mm/page_alloc: fix memalloc_nocma_{save/restore} APIs
[linux-2.6-block.git] / mm / huge_memory.c
CommitLineData
20c8ccb1 1// SPDX-License-Identifier: GPL-2.0-only
71e3aac0
AA
2/*
3 * Copyright (C) 2009 Red Hat, Inc.
71e3aac0
AA
4 */
5
ae3a8c1c
AM
6#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7
71e3aac0
AA
8#include <linux/mm.h>
9#include <linux/sched.h>
f7ccbae4 10#include <linux/sched/coredump.h>
6a3827d7 11#include <linux/sched/numa_balancing.h>
71e3aac0
AA
12#include <linux/highmem.h>
13#include <linux/hugetlb.h>
14#include <linux/mmu_notifier.h>
15#include <linux/rmap.h>
16#include <linux/swap.h>
97ae1749 17#include <linux/shrinker.h>
ba76149f 18#include <linux/mm_inline.h>
e9b61f19 19#include <linux/swapops.h>
4897c765 20#include <linux/dax.h>
ba76149f 21#include <linux/khugepaged.h>
878aee7d 22#include <linux/freezer.h>
f25748e3 23#include <linux/pfn_t.h>
a664b2d8 24#include <linux/mman.h>
3565fce3 25#include <linux/memremap.h>
325adeb5 26#include <linux/pagemap.h>
49071d43 27#include <linux/debugfs.h>
4daae3b4 28#include <linux/migrate.h>
43b5fbbd 29#include <linux/hashtable.h>
6b251fc9 30#include <linux/userfaultfd_k.h>
33c3fc71 31#include <linux/page_idle.h>
baa355fd 32#include <linux/shmem_fs.h>
6b31d595 33#include <linux/oom.h>
98fa15f3 34#include <linux/numa.h>
f7da677b 35#include <linux/page_owner.h>
97ae1749 36
71e3aac0
AA
37#include <asm/tlb.h>
38#include <asm/pgalloc.h>
39#include "internal.h"
40
ba76149f 41/*
b14d595a
MD
42 * By default, transparent hugepage support is disabled in order to avoid
43 * risking an increased memory footprint for applications that are not
44 * guaranteed to benefit from it. When transparent hugepage support is
45 * enabled, it is for all mappings, and khugepaged scans all mappings.
8bfa3f9a
JW
46 * Defrag is invoked by khugepaged hugepage allocations and by page faults
47 * for all hugepage allocations.
ba76149f 48 */
71e3aac0 49unsigned long transparent_hugepage_flags __read_mostly =
13ece886 50#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
ba76149f 51 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
13ece886
AA
52#endif
53#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
54 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
55#endif
444eb2a4 56 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
79da5407
KS
57 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
58 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
ba76149f 59
9a982250 60static struct shrinker deferred_split_shrinker;
f000565a 61
97ae1749 62static atomic_t huge_zero_refcount;
56873f43 63struct page *huge_zero_page __read_mostly;
4a6c1297 64
7635d9cb
MH
65bool transparent_hugepage_enabled(struct vm_area_struct *vma)
66{
c0630669
YS
67 /* The addr is used to check if the vma size fits */
68 unsigned long addr = (vma->vm_end & HPAGE_PMD_MASK) - HPAGE_PMD_SIZE;
69
70 if (!transhuge_vma_suitable(vma, addr))
71 return false;
7635d9cb
MH
72 if (vma_is_anonymous(vma))
73 return __transparent_hugepage_enabled(vma);
c0630669
YS
74 if (vma_is_shmem(vma))
75 return shmem_huge_enabled(vma);
7635d9cb
MH
76
77 return false;
78}
79
6fcb52a5 80static struct page *get_huge_zero_page(void)
97ae1749
KS
81{
82 struct page *zero_page;
83retry:
84 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
4db0c3c2 85 return READ_ONCE(huge_zero_page);
97ae1749
KS
86
87 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
4a6c1297 88 HPAGE_PMD_ORDER);
d8a8e1f0
KS
89 if (!zero_page) {
90 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
5918d10a 91 return NULL;
d8a8e1f0
KS
92 }
93 count_vm_event(THP_ZERO_PAGE_ALLOC);
97ae1749 94 preempt_disable();
5918d10a 95 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
97ae1749 96 preempt_enable();
5ddacbe9 97 __free_pages(zero_page, compound_order(zero_page));
97ae1749
KS
98 goto retry;
99 }
100
101 /* We take additional reference here. It will be put back by shrinker */
102 atomic_set(&huge_zero_refcount, 2);
103 preempt_enable();
4db0c3c2 104 return READ_ONCE(huge_zero_page);
4a6c1297
KS
105}
106
6fcb52a5 107static void put_huge_zero_page(void)
4a6c1297 108{
97ae1749
KS
109 /*
110 * Counter should never go to zero here. Only shrinker can put
111 * last reference.
112 */
113 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
4a6c1297
KS
114}
115
6fcb52a5
AL
116struct page *mm_get_huge_zero_page(struct mm_struct *mm)
117{
118 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
119 return READ_ONCE(huge_zero_page);
120
121 if (!get_huge_zero_page())
122 return NULL;
123
124 if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
125 put_huge_zero_page();
126
127 return READ_ONCE(huge_zero_page);
128}
129
130void mm_put_huge_zero_page(struct mm_struct *mm)
131{
132 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
133 put_huge_zero_page();
134}
135
48896466
GC
136static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
137 struct shrink_control *sc)
4a6c1297 138{
48896466
GC
139 /* we can free zero page only if last reference remains */
140 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
141}
97ae1749 142
48896466
GC
143static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
144 struct shrink_control *sc)
145{
97ae1749 146 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
5918d10a
KS
147 struct page *zero_page = xchg(&huge_zero_page, NULL);
148 BUG_ON(zero_page == NULL);
5ddacbe9 149 __free_pages(zero_page, compound_order(zero_page));
48896466 150 return HPAGE_PMD_NR;
97ae1749
KS
151 }
152
153 return 0;
4a6c1297
KS
154}
155
97ae1749 156static struct shrinker huge_zero_page_shrinker = {
48896466
GC
157 .count_objects = shrink_huge_zero_page_count,
158 .scan_objects = shrink_huge_zero_page_scan,
97ae1749
KS
159 .seeks = DEFAULT_SEEKS,
160};
161
71e3aac0 162#ifdef CONFIG_SYSFS
71e3aac0
AA
163static ssize_t enabled_show(struct kobject *kobj,
164 struct kobj_attribute *attr, char *buf)
165{
444eb2a4
MG
166 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
167 return sprintf(buf, "[always] madvise never\n");
168 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
169 return sprintf(buf, "always [madvise] never\n");
170 else
171 return sprintf(buf, "always madvise [never]\n");
71e3aac0 172}
444eb2a4 173
71e3aac0
AA
174static ssize_t enabled_store(struct kobject *kobj,
175 struct kobj_attribute *attr,
176 const char *buf, size_t count)
177{
21440d7e 178 ssize_t ret = count;
ba76149f 179
f42f2552 180 if (sysfs_streq(buf, "always")) {
21440d7e
DR
181 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
182 set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
f42f2552 183 } else if (sysfs_streq(buf, "madvise")) {
21440d7e
DR
184 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
185 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
f42f2552 186 } else if (sysfs_streq(buf, "never")) {
21440d7e
DR
187 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
188 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
189 } else
190 ret = -EINVAL;
ba76149f
AA
191
192 if (ret > 0) {
b46e756f 193 int err = start_stop_khugepaged();
ba76149f
AA
194 if (err)
195 ret = err;
196 }
ba76149f 197 return ret;
71e3aac0
AA
198}
199static struct kobj_attribute enabled_attr =
200 __ATTR(enabled, 0644, enabled_show, enabled_store);
201
b46e756f 202ssize_t single_hugepage_flag_show(struct kobject *kobj,
71e3aac0
AA
203 struct kobj_attribute *attr, char *buf,
204 enum transparent_hugepage_flag flag)
205{
e27e6151
BH
206 return sprintf(buf, "%d\n",
207 !!test_bit(flag, &transparent_hugepage_flags));
71e3aac0 208}
e27e6151 209
b46e756f 210ssize_t single_hugepage_flag_store(struct kobject *kobj,
71e3aac0
AA
211 struct kobj_attribute *attr,
212 const char *buf, size_t count,
213 enum transparent_hugepage_flag flag)
214{
e27e6151
BH
215 unsigned long value;
216 int ret;
217
218 ret = kstrtoul(buf, 10, &value);
219 if (ret < 0)
220 return ret;
221 if (value > 1)
222 return -EINVAL;
223
224 if (value)
71e3aac0 225 set_bit(flag, &transparent_hugepage_flags);
e27e6151 226 else
71e3aac0 227 clear_bit(flag, &transparent_hugepage_flags);
71e3aac0
AA
228
229 return count;
230}
231
71e3aac0
AA
232static ssize_t defrag_show(struct kobject *kobj,
233 struct kobj_attribute *attr, char *buf)
234{
444eb2a4 235 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
21440d7e 236 return sprintf(buf, "[always] defer defer+madvise madvise never\n");
444eb2a4 237 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
21440d7e
DR
238 return sprintf(buf, "always [defer] defer+madvise madvise never\n");
239 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
240 return sprintf(buf, "always defer [defer+madvise] madvise never\n");
241 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
242 return sprintf(buf, "always defer defer+madvise [madvise] never\n");
243 return sprintf(buf, "always defer defer+madvise madvise [never]\n");
71e3aac0 244}
21440d7e 245
71e3aac0
AA
246static ssize_t defrag_store(struct kobject *kobj,
247 struct kobj_attribute *attr,
248 const char *buf, size_t count)
249{
f42f2552 250 if (sysfs_streq(buf, "always")) {
21440d7e
DR
251 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
252 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
253 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
254 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
f42f2552 255 } else if (sysfs_streq(buf, "defer+madvise")) {
21440d7e
DR
256 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
257 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
258 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
259 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
f42f2552 260 } else if (sysfs_streq(buf, "defer")) {
4fad7fb6
DR
261 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
262 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
263 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
264 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
f42f2552 265 } else if (sysfs_streq(buf, "madvise")) {
21440d7e
DR
266 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
267 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
268 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
269 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
f42f2552 270 } else if (sysfs_streq(buf, "never")) {
21440d7e
DR
271 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
272 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
273 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
274 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
275 } else
276 return -EINVAL;
277
278 return count;
71e3aac0
AA
279}
280static struct kobj_attribute defrag_attr =
281 __ATTR(defrag, 0644, defrag_show, defrag_store);
282
79da5407
KS
283static ssize_t use_zero_page_show(struct kobject *kobj,
284 struct kobj_attribute *attr, char *buf)
285{
b46e756f 286 return single_hugepage_flag_show(kobj, attr, buf,
79da5407
KS
287 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
288}
289static ssize_t use_zero_page_store(struct kobject *kobj,
290 struct kobj_attribute *attr, const char *buf, size_t count)
291{
b46e756f 292 return single_hugepage_flag_store(kobj, attr, buf, count,
79da5407
KS
293 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
294}
295static struct kobj_attribute use_zero_page_attr =
296 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
49920d28
HD
297
298static ssize_t hpage_pmd_size_show(struct kobject *kobj,
299 struct kobj_attribute *attr, char *buf)
300{
301 return sprintf(buf, "%lu\n", HPAGE_PMD_SIZE);
302}
303static struct kobj_attribute hpage_pmd_size_attr =
304 __ATTR_RO(hpage_pmd_size);
305
71e3aac0
AA
306#ifdef CONFIG_DEBUG_VM
307static ssize_t debug_cow_show(struct kobject *kobj,
308 struct kobj_attribute *attr, char *buf)
309{
b46e756f 310 return single_hugepage_flag_show(kobj, attr, buf,
71e3aac0
AA
311 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
312}
313static ssize_t debug_cow_store(struct kobject *kobj,
314 struct kobj_attribute *attr,
315 const char *buf, size_t count)
316{
b46e756f 317 return single_hugepage_flag_store(kobj, attr, buf, count,
71e3aac0
AA
318 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
319}
320static struct kobj_attribute debug_cow_attr =
321 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
322#endif /* CONFIG_DEBUG_VM */
323
324static struct attribute *hugepage_attr[] = {
325 &enabled_attr.attr,
326 &defrag_attr.attr,
79da5407 327 &use_zero_page_attr.attr,
49920d28 328 &hpage_pmd_size_attr.attr,
396bcc52 329#ifdef CONFIG_SHMEM
5a6e75f8
KS
330 &shmem_enabled_attr.attr,
331#endif
71e3aac0
AA
332#ifdef CONFIG_DEBUG_VM
333 &debug_cow_attr.attr,
334#endif
335 NULL,
336};
337
8aa95a21 338static const struct attribute_group hugepage_attr_group = {
71e3aac0 339 .attrs = hugepage_attr,
ba76149f
AA
340};
341
569e5590 342static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
71e3aac0 343{
71e3aac0
AA
344 int err;
345
569e5590
SL
346 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
347 if (unlikely(!*hugepage_kobj)) {
ae3a8c1c 348 pr_err("failed to create transparent hugepage kobject\n");
569e5590 349 return -ENOMEM;
ba76149f
AA
350 }
351
569e5590 352 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
ba76149f 353 if (err) {
ae3a8c1c 354 pr_err("failed to register transparent hugepage group\n");
569e5590 355 goto delete_obj;
ba76149f
AA
356 }
357
569e5590 358 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
ba76149f 359 if (err) {
ae3a8c1c 360 pr_err("failed to register transparent hugepage group\n");
569e5590 361 goto remove_hp_group;
ba76149f 362 }
569e5590
SL
363
364 return 0;
365
366remove_hp_group:
367 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
368delete_obj:
369 kobject_put(*hugepage_kobj);
370 return err;
371}
372
373static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
374{
375 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
376 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
377 kobject_put(hugepage_kobj);
378}
379#else
380static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
381{
382 return 0;
383}
384
385static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
386{
387}
388#endif /* CONFIG_SYSFS */
389
390static int __init hugepage_init(void)
391{
392 int err;
393 struct kobject *hugepage_kobj;
394
395 if (!has_transparent_hugepage()) {
396 transparent_hugepage_flags = 0;
397 return -EINVAL;
398 }
399
ff20c2e0
KS
400 /*
401 * hugepages can't be allocated by the buddy allocator
402 */
403 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
404 /*
405 * we use page->mapping and page->index in second tail page
406 * as list_head: assuming THP order >= 2
407 */
408 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
409
569e5590
SL
410 err = hugepage_init_sysfs(&hugepage_kobj);
411 if (err)
65ebb64f 412 goto err_sysfs;
ba76149f 413
b46e756f 414 err = khugepaged_init();
ba76149f 415 if (err)
65ebb64f 416 goto err_slab;
ba76149f 417
65ebb64f
KS
418 err = register_shrinker(&huge_zero_page_shrinker);
419 if (err)
420 goto err_hzp_shrinker;
9a982250
KS
421 err = register_shrinker(&deferred_split_shrinker);
422 if (err)
423 goto err_split_shrinker;
97ae1749 424
97562cd2
RR
425 /*
426 * By default disable transparent hugepages on smaller systems,
427 * where the extra memory used could hurt more than TLB overhead
428 * is likely to save. The admin can still enable it through /sys.
429 */
ca79b0c2 430 if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
97562cd2 431 transparent_hugepage_flags = 0;
79553da2
KS
432 return 0;
433 }
97562cd2 434
79553da2 435 err = start_stop_khugepaged();
65ebb64f
KS
436 if (err)
437 goto err_khugepaged;
ba76149f 438
569e5590 439 return 0;
65ebb64f 440err_khugepaged:
9a982250
KS
441 unregister_shrinker(&deferred_split_shrinker);
442err_split_shrinker:
65ebb64f
KS
443 unregister_shrinker(&huge_zero_page_shrinker);
444err_hzp_shrinker:
b46e756f 445 khugepaged_destroy();
65ebb64f 446err_slab:
569e5590 447 hugepage_exit_sysfs(hugepage_kobj);
65ebb64f 448err_sysfs:
ba76149f 449 return err;
71e3aac0 450}
a64fb3cd 451subsys_initcall(hugepage_init);
71e3aac0
AA
452
453static int __init setup_transparent_hugepage(char *str)
454{
455 int ret = 0;
456 if (!str)
457 goto out;
458 if (!strcmp(str, "always")) {
459 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
460 &transparent_hugepage_flags);
461 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
462 &transparent_hugepage_flags);
463 ret = 1;
464 } else if (!strcmp(str, "madvise")) {
465 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
466 &transparent_hugepage_flags);
467 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
468 &transparent_hugepage_flags);
469 ret = 1;
470 } else if (!strcmp(str, "never")) {
471 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
472 &transparent_hugepage_flags);
473 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
474 &transparent_hugepage_flags);
475 ret = 1;
476 }
477out:
478 if (!ret)
ae3a8c1c 479 pr_warn("transparent_hugepage= cannot parse, ignored\n");
71e3aac0
AA
480 return ret;
481}
482__setup("transparent_hugepage=", setup_transparent_hugepage);
483
f55e1014 484pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
71e3aac0 485{
f55e1014 486 if (likely(vma->vm_flags & VM_WRITE))
71e3aac0
AA
487 pmd = pmd_mkwrite(pmd);
488 return pmd;
489}
490
87eaceb3
YS
491#ifdef CONFIG_MEMCG
492static inline struct deferred_split *get_deferred_split_queue(struct page *page)
9a982250 493{
87eaceb3
YS
494 struct mem_cgroup *memcg = compound_head(page)->mem_cgroup;
495 struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
496
497 if (memcg)
498 return &memcg->deferred_split_queue;
499 else
500 return &pgdat->deferred_split_queue;
9a982250 501}
87eaceb3
YS
502#else
503static inline struct deferred_split *get_deferred_split_queue(struct page *page)
504{
505 struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
506
507 return &pgdat->deferred_split_queue;
508}
509#endif
9a982250
KS
510
511void prep_transhuge_page(struct page *page)
512{
513 /*
514 * we use page->mapping and page->indexlru in second tail page
515 * as list_head: assuming THP order >= 2
516 */
9a982250
KS
517
518 INIT_LIST_HEAD(page_deferred_list(page));
519 set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
520}
521
005ba37c
SC
522bool is_transparent_hugepage(struct page *page)
523{
524 if (!PageCompound(page))
fa1f68cc 525 return false;
005ba37c
SC
526
527 page = compound_head(page);
528 return is_huge_zero_page(page) ||
529 page[1].compound_dtor == TRANSHUGE_PAGE_DTOR;
530}
531EXPORT_SYMBOL_GPL(is_transparent_hugepage);
532
97d3d0f9
KS
533static unsigned long __thp_get_unmapped_area(struct file *filp,
534 unsigned long addr, unsigned long len,
74d2fad1
TK
535 loff_t off, unsigned long flags, unsigned long size)
536{
74d2fad1
TK
537 loff_t off_end = off + len;
538 loff_t off_align = round_up(off, size);
97d3d0f9 539 unsigned long len_pad, ret;
74d2fad1
TK
540
541 if (off_end <= off_align || (off_end - off_align) < size)
542 return 0;
543
544 len_pad = len + size;
545 if (len_pad < len || (off + len_pad) < off)
546 return 0;
547
97d3d0f9 548 ret = current->mm->get_unmapped_area(filp, addr, len_pad,
74d2fad1 549 off >> PAGE_SHIFT, flags);
97d3d0f9
KS
550
551 /*
552 * The failure might be due to length padding. The caller will retry
553 * without the padding.
554 */
555 if (IS_ERR_VALUE(ret))
74d2fad1
TK
556 return 0;
557
97d3d0f9
KS
558 /*
559 * Do not try to align to THP boundary if allocation at the address
560 * hint succeeds.
561 */
562 if (ret == addr)
563 return addr;
564
565 ret += (off - ret) & (size - 1);
566 return ret;
74d2fad1
TK
567}
568
569unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
570 unsigned long len, unsigned long pgoff, unsigned long flags)
571{
97d3d0f9 572 unsigned long ret;
74d2fad1
TK
573 loff_t off = (loff_t)pgoff << PAGE_SHIFT;
574
74d2fad1
TK
575 if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
576 goto out;
577
97d3d0f9
KS
578 ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE);
579 if (ret)
580 return ret;
581out:
74d2fad1
TK
582 return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
583}
584EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
585
2b740303
SJ
586static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
587 struct page *page, gfp_t gfp)
71e3aac0 588{
82b0f8c3 589 struct vm_area_struct *vma = vmf->vma;
71e3aac0 590 pgtable_t pgtable;
82b0f8c3 591 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
2b740303 592 vm_fault_t ret = 0;
71e3aac0 593
309381fe 594 VM_BUG_ON_PAGE(!PageCompound(page), page);
00501b53 595
d9eb1ea2 596 if (mem_cgroup_charge(page, vma->vm_mm, gfp)) {
6b251fc9
AA
597 put_page(page);
598 count_vm_event(THP_FAULT_FALLBACK);
85b9f46e 599 count_vm_event(THP_FAULT_FALLBACK_CHARGE);
6b251fc9
AA
600 return VM_FAULT_FALLBACK;
601 }
9d82c694 602 cgroup_throttle_swaprate(page, gfp);
00501b53 603
4cf58924 604 pgtable = pte_alloc_one(vma->vm_mm);
00501b53 605 if (unlikely(!pgtable)) {
6b31d595
MH
606 ret = VM_FAULT_OOM;
607 goto release;
00501b53 608 }
71e3aac0 609
c79b57e4 610 clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
52f37629
MK
611 /*
612 * The memory barrier inside __SetPageUptodate makes sure that
613 * clear_huge_page writes become visible before the set_pmd_at()
614 * write.
615 */
71e3aac0
AA
616 __SetPageUptodate(page);
617
82b0f8c3
JK
618 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
619 if (unlikely(!pmd_none(*vmf->pmd))) {
6b31d595 620 goto unlock_release;
71e3aac0
AA
621 } else {
622 pmd_t entry;
6b251fc9 623
6b31d595
MH
624 ret = check_stable_address_space(vma->vm_mm);
625 if (ret)
626 goto unlock_release;
627
6b251fc9
AA
628 /* Deliver the page fault to userland */
629 if (userfaultfd_missing(vma)) {
2b740303 630 vm_fault_t ret2;
6b251fc9 631
82b0f8c3 632 spin_unlock(vmf->ptl);
6b251fc9 633 put_page(page);
bae473a4 634 pte_free(vma->vm_mm, pgtable);
2b740303
SJ
635 ret2 = handle_userfault(vmf, VM_UFFD_MISSING);
636 VM_BUG_ON(ret2 & VM_FAULT_FALLBACK);
637 return ret2;
6b251fc9
AA
638 }
639
3122359a 640 entry = mk_huge_pmd(page, vma->vm_page_prot);
f55e1014 641 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
d281ee61 642 page_add_new_anon_rmap(page, vma, haddr, true);
00501b53 643 lru_cache_add_active_or_unevictable(page, vma);
82b0f8c3
JK
644 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
645 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
bae473a4 646 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
c4812909 647 mm_inc_nr_ptes(vma->vm_mm);
82b0f8c3 648 spin_unlock(vmf->ptl);
6b251fc9 649 count_vm_event(THP_FAULT_ALLOC);
9d82c694 650 count_memcg_event_mm(vma->vm_mm, THP_FAULT_ALLOC);
71e3aac0
AA
651 }
652
aa2e878e 653 return 0;
6b31d595
MH
654unlock_release:
655 spin_unlock(vmf->ptl);
656release:
657 if (pgtable)
658 pte_free(vma->vm_mm, pgtable);
6b31d595
MH
659 put_page(page);
660 return ret;
661
71e3aac0
AA
662}
663
444eb2a4 664/*
21440d7e
DR
665 * always: directly stall for all thp allocations
666 * defer: wake kswapd and fail if not immediately available
667 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
668 * fail if not immediately available
669 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
670 * available
671 * never: never stall for any thp allocation
444eb2a4 672 */
19deb769 673static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
444eb2a4 674{
21440d7e 675 const bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
2f0799a0 676
ac79f78d 677 /* Always do synchronous compaction */
a8282608
AA
678 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
679 return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
ac79f78d
DR
680
681 /* Kick kcompactd and fail quickly */
21440d7e 682 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
19deb769 683 return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
ac79f78d
DR
684
685 /* Synchronous compaction if madvised, otherwise kick kcompactd */
21440d7e 686 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
19deb769
DR
687 return GFP_TRANSHUGE_LIGHT |
688 (vma_madvised ? __GFP_DIRECT_RECLAIM :
689 __GFP_KSWAPD_RECLAIM);
ac79f78d
DR
690
691 /* Only do synchronous compaction if madvised */
21440d7e 692 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
19deb769
DR
693 return GFP_TRANSHUGE_LIGHT |
694 (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
ac79f78d 695
19deb769 696 return GFP_TRANSHUGE_LIGHT;
444eb2a4
MG
697}
698
c4088ebd 699/* Caller must hold page table lock. */
d295e341 700static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
97ae1749 701 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
5918d10a 702 struct page *zero_page)
fc9fe822
KS
703{
704 pmd_t entry;
7c414164
AM
705 if (!pmd_none(*pmd))
706 return false;
5918d10a 707 entry = mk_pmd(zero_page, vma->vm_page_prot);
fc9fe822 708 entry = pmd_mkhuge(entry);
12c9d70b
MW
709 if (pgtable)
710 pgtable_trans_huge_deposit(mm, pmd, pgtable);
fc9fe822 711 set_pmd_at(mm, haddr, pmd, entry);
c4812909 712 mm_inc_nr_ptes(mm);
7c414164 713 return true;
fc9fe822
KS
714}
715
2b740303 716vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
71e3aac0 717{
82b0f8c3 718 struct vm_area_struct *vma = vmf->vma;
077fcf11 719 gfp_t gfp;
71e3aac0 720 struct page *page;
82b0f8c3 721 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
71e3aac0 722
43675e6f 723 if (!transhuge_vma_suitable(vma, haddr))
c0292554 724 return VM_FAULT_FALLBACK;
128ec037
KS
725 if (unlikely(anon_vma_prepare(vma)))
726 return VM_FAULT_OOM;
6d50e60c 727 if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
128ec037 728 return VM_FAULT_OOM;
82b0f8c3 729 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
bae473a4 730 !mm_forbids_zeropage(vma->vm_mm) &&
128ec037
KS
731 transparent_hugepage_use_zero_page()) {
732 pgtable_t pgtable;
733 struct page *zero_page;
734 bool set;
2b740303 735 vm_fault_t ret;
4cf58924 736 pgtable = pte_alloc_one(vma->vm_mm);
128ec037 737 if (unlikely(!pgtable))
ba76149f 738 return VM_FAULT_OOM;
6fcb52a5 739 zero_page = mm_get_huge_zero_page(vma->vm_mm);
128ec037 740 if (unlikely(!zero_page)) {
bae473a4 741 pte_free(vma->vm_mm, pgtable);
81ab4201 742 count_vm_event(THP_FAULT_FALLBACK);
c0292554 743 return VM_FAULT_FALLBACK;
b9bbfbe3 744 }
82b0f8c3 745 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
6b251fc9
AA
746 ret = 0;
747 set = false;
82b0f8c3 748 if (pmd_none(*vmf->pmd)) {
6b31d595
MH
749 ret = check_stable_address_space(vma->vm_mm);
750 if (ret) {
751 spin_unlock(vmf->ptl);
752 } else if (userfaultfd_missing(vma)) {
82b0f8c3
JK
753 spin_unlock(vmf->ptl);
754 ret = handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9
AA
755 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
756 } else {
bae473a4 757 set_huge_zero_page(pgtable, vma->vm_mm, vma,
82b0f8c3
JK
758 haddr, vmf->pmd, zero_page);
759 spin_unlock(vmf->ptl);
6b251fc9
AA
760 set = true;
761 }
762 } else
82b0f8c3 763 spin_unlock(vmf->ptl);
6fcb52a5 764 if (!set)
bae473a4 765 pte_free(vma->vm_mm, pgtable);
6b251fc9 766 return ret;
71e3aac0 767 }
19deb769
DR
768 gfp = alloc_hugepage_direct_gfpmask(vma);
769 page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
128ec037
KS
770 if (unlikely(!page)) {
771 count_vm_event(THP_FAULT_FALLBACK);
c0292554 772 return VM_FAULT_FALLBACK;
128ec037 773 }
9a982250 774 prep_transhuge_page(page);
82b0f8c3 775 return __do_huge_pmd_anonymous_page(vmf, page, gfp);
71e3aac0
AA
776}
777
ae18d6dc 778static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
3b6521f5
OH
779 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
780 pgtable_t pgtable)
5cad465d
MW
781{
782 struct mm_struct *mm = vma->vm_mm;
783 pmd_t entry;
784 spinlock_t *ptl;
785
786 ptl = pmd_lock(mm, pmd);
c6f3c5ee
AK
787 if (!pmd_none(*pmd)) {
788 if (write) {
789 if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
790 WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
791 goto out_unlock;
792 }
793 entry = pmd_mkyoung(*pmd);
794 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
795 if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
796 update_mmu_cache_pmd(vma, addr, pmd);
797 }
798
799 goto out_unlock;
800 }
801
f25748e3
DW
802 entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
803 if (pfn_t_devmap(pfn))
804 entry = pmd_mkdevmap(entry);
01871e59 805 if (write) {
f55e1014
LT
806 entry = pmd_mkyoung(pmd_mkdirty(entry));
807 entry = maybe_pmd_mkwrite(entry, vma);
5cad465d 808 }
3b6521f5
OH
809
810 if (pgtable) {
811 pgtable_trans_huge_deposit(mm, pmd, pgtable);
c4812909 812 mm_inc_nr_ptes(mm);
c6f3c5ee 813 pgtable = NULL;
3b6521f5
OH
814 }
815
01871e59
RZ
816 set_pmd_at(mm, addr, pmd, entry);
817 update_mmu_cache_pmd(vma, addr, pmd);
c6f3c5ee
AK
818
819out_unlock:
5cad465d 820 spin_unlock(ptl);
c6f3c5ee
AK
821 if (pgtable)
822 pte_free(mm, pgtable);
5cad465d
MW
823}
824
9a9731b1
THV
825/**
826 * vmf_insert_pfn_pmd_prot - insert a pmd size pfn
827 * @vmf: Structure describing the fault
828 * @pfn: pfn to insert
829 * @pgprot: page protection to use
830 * @write: whether it's a write fault
831 *
832 * Insert a pmd size pfn. See vmf_insert_pfn() for additional info and
833 * also consult the vmf_insert_mixed_prot() documentation when
834 * @pgprot != @vmf->vma->vm_page_prot.
835 *
836 * Return: vm_fault_t value.
837 */
838vm_fault_t vmf_insert_pfn_pmd_prot(struct vm_fault *vmf, pfn_t pfn,
839 pgprot_t pgprot, bool write)
5cad465d 840{
fce86ff5
DW
841 unsigned long addr = vmf->address & PMD_MASK;
842 struct vm_area_struct *vma = vmf->vma;
3b6521f5 843 pgtable_t pgtable = NULL;
fce86ff5 844
5cad465d
MW
845 /*
846 * If we had pmd_special, we could avoid all these restrictions,
847 * but we need to be consistent with PTEs and architectures that
848 * can't support a 'special' bit.
849 */
e1fb4a08
DJ
850 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
851 !pfn_t_devmap(pfn));
5cad465d
MW
852 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
853 (VM_PFNMAP|VM_MIXEDMAP));
854 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
5cad465d
MW
855
856 if (addr < vma->vm_start || addr >= vma->vm_end)
857 return VM_FAULT_SIGBUS;
308a047c 858
3b6521f5 859 if (arch_needs_pgtable_deposit()) {
4cf58924 860 pgtable = pte_alloc_one(vma->vm_mm);
3b6521f5
OH
861 if (!pgtable)
862 return VM_FAULT_OOM;
863 }
864
308a047c
BP
865 track_pfn_insert(vma, &pgprot, pfn);
866
fce86ff5 867 insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable);
ae18d6dc 868 return VM_FAULT_NOPAGE;
5cad465d 869}
9a9731b1 870EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd_prot);
5cad465d 871
a00cc7d9 872#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
f55e1014 873static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
a00cc7d9 874{
f55e1014 875 if (likely(vma->vm_flags & VM_WRITE))
a00cc7d9
MW
876 pud = pud_mkwrite(pud);
877 return pud;
878}
879
880static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
881 pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
882{
883 struct mm_struct *mm = vma->vm_mm;
884 pud_t entry;
885 spinlock_t *ptl;
886
887 ptl = pud_lock(mm, pud);
c6f3c5ee
AK
888 if (!pud_none(*pud)) {
889 if (write) {
890 if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) {
891 WARN_ON_ONCE(!is_huge_zero_pud(*pud));
892 goto out_unlock;
893 }
894 entry = pud_mkyoung(*pud);
895 entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
896 if (pudp_set_access_flags(vma, addr, pud, entry, 1))
897 update_mmu_cache_pud(vma, addr, pud);
898 }
899 goto out_unlock;
900 }
901
a00cc7d9
MW
902 entry = pud_mkhuge(pfn_t_pud(pfn, prot));
903 if (pfn_t_devmap(pfn))
904 entry = pud_mkdevmap(entry);
905 if (write) {
f55e1014
LT
906 entry = pud_mkyoung(pud_mkdirty(entry));
907 entry = maybe_pud_mkwrite(entry, vma);
a00cc7d9
MW
908 }
909 set_pud_at(mm, addr, pud, entry);
910 update_mmu_cache_pud(vma, addr, pud);
c6f3c5ee
AK
911
912out_unlock:
a00cc7d9
MW
913 spin_unlock(ptl);
914}
915
9a9731b1
THV
916/**
917 * vmf_insert_pfn_pud_prot - insert a pud size pfn
918 * @vmf: Structure describing the fault
919 * @pfn: pfn to insert
920 * @pgprot: page protection to use
921 * @write: whether it's a write fault
922 *
923 * Insert a pud size pfn. See vmf_insert_pfn() for additional info and
924 * also consult the vmf_insert_mixed_prot() documentation when
925 * @pgprot != @vmf->vma->vm_page_prot.
926 *
927 * Return: vm_fault_t value.
928 */
929vm_fault_t vmf_insert_pfn_pud_prot(struct vm_fault *vmf, pfn_t pfn,
930 pgprot_t pgprot, bool write)
a00cc7d9 931{
fce86ff5
DW
932 unsigned long addr = vmf->address & PUD_MASK;
933 struct vm_area_struct *vma = vmf->vma;
fce86ff5 934
a00cc7d9
MW
935 /*
936 * If we had pud_special, we could avoid all these restrictions,
937 * but we need to be consistent with PTEs and architectures that
938 * can't support a 'special' bit.
939 */
62ec0d8c
DJ
940 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
941 !pfn_t_devmap(pfn));
a00cc7d9
MW
942 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
943 (VM_PFNMAP|VM_MIXEDMAP));
944 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
a00cc7d9
MW
945
946 if (addr < vma->vm_start || addr >= vma->vm_end)
947 return VM_FAULT_SIGBUS;
948
949 track_pfn_insert(vma, &pgprot, pfn);
950
fce86ff5 951 insert_pfn_pud(vma, addr, vmf->pud, pfn, pgprot, write);
a00cc7d9
MW
952 return VM_FAULT_NOPAGE;
953}
9a9731b1 954EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud_prot);
a00cc7d9
MW
955#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
956
3565fce3 957static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
a8f97366 958 pmd_t *pmd, int flags)
3565fce3
DW
959{
960 pmd_t _pmd;
961
a8f97366
KS
962 _pmd = pmd_mkyoung(*pmd);
963 if (flags & FOLL_WRITE)
964 _pmd = pmd_mkdirty(_pmd);
3565fce3 965 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
a8f97366 966 pmd, _pmd, flags & FOLL_WRITE))
3565fce3
DW
967 update_mmu_cache_pmd(vma, addr, pmd);
968}
969
970struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
df06b37f 971 pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
3565fce3
DW
972{
973 unsigned long pfn = pmd_pfn(*pmd);
974 struct mm_struct *mm = vma->vm_mm;
3565fce3
DW
975 struct page *page;
976
977 assert_spin_locked(pmd_lockptr(mm, pmd));
978
8310d48b
KF
979 /*
980 * When we COW a devmap PMD entry, we split it into PTEs, so we should
981 * not be in this function with `flags & FOLL_COW` set.
982 */
983 WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");
984
3faa52c0
JH
985 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
986 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
987 (FOLL_PIN | FOLL_GET)))
988 return NULL;
989
f6f37321 990 if (flags & FOLL_WRITE && !pmd_write(*pmd))
3565fce3
DW
991 return NULL;
992
993 if (pmd_present(*pmd) && pmd_devmap(*pmd))
994 /* pass */;
995 else
996 return NULL;
997
998 if (flags & FOLL_TOUCH)
a8f97366 999 touch_pmd(vma, addr, pmd, flags);
3565fce3
DW
1000
1001 /*
1002 * device mapped pages can only be returned if the
1003 * caller will manage the page reference count.
1004 */
3faa52c0 1005 if (!(flags & (FOLL_GET | FOLL_PIN)))
3565fce3
DW
1006 return ERR_PTR(-EEXIST);
1007
1008 pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
df06b37f
KB
1009 *pgmap = get_dev_pagemap(pfn, *pgmap);
1010 if (!*pgmap)
3565fce3
DW
1011 return ERR_PTR(-EFAULT);
1012 page = pfn_to_page(pfn);
3faa52c0
JH
1013 if (!try_grab_page(page, flags))
1014 page = ERR_PTR(-ENOMEM);
3565fce3
DW
1015
1016 return page;
1017}
1018
71e3aac0
AA
1019int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1020 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1021 struct vm_area_struct *vma)
1022{
c4088ebd 1023 spinlock_t *dst_ptl, *src_ptl;
71e3aac0
AA
1024 struct page *src_page;
1025 pmd_t pmd;
12c9d70b 1026 pgtable_t pgtable = NULL;
628d47ce 1027 int ret = -ENOMEM;
71e3aac0 1028
628d47ce
KS
1029 /* Skip if can be re-fill on fault */
1030 if (!vma_is_anonymous(vma))
1031 return 0;
1032
4cf58924 1033 pgtable = pte_alloc_one(dst_mm);
628d47ce
KS
1034 if (unlikely(!pgtable))
1035 goto out;
71e3aac0 1036
c4088ebd
KS
1037 dst_ptl = pmd_lock(dst_mm, dst_pmd);
1038 src_ptl = pmd_lockptr(src_mm, src_pmd);
1039 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
71e3aac0
AA
1040
1041 ret = -EAGAIN;
1042 pmd = *src_pmd;
84c3fc4e 1043
b569a176
PX
1044 /*
1045 * Make sure the _PAGE_UFFD_WP bit is cleared if the new VMA
1046 * does not have the VM_UFFD_WP, which means that the uffd
1047 * fork event is not enabled.
1048 */
1049 if (!(vma->vm_flags & VM_UFFD_WP))
1050 pmd = pmd_clear_uffd_wp(pmd);
1051
84c3fc4e
ZY
1052#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1053 if (unlikely(is_swap_pmd(pmd))) {
1054 swp_entry_t entry = pmd_to_swp_entry(pmd);
1055
1056 VM_BUG_ON(!is_pmd_migration_entry(pmd));
1057 if (is_write_migration_entry(entry)) {
1058 make_migration_entry_read(&entry);
1059 pmd = swp_entry_to_pmd(entry);
ab6e3d09
NH
1060 if (pmd_swp_soft_dirty(*src_pmd))
1061 pmd = pmd_swp_mksoft_dirty(pmd);
84c3fc4e
ZY
1062 set_pmd_at(src_mm, addr, src_pmd, pmd);
1063 }
dd8a67f9 1064 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
af5b0f6a 1065 mm_inc_nr_ptes(dst_mm);
dd8a67f9 1066 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
84c3fc4e
ZY
1067 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1068 ret = 0;
1069 goto out_unlock;
1070 }
1071#endif
1072
628d47ce 1073 if (unlikely(!pmd_trans_huge(pmd))) {
71e3aac0
AA
1074 pte_free(dst_mm, pgtable);
1075 goto out_unlock;
1076 }
fc9fe822 1077 /*
c4088ebd 1078 * When page table lock is held, the huge zero pmd should not be
fc9fe822
KS
1079 * under splitting since we don't split the page itself, only pmd to
1080 * a page table.
1081 */
1082 if (is_huge_zero_pmd(pmd)) {
5918d10a 1083 struct page *zero_page;
97ae1749
KS
1084 /*
1085 * get_huge_zero_page() will never allocate a new page here,
1086 * since we already have a zero page to copy. It just takes a
1087 * reference.
1088 */
6fcb52a5 1089 zero_page = mm_get_huge_zero_page(dst_mm);
6b251fc9 1090 set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
5918d10a 1091 zero_page);
fc9fe822
KS
1092 ret = 0;
1093 goto out_unlock;
1094 }
de466bd6 1095
628d47ce
KS
1096 src_page = pmd_page(pmd);
1097 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1098 get_page(src_page);
1099 page_dup_rmap(src_page, true);
1100 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
c4812909 1101 mm_inc_nr_ptes(dst_mm);
628d47ce 1102 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
71e3aac0
AA
1103
1104 pmdp_set_wrprotect(src_mm, addr, src_pmd);
1105 pmd = pmd_mkold(pmd_wrprotect(pmd));
1106 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
71e3aac0
AA
1107
1108 ret = 0;
1109out_unlock:
c4088ebd
KS
1110 spin_unlock(src_ptl);
1111 spin_unlock(dst_ptl);
71e3aac0
AA
1112out:
1113 return ret;
1114}
1115
a00cc7d9
MW
1116#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1117static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
a8f97366 1118 pud_t *pud, int flags)
a00cc7d9
MW
1119{
1120 pud_t _pud;
1121
a8f97366
KS
1122 _pud = pud_mkyoung(*pud);
1123 if (flags & FOLL_WRITE)
1124 _pud = pud_mkdirty(_pud);
a00cc7d9 1125 if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
a8f97366 1126 pud, _pud, flags & FOLL_WRITE))
a00cc7d9
MW
1127 update_mmu_cache_pud(vma, addr, pud);
1128}
1129
1130struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
df06b37f 1131 pud_t *pud, int flags, struct dev_pagemap **pgmap)
a00cc7d9
MW
1132{
1133 unsigned long pfn = pud_pfn(*pud);
1134 struct mm_struct *mm = vma->vm_mm;
a00cc7d9
MW
1135 struct page *page;
1136
1137 assert_spin_locked(pud_lockptr(mm, pud));
1138
f6f37321 1139 if (flags & FOLL_WRITE && !pud_write(*pud))
a00cc7d9
MW
1140 return NULL;
1141
3faa52c0
JH
1142 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
1143 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
1144 (FOLL_PIN | FOLL_GET)))
1145 return NULL;
1146
a00cc7d9
MW
1147 if (pud_present(*pud) && pud_devmap(*pud))
1148 /* pass */;
1149 else
1150 return NULL;
1151
1152 if (flags & FOLL_TOUCH)
a8f97366 1153 touch_pud(vma, addr, pud, flags);
a00cc7d9
MW
1154
1155 /*
1156 * device mapped pages can only be returned if the
1157 * caller will manage the page reference count.
3faa52c0
JH
1158 *
1159 * At least one of FOLL_GET | FOLL_PIN must be set, so assert that here:
a00cc7d9 1160 */
3faa52c0 1161 if (!(flags & (FOLL_GET | FOLL_PIN)))
a00cc7d9
MW
1162 return ERR_PTR(-EEXIST);
1163
1164 pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
df06b37f
KB
1165 *pgmap = get_dev_pagemap(pfn, *pgmap);
1166 if (!*pgmap)
a00cc7d9
MW
1167 return ERR_PTR(-EFAULT);
1168 page = pfn_to_page(pfn);
3faa52c0
JH
1169 if (!try_grab_page(page, flags))
1170 page = ERR_PTR(-ENOMEM);
a00cc7d9
MW
1171
1172 return page;
1173}
1174
1175int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1176 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1177 struct vm_area_struct *vma)
1178{
1179 spinlock_t *dst_ptl, *src_ptl;
1180 pud_t pud;
1181 int ret;
1182
1183 dst_ptl = pud_lock(dst_mm, dst_pud);
1184 src_ptl = pud_lockptr(src_mm, src_pud);
1185 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1186
1187 ret = -EAGAIN;
1188 pud = *src_pud;
1189 if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1190 goto out_unlock;
1191
1192 /*
1193 * When page table lock is held, the huge zero pud should not be
1194 * under splitting since we don't split the page itself, only pud to
1195 * a page table.
1196 */
1197 if (is_huge_zero_pud(pud)) {
1198 /* No huge zero pud yet */
1199 }
1200
1201 pudp_set_wrprotect(src_mm, addr, src_pud);
1202 pud = pud_mkold(pud_wrprotect(pud));
1203 set_pud_at(dst_mm, addr, dst_pud, pud);
1204
1205 ret = 0;
1206out_unlock:
1207 spin_unlock(src_ptl);
1208 spin_unlock(dst_ptl);
1209 return ret;
1210}
1211
1212void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1213{
1214 pud_t entry;
1215 unsigned long haddr;
1216 bool write = vmf->flags & FAULT_FLAG_WRITE;
1217
1218 vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1219 if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1220 goto unlock;
1221
1222 entry = pud_mkyoung(orig_pud);
1223 if (write)
1224 entry = pud_mkdirty(entry);
1225 haddr = vmf->address & HPAGE_PUD_MASK;
1226 if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
1227 update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);
1228
1229unlock:
1230 spin_unlock(vmf->ptl);
1231}
1232#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1233
82b0f8c3 1234void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
a1dd450b
WD
1235{
1236 pmd_t entry;
1237 unsigned long haddr;
20f664aa 1238 bool write = vmf->flags & FAULT_FLAG_WRITE;
a1dd450b 1239
82b0f8c3
JK
1240 vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1241 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
a1dd450b
WD
1242 goto unlock;
1243
1244 entry = pmd_mkyoung(orig_pmd);
20f664aa
MK
1245 if (write)
1246 entry = pmd_mkdirty(entry);
82b0f8c3 1247 haddr = vmf->address & HPAGE_PMD_MASK;
20f664aa 1248 if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
82b0f8c3 1249 update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
a1dd450b
WD
1250
1251unlock:
82b0f8c3 1252 spin_unlock(vmf->ptl);
a1dd450b
WD
1253}
1254
2b740303 1255vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
71e3aac0 1256{
82b0f8c3 1257 struct vm_area_struct *vma = vmf->vma;
3917c802 1258 struct page *page;
82b0f8c3 1259 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
71e3aac0 1260
82b0f8c3 1261 vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
81d1b09c 1262 VM_BUG_ON_VMA(!vma->anon_vma, vma);
3917c802 1263
93b4796d 1264 if (is_huge_zero_pmd(orig_pmd))
3917c802
KS
1265 goto fallback;
1266
82b0f8c3 1267 spin_lock(vmf->ptl);
3917c802
KS
1268
1269 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1270 spin_unlock(vmf->ptl);
1271 return 0;
1272 }
71e3aac0
AA
1273
1274 page = pmd_page(orig_pmd);
309381fe 1275 VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
3917c802
KS
1276
1277 /* Lock page for reuse_swap_page() */
ba3c4ce6
HY
1278 if (!trylock_page(page)) {
1279 get_page(page);
1280 spin_unlock(vmf->ptl);
1281 lock_page(page);
1282 spin_lock(vmf->ptl);
1283 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
3917c802 1284 spin_unlock(vmf->ptl);
ba3c4ce6
HY
1285 unlock_page(page);
1286 put_page(page);
3917c802 1287 return 0;
ba3c4ce6
HY
1288 }
1289 put_page(page);
1290 }
3917c802
KS
1291
1292 /*
1293 * We can only reuse the page if nobody else maps the huge page or it's
1294 * part.
1295 */
ba3c4ce6 1296 if (reuse_swap_page(page, NULL)) {
71e3aac0
AA
1297 pmd_t entry;
1298 entry = pmd_mkyoung(orig_pmd);
f55e1014 1299 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3917c802 1300 if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
82b0f8c3 1301 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
ba3c4ce6 1302 unlock_page(page);
82b0f8c3 1303 spin_unlock(vmf->ptl);
3917c802 1304 return VM_FAULT_WRITE;
71e3aac0 1305 }
3917c802
KS
1306
1307 unlock_page(page);
82b0f8c3 1308 spin_unlock(vmf->ptl);
3917c802
KS
1309fallback:
1310 __split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
1311 return VM_FAULT_FALLBACK;
71e3aac0
AA
1312}
1313
8310d48b 1314/*
17839856
LT
1315 * FOLL_FORCE or a forced COW break can write even to unwritable pmd's,
1316 * but only after we've gone through a COW cycle and they are dirty.
8310d48b
KF
1317 */
1318static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
1319{
17839856 1320 return pmd_write(pmd) || ((flags & FOLL_COW) && pmd_dirty(pmd));
8310d48b
KF
1321}
1322
b676b293 1323struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
71e3aac0
AA
1324 unsigned long addr,
1325 pmd_t *pmd,
1326 unsigned int flags)
1327{
b676b293 1328 struct mm_struct *mm = vma->vm_mm;
71e3aac0
AA
1329 struct page *page = NULL;
1330
c4088ebd 1331 assert_spin_locked(pmd_lockptr(mm, pmd));
71e3aac0 1332
8310d48b 1333 if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
71e3aac0
AA
1334 goto out;
1335
85facf25
KS
1336 /* Avoid dumping huge zero page */
1337 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1338 return ERR_PTR(-EFAULT);
1339
2b4847e7 1340 /* Full NUMA hinting faults to serialise migration in fault paths */
8a0516ed 1341 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
2b4847e7
MG
1342 goto out;
1343
71e3aac0 1344 page = pmd_page(*pmd);
ca120cf6 1345 VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
3faa52c0
JH
1346
1347 if (!try_grab_page(page, flags))
1348 return ERR_PTR(-ENOMEM);
1349
3565fce3 1350 if (flags & FOLL_TOUCH)
a8f97366 1351 touch_pmd(vma, addr, pmd, flags);
3faa52c0 1352
de60f5f1 1353 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
e90309c9
KS
1354 /*
1355 * We don't mlock() pte-mapped THPs. This way we can avoid
1356 * leaking mlocked pages into non-VM_LOCKED VMAs.
1357 *
9a73f61b
KS
1358 * For anon THP:
1359 *
e90309c9
KS
1360 * In most cases the pmd is the only mapping of the page as we
1361 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1362 * writable private mappings in populate_vma_page_range().
1363 *
1364 * The only scenario when we have the page shared here is if we
1365 * mlocking read-only mapping shared over fork(). We skip
1366 * mlocking such pages.
9a73f61b
KS
1367 *
1368 * For file THP:
1369 *
1370 * We can expect PageDoubleMap() to be stable under page lock:
1371 * for file pages we set it in page_add_file_rmap(), which
1372 * requires page to be locked.
e90309c9 1373 */
9a73f61b
KS
1374
1375 if (PageAnon(page) && compound_mapcount(page) != 1)
1376 goto skip_mlock;
1377 if (PageDoubleMap(page) || !page->mapping)
1378 goto skip_mlock;
1379 if (!trylock_page(page))
1380 goto skip_mlock;
9a73f61b
KS
1381 if (page->mapping && !PageDoubleMap(page))
1382 mlock_vma_page(page);
1383 unlock_page(page);
b676b293 1384 }
9a73f61b 1385skip_mlock:
71e3aac0 1386 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
ca120cf6 1387 VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
71e3aac0
AA
1388
1389out:
1390 return page;
1391}
1392
d10e63f2 1393/* NUMA hinting page fault entry point for trans huge pmds */
2b740303 1394vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
d10e63f2 1395{
82b0f8c3 1396 struct vm_area_struct *vma = vmf->vma;
b8916634 1397 struct anon_vma *anon_vma = NULL;
b32967ff 1398 struct page *page;
82b0f8c3 1399 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
98fa15f3 1400 int page_nid = NUMA_NO_NODE, this_nid = numa_node_id();
90572890 1401 int target_nid, last_cpupid = -1;
8191acbd
MG
1402 bool page_locked;
1403 bool migrated = false;
b191f9b1 1404 bool was_writable;
6688cc05 1405 int flags = 0;
d10e63f2 1406
82b0f8c3
JK
1407 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1408 if (unlikely(!pmd_same(pmd, *vmf->pmd)))
d10e63f2
MG
1409 goto out_unlock;
1410
de466bd6
MG
1411 /*
1412 * If there are potential migrations, wait for completion and retry
1413 * without disrupting NUMA hinting information. Do not relock and
1414 * check_same as the page may no longer be mapped.
1415 */
82b0f8c3
JK
1416 if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
1417 page = pmd_page(*vmf->pmd);
3c226c63
MR
1418 if (!get_page_unless_zero(page))
1419 goto out_unlock;
82b0f8c3 1420 spin_unlock(vmf->ptl);
9a1ea439 1421 put_and_wait_on_page_locked(page);
de466bd6
MG
1422 goto out;
1423 }
1424
d10e63f2 1425 page = pmd_page(pmd);
a1a46184 1426 BUG_ON(is_huge_zero_page(page));
8191acbd 1427 page_nid = page_to_nid(page);
90572890 1428 last_cpupid = page_cpupid_last(page);
03c5a6e1 1429 count_vm_numa_event(NUMA_HINT_FAULTS);
04bb2f94 1430 if (page_nid == this_nid) {
03c5a6e1 1431 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
04bb2f94
RR
1432 flags |= TNF_FAULT_LOCAL;
1433 }
4daae3b4 1434
bea66fbd 1435 /* See similar comment in do_numa_page for explanation */
288bc549 1436 if (!pmd_savedwrite(pmd))
6688cc05
PZ
1437 flags |= TNF_NO_GROUP;
1438
ff9042b1
MG
1439 /*
1440 * Acquire the page lock to serialise THP migrations but avoid dropping
1441 * page_table_lock if at all possible
1442 */
b8916634
MG
1443 page_locked = trylock_page(page);
1444 target_nid = mpol_misplaced(page, vma, haddr);
98fa15f3 1445 if (target_nid == NUMA_NO_NODE) {
b8916634 1446 /* If the page was locked, there are no parallel migrations */
a54a407f 1447 if (page_locked)
b8916634 1448 goto clear_pmdnuma;
2b4847e7 1449 }
4daae3b4 1450
de466bd6 1451 /* Migration could have started since the pmd_trans_migrating check */
2b4847e7 1452 if (!page_locked) {
98fa15f3 1453 page_nid = NUMA_NO_NODE;
3c226c63
MR
1454 if (!get_page_unless_zero(page))
1455 goto out_unlock;
82b0f8c3 1456 spin_unlock(vmf->ptl);
9a1ea439 1457 put_and_wait_on_page_locked(page);
b8916634
MG
1458 goto out;
1459 }
1460
2b4847e7
MG
1461 /*
1462 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1463 * to serialises splits
1464 */
b8916634 1465 get_page(page);
82b0f8c3 1466 spin_unlock(vmf->ptl);
b8916634 1467 anon_vma = page_lock_anon_vma_read(page);
4daae3b4 1468
c69307d5 1469 /* Confirm the PMD did not change while page_table_lock was released */
82b0f8c3
JK
1470 spin_lock(vmf->ptl);
1471 if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
b32967ff
MG
1472 unlock_page(page);
1473 put_page(page);
98fa15f3 1474 page_nid = NUMA_NO_NODE;
4daae3b4 1475 goto out_unlock;
b32967ff 1476 }
ff9042b1 1477
c3a489ca
MG
1478 /* Bail if we fail to protect against THP splits for any reason */
1479 if (unlikely(!anon_vma)) {
1480 put_page(page);
98fa15f3 1481 page_nid = NUMA_NO_NODE;
c3a489ca
MG
1482 goto clear_pmdnuma;
1483 }
1484
8b1b436d
PZ
1485 /*
1486 * Since we took the NUMA fault, we must have observed the !accessible
1487 * bit. Make sure all other CPUs agree with that, to avoid them
1488 * modifying the page we're about to migrate.
1489 *
1490 * Must be done under PTL such that we'll observe the relevant
ccde85ba
PZ
1491 * inc_tlb_flush_pending().
1492 *
1493 * We are not sure a pending tlb flush here is for a huge page
1494 * mapping or not. Hence use the tlb range variant
8b1b436d 1495 */
7066f0f9 1496 if (mm_tlb_flush_pending(vma->vm_mm)) {
ccde85ba 1497 flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE);
7066f0f9
AA
1498 /*
1499 * change_huge_pmd() released the pmd lock before
1500 * invalidating the secondary MMUs sharing the primary
1501 * MMU pagetables (with ->invalidate_range()). The
1502 * mmu_notifier_invalidate_range_end() (which
1503 * internally calls ->invalidate_range()) in
1504 * change_pmd_range() will run after us, so we can't
1505 * rely on it here and we need an explicit invalidate.
1506 */
1507 mmu_notifier_invalidate_range(vma->vm_mm, haddr,
1508 haddr + HPAGE_PMD_SIZE);
1509 }
8b1b436d 1510
a54a407f
MG
1511 /*
1512 * Migrate the THP to the requested node, returns with page unlocked
8a0516ed 1513 * and access rights restored.
a54a407f 1514 */
82b0f8c3 1515 spin_unlock(vmf->ptl);
8b1b436d 1516
bae473a4 1517 migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
82b0f8c3 1518 vmf->pmd, pmd, vmf->address, page, target_nid);
6688cc05
PZ
1519 if (migrated) {
1520 flags |= TNF_MIGRATED;
8191acbd 1521 page_nid = target_nid;
074c2381
MG
1522 } else
1523 flags |= TNF_MIGRATE_FAIL;
b32967ff 1524
8191acbd 1525 goto out;
b32967ff 1526clear_pmdnuma:
a54a407f 1527 BUG_ON(!PageLocked(page));
288bc549 1528 was_writable = pmd_savedwrite(pmd);
4d942466 1529 pmd = pmd_modify(pmd, vma->vm_page_prot);
b7b04004 1530 pmd = pmd_mkyoung(pmd);
b191f9b1
MG
1531 if (was_writable)
1532 pmd = pmd_mkwrite(pmd);
82b0f8c3
JK
1533 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1534 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
a54a407f 1535 unlock_page(page);
d10e63f2 1536out_unlock:
82b0f8c3 1537 spin_unlock(vmf->ptl);
b8916634
MG
1538
1539out:
1540 if (anon_vma)
1541 page_unlock_anon_vma_read(anon_vma);
1542
98fa15f3 1543 if (page_nid != NUMA_NO_NODE)
82b0f8c3 1544 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
9a8b300f 1545 flags);
8191acbd 1546
d10e63f2
MG
1547 return 0;
1548}
1549
319904ad
HY
1550/*
1551 * Return true if we do MADV_FREE successfully on entire pmd page.
1552 * Otherwise, return false.
1553 */
1554bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
b8d3c4c3 1555 pmd_t *pmd, unsigned long addr, unsigned long next)
b8d3c4c3
MK
1556{
1557 spinlock_t *ptl;
1558 pmd_t orig_pmd;
1559 struct page *page;
1560 struct mm_struct *mm = tlb->mm;
319904ad 1561 bool ret = false;
b8d3c4c3 1562
ed6a7935 1563 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
07e32661 1564
b6ec57f4
KS
1565 ptl = pmd_trans_huge_lock(pmd, vma);
1566 if (!ptl)
25eedabe 1567 goto out_unlocked;
b8d3c4c3
MK
1568
1569 orig_pmd = *pmd;
319904ad 1570 if (is_huge_zero_pmd(orig_pmd))
b8d3c4c3 1571 goto out;
b8d3c4c3 1572
84c3fc4e
ZY
1573 if (unlikely(!pmd_present(orig_pmd))) {
1574 VM_BUG_ON(thp_migration_supported() &&
1575 !is_pmd_migration_entry(orig_pmd));
1576 goto out;
1577 }
1578
b8d3c4c3
MK
1579 page = pmd_page(orig_pmd);
1580 /*
1581 * If other processes are mapping this page, we couldn't discard
1582 * the page unless they all do MADV_FREE so let's skip the page.
1583 */
1584 if (page_mapcount(page) != 1)
1585 goto out;
1586
1587 if (!trylock_page(page))
1588 goto out;
1589
1590 /*
1591 * If user want to discard part-pages of THP, split it so MADV_FREE
1592 * will deactivate only them.
1593 */
1594 if (next - addr != HPAGE_PMD_SIZE) {
1595 get_page(page);
1596 spin_unlock(ptl);
9818b8cd 1597 split_huge_page(page);
b8d3c4c3 1598 unlock_page(page);
bbf29ffc 1599 put_page(page);
b8d3c4c3
MK
1600 goto out_unlocked;
1601 }
1602
1603 if (PageDirty(page))
1604 ClearPageDirty(page);
1605 unlock_page(page);
1606
b8d3c4c3 1607 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
58ceeb6b 1608 pmdp_invalidate(vma, addr, pmd);
b8d3c4c3
MK
1609 orig_pmd = pmd_mkold(orig_pmd);
1610 orig_pmd = pmd_mkclean(orig_pmd);
1611
1612 set_pmd_at(mm, addr, pmd, orig_pmd);
1613 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1614 }
802a3a92
SL
1615
1616 mark_page_lazyfree(page);
319904ad 1617 ret = true;
b8d3c4c3
MK
1618out:
1619 spin_unlock(ptl);
1620out_unlocked:
1621 return ret;
1622}
1623
953c66c2
AK
1624static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1625{
1626 pgtable_t pgtable;
1627
1628 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1629 pte_free(mm, pgtable);
c4812909 1630 mm_dec_nr_ptes(mm);
953c66c2
AK
1631}
1632
71e3aac0 1633int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
f21760b1 1634 pmd_t *pmd, unsigned long addr)
71e3aac0 1635{
da146769 1636 pmd_t orig_pmd;
bf929152 1637 spinlock_t *ptl;
71e3aac0 1638
ed6a7935 1639 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
07e32661 1640
b6ec57f4
KS
1641 ptl = __pmd_trans_huge_lock(pmd, vma);
1642 if (!ptl)
da146769
KS
1643 return 0;
1644 /*
1645 * For architectures like ppc64 we look at deposited pgtable
1646 * when calling pmdp_huge_get_and_clear. So do the
1647 * pgtable_trans_huge_withdraw after finishing pmdp related
1648 * operations.
1649 */
93a98695
AK
1650 orig_pmd = pmdp_huge_get_and_clear_full(vma, addr, pmd,
1651 tlb->fullmm);
da146769 1652 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
2484ca9b 1653 if (vma_is_special_huge(vma)) {
3b6521f5
OH
1654 if (arch_needs_pgtable_deposit())
1655 zap_deposited_table(tlb->mm, pmd);
da146769
KS
1656 spin_unlock(ptl);
1657 if (is_huge_zero_pmd(orig_pmd))
c0f2e176 1658 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
da146769 1659 } else if (is_huge_zero_pmd(orig_pmd)) {
c14a6eb4 1660 zap_deposited_table(tlb->mm, pmd);
da146769 1661 spin_unlock(ptl);
c0f2e176 1662 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
da146769 1663 } else {
616b8371
ZY
1664 struct page *page = NULL;
1665 int flush_needed = 1;
1666
1667 if (pmd_present(orig_pmd)) {
1668 page = pmd_page(orig_pmd);
1669 page_remove_rmap(page, true);
1670 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1671 VM_BUG_ON_PAGE(!PageHead(page), page);
1672 } else if (thp_migration_supported()) {
1673 swp_entry_t entry;
1674
1675 VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1676 entry = pmd_to_swp_entry(orig_pmd);
1677 page = pfn_to_page(swp_offset(entry));
1678 flush_needed = 0;
1679 } else
1680 WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1681
b5072380 1682 if (PageAnon(page)) {
c14a6eb4 1683 zap_deposited_table(tlb->mm, pmd);
b5072380
KS
1684 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1685 } else {
953c66c2
AK
1686 if (arch_needs_pgtable_deposit())
1687 zap_deposited_table(tlb->mm, pmd);
fadae295 1688 add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
b5072380 1689 }
616b8371 1690
da146769 1691 spin_unlock(ptl);
616b8371
ZY
1692 if (flush_needed)
1693 tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
025c5b24 1694 }
da146769 1695 return 1;
71e3aac0
AA
1696}
1697
1dd38b6c
AK
1698#ifndef pmd_move_must_withdraw
1699static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1700 spinlock_t *old_pmd_ptl,
1701 struct vm_area_struct *vma)
1702{
1703 /*
1704 * With split pmd lock we also need to move preallocated
1705 * PTE page table if new_pmd is on different PMD page table.
1706 *
1707 * We also don't deposit and withdraw tables for file pages.
1708 */
1709 return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1710}
1711#endif
1712
ab6e3d09
NH
1713static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1714{
1715#ifdef CONFIG_MEM_SOFT_DIRTY
1716 if (unlikely(is_pmd_migration_entry(pmd)))
1717 pmd = pmd_swp_mksoft_dirty(pmd);
1718 else if (pmd_present(pmd))
1719 pmd = pmd_mksoft_dirty(pmd);
1720#endif
1721 return pmd;
1722}
1723
bf8616d5 1724bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
b8aa9d9d 1725 unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd)
37a1c49a 1726{
bf929152 1727 spinlock_t *old_ptl, *new_ptl;
37a1c49a 1728 pmd_t pmd;
37a1c49a 1729 struct mm_struct *mm = vma->vm_mm;
5d190420 1730 bool force_flush = false;
37a1c49a 1731
37a1c49a
AA
1732 /*
1733 * The destination pmd shouldn't be established, free_pgtables()
1734 * should have release it.
1735 */
1736 if (WARN_ON(!pmd_none(*new_pmd))) {
1737 VM_BUG_ON(pmd_trans_huge(*new_pmd));
4b471e88 1738 return false;
37a1c49a
AA
1739 }
1740
bf929152
KS
1741 /*
1742 * We don't have to worry about the ordering of src and dst
c1e8d7c6 1743 * ptlocks because exclusive mmap_lock prevents deadlock.
bf929152 1744 */
b6ec57f4
KS
1745 old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1746 if (old_ptl) {
bf929152
KS
1747 new_ptl = pmd_lockptr(mm, new_pmd);
1748 if (new_ptl != old_ptl)
1749 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
8809aa2d 1750 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
eb66ae03 1751 if (pmd_present(pmd))
a2ce2666 1752 force_flush = true;
025c5b24 1753 VM_BUG_ON(!pmd_none(*new_pmd));
3592806c 1754
1dd38b6c 1755 if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
b3084f4d 1756 pgtable_t pgtable;
3592806c
KS
1757 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1758 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
3592806c 1759 }
ab6e3d09
NH
1760 pmd = move_soft_dirty_pmd(pmd);
1761 set_pmd_at(mm, new_addr, new_pmd, pmd);
5d190420
AL
1762 if (force_flush)
1763 flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
eb66ae03
LT
1764 if (new_ptl != old_ptl)
1765 spin_unlock(new_ptl);
bf929152 1766 spin_unlock(old_ptl);
4b471e88 1767 return true;
37a1c49a 1768 }
4b471e88 1769 return false;
37a1c49a
AA
1770}
1771
f123d74a
MG
1772/*
1773 * Returns
1774 * - 0 if PMD could not be locked
1775 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1776 * - HPAGE_PMD_NR is protections changed and TLB flush necessary
1777 */
cd7548ab 1778int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
58705444 1779 unsigned long addr, pgprot_t newprot, unsigned long cp_flags)
cd7548ab
JW
1780{
1781 struct mm_struct *mm = vma->vm_mm;
bf929152 1782 spinlock_t *ptl;
0a85e51d
KS
1783 pmd_t entry;
1784 bool preserve_write;
1785 int ret;
58705444 1786 bool prot_numa = cp_flags & MM_CP_PROT_NUMA;
292924b2
PX
1787 bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
1788 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
cd7548ab 1789
b6ec57f4 1790 ptl = __pmd_trans_huge_lock(pmd, vma);
0a85e51d
KS
1791 if (!ptl)
1792 return 0;
e944fd67 1793
0a85e51d
KS
1794 preserve_write = prot_numa && pmd_write(*pmd);
1795 ret = 1;
e944fd67 1796
84c3fc4e
ZY
1797#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1798 if (is_swap_pmd(*pmd)) {
1799 swp_entry_t entry = pmd_to_swp_entry(*pmd);
1800
1801 VM_BUG_ON(!is_pmd_migration_entry(*pmd));
1802 if (is_write_migration_entry(entry)) {
1803 pmd_t newpmd;
1804 /*
1805 * A protection check is difficult so
1806 * just be safe and disable write
1807 */
1808 make_migration_entry_read(&entry);
1809 newpmd = swp_entry_to_pmd(entry);
ab6e3d09
NH
1810 if (pmd_swp_soft_dirty(*pmd))
1811 newpmd = pmd_swp_mksoft_dirty(newpmd);
84c3fc4e
ZY
1812 set_pmd_at(mm, addr, pmd, newpmd);
1813 }
1814 goto unlock;
1815 }
1816#endif
1817
0a85e51d
KS
1818 /*
1819 * Avoid trapping faults against the zero page. The read-only
1820 * data is likely to be read-cached on the local CPU and
1821 * local/remote hits to the zero page are not interesting.
1822 */
1823 if (prot_numa && is_huge_zero_pmd(*pmd))
1824 goto unlock;
025c5b24 1825
0a85e51d
KS
1826 if (prot_numa && pmd_protnone(*pmd))
1827 goto unlock;
1828
ced10803 1829 /*
3e4e28c5 1830 * In case prot_numa, we are under mmap_read_lock(mm). It's critical
ced10803 1831 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
3e4e28c5 1832 * which is also under mmap_read_lock(mm):
ced10803
KS
1833 *
1834 * CPU0: CPU1:
1835 * change_huge_pmd(prot_numa=1)
1836 * pmdp_huge_get_and_clear_notify()
1837 * madvise_dontneed()
1838 * zap_pmd_range()
1839 * pmd_trans_huge(*pmd) == 0 (without ptl)
1840 * // skip the pmd
1841 * set_pmd_at();
1842 * // pmd is re-established
1843 *
1844 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1845 * which may break userspace.
1846 *
1847 * pmdp_invalidate() is required to make sure we don't miss
1848 * dirty/young flags set by hardware.
1849 */
a3cf988f 1850 entry = pmdp_invalidate(vma, addr, pmd);
ced10803 1851
0a85e51d
KS
1852 entry = pmd_modify(entry, newprot);
1853 if (preserve_write)
1854 entry = pmd_mk_savedwrite(entry);
292924b2
PX
1855 if (uffd_wp) {
1856 entry = pmd_wrprotect(entry);
1857 entry = pmd_mkuffd_wp(entry);
1858 } else if (uffd_wp_resolve) {
1859 /*
1860 * Leave the write bit to be handled by PF interrupt
1861 * handler, then things like COW could be properly
1862 * handled.
1863 */
1864 entry = pmd_clear_uffd_wp(entry);
1865 }
0a85e51d
KS
1866 ret = HPAGE_PMD_NR;
1867 set_pmd_at(mm, addr, pmd, entry);
1868 BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
1869unlock:
1870 spin_unlock(ptl);
025c5b24
NH
1871 return ret;
1872}
1873
1874/*
8f19b0c0 1875 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
025c5b24 1876 *
8f19b0c0
HY
1877 * Note that if it returns page table lock pointer, this routine returns without
1878 * unlocking page table lock. So callers must unlock it.
025c5b24 1879 */
b6ec57f4 1880spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
025c5b24 1881{
b6ec57f4
KS
1882 spinlock_t *ptl;
1883 ptl = pmd_lock(vma->vm_mm, pmd);
84c3fc4e
ZY
1884 if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
1885 pmd_devmap(*pmd)))
b6ec57f4
KS
1886 return ptl;
1887 spin_unlock(ptl);
1888 return NULL;
cd7548ab
JW
1889}
1890
a00cc7d9
MW
1891/*
1892 * Returns true if a given pud maps a thp, false otherwise.
1893 *
1894 * Note that if it returns true, this routine returns without unlocking page
1895 * table lock. So callers must unlock it.
1896 */
1897spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
1898{
1899 spinlock_t *ptl;
1900
1901 ptl = pud_lock(vma->vm_mm, pud);
1902 if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
1903 return ptl;
1904 spin_unlock(ptl);
1905 return NULL;
1906}
1907
1908#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1909int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
1910 pud_t *pud, unsigned long addr)
1911{
a00cc7d9
MW
1912 spinlock_t *ptl;
1913
1914 ptl = __pud_trans_huge_lock(pud, vma);
1915 if (!ptl)
1916 return 0;
1917 /*
1918 * For architectures like ppc64 we look at deposited pgtable
1919 * when calling pudp_huge_get_and_clear. So do the
1920 * pgtable_trans_huge_withdraw after finishing pudp related
1921 * operations.
1922 */
70516b93 1923 pudp_huge_get_and_clear_full(tlb->mm, addr, pud, tlb->fullmm);
a00cc7d9 1924 tlb_remove_pud_tlb_entry(tlb, pud, addr);
2484ca9b 1925 if (vma_is_special_huge(vma)) {
a00cc7d9
MW
1926 spin_unlock(ptl);
1927 /* No zero page support yet */
1928 } else {
1929 /* No support for anonymous PUD pages yet */
1930 BUG();
1931 }
1932 return 1;
1933}
1934
1935static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
1936 unsigned long haddr)
1937{
1938 VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
1939 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
1940 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
1941 VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
1942
ce9311cf 1943 count_vm_event(THP_SPLIT_PUD);
a00cc7d9
MW
1944
1945 pudp_huge_clear_flush_notify(vma, haddr, pud);
1946}
1947
1948void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
1949 unsigned long address)
1950{
1951 spinlock_t *ptl;
ac46d4f3 1952 struct mmu_notifier_range range;
a00cc7d9 1953
7269f999 1954 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
6f4f13e8 1955 address & HPAGE_PUD_MASK,
ac46d4f3
JG
1956 (address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
1957 mmu_notifier_invalidate_range_start(&range);
1958 ptl = pud_lock(vma->vm_mm, pud);
a00cc7d9
MW
1959 if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
1960 goto out;
ac46d4f3 1961 __split_huge_pud_locked(vma, pud, range.start);
a00cc7d9
MW
1962
1963out:
1964 spin_unlock(ptl);
4645b9fe
JG
1965 /*
1966 * No need to double call mmu_notifier->invalidate_range() callback as
1967 * the above pudp_huge_clear_flush_notify() did already call it.
1968 */
ac46d4f3 1969 mmu_notifier_invalidate_range_only_end(&range);
a00cc7d9
MW
1970}
1971#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1972
eef1b3ba
KS
1973static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
1974 unsigned long haddr, pmd_t *pmd)
1975{
1976 struct mm_struct *mm = vma->vm_mm;
1977 pgtable_t pgtable;
1978 pmd_t _pmd;
1979 int i;
1980
0f10851e
JG
1981 /*
1982 * Leave pmd empty until pte is filled note that it is fine to delay
1983 * notification until mmu_notifier_invalidate_range_end() as we are
1984 * replacing a zero pmd write protected page with a zero pte write
1985 * protected page.
1986 *
ad56b738 1987 * See Documentation/vm/mmu_notifier.rst
0f10851e
JG
1988 */
1989 pmdp_huge_clear_flush(vma, haddr, pmd);
eef1b3ba
KS
1990
1991 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1992 pmd_populate(mm, &_pmd, pgtable);
1993
1994 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1995 pte_t *pte, entry;
1996 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
1997 entry = pte_mkspecial(entry);
1998 pte = pte_offset_map(&_pmd, haddr);
1999 VM_BUG_ON(!pte_none(*pte));
2000 set_pte_at(mm, haddr, pte, entry);
2001 pte_unmap(pte);
2002 }
2003 smp_wmb(); /* make pte visible before pmd */
2004 pmd_populate(mm, pmd, pgtable);
eef1b3ba
KS
2005}
2006
2007static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
ba988280 2008 unsigned long haddr, bool freeze)
eef1b3ba
KS
2009{
2010 struct mm_struct *mm = vma->vm_mm;
2011 struct page *page;
2012 pgtable_t pgtable;
423ac9af 2013 pmd_t old_pmd, _pmd;
292924b2 2014 bool young, write, soft_dirty, pmd_migration = false, uffd_wp = false;
2ac015e2 2015 unsigned long addr;
eef1b3ba
KS
2016 int i;
2017
2018 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2019 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2020 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
84c3fc4e
ZY
2021 VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
2022 && !pmd_devmap(*pmd));
eef1b3ba
KS
2023
2024 count_vm_event(THP_SPLIT_PMD);
2025
d21b9e57
KS
2026 if (!vma_is_anonymous(vma)) {
2027 _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
953c66c2
AK
2028 /*
2029 * We are going to unmap this huge page. So
2030 * just go ahead and zap it
2031 */
2032 if (arch_needs_pgtable_deposit())
2033 zap_deposited_table(mm, pmd);
2484ca9b 2034 if (vma_is_special_huge(vma))
d21b9e57
KS
2035 return;
2036 page = pmd_page(_pmd);
e1f1b157
HD
2037 if (!PageDirty(page) && pmd_dirty(_pmd))
2038 set_page_dirty(page);
d21b9e57
KS
2039 if (!PageReferenced(page) && pmd_young(_pmd))
2040 SetPageReferenced(page);
2041 page_remove_rmap(page, true);
2042 put_page(page);
fadae295 2043 add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
eef1b3ba
KS
2044 return;
2045 } else if (is_huge_zero_pmd(*pmd)) {
4645b9fe
JG
2046 /*
2047 * FIXME: Do we want to invalidate secondary mmu by calling
2048 * mmu_notifier_invalidate_range() see comments below inside
2049 * __split_huge_pmd() ?
2050 *
2051 * We are going from a zero huge page write protected to zero
2052 * small page also write protected so it does not seems useful
2053 * to invalidate secondary mmu at this time.
2054 */
eef1b3ba
KS
2055 return __split_huge_zero_page_pmd(vma, haddr, pmd);
2056 }
2057
423ac9af
AK
2058 /*
2059 * Up to this point the pmd is present and huge and userland has the
2060 * whole access to the hugepage during the split (which happens in
2061 * place). If we overwrite the pmd with the not-huge version pointing
2062 * to the pte here (which of course we could if all CPUs were bug
2063 * free), userland could trigger a small page size TLB miss on the
2064 * small sized TLB while the hugepage TLB entry is still established in
2065 * the huge TLB. Some CPU doesn't like that.
2066 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
2067 * 383 on page 93. Intel should be safe but is also warns that it's
2068 * only safe if the permission and cache attributes of the two entries
2069 * loaded in the two TLB is identical (which should be the case here).
2070 * But it is generally safer to never allow small and huge TLB entries
2071 * for the same virtual address to be loaded simultaneously. So instead
2072 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2073 * current pmd notpresent (atomically because here the pmd_trans_huge
2074 * must remain set at all times on the pmd until the split is complete
2075 * for this pmd), then we flush the SMP TLB and finally we write the
2076 * non-huge version of the pmd entry with pmd_populate.
2077 */
2078 old_pmd = pmdp_invalidate(vma, haddr, pmd);
2079
423ac9af 2080 pmd_migration = is_pmd_migration_entry(old_pmd);
2e83ee1d 2081 if (unlikely(pmd_migration)) {
84c3fc4e
ZY
2082 swp_entry_t entry;
2083
423ac9af 2084 entry = pmd_to_swp_entry(old_pmd);
84c3fc4e 2085 page = pfn_to_page(swp_offset(entry));
2e83ee1d
PX
2086 write = is_write_migration_entry(entry);
2087 young = false;
2088 soft_dirty = pmd_swp_soft_dirty(old_pmd);
f45ec5ff 2089 uffd_wp = pmd_swp_uffd_wp(old_pmd);
2e83ee1d 2090 } else {
423ac9af 2091 page = pmd_page(old_pmd);
2e83ee1d
PX
2092 if (pmd_dirty(old_pmd))
2093 SetPageDirty(page);
2094 write = pmd_write(old_pmd);
2095 young = pmd_young(old_pmd);
2096 soft_dirty = pmd_soft_dirty(old_pmd);
292924b2 2097 uffd_wp = pmd_uffd_wp(old_pmd);
2e83ee1d 2098 }
eef1b3ba 2099 VM_BUG_ON_PAGE(!page_count(page), page);
fe896d18 2100 page_ref_add(page, HPAGE_PMD_NR - 1);
eef1b3ba 2101
423ac9af
AK
2102 /*
2103 * Withdraw the table only after we mark the pmd entry invalid.
2104 * This's critical for some architectures (Power).
2105 */
eef1b3ba
KS
2106 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2107 pmd_populate(mm, &_pmd, pgtable);
2108
2ac015e2 2109 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
eef1b3ba
KS
2110 pte_t entry, *pte;
2111 /*
2112 * Note that NUMA hinting access restrictions are not
2113 * transferred to avoid any possibility of altering
2114 * permissions across VMAs.
2115 */
84c3fc4e 2116 if (freeze || pmd_migration) {
ba988280
KS
2117 swp_entry_t swp_entry;
2118 swp_entry = make_migration_entry(page + i, write);
2119 entry = swp_entry_to_pte(swp_entry);
804dd150
AA
2120 if (soft_dirty)
2121 entry = pte_swp_mksoft_dirty(entry);
f45ec5ff
PX
2122 if (uffd_wp)
2123 entry = pte_swp_mkuffd_wp(entry);
ba988280 2124 } else {
6d2329f8 2125 entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
b8d3c4c3 2126 entry = maybe_mkwrite(entry, vma);
ba988280
KS
2127 if (!write)
2128 entry = pte_wrprotect(entry);
2129 if (!young)
2130 entry = pte_mkold(entry);
804dd150
AA
2131 if (soft_dirty)
2132 entry = pte_mksoft_dirty(entry);
292924b2
PX
2133 if (uffd_wp)
2134 entry = pte_mkuffd_wp(entry);
ba988280 2135 }
2ac015e2 2136 pte = pte_offset_map(&_pmd, addr);
eef1b3ba 2137 BUG_ON(!pte_none(*pte));
2ac015e2 2138 set_pte_at(mm, addr, pte, entry);
eef1b3ba
KS
2139 atomic_inc(&page[i]._mapcount);
2140 pte_unmap(pte);
2141 }
2142
2143 /*
2144 * Set PG_double_map before dropping compound_mapcount to avoid
2145 * false-negative page_mapped().
2146 */
2147 if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
2148 for (i = 0; i < HPAGE_PMD_NR; i++)
2149 atomic_inc(&page[i]._mapcount);
2150 }
2151
468c3982 2152 lock_page_memcg(page);
eef1b3ba
KS
2153 if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2154 /* Last compound_mapcount is gone. */
468c3982 2155 __dec_lruvec_page_state(page, NR_ANON_THPS);
eef1b3ba
KS
2156 if (TestClearPageDoubleMap(page)) {
2157 /* No need in mapcount reference anymore */
2158 for (i = 0; i < HPAGE_PMD_NR; i++)
2159 atomic_dec(&page[i]._mapcount);
2160 }
2161 }
468c3982 2162 unlock_page_memcg(page);
eef1b3ba
KS
2163
2164 smp_wmb(); /* make pte visible before pmd */
2165 pmd_populate(mm, pmd, pgtable);
e9b61f19
KS
2166
2167 if (freeze) {
2ac015e2 2168 for (i = 0; i < HPAGE_PMD_NR; i++) {
e9b61f19
KS
2169 page_remove_rmap(page + i, false);
2170 put_page(page + i);
2171 }
2172 }
eef1b3ba
KS
2173}
2174
2175void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
33f4751e 2176 unsigned long address, bool freeze, struct page *page)
eef1b3ba
KS
2177{
2178 spinlock_t *ptl;
ac46d4f3 2179 struct mmu_notifier_range range;
c444eb56
AA
2180 bool was_locked = false;
2181 pmd_t _pmd;
eef1b3ba 2182
7269f999 2183 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
6f4f13e8 2184 address & HPAGE_PMD_MASK,
ac46d4f3
JG
2185 (address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
2186 mmu_notifier_invalidate_range_start(&range);
2187 ptl = pmd_lock(vma->vm_mm, pmd);
33f4751e
NH
2188
2189 /*
2190 * If caller asks to setup a migration entries, we need a page to check
2191 * pmd against. Otherwise we can end up replacing wrong page.
2192 */
2193 VM_BUG_ON(freeze && !page);
c444eb56
AA
2194 if (page) {
2195 VM_WARN_ON_ONCE(!PageLocked(page));
2196 was_locked = true;
2197 if (page != pmd_page(*pmd))
2198 goto out;
2199 }
33f4751e 2200
c444eb56 2201repeat:
5c7fb56e 2202 if (pmd_trans_huge(*pmd)) {
c444eb56
AA
2203 if (!page) {
2204 page = pmd_page(*pmd);
2205 if (unlikely(!trylock_page(page))) {
2206 get_page(page);
2207 _pmd = *pmd;
2208 spin_unlock(ptl);
2209 lock_page(page);
2210 spin_lock(ptl);
2211 if (unlikely(!pmd_same(*pmd, _pmd))) {
2212 unlock_page(page);
2213 put_page(page);
2214 page = NULL;
2215 goto repeat;
2216 }
2217 put_page(page);
2218 }
2219 }
5c7fb56e 2220 if (PageMlocked(page))
5f737714 2221 clear_page_mlock(page);
84c3fc4e 2222 } else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd)))
e90309c9 2223 goto out;
ac46d4f3 2224 __split_huge_pmd_locked(vma, pmd, range.start, freeze);
e90309c9 2225out:
eef1b3ba 2226 spin_unlock(ptl);
c444eb56
AA
2227 if (!was_locked && page)
2228 unlock_page(page);
4645b9fe
JG
2229 /*
2230 * No need to double call mmu_notifier->invalidate_range() callback.
2231 * They are 3 cases to consider inside __split_huge_pmd_locked():
2232 * 1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
2233 * 2) __split_huge_zero_page_pmd() read only zero page and any write
2234 * fault will trigger a flush_notify before pointing to a new page
2235 * (it is fine if the secondary mmu keeps pointing to the old zero
2236 * page in the meantime)
2237 * 3) Split a huge pmd into pte pointing to the same page. No need
2238 * to invalidate secondary tlb entry they are all still valid.
2239 * any further changes to individual pte will notify. So no need
2240 * to call mmu_notifier->invalidate_range()
2241 */
ac46d4f3 2242 mmu_notifier_invalidate_range_only_end(&range);
eef1b3ba
KS
2243}
2244
fec89c10
KS
2245void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2246 bool freeze, struct page *page)
94fcc585 2247{
f72e7dcd 2248 pgd_t *pgd;
c2febafc 2249 p4d_t *p4d;
f72e7dcd 2250 pud_t *pud;
94fcc585
AA
2251 pmd_t *pmd;
2252
78ddc534 2253 pgd = pgd_offset(vma->vm_mm, address);
f72e7dcd
HD
2254 if (!pgd_present(*pgd))
2255 return;
2256
c2febafc
KS
2257 p4d = p4d_offset(pgd, address);
2258 if (!p4d_present(*p4d))
2259 return;
2260
2261 pud = pud_offset(p4d, address);
f72e7dcd
HD
2262 if (!pud_present(*pud))
2263 return;
2264
2265 pmd = pmd_offset(pud, address);
fec89c10 2266
33f4751e 2267 __split_huge_pmd(vma, pmd, address, freeze, page);
94fcc585
AA
2268}
2269
e1b9996b 2270void vma_adjust_trans_huge(struct vm_area_struct *vma,
94fcc585
AA
2271 unsigned long start,
2272 unsigned long end,
2273 long adjust_next)
2274{
2275 /*
2276 * If the new start address isn't hpage aligned and it could
2277 * previously contain an hugepage: check if we need to split
2278 * an huge pmd.
2279 */
2280 if (start & ~HPAGE_PMD_MASK &&
2281 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2282 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
fec89c10 2283 split_huge_pmd_address(vma, start, false, NULL);
94fcc585
AA
2284
2285 /*
2286 * If the new end address isn't hpage aligned and it could
2287 * previously contain an hugepage: check if we need to split
2288 * an huge pmd.
2289 */
2290 if (end & ~HPAGE_PMD_MASK &&
2291 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2292 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
fec89c10 2293 split_huge_pmd_address(vma, end, false, NULL);
94fcc585
AA
2294
2295 /*
2296 * If we're also updating the vma->vm_next->vm_start, if the new
2297 * vm_next->vm_start isn't page aligned and it could previously
2298 * contain an hugepage: check if we need to split an huge pmd.
2299 */
2300 if (adjust_next > 0) {
2301 struct vm_area_struct *next = vma->vm_next;
2302 unsigned long nstart = next->vm_start;
2303 nstart += adjust_next << PAGE_SHIFT;
2304 if (nstart & ~HPAGE_PMD_MASK &&
2305 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2306 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
fec89c10 2307 split_huge_pmd_address(next, nstart, false, NULL);
94fcc585
AA
2308 }
2309}
e9b61f19 2310
906f9cdf 2311static void unmap_page(struct page *page)
e9b61f19 2312{
baa355fd 2313 enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS |
c7ab0d2f 2314 TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD;
666e5a40 2315 bool unmap_success;
e9b61f19
KS
2316
2317 VM_BUG_ON_PAGE(!PageHead(page), page);
2318
baa355fd 2319 if (PageAnon(page))
b5ff8161 2320 ttu_flags |= TTU_SPLIT_FREEZE;
baa355fd 2321
666e5a40
MK
2322 unmap_success = try_to_unmap(page, ttu_flags);
2323 VM_BUG_ON_PAGE(!unmap_success, page);
e9b61f19
KS
2324}
2325
906f9cdf 2326static void remap_page(struct page *page)
e9b61f19 2327{
fec89c10 2328 int i;
ace71a19
KS
2329 if (PageTransHuge(page)) {
2330 remove_migration_ptes(page, page, true);
2331 } else {
2332 for (i = 0; i < HPAGE_PMD_NR; i++)
2333 remove_migration_ptes(page + i, page + i, true);
2334 }
e9b61f19
KS
2335}
2336
8df651c7 2337static void __split_huge_page_tail(struct page *head, int tail,
e9b61f19
KS
2338 struct lruvec *lruvec, struct list_head *list)
2339{
e9b61f19
KS
2340 struct page *page_tail = head + tail;
2341
8df651c7 2342 VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
e9b61f19
KS
2343
2344 /*
605ca5ed
KK
2345 * Clone page flags before unfreezing refcount.
2346 *
2347 * After successful get_page_unless_zero() might follow flags change,
2348 * for exmaple lock_page() which set PG_waiters.
e9b61f19 2349 */
e9b61f19
KS
2350 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2351 page_tail->flags |= (head->flags &
2352 ((1L << PG_referenced) |
2353 (1L << PG_swapbacked) |
38d8b4e6 2354 (1L << PG_swapcache) |
e9b61f19
KS
2355 (1L << PG_mlocked) |
2356 (1L << PG_uptodate) |
2357 (1L << PG_active) |
1899ad18 2358 (1L << PG_workingset) |
e9b61f19 2359 (1L << PG_locked) |
b8d3c4c3
MK
2360 (1L << PG_unevictable) |
2361 (1L << PG_dirty)));
e9b61f19 2362
173d9d9f
HD
2363 /* ->mapping in first tail page is compound_mapcount */
2364 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2365 page_tail);
2366 page_tail->mapping = head->mapping;
2367 page_tail->index = head->index + tail;
2368
605ca5ed 2369 /* Page flags must be visible before we make the page non-compound. */
e9b61f19
KS
2370 smp_wmb();
2371
605ca5ed
KK
2372 /*
2373 * Clear PageTail before unfreezing page refcount.
2374 *
2375 * After successful get_page_unless_zero() might follow put_page()
2376 * which needs correct compound_head().
2377 */
e9b61f19
KS
2378 clear_compound_head(page_tail);
2379
605ca5ed
KK
2380 /* Finally unfreeze refcount. Additional reference from page cache. */
2381 page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
2382 PageSwapCache(head)));
2383
e9b61f19
KS
2384 if (page_is_young(head))
2385 set_page_young(page_tail);
2386 if (page_is_idle(head))
2387 set_page_idle(page_tail);
2388
e9b61f19 2389 page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
94723aaf
MH
2390
2391 /*
2392 * always add to the tail because some iterators expect new
2393 * pages to show after the currently processed elements - e.g.
2394 * migrate_pages
2395 */
e9b61f19 2396 lru_add_page_tail(head, page_tail, lruvec, list);
e9b61f19
KS
2397}
2398
baa355fd 2399static void __split_huge_page(struct page *page, struct list_head *list,
006d3ff2 2400 pgoff_t end, unsigned long flags)
e9b61f19
KS
2401{
2402 struct page *head = compound_head(page);
f4b7e272 2403 pg_data_t *pgdat = page_pgdat(head);
e9b61f19 2404 struct lruvec *lruvec;
4101196b
MWO
2405 struct address_space *swap_cache = NULL;
2406 unsigned long offset = 0;
8df651c7 2407 int i;
e9b61f19 2408
f4b7e272 2409 lruvec = mem_cgroup_page_lruvec(head, pgdat);
e9b61f19
KS
2410
2411 /* complete memcg works before add pages to LRU */
2412 mem_cgroup_split_huge_fixup(head);
2413
4101196b
MWO
2414 if (PageAnon(head) && PageSwapCache(head)) {
2415 swp_entry_t entry = { .val = page_private(head) };
2416
2417 offset = swp_offset(entry);
2418 swap_cache = swap_address_space(entry);
2419 xa_lock(&swap_cache->i_pages);
2420 }
2421
baa355fd 2422 for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
8df651c7 2423 __split_huge_page_tail(head, i, lruvec, list);
baa355fd
KS
2424 /* Some pages can be beyond i_size: drop them from page cache */
2425 if (head[i].index >= end) {
2d077d4b 2426 ClearPageDirty(head + i);
baa355fd 2427 __delete_from_page_cache(head + i, NULL);
800d8c63
KS
2428 if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
2429 shmem_uncharge(head->mapping->host, 1);
baa355fd 2430 put_page(head + i);
4101196b
MWO
2431 } else if (!PageAnon(page)) {
2432 __xa_store(&head->mapping->i_pages, head[i].index,
2433 head + i, 0);
2434 } else if (swap_cache) {
2435 __xa_store(&swap_cache->i_pages, offset + i,
2436 head + i, 0);
baa355fd
KS
2437 }
2438 }
e9b61f19
KS
2439
2440 ClearPageCompound(head);
f7da677b
VB
2441
2442 split_page_owner(head, HPAGE_PMD_ORDER);
2443
baa355fd
KS
2444 /* See comment in __split_huge_page_tail() */
2445 if (PageAnon(head)) {
aa5dc07f 2446 /* Additional pin to swap cache */
4101196b 2447 if (PageSwapCache(head)) {
38d8b4e6 2448 page_ref_add(head, 2);
4101196b
MWO
2449 xa_unlock(&swap_cache->i_pages);
2450 } else {
38d8b4e6 2451 page_ref_inc(head);
4101196b 2452 }
baa355fd 2453 } else {
aa5dc07f 2454 /* Additional pin to page cache */
baa355fd 2455 page_ref_add(head, 2);
b93b0163 2456 xa_unlock(&head->mapping->i_pages);
baa355fd
KS
2457 }
2458
f4b7e272 2459 spin_unlock_irqrestore(&pgdat->lru_lock, flags);
e9b61f19 2460
906f9cdf 2461 remap_page(head);
e9b61f19
KS
2462
2463 for (i = 0; i < HPAGE_PMD_NR; i++) {
2464 struct page *subpage = head + i;
2465 if (subpage == page)
2466 continue;
2467 unlock_page(subpage);
2468
2469 /*
2470 * Subpages may be freed if there wasn't any mapping
2471 * like if add_to_swap() is running on a lru page that
2472 * had its mapping zapped. And freeing these pages
2473 * requires taking the lru_lock so we do the put_page
2474 * of the tail pages after the split is complete.
2475 */
2476 put_page(subpage);
2477 }
2478}
2479
b20ce5e0
KS
2480int total_mapcount(struct page *page)
2481{
dd78fedd 2482 int i, compound, ret;
b20ce5e0
KS
2483
2484 VM_BUG_ON_PAGE(PageTail(page), page);
2485
2486 if (likely(!PageCompound(page)))
2487 return atomic_read(&page->_mapcount) + 1;
2488
dd78fedd 2489 compound = compound_mapcount(page);
b20ce5e0 2490 if (PageHuge(page))
dd78fedd
KS
2491 return compound;
2492 ret = compound;
b20ce5e0
KS
2493 for (i = 0; i < HPAGE_PMD_NR; i++)
2494 ret += atomic_read(&page[i]._mapcount) + 1;
dd78fedd
KS
2495 /* File pages has compound_mapcount included in _mapcount */
2496 if (!PageAnon(page))
2497 return ret - compound * HPAGE_PMD_NR;
b20ce5e0
KS
2498 if (PageDoubleMap(page))
2499 ret -= HPAGE_PMD_NR;
2500 return ret;
2501}
2502
6d0a07ed
AA
2503/*
2504 * This calculates accurately how many mappings a transparent hugepage
2505 * has (unlike page_mapcount() which isn't fully accurate). This full
2506 * accuracy is primarily needed to know if copy-on-write faults can
2507 * reuse the page and change the mapping to read-write instead of
2508 * copying them. At the same time this returns the total_mapcount too.
2509 *
2510 * The function returns the highest mapcount any one of the subpages
2511 * has. If the return value is one, even if different processes are
2512 * mapping different subpages of the transparent hugepage, they can
2513 * all reuse it, because each process is reusing a different subpage.
2514 *
2515 * The total_mapcount is instead counting all virtual mappings of the
2516 * subpages. If the total_mapcount is equal to "one", it tells the
2517 * caller all mappings belong to the same "mm" and in turn the
2518 * anon_vma of the transparent hugepage can become the vma->anon_vma
2519 * local one as no other process may be mapping any of the subpages.
2520 *
2521 * It would be more accurate to replace page_mapcount() with
2522 * page_trans_huge_mapcount(), however we only use
2523 * page_trans_huge_mapcount() in the copy-on-write faults where we
2524 * need full accuracy to avoid breaking page pinning, because
2525 * page_trans_huge_mapcount() is slower than page_mapcount().
2526 */
2527int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
2528{
2529 int i, ret, _total_mapcount, mapcount;
2530
2531 /* hugetlbfs shouldn't call it */
2532 VM_BUG_ON_PAGE(PageHuge(page), page);
2533
2534 if (likely(!PageTransCompound(page))) {
2535 mapcount = atomic_read(&page->_mapcount) + 1;
2536 if (total_mapcount)
2537 *total_mapcount = mapcount;
2538 return mapcount;
2539 }
2540
2541 page = compound_head(page);
2542
2543 _total_mapcount = ret = 0;
2544 for (i = 0; i < HPAGE_PMD_NR; i++) {
2545 mapcount = atomic_read(&page[i]._mapcount) + 1;
2546 ret = max(ret, mapcount);
2547 _total_mapcount += mapcount;
2548 }
2549 if (PageDoubleMap(page)) {
2550 ret -= 1;
2551 _total_mapcount -= HPAGE_PMD_NR;
2552 }
2553 mapcount = compound_mapcount(page);
2554 ret += mapcount;
2555 _total_mapcount += mapcount;
2556 if (total_mapcount)
2557 *total_mapcount = _total_mapcount;
2558 return ret;
2559}
2560
b8f593cd
HY
2561/* Racy check whether the huge page can be split */
2562bool can_split_huge_page(struct page *page, int *pextra_pins)
2563{
2564 int extra_pins;
2565
aa5dc07f 2566 /* Additional pins from page cache */
b8f593cd
HY
2567 if (PageAnon(page))
2568 extra_pins = PageSwapCache(page) ? HPAGE_PMD_NR : 0;
2569 else
2570 extra_pins = HPAGE_PMD_NR;
2571 if (pextra_pins)
2572 *pextra_pins = extra_pins;
2573 return total_mapcount(page) == page_count(page) - extra_pins - 1;
2574}
2575
e9b61f19
KS
2576/*
2577 * This function splits huge page into normal pages. @page can point to any
2578 * subpage of huge page to split. Split doesn't change the position of @page.
2579 *
2580 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2581 * The huge page must be locked.
2582 *
2583 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2584 *
2585 * Both head page and tail pages will inherit mapping, flags, and so on from
2586 * the hugepage.
2587 *
2588 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2589 * they are not mapped.
2590 *
2591 * Returns 0 if the hugepage is split successfully.
2592 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2593 * us.
2594 */
2595int split_huge_page_to_list(struct page *page, struct list_head *list)
2596{
2597 struct page *head = compound_head(page);
a3d0a918 2598 struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
a8803e6c 2599 struct deferred_split *ds_queue = get_deferred_split_queue(head);
baa355fd
KS
2600 struct anon_vma *anon_vma = NULL;
2601 struct address_space *mapping = NULL;
2602 int count, mapcount, extra_pins, ret;
0b9b6fff 2603 unsigned long flags;
006d3ff2 2604 pgoff_t end;
e9b61f19 2605
cb829624 2606 VM_BUG_ON_PAGE(is_huge_zero_page(head), head);
a8803e6c
WY
2607 VM_BUG_ON_PAGE(!PageLocked(head), head);
2608 VM_BUG_ON_PAGE(!PageCompound(head), head);
e9b61f19 2609
a8803e6c 2610 if (PageWriteback(head))
59807685
HY
2611 return -EBUSY;
2612
baa355fd
KS
2613 if (PageAnon(head)) {
2614 /*
c1e8d7c6 2615 * The caller does not necessarily hold an mmap_lock that would
baa355fd
KS
2616 * prevent the anon_vma disappearing so we first we take a
2617 * reference to it and then lock the anon_vma for write. This
2618 * is similar to page_lock_anon_vma_read except the write lock
2619 * is taken to serialise against parallel split or collapse
2620 * operations.
2621 */
2622 anon_vma = page_get_anon_vma(head);
2623 if (!anon_vma) {
2624 ret = -EBUSY;
2625 goto out;
2626 }
006d3ff2 2627 end = -1;
baa355fd
KS
2628 mapping = NULL;
2629 anon_vma_lock_write(anon_vma);
2630 } else {
2631 mapping = head->mapping;
2632
2633 /* Truncated ? */
2634 if (!mapping) {
2635 ret = -EBUSY;
2636 goto out;
2637 }
2638
baa355fd
KS
2639 anon_vma = NULL;
2640 i_mmap_lock_read(mapping);
006d3ff2
HD
2641
2642 /*
2643 *__split_huge_page() may need to trim off pages beyond EOF:
2644 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
2645 * which cannot be nested inside the page tree lock. So note
2646 * end now: i_size itself may be changed at any moment, but
2647 * head page lock is good enough to serialize the trimming.
2648 */
2649 end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
e9b61f19 2650 }
e9b61f19
KS
2651
2652 /*
906f9cdf 2653 * Racy check if we can split the page, before unmap_page() will
e9b61f19
KS
2654 * split PMDs
2655 */
b8f593cd 2656 if (!can_split_huge_page(head, &extra_pins)) {
e9b61f19
KS
2657 ret = -EBUSY;
2658 goto out_unlock;
2659 }
2660
906f9cdf 2661 unmap_page(head);
e9b61f19
KS
2662 VM_BUG_ON_PAGE(compound_mapcount(head), head);
2663
baa355fd 2664 /* prevent PageLRU to go away from under us, and freeze lru stats */
f4b7e272 2665 spin_lock_irqsave(&pgdata->lru_lock, flags);
baa355fd
KS
2666
2667 if (mapping) {
aa5dc07f 2668 XA_STATE(xas, &mapping->i_pages, page_index(head));
baa355fd 2669
baa355fd 2670 /*
aa5dc07f 2671 * Check if the head page is present in page cache.
baa355fd
KS
2672 * We assume all tail are present too, if head is there.
2673 */
aa5dc07f
MW
2674 xa_lock(&mapping->i_pages);
2675 if (xas_load(&xas) != head)
baa355fd
KS
2676 goto fail;
2677 }
2678
0139aa7b 2679 /* Prevent deferred_split_scan() touching ->_refcount */
364c1eeb 2680 spin_lock(&ds_queue->split_queue_lock);
e9b61f19
KS
2681 count = page_count(head);
2682 mapcount = total_mapcount(head);
baa355fd 2683 if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
9a982250 2684 if (!list_empty(page_deferred_list(head))) {
364c1eeb 2685 ds_queue->split_queue_len--;
9a982250
KS
2686 list_del(page_deferred_list(head));
2687 }
afb97172 2688 spin_unlock(&ds_queue->split_queue_lock);
06d3eff6 2689 if (mapping) {
a8803e6c
WY
2690 if (PageSwapBacked(head))
2691 __dec_node_page_state(head, NR_SHMEM_THPS);
06d3eff6 2692 else
a8803e6c 2693 __dec_node_page_state(head, NR_FILE_THPS);
06d3eff6
KS
2694 }
2695
006d3ff2 2696 __split_huge_page(page, list, end, flags);
59807685
HY
2697 if (PageSwapCache(head)) {
2698 swp_entry_t entry = { .val = page_private(head) };
2699
2700 ret = split_swap_cluster(entry);
2701 } else
2702 ret = 0;
e9b61f19 2703 } else {
baa355fd
KS
2704 if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
2705 pr_alert("total_mapcount: %u, page_count(): %u\n",
2706 mapcount, count);
2707 if (PageTail(page))
2708 dump_page(head, NULL);
2709 dump_page(page, "total_mapcount(head) > 0");
2710 BUG();
2711 }
364c1eeb 2712 spin_unlock(&ds_queue->split_queue_lock);
baa355fd 2713fail: if (mapping)
b93b0163 2714 xa_unlock(&mapping->i_pages);
f4b7e272 2715 spin_unlock_irqrestore(&pgdata->lru_lock, flags);
906f9cdf 2716 remap_page(head);
e9b61f19
KS
2717 ret = -EBUSY;
2718 }
2719
2720out_unlock:
baa355fd
KS
2721 if (anon_vma) {
2722 anon_vma_unlock_write(anon_vma);
2723 put_anon_vma(anon_vma);
2724 }
2725 if (mapping)
2726 i_mmap_unlock_read(mapping);
e9b61f19
KS
2727out:
2728 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2729 return ret;
2730}
9a982250
KS
2731
2732void free_transhuge_page(struct page *page)
2733{
87eaceb3 2734 struct deferred_split *ds_queue = get_deferred_split_queue(page);
9a982250
KS
2735 unsigned long flags;
2736
364c1eeb 2737 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
9a982250 2738 if (!list_empty(page_deferred_list(page))) {
364c1eeb 2739 ds_queue->split_queue_len--;
9a982250
KS
2740 list_del(page_deferred_list(page));
2741 }
364c1eeb 2742 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
9a982250
KS
2743 free_compound_page(page);
2744}
2745
2746void deferred_split_huge_page(struct page *page)
2747{
87eaceb3
YS
2748 struct deferred_split *ds_queue = get_deferred_split_queue(page);
2749#ifdef CONFIG_MEMCG
2750 struct mem_cgroup *memcg = compound_head(page)->mem_cgroup;
2751#endif
9a982250
KS
2752 unsigned long flags;
2753
2754 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2755
87eaceb3
YS
2756 /*
2757 * The try_to_unmap() in page reclaim path might reach here too,
2758 * this may cause a race condition to corrupt deferred split queue.
2759 * And, if page reclaim is already handling the same page, it is
2760 * unnecessary to handle it again in shrinker.
2761 *
2762 * Check PageSwapCache to determine if the page is being
2763 * handled by page reclaim since THP swap would add the page into
2764 * swap cache before calling try_to_unmap().
2765 */
2766 if (PageSwapCache(page))
2767 return;
2768
364c1eeb 2769 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
9a982250 2770 if (list_empty(page_deferred_list(page))) {
f9719a03 2771 count_vm_event(THP_DEFERRED_SPLIT_PAGE);
364c1eeb
YS
2772 list_add_tail(page_deferred_list(page), &ds_queue->split_queue);
2773 ds_queue->split_queue_len++;
87eaceb3
YS
2774#ifdef CONFIG_MEMCG
2775 if (memcg)
2776 memcg_set_shrinker_bit(memcg, page_to_nid(page),
2777 deferred_split_shrinker.id);
2778#endif
9a982250 2779 }
364c1eeb 2780 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
9a982250
KS
2781}
2782
2783static unsigned long deferred_split_count(struct shrinker *shrink,
2784 struct shrink_control *sc)
2785{
a3d0a918 2786 struct pglist_data *pgdata = NODE_DATA(sc->nid);
364c1eeb 2787 struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
87eaceb3
YS
2788
2789#ifdef CONFIG_MEMCG
2790 if (sc->memcg)
2791 ds_queue = &sc->memcg->deferred_split_queue;
2792#endif
364c1eeb 2793 return READ_ONCE(ds_queue->split_queue_len);
9a982250
KS
2794}
2795
2796static unsigned long deferred_split_scan(struct shrinker *shrink,
2797 struct shrink_control *sc)
2798{
a3d0a918 2799 struct pglist_data *pgdata = NODE_DATA(sc->nid);
364c1eeb 2800 struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
9a982250
KS
2801 unsigned long flags;
2802 LIST_HEAD(list), *pos, *next;
2803 struct page *page;
2804 int split = 0;
2805
87eaceb3
YS
2806#ifdef CONFIG_MEMCG
2807 if (sc->memcg)
2808 ds_queue = &sc->memcg->deferred_split_queue;
2809#endif
2810
364c1eeb 2811 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
9a982250 2812 /* Take pin on all head pages to avoid freeing them under us */
364c1eeb 2813 list_for_each_safe(pos, next, &ds_queue->split_queue) {
9a982250
KS
2814 page = list_entry((void *)pos, struct page, mapping);
2815 page = compound_head(page);
e3ae1953
KS
2816 if (get_page_unless_zero(page)) {
2817 list_move(page_deferred_list(page), &list);
2818 } else {
2819 /* We lost race with put_compound_page() */
9a982250 2820 list_del_init(page_deferred_list(page));
364c1eeb 2821 ds_queue->split_queue_len--;
9a982250 2822 }
e3ae1953
KS
2823 if (!--sc->nr_to_scan)
2824 break;
9a982250 2825 }
364c1eeb 2826 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
9a982250
KS
2827
2828 list_for_each_safe(pos, next, &list) {
2829 page = list_entry((void *)pos, struct page, mapping);
fa41b900
KS
2830 if (!trylock_page(page))
2831 goto next;
9a982250
KS
2832 /* split_huge_page() removes page from list on success */
2833 if (!split_huge_page(page))
2834 split++;
2835 unlock_page(page);
fa41b900 2836next:
9a982250
KS
2837 put_page(page);
2838 }
2839
364c1eeb
YS
2840 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2841 list_splice_tail(&list, &ds_queue->split_queue);
2842 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
9a982250 2843
cb8d68ec
KS
2844 /*
2845 * Stop shrinker if we didn't split any page, but the queue is empty.
2846 * This can happen if pages were freed under us.
2847 */
364c1eeb 2848 if (!split && list_empty(&ds_queue->split_queue))
cb8d68ec
KS
2849 return SHRINK_STOP;
2850 return split;
9a982250
KS
2851}
2852
2853static struct shrinker deferred_split_shrinker = {
2854 .count_objects = deferred_split_count,
2855 .scan_objects = deferred_split_scan,
2856 .seeks = DEFAULT_SEEKS,
87eaceb3
YS
2857 .flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE |
2858 SHRINKER_NONSLAB,
9a982250 2859};
49071d43
KS
2860
2861#ifdef CONFIG_DEBUG_FS
2862static int split_huge_pages_set(void *data, u64 val)
2863{
2864 struct zone *zone;
2865 struct page *page;
2866 unsigned long pfn, max_zone_pfn;
2867 unsigned long total = 0, split = 0;
2868
2869 if (val != 1)
2870 return -EINVAL;
2871
2872 for_each_populated_zone(zone) {
2873 max_zone_pfn = zone_end_pfn(zone);
2874 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2875 if (!pfn_valid(pfn))
2876 continue;
2877
2878 page = pfn_to_page(pfn);
2879 if (!get_page_unless_zero(page))
2880 continue;
2881
2882 if (zone != page_zone(page))
2883 goto next;
2884
baa355fd 2885 if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
49071d43
KS
2886 goto next;
2887
2888 total++;
2889 lock_page(page);
2890 if (!split_huge_page(page))
2891 split++;
2892 unlock_page(page);
2893next:
2894 put_page(page);
2895 }
2896 }
2897
145bdaa1 2898 pr_info("%lu of %lu THP split\n", split, total);
49071d43
KS
2899
2900 return 0;
2901}
f1287869 2902DEFINE_DEBUGFS_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
49071d43
KS
2903 "%llu\n");
2904
2905static int __init split_huge_pages_debugfs(void)
2906{
d9f7979c
GKH
2907 debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
2908 &split_huge_pages_fops);
49071d43
KS
2909 return 0;
2910}
2911late_initcall(split_huge_pages_debugfs);
2912#endif
616b8371
ZY
2913
2914#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2915void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
2916 struct page *page)
2917{
2918 struct vm_area_struct *vma = pvmw->vma;
2919 struct mm_struct *mm = vma->vm_mm;
2920 unsigned long address = pvmw->address;
2921 pmd_t pmdval;
2922 swp_entry_t entry;
ab6e3d09 2923 pmd_t pmdswp;
616b8371
ZY
2924
2925 if (!(pvmw->pmd && !pvmw->pte))
2926 return;
2927
616b8371 2928 flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
8a8683ad 2929 pmdval = pmdp_invalidate(vma, address, pvmw->pmd);
616b8371
ZY
2930 if (pmd_dirty(pmdval))
2931 set_page_dirty(page);
2932 entry = make_migration_entry(page, pmd_write(pmdval));
ab6e3d09
NH
2933 pmdswp = swp_entry_to_pmd(entry);
2934 if (pmd_soft_dirty(pmdval))
2935 pmdswp = pmd_swp_mksoft_dirty(pmdswp);
2936 set_pmd_at(mm, address, pvmw->pmd, pmdswp);
616b8371
ZY
2937 page_remove_rmap(page, true);
2938 put_page(page);
616b8371
ZY
2939}
2940
2941void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
2942{
2943 struct vm_area_struct *vma = pvmw->vma;
2944 struct mm_struct *mm = vma->vm_mm;
2945 unsigned long address = pvmw->address;
2946 unsigned long mmun_start = address & HPAGE_PMD_MASK;
2947 pmd_t pmde;
2948 swp_entry_t entry;
2949
2950 if (!(pvmw->pmd && !pvmw->pte))
2951 return;
2952
2953 entry = pmd_to_swp_entry(*pvmw->pmd);
2954 get_page(new);
2955 pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
ab6e3d09
NH
2956 if (pmd_swp_soft_dirty(*pvmw->pmd))
2957 pmde = pmd_mksoft_dirty(pmde);
616b8371 2958 if (is_write_migration_entry(entry))
f55e1014 2959 pmde = maybe_pmd_mkwrite(pmde, vma);
616b8371
ZY
2960
2961 flush_cache_range(vma, mmun_start, mmun_start + HPAGE_PMD_SIZE);
e71769ae
NH
2962 if (PageAnon(new))
2963 page_add_anon_rmap(new, vma, mmun_start, true);
2964 else
2965 page_add_file_rmap(new, true);
616b8371 2966 set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
e125fe40 2967 if ((vma->vm_flags & VM_LOCKED) && !PageDoubleMap(new))
616b8371
ZY
2968 mlock_vma_page(new);
2969 update_mmu_cache_pmd(vma, address, pvmw->pmd);
2970}
2971#endif