Revert "Revert "mm, thp: consolidate THP gfp handling into alloc_hugepage_direct_gfpm...
[linux-block.git] / mm / huge_memory.c
CommitLineData
20c8ccb1 1// SPDX-License-Identifier: GPL-2.0-only
71e3aac0
AA
2/*
3 * Copyright (C) 2009 Red Hat, Inc.
71e3aac0
AA
4 */
5
ae3a8c1c
AM
6#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7
71e3aac0
AA
8#include <linux/mm.h>
9#include <linux/sched.h>
f7ccbae4 10#include <linux/sched/coredump.h>
6a3827d7 11#include <linux/sched/numa_balancing.h>
71e3aac0
AA
12#include <linux/highmem.h>
13#include <linux/hugetlb.h>
14#include <linux/mmu_notifier.h>
15#include <linux/rmap.h>
16#include <linux/swap.h>
97ae1749 17#include <linux/shrinker.h>
ba76149f 18#include <linux/mm_inline.h>
e9b61f19 19#include <linux/swapops.h>
4897c765 20#include <linux/dax.h>
ba76149f 21#include <linux/khugepaged.h>
878aee7d 22#include <linux/freezer.h>
f25748e3 23#include <linux/pfn_t.h>
a664b2d8 24#include <linux/mman.h>
3565fce3 25#include <linux/memremap.h>
325adeb5 26#include <linux/pagemap.h>
49071d43 27#include <linux/debugfs.h>
4daae3b4 28#include <linux/migrate.h>
43b5fbbd 29#include <linux/hashtable.h>
6b251fc9 30#include <linux/userfaultfd_k.h>
33c3fc71 31#include <linux/page_idle.h>
baa355fd 32#include <linux/shmem_fs.h>
6b31d595 33#include <linux/oom.h>
98fa15f3 34#include <linux/numa.h>
97ae1749 35
71e3aac0
AA
36#include <asm/tlb.h>
37#include <asm/pgalloc.h>
38#include "internal.h"
39
ba76149f 40/*
b14d595a
MD
41 * By default, transparent hugepage support is disabled in order to avoid
42 * risking an increased memory footprint for applications that are not
43 * guaranteed to benefit from it. When transparent hugepage support is
44 * enabled, it is for all mappings, and khugepaged scans all mappings.
8bfa3f9a
JW
45 * Defrag is invoked by khugepaged hugepage allocations and by page faults
46 * for all hugepage allocations.
ba76149f 47 */
71e3aac0 48unsigned long transparent_hugepage_flags __read_mostly =
13ece886 49#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
ba76149f 50 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
13ece886
AA
51#endif
52#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
53 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
54#endif
444eb2a4 55 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
79da5407
KS
56 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
57 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
ba76149f 58
9a982250 59static struct shrinker deferred_split_shrinker;
f000565a 60
97ae1749 61static atomic_t huge_zero_refcount;
56873f43 62struct page *huge_zero_page __read_mostly;
4a6c1297 63
7635d9cb
MH
64bool transparent_hugepage_enabled(struct vm_area_struct *vma)
65{
c0630669
YS
66 /* The addr is used to check if the vma size fits */
67 unsigned long addr = (vma->vm_end & HPAGE_PMD_MASK) - HPAGE_PMD_SIZE;
68
69 if (!transhuge_vma_suitable(vma, addr))
70 return false;
7635d9cb
MH
71 if (vma_is_anonymous(vma))
72 return __transparent_hugepage_enabled(vma);
c0630669
YS
73 if (vma_is_shmem(vma))
74 return shmem_huge_enabled(vma);
7635d9cb
MH
75
76 return false;
77}
78
6fcb52a5 79static struct page *get_huge_zero_page(void)
97ae1749
KS
80{
81 struct page *zero_page;
82retry:
83 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
4db0c3c2 84 return READ_ONCE(huge_zero_page);
97ae1749
KS
85
86 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
4a6c1297 87 HPAGE_PMD_ORDER);
d8a8e1f0
KS
88 if (!zero_page) {
89 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
5918d10a 90 return NULL;
d8a8e1f0
KS
91 }
92 count_vm_event(THP_ZERO_PAGE_ALLOC);
97ae1749 93 preempt_disable();
5918d10a 94 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
97ae1749 95 preempt_enable();
5ddacbe9 96 __free_pages(zero_page, compound_order(zero_page));
97ae1749
KS
97 goto retry;
98 }
99
100 /* We take additional reference here. It will be put back by shrinker */
101 atomic_set(&huge_zero_refcount, 2);
102 preempt_enable();
4db0c3c2 103 return READ_ONCE(huge_zero_page);
4a6c1297
KS
104}
105
6fcb52a5 106static void put_huge_zero_page(void)
4a6c1297 107{
97ae1749
KS
108 /*
109 * Counter should never go to zero here. Only shrinker can put
110 * last reference.
111 */
112 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
4a6c1297
KS
113}
114
6fcb52a5
AL
115struct page *mm_get_huge_zero_page(struct mm_struct *mm)
116{
117 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
118 return READ_ONCE(huge_zero_page);
119
120 if (!get_huge_zero_page())
121 return NULL;
122
123 if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
124 put_huge_zero_page();
125
126 return READ_ONCE(huge_zero_page);
127}
128
129void mm_put_huge_zero_page(struct mm_struct *mm)
130{
131 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
132 put_huge_zero_page();
133}
134
48896466
GC
135static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
136 struct shrink_control *sc)
4a6c1297 137{
48896466
GC
138 /* we can free zero page only if last reference remains */
139 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
140}
97ae1749 141
48896466
GC
142static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
143 struct shrink_control *sc)
144{
97ae1749 145 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
5918d10a
KS
146 struct page *zero_page = xchg(&huge_zero_page, NULL);
147 BUG_ON(zero_page == NULL);
5ddacbe9 148 __free_pages(zero_page, compound_order(zero_page));
48896466 149 return HPAGE_PMD_NR;
97ae1749
KS
150 }
151
152 return 0;
4a6c1297
KS
153}
154
97ae1749 155static struct shrinker huge_zero_page_shrinker = {
48896466
GC
156 .count_objects = shrink_huge_zero_page_count,
157 .scan_objects = shrink_huge_zero_page_scan,
97ae1749
KS
158 .seeks = DEFAULT_SEEKS,
159};
160
71e3aac0 161#ifdef CONFIG_SYSFS
71e3aac0
AA
162static ssize_t enabled_show(struct kobject *kobj,
163 struct kobj_attribute *attr, char *buf)
164{
444eb2a4
MG
165 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
166 return sprintf(buf, "[always] madvise never\n");
167 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
168 return sprintf(buf, "always [madvise] never\n");
169 else
170 return sprintf(buf, "always madvise [never]\n");
71e3aac0 171}
444eb2a4 172
71e3aac0
AA
173static ssize_t enabled_store(struct kobject *kobj,
174 struct kobj_attribute *attr,
175 const char *buf, size_t count)
176{
21440d7e 177 ssize_t ret = count;
ba76149f 178
21440d7e
DR
179 if (!memcmp("always", buf,
180 min(sizeof("always")-1, count))) {
181 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
182 set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
183 } else if (!memcmp("madvise", buf,
184 min(sizeof("madvise")-1, count))) {
185 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
186 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
187 } else if (!memcmp("never", buf,
188 min(sizeof("never")-1, count))) {
189 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
190 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
191 } else
192 ret = -EINVAL;
ba76149f
AA
193
194 if (ret > 0) {
b46e756f 195 int err = start_stop_khugepaged();
ba76149f
AA
196 if (err)
197 ret = err;
198 }
ba76149f 199 return ret;
71e3aac0
AA
200}
201static struct kobj_attribute enabled_attr =
202 __ATTR(enabled, 0644, enabled_show, enabled_store);
203
b46e756f 204ssize_t single_hugepage_flag_show(struct kobject *kobj,
71e3aac0
AA
205 struct kobj_attribute *attr, char *buf,
206 enum transparent_hugepage_flag flag)
207{
e27e6151
BH
208 return sprintf(buf, "%d\n",
209 !!test_bit(flag, &transparent_hugepage_flags));
71e3aac0 210}
e27e6151 211
b46e756f 212ssize_t single_hugepage_flag_store(struct kobject *kobj,
71e3aac0
AA
213 struct kobj_attribute *attr,
214 const char *buf, size_t count,
215 enum transparent_hugepage_flag flag)
216{
e27e6151
BH
217 unsigned long value;
218 int ret;
219
220 ret = kstrtoul(buf, 10, &value);
221 if (ret < 0)
222 return ret;
223 if (value > 1)
224 return -EINVAL;
225
226 if (value)
71e3aac0 227 set_bit(flag, &transparent_hugepage_flags);
e27e6151 228 else
71e3aac0 229 clear_bit(flag, &transparent_hugepage_flags);
71e3aac0
AA
230
231 return count;
232}
233
71e3aac0
AA
234static ssize_t defrag_show(struct kobject *kobj,
235 struct kobj_attribute *attr, char *buf)
236{
444eb2a4 237 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
21440d7e 238 return sprintf(buf, "[always] defer defer+madvise madvise never\n");
444eb2a4 239 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
21440d7e
DR
240 return sprintf(buf, "always [defer] defer+madvise madvise never\n");
241 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
242 return sprintf(buf, "always defer [defer+madvise] madvise never\n");
243 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
244 return sprintf(buf, "always defer defer+madvise [madvise] never\n");
245 return sprintf(buf, "always defer defer+madvise madvise [never]\n");
71e3aac0 246}
21440d7e 247
71e3aac0
AA
248static ssize_t defrag_store(struct kobject *kobj,
249 struct kobj_attribute *attr,
250 const char *buf, size_t count)
251{
21440d7e
DR
252 if (!memcmp("always", buf,
253 min(sizeof("always")-1, count))) {
254 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
255 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
256 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
257 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
21440d7e
DR
258 } else if (!memcmp("defer+madvise", buf,
259 min(sizeof("defer+madvise")-1, count))) {
260 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
261 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
262 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
263 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
4fad7fb6
DR
264 } else if (!memcmp("defer", buf,
265 min(sizeof("defer")-1, count))) {
266 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
267 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
268 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
269 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
21440d7e
DR
270 } else if (!memcmp("madvise", buf,
271 min(sizeof("madvise")-1, count))) {
272 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
273 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
274 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
275 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
276 } else if (!memcmp("never", buf,
277 min(sizeof("never")-1, count))) {
278 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
279 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
280 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
281 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
282 } else
283 return -EINVAL;
284
285 return count;
71e3aac0
AA
286}
287static struct kobj_attribute defrag_attr =
288 __ATTR(defrag, 0644, defrag_show, defrag_store);
289
79da5407
KS
290static ssize_t use_zero_page_show(struct kobject *kobj,
291 struct kobj_attribute *attr, char *buf)
292{
b46e756f 293 return single_hugepage_flag_show(kobj, attr, buf,
79da5407
KS
294 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
295}
296static ssize_t use_zero_page_store(struct kobject *kobj,
297 struct kobj_attribute *attr, const char *buf, size_t count)
298{
b46e756f 299 return single_hugepage_flag_store(kobj, attr, buf, count,
79da5407
KS
300 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
301}
302static struct kobj_attribute use_zero_page_attr =
303 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
49920d28
HD
304
305static ssize_t hpage_pmd_size_show(struct kobject *kobj,
306 struct kobj_attribute *attr, char *buf)
307{
308 return sprintf(buf, "%lu\n", HPAGE_PMD_SIZE);
309}
310static struct kobj_attribute hpage_pmd_size_attr =
311 __ATTR_RO(hpage_pmd_size);
312
71e3aac0
AA
313#ifdef CONFIG_DEBUG_VM
314static ssize_t debug_cow_show(struct kobject *kobj,
315 struct kobj_attribute *attr, char *buf)
316{
b46e756f 317 return single_hugepage_flag_show(kobj, attr, buf,
71e3aac0
AA
318 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
319}
320static ssize_t debug_cow_store(struct kobject *kobj,
321 struct kobj_attribute *attr,
322 const char *buf, size_t count)
323{
b46e756f 324 return single_hugepage_flag_store(kobj, attr, buf, count,
71e3aac0
AA
325 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
326}
327static struct kobj_attribute debug_cow_attr =
328 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
329#endif /* CONFIG_DEBUG_VM */
330
331static struct attribute *hugepage_attr[] = {
332 &enabled_attr.attr,
333 &defrag_attr.attr,
79da5407 334 &use_zero_page_attr.attr,
49920d28 335 &hpage_pmd_size_attr.attr,
e496cf3d 336#if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
5a6e75f8
KS
337 &shmem_enabled_attr.attr,
338#endif
71e3aac0
AA
339#ifdef CONFIG_DEBUG_VM
340 &debug_cow_attr.attr,
341#endif
342 NULL,
343};
344
8aa95a21 345static const struct attribute_group hugepage_attr_group = {
71e3aac0 346 .attrs = hugepage_attr,
ba76149f
AA
347};
348
569e5590 349static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
71e3aac0 350{
71e3aac0
AA
351 int err;
352
569e5590
SL
353 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
354 if (unlikely(!*hugepage_kobj)) {
ae3a8c1c 355 pr_err("failed to create transparent hugepage kobject\n");
569e5590 356 return -ENOMEM;
ba76149f
AA
357 }
358
569e5590 359 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
ba76149f 360 if (err) {
ae3a8c1c 361 pr_err("failed to register transparent hugepage group\n");
569e5590 362 goto delete_obj;
ba76149f
AA
363 }
364
569e5590 365 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
ba76149f 366 if (err) {
ae3a8c1c 367 pr_err("failed to register transparent hugepage group\n");
569e5590 368 goto remove_hp_group;
ba76149f 369 }
569e5590
SL
370
371 return 0;
372
373remove_hp_group:
374 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
375delete_obj:
376 kobject_put(*hugepage_kobj);
377 return err;
378}
379
380static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
381{
382 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
383 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
384 kobject_put(hugepage_kobj);
385}
386#else
387static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
388{
389 return 0;
390}
391
392static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
393{
394}
395#endif /* CONFIG_SYSFS */
396
397static int __init hugepage_init(void)
398{
399 int err;
400 struct kobject *hugepage_kobj;
401
402 if (!has_transparent_hugepage()) {
403 transparent_hugepage_flags = 0;
404 return -EINVAL;
405 }
406
ff20c2e0
KS
407 /*
408 * hugepages can't be allocated by the buddy allocator
409 */
410 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
411 /*
412 * we use page->mapping and page->index in second tail page
413 * as list_head: assuming THP order >= 2
414 */
415 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
416
569e5590
SL
417 err = hugepage_init_sysfs(&hugepage_kobj);
418 if (err)
65ebb64f 419 goto err_sysfs;
ba76149f 420
b46e756f 421 err = khugepaged_init();
ba76149f 422 if (err)
65ebb64f 423 goto err_slab;
ba76149f 424
65ebb64f
KS
425 err = register_shrinker(&huge_zero_page_shrinker);
426 if (err)
427 goto err_hzp_shrinker;
9a982250
KS
428 err = register_shrinker(&deferred_split_shrinker);
429 if (err)
430 goto err_split_shrinker;
97ae1749 431
97562cd2
RR
432 /*
433 * By default disable transparent hugepages on smaller systems,
434 * where the extra memory used could hurt more than TLB overhead
435 * is likely to save. The admin can still enable it through /sys.
436 */
ca79b0c2 437 if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
97562cd2 438 transparent_hugepage_flags = 0;
79553da2
KS
439 return 0;
440 }
97562cd2 441
79553da2 442 err = start_stop_khugepaged();
65ebb64f
KS
443 if (err)
444 goto err_khugepaged;
ba76149f 445
569e5590 446 return 0;
65ebb64f 447err_khugepaged:
9a982250
KS
448 unregister_shrinker(&deferred_split_shrinker);
449err_split_shrinker:
65ebb64f
KS
450 unregister_shrinker(&huge_zero_page_shrinker);
451err_hzp_shrinker:
b46e756f 452 khugepaged_destroy();
65ebb64f 453err_slab:
569e5590 454 hugepage_exit_sysfs(hugepage_kobj);
65ebb64f 455err_sysfs:
ba76149f 456 return err;
71e3aac0 457}
a64fb3cd 458subsys_initcall(hugepage_init);
71e3aac0
AA
459
460static int __init setup_transparent_hugepage(char *str)
461{
462 int ret = 0;
463 if (!str)
464 goto out;
465 if (!strcmp(str, "always")) {
466 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
467 &transparent_hugepage_flags);
468 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
469 &transparent_hugepage_flags);
470 ret = 1;
471 } else if (!strcmp(str, "madvise")) {
472 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
473 &transparent_hugepage_flags);
474 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
475 &transparent_hugepage_flags);
476 ret = 1;
477 } else if (!strcmp(str, "never")) {
478 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
479 &transparent_hugepage_flags);
480 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
481 &transparent_hugepage_flags);
482 ret = 1;
483 }
484out:
485 if (!ret)
ae3a8c1c 486 pr_warn("transparent_hugepage= cannot parse, ignored\n");
71e3aac0
AA
487 return ret;
488}
489__setup("transparent_hugepage=", setup_transparent_hugepage);
490
f55e1014 491pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
71e3aac0 492{
f55e1014 493 if (likely(vma->vm_flags & VM_WRITE))
71e3aac0
AA
494 pmd = pmd_mkwrite(pmd);
495 return pmd;
496}
497
9a982250
KS
498static inline struct list_head *page_deferred_list(struct page *page)
499{
fa3015b7
MW
500 /* ->lru in the tail pages is occupied by compound_head. */
501 return &page[2].deferred_list;
9a982250
KS
502}
503
504void prep_transhuge_page(struct page *page)
505{
506 /*
507 * we use page->mapping and page->indexlru in second tail page
508 * as list_head: assuming THP order >= 2
509 */
9a982250
KS
510
511 INIT_LIST_HEAD(page_deferred_list(page));
512 set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
513}
514
b3b07077 515static unsigned long __thp_get_unmapped_area(struct file *filp, unsigned long len,
74d2fad1
TK
516 loff_t off, unsigned long flags, unsigned long size)
517{
518 unsigned long addr;
519 loff_t off_end = off + len;
520 loff_t off_align = round_up(off, size);
521 unsigned long len_pad;
522
523 if (off_end <= off_align || (off_end - off_align) < size)
524 return 0;
525
526 len_pad = len + size;
527 if (len_pad < len || (off + len_pad) < off)
528 return 0;
529
530 addr = current->mm->get_unmapped_area(filp, 0, len_pad,
531 off >> PAGE_SHIFT, flags);
532 if (IS_ERR_VALUE(addr))
533 return 0;
534
535 addr += (off - addr) & (size - 1);
536 return addr;
537}
538
539unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
540 unsigned long len, unsigned long pgoff, unsigned long flags)
541{
542 loff_t off = (loff_t)pgoff << PAGE_SHIFT;
543
544 if (addr)
545 goto out;
546 if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
547 goto out;
548
549 addr = __thp_get_unmapped_area(filp, len, off, flags, PMD_SIZE);
550 if (addr)
551 return addr;
552
553 out:
554 return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
555}
556EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
557
2b740303
SJ
558static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
559 struct page *page, gfp_t gfp)
71e3aac0 560{
82b0f8c3 561 struct vm_area_struct *vma = vmf->vma;
00501b53 562 struct mem_cgroup *memcg;
71e3aac0 563 pgtable_t pgtable;
82b0f8c3 564 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
2b740303 565 vm_fault_t ret = 0;
71e3aac0 566
309381fe 567 VM_BUG_ON_PAGE(!PageCompound(page), page);
00501b53 568
2cf85583 569 if (mem_cgroup_try_charge_delay(page, vma->vm_mm, gfp, &memcg, true)) {
6b251fc9
AA
570 put_page(page);
571 count_vm_event(THP_FAULT_FALLBACK);
572 return VM_FAULT_FALLBACK;
573 }
00501b53 574
4cf58924 575 pgtable = pte_alloc_one(vma->vm_mm);
00501b53 576 if (unlikely(!pgtable)) {
6b31d595
MH
577 ret = VM_FAULT_OOM;
578 goto release;
00501b53 579 }
71e3aac0 580
c79b57e4 581 clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
52f37629
MK
582 /*
583 * The memory barrier inside __SetPageUptodate makes sure that
584 * clear_huge_page writes become visible before the set_pmd_at()
585 * write.
586 */
71e3aac0
AA
587 __SetPageUptodate(page);
588
82b0f8c3
JK
589 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
590 if (unlikely(!pmd_none(*vmf->pmd))) {
6b31d595 591 goto unlock_release;
71e3aac0
AA
592 } else {
593 pmd_t entry;
6b251fc9 594
6b31d595
MH
595 ret = check_stable_address_space(vma->vm_mm);
596 if (ret)
597 goto unlock_release;
598
6b251fc9
AA
599 /* Deliver the page fault to userland */
600 if (userfaultfd_missing(vma)) {
2b740303 601 vm_fault_t ret2;
6b251fc9 602
82b0f8c3 603 spin_unlock(vmf->ptl);
f627c2f5 604 mem_cgroup_cancel_charge(page, memcg, true);
6b251fc9 605 put_page(page);
bae473a4 606 pte_free(vma->vm_mm, pgtable);
2b740303
SJ
607 ret2 = handle_userfault(vmf, VM_UFFD_MISSING);
608 VM_BUG_ON(ret2 & VM_FAULT_FALLBACK);
609 return ret2;
6b251fc9
AA
610 }
611
3122359a 612 entry = mk_huge_pmd(page, vma->vm_page_prot);
f55e1014 613 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
d281ee61 614 page_add_new_anon_rmap(page, vma, haddr, true);
f627c2f5 615 mem_cgroup_commit_charge(page, memcg, false, true);
00501b53 616 lru_cache_add_active_or_unevictable(page, vma);
82b0f8c3
JK
617 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
618 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
bae473a4 619 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
c4812909 620 mm_inc_nr_ptes(vma->vm_mm);
82b0f8c3 621 spin_unlock(vmf->ptl);
6b251fc9 622 count_vm_event(THP_FAULT_ALLOC);
1ff9e6e1 623 count_memcg_events(memcg, THP_FAULT_ALLOC, 1);
71e3aac0
AA
624 }
625
aa2e878e 626 return 0;
6b31d595
MH
627unlock_release:
628 spin_unlock(vmf->ptl);
629release:
630 if (pgtable)
631 pte_free(vma->vm_mm, pgtable);
632 mem_cgroup_cancel_charge(page, memcg, true);
633 put_page(page);
634 return ret;
635
71e3aac0
AA
636}
637
444eb2a4 638/*
21440d7e
DR
639 * always: directly stall for all thp allocations
640 * defer: wake kswapd and fail if not immediately available
641 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
642 * fail if not immediately available
643 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
644 * available
645 * never: never stall for any thp allocation
444eb2a4 646 */
92717d42 647static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma, unsigned long addr)
444eb2a4 648{
21440d7e 649 const bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
92717d42 650 const gfp_t gfp_mask = GFP_TRANSHUGE_LIGHT | __GFP_THISNODE;
25160354 651
2f0799a0 652 /* Always do synchronous compaction */
21440d7e 653 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
92717d42
AA
654 return GFP_TRANSHUGE | __GFP_THISNODE |
655 (vma_madvised ? 0 : __GFP_NORETRY);
2f0799a0
DR
656
657 /* Kick kcompactd and fail quickly */
21440d7e 658 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
92717d42 659 return gfp_mask | __GFP_KSWAPD_RECLAIM;
2f0799a0
DR
660
661 /* Synchronous compaction if madvised, otherwise kick kcompactd */
21440d7e 662 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
92717d42
AA
663 return gfp_mask | (vma_madvised ? __GFP_DIRECT_RECLAIM :
664 __GFP_KSWAPD_RECLAIM);
2f0799a0
DR
665
666 /* Only do synchronous compaction if madvised */
21440d7e 667 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
92717d42 668 return gfp_mask | (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
2f0799a0 669
92717d42 670 return gfp_mask;
444eb2a4
MG
671}
672
c4088ebd 673/* Caller must hold page table lock. */
d295e341 674static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
97ae1749 675 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
5918d10a 676 struct page *zero_page)
fc9fe822
KS
677{
678 pmd_t entry;
7c414164
AM
679 if (!pmd_none(*pmd))
680 return false;
5918d10a 681 entry = mk_pmd(zero_page, vma->vm_page_prot);
fc9fe822 682 entry = pmd_mkhuge(entry);
12c9d70b
MW
683 if (pgtable)
684 pgtable_trans_huge_deposit(mm, pmd, pgtable);
fc9fe822 685 set_pmd_at(mm, haddr, pmd, entry);
c4812909 686 mm_inc_nr_ptes(mm);
7c414164 687 return true;
fc9fe822
KS
688}
689
2b740303 690vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
71e3aac0 691{
82b0f8c3 692 struct vm_area_struct *vma = vmf->vma;
077fcf11 693 gfp_t gfp;
71e3aac0 694 struct page *page;
82b0f8c3 695 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
71e3aac0 696
43675e6f 697 if (!transhuge_vma_suitable(vma, haddr))
c0292554 698 return VM_FAULT_FALLBACK;
128ec037
KS
699 if (unlikely(anon_vma_prepare(vma)))
700 return VM_FAULT_OOM;
6d50e60c 701 if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
128ec037 702 return VM_FAULT_OOM;
82b0f8c3 703 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
bae473a4 704 !mm_forbids_zeropage(vma->vm_mm) &&
128ec037
KS
705 transparent_hugepage_use_zero_page()) {
706 pgtable_t pgtable;
707 struct page *zero_page;
708 bool set;
2b740303 709 vm_fault_t ret;
4cf58924 710 pgtable = pte_alloc_one(vma->vm_mm);
128ec037 711 if (unlikely(!pgtable))
ba76149f 712 return VM_FAULT_OOM;
6fcb52a5 713 zero_page = mm_get_huge_zero_page(vma->vm_mm);
128ec037 714 if (unlikely(!zero_page)) {
bae473a4 715 pte_free(vma->vm_mm, pgtable);
81ab4201 716 count_vm_event(THP_FAULT_FALLBACK);
c0292554 717 return VM_FAULT_FALLBACK;
b9bbfbe3 718 }
82b0f8c3 719 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
6b251fc9
AA
720 ret = 0;
721 set = false;
82b0f8c3 722 if (pmd_none(*vmf->pmd)) {
6b31d595
MH
723 ret = check_stable_address_space(vma->vm_mm);
724 if (ret) {
725 spin_unlock(vmf->ptl);
726 } else if (userfaultfd_missing(vma)) {
82b0f8c3
JK
727 spin_unlock(vmf->ptl);
728 ret = handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9
AA
729 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
730 } else {
bae473a4 731 set_huge_zero_page(pgtable, vma->vm_mm, vma,
82b0f8c3
JK
732 haddr, vmf->pmd, zero_page);
733 spin_unlock(vmf->ptl);
6b251fc9
AA
734 set = true;
735 }
736 } else
82b0f8c3 737 spin_unlock(vmf->ptl);
6fcb52a5 738 if (!set)
bae473a4 739 pte_free(vma->vm_mm, pgtable);
6b251fc9 740 return ret;
71e3aac0 741 }
92717d42
AA
742 gfp = alloc_hugepage_direct_gfpmask(vma, haddr);
743 page = alloc_pages_vma(gfp, HPAGE_PMD_ORDER, vma, haddr, numa_node_id());
128ec037
KS
744 if (unlikely(!page)) {
745 count_vm_event(THP_FAULT_FALLBACK);
c0292554 746 return VM_FAULT_FALLBACK;
128ec037 747 }
9a982250 748 prep_transhuge_page(page);
82b0f8c3 749 return __do_huge_pmd_anonymous_page(vmf, page, gfp);
71e3aac0
AA
750}
751
ae18d6dc 752static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
3b6521f5
OH
753 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
754 pgtable_t pgtable)
5cad465d
MW
755{
756 struct mm_struct *mm = vma->vm_mm;
757 pmd_t entry;
758 spinlock_t *ptl;
759
760 ptl = pmd_lock(mm, pmd);
c6f3c5ee
AK
761 if (!pmd_none(*pmd)) {
762 if (write) {
763 if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
764 WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
765 goto out_unlock;
766 }
767 entry = pmd_mkyoung(*pmd);
768 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
769 if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
770 update_mmu_cache_pmd(vma, addr, pmd);
771 }
772
773 goto out_unlock;
774 }
775
f25748e3
DW
776 entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
777 if (pfn_t_devmap(pfn))
778 entry = pmd_mkdevmap(entry);
01871e59 779 if (write) {
f55e1014
LT
780 entry = pmd_mkyoung(pmd_mkdirty(entry));
781 entry = maybe_pmd_mkwrite(entry, vma);
5cad465d 782 }
3b6521f5
OH
783
784 if (pgtable) {
785 pgtable_trans_huge_deposit(mm, pmd, pgtable);
c4812909 786 mm_inc_nr_ptes(mm);
c6f3c5ee 787 pgtable = NULL;
3b6521f5
OH
788 }
789
01871e59
RZ
790 set_pmd_at(mm, addr, pmd, entry);
791 update_mmu_cache_pmd(vma, addr, pmd);
c6f3c5ee
AK
792
793out_unlock:
5cad465d 794 spin_unlock(ptl);
c6f3c5ee
AK
795 if (pgtable)
796 pte_free(mm, pgtable);
5cad465d
MW
797}
798
fce86ff5 799vm_fault_t vmf_insert_pfn_pmd(struct vm_fault *vmf, pfn_t pfn, bool write)
5cad465d 800{
fce86ff5
DW
801 unsigned long addr = vmf->address & PMD_MASK;
802 struct vm_area_struct *vma = vmf->vma;
5cad465d 803 pgprot_t pgprot = vma->vm_page_prot;
3b6521f5 804 pgtable_t pgtable = NULL;
fce86ff5 805
5cad465d
MW
806 /*
807 * If we had pmd_special, we could avoid all these restrictions,
808 * but we need to be consistent with PTEs and architectures that
809 * can't support a 'special' bit.
810 */
e1fb4a08
DJ
811 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
812 !pfn_t_devmap(pfn));
5cad465d
MW
813 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
814 (VM_PFNMAP|VM_MIXEDMAP));
815 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
5cad465d
MW
816
817 if (addr < vma->vm_start || addr >= vma->vm_end)
818 return VM_FAULT_SIGBUS;
308a047c 819
3b6521f5 820 if (arch_needs_pgtable_deposit()) {
4cf58924 821 pgtable = pte_alloc_one(vma->vm_mm);
3b6521f5
OH
822 if (!pgtable)
823 return VM_FAULT_OOM;
824 }
825
308a047c
BP
826 track_pfn_insert(vma, &pgprot, pfn);
827
fce86ff5 828 insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable);
ae18d6dc 829 return VM_FAULT_NOPAGE;
5cad465d 830}
dee41079 831EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
5cad465d 832
a00cc7d9 833#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
f55e1014 834static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
a00cc7d9 835{
f55e1014 836 if (likely(vma->vm_flags & VM_WRITE))
a00cc7d9
MW
837 pud = pud_mkwrite(pud);
838 return pud;
839}
840
841static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
842 pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
843{
844 struct mm_struct *mm = vma->vm_mm;
845 pud_t entry;
846 spinlock_t *ptl;
847
848 ptl = pud_lock(mm, pud);
c6f3c5ee
AK
849 if (!pud_none(*pud)) {
850 if (write) {
851 if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) {
852 WARN_ON_ONCE(!is_huge_zero_pud(*pud));
853 goto out_unlock;
854 }
855 entry = pud_mkyoung(*pud);
856 entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
857 if (pudp_set_access_flags(vma, addr, pud, entry, 1))
858 update_mmu_cache_pud(vma, addr, pud);
859 }
860 goto out_unlock;
861 }
862
a00cc7d9
MW
863 entry = pud_mkhuge(pfn_t_pud(pfn, prot));
864 if (pfn_t_devmap(pfn))
865 entry = pud_mkdevmap(entry);
866 if (write) {
f55e1014
LT
867 entry = pud_mkyoung(pud_mkdirty(entry));
868 entry = maybe_pud_mkwrite(entry, vma);
a00cc7d9
MW
869 }
870 set_pud_at(mm, addr, pud, entry);
871 update_mmu_cache_pud(vma, addr, pud);
c6f3c5ee
AK
872
873out_unlock:
a00cc7d9
MW
874 spin_unlock(ptl);
875}
876
fce86ff5 877vm_fault_t vmf_insert_pfn_pud(struct vm_fault *vmf, pfn_t pfn, bool write)
a00cc7d9 878{
fce86ff5
DW
879 unsigned long addr = vmf->address & PUD_MASK;
880 struct vm_area_struct *vma = vmf->vma;
a00cc7d9 881 pgprot_t pgprot = vma->vm_page_prot;
fce86ff5 882
a00cc7d9
MW
883 /*
884 * If we had pud_special, we could avoid all these restrictions,
885 * but we need to be consistent with PTEs and architectures that
886 * can't support a 'special' bit.
887 */
62ec0d8c
DJ
888 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
889 !pfn_t_devmap(pfn));
a00cc7d9
MW
890 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
891 (VM_PFNMAP|VM_MIXEDMAP));
892 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
a00cc7d9
MW
893
894 if (addr < vma->vm_start || addr >= vma->vm_end)
895 return VM_FAULT_SIGBUS;
896
897 track_pfn_insert(vma, &pgprot, pfn);
898
fce86ff5 899 insert_pfn_pud(vma, addr, vmf->pud, pfn, pgprot, write);
a00cc7d9
MW
900 return VM_FAULT_NOPAGE;
901}
902EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud);
903#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
904
3565fce3 905static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
a8f97366 906 pmd_t *pmd, int flags)
3565fce3
DW
907{
908 pmd_t _pmd;
909
a8f97366
KS
910 _pmd = pmd_mkyoung(*pmd);
911 if (flags & FOLL_WRITE)
912 _pmd = pmd_mkdirty(_pmd);
3565fce3 913 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
a8f97366 914 pmd, _pmd, flags & FOLL_WRITE))
3565fce3
DW
915 update_mmu_cache_pmd(vma, addr, pmd);
916}
917
918struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
df06b37f 919 pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
3565fce3
DW
920{
921 unsigned long pfn = pmd_pfn(*pmd);
922 struct mm_struct *mm = vma->vm_mm;
3565fce3
DW
923 struct page *page;
924
925 assert_spin_locked(pmd_lockptr(mm, pmd));
926
8310d48b
KF
927 /*
928 * When we COW a devmap PMD entry, we split it into PTEs, so we should
929 * not be in this function with `flags & FOLL_COW` set.
930 */
931 WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");
932
f6f37321 933 if (flags & FOLL_WRITE && !pmd_write(*pmd))
3565fce3
DW
934 return NULL;
935
936 if (pmd_present(*pmd) && pmd_devmap(*pmd))
937 /* pass */;
938 else
939 return NULL;
940
941 if (flags & FOLL_TOUCH)
a8f97366 942 touch_pmd(vma, addr, pmd, flags);
3565fce3
DW
943
944 /*
945 * device mapped pages can only be returned if the
946 * caller will manage the page reference count.
947 */
948 if (!(flags & FOLL_GET))
949 return ERR_PTR(-EEXIST);
950
951 pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
df06b37f
KB
952 *pgmap = get_dev_pagemap(pfn, *pgmap);
953 if (!*pgmap)
3565fce3
DW
954 return ERR_PTR(-EFAULT);
955 page = pfn_to_page(pfn);
956 get_page(page);
3565fce3
DW
957
958 return page;
959}
960
71e3aac0
AA
961int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
962 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
963 struct vm_area_struct *vma)
964{
c4088ebd 965 spinlock_t *dst_ptl, *src_ptl;
71e3aac0
AA
966 struct page *src_page;
967 pmd_t pmd;
12c9d70b 968 pgtable_t pgtable = NULL;
628d47ce 969 int ret = -ENOMEM;
71e3aac0 970
628d47ce
KS
971 /* Skip if can be re-fill on fault */
972 if (!vma_is_anonymous(vma))
973 return 0;
974
4cf58924 975 pgtable = pte_alloc_one(dst_mm);
628d47ce
KS
976 if (unlikely(!pgtable))
977 goto out;
71e3aac0 978
c4088ebd
KS
979 dst_ptl = pmd_lock(dst_mm, dst_pmd);
980 src_ptl = pmd_lockptr(src_mm, src_pmd);
981 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
71e3aac0
AA
982
983 ret = -EAGAIN;
984 pmd = *src_pmd;
84c3fc4e
ZY
985
986#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
987 if (unlikely(is_swap_pmd(pmd))) {
988 swp_entry_t entry = pmd_to_swp_entry(pmd);
989
990 VM_BUG_ON(!is_pmd_migration_entry(pmd));
991 if (is_write_migration_entry(entry)) {
992 make_migration_entry_read(&entry);
993 pmd = swp_entry_to_pmd(entry);
ab6e3d09
NH
994 if (pmd_swp_soft_dirty(*src_pmd))
995 pmd = pmd_swp_mksoft_dirty(pmd);
84c3fc4e
ZY
996 set_pmd_at(src_mm, addr, src_pmd, pmd);
997 }
dd8a67f9 998 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
af5b0f6a 999 mm_inc_nr_ptes(dst_mm);
dd8a67f9 1000 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
84c3fc4e
ZY
1001 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1002 ret = 0;
1003 goto out_unlock;
1004 }
1005#endif
1006
628d47ce 1007 if (unlikely(!pmd_trans_huge(pmd))) {
71e3aac0
AA
1008 pte_free(dst_mm, pgtable);
1009 goto out_unlock;
1010 }
fc9fe822 1011 /*
c4088ebd 1012 * When page table lock is held, the huge zero pmd should not be
fc9fe822
KS
1013 * under splitting since we don't split the page itself, only pmd to
1014 * a page table.
1015 */
1016 if (is_huge_zero_pmd(pmd)) {
5918d10a 1017 struct page *zero_page;
97ae1749
KS
1018 /*
1019 * get_huge_zero_page() will never allocate a new page here,
1020 * since we already have a zero page to copy. It just takes a
1021 * reference.
1022 */
6fcb52a5 1023 zero_page = mm_get_huge_zero_page(dst_mm);
6b251fc9 1024 set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
5918d10a 1025 zero_page);
fc9fe822
KS
1026 ret = 0;
1027 goto out_unlock;
1028 }
de466bd6 1029
628d47ce
KS
1030 src_page = pmd_page(pmd);
1031 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1032 get_page(src_page);
1033 page_dup_rmap(src_page, true);
1034 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
c4812909 1035 mm_inc_nr_ptes(dst_mm);
628d47ce 1036 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
71e3aac0
AA
1037
1038 pmdp_set_wrprotect(src_mm, addr, src_pmd);
1039 pmd = pmd_mkold(pmd_wrprotect(pmd));
1040 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
71e3aac0
AA
1041
1042 ret = 0;
1043out_unlock:
c4088ebd
KS
1044 spin_unlock(src_ptl);
1045 spin_unlock(dst_ptl);
71e3aac0
AA
1046out:
1047 return ret;
1048}
1049
a00cc7d9
MW
1050#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1051static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
a8f97366 1052 pud_t *pud, int flags)
a00cc7d9
MW
1053{
1054 pud_t _pud;
1055
a8f97366
KS
1056 _pud = pud_mkyoung(*pud);
1057 if (flags & FOLL_WRITE)
1058 _pud = pud_mkdirty(_pud);
a00cc7d9 1059 if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
a8f97366 1060 pud, _pud, flags & FOLL_WRITE))
a00cc7d9
MW
1061 update_mmu_cache_pud(vma, addr, pud);
1062}
1063
1064struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
df06b37f 1065 pud_t *pud, int flags, struct dev_pagemap **pgmap)
a00cc7d9
MW
1066{
1067 unsigned long pfn = pud_pfn(*pud);
1068 struct mm_struct *mm = vma->vm_mm;
a00cc7d9
MW
1069 struct page *page;
1070
1071 assert_spin_locked(pud_lockptr(mm, pud));
1072
f6f37321 1073 if (flags & FOLL_WRITE && !pud_write(*pud))
a00cc7d9
MW
1074 return NULL;
1075
1076 if (pud_present(*pud) && pud_devmap(*pud))
1077 /* pass */;
1078 else
1079 return NULL;
1080
1081 if (flags & FOLL_TOUCH)
a8f97366 1082 touch_pud(vma, addr, pud, flags);
a00cc7d9
MW
1083
1084 /*
1085 * device mapped pages can only be returned if the
1086 * caller will manage the page reference count.
1087 */
1088 if (!(flags & FOLL_GET))
1089 return ERR_PTR(-EEXIST);
1090
1091 pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
df06b37f
KB
1092 *pgmap = get_dev_pagemap(pfn, *pgmap);
1093 if (!*pgmap)
a00cc7d9
MW
1094 return ERR_PTR(-EFAULT);
1095 page = pfn_to_page(pfn);
1096 get_page(page);
a00cc7d9
MW
1097
1098 return page;
1099}
1100
1101int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1102 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1103 struct vm_area_struct *vma)
1104{
1105 spinlock_t *dst_ptl, *src_ptl;
1106 pud_t pud;
1107 int ret;
1108
1109 dst_ptl = pud_lock(dst_mm, dst_pud);
1110 src_ptl = pud_lockptr(src_mm, src_pud);
1111 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1112
1113 ret = -EAGAIN;
1114 pud = *src_pud;
1115 if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1116 goto out_unlock;
1117
1118 /*
1119 * When page table lock is held, the huge zero pud should not be
1120 * under splitting since we don't split the page itself, only pud to
1121 * a page table.
1122 */
1123 if (is_huge_zero_pud(pud)) {
1124 /* No huge zero pud yet */
1125 }
1126
1127 pudp_set_wrprotect(src_mm, addr, src_pud);
1128 pud = pud_mkold(pud_wrprotect(pud));
1129 set_pud_at(dst_mm, addr, dst_pud, pud);
1130
1131 ret = 0;
1132out_unlock:
1133 spin_unlock(src_ptl);
1134 spin_unlock(dst_ptl);
1135 return ret;
1136}
1137
1138void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1139{
1140 pud_t entry;
1141 unsigned long haddr;
1142 bool write = vmf->flags & FAULT_FLAG_WRITE;
1143
1144 vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1145 if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1146 goto unlock;
1147
1148 entry = pud_mkyoung(orig_pud);
1149 if (write)
1150 entry = pud_mkdirty(entry);
1151 haddr = vmf->address & HPAGE_PUD_MASK;
1152 if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
1153 update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);
1154
1155unlock:
1156 spin_unlock(vmf->ptl);
1157}
1158#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1159
82b0f8c3 1160void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
a1dd450b
WD
1161{
1162 pmd_t entry;
1163 unsigned long haddr;
20f664aa 1164 bool write = vmf->flags & FAULT_FLAG_WRITE;
a1dd450b 1165
82b0f8c3
JK
1166 vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1167 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
a1dd450b
WD
1168 goto unlock;
1169
1170 entry = pmd_mkyoung(orig_pmd);
20f664aa
MK
1171 if (write)
1172 entry = pmd_mkdirty(entry);
82b0f8c3 1173 haddr = vmf->address & HPAGE_PMD_MASK;
20f664aa 1174 if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
82b0f8c3 1175 update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
a1dd450b
WD
1176
1177unlock:
82b0f8c3 1178 spin_unlock(vmf->ptl);
a1dd450b
WD
1179}
1180
2b740303
SJ
1181static vm_fault_t do_huge_pmd_wp_page_fallback(struct vm_fault *vmf,
1182 pmd_t orig_pmd, struct page *page)
71e3aac0 1183{
82b0f8c3
JK
1184 struct vm_area_struct *vma = vmf->vma;
1185 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
00501b53 1186 struct mem_cgroup *memcg;
71e3aac0
AA
1187 pgtable_t pgtable;
1188 pmd_t _pmd;
2b740303
SJ
1189 int i;
1190 vm_fault_t ret = 0;
71e3aac0 1191 struct page **pages;
ac46d4f3 1192 struct mmu_notifier_range range;
71e3aac0 1193
6da2ec56
KC
1194 pages = kmalloc_array(HPAGE_PMD_NR, sizeof(struct page *),
1195 GFP_KERNEL);
71e3aac0
AA
1196 if (unlikely(!pages)) {
1197 ret |= VM_FAULT_OOM;
1198 goto out;
1199 }
1200
1201 for (i = 0; i < HPAGE_PMD_NR; i++) {
41b6167e 1202 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE, vma,
82b0f8c3 1203 vmf->address, page_to_nid(page));
b9bbfbe3 1204 if (unlikely(!pages[i] ||
2cf85583 1205 mem_cgroup_try_charge_delay(pages[i], vma->vm_mm,
bae473a4 1206 GFP_KERNEL, &memcg, false))) {
b9bbfbe3 1207 if (pages[i])
71e3aac0 1208 put_page(pages[i]);
b9bbfbe3 1209 while (--i >= 0) {
00501b53
JW
1210 memcg = (void *)page_private(pages[i]);
1211 set_page_private(pages[i], 0);
f627c2f5
KS
1212 mem_cgroup_cancel_charge(pages[i], memcg,
1213 false);
b9bbfbe3
AA
1214 put_page(pages[i]);
1215 }
71e3aac0
AA
1216 kfree(pages);
1217 ret |= VM_FAULT_OOM;
1218 goto out;
1219 }
00501b53 1220 set_page_private(pages[i], (unsigned long)memcg);
71e3aac0
AA
1221 }
1222
1223 for (i = 0; i < HPAGE_PMD_NR; i++) {
1224 copy_user_highpage(pages[i], page + i,
0089e485 1225 haddr + PAGE_SIZE * i, vma);
71e3aac0
AA
1226 __SetPageUptodate(pages[i]);
1227 cond_resched();
1228 }
1229
7269f999
JG
1230 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1231 haddr, haddr + HPAGE_PMD_SIZE);
ac46d4f3 1232 mmu_notifier_invalidate_range_start(&range);
2ec74c3e 1233
82b0f8c3
JK
1234 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1235 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
71e3aac0 1236 goto out_free_pages;
309381fe 1237 VM_BUG_ON_PAGE(!PageHead(page), page);
71e3aac0 1238
0f10851e
JG
1239 /*
1240 * Leave pmd empty until pte is filled note we must notify here as
1241 * concurrent CPU thread might write to new page before the call to
1242 * mmu_notifier_invalidate_range_end() happens which can lead to a
1243 * device seeing memory write in different order than CPU.
1244 *
ad56b738 1245 * See Documentation/vm/mmu_notifier.rst
0f10851e 1246 */
82b0f8c3 1247 pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
71e3aac0 1248
82b0f8c3 1249 pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, vmf->pmd);
bae473a4 1250 pmd_populate(vma->vm_mm, &_pmd, pgtable);
71e3aac0
AA
1251
1252 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
bae473a4 1253 pte_t entry;
71e3aac0
AA
1254 entry = mk_pte(pages[i], vma->vm_page_prot);
1255 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
00501b53
JW
1256 memcg = (void *)page_private(pages[i]);
1257 set_page_private(pages[i], 0);
82b0f8c3 1258 page_add_new_anon_rmap(pages[i], vmf->vma, haddr, false);
f627c2f5 1259 mem_cgroup_commit_charge(pages[i], memcg, false, false);
00501b53 1260 lru_cache_add_active_or_unevictable(pages[i], vma);
82b0f8c3
JK
1261 vmf->pte = pte_offset_map(&_pmd, haddr);
1262 VM_BUG_ON(!pte_none(*vmf->pte));
1263 set_pte_at(vma->vm_mm, haddr, vmf->pte, entry);
1264 pte_unmap(vmf->pte);
71e3aac0
AA
1265 }
1266 kfree(pages);
1267
71e3aac0 1268 smp_wmb(); /* make pte visible before pmd */
82b0f8c3 1269 pmd_populate(vma->vm_mm, vmf->pmd, pgtable);
d281ee61 1270 page_remove_rmap(page, true);
82b0f8c3 1271 spin_unlock(vmf->ptl);
71e3aac0 1272
4645b9fe
JG
1273 /*
1274 * No need to double call mmu_notifier->invalidate_range() callback as
1275 * the above pmdp_huge_clear_flush_notify() did already call it.
1276 */
ac46d4f3 1277 mmu_notifier_invalidate_range_only_end(&range);
2ec74c3e 1278
71e3aac0
AA
1279 ret |= VM_FAULT_WRITE;
1280 put_page(page);
1281
1282out:
1283 return ret;
1284
1285out_free_pages:
82b0f8c3 1286 spin_unlock(vmf->ptl);
ac46d4f3 1287 mmu_notifier_invalidate_range_end(&range);
b9bbfbe3 1288 for (i = 0; i < HPAGE_PMD_NR; i++) {
00501b53
JW
1289 memcg = (void *)page_private(pages[i]);
1290 set_page_private(pages[i], 0);
f627c2f5 1291 mem_cgroup_cancel_charge(pages[i], memcg, false);
71e3aac0 1292 put_page(pages[i]);
b9bbfbe3 1293 }
71e3aac0
AA
1294 kfree(pages);
1295 goto out;
1296}
1297
2b740303 1298vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
71e3aac0 1299{
82b0f8c3 1300 struct vm_area_struct *vma = vmf->vma;
93b4796d 1301 struct page *page = NULL, *new_page;
00501b53 1302 struct mem_cgroup *memcg;
82b0f8c3 1303 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
ac46d4f3 1304 struct mmu_notifier_range range;
3b363692 1305 gfp_t huge_gfp; /* for allocation and charge */
2b740303 1306 vm_fault_t ret = 0;
71e3aac0 1307
82b0f8c3 1308 vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
81d1b09c 1309 VM_BUG_ON_VMA(!vma->anon_vma, vma);
93b4796d
KS
1310 if (is_huge_zero_pmd(orig_pmd))
1311 goto alloc;
82b0f8c3
JK
1312 spin_lock(vmf->ptl);
1313 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
71e3aac0
AA
1314 goto out_unlock;
1315
1316 page = pmd_page(orig_pmd);
309381fe 1317 VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1f25fe20
KS
1318 /*
1319 * We can only reuse the page if nobody else maps the huge page or it's
6d0a07ed 1320 * part.
1f25fe20 1321 */
ba3c4ce6
HY
1322 if (!trylock_page(page)) {
1323 get_page(page);
1324 spin_unlock(vmf->ptl);
1325 lock_page(page);
1326 spin_lock(vmf->ptl);
1327 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1328 unlock_page(page);
1329 put_page(page);
1330 goto out_unlock;
1331 }
1332 put_page(page);
1333 }
1334 if (reuse_swap_page(page, NULL)) {
71e3aac0
AA
1335 pmd_t entry;
1336 entry = pmd_mkyoung(orig_pmd);
f55e1014 1337 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
82b0f8c3
JK
1338 if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
1339 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
71e3aac0 1340 ret |= VM_FAULT_WRITE;
ba3c4ce6 1341 unlock_page(page);
71e3aac0
AA
1342 goto out_unlock;
1343 }
ba3c4ce6 1344 unlock_page(page);
ddc58f27 1345 get_page(page);
82b0f8c3 1346 spin_unlock(vmf->ptl);
93b4796d 1347alloc:
7635d9cb 1348 if (__transparent_hugepage_enabled(vma) &&
077fcf11 1349 !transparent_hugepage_debug_cow()) {
92717d42
AA
1350 huge_gfp = alloc_hugepage_direct_gfpmask(vma, haddr);
1351 new_page = alloc_pages_vma(huge_gfp, HPAGE_PMD_ORDER, vma,
1352 haddr, numa_node_id());
077fcf11 1353 } else
71e3aac0
AA
1354 new_page = NULL;
1355
9a982250
KS
1356 if (likely(new_page)) {
1357 prep_transhuge_page(new_page);
1358 } else {
eecc1e42 1359 if (!page) {
82b0f8c3 1360 split_huge_pmd(vma, vmf->pmd, vmf->address);
e9b71ca9 1361 ret |= VM_FAULT_FALLBACK;
93b4796d 1362 } else {
82b0f8c3 1363 ret = do_huge_pmd_wp_page_fallback(vmf, orig_pmd, page);
9845cbbd 1364 if (ret & VM_FAULT_OOM) {
82b0f8c3 1365 split_huge_pmd(vma, vmf->pmd, vmf->address);
9845cbbd
KS
1366 ret |= VM_FAULT_FALLBACK;
1367 }
ddc58f27 1368 put_page(page);
93b4796d 1369 }
17766dde 1370 count_vm_event(THP_FAULT_FALLBACK);
71e3aac0
AA
1371 goto out;
1372 }
1373
2cf85583 1374 if (unlikely(mem_cgroup_try_charge_delay(new_page, vma->vm_mm,
2a70f6a7 1375 huge_gfp, &memcg, true))) {
b9bbfbe3 1376 put_page(new_page);
82b0f8c3 1377 split_huge_pmd(vma, vmf->pmd, vmf->address);
bae473a4 1378 if (page)
ddc58f27 1379 put_page(page);
9845cbbd 1380 ret |= VM_FAULT_FALLBACK;
17766dde 1381 count_vm_event(THP_FAULT_FALLBACK);
b9bbfbe3
AA
1382 goto out;
1383 }
1384
17766dde 1385 count_vm_event(THP_FAULT_ALLOC);
1ff9e6e1 1386 count_memcg_events(memcg, THP_FAULT_ALLOC, 1);
17766dde 1387
eecc1e42 1388 if (!page)
c79b57e4 1389 clear_huge_page(new_page, vmf->address, HPAGE_PMD_NR);
93b4796d 1390 else
c9f4cd71
HY
1391 copy_user_huge_page(new_page, page, vmf->address,
1392 vma, HPAGE_PMD_NR);
71e3aac0
AA
1393 __SetPageUptodate(new_page);
1394
7269f999
JG
1395 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1396 haddr, haddr + HPAGE_PMD_SIZE);
ac46d4f3 1397 mmu_notifier_invalidate_range_start(&range);
2ec74c3e 1398
82b0f8c3 1399 spin_lock(vmf->ptl);
93b4796d 1400 if (page)
ddc58f27 1401 put_page(page);
82b0f8c3
JK
1402 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1403 spin_unlock(vmf->ptl);
f627c2f5 1404 mem_cgroup_cancel_charge(new_page, memcg, true);
71e3aac0 1405 put_page(new_page);
2ec74c3e 1406 goto out_mn;
b9bbfbe3 1407 } else {
71e3aac0 1408 pmd_t entry;
3122359a 1409 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
f55e1014 1410 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
82b0f8c3 1411 pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
d281ee61 1412 page_add_new_anon_rmap(new_page, vma, haddr, true);
f627c2f5 1413 mem_cgroup_commit_charge(new_page, memcg, false, true);
00501b53 1414 lru_cache_add_active_or_unevictable(new_page, vma);
82b0f8c3
JK
1415 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
1416 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
eecc1e42 1417 if (!page) {
bae473a4 1418 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
97ae1749 1419 } else {
309381fe 1420 VM_BUG_ON_PAGE(!PageHead(page), page);
d281ee61 1421 page_remove_rmap(page, true);
93b4796d
KS
1422 put_page(page);
1423 }
71e3aac0
AA
1424 ret |= VM_FAULT_WRITE;
1425 }
82b0f8c3 1426 spin_unlock(vmf->ptl);
2ec74c3e 1427out_mn:
4645b9fe
JG
1428 /*
1429 * No need to double call mmu_notifier->invalidate_range() callback as
1430 * the above pmdp_huge_clear_flush_notify() did already call it.
1431 */
ac46d4f3 1432 mmu_notifier_invalidate_range_only_end(&range);
71e3aac0
AA
1433out:
1434 return ret;
2ec74c3e 1435out_unlock:
82b0f8c3 1436 spin_unlock(vmf->ptl);
2ec74c3e 1437 return ret;
71e3aac0
AA
1438}
1439
8310d48b
KF
1440/*
1441 * FOLL_FORCE can write to even unwritable pmd's, but only
1442 * after we've gone through a COW cycle and they are dirty.
1443 */
1444static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
1445{
f6f37321 1446 return pmd_write(pmd) ||
8310d48b
KF
1447 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
1448}
1449
b676b293 1450struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
71e3aac0
AA
1451 unsigned long addr,
1452 pmd_t *pmd,
1453 unsigned int flags)
1454{
b676b293 1455 struct mm_struct *mm = vma->vm_mm;
71e3aac0
AA
1456 struct page *page = NULL;
1457
c4088ebd 1458 assert_spin_locked(pmd_lockptr(mm, pmd));
71e3aac0 1459
8310d48b 1460 if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
71e3aac0
AA
1461 goto out;
1462
85facf25
KS
1463 /* Avoid dumping huge zero page */
1464 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1465 return ERR_PTR(-EFAULT);
1466
2b4847e7 1467 /* Full NUMA hinting faults to serialise migration in fault paths */
8a0516ed 1468 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
2b4847e7
MG
1469 goto out;
1470
71e3aac0 1471 page = pmd_page(*pmd);
ca120cf6 1472 VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
3565fce3 1473 if (flags & FOLL_TOUCH)
a8f97366 1474 touch_pmd(vma, addr, pmd, flags);
de60f5f1 1475 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
e90309c9
KS
1476 /*
1477 * We don't mlock() pte-mapped THPs. This way we can avoid
1478 * leaking mlocked pages into non-VM_LOCKED VMAs.
1479 *
9a73f61b
KS
1480 * For anon THP:
1481 *
e90309c9
KS
1482 * In most cases the pmd is the only mapping of the page as we
1483 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1484 * writable private mappings in populate_vma_page_range().
1485 *
1486 * The only scenario when we have the page shared here is if we
1487 * mlocking read-only mapping shared over fork(). We skip
1488 * mlocking such pages.
9a73f61b
KS
1489 *
1490 * For file THP:
1491 *
1492 * We can expect PageDoubleMap() to be stable under page lock:
1493 * for file pages we set it in page_add_file_rmap(), which
1494 * requires page to be locked.
e90309c9 1495 */
9a73f61b
KS
1496
1497 if (PageAnon(page) && compound_mapcount(page) != 1)
1498 goto skip_mlock;
1499 if (PageDoubleMap(page) || !page->mapping)
1500 goto skip_mlock;
1501 if (!trylock_page(page))
1502 goto skip_mlock;
1503 lru_add_drain();
1504 if (page->mapping && !PageDoubleMap(page))
1505 mlock_vma_page(page);
1506 unlock_page(page);
b676b293 1507 }
9a73f61b 1508skip_mlock:
71e3aac0 1509 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
ca120cf6 1510 VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
71e3aac0 1511 if (flags & FOLL_GET)
ddc58f27 1512 get_page(page);
71e3aac0
AA
1513
1514out:
1515 return page;
1516}
1517
d10e63f2 1518/* NUMA hinting page fault entry point for trans huge pmds */
2b740303 1519vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
d10e63f2 1520{
82b0f8c3 1521 struct vm_area_struct *vma = vmf->vma;
b8916634 1522 struct anon_vma *anon_vma = NULL;
b32967ff 1523 struct page *page;
82b0f8c3 1524 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
98fa15f3 1525 int page_nid = NUMA_NO_NODE, this_nid = numa_node_id();
90572890 1526 int target_nid, last_cpupid = -1;
8191acbd
MG
1527 bool page_locked;
1528 bool migrated = false;
b191f9b1 1529 bool was_writable;
6688cc05 1530 int flags = 0;
d10e63f2 1531
82b0f8c3
JK
1532 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1533 if (unlikely(!pmd_same(pmd, *vmf->pmd)))
d10e63f2
MG
1534 goto out_unlock;
1535
de466bd6
MG
1536 /*
1537 * If there are potential migrations, wait for completion and retry
1538 * without disrupting NUMA hinting information. Do not relock and
1539 * check_same as the page may no longer be mapped.
1540 */
82b0f8c3
JK
1541 if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
1542 page = pmd_page(*vmf->pmd);
3c226c63
MR
1543 if (!get_page_unless_zero(page))
1544 goto out_unlock;
82b0f8c3 1545 spin_unlock(vmf->ptl);
9a1ea439 1546 put_and_wait_on_page_locked(page);
de466bd6
MG
1547 goto out;
1548 }
1549
d10e63f2 1550 page = pmd_page(pmd);
a1a46184 1551 BUG_ON(is_huge_zero_page(page));
8191acbd 1552 page_nid = page_to_nid(page);
90572890 1553 last_cpupid = page_cpupid_last(page);
03c5a6e1 1554 count_vm_numa_event(NUMA_HINT_FAULTS);
04bb2f94 1555 if (page_nid == this_nid) {
03c5a6e1 1556 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
04bb2f94
RR
1557 flags |= TNF_FAULT_LOCAL;
1558 }
4daae3b4 1559
bea66fbd 1560 /* See similar comment in do_numa_page for explanation */
288bc549 1561 if (!pmd_savedwrite(pmd))
6688cc05
PZ
1562 flags |= TNF_NO_GROUP;
1563
ff9042b1
MG
1564 /*
1565 * Acquire the page lock to serialise THP migrations but avoid dropping
1566 * page_table_lock if at all possible
1567 */
b8916634
MG
1568 page_locked = trylock_page(page);
1569 target_nid = mpol_misplaced(page, vma, haddr);
98fa15f3 1570 if (target_nid == NUMA_NO_NODE) {
b8916634 1571 /* If the page was locked, there are no parallel migrations */
a54a407f 1572 if (page_locked)
b8916634 1573 goto clear_pmdnuma;
2b4847e7 1574 }
4daae3b4 1575
de466bd6 1576 /* Migration could have started since the pmd_trans_migrating check */
2b4847e7 1577 if (!page_locked) {
98fa15f3 1578 page_nid = NUMA_NO_NODE;
3c226c63
MR
1579 if (!get_page_unless_zero(page))
1580 goto out_unlock;
82b0f8c3 1581 spin_unlock(vmf->ptl);
9a1ea439 1582 put_and_wait_on_page_locked(page);
b8916634
MG
1583 goto out;
1584 }
1585
2b4847e7
MG
1586 /*
1587 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1588 * to serialises splits
1589 */
b8916634 1590 get_page(page);
82b0f8c3 1591 spin_unlock(vmf->ptl);
b8916634 1592 anon_vma = page_lock_anon_vma_read(page);
4daae3b4 1593
c69307d5 1594 /* Confirm the PMD did not change while page_table_lock was released */
82b0f8c3
JK
1595 spin_lock(vmf->ptl);
1596 if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
b32967ff
MG
1597 unlock_page(page);
1598 put_page(page);
98fa15f3 1599 page_nid = NUMA_NO_NODE;
4daae3b4 1600 goto out_unlock;
b32967ff 1601 }
ff9042b1 1602
c3a489ca
MG
1603 /* Bail if we fail to protect against THP splits for any reason */
1604 if (unlikely(!anon_vma)) {
1605 put_page(page);
98fa15f3 1606 page_nid = NUMA_NO_NODE;
c3a489ca
MG
1607 goto clear_pmdnuma;
1608 }
1609
8b1b436d
PZ
1610 /*
1611 * Since we took the NUMA fault, we must have observed the !accessible
1612 * bit. Make sure all other CPUs agree with that, to avoid them
1613 * modifying the page we're about to migrate.
1614 *
1615 * Must be done under PTL such that we'll observe the relevant
ccde85ba
PZ
1616 * inc_tlb_flush_pending().
1617 *
1618 * We are not sure a pending tlb flush here is for a huge page
1619 * mapping or not. Hence use the tlb range variant
8b1b436d 1620 */
7066f0f9 1621 if (mm_tlb_flush_pending(vma->vm_mm)) {
ccde85ba 1622 flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE);
7066f0f9
AA
1623 /*
1624 * change_huge_pmd() released the pmd lock before
1625 * invalidating the secondary MMUs sharing the primary
1626 * MMU pagetables (with ->invalidate_range()). The
1627 * mmu_notifier_invalidate_range_end() (which
1628 * internally calls ->invalidate_range()) in
1629 * change_pmd_range() will run after us, so we can't
1630 * rely on it here and we need an explicit invalidate.
1631 */
1632 mmu_notifier_invalidate_range(vma->vm_mm, haddr,
1633 haddr + HPAGE_PMD_SIZE);
1634 }
8b1b436d 1635
a54a407f
MG
1636 /*
1637 * Migrate the THP to the requested node, returns with page unlocked
8a0516ed 1638 * and access rights restored.
a54a407f 1639 */
82b0f8c3 1640 spin_unlock(vmf->ptl);
8b1b436d 1641
bae473a4 1642 migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
82b0f8c3 1643 vmf->pmd, pmd, vmf->address, page, target_nid);
6688cc05
PZ
1644 if (migrated) {
1645 flags |= TNF_MIGRATED;
8191acbd 1646 page_nid = target_nid;
074c2381
MG
1647 } else
1648 flags |= TNF_MIGRATE_FAIL;
b32967ff 1649
8191acbd 1650 goto out;
b32967ff 1651clear_pmdnuma:
a54a407f 1652 BUG_ON(!PageLocked(page));
288bc549 1653 was_writable = pmd_savedwrite(pmd);
4d942466 1654 pmd = pmd_modify(pmd, vma->vm_page_prot);
b7b04004 1655 pmd = pmd_mkyoung(pmd);
b191f9b1
MG
1656 if (was_writable)
1657 pmd = pmd_mkwrite(pmd);
82b0f8c3
JK
1658 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1659 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
a54a407f 1660 unlock_page(page);
d10e63f2 1661out_unlock:
82b0f8c3 1662 spin_unlock(vmf->ptl);
b8916634
MG
1663
1664out:
1665 if (anon_vma)
1666 page_unlock_anon_vma_read(anon_vma);
1667
98fa15f3 1668 if (page_nid != NUMA_NO_NODE)
82b0f8c3 1669 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
9a8b300f 1670 flags);
8191acbd 1671
d10e63f2
MG
1672 return 0;
1673}
1674
319904ad
HY
1675/*
1676 * Return true if we do MADV_FREE successfully on entire pmd page.
1677 * Otherwise, return false.
1678 */
1679bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
b8d3c4c3 1680 pmd_t *pmd, unsigned long addr, unsigned long next)
b8d3c4c3
MK
1681{
1682 spinlock_t *ptl;
1683 pmd_t orig_pmd;
1684 struct page *page;
1685 struct mm_struct *mm = tlb->mm;
319904ad 1686 bool ret = false;
b8d3c4c3 1687
ed6a7935 1688 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
07e32661 1689
b6ec57f4
KS
1690 ptl = pmd_trans_huge_lock(pmd, vma);
1691 if (!ptl)
25eedabe 1692 goto out_unlocked;
b8d3c4c3
MK
1693
1694 orig_pmd = *pmd;
319904ad 1695 if (is_huge_zero_pmd(orig_pmd))
b8d3c4c3 1696 goto out;
b8d3c4c3 1697
84c3fc4e
ZY
1698 if (unlikely(!pmd_present(orig_pmd))) {
1699 VM_BUG_ON(thp_migration_supported() &&
1700 !is_pmd_migration_entry(orig_pmd));
1701 goto out;
1702 }
1703
b8d3c4c3
MK
1704 page = pmd_page(orig_pmd);
1705 /*
1706 * If other processes are mapping this page, we couldn't discard
1707 * the page unless they all do MADV_FREE so let's skip the page.
1708 */
1709 if (page_mapcount(page) != 1)
1710 goto out;
1711
1712 if (!trylock_page(page))
1713 goto out;
1714
1715 /*
1716 * If user want to discard part-pages of THP, split it so MADV_FREE
1717 * will deactivate only them.
1718 */
1719 if (next - addr != HPAGE_PMD_SIZE) {
1720 get_page(page);
1721 spin_unlock(ptl);
9818b8cd 1722 split_huge_page(page);
b8d3c4c3 1723 unlock_page(page);
bbf29ffc 1724 put_page(page);
b8d3c4c3
MK
1725 goto out_unlocked;
1726 }
1727
1728 if (PageDirty(page))
1729 ClearPageDirty(page);
1730 unlock_page(page);
1731
b8d3c4c3 1732 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
58ceeb6b 1733 pmdp_invalidate(vma, addr, pmd);
b8d3c4c3
MK
1734 orig_pmd = pmd_mkold(orig_pmd);
1735 orig_pmd = pmd_mkclean(orig_pmd);
1736
1737 set_pmd_at(mm, addr, pmd, orig_pmd);
1738 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1739 }
802a3a92
SL
1740
1741 mark_page_lazyfree(page);
319904ad 1742 ret = true;
b8d3c4c3
MK
1743out:
1744 spin_unlock(ptl);
1745out_unlocked:
1746 return ret;
1747}
1748
953c66c2
AK
1749static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1750{
1751 pgtable_t pgtable;
1752
1753 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1754 pte_free(mm, pgtable);
c4812909 1755 mm_dec_nr_ptes(mm);
953c66c2
AK
1756}
1757
71e3aac0 1758int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
f21760b1 1759 pmd_t *pmd, unsigned long addr)
71e3aac0 1760{
da146769 1761 pmd_t orig_pmd;
bf929152 1762 spinlock_t *ptl;
71e3aac0 1763
ed6a7935 1764 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
07e32661 1765
b6ec57f4
KS
1766 ptl = __pmd_trans_huge_lock(pmd, vma);
1767 if (!ptl)
da146769
KS
1768 return 0;
1769 /*
1770 * For architectures like ppc64 we look at deposited pgtable
1771 * when calling pmdp_huge_get_and_clear. So do the
1772 * pgtable_trans_huge_withdraw after finishing pmdp related
1773 * operations.
1774 */
1775 orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1776 tlb->fullmm);
1777 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1778 if (vma_is_dax(vma)) {
3b6521f5
OH
1779 if (arch_needs_pgtable_deposit())
1780 zap_deposited_table(tlb->mm, pmd);
da146769
KS
1781 spin_unlock(ptl);
1782 if (is_huge_zero_pmd(orig_pmd))
c0f2e176 1783 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
da146769 1784 } else if (is_huge_zero_pmd(orig_pmd)) {
c14a6eb4 1785 zap_deposited_table(tlb->mm, pmd);
da146769 1786 spin_unlock(ptl);
c0f2e176 1787 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
da146769 1788 } else {
616b8371
ZY
1789 struct page *page = NULL;
1790 int flush_needed = 1;
1791
1792 if (pmd_present(orig_pmd)) {
1793 page = pmd_page(orig_pmd);
1794 page_remove_rmap(page, true);
1795 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1796 VM_BUG_ON_PAGE(!PageHead(page), page);
1797 } else if (thp_migration_supported()) {
1798 swp_entry_t entry;
1799
1800 VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1801 entry = pmd_to_swp_entry(orig_pmd);
1802 page = pfn_to_page(swp_offset(entry));
1803 flush_needed = 0;
1804 } else
1805 WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1806
b5072380 1807 if (PageAnon(page)) {
c14a6eb4 1808 zap_deposited_table(tlb->mm, pmd);
b5072380
KS
1809 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1810 } else {
953c66c2
AK
1811 if (arch_needs_pgtable_deposit())
1812 zap_deposited_table(tlb->mm, pmd);
fadae295 1813 add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
b5072380 1814 }
616b8371 1815
da146769 1816 spin_unlock(ptl);
616b8371
ZY
1817 if (flush_needed)
1818 tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
025c5b24 1819 }
da146769 1820 return 1;
71e3aac0
AA
1821}
1822
1dd38b6c
AK
1823#ifndef pmd_move_must_withdraw
1824static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1825 spinlock_t *old_pmd_ptl,
1826 struct vm_area_struct *vma)
1827{
1828 /*
1829 * With split pmd lock we also need to move preallocated
1830 * PTE page table if new_pmd is on different PMD page table.
1831 *
1832 * We also don't deposit and withdraw tables for file pages.
1833 */
1834 return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1835}
1836#endif
1837
ab6e3d09
NH
1838static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1839{
1840#ifdef CONFIG_MEM_SOFT_DIRTY
1841 if (unlikely(is_pmd_migration_entry(pmd)))
1842 pmd = pmd_swp_mksoft_dirty(pmd);
1843 else if (pmd_present(pmd))
1844 pmd = pmd_mksoft_dirty(pmd);
1845#endif
1846 return pmd;
1847}
1848
bf8616d5 1849bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
37a1c49a 1850 unsigned long new_addr, unsigned long old_end,
eb66ae03 1851 pmd_t *old_pmd, pmd_t *new_pmd)
37a1c49a 1852{
bf929152 1853 spinlock_t *old_ptl, *new_ptl;
37a1c49a 1854 pmd_t pmd;
37a1c49a 1855 struct mm_struct *mm = vma->vm_mm;
5d190420 1856 bool force_flush = false;
37a1c49a
AA
1857
1858 if ((old_addr & ~HPAGE_PMD_MASK) ||
1859 (new_addr & ~HPAGE_PMD_MASK) ||
bf8616d5 1860 old_end - old_addr < HPAGE_PMD_SIZE)
4b471e88 1861 return false;
37a1c49a
AA
1862
1863 /*
1864 * The destination pmd shouldn't be established, free_pgtables()
1865 * should have release it.
1866 */
1867 if (WARN_ON(!pmd_none(*new_pmd))) {
1868 VM_BUG_ON(pmd_trans_huge(*new_pmd));
4b471e88 1869 return false;
37a1c49a
AA
1870 }
1871
bf929152
KS
1872 /*
1873 * We don't have to worry about the ordering of src and dst
1874 * ptlocks because exclusive mmap_sem prevents deadlock.
1875 */
b6ec57f4
KS
1876 old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1877 if (old_ptl) {
bf929152
KS
1878 new_ptl = pmd_lockptr(mm, new_pmd);
1879 if (new_ptl != old_ptl)
1880 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
8809aa2d 1881 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
eb66ae03 1882 if (pmd_present(pmd))
a2ce2666 1883 force_flush = true;
025c5b24 1884 VM_BUG_ON(!pmd_none(*new_pmd));
3592806c 1885
1dd38b6c 1886 if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
b3084f4d 1887 pgtable_t pgtable;
3592806c
KS
1888 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1889 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
3592806c 1890 }
ab6e3d09
NH
1891 pmd = move_soft_dirty_pmd(pmd);
1892 set_pmd_at(mm, new_addr, new_pmd, pmd);
5d190420
AL
1893 if (force_flush)
1894 flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
eb66ae03
LT
1895 if (new_ptl != old_ptl)
1896 spin_unlock(new_ptl);
bf929152 1897 spin_unlock(old_ptl);
4b471e88 1898 return true;
37a1c49a 1899 }
4b471e88 1900 return false;
37a1c49a
AA
1901}
1902
f123d74a
MG
1903/*
1904 * Returns
1905 * - 0 if PMD could not be locked
1906 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1907 * - HPAGE_PMD_NR is protections changed and TLB flush necessary
1908 */
cd7548ab 1909int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
e944fd67 1910 unsigned long addr, pgprot_t newprot, int prot_numa)
cd7548ab
JW
1911{
1912 struct mm_struct *mm = vma->vm_mm;
bf929152 1913 spinlock_t *ptl;
0a85e51d
KS
1914 pmd_t entry;
1915 bool preserve_write;
1916 int ret;
cd7548ab 1917
b6ec57f4 1918 ptl = __pmd_trans_huge_lock(pmd, vma);
0a85e51d
KS
1919 if (!ptl)
1920 return 0;
e944fd67 1921
0a85e51d
KS
1922 preserve_write = prot_numa && pmd_write(*pmd);
1923 ret = 1;
e944fd67 1924
84c3fc4e
ZY
1925#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1926 if (is_swap_pmd(*pmd)) {
1927 swp_entry_t entry = pmd_to_swp_entry(*pmd);
1928
1929 VM_BUG_ON(!is_pmd_migration_entry(*pmd));
1930 if (is_write_migration_entry(entry)) {
1931 pmd_t newpmd;
1932 /*
1933 * A protection check is difficult so
1934 * just be safe and disable write
1935 */
1936 make_migration_entry_read(&entry);
1937 newpmd = swp_entry_to_pmd(entry);
ab6e3d09
NH
1938 if (pmd_swp_soft_dirty(*pmd))
1939 newpmd = pmd_swp_mksoft_dirty(newpmd);
84c3fc4e
ZY
1940 set_pmd_at(mm, addr, pmd, newpmd);
1941 }
1942 goto unlock;
1943 }
1944#endif
1945
0a85e51d
KS
1946 /*
1947 * Avoid trapping faults against the zero page. The read-only
1948 * data is likely to be read-cached on the local CPU and
1949 * local/remote hits to the zero page are not interesting.
1950 */
1951 if (prot_numa && is_huge_zero_pmd(*pmd))
1952 goto unlock;
025c5b24 1953
0a85e51d
KS
1954 if (prot_numa && pmd_protnone(*pmd))
1955 goto unlock;
1956
ced10803
KS
1957 /*
1958 * In case prot_numa, we are under down_read(mmap_sem). It's critical
1959 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1960 * which is also under down_read(mmap_sem):
1961 *
1962 * CPU0: CPU1:
1963 * change_huge_pmd(prot_numa=1)
1964 * pmdp_huge_get_and_clear_notify()
1965 * madvise_dontneed()
1966 * zap_pmd_range()
1967 * pmd_trans_huge(*pmd) == 0 (without ptl)
1968 * // skip the pmd
1969 * set_pmd_at();
1970 * // pmd is re-established
1971 *
1972 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1973 * which may break userspace.
1974 *
1975 * pmdp_invalidate() is required to make sure we don't miss
1976 * dirty/young flags set by hardware.
1977 */
a3cf988f 1978 entry = pmdp_invalidate(vma, addr, pmd);
ced10803 1979
0a85e51d
KS
1980 entry = pmd_modify(entry, newprot);
1981 if (preserve_write)
1982 entry = pmd_mk_savedwrite(entry);
1983 ret = HPAGE_PMD_NR;
1984 set_pmd_at(mm, addr, pmd, entry);
1985 BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
1986unlock:
1987 spin_unlock(ptl);
025c5b24
NH
1988 return ret;
1989}
1990
1991/*
8f19b0c0 1992 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
025c5b24 1993 *
8f19b0c0
HY
1994 * Note that if it returns page table lock pointer, this routine returns without
1995 * unlocking page table lock. So callers must unlock it.
025c5b24 1996 */
b6ec57f4 1997spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
025c5b24 1998{
b6ec57f4
KS
1999 spinlock_t *ptl;
2000 ptl = pmd_lock(vma->vm_mm, pmd);
84c3fc4e
ZY
2001 if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
2002 pmd_devmap(*pmd)))
b6ec57f4
KS
2003 return ptl;
2004 spin_unlock(ptl);
2005 return NULL;
cd7548ab
JW
2006}
2007
a00cc7d9
MW
2008/*
2009 * Returns true if a given pud maps a thp, false otherwise.
2010 *
2011 * Note that if it returns true, this routine returns without unlocking page
2012 * table lock. So callers must unlock it.
2013 */
2014spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
2015{
2016 spinlock_t *ptl;
2017
2018 ptl = pud_lock(vma->vm_mm, pud);
2019 if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
2020 return ptl;
2021 spin_unlock(ptl);
2022 return NULL;
2023}
2024
2025#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
2026int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
2027 pud_t *pud, unsigned long addr)
2028{
a00cc7d9
MW
2029 spinlock_t *ptl;
2030
2031 ptl = __pud_trans_huge_lock(pud, vma);
2032 if (!ptl)
2033 return 0;
2034 /*
2035 * For architectures like ppc64 we look at deposited pgtable
2036 * when calling pudp_huge_get_and_clear. So do the
2037 * pgtable_trans_huge_withdraw after finishing pudp related
2038 * operations.
2039 */
70516b93 2040 pudp_huge_get_and_clear_full(tlb->mm, addr, pud, tlb->fullmm);
a00cc7d9
MW
2041 tlb_remove_pud_tlb_entry(tlb, pud, addr);
2042 if (vma_is_dax(vma)) {
2043 spin_unlock(ptl);
2044 /* No zero page support yet */
2045 } else {
2046 /* No support for anonymous PUD pages yet */
2047 BUG();
2048 }
2049 return 1;
2050}
2051
2052static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
2053 unsigned long haddr)
2054{
2055 VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
2056 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2057 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
2058 VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
2059
ce9311cf 2060 count_vm_event(THP_SPLIT_PUD);
a00cc7d9
MW
2061
2062 pudp_huge_clear_flush_notify(vma, haddr, pud);
2063}
2064
2065void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
2066 unsigned long address)
2067{
2068 spinlock_t *ptl;
ac46d4f3 2069 struct mmu_notifier_range range;
a00cc7d9 2070
7269f999 2071 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
6f4f13e8 2072 address & HPAGE_PUD_MASK,
ac46d4f3
JG
2073 (address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
2074 mmu_notifier_invalidate_range_start(&range);
2075 ptl = pud_lock(vma->vm_mm, pud);
a00cc7d9
MW
2076 if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
2077 goto out;
ac46d4f3 2078 __split_huge_pud_locked(vma, pud, range.start);
a00cc7d9
MW
2079
2080out:
2081 spin_unlock(ptl);
4645b9fe
JG
2082 /*
2083 * No need to double call mmu_notifier->invalidate_range() callback as
2084 * the above pudp_huge_clear_flush_notify() did already call it.
2085 */
ac46d4f3 2086 mmu_notifier_invalidate_range_only_end(&range);
a00cc7d9
MW
2087}
2088#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
2089
eef1b3ba
KS
2090static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2091 unsigned long haddr, pmd_t *pmd)
2092{
2093 struct mm_struct *mm = vma->vm_mm;
2094 pgtable_t pgtable;
2095 pmd_t _pmd;
2096 int i;
2097
0f10851e
JG
2098 /*
2099 * Leave pmd empty until pte is filled note that it is fine to delay
2100 * notification until mmu_notifier_invalidate_range_end() as we are
2101 * replacing a zero pmd write protected page with a zero pte write
2102 * protected page.
2103 *
ad56b738 2104 * See Documentation/vm/mmu_notifier.rst
0f10851e
JG
2105 */
2106 pmdp_huge_clear_flush(vma, haddr, pmd);
eef1b3ba
KS
2107
2108 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2109 pmd_populate(mm, &_pmd, pgtable);
2110
2111 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2112 pte_t *pte, entry;
2113 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2114 entry = pte_mkspecial(entry);
2115 pte = pte_offset_map(&_pmd, haddr);
2116 VM_BUG_ON(!pte_none(*pte));
2117 set_pte_at(mm, haddr, pte, entry);
2118 pte_unmap(pte);
2119 }
2120 smp_wmb(); /* make pte visible before pmd */
2121 pmd_populate(mm, pmd, pgtable);
eef1b3ba
KS
2122}
2123
2124static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
ba988280 2125 unsigned long haddr, bool freeze)
eef1b3ba
KS
2126{
2127 struct mm_struct *mm = vma->vm_mm;
2128 struct page *page;
2129 pgtable_t pgtable;
423ac9af 2130 pmd_t old_pmd, _pmd;
a3cf988f 2131 bool young, write, soft_dirty, pmd_migration = false;
2ac015e2 2132 unsigned long addr;
eef1b3ba
KS
2133 int i;
2134
2135 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2136 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2137 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
84c3fc4e
ZY
2138 VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
2139 && !pmd_devmap(*pmd));
eef1b3ba
KS
2140
2141 count_vm_event(THP_SPLIT_PMD);
2142
d21b9e57
KS
2143 if (!vma_is_anonymous(vma)) {
2144 _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
953c66c2
AK
2145 /*
2146 * We are going to unmap this huge page. So
2147 * just go ahead and zap it
2148 */
2149 if (arch_needs_pgtable_deposit())
2150 zap_deposited_table(mm, pmd);
d21b9e57
KS
2151 if (vma_is_dax(vma))
2152 return;
2153 page = pmd_page(_pmd);
e1f1b157
HD
2154 if (!PageDirty(page) && pmd_dirty(_pmd))
2155 set_page_dirty(page);
d21b9e57
KS
2156 if (!PageReferenced(page) && pmd_young(_pmd))
2157 SetPageReferenced(page);
2158 page_remove_rmap(page, true);
2159 put_page(page);
fadae295 2160 add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
eef1b3ba
KS
2161 return;
2162 } else if (is_huge_zero_pmd(*pmd)) {
4645b9fe
JG
2163 /*
2164 * FIXME: Do we want to invalidate secondary mmu by calling
2165 * mmu_notifier_invalidate_range() see comments below inside
2166 * __split_huge_pmd() ?
2167 *
2168 * We are going from a zero huge page write protected to zero
2169 * small page also write protected so it does not seems useful
2170 * to invalidate secondary mmu at this time.
2171 */
eef1b3ba
KS
2172 return __split_huge_zero_page_pmd(vma, haddr, pmd);
2173 }
2174
423ac9af
AK
2175 /*
2176 * Up to this point the pmd is present and huge and userland has the
2177 * whole access to the hugepage during the split (which happens in
2178 * place). If we overwrite the pmd with the not-huge version pointing
2179 * to the pte here (which of course we could if all CPUs were bug
2180 * free), userland could trigger a small page size TLB miss on the
2181 * small sized TLB while the hugepage TLB entry is still established in
2182 * the huge TLB. Some CPU doesn't like that.
2183 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
2184 * 383 on page 93. Intel should be safe but is also warns that it's
2185 * only safe if the permission and cache attributes of the two entries
2186 * loaded in the two TLB is identical (which should be the case here).
2187 * But it is generally safer to never allow small and huge TLB entries
2188 * for the same virtual address to be loaded simultaneously. So instead
2189 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2190 * current pmd notpresent (atomically because here the pmd_trans_huge
2191 * must remain set at all times on the pmd until the split is complete
2192 * for this pmd), then we flush the SMP TLB and finally we write the
2193 * non-huge version of the pmd entry with pmd_populate.
2194 */
2195 old_pmd = pmdp_invalidate(vma, haddr, pmd);
2196
423ac9af 2197 pmd_migration = is_pmd_migration_entry(old_pmd);
2e83ee1d 2198 if (unlikely(pmd_migration)) {
84c3fc4e
ZY
2199 swp_entry_t entry;
2200
423ac9af 2201 entry = pmd_to_swp_entry(old_pmd);
84c3fc4e 2202 page = pfn_to_page(swp_offset(entry));
2e83ee1d
PX
2203 write = is_write_migration_entry(entry);
2204 young = false;
2205 soft_dirty = pmd_swp_soft_dirty(old_pmd);
2206 } else {
423ac9af 2207 page = pmd_page(old_pmd);
2e83ee1d
PX
2208 if (pmd_dirty(old_pmd))
2209 SetPageDirty(page);
2210 write = pmd_write(old_pmd);
2211 young = pmd_young(old_pmd);
2212 soft_dirty = pmd_soft_dirty(old_pmd);
2213 }
eef1b3ba 2214 VM_BUG_ON_PAGE(!page_count(page), page);
fe896d18 2215 page_ref_add(page, HPAGE_PMD_NR - 1);
eef1b3ba 2216
423ac9af
AK
2217 /*
2218 * Withdraw the table only after we mark the pmd entry invalid.
2219 * This's critical for some architectures (Power).
2220 */
eef1b3ba
KS
2221 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2222 pmd_populate(mm, &_pmd, pgtable);
2223
2ac015e2 2224 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
eef1b3ba
KS
2225 pte_t entry, *pte;
2226 /*
2227 * Note that NUMA hinting access restrictions are not
2228 * transferred to avoid any possibility of altering
2229 * permissions across VMAs.
2230 */
84c3fc4e 2231 if (freeze || pmd_migration) {
ba988280
KS
2232 swp_entry_t swp_entry;
2233 swp_entry = make_migration_entry(page + i, write);
2234 entry = swp_entry_to_pte(swp_entry);
804dd150
AA
2235 if (soft_dirty)
2236 entry = pte_swp_mksoft_dirty(entry);
ba988280 2237 } else {
6d2329f8 2238 entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
b8d3c4c3 2239 entry = maybe_mkwrite(entry, vma);
ba988280
KS
2240 if (!write)
2241 entry = pte_wrprotect(entry);
2242 if (!young)
2243 entry = pte_mkold(entry);
804dd150
AA
2244 if (soft_dirty)
2245 entry = pte_mksoft_dirty(entry);
ba988280 2246 }
2ac015e2 2247 pte = pte_offset_map(&_pmd, addr);
eef1b3ba 2248 BUG_ON(!pte_none(*pte));
2ac015e2 2249 set_pte_at(mm, addr, pte, entry);
eef1b3ba
KS
2250 atomic_inc(&page[i]._mapcount);
2251 pte_unmap(pte);
2252 }
2253
2254 /*
2255 * Set PG_double_map before dropping compound_mapcount to avoid
2256 * false-negative page_mapped().
2257 */
2258 if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
2259 for (i = 0; i < HPAGE_PMD_NR; i++)
2260 atomic_inc(&page[i]._mapcount);
2261 }
2262
2263 if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2264 /* Last compound_mapcount is gone. */
11fb9989 2265 __dec_node_page_state(page, NR_ANON_THPS);
eef1b3ba
KS
2266 if (TestClearPageDoubleMap(page)) {
2267 /* No need in mapcount reference anymore */
2268 for (i = 0; i < HPAGE_PMD_NR; i++)
2269 atomic_dec(&page[i]._mapcount);
2270 }
2271 }
2272
2273 smp_wmb(); /* make pte visible before pmd */
2274 pmd_populate(mm, pmd, pgtable);
e9b61f19
KS
2275
2276 if (freeze) {
2ac015e2 2277 for (i = 0; i < HPAGE_PMD_NR; i++) {
e9b61f19
KS
2278 page_remove_rmap(page + i, false);
2279 put_page(page + i);
2280 }
2281 }
eef1b3ba
KS
2282}
2283
2284void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
33f4751e 2285 unsigned long address, bool freeze, struct page *page)
eef1b3ba
KS
2286{
2287 spinlock_t *ptl;
ac46d4f3 2288 struct mmu_notifier_range range;
eef1b3ba 2289
7269f999 2290 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
6f4f13e8 2291 address & HPAGE_PMD_MASK,
ac46d4f3
JG
2292 (address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
2293 mmu_notifier_invalidate_range_start(&range);
2294 ptl = pmd_lock(vma->vm_mm, pmd);
33f4751e
NH
2295
2296 /*
2297 * If caller asks to setup a migration entries, we need a page to check
2298 * pmd against. Otherwise we can end up replacing wrong page.
2299 */
2300 VM_BUG_ON(freeze && !page);
2301 if (page && page != pmd_page(*pmd))
2302 goto out;
2303
5c7fb56e 2304 if (pmd_trans_huge(*pmd)) {
33f4751e 2305 page = pmd_page(*pmd);
5c7fb56e 2306 if (PageMlocked(page))
5f737714 2307 clear_page_mlock(page);
84c3fc4e 2308 } else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd)))
e90309c9 2309 goto out;
ac46d4f3 2310 __split_huge_pmd_locked(vma, pmd, range.start, freeze);
e90309c9 2311out:
eef1b3ba 2312 spin_unlock(ptl);
4645b9fe
JG
2313 /*
2314 * No need to double call mmu_notifier->invalidate_range() callback.
2315 * They are 3 cases to consider inside __split_huge_pmd_locked():
2316 * 1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
2317 * 2) __split_huge_zero_page_pmd() read only zero page and any write
2318 * fault will trigger a flush_notify before pointing to a new page
2319 * (it is fine if the secondary mmu keeps pointing to the old zero
2320 * page in the meantime)
2321 * 3) Split a huge pmd into pte pointing to the same page. No need
2322 * to invalidate secondary tlb entry they are all still valid.
2323 * any further changes to individual pte will notify. So no need
2324 * to call mmu_notifier->invalidate_range()
2325 */
ac46d4f3 2326 mmu_notifier_invalidate_range_only_end(&range);
eef1b3ba
KS
2327}
2328
fec89c10
KS
2329void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2330 bool freeze, struct page *page)
94fcc585 2331{
f72e7dcd 2332 pgd_t *pgd;
c2febafc 2333 p4d_t *p4d;
f72e7dcd 2334 pud_t *pud;
94fcc585
AA
2335 pmd_t *pmd;
2336
78ddc534 2337 pgd = pgd_offset(vma->vm_mm, address);
f72e7dcd
HD
2338 if (!pgd_present(*pgd))
2339 return;
2340
c2febafc
KS
2341 p4d = p4d_offset(pgd, address);
2342 if (!p4d_present(*p4d))
2343 return;
2344
2345 pud = pud_offset(p4d, address);
f72e7dcd
HD
2346 if (!pud_present(*pud))
2347 return;
2348
2349 pmd = pmd_offset(pud, address);
fec89c10 2350
33f4751e 2351 __split_huge_pmd(vma, pmd, address, freeze, page);
94fcc585
AA
2352}
2353
e1b9996b 2354void vma_adjust_trans_huge(struct vm_area_struct *vma,
94fcc585
AA
2355 unsigned long start,
2356 unsigned long end,
2357 long adjust_next)
2358{
2359 /*
2360 * If the new start address isn't hpage aligned and it could
2361 * previously contain an hugepage: check if we need to split
2362 * an huge pmd.
2363 */
2364 if (start & ~HPAGE_PMD_MASK &&
2365 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2366 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
fec89c10 2367 split_huge_pmd_address(vma, start, false, NULL);
94fcc585
AA
2368
2369 /*
2370 * If the new end address isn't hpage aligned and it could
2371 * previously contain an hugepage: check if we need to split
2372 * an huge pmd.
2373 */
2374 if (end & ~HPAGE_PMD_MASK &&
2375 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2376 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
fec89c10 2377 split_huge_pmd_address(vma, end, false, NULL);
94fcc585
AA
2378
2379 /*
2380 * If we're also updating the vma->vm_next->vm_start, if the new
2381 * vm_next->vm_start isn't page aligned and it could previously
2382 * contain an hugepage: check if we need to split an huge pmd.
2383 */
2384 if (adjust_next > 0) {
2385 struct vm_area_struct *next = vma->vm_next;
2386 unsigned long nstart = next->vm_start;
2387 nstart += adjust_next << PAGE_SHIFT;
2388 if (nstart & ~HPAGE_PMD_MASK &&
2389 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2390 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
fec89c10 2391 split_huge_pmd_address(next, nstart, false, NULL);
94fcc585
AA
2392 }
2393}
e9b61f19 2394
906f9cdf 2395static void unmap_page(struct page *page)
e9b61f19 2396{
baa355fd 2397 enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS |
c7ab0d2f 2398 TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD;
666e5a40 2399 bool unmap_success;
e9b61f19
KS
2400
2401 VM_BUG_ON_PAGE(!PageHead(page), page);
2402
baa355fd 2403 if (PageAnon(page))
b5ff8161 2404 ttu_flags |= TTU_SPLIT_FREEZE;
baa355fd 2405
666e5a40
MK
2406 unmap_success = try_to_unmap(page, ttu_flags);
2407 VM_BUG_ON_PAGE(!unmap_success, page);
e9b61f19
KS
2408}
2409
906f9cdf 2410static void remap_page(struct page *page)
e9b61f19 2411{
fec89c10 2412 int i;
ace71a19
KS
2413 if (PageTransHuge(page)) {
2414 remove_migration_ptes(page, page, true);
2415 } else {
2416 for (i = 0; i < HPAGE_PMD_NR; i++)
2417 remove_migration_ptes(page + i, page + i, true);
2418 }
e9b61f19
KS
2419}
2420
8df651c7 2421static void __split_huge_page_tail(struct page *head, int tail,
e9b61f19
KS
2422 struct lruvec *lruvec, struct list_head *list)
2423{
e9b61f19
KS
2424 struct page *page_tail = head + tail;
2425
8df651c7 2426 VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
e9b61f19
KS
2427
2428 /*
605ca5ed
KK
2429 * Clone page flags before unfreezing refcount.
2430 *
2431 * After successful get_page_unless_zero() might follow flags change,
2432 * for exmaple lock_page() which set PG_waiters.
e9b61f19 2433 */
e9b61f19
KS
2434 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2435 page_tail->flags |= (head->flags &
2436 ((1L << PG_referenced) |
2437 (1L << PG_swapbacked) |
38d8b4e6 2438 (1L << PG_swapcache) |
e9b61f19
KS
2439 (1L << PG_mlocked) |
2440 (1L << PG_uptodate) |
2441 (1L << PG_active) |
1899ad18 2442 (1L << PG_workingset) |
e9b61f19 2443 (1L << PG_locked) |
b8d3c4c3
MK
2444 (1L << PG_unevictable) |
2445 (1L << PG_dirty)));
e9b61f19 2446
173d9d9f
HD
2447 /* ->mapping in first tail page is compound_mapcount */
2448 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2449 page_tail);
2450 page_tail->mapping = head->mapping;
2451 page_tail->index = head->index + tail;
2452
605ca5ed 2453 /* Page flags must be visible before we make the page non-compound. */
e9b61f19
KS
2454 smp_wmb();
2455
605ca5ed
KK
2456 /*
2457 * Clear PageTail before unfreezing page refcount.
2458 *
2459 * After successful get_page_unless_zero() might follow put_page()
2460 * which needs correct compound_head().
2461 */
e9b61f19
KS
2462 clear_compound_head(page_tail);
2463
605ca5ed
KK
2464 /* Finally unfreeze refcount. Additional reference from page cache. */
2465 page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
2466 PageSwapCache(head)));
2467
e9b61f19
KS
2468 if (page_is_young(head))
2469 set_page_young(page_tail);
2470 if (page_is_idle(head))
2471 set_page_idle(page_tail);
2472
e9b61f19 2473 page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
94723aaf
MH
2474
2475 /*
2476 * always add to the tail because some iterators expect new
2477 * pages to show after the currently processed elements - e.g.
2478 * migrate_pages
2479 */
e9b61f19 2480 lru_add_page_tail(head, page_tail, lruvec, list);
e9b61f19
KS
2481}
2482
baa355fd 2483static void __split_huge_page(struct page *page, struct list_head *list,
006d3ff2 2484 pgoff_t end, unsigned long flags)
e9b61f19
KS
2485{
2486 struct page *head = compound_head(page);
f4b7e272 2487 pg_data_t *pgdat = page_pgdat(head);
e9b61f19 2488 struct lruvec *lruvec;
8df651c7 2489 int i;
e9b61f19 2490
f4b7e272 2491 lruvec = mem_cgroup_page_lruvec(head, pgdat);
e9b61f19
KS
2492
2493 /* complete memcg works before add pages to LRU */
2494 mem_cgroup_split_huge_fixup(head);
2495
baa355fd 2496 for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
8df651c7 2497 __split_huge_page_tail(head, i, lruvec, list);
baa355fd
KS
2498 /* Some pages can be beyond i_size: drop them from page cache */
2499 if (head[i].index >= end) {
2d077d4b 2500 ClearPageDirty(head + i);
baa355fd 2501 __delete_from_page_cache(head + i, NULL);
800d8c63
KS
2502 if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
2503 shmem_uncharge(head->mapping->host, 1);
baa355fd
KS
2504 put_page(head + i);
2505 }
2506 }
e9b61f19
KS
2507
2508 ClearPageCompound(head);
baa355fd
KS
2509 /* See comment in __split_huge_page_tail() */
2510 if (PageAnon(head)) {
aa5dc07f 2511 /* Additional pin to swap cache */
38d8b4e6
HY
2512 if (PageSwapCache(head))
2513 page_ref_add(head, 2);
2514 else
2515 page_ref_inc(head);
baa355fd 2516 } else {
aa5dc07f 2517 /* Additional pin to page cache */
baa355fd 2518 page_ref_add(head, 2);
b93b0163 2519 xa_unlock(&head->mapping->i_pages);
baa355fd
KS
2520 }
2521
f4b7e272 2522 spin_unlock_irqrestore(&pgdat->lru_lock, flags);
e9b61f19 2523
906f9cdf 2524 remap_page(head);
e9b61f19
KS
2525
2526 for (i = 0; i < HPAGE_PMD_NR; i++) {
2527 struct page *subpage = head + i;
2528 if (subpage == page)
2529 continue;
2530 unlock_page(subpage);
2531
2532 /*
2533 * Subpages may be freed if there wasn't any mapping
2534 * like if add_to_swap() is running on a lru page that
2535 * had its mapping zapped. And freeing these pages
2536 * requires taking the lru_lock so we do the put_page
2537 * of the tail pages after the split is complete.
2538 */
2539 put_page(subpage);
2540 }
2541}
2542
b20ce5e0
KS
2543int total_mapcount(struct page *page)
2544{
dd78fedd 2545 int i, compound, ret;
b20ce5e0
KS
2546
2547 VM_BUG_ON_PAGE(PageTail(page), page);
2548
2549 if (likely(!PageCompound(page)))
2550 return atomic_read(&page->_mapcount) + 1;
2551
dd78fedd 2552 compound = compound_mapcount(page);
b20ce5e0 2553 if (PageHuge(page))
dd78fedd
KS
2554 return compound;
2555 ret = compound;
b20ce5e0
KS
2556 for (i = 0; i < HPAGE_PMD_NR; i++)
2557 ret += atomic_read(&page[i]._mapcount) + 1;
dd78fedd
KS
2558 /* File pages has compound_mapcount included in _mapcount */
2559 if (!PageAnon(page))
2560 return ret - compound * HPAGE_PMD_NR;
b20ce5e0
KS
2561 if (PageDoubleMap(page))
2562 ret -= HPAGE_PMD_NR;
2563 return ret;
2564}
2565
6d0a07ed
AA
2566/*
2567 * This calculates accurately how many mappings a transparent hugepage
2568 * has (unlike page_mapcount() which isn't fully accurate). This full
2569 * accuracy is primarily needed to know if copy-on-write faults can
2570 * reuse the page and change the mapping to read-write instead of
2571 * copying them. At the same time this returns the total_mapcount too.
2572 *
2573 * The function returns the highest mapcount any one of the subpages
2574 * has. If the return value is one, even if different processes are
2575 * mapping different subpages of the transparent hugepage, they can
2576 * all reuse it, because each process is reusing a different subpage.
2577 *
2578 * The total_mapcount is instead counting all virtual mappings of the
2579 * subpages. If the total_mapcount is equal to "one", it tells the
2580 * caller all mappings belong to the same "mm" and in turn the
2581 * anon_vma of the transparent hugepage can become the vma->anon_vma
2582 * local one as no other process may be mapping any of the subpages.
2583 *
2584 * It would be more accurate to replace page_mapcount() with
2585 * page_trans_huge_mapcount(), however we only use
2586 * page_trans_huge_mapcount() in the copy-on-write faults where we
2587 * need full accuracy to avoid breaking page pinning, because
2588 * page_trans_huge_mapcount() is slower than page_mapcount().
2589 */
2590int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
2591{
2592 int i, ret, _total_mapcount, mapcount;
2593
2594 /* hugetlbfs shouldn't call it */
2595 VM_BUG_ON_PAGE(PageHuge(page), page);
2596
2597 if (likely(!PageTransCompound(page))) {
2598 mapcount = atomic_read(&page->_mapcount) + 1;
2599 if (total_mapcount)
2600 *total_mapcount = mapcount;
2601 return mapcount;
2602 }
2603
2604 page = compound_head(page);
2605
2606 _total_mapcount = ret = 0;
2607 for (i = 0; i < HPAGE_PMD_NR; i++) {
2608 mapcount = atomic_read(&page[i]._mapcount) + 1;
2609 ret = max(ret, mapcount);
2610 _total_mapcount += mapcount;
2611 }
2612 if (PageDoubleMap(page)) {
2613 ret -= 1;
2614 _total_mapcount -= HPAGE_PMD_NR;
2615 }
2616 mapcount = compound_mapcount(page);
2617 ret += mapcount;
2618 _total_mapcount += mapcount;
2619 if (total_mapcount)
2620 *total_mapcount = _total_mapcount;
2621 return ret;
2622}
2623
b8f593cd
HY
2624/* Racy check whether the huge page can be split */
2625bool can_split_huge_page(struct page *page, int *pextra_pins)
2626{
2627 int extra_pins;
2628
aa5dc07f 2629 /* Additional pins from page cache */
b8f593cd
HY
2630 if (PageAnon(page))
2631 extra_pins = PageSwapCache(page) ? HPAGE_PMD_NR : 0;
2632 else
2633 extra_pins = HPAGE_PMD_NR;
2634 if (pextra_pins)
2635 *pextra_pins = extra_pins;
2636 return total_mapcount(page) == page_count(page) - extra_pins - 1;
2637}
2638
e9b61f19
KS
2639/*
2640 * This function splits huge page into normal pages. @page can point to any
2641 * subpage of huge page to split. Split doesn't change the position of @page.
2642 *
2643 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2644 * The huge page must be locked.
2645 *
2646 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2647 *
2648 * Both head page and tail pages will inherit mapping, flags, and so on from
2649 * the hugepage.
2650 *
2651 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2652 * they are not mapped.
2653 *
2654 * Returns 0 if the hugepage is split successfully.
2655 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2656 * us.
2657 */
2658int split_huge_page_to_list(struct page *page, struct list_head *list)
2659{
2660 struct page *head = compound_head(page);
a3d0a918 2661 struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
baa355fd
KS
2662 struct anon_vma *anon_vma = NULL;
2663 struct address_space *mapping = NULL;
2664 int count, mapcount, extra_pins, ret;
d9654322 2665 bool mlocked;
0b9b6fff 2666 unsigned long flags;
006d3ff2 2667 pgoff_t end;
e9b61f19
KS
2668
2669 VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
e9b61f19 2670 VM_BUG_ON_PAGE(!PageLocked(page), page);
e9b61f19
KS
2671 VM_BUG_ON_PAGE(!PageCompound(page), page);
2672
59807685
HY
2673 if (PageWriteback(page))
2674 return -EBUSY;
2675
baa355fd
KS
2676 if (PageAnon(head)) {
2677 /*
2678 * The caller does not necessarily hold an mmap_sem that would
2679 * prevent the anon_vma disappearing so we first we take a
2680 * reference to it and then lock the anon_vma for write. This
2681 * is similar to page_lock_anon_vma_read except the write lock
2682 * is taken to serialise against parallel split or collapse
2683 * operations.
2684 */
2685 anon_vma = page_get_anon_vma(head);
2686 if (!anon_vma) {
2687 ret = -EBUSY;
2688 goto out;
2689 }
006d3ff2 2690 end = -1;
baa355fd
KS
2691 mapping = NULL;
2692 anon_vma_lock_write(anon_vma);
2693 } else {
2694 mapping = head->mapping;
2695
2696 /* Truncated ? */
2697 if (!mapping) {
2698 ret = -EBUSY;
2699 goto out;
2700 }
2701
baa355fd
KS
2702 anon_vma = NULL;
2703 i_mmap_lock_read(mapping);
006d3ff2
HD
2704
2705 /*
2706 *__split_huge_page() may need to trim off pages beyond EOF:
2707 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
2708 * which cannot be nested inside the page tree lock. So note
2709 * end now: i_size itself may be changed at any moment, but
2710 * head page lock is good enough to serialize the trimming.
2711 */
2712 end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
e9b61f19 2713 }
e9b61f19
KS
2714
2715 /*
906f9cdf 2716 * Racy check if we can split the page, before unmap_page() will
e9b61f19
KS
2717 * split PMDs
2718 */
b8f593cd 2719 if (!can_split_huge_page(head, &extra_pins)) {
e9b61f19
KS
2720 ret = -EBUSY;
2721 goto out_unlock;
2722 }
2723
d9654322 2724 mlocked = PageMlocked(page);
906f9cdf 2725 unmap_page(head);
e9b61f19
KS
2726 VM_BUG_ON_PAGE(compound_mapcount(head), head);
2727
d9654322
KS
2728 /* Make sure the page is not on per-CPU pagevec as it takes pin */
2729 if (mlocked)
2730 lru_add_drain();
2731
baa355fd 2732 /* prevent PageLRU to go away from under us, and freeze lru stats */
f4b7e272 2733 spin_lock_irqsave(&pgdata->lru_lock, flags);
baa355fd
KS
2734
2735 if (mapping) {
aa5dc07f 2736 XA_STATE(xas, &mapping->i_pages, page_index(head));
baa355fd 2737
baa355fd 2738 /*
aa5dc07f 2739 * Check if the head page is present in page cache.
baa355fd
KS
2740 * We assume all tail are present too, if head is there.
2741 */
aa5dc07f
MW
2742 xa_lock(&mapping->i_pages);
2743 if (xas_load(&xas) != head)
baa355fd
KS
2744 goto fail;
2745 }
2746
0139aa7b 2747 /* Prevent deferred_split_scan() touching ->_refcount */
baa355fd 2748 spin_lock(&pgdata->split_queue_lock);
e9b61f19
KS
2749 count = page_count(head);
2750 mapcount = total_mapcount(head);
baa355fd 2751 if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
9a982250 2752 if (!list_empty(page_deferred_list(head))) {
a3d0a918 2753 pgdata->split_queue_len--;
9a982250
KS
2754 list_del(page_deferred_list(head));
2755 }
65c45377 2756 if (mapping)
11fb9989 2757 __dec_node_page_state(page, NR_SHMEM_THPS);
baa355fd 2758 spin_unlock(&pgdata->split_queue_lock);
006d3ff2 2759 __split_huge_page(page, list, end, flags);
59807685
HY
2760 if (PageSwapCache(head)) {
2761 swp_entry_t entry = { .val = page_private(head) };
2762
2763 ret = split_swap_cluster(entry);
2764 } else
2765 ret = 0;
e9b61f19 2766 } else {
baa355fd
KS
2767 if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
2768 pr_alert("total_mapcount: %u, page_count(): %u\n",
2769 mapcount, count);
2770 if (PageTail(page))
2771 dump_page(head, NULL);
2772 dump_page(page, "total_mapcount(head) > 0");
2773 BUG();
2774 }
2775 spin_unlock(&pgdata->split_queue_lock);
2776fail: if (mapping)
b93b0163 2777 xa_unlock(&mapping->i_pages);
f4b7e272 2778 spin_unlock_irqrestore(&pgdata->lru_lock, flags);
906f9cdf 2779 remap_page(head);
e9b61f19
KS
2780 ret = -EBUSY;
2781 }
2782
2783out_unlock:
baa355fd
KS
2784 if (anon_vma) {
2785 anon_vma_unlock_write(anon_vma);
2786 put_anon_vma(anon_vma);
2787 }
2788 if (mapping)
2789 i_mmap_unlock_read(mapping);
e9b61f19
KS
2790out:
2791 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2792 return ret;
2793}
9a982250
KS
2794
2795void free_transhuge_page(struct page *page)
2796{
a3d0a918 2797 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
9a982250
KS
2798 unsigned long flags;
2799
a3d0a918 2800 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
9a982250 2801 if (!list_empty(page_deferred_list(page))) {
a3d0a918 2802 pgdata->split_queue_len--;
9a982250
KS
2803 list_del(page_deferred_list(page));
2804 }
a3d0a918 2805 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
9a982250
KS
2806 free_compound_page(page);
2807}
2808
2809void deferred_split_huge_page(struct page *page)
2810{
a3d0a918 2811 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
9a982250
KS
2812 unsigned long flags;
2813
2814 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2815
a3d0a918 2816 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
9a982250 2817 if (list_empty(page_deferred_list(page))) {
f9719a03 2818 count_vm_event(THP_DEFERRED_SPLIT_PAGE);
a3d0a918
KS
2819 list_add_tail(page_deferred_list(page), &pgdata->split_queue);
2820 pgdata->split_queue_len++;
9a982250 2821 }
a3d0a918 2822 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
9a982250
KS
2823}
2824
2825static unsigned long deferred_split_count(struct shrinker *shrink,
2826 struct shrink_control *sc)
2827{
a3d0a918 2828 struct pglist_data *pgdata = NODE_DATA(sc->nid);
6aa7de05 2829 return READ_ONCE(pgdata->split_queue_len);
9a982250
KS
2830}
2831
2832static unsigned long deferred_split_scan(struct shrinker *shrink,
2833 struct shrink_control *sc)
2834{
a3d0a918 2835 struct pglist_data *pgdata = NODE_DATA(sc->nid);
9a982250
KS
2836 unsigned long flags;
2837 LIST_HEAD(list), *pos, *next;
2838 struct page *page;
2839 int split = 0;
2840
a3d0a918 2841 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
9a982250 2842 /* Take pin on all head pages to avoid freeing them under us */
ae026204 2843 list_for_each_safe(pos, next, &pgdata->split_queue) {
9a982250
KS
2844 page = list_entry((void *)pos, struct page, mapping);
2845 page = compound_head(page);
e3ae1953
KS
2846 if (get_page_unless_zero(page)) {
2847 list_move(page_deferred_list(page), &list);
2848 } else {
2849 /* We lost race with put_compound_page() */
9a982250 2850 list_del_init(page_deferred_list(page));
a3d0a918 2851 pgdata->split_queue_len--;
9a982250 2852 }
e3ae1953
KS
2853 if (!--sc->nr_to_scan)
2854 break;
9a982250 2855 }
a3d0a918 2856 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
9a982250
KS
2857
2858 list_for_each_safe(pos, next, &list) {
2859 page = list_entry((void *)pos, struct page, mapping);
fa41b900
KS
2860 if (!trylock_page(page))
2861 goto next;
9a982250
KS
2862 /* split_huge_page() removes page from list on success */
2863 if (!split_huge_page(page))
2864 split++;
2865 unlock_page(page);
fa41b900 2866next:
9a982250
KS
2867 put_page(page);
2868 }
2869
a3d0a918
KS
2870 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2871 list_splice_tail(&list, &pgdata->split_queue);
2872 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
9a982250 2873
cb8d68ec
KS
2874 /*
2875 * Stop shrinker if we didn't split any page, but the queue is empty.
2876 * This can happen if pages were freed under us.
2877 */
2878 if (!split && list_empty(&pgdata->split_queue))
2879 return SHRINK_STOP;
2880 return split;
9a982250
KS
2881}
2882
2883static struct shrinker deferred_split_shrinker = {
2884 .count_objects = deferred_split_count,
2885 .scan_objects = deferred_split_scan,
2886 .seeks = DEFAULT_SEEKS,
a3d0a918 2887 .flags = SHRINKER_NUMA_AWARE,
9a982250 2888};
49071d43
KS
2889
2890#ifdef CONFIG_DEBUG_FS
2891static int split_huge_pages_set(void *data, u64 val)
2892{
2893 struct zone *zone;
2894 struct page *page;
2895 unsigned long pfn, max_zone_pfn;
2896 unsigned long total = 0, split = 0;
2897
2898 if (val != 1)
2899 return -EINVAL;
2900
2901 for_each_populated_zone(zone) {
2902 max_zone_pfn = zone_end_pfn(zone);
2903 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2904 if (!pfn_valid(pfn))
2905 continue;
2906
2907 page = pfn_to_page(pfn);
2908 if (!get_page_unless_zero(page))
2909 continue;
2910
2911 if (zone != page_zone(page))
2912 goto next;
2913
baa355fd 2914 if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
49071d43
KS
2915 goto next;
2916
2917 total++;
2918 lock_page(page);
2919 if (!split_huge_page(page))
2920 split++;
2921 unlock_page(page);
2922next:
2923 put_page(page);
2924 }
2925 }
2926
145bdaa1 2927 pr_info("%lu of %lu THP split\n", split, total);
49071d43
KS
2928
2929 return 0;
2930}
2931DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
2932 "%llu\n");
2933
2934static int __init split_huge_pages_debugfs(void)
2935{
d9f7979c
GKH
2936 debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
2937 &split_huge_pages_fops);
49071d43
KS
2938 return 0;
2939}
2940late_initcall(split_huge_pages_debugfs);
2941#endif
616b8371
ZY
2942
2943#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2944void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
2945 struct page *page)
2946{
2947 struct vm_area_struct *vma = pvmw->vma;
2948 struct mm_struct *mm = vma->vm_mm;
2949 unsigned long address = pvmw->address;
2950 pmd_t pmdval;
2951 swp_entry_t entry;
ab6e3d09 2952 pmd_t pmdswp;
616b8371
ZY
2953
2954 if (!(pvmw->pmd && !pvmw->pte))
2955 return;
2956
616b8371
ZY
2957 flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
2958 pmdval = *pvmw->pmd;
2959 pmdp_invalidate(vma, address, pvmw->pmd);
2960 if (pmd_dirty(pmdval))
2961 set_page_dirty(page);
2962 entry = make_migration_entry(page, pmd_write(pmdval));
ab6e3d09
NH
2963 pmdswp = swp_entry_to_pmd(entry);
2964 if (pmd_soft_dirty(pmdval))
2965 pmdswp = pmd_swp_mksoft_dirty(pmdswp);
2966 set_pmd_at(mm, address, pvmw->pmd, pmdswp);
616b8371
ZY
2967 page_remove_rmap(page, true);
2968 put_page(page);
616b8371
ZY
2969}
2970
2971void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
2972{
2973 struct vm_area_struct *vma = pvmw->vma;
2974 struct mm_struct *mm = vma->vm_mm;
2975 unsigned long address = pvmw->address;
2976 unsigned long mmun_start = address & HPAGE_PMD_MASK;
2977 pmd_t pmde;
2978 swp_entry_t entry;
2979
2980 if (!(pvmw->pmd && !pvmw->pte))
2981 return;
2982
2983 entry = pmd_to_swp_entry(*pvmw->pmd);
2984 get_page(new);
2985 pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
ab6e3d09
NH
2986 if (pmd_swp_soft_dirty(*pvmw->pmd))
2987 pmde = pmd_mksoft_dirty(pmde);
616b8371 2988 if (is_write_migration_entry(entry))
f55e1014 2989 pmde = maybe_pmd_mkwrite(pmde, vma);
616b8371
ZY
2990
2991 flush_cache_range(vma, mmun_start, mmun_start + HPAGE_PMD_SIZE);
e71769ae
NH
2992 if (PageAnon(new))
2993 page_add_anon_rmap(new, vma, mmun_start, true);
2994 else
2995 page_add_file_rmap(new, true);
616b8371 2996 set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
e125fe40 2997 if ((vma->vm_flags & VM_LOCKED) && !PageDoubleMap(new))
616b8371
ZY
2998 mlock_vma_page(new);
2999 update_mmu_cache_pmd(vma, address, pvmw->pmd);
3000}
3001#endif