of the subpages
2517 * has. If the return value is one, even if different processes are
2518 * mapping different subpages of the transparent hugepage, they can
2519 * all reuse it, because each process is reusing a different subpage.
2520 *
2521 * The total_mapcount is instead counting all virtual mappings of the
2522 * subpages. If the total_mapcount is equal to "one", it tells the
2523 * caller all mappings belong to the same "mm" and in turn the
2524 * anon_vma of the transparent hugepage can become the vma->anon_vma
2525 * local one as no other process may be mapping any of the subpages.
2526 *
2527 * It would be more accurate to replace page_mapcount() with
2528 * page_trans_huge_mapcount(), however we only use
2529 * page_trans_huge_mapcount() in the copy-on-write faults where we
2530 * need full accuracy to avoid breaking page pinning, because
2531 * page_trans_huge_mapcount() is slower than page_mapcount().
2532 */
2533int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
2534{
2535 int i, ret, _total_mapcount, mapcount;
2536
2537 /* hugetlbfs shouldn't call it */
2538 VM_BUG_ON_PAGE(PageHuge(page), page);
2539
2540 if (likely(!PageTransCompound(page))) {
2541 mapcount = atomic_read(&page->_mapcount) + 1;
2542 if (total_mapcount)
2543 *total_mapcount = mapcount;
2544 return mapcount;
2545 }
2546
2547 page = compound_head(page);
2548
2549 _total_mapcount = ret = 0;
2550 for (i = 0; i < HPAGE_PMD_NR; i++) {
2551 mapcount = atomic_read(&page[i]._mapcount) + 1;
2552 ret = max(ret, mapcount);
2553 _total_mapcount += mapcount;
2554 }
2555 if (PageDoubleMap(page)) {
2556 ret -= 1;
2557 _total_mapcount -= HPAGE_PMD_NR;
2558 }
2559 mapcount = compound_mapcount(page);
2560 ret += mapcount;
2561 _total_mapcount += mapcount;
2562 if (total_mapcount)
2563 *total_mapcount = _total_mapcount;
2564 return ret;
2565}
2566
b8f593cd
HY
2567/* Racy check whether the huge page can be split */
2568bool can_split_huge_page(struct page *page, int *pextra_pins)
2569{
2570 int extra_pins;
2571
aa5dc07f 2572 /* Additional pins from page cache */
b8f593cd
HY
2573 if (PageAnon(page))
2574 extra_pins = PageSwapCache(page) ? HPAGE_PMD_NR : 0;
2575 else
2576 extra_pins = HPAGE_PMD_NR;
2577 if (pextra_pins)
2578 *pextra_pins = extra_pins;
2579 return total_mapcount(page) == page_count(page) - extra_pins - 1;
2580}
2581
e9b61f19
KS
2582/*
2583 * This function splits huge page into normal pages. @page can point to any
2584 * subpage of huge page to split. Split doesn't change the position of @page.
2585 *
2586 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2587 * The huge page must be locked.
2588 *
2589 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2590 *
2591 * Both head page and tail pages will inherit mapping, flags, and so on from
2592 * the hugepage.
2593 *
2594 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2595 * they are not mapped.
2596 *
2597 * Returns 0 if the hugepage is split successfully.
2598 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2599 * us.
2600 */
2601int split_huge_page_to_list(struct page *page, struct list_head *list)
2602{
2603 struct page *head = compound_head(page);
a3d0a918 2604 struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
baa355fd
KS
2605 struct anon_vma *anon_vma = NULL;
2606 struct address_space *mapping = NULL;
2607 int count, mapcount, extra_pins, ret;
d9654322 2608 bool mlocked;
0b9b6fff 2609 unsigned long flags;
006d3ff2 2610 pgoff_t end;
e9b61f19
KS
2611
2612 VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
e9b61f19 2613 VM_BUG_ON_PAGE(!PageLocked(page), page);
e9b61f19
KS
2614 VM_BUG_ON_PAGE(!PageCompound(page), page);
2615
59807685
HY
2616 if (PageWriteback(page))
2617 return -EBUSY;
2618
baa355fd
KS
2619 if (PageAnon(head)) {
2620 /*
2621 * The caller does not necessarily hold an mmap_sem that would
2622 * prevent the anon_vma disappearing so we first we take a
2623 * reference to it and then lock the anon_vma for write. This
2624 * is similar to page_lock_anon_vma_read except the write lock
2625 * is taken to serialise against parallel split or collapse
2626 * operations.
2627 */
2628 anon_vma = page_get_anon_vma(head);
2629 if (!anon_vma) {
2630 ret = -EBUSY;
2631 goto out;
2632 }
006d3ff2 2633 end = -1;
baa355fd
KS
2634 mapping = NULL;
2635 anon_vma_lock_write(anon_vma);
2636 } else {
2637 mapping = head->mapping;
2638
2639 /* Truncated ? */
2640 if (!mapping) {
2641 ret = -EBUSY;
2642 goto out;
2643 }
2644
baa355fd
KS
2645 anon_vma = NULL;
2646 i_mmap_lock_read(mapping);
006d3ff2
HD
2647
2648 /*
2649 *__split_huge_page() may need to trim off pages beyond EOF:
2650 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
2651 * which cannot be nested inside the page tree lock. So note
2652 * end now: i_size itself may be changed at any moment, but
2653 * head page lock is good enough to serialize the trimming.
2654 */
2655 end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
e9b61f19 2656 }
e9b61f19
KS
2657
2658 /*
906f9cdf 2659 * Racy check if we can split the page, before unmap_page() will
e9b61f19
KS
2660 * split PMDs
2661 */
b8f593cd 2662 if (!can_split_huge_page(head, &extra_pins)) {
e9b61f19
KS
2663 ret = -EBUSY;
2664 goto out_unlock;
2665 }
2666
d9654322 2667 mlocked = PageMlocked(page);
906f9cdf 2668 unmap_page(head);
e9b61f19
KS
2669 VM_BUG_ON_PAGE(compound_mapcount(head), head);
2670
d9654322
KS
2671 /* Make sure the page is not on per-CPU pagevec as it takes pin */
2672 if (mlocked)
2673 lru_add_drain();
2674
baa355fd 2675 /* prevent PageLRU to go away from under us, and freeze lru stats */
a52633d8 2676 spin_lock_irqsave(zone_lru_lock(page_zone(head)), flags);
baa355fd
KS
2677
2678 if (mapping) {
aa5dc07f 2679 XA_STATE(xas, &mapping->i_pages, page_index(head));
baa355fd 2680
baa355fd 2681 /*
aa5dc07f 2682 * Check if the head page is present in page cache.
baa355fd
KS
2683 * We assume all tail are present too, if head is there.
2684 */
aa5dc07f
MW
2685 xa_lock(&mapping->i_pages);
2686 if (xas_load(&xas) != head)
baa355fd
KS
2687 goto fail;
2688 }
2689
0139aa7b 2690 /* Prevent deferred_split_scan() touching ->_refcount */
baa355fd 2691 spin_lock(&pgdata->split_queue_lock);
e9b61f19
KS
2692 count = page_count(head);
2693 mapcount = total_mapcount(head);
baa355fd 2694 if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
9a982250 2695 if (!list_empty(page_deferred_list(head))) {
a3d0a918 2696 pgdata->split_queue_len--;
9a982250
KS
2697 list_del(page_deferred_list(head));
2698 }
65c45377 2699 if (mapping)
11fb9989 2700 __dec_node_page_state(page, NR_SHMEM_THPS);
baa355fd 2701 spin_unlock(&pgdata->split_queue_lock);
006d3ff2 2702 __split_huge_page(page, list, end, flags);
59807685
HY
2703 if (PageSwapCache(head)) {
2704 swp_entry_t entry = { .val = page_private(head) };
2705
2706 ret = split_swap_cluster(entry);
2707 } else
2708 ret = 0;
e9b61f19 2709 } else {
baa355fd
KS
2710 if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
2711 pr_alert("total_mapcount: %u, page_count(): %u\n",
2712 mapcount, count);
2713 if (PageTail(page))
2714 dump_page(head, NULL);
2715 dump_page(page, "total_mapcount(head) > 0");
2716 BUG();
2717 }
2718 spin_unlock(&pgdata->split_queue_lock);
2719fail: if (mapping)
b93b0163 2720 xa_unlock(&mapping->i_pages);
a52633d8 2721 spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
906f9cdf 2722 remap_page(head);
e9b61f19
KS
2723 ret = -EBUSY;
2724 }
2725
2726out_unlock:
baa355fd
KS
2727 if (anon_vma) {
2728 anon_vma_unlock_write(anon_vma);
2729 put_anon_vma(anon_vma);
2730 }
2731 if (mapping)
2732 i_mmap_unlock_read(mapping);
e9b61f19
KS
2733out:
2734 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2735 return ret;
2736}
9a982250
KS
2737
2738void free_transhuge_page(struct page *page)
2739{
a3d0a918 2740 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
9a982250
KS
2741 unsigned long flags;
2742
a3d0a918 2743 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
9a982250 2744 if (!list_empty(page_deferred_list(page))) {
a3d0a918 2745 pgdata->split_queue_len--;
9a982250
KS
2746 list_del(page_deferred_list(page));
2747 }
a3d0a918 2748 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
9a982250
KS
2749 free_compound_page(page);
2750}
2751
2752void deferred_split_huge_page(struct page *page)
2753{
a3d0a918 2754 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
9a982250
KS
2755 unsigned long flags;
2756
2757 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2758
a3d0a918 2759 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
9a982250 2760 if (list_empty(page_deferred_list(page))) {
f9719a03 2761 count_vm_event(THP_DEFERRED_SPLIT_PAGE);
a3d0a918
KS
2762 list_add_tail(page_deferred_list(page), &pgdata->split_queue);
2763 pgdata->split_queue_len++;
9a982250 2764 }
a3d0a918 2765 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
9a982250
KS
2766}
2767
2768static unsigned long deferred_split_count(struct shrinker *shrink,
2769 struct shrink_control *sc)
2770{
a3d0a918 2771 struct pglist_data *pgdata = NODE_DATA(sc->nid);
6aa7de05 2772 return READ_ONCE(pgdata->split_queue_len);
9a982250
KS
2773}
2774
2775static unsigned long deferred_split_scan(struct shrinker *shrink,
2776 struct shrink_control *sc)
2777{
a3d0a918 2778 struct pglist_data *pgdata = NODE_DATA(sc->nid);
9a982250
KS
2779 unsigned long flags;
2780 LIST_HEAD(list), *pos, *next;
2781 struct page *page;
2782 int split = 0;
2783
a3d0a918 2784 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
9a982250 2785 /* Take pin on all head pages to avoid freeing them under us */
ae026204 2786 list_for_each_safe(pos, next, &pgdata->split_queue) {
9a982250
KS
2787 page = list_entry((void *)pos, struct page, mapping);
2788 page = compound_head(page);
e3ae1953
KS
2789 if (get_page_unless_zero(page)) {
2790 list_move(page_deferred_list(page), &list);
2791 } else {
2792 /* We lost race with put_compound_page() */
9a982250 2793 list_del_init(page_deferred_list(page));
a3d0a918 2794 pgdata->split_queue_len--;
9a982250 2795 }
e3ae1953
KS
2796 if (!--sc->nr_to_scan)
2797 break;
9a982250 2798 }
a3d0a918 2799 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
9a982250
KS
2800
2801 list_for_each_safe(pos, next, &list) {
2802 page = list_entry((void *)pos, struct page, mapping);
fa41b900
KS
2803 if (!trylock_page(page))
2804 goto next;
9a982250
KS
2805 /* split_huge_page() removes page from list on success */
2806 if (!split_huge_page(page))
2807 split++;
2808 unlock_page(page);
fa41b900 2809next:
9a982250
KS
2810 put_page(page);
2811 }
2812
a3d0a918
KS
2813 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2814 list_splice_tail(&list, &pgdata->split_queue);
2815 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
9a982250 2816
cb8d68ec
KS
2817 /*
2818 * Stop shrinker if we didn't split any page, but the queue is empty.
2819 * This can happen if pages were freed under us.
2820 */
2821 if (!split && list_empty(&pgdata->split_queue))
2822 return SHRINK_STOP;
2823 return split;
9a982250
KS
2824}
2825
2826static struct shrinker deferred_split_shrinker = {
2827 .count_objects = deferred_split_count,
2828 .scan_objects = deferred_split_scan,
2829 .seeks = DEFAULT_SEEKS,
a3d0a918 2830 .flags = SHRINKER_NUMA_AWARE,
9a982250 2831};
49071d43
KS
2832
2833#ifdef CONFIG_DEBUG_FS
2834static int split_huge_pages_set(void *data, u64 val)
2835{
2836 struct zone *zone;
2837 struct page *page;
2838 unsigned long pfn, max_zone_pfn;
2839 unsigned long total = 0, split = 0;
2840
2841 if (val != 1)
2842 return -EINVAL;
2843
2844 for_each_populated_zone(zone) {
2845 max_zone_pfn = zone_end_pfn(zone);
2846 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2847 if (!pfn_valid(pfn))
2848 continue;
2849
2850 page = pfn_to_page(pfn);
2851 if (!get_page_unless_zero(page))
2852 continue;
2853
2854 if (zone != page_zone(page))
2855 goto next;
2856
baa355fd 2857 if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
49071d43
KS
2858 goto next;
2859
2860 total++;
2861 lock_page(page);
2862 if (!split_huge_page(page))
2863 split++;
2864 unlock_page(page);
2865next:
2866 put_page(page);
2867 }
2868 }
2869
145bdaa1 2870 pr_info("%lu of %lu THP split\n", split, total);
49071d43
KS
2871
2872 return 0;
2873}
2874DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
2875 "%llu\n");
2876
2877static int __init split_huge_pages_debugfs(void)
2878{
2879 void *ret;
2880
145bdaa1 2881 ret = debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
49071d43
KS
2882 &split_huge_pages_fops);
2883 if (!ret)
2884 pr_warn("Failed to create split_huge_pages in debugfs");
2885 return 0;
2886}
2887late_initcall(split_huge_pages_debugfs);
2888#endif
616b8371
ZY
2889
2890#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2891void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
2892 struct page *page)
2893{
2894 struct vm_area_struct *vma = pvmw->vma;
2895 struct mm_struct *mm = vma->vm_mm;
2896 unsigned long address = pvmw->address;
2897 pmd_t pmdval;
2898 swp_entry_t entry;
ab6e3d09 2899 pmd_t pmdswp;
616b8371
ZY
2900
2901 if (!(pvmw->pmd && !pvmw->pte))
2902 return;
2903
616b8371
ZY
2904 flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
2905 pmdval = *pvmw->pmd;
2906 pmdp_invalidate(vma, address, pvmw->pmd);
2907 if (pmd_dirty(pmdval))
2908 set_page_dirty(page);
2909 entry = make_migration_entry(page, pmd_write(pmdval));
ab6e3d09
NH
2910 pmdswp = swp_entry_to_pmd(entry);
2911 if (pmd_soft_dirty(pmdval))
2912 pmdswp = pmd_swp_mksoft_dirty(pmdswp);
2913 set_pmd_at(mm, address, pvmw->pmd, pmdswp);
616b8371
ZY
2914 page_remove_rmap(page, true);
2915 put_page(page);
616b8371
ZY
2916}
2917
2918void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
2919{
2920 struct vm_area_struct *vma = pvmw->vma;
2921 struct mm_struct *mm = vma->vm_mm;
2922 unsigned long address = pvmw->address;
2923 unsigned long mmun_start = address & HPAGE_PMD_MASK;
2924 pmd_t pmde;
2925 swp_entry_t entry;
2926
2927 if (!(pvmw->pmd && !pvmw->pte))
2928 return;
2929
2930 entry = pmd_to_swp_entry(*pvmw->pmd);
2931 get_page(new);
2932 pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
ab6e3d09
NH
2933 if (pmd_swp_soft_dirty(*pvmw->pmd))
2934 pmde = pmd_mksoft_dirty(pmde);
616b8371 2935 if (is_write_migration_entry(entry))
f55e1014 2936 pmde = maybe_pmd_mkwrite(pmde, vma);
616b8371
ZY
2937
2938 flush_cache_range(vma, mmun_start, mmun_start + HPAGE_PMD_SIZE);
e71769ae
NH
2939 if (PageAnon(new))
2940 page_add_anon_rmap(new, vma, mmun_start, true);
2941 else
2942 page_add_file_rmap(new, true);
616b8371 2943 set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
e125fe40 2944 if ((vma->vm_flags & VM_LOCKED) && !PageDoubleMap(new))
616b8371
ZY
2945 mlock_vma_page(new);
2946 update_mmu_cache_pmd(vma, address, pvmw->pmd);
2947}
2948#endif