mm: introduce mm_find_pmd()
[linux-2.6-block.git] / mm / huge_memory.c
CommitLineData
71e3aac0
AA
1/*
2 * Copyright (C) 2009 Red Hat, Inc.
3 *
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
6 */
7
8#include <linux/mm.h>
9#include <linux/sched.h>
10#include <linux/highmem.h>
11#include <linux/hugetlb.h>
12#include <linux/mmu_notifier.h>
13#include <linux/rmap.h>
14#include <linux/swap.h>
ba76149f
AA
15#include <linux/mm_inline.h>
16#include <linux/kthread.h>
17#include <linux/khugepaged.h>
878aee7d 18#include <linux/freezer.h>
a664b2d8 19#include <linux/mman.h>
325adeb5 20#include <linux/pagemap.h>
71e3aac0
AA
21#include <asm/tlb.h>
22#include <asm/pgalloc.h>
23#include "internal.h"
24
ba76149f
AA
25/*
26 * By default transparent hugepage support is enabled for all mappings
27 * and khugepaged scans all mappings. Defrag is only invoked by
28 * khugepaged hugepage allocations and by page faults inside
29 * MADV_HUGEPAGE regions to avoid the risk of slowing down short lived
30 * allocations.
31 */
71e3aac0 32unsigned long transparent_hugepage_flags __read_mostly =
13ece886 33#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
ba76149f 34 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
13ece886
AA
35#endif
36#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
37 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
38#endif
d39d33c3 39 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
ba76149f
AA
40 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
41
42/* default scan 8*512 pte (or vmas) every 30 second */
43static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
44static unsigned int khugepaged_pages_collapsed;
45static unsigned int khugepaged_full_scans;
46static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
47/* during fragmentation poll the hugepage allocator once every minute */
48static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
49static struct task_struct *khugepaged_thread __read_mostly;
50static DEFINE_MUTEX(khugepaged_mutex);
51static DEFINE_SPINLOCK(khugepaged_mm_lock);
52static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
53/*
54 * default collapse hugepages if there is at least one pte mapped like
55 * it would have happened if the vma was large enough during page
56 * fault.
57 */
58static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
59
60static int khugepaged(void *none);
61static int mm_slots_hash_init(void);
62static int khugepaged_slab_init(void);
63static void khugepaged_slab_free(void);
64
65#define MM_SLOTS_HASH_HEADS 1024
66static struct hlist_head *mm_slots_hash __read_mostly;
67static struct kmem_cache *mm_slot_cache __read_mostly;
68
69/**
70 * struct mm_slot - hash lookup from mm to mm_slot
71 * @hash: hash collision list
72 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
73 * @mm: the mm that this information is valid for
74 */
75struct mm_slot {
76 struct hlist_node hash;
77 struct list_head mm_node;
78 struct mm_struct *mm;
79};
80
81/**
82 * struct khugepaged_scan - cursor for scanning
83 * @mm_head: the head of the mm list to scan
84 * @mm_slot: the current mm_slot we are scanning
85 * @address: the next address inside that to be scanned
86 *
87 * There is only the one khugepaged_scan instance of this cursor structure.
88 */
89struct khugepaged_scan {
90 struct list_head mm_head;
91 struct mm_slot *mm_slot;
92 unsigned long address;
2f1da642
HS
93};
94static struct khugepaged_scan khugepaged_scan = {
ba76149f
AA
95 .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
96};
97
f000565a
AA
98
99static int set_recommended_min_free_kbytes(void)
100{
101 struct zone *zone;
102 int nr_zones = 0;
103 unsigned long recommended_min;
104 extern int min_free_kbytes;
105
17c230af 106 if (!khugepaged_enabled())
f000565a
AA
107 return 0;
108
109 for_each_populated_zone(zone)
110 nr_zones++;
111
112 /* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
113 recommended_min = pageblock_nr_pages * nr_zones * 2;
114
115 /*
116 * Make sure that on average at least two pageblocks are almost free
117 * of another type, one for a migratetype to fall back to and a
118 * second to avoid subsequent fallbacks of other types There are 3
119 * MIGRATE_TYPES we care about.
120 */
121 recommended_min += pageblock_nr_pages * nr_zones *
122 MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
123
124 /* don't ever allow to reserve more than 5% of the lowmem */
125 recommended_min = min(recommended_min,
126 (unsigned long) nr_free_buffer_pages() / 20);
127 recommended_min <<= (PAGE_SHIFT-10);
128
129 if (recommended_min > min_free_kbytes)
130 min_free_kbytes = recommended_min;
131 setup_per_zone_wmarks();
132 return 0;
133}
134late_initcall(set_recommended_min_free_kbytes);
135
ba76149f
AA
136static int start_khugepaged(void)
137{
138 int err = 0;
139 if (khugepaged_enabled()) {
ba76149f
AA
140 if (!khugepaged_thread)
141 khugepaged_thread = kthread_run(khugepaged, NULL,
142 "khugepaged");
143 if (unlikely(IS_ERR(khugepaged_thread))) {
144 printk(KERN_ERR
145 "khugepaged: kthread_run(khugepaged) failed\n");
146 err = PTR_ERR(khugepaged_thread);
147 khugepaged_thread = NULL;
148 }
911891af
XG
149
150 if (!list_empty(&khugepaged_scan.mm_head))
ba76149f 151 wake_up_interruptible(&khugepaged_wait);
f000565a
AA
152
153 set_recommended_min_free_kbytes();
911891af 154 } else if (khugepaged_thread) {
911891af
XG
155 kthread_stop(khugepaged_thread);
156 khugepaged_thread = NULL;
157 }
637e3a27 158
ba76149f
AA
159 return err;
160}
71e3aac0
AA
161
162#ifdef CONFIG_SYSFS
ba76149f 163
71e3aac0
AA
164static ssize_t double_flag_show(struct kobject *kobj,
165 struct kobj_attribute *attr, char *buf,
166 enum transparent_hugepage_flag enabled,
167 enum transparent_hugepage_flag req_madv)
168{
169 if (test_bit(enabled, &transparent_hugepage_flags)) {
170 VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
171 return sprintf(buf, "[always] madvise never\n");
172 } else if (test_bit(req_madv, &transparent_hugepage_flags))
173 return sprintf(buf, "always [madvise] never\n");
174 else
175 return sprintf(buf, "always madvise [never]\n");
176}
177static ssize_t double_flag_store(struct kobject *kobj,
178 struct kobj_attribute *attr,
179 const char *buf, size_t count,
180 enum transparent_hugepage_flag enabled,
181 enum transparent_hugepage_flag req_madv)
182{
183 if (!memcmp("always", buf,
184 min(sizeof("always")-1, count))) {
185 set_bit(enabled, &transparent_hugepage_flags);
186 clear_bit(req_madv, &transparent_hugepage_flags);
187 } else if (!memcmp("madvise", buf,
188 min(sizeof("madvise")-1, count))) {
189 clear_bit(enabled, &transparent_hugepage_flags);
190 set_bit(req_madv, &transparent_hugepage_flags);
191 } else if (!memcmp("never", buf,
192 min(sizeof("never")-1, count))) {
193 clear_bit(enabled, &transparent_hugepage_flags);
194 clear_bit(req_madv, &transparent_hugepage_flags);
195 } else
196 return -EINVAL;
197
198 return count;
199}
200
201static ssize_t enabled_show(struct kobject *kobj,
202 struct kobj_attribute *attr, char *buf)
203{
204 return double_flag_show(kobj, attr, buf,
205 TRANSPARENT_HUGEPAGE_FLAG,
206 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
207}
208static ssize_t enabled_store(struct kobject *kobj,
209 struct kobj_attribute *attr,
210 const char *buf, size_t count)
211{
ba76149f
AA
212 ssize_t ret;
213
214 ret = double_flag_store(kobj, attr, buf, count,
215 TRANSPARENT_HUGEPAGE_FLAG,
216 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
217
218 if (ret > 0) {
911891af
XG
219 int err;
220
221 mutex_lock(&khugepaged_mutex);
222 err = start_khugepaged();
223 mutex_unlock(&khugepaged_mutex);
224
ba76149f
AA
225 if (err)
226 ret = err;
227 }
228
229 return ret;
71e3aac0
AA
230}
231static struct kobj_attribute enabled_attr =
232 __ATTR(enabled, 0644, enabled_show, enabled_store);
233
234static ssize_t single_flag_show(struct kobject *kobj,
235 struct kobj_attribute *attr, char *buf,
236 enum transparent_hugepage_flag flag)
237{
e27e6151
BH
238 return sprintf(buf, "%d\n",
239 !!test_bit(flag, &transparent_hugepage_flags));
71e3aac0 240}
e27e6151 241
71e3aac0
AA
242static ssize_t single_flag_store(struct kobject *kobj,
243 struct kobj_attribute *attr,
244 const char *buf, size_t count,
245 enum transparent_hugepage_flag flag)
246{
e27e6151
BH
247 unsigned long value;
248 int ret;
249
250 ret = kstrtoul(buf, 10, &value);
251 if (ret < 0)
252 return ret;
253 if (value > 1)
254 return -EINVAL;
255
256 if (value)
71e3aac0 257 set_bit(flag, &transparent_hugepage_flags);
e27e6151 258 else
71e3aac0 259 clear_bit(flag, &transparent_hugepage_flags);
71e3aac0
AA
260
261 return count;
262}
263
264/*
265 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
266 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
267 * memory just to allocate one more hugepage.
268 */
269static ssize_t defrag_show(struct kobject *kobj,
270 struct kobj_attribute *attr, char *buf)
271{
272 return double_flag_show(kobj, attr, buf,
273 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
274 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
275}
276static ssize_t defrag_store(struct kobject *kobj,
277 struct kobj_attribute *attr,
278 const char *buf, size_t count)
279{
280 return double_flag_store(kobj, attr, buf, count,
281 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
282 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
283}
284static struct kobj_attribute defrag_attr =
285 __ATTR(defrag, 0644, defrag_show, defrag_store);
286
287#ifdef CONFIG_DEBUG_VM
288static ssize_t debug_cow_show(struct kobject *kobj,
289 struct kobj_attribute *attr, char *buf)
290{
291 return single_flag_show(kobj, attr, buf,
292 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
293}
294static ssize_t debug_cow_store(struct kobject *kobj,
295 struct kobj_attribute *attr,
296 const char *buf, size_t count)
297{
298 return single_flag_store(kobj, attr, buf, count,
299 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
300}
301static struct kobj_attribute debug_cow_attr =
302 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
303#endif /* CONFIG_DEBUG_VM */
304
305static struct attribute *hugepage_attr[] = {
306 &enabled_attr.attr,
307 &defrag_attr.attr,
308#ifdef CONFIG_DEBUG_VM
309 &debug_cow_attr.attr,
310#endif
311 NULL,
312};
313
314static struct attribute_group hugepage_attr_group = {
315 .attrs = hugepage_attr,
ba76149f
AA
316};
317
318static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
319 struct kobj_attribute *attr,
320 char *buf)
321{
322 return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
323}
324
325static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
326 struct kobj_attribute *attr,
327 const char *buf, size_t count)
328{
329 unsigned long msecs;
330 int err;
331
332 err = strict_strtoul(buf, 10, &msecs);
333 if (err || msecs > UINT_MAX)
334 return -EINVAL;
335
336 khugepaged_scan_sleep_millisecs = msecs;
337 wake_up_interruptible(&khugepaged_wait);
338
339 return count;
340}
341static struct kobj_attribute scan_sleep_millisecs_attr =
342 __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
343 scan_sleep_millisecs_store);
344
345static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
346 struct kobj_attribute *attr,
347 char *buf)
348{
349 return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
350}
351
352static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
353 struct kobj_attribute *attr,
354 const char *buf, size_t count)
355{
356 unsigned long msecs;
357 int err;
358
359 err = strict_strtoul(buf, 10, &msecs);
360 if (err || msecs > UINT_MAX)
361 return -EINVAL;
362
363 khugepaged_alloc_sleep_millisecs = msecs;
364 wake_up_interruptible(&khugepaged_wait);
365
366 return count;
367}
368static struct kobj_attribute alloc_sleep_millisecs_attr =
369 __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
370 alloc_sleep_millisecs_store);
371
372static ssize_t pages_to_scan_show(struct kobject *kobj,
373 struct kobj_attribute *attr,
374 char *buf)
375{
376 return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
377}
378static ssize_t pages_to_scan_store(struct kobject *kobj,
379 struct kobj_attribute *attr,
380 const char *buf, size_t count)
381{
382 int err;
383 unsigned long pages;
384
385 err = strict_strtoul(buf, 10, &pages);
386 if (err || !pages || pages > UINT_MAX)
387 return -EINVAL;
388
389 khugepaged_pages_to_scan = pages;
390
391 return count;
392}
393static struct kobj_attribute pages_to_scan_attr =
394 __ATTR(pages_to_scan, 0644, pages_to_scan_show,
395 pages_to_scan_store);
396
397static ssize_t pages_collapsed_show(struct kobject *kobj,
398 struct kobj_attribute *attr,
399 char *buf)
400{
401 return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
402}
403static struct kobj_attribute pages_collapsed_attr =
404 __ATTR_RO(pages_collapsed);
405
406static ssize_t full_scans_show(struct kobject *kobj,
407 struct kobj_attribute *attr,
408 char *buf)
409{
410 return sprintf(buf, "%u\n", khugepaged_full_scans);
411}
412static struct kobj_attribute full_scans_attr =
413 __ATTR_RO(full_scans);
414
415static ssize_t khugepaged_defrag_show(struct kobject *kobj,
416 struct kobj_attribute *attr, char *buf)
417{
418 return single_flag_show(kobj, attr, buf,
419 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
420}
421static ssize_t khugepaged_defrag_store(struct kobject *kobj,
422 struct kobj_attribute *attr,
423 const char *buf, size_t count)
424{
425 return single_flag_store(kobj, attr, buf, count,
426 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
427}
428static struct kobj_attribute khugepaged_defrag_attr =
429 __ATTR(defrag, 0644, khugepaged_defrag_show,
430 khugepaged_defrag_store);
431
432/*
433 * max_ptes_none controls if khugepaged should collapse hugepages over
434 * any unmapped ptes in turn potentially increasing the memory
435 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
436 * reduce the available free memory in the system as it
437 * runs. Increasing max_ptes_none will instead potentially reduce the
438 * free memory in the system during the khugepaged scan.
439 */
440static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
441 struct kobj_attribute *attr,
442 char *buf)
443{
444 return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
445}
446static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
447 struct kobj_attribute *attr,
448 const char *buf, size_t count)
449{
450 int err;
451 unsigned long max_ptes_none;
452
453 err = strict_strtoul(buf, 10, &max_ptes_none);
454 if (err || max_ptes_none > HPAGE_PMD_NR-1)
455 return -EINVAL;
456
457 khugepaged_max_ptes_none = max_ptes_none;
458
459 return count;
460}
461static struct kobj_attribute khugepaged_max_ptes_none_attr =
462 __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
463 khugepaged_max_ptes_none_store);
464
465static struct attribute *khugepaged_attr[] = {
466 &khugepaged_defrag_attr.attr,
467 &khugepaged_max_ptes_none_attr.attr,
468 &pages_to_scan_attr.attr,
469 &pages_collapsed_attr.attr,
470 &full_scans_attr.attr,
471 &scan_sleep_millisecs_attr.attr,
472 &alloc_sleep_millisecs_attr.attr,
473 NULL,
474};
475
476static struct attribute_group khugepaged_attr_group = {
477 .attrs = khugepaged_attr,
478 .name = "khugepaged",
71e3aac0 479};
71e3aac0 480
569e5590 481static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
71e3aac0 482{
71e3aac0
AA
483 int err;
484
569e5590
SL
485 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
486 if (unlikely(!*hugepage_kobj)) {
ba76149f 487 printk(KERN_ERR "hugepage: failed kobject create\n");
569e5590 488 return -ENOMEM;
ba76149f
AA
489 }
490
569e5590 491 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
ba76149f
AA
492 if (err) {
493 printk(KERN_ERR "hugepage: failed register hugeage group\n");
569e5590 494 goto delete_obj;
ba76149f
AA
495 }
496
569e5590 497 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
ba76149f
AA
498 if (err) {
499 printk(KERN_ERR "hugepage: failed register hugeage group\n");
569e5590 500 goto remove_hp_group;
ba76149f 501 }
569e5590
SL
502
503 return 0;
504
505remove_hp_group:
506 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
507delete_obj:
508 kobject_put(*hugepage_kobj);
509 return err;
510}
511
512static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
513{
514 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
515 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
516 kobject_put(hugepage_kobj);
517}
518#else
519static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
520{
521 return 0;
522}
523
524static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
525{
526}
527#endif /* CONFIG_SYSFS */
528
529static int __init hugepage_init(void)
530{
531 int err;
532 struct kobject *hugepage_kobj;
533
534 if (!has_transparent_hugepage()) {
535 transparent_hugepage_flags = 0;
536 return -EINVAL;
537 }
538
539 err = hugepage_init_sysfs(&hugepage_kobj);
540 if (err)
541 return err;
ba76149f
AA
542
543 err = khugepaged_slab_init();
544 if (err)
545 goto out;
546
547 err = mm_slots_hash_init();
548 if (err) {
549 khugepaged_slab_free();
550 goto out;
551 }
552
97562cd2
RR
553 /*
554 * By default disable transparent hugepages on smaller systems,
555 * where the extra memory used could hurt more than TLB overhead
556 * is likely to save. The admin can still enable it through /sys.
557 */
558 if (totalram_pages < (512 << (20 - PAGE_SHIFT)))
559 transparent_hugepage_flags = 0;
560
ba76149f
AA
561 start_khugepaged();
562
569e5590 563 return 0;
ba76149f 564out:
569e5590 565 hugepage_exit_sysfs(hugepage_kobj);
ba76149f 566 return err;
71e3aac0
AA
567}
568module_init(hugepage_init)
569
570static int __init setup_transparent_hugepage(char *str)
571{
572 int ret = 0;
573 if (!str)
574 goto out;
575 if (!strcmp(str, "always")) {
576 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
577 &transparent_hugepage_flags);
578 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
579 &transparent_hugepage_flags);
580 ret = 1;
581 } else if (!strcmp(str, "madvise")) {
582 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
583 &transparent_hugepage_flags);
584 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
585 &transparent_hugepage_flags);
586 ret = 1;
587 } else if (!strcmp(str, "never")) {
588 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
589 &transparent_hugepage_flags);
590 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
591 &transparent_hugepage_flags);
592 ret = 1;
593 }
594out:
595 if (!ret)
596 printk(KERN_WARNING
597 "transparent_hugepage= cannot parse, ignored\n");
598 return ret;
599}
600__setup("transparent_hugepage=", setup_transparent_hugepage);
601
71e3aac0
AA
602static inline pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
603{
604 if (likely(vma->vm_flags & VM_WRITE))
605 pmd = pmd_mkwrite(pmd);
606 return pmd;
607}
608
609static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
610 struct vm_area_struct *vma,
611 unsigned long haddr, pmd_t *pmd,
612 struct page *page)
613{
71e3aac0
AA
614 pgtable_t pgtable;
615
616 VM_BUG_ON(!PageCompound(page));
617 pgtable = pte_alloc_one(mm, haddr);
edad9d2c 618 if (unlikely(!pgtable))
71e3aac0 619 return VM_FAULT_OOM;
71e3aac0
AA
620
621 clear_huge_page(page, haddr, HPAGE_PMD_NR);
622 __SetPageUptodate(page);
623
624 spin_lock(&mm->page_table_lock);
625 if (unlikely(!pmd_none(*pmd))) {
626 spin_unlock(&mm->page_table_lock);
b9bbfbe3 627 mem_cgroup_uncharge_page(page);
71e3aac0
AA
628 put_page(page);
629 pte_free(mm, pgtable);
630 } else {
631 pmd_t entry;
632 entry = mk_pmd(page, vma->vm_page_prot);
633 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
634 entry = pmd_mkhuge(entry);
635 /*
636 * The spinlocking to take the lru_lock inside
637 * page_add_new_anon_rmap() acts as a full memory
638 * barrier to be sure clear_huge_page writes become
639 * visible after the set_pmd_at() write.
640 */
641 page_add_new_anon_rmap(page, vma, haddr);
642 set_pmd_at(mm, haddr, pmd, entry);
e3ebcf64 643 pgtable_trans_huge_deposit(mm, pgtable);
71e3aac0 644 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
1c641e84 645 mm->nr_ptes++;
71e3aac0
AA
646 spin_unlock(&mm->page_table_lock);
647 }
648
aa2e878e 649 return 0;
71e3aac0
AA
650}
651
cc5d462f 652static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
0bbbc0b3 653{
cc5d462f 654 return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp;
0bbbc0b3
AA
655}
656
657static inline struct page *alloc_hugepage_vma(int defrag,
658 struct vm_area_struct *vma,
cc5d462f
AK
659 unsigned long haddr, int nd,
660 gfp_t extra_gfp)
0bbbc0b3 661{
cc5d462f 662 return alloc_pages_vma(alloc_hugepage_gfpmask(defrag, extra_gfp),
5c4b4be3 663 HPAGE_PMD_ORDER, vma, haddr, nd);
0bbbc0b3
AA
664}
665
666#ifndef CONFIG_NUMA
71e3aac0
AA
667static inline struct page *alloc_hugepage(int defrag)
668{
cc5d462f 669 return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
71e3aac0
AA
670 HPAGE_PMD_ORDER);
671}
0bbbc0b3 672#endif
71e3aac0
AA
673
674int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
675 unsigned long address, pmd_t *pmd,
676 unsigned int flags)
677{
678 struct page *page;
679 unsigned long haddr = address & HPAGE_PMD_MASK;
680 pte_t *pte;
681
682 if (haddr >= vma->vm_start && haddr + HPAGE_PMD_SIZE <= vma->vm_end) {
683 if (unlikely(anon_vma_prepare(vma)))
684 return VM_FAULT_OOM;
ba76149f
AA
685 if (unlikely(khugepaged_enter(vma)))
686 return VM_FAULT_OOM;
0bbbc0b3 687 page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
cc5d462f 688 vma, haddr, numa_node_id(), 0);
81ab4201
AK
689 if (unlikely(!page)) {
690 count_vm_event(THP_FAULT_FALLBACK);
71e3aac0 691 goto out;
81ab4201
AK
692 }
693 count_vm_event(THP_FAULT_ALLOC);
b9bbfbe3
AA
694 if (unlikely(mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))) {
695 put_page(page);
696 goto out;
697 }
edad9d2c
DR
698 if (unlikely(__do_huge_pmd_anonymous_page(mm, vma, haddr, pmd,
699 page))) {
700 mem_cgroup_uncharge_page(page);
701 put_page(page);
702 goto out;
703 }
71e3aac0 704
edad9d2c 705 return 0;
71e3aac0
AA
706 }
707out:
708 /*
709 * Use __pte_alloc instead of pte_alloc_map, because we can't
710 * run pte_offset_map on the pmd, if an huge pmd could
711 * materialize from under us from a different thread.
712 */
713 if (unlikely(__pte_alloc(mm, vma, pmd, address)))
714 return VM_FAULT_OOM;
715 /* if an huge pmd materialized from under us just retry later */
716 if (unlikely(pmd_trans_huge(*pmd)))
717 return 0;
718 /*
719 * A regular pmd is established and it can't morph into a huge pmd
720 * from under us anymore at this point because we hold the mmap_sem
721 * read mode and khugepaged takes it in write mode. So now it's
722 * safe to run pte_offset_map().
723 */
724 pte = pte_offset_map(pmd, address);
725 return handle_pte_fault(mm, vma, address, pte, pmd, flags);
726}
727
728int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
729 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
730 struct vm_area_struct *vma)
731{
732 struct page *src_page;
733 pmd_t pmd;
734 pgtable_t pgtable;
735 int ret;
736
737 ret = -ENOMEM;
738 pgtable = pte_alloc_one(dst_mm, addr);
739 if (unlikely(!pgtable))
740 goto out;
741
742 spin_lock(&dst_mm->page_table_lock);
743 spin_lock_nested(&src_mm->page_table_lock, SINGLE_DEPTH_NESTING);
744
745 ret = -EAGAIN;
746 pmd = *src_pmd;
747 if (unlikely(!pmd_trans_huge(pmd))) {
748 pte_free(dst_mm, pgtable);
749 goto out_unlock;
750 }
751 if (unlikely(pmd_trans_splitting(pmd))) {
752 /* split huge page running from under us */
753 spin_unlock(&src_mm->page_table_lock);
754 spin_unlock(&dst_mm->page_table_lock);
755 pte_free(dst_mm, pgtable);
756
757 wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
758 goto out;
759 }
760 src_page = pmd_page(pmd);
761 VM_BUG_ON(!PageHead(src_page));
762 get_page(src_page);
763 page_dup_rmap(src_page);
764 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
765
766 pmdp_set_wrprotect(src_mm, addr, src_pmd);
767 pmd = pmd_mkold(pmd_wrprotect(pmd));
768 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
e3ebcf64 769 pgtable_trans_huge_deposit(dst_mm, pgtable);
1c641e84 770 dst_mm->nr_ptes++;
71e3aac0
AA
771
772 ret = 0;
773out_unlock:
774 spin_unlock(&src_mm->page_table_lock);
775 spin_unlock(&dst_mm->page_table_lock);
776out:
777 return ret;
778}
779
71e3aac0
AA
780static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
781 struct vm_area_struct *vma,
782 unsigned long address,
783 pmd_t *pmd, pmd_t orig_pmd,
784 struct page *page,
785 unsigned long haddr)
786{
787 pgtable_t pgtable;
788 pmd_t _pmd;
789 int ret = 0, i;
790 struct page **pages;
2ec74c3e
SG
791 unsigned long mmun_start; /* For mmu_notifiers */
792 unsigned long mmun_end; /* For mmu_notifiers */
71e3aac0
AA
793
794 pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
795 GFP_KERNEL);
796 if (unlikely(!pages)) {
797 ret |= VM_FAULT_OOM;
798 goto out;
799 }
800
801 for (i = 0; i < HPAGE_PMD_NR; i++) {
cc5d462f
AK
802 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
803 __GFP_OTHER_NODE,
19ee151e 804 vma, address, page_to_nid(page));
b9bbfbe3
AA
805 if (unlikely(!pages[i] ||
806 mem_cgroup_newpage_charge(pages[i], mm,
807 GFP_KERNEL))) {
808 if (pages[i])
71e3aac0 809 put_page(pages[i]);
b9bbfbe3
AA
810 mem_cgroup_uncharge_start();
811 while (--i >= 0) {
812 mem_cgroup_uncharge_page(pages[i]);
813 put_page(pages[i]);
814 }
815 mem_cgroup_uncharge_end();
71e3aac0
AA
816 kfree(pages);
817 ret |= VM_FAULT_OOM;
818 goto out;
819 }
820 }
821
822 for (i = 0; i < HPAGE_PMD_NR; i++) {
823 copy_user_highpage(pages[i], page + i,
0089e485 824 haddr + PAGE_SIZE * i, vma);
71e3aac0
AA
825 __SetPageUptodate(pages[i]);
826 cond_resched();
827 }
828
2ec74c3e
SG
829 mmun_start = haddr;
830 mmun_end = haddr + HPAGE_PMD_SIZE;
831 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
832
71e3aac0
AA
833 spin_lock(&mm->page_table_lock);
834 if (unlikely(!pmd_same(*pmd, orig_pmd)))
835 goto out_free_pages;
836 VM_BUG_ON(!PageHead(page));
837
2ec74c3e 838 pmdp_clear_flush(vma, haddr, pmd);
71e3aac0
AA
839 /* leave pmd empty until pte is filled */
840
e3ebcf64 841 pgtable = pgtable_trans_huge_withdraw(mm);
71e3aac0
AA
842 pmd_populate(mm, &_pmd, pgtable);
843
844 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
845 pte_t *pte, entry;
846 entry = mk_pte(pages[i], vma->vm_page_prot);
847 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
848 page_add_new_anon_rmap(pages[i], vma, haddr);
849 pte = pte_offset_map(&_pmd, haddr);
850 VM_BUG_ON(!pte_none(*pte));
851 set_pte_at(mm, haddr, pte, entry);
852 pte_unmap(pte);
853 }
854 kfree(pages);
855
71e3aac0
AA
856 smp_wmb(); /* make pte visible before pmd */
857 pmd_populate(mm, pmd, pgtable);
858 page_remove_rmap(page);
859 spin_unlock(&mm->page_table_lock);
860
2ec74c3e
SG
861 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
862
71e3aac0
AA
863 ret |= VM_FAULT_WRITE;
864 put_page(page);
865
866out:
867 return ret;
868
869out_free_pages:
870 spin_unlock(&mm->page_table_lock);
2ec74c3e 871 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
b9bbfbe3
AA
872 mem_cgroup_uncharge_start();
873 for (i = 0; i < HPAGE_PMD_NR; i++) {
874 mem_cgroup_uncharge_page(pages[i]);
71e3aac0 875 put_page(pages[i]);
b9bbfbe3
AA
876 }
877 mem_cgroup_uncharge_end();
71e3aac0
AA
878 kfree(pages);
879 goto out;
880}
881
882int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
883 unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
884{
885 int ret = 0;
886 struct page *page, *new_page;
887 unsigned long haddr;
2ec74c3e
SG
888 unsigned long mmun_start; /* For mmu_notifiers */
889 unsigned long mmun_end; /* For mmu_notifiers */
71e3aac0
AA
890
891 VM_BUG_ON(!vma->anon_vma);
892 spin_lock(&mm->page_table_lock);
893 if (unlikely(!pmd_same(*pmd, orig_pmd)))
894 goto out_unlock;
895
896 page = pmd_page(orig_pmd);
897 VM_BUG_ON(!PageCompound(page) || !PageHead(page));
898 haddr = address & HPAGE_PMD_MASK;
899 if (page_mapcount(page) == 1) {
900 pmd_t entry;
901 entry = pmd_mkyoung(orig_pmd);
902 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
903 if (pmdp_set_access_flags(vma, haddr, pmd, entry, 1))
b113da65 904 update_mmu_cache_pmd(vma, address, pmd);
71e3aac0
AA
905 ret |= VM_FAULT_WRITE;
906 goto out_unlock;
907 }
908 get_page(page);
909 spin_unlock(&mm->page_table_lock);
910
911 if (transparent_hugepage_enabled(vma) &&
912 !transparent_hugepage_debug_cow())
0bbbc0b3 913 new_page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
cc5d462f 914 vma, haddr, numa_node_id(), 0);
71e3aac0
AA
915 else
916 new_page = NULL;
917
918 if (unlikely(!new_page)) {
81ab4201 919 count_vm_event(THP_FAULT_FALLBACK);
71e3aac0
AA
920 ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
921 pmd, orig_pmd, page, haddr);
1f1d06c3
DR
922 if (ret & VM_FAULT_OOM)
923 split_huge_page(page);
71e3aac0
AA
924 put_page(page);
925 goto out;
926 }
81ab4201 927 count_vm_event(THP_FAULT_ALLOC);
71e3aac0 928
b9bbfbe3
AA
929 if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
930 put_page(new_page);
1f1d06c3 931 split_huge_page(page);
b9bbfbe3
AA
932 put_page(page);
933 ret |= VM_FAULT_OOM;
934 goto out;
935 }
936
71e3aac0
AA
937 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
938 __SetPageUptodate(new_page);
939
2ec74c3e
SG
940 mmun_start = haddr;
941 mmun_end = haddr + HPAGE_PMD_SIZE;
942 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
943
71e3aac0
AA
944 spin_lock(&mm->page_table_lock);
945 put_page(page);
b9bbfbe3 946 if (unlikely(!pmd_same(*pmd, orig_pmd))) {
6f60b69d 947 spin_unlock(&mm->page_table_lock);
b9bbfbe3 948 mem_cgroup_uncharge_page(new_page);
71e3aac0 949 put_page(new_page);
2ec74c3e 950 goto out_mn;
b9bbfbe3 951 } else {
71e3aac0
AA
952 pmd_t entry;
953 VM_BUG_ON(!PageHead(page));
954 entry = mk_pmd(new_page, vma->vm_page_prot);
955 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
956 entry = pmd_mkhuge(entry);
2ec74c3e 957 pmdp_clear_flush(vma, haddr, pmd);
71e3aac0
AA
958 page_add_new_anon_rmap(new_page, vma, haddr);
959 set_pmd_at(mm, haddr, pmd, entry);
b113da65 960 update_mmu_cache_pmd(vma, address, pmd);
71e3aac0
AA
961 page_remove_rmap(page);
962 put_page(page);
963 ret |= VM_FAULT_WRITE;
964 }
71e3aac0 965 spin_unlock(&mm->page_table_lock);
2ec74c3e
SG
966out_mn:
967 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
71e3aac0
AA
968out:
969 return ret;
2ec74c3e
SG
970out_unlock:
971 spin_unlock(&mm->page_table_lock);
972 return ret;
71e3aac0
AA
973}
974
b676b293 975struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
71e3aac0
AA
976 unsigned long addr,
977 pmd_t *pmd,
978 unsigned int flags)
979{
b676b293 980 struct mm_struct *mm = vma->vm_mm;
71e3aac0
AA
981 struct page *page = NULL;
982
983 assert_spin_locked(&mm->page_table_lock);
984
985 if (flags & FOLL_WRITE && !pmd_write(*pmd))
986 goto out;
987
988 page = pmd_page(*pmd);
989 VM_BUG_ON(!PageHead(page));
990 if (flags & FOLL_TOUCH) {
991 pmd_t _pmd;
992 /*
993 * We should set the dirty bit only for FOLL_WRITE but
994 * for now the dirty bit in the pmd is meaningless.
995 * And if the dirty bit will become meaningful and
996 * we'll only set it with FOLL_WRITE, an atomic
997 * set_bit will be required on the pmd to set the
998 * young bit, instead of the current set_pmd_at.
999 */
1000 _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
1001 set_pmd_at(mm, addr & HPAGE_PMD_MASK, pmd, _pmd);
1002 }
b676b293
DR
1003 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1004 if (page->mapping && trylock_page(page)) {
1005 lru_add_drain();
1006 if (page->mapping)
1007 mlock_vma_page(page);
1008 unlock_page(page);
1009 }
1010 }
71e3aac0
AA
1011 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1012 VM_BUG_ON(!PageCompound(page));
1013 if (flags & FOLL_GET)
70b50f94 1014 get_page_foll(page);
71e3aac0
AA
1015
1016out:
1017 return page;
1018}
1019
1020int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
f21760b1 1021 pmd_t *pmd, unsigned long addr)
71e3aac0
AA
1022{
1023 int ret = 0;
1024
025c5b24
NH
1025 if (__pmd_trans_huge_lock(pmd, vma) == 1) {
1026 struct page *page;
1027 pgtable_t pgtable;
f5c8ad47 1028 pmd_t orig_pmd;
e3ebcf64 1029 pgtable = pgtable_trans_huge_withdraw(tlb->mm);
f5c8ad47
DM
1030 orig_pmd = pmdp_get_and_clear(tlb->mm, addr, pmd);
1031 page = pmd_page(orig_pmd);
025c5b24
NH
1032 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1033 page_remove_rmap(page);
1034 VM_BUG_ON(page_mapcount(page) < 0);
1035 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1036 VM_BUG_ON(!PageHead(page));
1037 tlb->mm->nr_ptes--;
71e3aac0 1038 spin_unlock(&tlb->mm->page_table_lock);
025c5b24
NH
1039 tlb_remove_page(tlb, page);
1040 pte_free(tlb->mm, pgtable);
1041 ret = 1;
1042 }
71e3aac0
AA
1043 return ret;
1044}
1045
0ca1634d
JW
1046int mincore_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1047 unsigned long addr, unsigned long end,
1048 unsigned char *vec)
1049{
1050 int ret = 0;
1051
025c5b24
NH
1052 if (__pmd_trans_huge_lock(pmd, vma) == 1) {
1053 /*
1054 * All logical pages in the range are present
1055 * if backed by a huge page.
1056 */
0ca1634d 1057 spin_unlock(&vma->vm_mm->page_table_lock);
025c5b24
NH
1058 memset(vec, 1, (end - addr) >> PAGE_SHIFT);
1059 ret = 1;
1060 }
0ca1634d
JW
1061
1062 return ret;
1063}
1064
37a1c49a
AA
1065int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
1066 unsigned long old_addr,
1067 unsigned long new_addr, unsigned long old_end,
1068 pmd_t *old_pmd, pmd_t *new_pmd)
1069{
1070 int ret = 0;
1071 pmd_t pmd;
1072
1073 struct mm_struct *mm = vma->vm_mm;
1074
1075 if ((old_addr & ~HPAGE_PMD_MASK) ||
1076 (new_addr & ~HPAGE_PMD_MASK) ||
1077 old_end - old_addr < HPAGE_PMD_SIZE ||
1078 (new_vma->vm_flags & VM_NOHUGEPAGE))
1079 goto out;
1080
1081 /*
1082 * The destination pmd shouldn't be established, free_pgtables()
1083 * should have release it.
1084 */
1085 if (WARN_ON(!pmd_none(*new_pmd))) {
1086 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1087 goto out;
1088 }
1089
025c5b24
NH
1090 ret = __pmd_trans_huge_lock(old_pmd, vma);
1091 if (ret == 1) {
1092 pmd = pmdp_get_and_clear(mm, old_addr, old_pmd);
1093 VM_BUG_ON(!pmd_none(*new_pmd));
1094 set_pmd_at(mm, new_addr, new_pmd, pmd);
37a1c49a
AA
1095 spin_unlock(&mm->page_table_lock);
1096 }
1097out:
1098 return ret;
1099}
1100
cd7548ab
JW
1101int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1102 unsigned long addr, pgprot_t newprot)
1103{
1104 struct mm_struct *mm = vma->vm_mm;
1105 int ret = 0;
1106
025c5b24
NH
1107 if (__pmd_trans_huge_lock(pmd, vma) == 1) {
1108 pmd_t entry;
1109 entry = pmdp_get_and_clear(mm, addr, pmd);
1110 entry = pmd_modify(entry, newprot);
1111 set_pmd_at(mm, addr, pmd, entry);
1112 spin_unlock(&vma->vm_mm->page_table_lock);
1113 ret = 1;
1114 }
1115
1116 return ret;
1117}
1118
1119/*
1120 * Returns 1 if a given pmd maps a stable (not under splitting) thp.
1121 * Returns -1 if it maps a thp under splitting. Returns 0 otherwise.
1122 *
1123 * Note that if it returns 1, this routine returns without unlocking page
1124 * table locks. So callers must unlock them.
1125 */
1126int __pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1127{
1128 spin_lock(&vma->vm_mm->page_table_lock);
cd7548ab
JW
1129 if (likely(pmd_trans_huge(*pmd))) {
1130 if (unlikely(pmd_trans_splitting(*pmd))) {
025c5b24 1131 spin_unlock(&vma->vm_mm->page_table_lock);
cd7548ab 1132 wait_split_huge_page(vma->anon_vma, pmd);
025c5b24 1133 return -1;
cd7548ab 1134 } else {
025c5b24
NH
1135 /* Thp mapped by 'pmd' is stable, so we can
1136 * handle it as it is. */
1137 return 1;
cd7548ab 1138 }
025c5b24
NH
1139 }
1140 spin_unlock(&vma->vm_mm->page_table_lock);
1141 return 0;
cd7548ab
JW
1142}
1143
71e3aac0
AA
1144pmd_t *page_check_address_pmd(struct page *page,
1145 struct mm_struct *mm,
1146 unsigned long address,
1147 enum page_check_address_pmd_flag flag)
1148{
71e3aac0
AA
1149 pmd_t *pmd, *ret = NULL;
1150
1151 if (address & ~HPAGE_PMD_MASK)
1152 goto out;
1153
6219049a
BL
1154 pmd = mm_find_pmd(mm, address);
1155 if (!pmd)
71e3aac0 1156 goto out;
71e3aac0
AA
1157 if (pmd_none(*pmd))
1158 goto out;
1159 if (pmd_page(*pmd) != page)
1160 goto out;
94fcc585
AA
1161 /*
1162 * split_vma() may create temporary aliased mappings. There is
1163 * no risk as long as all huge pmd are found and have their
1164 * splitting bit set before __split_huge_page_refcount
1165 * runs. Finding the same huge pmd more than once during the
1166 * same rmap walk is not a problem.
1167 */
1168 if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
1169 pmd_trans_splitting(*pmd))
1170 goto out;
71e3aac0
AA
1171 if (pmd_trans_huge(*pmd)) {
1172 VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
1173 !pmd_trans_splitting(*pmd));
1174 ret = pmd;
1175 }
1176out:
1177 return ret;
1178}
1179
1180static int __split_huge_page_splitting(struct page *page,
1181 struct vm_area_struct *vma,
1182 unsigned long address)
1183{
1184 struct mm_struct *mm = vma->vm_mm;
1185 pmd_t *pmd;
1186 int ret = 0;
2ec74c3e
SG
1187 /* For mmu_notifiers */
1188 const unsigned long mmun_start = address;
1189 const unsigned long mmun_end = address + HPAGE_PMD_SIZE;
71e3aac0 1190
2ec74c3e 1191 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
71e3aac0
AA
1192 spin_lock(&mm->page_table_lock);
1193 pmd = page_check_address_pmd(page, mm, address,
1194 PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG);
1195 if (pmd) {
1196 /*
1197 * We can't temporarily set the pmd to null in order
1198 * to split it, the pmd must remain marked huge at all
1199 * times or the VM won't take the pmd_trans_huge paths
2b575eb6 1200 * and it won't wait on the anon_vma->root->mutex to
71e3aac0
AA
1201 * serialize against split_huge_page*.
1202 */
2ec74c3e 1203 pmdp_splitting_flush(vma, address, pmd);
71e3aac0
AA
1204 ret = 1;
1205 }
1206 spin_unlock(&mm->page_table_lock);
2ec74c3e 1207 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
71e3aac0
AA
1208
1209 return ret;
1210}
1211
1212static void __split_huge_page_refcount(struct page *page)
1213{
1214 int i;
71e3aac0 1215 struct zone *zone = page_zone(page);
fa9add64 1216 struct lruvec *lruvec;
70b50f94 1217 int tail_count = 0;
71e3aac0
AA
1218
1219 /* prevent PageLRU to go away from under us, and freeze lru stats */
1220 spin_lock_irq(&zone->lru_lock);
fa9add64
HD
1221 lruvec = mem_cgroup_page_lruvec(page, zone);
1222
71e3aac0 1223 compound_lock(page);
e94c8a9c
KH
1224 /* complete memcg works before add pages to LRU */
1225 mem_cgroup_split_huge_fixup(page);
71e3aac0 1226
45676885 1227 for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
71e3aac0
AA
1228 struct page *page_tail = page + i;
1229
70b50f94
AA
1230 /* tail_page->_mapcount cannot change */
1231 BUG_ON(page_mapcount(page_tail) < 0);
1232 tail_count += page_mapcount(page_tail);
1233 /* check for overflow */
1234 BUG_ON(tail_count < 0);
1235 BUG_ON(atomic_read(&page_tail->_count) != 0);
1236 /*
1237 * tail_page->_count is zero and not changing from
1238 * under us. But get_page_unless_zero() may be running
1239 * from under us on the tail_page. If we used
1240 * atomic_set() below instead of atomic_add(), we
1241 * would then run atomic_set() concurrently with
1242 * get_page_unless_zero(), and atomic_set() is
1243 * implemented in C not using locked ops. spin_unlock
1244 * on x86 sometime uses locked ops because of PPro
1245 * errata 66, 92, so unless somebody can guarantee
1246 * atomic_set() here would be safe on all archs (and
1247 * not only on x86), it's safer to use atomic_add().
1248 */
1249 atomic_add(page_mapcount(page) + page_mapcount(page_tail) + 1,
1250 &page_tail->_count);
71e3aac0
AA
1251
1252 /* after clearing PageTail the gup refcount can be released */
1253 smp_mb();
1254
a6d30ddd
JD
1255 /*
1256 * retain hwpoison flag of the poisoned tail page:
1257 * fix for the unsuitable process killed on Guest Machine(KVM)
1258 * by the memory-failure.
1259 */
1260 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP | __PG_HWPOISON;
71e3aac0
AA
1261 page_tail->flags |= (page->flags &
1262 ((1L << PG_referenced) |
1263 (1L << PG_swapbacked) |
1264 (1L << PG_mlocked) |
1265 (1L << PG_uptodate)));
1266 page_tail->flags |= (1L << PG_dirty);
1267
70b50f94 1268 /* clear PageTail before overwriting first_page */
71e3aac0
AA
1269 smp_wmb();
1270
1271 /*
1272 * __split_huge_page_splitting() already set the
1273 * splitting bit in all pmd that could map this
1274 * hugepage, that will ensure no CPU can alter the
1275 * mapcount on the head page. The mapcount is only
1276 * accounted in the head page and it has to be
1277 * transferred to all tail pages in the below code. So
1278 * for this code to be safe, the split the mapcount
1279 * can't change. But that doesn't mean userland can't
1280 * keep changing and reading the page contents while
1281 * we transfer the mapcount, so the pmd splitting
1282 * status is achieved setting a reserved bit in the
1283 * pmd, not by clearing the present bit.
1284 */
71e3aac0
AA
1285 page_tail->_mapcount = page->_mapcount;
1286
1287 BUG_ON(page_tail->mapping);
1288 page_tail->mapping = page->mapping;
1289
45676885 1290 page_tail->index = page->index + i;
71e3aac0
AA
1291
1292 BUG_ON(!PageAnon(page_tail));
1293 BUG_ON(!PageUptodate(page_tail));
1294 BUG_ON(!PageDirty(page_tail));
1295 BUG_ON(!PageSwapBacked(page_tail));
1296
fa9add64 1297 lru_add_page_tail(page, page_tail, lruvec);
71e3aac0 1298 }
70b50f94
AA
1299 atomic_sub(tail_count, &page->_count);
1300 BUG_ON(atomic_read(&page->_count) <= 0);
71e3aac0 1301
fa9add64 1302 __mod_zone_page_state(zone, NR_ANON_TRANSPARENT_HUGEPAGES, -1);
79134171
AA
1303 __mod_zone_page_state(zone, NR_ANON_PAGES, HPAGE_PMD_NR);
1304
71e3aac0
AA
1305 ClearPageCompound(page);
1306 compound_unlock(page);
1307 spin_unlock_irq(&zone->lru_lock);
1308
1309 for (i = 1; i < HPAGE_PMD_NR; i++) {
1310 struct page *page_tail = page + i;
1311 BUG_ON(page_count(page_tail) <= 0);
1312 /*
1313 * Tail pages may be freed if there wasn't any mapping
1314 * like if add_to_swap() is running on a lru page that
1315 * had its mapping zapped. And freeing these pages
1316 * requires taking the lru_lock so we do the put_page
1317 * of the tail pages after the split is complete.
1318 */
1319 put_page(page_tail);
1320 }
1321
1322 /*
1323 * Only the head page (now become a regular page) is required
1324 * to be pinned by the caller.
1325 */
1326 BUG_ON(page_count(page) <= 0);
1327}
1328
1329static int __split_huge_page_map(struct page *page,
1330 struct vm_area_struct *vma,
1331 unsigned long address)
1332{
1333 struct mm_struct *mm = vma->vm_mm;
1334 pmd_t *pmd, _pmd;
1335 int ret = 0, i;
1336 pgtable_t pgtable;
1337 unsigned long haddr;
1338
1339 spin_lock(&mm->page_table_lock);
1340 pmd = page_check_address_pmd(page, mm, address,
1341 PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG);
1342 if (pmd) {
e3ebcf64 1343 pgtable = pgtable_trans_huge_withdraw(mm);
71e3aac0
AA
1344 pmd_populate(mm, &_pmd, pgtable);
1345
e3ebcf64
GS
1346 haddr = address;
1347 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
71e3aac0
AA
1348 pte_t *pte, entry;
1349 BUG_ON(PageCompound(page+i));
1350 entry = mk_pte(page + i, vma->vm_page_prot);
1351 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1352 if (!pmd_write(*pmd))
1353 entry = pte_wrprotect(entry);
1354 else
1355 BUG_ON(page_mapcount(page) != 1);
1356 if (!pmd_young(*pmd))
1357 entry = pte_mkold(entry);
1358 pte = pte_offset_map(&_pmd, haddr);
1359 BUG_ON(!pte_none(*pte));
1360 set_pte_at(mm, haddr, pte, entry);
1361 pte_unmap(pte);
1362 }
1363
71e3aac0
AA
1364 smp_wmb(); /* make pte visible before pmd */
1365 /*
1366 * Up to this point the pmd is present and huge and
1367 * userland has the whole access to the hugepage
1368 * during the split (which happens in place). If we
1369 * overwrite the pmd with the not-huge version
1370 * pointing to the pte here (which of course we could
1371 * if all CPUs were bug free), userland could trigger
1372 * a small page size TLB miss on the small sized TLB
1373 * while the hugepage TLB entry is still established
1374 * in the huge TLB. Some CPU doesn't like that. See
1375 * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
1376 * Erratum 383 on page 93. Intel should be safe but is
1377 * also warns that it's only safe if the permission
1378 * and cache attributes of the two entries loaded in
1379 * the two TLB is identical (which should be the case
1380 * here). But it is generally safer to never allow
1381 * small and huge TLB entries for the same virtual
1382 * address to be loaded simultaneously. So instead of
1383 * doing "pmd_populate(); flush_tlb_range();" we first
1384 * mark the current pmd notpresent (atomically because
1385 * here the pmd_trans_huge and pmd_trans_splitting
1386 * must remain set at all times on the pmd until the
1387 * split is complete for this pmd), then we flush the
1388 * SMP TLB and finally we write the non-huge version
1389 * of the pmd entry with pmd_populate.
1390 */
46dcde73 1391 pmdp_invalidate(vma, address, pmd);
71e3aac0
AA
1392 pmd_populate(mm, pmd, pgtable);
1393 ret = 1;
1394 }
1395 spin_unlock(&mm->page_table_lock);
1396
1397 return ret;
1398}
1399
2b575eb6 1400/* must be called with anon_vma->root->mutex hold */
71e3aac0
AA
1401static void __split_huge_page(struct page *page,
1402 struct anon_vma *anon_vma)
1403{
1404 int mapcount, mapcount2;
bf181b9f 1405 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
71e3aac0
AA
1406 struct anon_vma_chain *avc;
1407
1408 BUG_ON(!PageHead(page));
1409 BUG_ON(PageTail(page));
1410
1411 mapcount = 0;
bf181b9f 1412 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
71e3aac0
AA
1413 struct vm_area_struct *vma = avc->vma;
1414 unsigned long addr = vma_address(page, vma);
1415 BUG_ON(is_vma_temporary_stack(vma));
71e3aac0
AA
1416 mapcount += __split_huge_page_splitting(page, vma, addr);
1417 }
05759d38
AA
1418 /*
1419 * It is critical that new vmas are added to the tail of the
1420 * anon_vma list. This guarantes that if copy_huge_pmd() runs
1421 * and establishes a child pmd before
1422 * __split_huge_page_splitting() freezes the parent pmd (so if
1423 * we fail to prevent copy_huge_pmd() from running until the
1424 * whole __split_huge_page() is complete), we will still see
1425 * the newly established pmd of the child later during the
1426 * walk, to be able to set it as pmd_trans_splitting too.
1427 */
1428 if (mapcount != page_mapcount(page))
1429 printk(KERN_ERR "mapcount %d page_mapcount %d\n",
1430 mapcount, page_mapcount(page));
71e3aac0
AA
1431 BUG_ON(mapcount != page_mapcount(page));
1432
1433 __split_huge_page_refcount(page);
1434
1435 mapcount2 = 0;
bf181b9f 1436 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
71e3aac0
AA
1437 struct vm_area_struct *vma = avc->vma;
1438 unsigned long addr = vma_address(page, vma);
1439 BUG_ON(is_vma_temporary_stack(vma));
71e3aac0
AA
1440 mapcount2 += __split_huge_page_map(page, vma, addr);
1441 }
05759d38
AA
1442 if (mapcount != mapcount2)
1443 printk(KERN_ERR "mapcount %d mapcount2 %d page_mapcount %d\n",
1444 mapcount, mapcount2, page_mapcount(page));
71e3aac0
AA
1445 BUG_ON(mapcount != mapcount2);
1446}
1447
1448int split_huge_page(struct page *page)
1449{
1450 struct anon_vma *anon_vma;
1451 int ret = 1;
1452
1453 BUG_ON(!PageAnon(page));
1454 anon_vma = page_lock_anon_vma(page);
1455 if (!anon_vma)
1456 goto out;
1457 ret = 0;
1458 if (!PageCompound(page))
1459 goto out_unlock;
1460
1461 BUG_ON(!PageSwapBacked(page));
1462 __split_huge_page(page, anon_vma);
81ab4201 1463 count_vm_event(THP_SPLIT);
71e3aac0
AA
1464
1465 BUG_ON(PageCompound(page));
1466out_unlock:
1467 page_unlock_anon_vma(anon_vma);
1468out:
1469 return ret;
1470}
1471
4b6e1e37 1472#define VM_NO_THP (VM_SPECIAL|VM_MIXEDMAP|VM_HUGETLB|VM_SHARED|VM_MAYSHARE)
78f11a25 1473
60ab3244
AA
1474int hugepage_madvise(struct vm_area_struct *vma,
1475 unsigned long *vm_flags, int advice)
0af4e98b 1476{
8e72033f
GS
1477 struct mm_struct *mm = vma->vm_mm;
1478
a664b2d8
AA
1479 switch (advice) {
1480 case MADV_HUGEPAGE:
1481 /*
1482 * Be somewhat over-protective like KSM for now!
1483 */
78f11a25 1484 if (*vm_flags & (VM_HUGEPAGE | VM_NO_THP))
a664b2d8 1485 return -EINVAL;
8e72033f
GS
1486 if (mm->def_flags & VM_NOHUGEPAGE)
1487 return -EINVAL;
a664b2d8
AA
1488 *vm_flags &= ~VM_NOHUGEPAGE;
1489 *vm_flags |= VM_HUGEPAGE;
60ab3244
AA
1490 /*
1491 * If the vma become good for khugepaged to scan,
1492 * register it here without waiting a page fault that
1493 * may not happen any time soon.
1494 */
1495 if (unlikely(khugepaged_enter_vma_merge(vma)))
1496 return -ENOMEM;
a664b2d8
AA
1497 break;
1498 case MADV_NOHUGEPAGE:
1499 /*
1500 * Be somewhat over-protective like KSM for now!
1501 */
78f11a25 1502 if (*vm_flags & (VM_NOHUGEPAGE | VM_NO_THP))
a664b2d8
AA
1503 return -EINVAL;
1504 *vm_flags &= ~VM_HUGEPAGE;
1505 *vm_flags |= VM_NOHUGEPAGE;
60ab3244
AA
1506 /*
1507 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
1508 * this vma even if we leave the mm registered in khugepaged if
1509 * it got registered before VM_NOHUGEPAGE was set.
1510 */
a664b2d8
AA
1511 break;
1512 }
0af4e98b
AA
1513
1514 return 0;
1515}
1516
ba76149f
AA
1517static int __init khugepaged_slab_init(void)
1518{
1519 mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
1520 sizeof(struct mm_slot),
1521 __alignof__(struct mm_slot), 0, NULL);
1522 if (!mm_slot_cache)
1523 return -ENOMEM;
1524
1525 return 0;
1526}
1527
1528static void __init khugepaged_slab_free(void)
1529{
1530 kmem_cache_destroy(mm_slot_cache);
1531 mm_slot_cache = NULL;
1532}
1533
1534static inline struct mm_slot *alloc_mm_slot(void)
1535{
1536 if (!mm_slot_cache) /* initialization failed */
1537 return NULL;
1538 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
1539}
1540
1541static inline void free_mm_slot(struct mm_slot *mm_slot)
1542{
1543 kmem_cache_free(mm_slot_cache, mm_slot);
1544}
1545
1546static int __init mm_slots_hash_init(void)
1547{
1548 mm_slots_hash = kzalloc(MM_SLOTS_HASH_HEADS * sizeof(struct hlist_head),
1549 GFP_KERNEL);
1550 if (!mm_slots_hash)
1551 return -ENOMEM;
1552 return 0;
1553}
1554
1555#if 0
1556static void __init mm_slots_hash_free(void)
1557{
1558 kfree(mm_slots_hash);
1559 mm_slots_hash = NULL;
1560}
1561#endif
1562
1563static struct mm_slot *get_mm_slot(struct mm_struct *mm)
1564{
1565 struct mm_slot *mm_slot;
1566 struct hlist_head *bucket;
1567 struct hlist_node *node;
1568
1569 bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
1570 % MM_SLOTS_HASH_HEADS];
1571 hlist_for_each_entry(mm_slot, node, bucket, hash) {
1572 if (mm == mm_slot->mm)
1573 return mm_slot;
1574 }
1575 return NULL;
1576}
1577
1578static void insert_to_mm_slots_hash(struct mm_struct *mm,
1579 struct mm_slot *mm_slot)
1580{
1581 struct hlist_head *bucket;
1582
1583 bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
1584 % MM_SLOTS_HASH_HEADS];
1585 mm_slot->mm = mm;
1586 hlist_add_head(&mm_slot->hash, bucket);
1587}
1588
1589static inline int khugepaged_test_exit(struct mm_struct *mm)
1590{
1591 return atomic_read(&mm->mm_users) == 0;
1592}
1593
1594int __khugepaged_enter(struct mm_struct *mm)
1595{
1596 struct mm_slot *mm_slot;
1597 int wakeup;
1598
1599 mm_slot = alloc_mm_slot();
1600 if (!mm_slot)
1601 return -ENOMEM;
1602
1603 /* __khugepaged_exit() must not run from under us */
1604 VM_BUG_ON(khugepaged_test_exit(mm));
1605 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
1606 free_mm_slot(mm_slot);
1607 return 0;
1608 }
1609
1610 spin_lock(&khugepaged_mm_lock);
1611 insert_to_mm_slots_hash(mm, mm_slot);
1612 /*
1613 * Insert just behind the scanning cursor, to let the area settle
1614 * down a little.
1615 */
1616 wakeup = list_empty(&khugepaged_scan.mm_head);
1617 list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
1618 spin_unlock(&khugepaged_mm_lock);
1619
1620 atomic_inc(&mm->mm_count);
1621 if (wakeup)
1622 wake_up_interruptible(&khugepaged_wait);
1623
1624 return 0;
1625}
1626
1627int khugepaged_enter_vma_merge(struct vm_area_struct *vma)
1628{
1629 unsigned long hstart, hend;
1630 if (!vma->anon_vma)
1631 /*
1632 * Not yet faulted in so we will register later in the
1633 * page fault if needed.
1634 */
1635 return 0;
78f11a25 1636 if (vma->vm_ops)
ba76149f
AA
1637 /* khugepaged not yet working on file or special mappings */
1638 return 0;
b3b9c293 1639 VM_BUG_ON(vma->vm_flags & VM_NO_THP);
ba76149f
AA
1640 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1641 hend = vma->vm_end & HPAGE_PMD_MASK;
1642 if (hstart < hend)
1643 return khugepaged_enter(vma);
1644 return 0;
1645}
1646
1647void __khugepaged_exit(struct mm_struct *mm)
1648{
1649 struct mm_slot *mm_slot;
1650 int free = 0;
1651
1652 spin_lock(&khugepaged_mm_lock);
1653 mm_slot = get_mm_slot(mm);
1654 if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
1655 hlist_del(&mm_slot->hash);
1656 list_del(&mm_slot->mm_node);
1657 free = 1;
1658 }
d788e80a 1659 spin_unlock(&khugepaged_mm_lock);
ba76149f
AA
1660
1661 if (free) {
ba76149f
AA
1662 clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1663 free_mm_slot(mm_slot);
1664 mmdrop(mm);
1665 } else if (mm_slot) {
ba76149f
AA
1666 /*
1667 * This is required to serialize against
1668 * khugepaged_test_exit() (which is guaranteed to run
1669 * under mmap sem read mode). Stop here (after we
1670 * return all pagetables will be destroyed) until
1671 * khugepaged has finished working on the pagetables
1672 * under the mmap_sem.
1673 */
1674 down_write(&mm->mmap_sem);
1675 up_write(&mm->mmap_sem);
d788e80a 1676 }
ba76149f
AA
1677}
1678
1679static void release_pte_page(struct page *page)
1680{
1681 /* 0 stands for page_is_file_cache(page) == false */
1682 dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
1683 unlock_page(page);
1684 putback_lru_page(page);
1685}
1686
1687static void release_pte_pages(pte_t *pte, pte_t *_pte)
1688{
1689 while (--_pte >= pte) {
1690 pte_t pteval = *_pte;
1691 if (!pte_none(pteval))
1692 release_pte_page(pte_page(pteval));
1693 }
1694}
1695
ba76149f
AA
1696static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
1697 unsigned long address,
1698 pte_t *pte)
1699{
1700 struct page *page;
1701 pte_t *_pte;
344aa35c 1702 int referenced = 0, none = 0;
ba76149f
AA
1703 for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
1704 _pte++, address += PAGE_SIZE) {
1705 pte_t pteval = *_pte;
1706 if (pte_none(pteval)) {
1707 if (++none <= khugepaged_max_ptes_none)
1708 continue;
344aa35c 1709 else
ba76149f 1710 goto out;
ba76149f 1711 }
344aa35c 1712 if (!pte_present(pteval) || !pte_write(pteval))
ba76149f 1713 goto out;
ba76149f 1714 page = vm_normal_page(vma, address, pteval);
344aa35c 1715 if (unlikely(!page))
ba76149f 1716 goto out;
344aa35c 1717
ba76149f
AA
1718 VM_BUG_ON(PageCompound(page));
1719 BUG_ON(!PageAnon(page));
1720 VM_BUG_ON(!PageSwapBacked(page));
1721
1722 /* cannot use mapcount: can't collapse if there's a gup pin */
344aa35c 1723 if (page_count(page) != 1)
ba76149f 1724 goto out;
ba76149f
AA
1725 /*
1726 * We can do it before isolate_lru_page because the
1727 * page can't be freed from under us. NOTE: PG_lock
1728 * is needed to serialize against split_huge_page
1729 * when invoked from the VM.
1730 */
344aa35c 1731 if (!trylock_page(page))
ba76149f 1732 goto out;
ba76149f
AA
1733 /*
1734 * Isolate the page to avoid collapsing an hugepage
1735 * currently in use by the VM.
1736 */
1737 if (isolate_lru_page(page)) {
1738 unlock_page(page);
ba76149f
AA
1739 goto out;
1740 }
1741 /* 0 stands for page_is_file_cache(page) == false */
1742 inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
1743 VM_BUG_ON(!PageLocked(page));
1744 VM_BUG_ON(PageLRU(page));
1745
1746 /* If there is no mapped pte young don't collapse the page */
8ee53820
AA
1747 if (pte_young(pteval) || PageReferenced(page) ||
1748 mmu_notifier_test_young(vma->vm_mm, address))
ba76149f
AA
1749 referenced = 1;
1750 }
344aa35c
BL
1751 if (likely(referenced))
1752 return 1;
ba76149f 1753out:
344aa35c
BL
1754 release_pte_pages(pte, _pte);
1755 return 0;
ba76149f
AA
1756}
1757
1758static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
1759 struct vm_area_struct *vma,
1760 unsigned long address,
1761 spinlock_t *ptl)
1762{
1763 pte_t *_pte;
1764 for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
1765 pte_t pteval = *_pte;
1766 struct page *src_page;
1767
1768 if (pte_none(pteval)) {
1769 clear_user_highpage(page, address);
1770 add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
1771 } else {
1772 src_page = pte_page(pteval);
1773 copy_user_highpage(page, src_page, address, vma);
1774 VM_BUG_ON(page_mapcount(src_page) != 1);
ba76149f
AA
1775 release_pte_page(src_page);
1776 /*
1777 * ptl mostly unnecessary, but preempt has to
1778 * be disabled to update the per-cpu stats
1779 * inside page_remove_rmap().
1780 */
1781 spin_lock(ptl);
1782 /*
1783 * paravirt calls inside pte_clear here are
1784 * superfluous.
1785 */
1786 pte_clear(vma->vm_mm, address, _pte);
1787 page_remove_rmap(src_page);
1788 spin_unlock(ptl);
1789 free_page_and_swap_cache(src_page);
1790 }
1791
1792 address += PAGE_SIZE;
1793 page++;
1794 }
1795}
1796
26234f36 1797static void khugepaged_alloc_sleep(void)
ba76149f 1798{
26234f36
XG
1799 wait_event_freezable_timeout(khugepaged_wait, false,
1800 msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
1801}
ba76149f 1802
26234f36
XG
1803#ifdef CONFIG_NUMA
1804static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
1805{
1806 if (IS_ERR(*hpage)) {
1807 if (!*wait)
1808 return false;
1809
1810 *wait = false;
e3b4126c 1811 *hpage = NULL;
26234f36
XG
1812 khugepaged_alloc_sleep();
1813 } else if (*hpage) {
1814 put_page(*hpage);
1815 *hpage = NULL;
1816 }
1817
1818 return true;
1819}
1820
1821static struct page
1822*khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
1823 struct vm_area_struct *vma, unsigned long address,
1824 int node)
1825{
0bbbc0b3 1826 VM_BUG_ON(*hpage);
ce83d217
AA
1827 /*
1828 * Allocate the page while the vma is still valid and under
1829 * the mmap_sem read mode so there is no memory allocation
1830 * later when we take the mmap_sem in write mode. This is more
1831 * friendly behavior (OTOH it may actually hide bugs) to
1832 * filesystems in userland with daemons allocating memory in
1833 * the userland I/O paths. Allocating memory with the
1834 * mmap_sem in read mode is good idea also to allow greater
1835 * scalability.
1836 */
26234f36 1837 *hpage = alloc_hugepage_vma(khugepaged_defrag(), vma, address,
cc5d462f 1838 node, __GFP_OTHER_NODE);
692e0b35
AA
1839
1840 /*
1841 * After allocating the hugepage, release the mmap_sem read lock in
1842 * preparation for taking it in write mode.
1843 */
1844 up_read(&mm->mmap_sem);
26234f36 1845 if (unlikely(!*hpage)) {
81ab4201 1846 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
ce83d217 1847 *hpage = ERR_PTR(-ENOMEM);
26234f36 1848 return NULL;
ce83d217 1849 }
26234f36 1850
65b3c07b 1851 count_vm_event(THP_COLLAPSE_ALLOC);
26234f36
XG
1852 return *hpage;
1853}
1854#else
1855static struct page *khugepaged_alloc_hugepage(bool *wait)
1856{
1857 struct page *hpage;
1858
1859 do {
1860 hpage = alloc_hugepage(khugepaged_defrag());
1861 if (!hpage) {
1862 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
1863 if (!*wait)
1864 return NULL;
1865
1866 *wait = false;
1867 khugepaged_alloc_sleep();
1868 } else
1869 count_vm_event(THP_COLLAPSE_ALLOC);
1870 } while (unlikely(!hpage) && likely(khugepaged_enabled()));
1871
1872 return hpage;
1873}
1874
1875static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
1876{
1877 if (!*hpage)
1878 *hpage = khugepaged_alloc_hugepage(wait);
1879
1880 if (unlikely(!*hpage))
1881 return false;
1882
1883 return true;
1884}
1885
1886static struct page
1887*khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
1888 struct vm_area_struct *vma, unsigned long address,
1889 int node)
1890{
1891 up_read(&mm->mmap_sem);
1892 VM_BUG_ON(!*hpage);
1893 return *hpage;
1894}
692e0b35
AA
1895#endif
1896
26234f36
XG
1897static void collapse_huge_page(struct mm_struct *mm,
1898 unsigned long address,
1899 struct page **hpage,
1900 struct vm_area_struct *vma,
1901 int node)
1902{
26234f36
XG
1903 pmd_t *pmd, _pmd;
1904 pte_t *pte;
1905 pgtable_t pgtable;
1906 struct page *new_page;
1907 spinlock_t *ptl;
1908 int isolated;
1909 unsigned long hstart, hend;
2ec74c3e
SG
1910 unsigned long mmun_start; /* For mmu_notifiers */
1911 unsigned long mmun_end; /* For mmu_notifiers */
26234f36
XG
1912
1913 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1914
1915 /* release the mmap_sem read lock. */
1916 new_page = khugepaged_alloc_page(hpage, mm, vma, address, node);
1917 if (!new_page)
1918 return;
1919
420256ef 1920 if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL)))
ce83d217 1921 return;
ba76149f
AA
1922
1923 /*
1924 * Prevent all access to pagetables with the exception of
1925 * gup_fast later hanlded by the ptep_clear_flush and the VM
1926 * handled by the anon_vma lock + PG_lock.
1927 */
1928 down_write(&mm->mmap_sem);
1929 if (unlikely(khugepaged_test_exit(mm)))
1930 goto out;
1931
1932 vma = find_vma(mm, address);
1933 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1934 hend = vma->vm_end & HPAGE_PMD_MASK;
1935 if (address < hstart || address + HPAGE_PMD_SIZE > hend)
1936 goto out;
1937
60ab3244
AA
1938 if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
1939 (vma->vm_flags & VM_NOHUGEPAGE))
ba76149f
AA
1940 goto out;
1941
78f11a25 1942 if (!vma->anon_vma || vma->vm_ops)
ba76149f 1943 goto out;
a7d6e4ec
AA
1944 if (is_vma_temporary_stack(vma))
1945 goto out;
b3b9c293 1946 VM_BUG_ON(vma->vm_flags & VM_NO_THP);
ba76149f 1947
6219049a
BL
1948 pmd = mm_find_pmd(mm, address);
1949 if (!pmd)
ba76149f 1950 goto out;
6219049a 1951 if (pmd_trans_huge(*pmd))
ba76149f
AA
1952 goto out;
1953
ba76149f
AA
1954 anon_vma_lock(vma->anon_vma);
1955
1956 pte = pte_offset_map(pmd, address);
1957 ptl = pte_lockptr(mm, pmd);
1958
2ec74c3e
SG
1959 mmun_start = address;
1960 mmun_end = address + HPAGE_PMD_SIZE;
1961 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
ba76149f
AA
1962 spin_lock(&mm->page_table_lock); /* probably unnecessary */
1963 /*
1964 * After this gup_fast can't run anymore. This also removes
1965 * any huge TLB entry from the CPU so we won't allow
1966 * huge and small TLB entries for the same virtual address
1967 * to avoid the risk of CPU bugs in that area.
1968 */
2ec74c3e 1969 _pmd = pmdp_clear_flush(vma, address, pmd);
ba76149f 1970 spin_unlock(&mm->page_table_lock);
2ec74c3e 1971 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
ba76149f
AA
1972
1973 spin_lock(ptl);
1974 isolated = __collapse_huge_page_isolate(vma, address, pte);
1975 spin_unlock(ptl);
ba76149f
AA
1976
1977 if (unlikely(!isolated)) {
453c7192 1978 pte_unmap(pte);
ba76149f
AA
1979 spin_lock(&mm->page_table_lock);
1980 BUG_ON(!pmd_none(*pmd));
1981 set_pmd_at(mm, address, pmd, _pmd);
1982 spin_unlock(&mm->page_table_lock);
1983 anon_vma_unlock(vma->anon_vma);
ce83d217 1984 goto out;
ba76149f
AA
1985 }
1986
1987 /*
1988 * All pages are isolated and locked so anon_vma rmap
1989 * can't run anymore.
1990 */
1991 anon_vma_unlock(vma->anon_vma);
1992
1993 __collapse_huge_page_copy(pte, new_page, vma, address, ptl);
453c7192 1994 pte_unmap(pte);
ba76149f
AA
1995 __SetPageUptodate(new_page);
1996 pgtable = pmd_pgtable(_pmd);
ba76149f
AA
1997
1998 _pmd = mk_pmd(new_page, vma->vm_page_prot);
1999 _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
2000 _pmd = pmd_mkhuge(_pmd);
2001
2002 /*
2003 * spin_lock() below is not the equivalent of smp_wmb(), so
2004 * this is needed to avoid the copy_huge_page writes to become
2005 * visible after the set_pmd_at() write.
2006 */
2007 smp_wmb();
2008
2009 spin_lock(&mm->page_table_lock);
2010 BUG_ON(!pmd_none(*pmd));
2011 page_add_new_anon_rmap(new_page, vma, address);
2012 set_pmd_at(mm, address, pmd, _pmd);
b113da65 2013 update_mmu_cache_pmd(vma, address, pmd);
e3ebcf64 2014 pgtable_trans_huge_deposit(mm, pgtable);
ba76149f
AA
2015 spin_unlock(&mm->page_table_lock);
2016
2017 *hpage = NULL;
420256ef 2018
ba76149f 2019 khugepaged_pages_collapsed++;
ce83d217 2020out_up_write:
ba76149f 2021 up_write(&mm->mmap_sem);
0bbbc0b3
AA
2022 return;
2023
ce83d217 2024out:
678ff896 2025 mem_cgroup_uncharge_page(new_page);
ce83d217 2026 goto out_up_write;
ba76149f
AA
2027}
2028
2029static int khugepaged_scan_pmd(struct mm_struct *mm,
2030 struct vm_area_struct *vma,
2031 unsigned long address,
2032 struct page **hpage)
2033{
ba76149f
AA
2034 pmd_t *pmd;
2035 pte_t *pte, *_pte;
2036 int ret = 0, referenced = 0, none = 0;
2037 struct page *page;
2038 unsigned long _address;
2039 spinlock_t *ptl;
5c4b4be3 2040 int node = -1;
ba76149f
AA
2041
2042 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2043
6219049a
BL
2044 pmd = mm_find_pmd(mm, address);
2045 if (!pmd)
ba76149f 2046 goto out;
6219049a 2047 if (pmd_trans_huge(*pmd))
ba76149f
AA
2048 goto out;
2049
2050 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2051 for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
2052 _pte++, _address += PAGE_SIZE) {
2053 pte_t pteval = *_pte;
2054 if (pte_none(pteval)) {
2055 if (++none <= khugepaged_max_ptes_none)
2056 continue;
2057 else
2058 goto out_unmap;
2059 }
2060 if (!pte_present(pteval) || !pte_write(pteval))
2061 goto out_unmap;
2062 page = vm_normal_page(vma, _address, pteval);
2063 if (unlikely(!page))
2064 goto out_unmap;
5c4b4be3
AK
2065 /*
2066 * Chose the node of the first page. This could
2067 * be more sophisticated and look at more pages,
2068 * but isn't for now.
2069 */
2070 if (node == -1)
2071 node = page_to_nid(page);
ba76149f
AA
2072 VM_BUG_ON(PageCompound(page));
2073 if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
2074 goto out_unmap;
2075 /* cannot use mapcount: can't collapse if there's a gup pin */
2076 if (page_count(page) != 1)
2077 goto out_unmap;
8ee53820
AA
2078 if (pte_young(pteval) || PageReferenced(page) ||
2079 mmu_notifier_test_young(vma->vm_mm, address))
ba76149f
AA
2080 referenced = 1;
2081 }
2082 if (referenced)
2083 ret = 1;
2084out_unmap:
2085 pte_unmap_unlock(pte, ptl);
ce83d217
AA
2086 if (ret)
2087 /* collapse_huge_page will return with the mmap_sem released */
5c4b4be3 2088 collapse_huge_page(mm, address, hpage, vma, node);
ba76149f
AA
2089out:
2090 return ret;
2091}
2092
2093static void collect_mm_slot(struct mm_slot *mm_slot)
2094{
2095 struct mm_struct *mm = mm_slot->mm;
2096
b9980cdc 2097 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
ba76149f
AA
2098
2099 if (khugepaged_test_exit(mm)) {
2100 /* free mm_slot */
2101 hlist_del(&mm_slot->hash);
2102 list_del(&mm_slot->mm_node);
2103
2104 /*
2105 * Not strictly needed because the mm exited already.
2106 *
2107 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2108 */
2109
2110 /* khugepaged_mm_lock actually not necessary for the below */
2111 free_mm_slot(mm_slot);
2112 mmdrop(mm);
2113 }
2114}
2115
2116static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2117 struct page **hpage)
2f1da642
HS
2118 __releases(&khugepaged_mm_lock)
2119 __acquires(&khugepaged_mm_lock)
ba76149f
AA
2120{
2121 struct mm_slot *mm_slot;
2122 struct mm_struct *mm;
2123 struct vm_area_struct *vma;
2124 int progress = 0;
2125
2126 VM_BUG_ON(!pages);
b9980cdc 2127 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
ba76149f
AA
2128
2129 if (khugepaged_scan.mm_slot)
2130 mm_slot = khugepaged_scan.mm_slot;
2131 else {
2132 mm_slot = list_entry(khugepaged_scan.mm_head.next,
2133 struct mm_slot, mm_node);
2134 khugepaged_scan.address = 0;
2135 khugepaged_scan.mm_slot = mm_slot;
2136 }
2137 spin_unlock(&khugepaged_mm_lock);
2138
2139 mm = mm_slot->mm;
2140 down_read(&mm->mmap_sem);
2141 if (unlikely(khugepaged_test_exit(mm)))
2142 vma = NULL;
2143 else
2144 vma = find_vma(mm, khugepaged_scan.address);
2145
2146 progress++;
2147 for (; vma; vma = vma->vm_next) {
2148 unsigned long hstart, hend;
2149
2150 cond_resched();
2151 if (unlikely(khugepaged_test_exit(mm))) {
2152 progress++;
2153 break;
2154 }
2155
60ab3244
AA
2156 if ((!(vma->vm_flags & VM_HUGEPAGE) &&
2157 !khugepaged_always()) ||
2158 (vma->vm_flags & VM_NOHUGEPAGE)) {
a7d6e4ec 2159 skip:
ba76149f
AA
2160 progress++;
2161 continue;
2162 }
78f11a25 2163 if (!vma->anon_vma || vma->vm_ops)
a7d6e4ec
AA
2164 goto skip;
2165 if (is_vma_temporary_stack(vma))
2166 goto skip;
b3b9c293 2167 VM_BUG_ON(vma->vm_flags & VM_NO_THP);
ba76149f
AA
2168
2169 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2170 hend = vma->vm_end & HPAGE_PMD_MASK;
a7d6e4ec
AA
2171 if (hstart >= hend)
2172 goto skip;
2173 if (khugepaged_scan.address > hend)
2174 goto skip;
ba76149f
AA
2175 if (khugepaged_scan.address < hstart)
2176 khugepaged_scan.address = hstart;
a7d6e4ec 2177 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
ba76149f
AA
2178
2179 while (khugepaged_scan.address < hend) {
2180 int ret;
2181 cond_resched();
2182 if (unlikely(khugepaged_test_exit(mm)))
2183 goto breakouterloop;
2184
2185 VM_BUG_ON(khugepaged_scan.address < hstart ||
2186 khugepaged_scan.address + HPAGE_PMD_SIZE >
2187 hend);
2188 ret = khugepaged_scan_pmd(mm, vma,
2189 khugepaged_scan.address,
2190 hpage);
2191 /* move to next address */
2192 khugepaged_scan.address += HPAGE_PMD_SIZE;
2193 progress += HPAGE_PMD_NR;
2194 if (ret)
2195 /* we released mmap_sem so break loop */
2196 goto breakouterloop_mmap_sem;
2197 if (progress >= pages)
2198 goto breakouterloop;
2199 }
2200 }
2201breakouterloop:
2202 up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2203breakouterloop_mmap_sem:
2204
2205 spin_lock(&khugepaged_mm_lock);
a7d6e4ec 2206 VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
ba76149f
AA
2207 /*
2208 * Release the current mm_slot if this mm is about to die, or
2209 * if we scanned all vmas of this mm.
2210 */
2211 if (khugepaged_test_exit(mm) || !vma) {
2212 /*
2213 * Make sure that if mm_users is reaching zero while
2214 * khugepaged runs here, khugepaged_exit will find
2215 * mm_slot not pointing to the exiting mm.
2216 */
2217 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2218 khugepaged_scan.mm_slot = list_entry(
2219 mm_slot->mm_node.next,
2220 struct mm_slot, mm_node);
2221 khugepaged_scan.address = 0;
2222 } else {
2223 khugepaged_scan.mm_slot = NULL;
2224 khugepaged_full_scans++;
2225 }
2226
2227 collect_mm_slot(mm_slot);
2228 }
2229
2230 return progress;
2231}
2232
2233static int khugepaged_has_work(void)
2234{
2235 return !list_empty(&khugepaged_scan.mm_head) &&
2236 khugepaged_enabled();
2237}
2238
2239static int khugepaged_wait_event(void)
2240{
2241 return !list_empty(&khugepaged_scan.mm_head) ||
2017c0bf 2242 kthread_should_stop();
ba76149f
AA
2243}
2244
d516904b 2245static void khugepaged_do_scan(void)
ba76149f 2246{
d516904b 2247 struct page *hpage = NULL;
ba76149f
AA
2248 unsigned int progress = 0, pass_through_head = 0;
2249 unsigned int pages = khugepaged_pages_to_scan;
d516904b 2250 bool wait = true;
ba76149f
AA
2251
2252 barrier(); /* write khugepaged_pages_to_scan to local stack */
2253
2254 while (progress < pages) {
26234f36 2255 if (!khugepaged_prealloc_page(&hpage, &wait))
d516904b 2256 break;
26234f36 2257
420256ef 2258 cond_resched();
ba76149f 2259
878aee7d
AA
2260 if (unlikely(kthread_should_stop() || freezing(current)))
2261 break;
2262
ba76149f
AA
2263 spin_lock(&khugepaged_mm_lock);
2264 if (!khugepaged_scan.mm_slot)
2265 pass_through_head++;
2266 if (khugepaged_has_work() &&
2267 pass_through_head < 2)
2268 progress += khugepaged_scan_mm_slot(pages - progress,
d516904b 2269 &hpage);
ba76149f
AA
2270 else
2271 progress = pages;
2272 spin_unlock(&khugepaged_mm_lock);
2273 }
ba76149f 2274
d516904b
XG
2275 if (!IS_ERR_OR_NULL(hpage))
2276 put_page(hpage);
0bbbc0b3
AA
2277}
2278
2017c0bf
XG
2279static void khugepaged_wait_work(void)
2280{
2281 try_to_freeze();
2282
2283 if (khugepaged_has_work()) {
2284 if (!khugepaged_scan_sleep_millisecs)
2285 return;
2286
2287 wait_event_freezable_timeout(khugepaged_wait,
2288 kthread_should_stop(),
2289 msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
2290 return;
2291 }
2292
2293 if (khugepaged_enabled())
2294 wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2295}
2296
ba76149f
AA
2297static int khugepaged(void *none)
2298{
2299 struct mm_slot *mm_slot;
2300
878aee7d 2301 set_freezable();
ba76149f
AA
2302 set_user_nice(current, 19);
2303
b7231789
XG
2304 while (!kthread_should_stop()) {
2305 khugepaged_do_scan();
2306 khugepaged_wait_work();
2307 }
ba76149f
AA
2308
2309 spin_lock(&khugepaged_mm_lock);
2310 mm_slot = khugepaged_scan.mm_slot;
2311 khugepaged_scan.mm_slot = NULL;
2312 if (mm_slot)
2313 collect_mm_slot(mm_slot);
2314 spin_unlock(&khugepaged_mm_lock);
ba76149f
AA
2315 return 0;
2316}
2317
71e3aac0
AA
2318void __split_huge_page_pmd(struct mm_struct *mm, pmd_t *pmd)
2319{
2320 struct page *page;
2321
2322 spin_lock(&mm->page_table_lock);
2323 if (unlikely(!pmd_trans_huge(*pmd))) {
2324 spin_unlock(&mm->page_table_lock);
2325 return;
2326 }
2327 page = pmd_page(*pmd);
2328 VM_BUG_ON(!page_count(page));
2329 get_page(page);
2330 spin_unlock(&mm->page_table_lock);
2331
2332 split_huge_page(page);
2333
2334 put_page(page);
2335 BUG_ON(pmd_trans_huge(*pmd));
2336}
94fcc585
AA
2337
2338static void split_huge_page_address(struct mm_struct *mm,
2339 unsigned long address)
2340{
94fcc585
AA
2341 pmd_t *pmd;
2342
2343 VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
2344
6219049a
BL
2345 pmd = mm_find_pmd(mm, address);
2346 if (!pmd)
94fcc585
AA
2347 return;
2348 /*
2349 * Caller holds the mmap_sem write mode, so a huge pmd cannot
2350 * materialize from under us.
2351 */
2352 split_huge_page_pmd(mm, pmd);
2353}
2354
2355void __vma_adjust_trans_huge(struct vm_area_struct *vma,
2356 unsigned long start,
2357 unsigned long end,
2358 long adjust_next)
2359{
2360 /*
2361 * If the new start address isn't hpage aligned and it could
2362 * previously contain an hugepage: check if we need to split
2363 * an huge pmd.
2364 */
2365 if (start & ~HPAGE_PMD_MASK &&
2366 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2367 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2368 split_huge_page_address(vma->vm_mm, start);
2369
2370 /*
2371 * If the new end address isn't hpage aligned and it could
2372 * previously contain an hugepage: check if we need to split
2373 * an huge pmd.
2374 */
2375 if (end & ~HPAGE_PMD_MASK &&
2376 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2377 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2378 split_huge_page_address(vma->vm_mm, end);
2379
2380 /*
2381 * If we're also updating the vma->vm_next->vm_start, if the new
2382 * vm_next->vm_start isn't page aligned and it could previously
2383 * contain an hugepage: check if we need to split an huge pmd.
2384 */
2385 if (adjust_next > 0) {
2386 struct vm_area_struct *next = vma->vm_next;
2387 unsigned long nstart = next->vm_start;
2388 nstart += adjust_next << PAGE_SHIFT;
2389 if (nstart & ~HPAGE_PMD_MASK &&
2390 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2391 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2392 split_huge_page_address(next->vm_mm, nstart);
2393 }
2394}