mm: vmscan: do not iterate all mem cgroups for global direct reclaim
[linux-2.6-block.git] / mm / huge_memory.c
CommitLineData
71e3aac0
AA
1/*
2 * Copyright (C) 2009 Red Hat, Inc.
3 *
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
6 */
7
ae3a8c1c
AM
8#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
71e3aac0
AA
10#include <linux/mm.h>
11#include <linux/sched.h>
f7ccbae4 12#include <linux/sched/coredump.h>
6a3827d7 13#include <linux/sched/numa_balancing.h>
71e3aac0
AA
14#include <linux/highmem.h>
15#include <linux/hugetlb.h>
16#include <linux/mmu_notifier.h>
17#include <linux/rmap.h>
18#include <linux/swap.h>
97ae1749 19#include <linux/shrinker.h>
ba76149f 20#include <linux/mm_inline.h>
e9b61f19 21#include <linux/swapops.h>
4897c765 22#include <linux/dax.h>
ba76149f 23#include <linux/khugepaged.h>
878aee7d 24#include <linux/freezer.h>
f25748e3 25#include <linux/pfn_t.h>
a664b2d8 26#include <linux/mman.h>
3565fce3 27#include <linux/memremap.h>
325adeb5 28#include <linux/pagemap.h>
49071d43 29#include <linux/debugfs.h>
4daae3b4 30#include <linux/migrate.h>
43b5fbbd 31#include <linux/hashtable.h>
6b251fc9 32#include <linux/userfaultfd_k.h>
33c3fc71 33#include <linux/page_idle.h>
baa355fd 34#include <linux/shmem_fs.h>
6b31d595 35#include <linux/oom.h>
98fa15f3 36#include <linux/numa.h>
97ae1749 37
71e3aac0
AA
38#include <asm/tlb.h>
39#include <asm/pgalloc.h>
40#include "internal.h"
41
ba76149f 42/*
b14d595a
MD
43 * By default, transparent hugepage support is disabled in order to avoid
44 * risking an increased memory footprint for applications that are not
45 * guaranteed to benefit from it. When transparent hugepage support is
46 * enabled, it is for all mappings, and khugepaged scans all mappings.
8bfa3f9a
JW
47 * Defrag is invoked by khugepaged hugepage allocations and by page faults
48 * for all hugepage allocations.
ba76149f 49 */
71e3aac0 50unsigned long transparent_hugepage_flags __read_mostly =
13ece886 51#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
ba76149f 52 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
13ece886
AA
53#endif
54#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
55 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
56#endif
444eb2a4 57 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
79da5407
KS
58 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
59 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
ba76149f 60
9a982250 61static struct shrinker deferred_split_shrinker;
f000565a 62
97ae1749 63static atomic_t huge_zero_refcount;
56873f43 64struct page *huge_zero_page __read_mostly;
4a6c1297 65
7635d9cb
MH
66bool transparent_hugepage_enabled(struct vm_area_struct *vma)
67{
68 if (vma_is_anonymous(vma))
69 return __transparent_hugepage_enabled(vma);
70 if (vma_is_shmem(vma) && shmem_huge_enabled(vma))
71 return __transparent_hugepage_enabled(vma);
72
73 return false;
74}
75
6fcb52a5 76static struct page *get_huge_zero_page(void)
97ae1749
KS
77{
78 struct page *zero_page;
79retry:
80 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
4db0c3c2 81 return READ_ONCE(huge_zero_page);
97ae1749
KS
82
83 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
4a6c1297 84 HPAGE_PMD_ORDER);
d8a8e1f0
KS
85 if (!zero_page) {
86 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
5918d10a 87 return NULL;
d8a8e1f0
KS
88 }
89 count_vm_event(THP_ZERO_PAGE_ALLOC);
97ae1749 90 preempt_disable();
5918d10a 91 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
97ae1749 92 preempt_enable();
5ddacbe9 93 __free_pages(zero_page, compound_order(zero_page));
97ae1749
KS
94 goto retry;
95 }
96
97 /* We take additional reference here. It will be put back by shrinker */
98 atomic_set(&huge_zero_refcount, 2);
99 preempt_enable();
4db0c3c2 100 return READ_ONCE(huge_zero_page);
4a6c1297
KS
101}
102
6fcb52a5 103static void put_huge_zero_page(void)
4a6c1297 104{
97ae1749
KS
105 /*
106 * Counter should never go to zero here. Only shrinker can put
107 * last reference.
108 */
109 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
4a6c1297
KS
110}
111
6fcb52a5
AL
112struct page *mm_get_huge_zero_page(struct mm_struct *mm)
113{
114 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
115 return READ_ONCE(huge_zero_page);
116
117 if (!get_huge_zero_page())
118 return NULL;
119
120 if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
121 put_huge_zero_page();
122
123 return READ_ONCE(huge_zero_page);
124}
125
126void mm_put_huge_zero_page(struct mm_struct *mm)
127{
128 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
129 put_huge_zero_page();
130}
131
48896466
GC
132static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
133 struct shrink_control *sc)
4a6c1297 134{
48896466
GC
135 /* we can free zero page only if last reference remains */
136 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
137}
97ae1749 138
48896466
GC
139static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
140 struct shrink_control *sc)
141{
97ae1749 142 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
5918d10a
KS
143 struct page *zero_page = xchg(&huge_zero_page, NULL);
144 BUG_ON(zero_page == NULL);
5ddacbe9 145 __free_pages(zero_page, compound_order(zero_page));
48896466 146 return HPAGE_PMD_NR;
97ae1749
KS
147 }
148
149 return 0;
4a6c1297
KS
150}
151
97ae1749 152static struct shrinker huge_zero_page_shrinker = {
48896466
GC
153 .count_objects = shrink_huge_zero_page_count,
154 .scan_objects = shrink_huge_zero_page_scan,
97ae1749
KS
155 .seeks = DEFAULT_SEEKS,
156};
157
71e3aac0 158#ifdef CONFIG_SYSFS
71e3aac0
AA
159static ssize_t enabled_show(struct kobject *kobj,
160 struct kobj_attribute *attr, char *buf)
161{
444eb2a4
MG
162 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
163 return sprintf(buf, "[always] madvise never\n");
164 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
165 return sprintf(buf, "always [madvise] never\n");
166 else
167 return sprintf(buf, "always madvise [never]\n");
71e3aac0 168}
444eb2a4 169
71e3aac0
AA
170static ssize_t enabled_store(struct kobject *kobj,
171 struct kobj_attribute *attr,
172 const char *buf, size_t count)
173{
21440d7e 174 ssize_t ret = count;
ba76149f 175
21440d7e
DR
176 if (!memcmp("always", buf,
177 min(sizeof("always")-1, count))) {
178 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
179 set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
180 } else if (!memcmp("madvise", buf,
181 min(sizeof("madvise")-1, count))) {
182 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
183 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
184 } else if (!memcmp("never", buf,
185 min(sizeof("never")-1, count))) {
186 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
187 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
188 } else
189 ret = -EINVAL;
ba76149f
AA
190
191 if (ret > 0) {
b46e756f 192 int err = start_stop_khugepaged();
ba76149f
AA
193 if (err)
194 ret = err;
195 }
ba76149f 196 return ret;
71e3aac0
AA
197}
198static struct kobj_attribute enabled_attr =
199 __ATTR(enabled, 0644, enabled_show, enabled_store);
200
b46e756f 201ssize_t single_hugepage_flag_show(struct kobject *kobj,
71e3aac0
AA
202 struct kobj_attribute *attr, char *buf,
203 enum transparent_hugepage_flag flag)
204{
e27e6151
BH
205 return sprintf(buf, "%d\n",
206 !!test_bit(flag, &transparent_hugepage_flags));
71e3aac0 207}
e27e6151 208
b46e756f 209ssize_t single_hugepage_flag_store(struct kobject *kobj,
71e3aac0
AA
210 struct kobj_attribute *attr,
211 const char *buf, size_t count,
212 enum transparent_hugepage_flag flag)
213{
e27e6151
BH
214 unsigned long value;
215 int ret;
216
217 ret = kstrtoul(buf, 10, &value);
218 if (ret < 0)
219 return ret;
220 if (value > 1)
221 return -EINVAL;
222
223 if (value)
71e3aac0 224 set_bit(flag, &transparent_hugepage_flags);
e27e6151 225 else
71e3aac0 226 clear_bit(flag, &transparent_hugepage_flags);
71e3aac0
AA
227
228 return count;
229}
230
71e3aac0
AA
231static ssize_t defrag_show(struct kobject *kobj,
232 struct kobj_attribute *attr, char *buf)
233{
444eb2a4 234 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
21440d7e 235 return sprintf(buf, "[always] defer defer+madvise madvise never\n");
444eb2a4 236 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
21440d7e
DR
237 return sprintf(buf, "always [defer] defer+madvise madvise never\n");
238 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
239 return sprintf(buf, "always defer [defer+madvise] madvise never\n");
240 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
241 return sprintf(buf, "always defer defer+madvise [madvise] never\n");
242 return sprintf(buf, "always defer defer+madvise madvise [never]\n");
71e3aac0 243}
21440d7e 244
71e3aac0
AA
245static ssize_t defrag_store(struct kobject *kobj,
246 struct kobj_attribute *attr,
247 const char *buf, size_t count)
248{
21440d7e
DR
249 if (!memcmp("always", buf,
250 min(sizeof("always")-1, count))) {
251 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
252 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
253 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
254 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
21440d7e
DR
255 } else if (!memcmp("defer+madvise", buf,
256 min(sizeof("defer+madvise")-1, count))) {
257 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
258 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
259 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
260 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
4fad7fb6
DR
261 } else if (!memcmp("defer", buf,
262 min(sizeof("defer")-1, count))) {
263 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
264 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
265 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
266 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
21440d7e
DR
267 } else if (!memcmp("madvise", buf,
268 min(sizeof("madvise")-1, count))) {
269 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
270 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
271 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
272 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
273 } else if (!memcmp("never", buf,
274 min(sizeof("never")-1, count))) {
275 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
276 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
277 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
278 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
279 } else
280 return -EINVAL;
281
282 return count;
71e3aac0
AA
283}
284static struct kobj_attribute defrag_attr =
285 __ATTR(defrag, 0644, defrag_show, defrag_store);
286
79da5407
KS
287static ssize_t use_zero_page_show(struct kobject *kobj,
288 struct kobj_attribute *attr, char *buf)
289{
b46e756f 290 return single_hugepage_flag_show(kobj, attr, buf,
79da5407
KS
291 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
292}
293static ssize_t use_zero_page_store(struct kobject *kobj,
294 struct kobj_attribute *attr, const char *buf, size_t count)
295{
b46e756f 296 return single_hugepage_flag_store(kobj, attr, buf, count,
79da5407
KS
297 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
298}
299static struct kobj_attribute use_zero_page_attr =
300 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
49920d28
HD
301
302static ssize_t hpage_pmd_size_show(struct kobject *kobj,
303 struct kobj_attribute *attr, char *buf)
304{
305 return sprintf(buf, "%lu\n", HPAGE_PMD_SIZE);
306}
307static struct kobj_attribute hpage_pmd_size_attr =
308 __ATTR_RO(hpage_pmd_size);
309
71e3aac0
AA
310#ifdef CONFIG_DEBUG_VM
311static ssize_t debug_cow_show(struct kobject *kobj,
312 struct kobj_attribute *attr, char *buf)
313{
b46e756f 314 return single_hugepage_flag_show(kobj, attr, buf,
71e3aac0
AA
315 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
316}
317static ssize_t debug_cow_store(struct kobject *kobj,
318 struct kobj_attribute *attr,
319 const char *buf, size_t count)
320{
b46e756f 321 return single_hugepage_flag_store(kobj, attr, buf, count,
71e3aac0
AA
322 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
323}
324static struct kobj_attribute debug_cow_attr =
325 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
326#endif /* CONFIG_DEBUG_VM */
327
328static struct attribute *hugepage_attr[] = {
329 &enabled_attr.attr,
330 &defrag_attr.attr,
79da5407 331 &use_zero_page_attr.attr,
49920d28 332 &hpage_pmd_size_attr.attr,
e496cf3d 333#if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
5a6e75f8
KS
334 &shmem_enabled_attr.attr,
335#endif
71e3aac0
AA
336#ifdef CONFIG_DEBUG_VM
337 &debug_cow_attr.attr,
338#endif
339 NULL,
340};
341
8aa95a21 342static const struct attribute_group hugepage_attr_group = {
71e3aac0 343 .attrs = hugepage_attr,
ba76149f
AA
344};
345
569e5590 346static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
71e3aac0 347{
71e3aac0
AA
348 int err;
349
569e5590
SL
350 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
351 if (unlikely(!*hugepage_kobj)) {
ae3a8c1c 352 pr_err("failed to create transparent hugepage kobject\n");
569e5590 353 return -ENOMEM;
ba76149f
AA
354 }
355
569e5590 356 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
ba76149f 357 if (err) {
ae3a8c1c 358 pr_err("failed to register transparent hugepage group\n");
569e5590 359 goto delete_obj;
ba76149f
AA
360 }
361
569e5590 362 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
ba76149f 363 if (err) {
ae3a8c1c 364 pr_err("failed to register transparent hugepage group\n");
569e5590 365 goto remove_hp_group;
ba76149f 366 }
569e5590
SL
367
368 return 0;
369
370remove_hp_group:
371 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
372delete_obj:
373 kobject_put(*hugepage_kobj);
374 return err;
375}
376
377static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
378{
379 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
380 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
381 kobject_put(hugepage_kobj);
382}
383#else
384static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
385{
386 return 0;
387}
388
389static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
390{
391}
392#endif /* CONFIG_SYSFS */
393
394static int __init hugepage_init(void)
395{
396 int err;
397 struct kobject *hugepage_kobj;
398
399 if (!has_transparent_hugepage()) {
400 transparent_hugepage_flags = 0;
401 return -EINVAL;
402 }
403
ff20c2e0
KS
404 /*
405 * hugepages can't be allocated by the buddy allocator
406 */
407 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
408 /*
409 * we use page->mapping and page->index in second tail page
410 * as list_head: assuming THP order >= 2
411 */
412 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
413
569e5590
SL
414 err = hugepage_init_sysfs(&hugepage_kobj);
415 if (err)
65ebb64f 416 goto err_sysfs;
ba76149f 417
b46e756f 418 err = khugepaged_init();
ba76149f 419 if (err)
65ebb64f 420 goto err_slab;
ba76149f 421
65ebb64f
KS
422 err = register_shrinker(&huge_zero_page_shrinker);
423 if (err)
424 goto err_hzp_shrinker;
9a982250
KS
425 err = register_shrinker(&deferred_split_shrinker);
426 if (err)
427 goto err_split_shrinker;
97ae1749 428
97562cd2
RR
429 /*
430 * By default disable transparent hugepages on smaller systems,
431 * where the extra memory used could hurt more than TLB overhead
432 * is likely to save. The admin can still enable it through /sys.
433 */
ca79b0c2 434 if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
97562cd2 435 transparent_hugepage_flags = 0;
79553da2
KS
436 return 0;
437 }
97562cd2 438
79553da2 439 err = start_stop_khugepaged();
65ebb64f
KS
440 if (err)
441 goto err_khugepaged;
ba76149f 442
569e5590 443 return 0;
65ebb64f 444err_khugepaged:
9a982250
KS
445 unregister_shrinker(&deferred_split_shrinker);
446err_split_shrinker:
65ebb64f
KS
447 unregister_shrinker(&huge_zero_page_shrinker);
448err_hzp_shrinker:
b46e756f 449 khugepaged_destroy();
65ebb64f 450err_slab:
569e5590 451 hugepage_exit_sysfs(hugepage_kobj);
65ebb64f 452err_sysfs:
ba76149f 453 return err;
71e3aac0 454}
a64fb3cd 455subsys_initcall(hugepage_init);
71e3aac0
AA
456
457static int __init setup_transparent_hugepage(char *str)
458{
459 int ret = 0;
460 if (!str)
461 goto out;
462 if (!strcmp(str, "always")) {
463 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
464 &transparent_hugepage_flags);
465 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
466 &transparent_hugepage_flags);
467 ret = 1;
468 } else if (!strcmp(str, "madvise")) {
469 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
470 &transparent_hugepage_flags);
471 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
472 &transparent_hugepage_flags);
473 ret = 1;
474 } else if (!strcmp(str, "never")) {
475 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
476 &transparent_hugepage_flags);
477 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
478 &transparent_hugepage_flags);
479 ret = 1;
480 }
481out:
482 if (!ret)
ae3a8c1c 483 pr_warn("transparent_hugepage= cannot parse, ignored\n");
71e3aac0
AA
484 return ret;
485}
486__setup("transparent_hugepage=", setup_transparent_hugepage);
487
f55e1014 488pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
71e3aac0 489{
f55e1014 490 if (likely(vma->vm_flags & VM_WRITE))
71e3aac0
AA
491 pmd = pmd_mkwrite(pmd);
492 return pmd;
493}
494
9a982250
KS
495static inline struct list_head *page_deferred_list(struct page *page)
496{
fa3015b7
MW
497 /* ->lru in the tail pages is occupied by compound_head. */
498 return &page[2].deferred_list;
9a982250
KS
499}
500
501void prep_transhuge_page(struct page *page)
502{
503 /*
504 * we use page->mapping and page->indexlru in second tail page
505 * as list_head: assuming THP order >= 2
506 */
9a982250
KS
507
508 INIT_LIST_HEAD(page_deferred_list(page));
509 set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
510}
511
74d2fad1
TK
512unsigned long __thp_get_unmapped_area(struct file *filp, unsigned long len,
513 loff_t off, unsigned long flags, unsigned long size)
514{
515 unsigned long addr;
516 loff_t off_end = off + len;
517 loff_t off_align = round_up(off, size);
518 unsigned long len_pad;
519
520 if (off_end <= off_align || (off_end - off_align) < size)
521 return 0;
522
523 len_pad = len + size;
524 if (len_pad < len || (off + len_pad) < off)
525 return 0;
526
527 addr = current->mm->get_unmapped_area(filp, 0, len_pad,
528 off >> PAGE_SHIFT, flags);
529 if (IS_ERR_VALUE(addr))
530 return 0;
531
532 addr += (off - addr) & (size - 1);
533 return addr;
534}
535
536unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
537 unsigned long len, unsigned long pgoff, unsigned long flags)
538{
539 loff_t off = (loff_t)pgoff << PAGE_SHIFT;
540
541 if (addr)
542 goto out;
543 if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
544 goto out;
545
546 addr = __thp_get_unmapped_area(filp, len, off, flags, PMD_SIZE);
547 if (addr)
548 return addr;
549
550 out:
551 return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
552}
553EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
554
2b740303
SJ
555static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
556 struct page *page, gfp_t gfp)
71e3aac0 557{
82b0f8c3 558 struct vm_area_struct *vma = vmf->vma;
00501b53 559 struct mem_cgroup *memcg;
71e3aac0 560 pgtable_t pgtable;
82b0f8c3 561 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
2b740303 562 vm_fault_t ret = 0;
71e3aac0 563
309381fe 564 VM_BUG_ON_PAGE(!PageCompound(page), page);
00501b53 565
2cf85583 566 if (mem_cgroup_try_charge_delay(page, vma->vm_mm, gfp, &memcg, true)) {
6b251fc9
AA
567 put_page(page);
568 count_vm_event(THP_FAULT_FALLBACK);
569 return VM_FAULT_FALLBACK;
570 }
00501b53 571
4cf58924 572 pgtable = pte_alloc_one(vma->vm_mm);
00501b53 573 if (unlikely(!pgtable)) {
6b31d595
MH
574 ret = VM_FAULT_OOM;
575 goto release;
00501b53 576 }
71e3aac0 577
c79b57e4 578 clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
52f37629
MK
579 /*
580 * The memory barrier inside __SetPageUptodate makes sure that
581 * clear_huge_page writes become visible before the set_pmd_at()
582 * write.
583 */
71e3aac0
AA
584 __SetPageUptodate(page);
585
82b0f8c3
JK
586 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
587 if (unlikely(!pmd_none(*vmf->pmd))) {
6b31d595 588 goto unlock_release;
71e3aac0
AA
589 } else {
590 pmd_t entry;
6b251fc9 591
6b31d595
MH
592 ret = check_stable_address_space(vma->vm_mm);
593 if (ret)
594 goto unlock_release;
595
6b251fc9
AA
596 /* Deliver the page fault to userland */
597 if (userfaultfd_missing(vma)) {
2b740303 598 vm_fault_t ret2;
6b251fc9 599
82b0f8c3 600 spin_unlock(vmf->ptl);
f627c2f5 601 mem_cgroup_cancel_charge(page, memcg, true);
6b251fc9 602 put_page(page);
bae473a4 603 pte_free(vma->vm_mm, pgtable);
2b740303
SJ
604 ret2 = handle_userfault(vmf, VM_UFFD_MISSING);
605 VM_BUG_ON(ret2 & VM_FAULT_FALLBACK);
606 return ret2;
6b251fc9
AA
607 }
608
3122359a 609 entry = mk_huge_pmd(page, vma->vm_page_prot);
f55e1014 610 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
d281ee61 611 page_add_new_anon_rmap(page, vma, haddr, true);
f627c2f5 612 mem_cgroup_commit_charge(page, memcg, false, true);
00501b53 613 lru_cache_add_active_or_unevictable(page, vma);
82b0f8c3
JK
614 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
615 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
bae473a4 616 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
c4812909 617 mm_inc_nr_ptes(vma->vm_mm);
82b0f8c3 618 spin_unlock(vmf->ptl);
6b251fc9 619 count_vm_event(THP_FAULT_ALLOC);
71e3aac0
AA
620 }
621
aa2e878e 622 return 0;
6b31d595
MH
623unlock_release:
624 spin_unlock(vmf->ptl);
625release:
626 if (pgtable)
627 pte_free(vma->vm_mm, pgtable);
628 mem_cgroup_cancel_charge(page, memcg, true);
629 put_page(page);
630 return ret;
631
71e3aac0
AA
632}
633
444eb2a4 634/*
21440d7e
DR
635 * always: directly stall for all thp allocations
636 * defer: wake kswapd and fail if not immediately available
637 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
638 * fail if not immediately available
639 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
640 * available
641 * never: never stall for any thp allocation
444eb2a4 642 */
356ff8a9 643static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
444eb2a4 644{
21440d7e 645 const bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
25160354 646
2f0799a0 647 /* Always do synchronous compaction */
21440d7e 648 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
356ff8a9 649 return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
2f0799a0
DR
650
651 /* Kick kcompactd and fail quickly */
21440d7e 652 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
356ff8a9 653 return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
2f0799a0
DR
654
655 /* Synchronous compaction if madvised, otherwise kick kcompactd */
21440d7e 656 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
356ff8a9
DR
657 return GFP_TRANSHUGE_LIGHT |
658 (vma_madvised ? __GFP_DIRECT_RECLAIM :
659 __GFP_KSWAPD_RECLAIM);
2f0799a0
DR
660
661 /* Only do synchronous compaction if madvised */
21440d7e 662 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
356ff8a9
DR
663 return GFP_TRANSHUGE_LIGHT |
664 (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
2f0799a0 665
356ff8a9 666 return GFP_TRANSHUGE_LIGHT;
444eb2a4
MG
667}
668
c4088ebd 669/* Caller must hold page table lock. */
d295e341 670static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
97ae1749 671 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
5918d10a 672 struct page *zero_page)
fc9fe822
KS
673{
674 pmd_t entry;
7c414164
AM
675 if (!pmd_none(*pmd))
676 return false;
5918d10a 677 entry = mk_pmd(zero_page, vma->vm_page_prot);
fc9fe822 678 entry = pmd_mkhuge(entry);
12c9d70b
MW
679 if (pgtable)
680 pgtable_trans_huge_deposit(mm, pmd, pgtable);
fc9fe822 681 set_pmd_at(mm, haddr, pmd, entry);
c4812909 682 mm_inc_nr_ptes(mm);
7c414164 683 return true;
fc9fe822
KS
684}
685
2b740303 686vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
71e3aac0 687{
82b0f8c3 688 struct vm_area_struct *vma = vmf->vma;
077fcf11 689 gfp_t gfp;
71e3aac0 690 struct page *page;
82b0f8c3 691 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
71e3aac0 692
128ec037 693 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
c0292554 694 return VM_FAULT_FALLBACK;
128ec037
KS
695 if (unlikely(anon_vma_prepare(vma)))
696 return VM_FAULT_OOM;
6d50e60c 697 if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
128ec037 698 return VM_FAULT_OOM;
82b0f8c3 699 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
bae473a4 700 !mm_forbids_zeropage(vma->vm_mm) &&
128ec037
KS
701 transparent_hugepage_use_zero_page()) {
702 pgtable_t pgtable;
703 struct page *zero_page;
704 bool set;
2b740303 705 vm_fault_t ret;
4cf58924 706 pgtable = pte_alloc_one(vma->vm_mm);
128ec037 707 if (unlikely(!pgtable))
ba76149f 708 return VM_FAULT_OOM;
6fcb52a5 709 zero_page = mm_get_huge_zero_page(vma->vm_mm);
128ec037 710 if (unlikely(!zero_page)) {
bae473a4 711 pte_free(vma->vm_mm, pgtable);
81ab4201 712 count_vm_event(THP_FAULT_FALLBACK);
c0292554 713 return VM_FAULT_FALLBACK;
b9bbfbe3 714 }
82b0f8c3 715 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
6b251fc9
AA
716 ret = 0;
717 set = false;
82b0f8c3 718 if (pmd_none(*vmf->pmd)) {
6b31d595
MH
719 ret = check_stable_address_space(vma->vm_mm);
720 if (ret) {
721 spin_unlock(vmf->ptl);
722 } else if (userfaultfd_missing(vma)) {
82b0f8c3
JK
723 spin_unlock(vmf->ptl);
724 ret = handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9
AA
725 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
726 } else {
bae473a4 727 set_huge_zero_page(pgtable, vma->vm_mm, vma,
82b0f8c3
JK
728 haddr, vmf->pmd, zero_page);
729 spin_unlock(vmf->ptl);
6b251fc9
AA
730 set = true;
731 }
732 } else
82b0f8c3 733 spin_unlock(vmf->ptl);
6fcb52a5 734 if (!set)
bae473a4 735 pte_free(vma->vm_mm, pgtable);
6b251fc9 736 return ret;
71e3aac0 737 }
356ff8a9
DR
738 gfp = alloc_hugepage_direct_gfpmask(vma);
739 page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
128ec037
KS
740 if (unlikely(!page)) {
741 count_vm_event(THP_FAULT_FALLBACK);
c0292554 742 return VM_FAULT_FALLBACK;
128ec037 743 }
9a982250 744 prep_transhuge_page(page);
82b0f8c3 745 return __do_huge_pmd_anonymous_page(vmf, page, gfp);
71e3aac0
AA
746}
747
ae18d6dc 748static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
3b6521f5
OH
749 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
750 pgtable_t pgtable)
5cad465d
MW
751{
752 struct mm_struct *mm = vma->vm_mm;
753 pmd_t entry;
754 spinlock_t *ptl;
755
756 ptl = pmd_lock(mm, pmd);
f25748e3
DW
757 entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
758 if (pfn_t_devmap(pfn))
759 entry = pmd_mkdevmap(entry);
01871e59 760 if (write) {
f55e1014
LT
761 entry = pmd_mkyoung(pmd_mkdirty(entry));
762 entry = maybe_pmd_mkwrite(entry, vma);
5cad465d 763 }
3b6521f5
OH
764
765 if (pgtable) {
766 pgtable_trans_huge_deposit(mm, pmd, pgtable);
c4812909 767 mm_inc_nr_ptes(mm);
3b6521f5
OH
768 }
769
01871e59
RZ
770 set_pmd_at(mm, addr, pmd, entry);
771 update_mmu_cache_pmd(vma, addr, pmd);
5cad465d 772 spin_unlock(ptl);
5cad465d
MW
773}
774
226ab561 775vm_fault_t vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
f25748e3 776 pmd_t *pmd, pfn_t pfn, bool write)
5cad465d
MW
777{
778 pgprot_t pgprot = vma->vm_page_prot;
3b6521f5 779 pgtable_t pgtable = NULL;
5cad465d
MW
780 /*
781 * If we had pmd_special, we could avoid all these restrictions,
782 * but we need to be consistent with PTEs and architectures that
783 * can't support a 'special' bit.
784 */
e1fb4a08
DJ
785 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
786 !pfn_t_devmap(pfn));
5cad465d
MW
787 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
788 (VM_PFNMAP|VM_MIXEDMAP));
789 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
5cad465d
MW
790
791 if (addr < vma->vm_start || addr >= vma->vm_end)
792 return VM_FAULT_SIGBUS;
308a047c 793
3b6521f5 794 if (arch_needs_pgtable_deposit()) {
4cf58924 795 pgtable = pte_alloc_one(vma->vm_mm);
3b6521f5
OH
796 if (!pgtable)
797 return VM_FAULT_OOM;
798 }
799
308a047c
BP
800 track_pfn_insert(vma, &pgprot, pfn);
801
3b6521f5 802 insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write, pgtable);
ae18d6dc 803 return VM_FAULT_NOPAGE;
5cad465d 804}
dee41079 805EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
5cad465d 806
a00cc7d9 807#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
f55e1014 808static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
a00cc7d9 809{
f55e1014 810 if (likely(vma->vm_flags & VM_WRITE))
a00cc7d9
MW
811 pud = pud_mkwrite(pud);
812 return pud;
813}
814
815static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
816 pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
817{
818 struct mm_struct *mm = vma->vm_mm;
819 pud_t entry;
820 spinlock_t *ptl;
821
822 ptl = pud_lock(mm, pud);
823 entry = pud_mkhuge(pfn_t_pud(pfn, prot));
824 if (pfn_t_devmap(pfn))
825 entry = pud_mkdevmap(entry);
826 if (write) {
f55e1014
LT
827 entry = pud_mkyoung(pud_mkdirty(entry));
828 entry = maybe_pud_mkwrite(entry, vma);
a00cc7d9
MW
829 }
830 set_pud_at(mm, addr, pud, entry);
831 update_mmu_cache_pud(vma, addr, pud);
832 spin_unlock(ptl);
833}
834
226ab561 835vm_fault_t vmf_insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
a00cc7d9
MW
836 pud_t *pud, pfn_t pfn, bool write)
837{
838 pgprot_t pgprot = vma->vm_page_prot;
839 /*
840 * If we had pud_special, we could avoid all these restrictions,
841 * but we need to be consistent with PTEs and architectures that
842 * can't support a 'special' bit.
843 */
62ec0d8c
DJ
844 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
845 !pfn_t_devmap(pfn));
a00cc7d9
MW
846 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
847 (VM_PFNMAP|VM_MIXEDMAP));
848 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
a00cc7d9
MW
849
850 if (addr < vma->vm_start || addr >= vma->vm_end)
851 return VM_FAULT_SIGBUS;
852
853 track_pfn_insert(vma, &pgprot, pfn);
854
855 insert_pfn_pud(vma, addr, pud, pfn, pgprot, write);
856 return VM_FAULT_NOPAGE;
857}
858EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud);
859#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
860
3565fce3 861static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
a8f97366 862 pmd_t *pmd, int flags)
3565fce3
DW
863{
864 pmd_t _pmd;
865
a8f97366
KS
866 _pmd = pmd_mkyoung(*pmd);
867 if (flags & FOLL_WRITE)
868 _pmd = pmd_mkdirty(_pmd);
3565fce3 869 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
a8f97366 870 pmd, _pmd, flags & FOLL_WRITE))
3565fce3
DW
871 update_mmu_cache_pmd(vma, addr, pmd);
872}
873
874struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
df06b37f 875 pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
3565fce3
DW
876{
877 unsigned long pfn = pmd_pfn(*pmd);
878 struct mm_struct *mm = vma->vm_mm;
3565fce3
DW
879 struct page *page;
880
881 assert_spin_locked(pmd_lockptr(mm, pmd));
882
8310d48b
KF
883 /*
884 * When we COW a devmap PMD entry, we split it into PTEs, so we should
885 * not be in this function with `flags & FOLL_COW` set.
886 */
887 WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");
888
f6f37321 889 if (flags & FOLL_WRITE && !pmd_write(*pmd))
3565fce3
DW
890 return NULL;
891
892 if (pmd_present(*pmd) && pmd_devmap(*pmd))
893 /* pass */;
894 else
895 return NULL;
896
897 if (flags & FOLL_TOUCH)
a8f97366 898 touch_pmd(vma, addr, pmd, flags);
3565fce3
DW
899
900 /*
901 * device mapped pages can only be returned if the
902 * caller will manage the page reference count.
903 */
904 if (!(flags & FOLL_GET))
905 return ERR_PTR(-EEXIST);
906
907 pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
df06b37f
KB
908 *pgmap = get_dev_pagemap(pfn, *pgmap);
909 if (!*pgmap)
3565fce3
DW
910 return ERR_PTR(-EFAULT);
911 page = pfn_to_page(pfn);
912 get_page(page);
3565fce3
DW
913
914 return page;
915}
916
71e3aac0
AA
917int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
918 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
919 struct vm_area_struct *vma)
920{
c4088ebd 921 spinlock_t *dst_ptl, *src_ptl;
71e3aac0
AA
922 struct page *src_page;
923 pmd_t pmd;
12c9d70b 924 pgtable_t pgtable = NULL;
628d47ce 925 int ret = -ENOMEM;
71e3aac0 926
628d47ce
KS
927 /* Skip if can be re-fill on fault */
928 if (!vma_is_anonymous(vma))
929 return 0;
930
4cf58924 931 pgtable = pte_alloc_one(dst_mm);
628d47ce
KS
932 if (unlikely(!pgtable))
933 goto out;
71e3aac0 934
c4088ebd
KS
935 dst_ptl = pmd_lock(dst_mm, dst_pmd);
936 src_ptl = pmd_lockptr(src_mm, src_pmd);
937 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
71e3aac0
AA
938
939 ret = -EAGAIN;
940 pmd = *src_pmd;
84c3fc4e
ZY
941
942#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
943 if (unlikely(is_swap_pmd(pmd))) {
944 swp_entry_t entry = pmd_to_swp_entry(pmd);
945
946 VM_BUG_ON(!is_pmd_migration_entry(pmd));
947 if (is_write_migration_entry(entry)) {
948 make_migration_entry_read(&entry);
949 pmd = swp_entry_to_pmd(entry);
ab6e3d09
NH
950 if (pmd_swp_soft_dirty(*src_pmd))
951 pmd = pmd_swp_mksoft_dirty(pmd);
84c3fc4e
ZY
952 set_pmd_at(src_mm, addr, src_pmd, pmd);
953 }
dd8a67f9 954 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
af5b0f6a 955 mm_inc_nr_ptes(dst_mm);
dd8a67f9 956 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
84c3fc4e
ZY
957 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
958 ret = 0;
959 goto out_unlock;
960 }
961#endif
962
628d47ce 963 if (unlikely(!pmd_trans_huge(pmd))) {
71e3aac0
AA
964 pte_free(dst_mm, pgtable);
965 goto out_unlock;
966 }
fc9fe822 967 /*
c4088ebd 968 * When page table lock is held, the huge zero pmd should not be
fc9fe822
KS
969 * under splitting since we don't split the page itself, only pmd to
970 * a page table.
971 */
972 if (is_huge_zero_pmd(pmd)) {
5918d10a 973 struct page *zero_page;
97ae1749
KS
974 /*
975 * get_huge_zero_page() will never allocate a new page here,
976 * since we already have a zero page to copy. It just takes a
977 * reference.
978 */
6fcb52a5 979 zero_page = mm_get_huge_zero_page(dst_mm);
6b251fc9 980 set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
5918d10a 981 zero_page);
fc9fe822
KS
982 ret = 0;
983 goto out_unlock;
984 }
de466bd6 985
628d47ce
KS
986 src_page = pmd_page(pmd);
987 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
988 get_page(src_page);
989 page_dup_rmap(src_page, true);
990 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
c4812909 991 mm_inc_nr_ptes(dst_mm);
628d47ce 992 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
71e3aac0
AA
993
994 pmdp_set_wrprotect(src_mm, addr, src_pmd);
995 pmd = pmd_mkold(pmd_wrprotect(pmd));
996 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
71e3aac0
AA
997
998 ret = 0;
999out_unlock:
c4088ebd
KS
1000 spin_unlock(src_ptl);
1001 spin_unlock(dst_ptl);
71e3aac0
AA
1002out:
1003 return ret;
1004}
1005
a00cc7d9
MW
1006#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1007static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
a8f97366 1008 pud_t *pud, int flags)
a00cc7d9
MW
1009{
1010 pud_t _pud;
1011
a8f97366
KS
1012 _pud = pud_mkyoung(*pud);
1013 if (flags & FOLL_WRITE)
1014 _pud = pud_mkdirty(_pud);
a00cc7d9 1015 if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
a8f97366 1016 pud, _pud, flags & FOLL_WRITE))
a00cc7d9
MW
1017 update_mmu_cache_pud(vma, addr, pud);
1018}
1019
1020struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
df06b37f 1021 pud_t *pud, int flags, struct dev_pagemap **pgmap)
a00cc7d9
MW
1022{
1023 unsigned long pfn = pud_pfn(*pud);
1024 struct mm_struct *mm = vma->vm_mm;
a00cc7d9
MW
1025 struct page *page;
1026
1027 assert_spin_locked(pud_lockptr(mm, pud));
1028
f6f37321 1029 if (flags & FOLL_WRITE && !pud_write(*pud))
a00cc7d9
MW
1030 return NULL;
1031
1032 if (pud_present(*pud) && pud_devmap(*pud))
1033 /* pass */;
1034 else
1035 return NULL;
1036
1037 if (flags & FOLL_TOUCH)
a8f97366 1038 touch_pud(vma, addr, pud, flags);
a00cc7d9
MW
1039
1040 /*
1041 * device mapped pages can only be returned if the
1042 * caller will manage the page reference count.
1043 */
1044 if (!(flags & FOLL_GET))
1045 return ERR_PTR(-EEXIST);
1046
1047 pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
df06b37f
KB
1048 *pgmap = get_dev_pagemap(pfn, *pgmap);
1049 if (!*pgmap)
a00cc7d9
MW
1050 return ERR_PTR(-EFAULT);
1051 page = pfn_to_page(pfn);
1052 get_page(page);
a00cc7d9
MW
1053
1054 return page;
1055}
1056
1057int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1058 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1059 struct vm_area_struct *vma)
1060{
1061 spinlock_t *dst_ptl, *src_ptl;
1062 pud_t pud;
1063 int ret;
1064
1065 dst_ptl = pud_lock(dst_mm, dst_pud);
1066 src_ptl = pud_lockptr(src_mm, src_pud);
1067 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1068
1069 ret = -EAGAIN;
1070 pud = *src_pud;
1071 if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1072 goto out_unlock;
1073
1074 /*
1075 * When page table lock is held, the huge zero pud should not be
1076 * under splitting since we don't split the page itself, only pud to
1077 * a page table.
1078 */
1079 if (is_huge_zero_pud(pud)) {
1080 /* No huge zero pud yet */
1081 }
1082
1083 pudp_set_wrprotect(src_mm, addr, src_pud);
1084 pud = pud_mkold(pud_wrprotect(pud));
1085 set_pud_at(dst_mm, addr, dst_pud, pud);
1086
1087 ret = 0;
1088out_unlock:
1089 spin_unlock(src_ptl);
1090 spin_unlock(dst_ptl);
1091 return ret;
1092}
1093
1094void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1095{
1096 pud_t entry;
1097 unsigned long haddr;
1098 bool write = vmf->flags & FAULT_FLAG_WRITE;
1099
1100 vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1101 if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1102 goto unlock;
1103
1104 entry = pud_mkyoung(orig_pud);
1105 if (write)
1106 entry = pud_mkdirty(entry);
1107 haddr = vmf->address & HPAGE_PUD_MASK;
1108 if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
1109 update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);
1110
1111unlock:
1112 spin_unlock(vmf->ptl);
1113}
1114#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1115
82b0f8c3 1116void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
a1dd450b
WD
1117{
1118 pmd_t entry;
1119 unsigned long haddr;
20f664aa 1120 bool write = vmf->flags & FAULT_FLAG_WRITE;
a1dd450b 1121
82b0f8c3
JK
1122 vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1123 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
a1dd450b
WD
1124 goto unlock;
1125
1126 entry = pmd_mkyoung(orig_pmd);
20f664aa
MK
1127 if (write)
1128 entry = pmd_mkdirty(entry);
82b0f8c3 1129 haddr = vmf->address & HPAGE_PMD_MASK;
20f664aa 1130 if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
82b0f8c3 1131 update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
a1dd450b
WD
1132
1133unlock:
82b0f8c3 1134 spin_unlock(vmf->ptl);
a1dd450b
WD
1135}
1136
2b740303
SJ
1137static vm_fault_t do_huge_pmd_wp_page_fallback(struct vm_fault *vmf,
1138 pmd_t orig_pmd, struct page *page)
71e3aac0 1139{
82b0f8c3
JK
1140 struct vm_area_struct *vma = vmf->vma;
1141 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
00501b53 1142 struct mem_cgroup *memcg;
71e3aac0
AA
1143 pgtable_t pgtable;
1144 pmd_t _pmd;
2b740303
SJ
1145 int i;
1146 vm_fault_t ret = 0;
71e3aac0 1147 struct page **pages;
ac46d4f3 1148 struct mmu_notifier_range range;
71e3aac0 1149
6da2ec56
KC
1150 pages = kmalloc_array(HPAGE_PMD_NR, sizeof(struct page *),
1151 GFP_KERNEL);
71e3aac0
AA
1152 if (unlikely(!pages)) {
1153 ret |= VM_FAULT_OOM;
1154 goto out;
1155 }
1156
1157 for (i = 0; i < HPAGE_PMD_NR; i++) {
41b6167e 1158 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE, vma,
82b0f8c3 1159 vmf->address, page_to_nid(page));
b9bbfbe3 1160 if (unlikely(!pages[i] ||
2cf85583 1161 mem_cgroup_try_charge_delay(pages[i], vma->vm_mm,
bae473a4 1162 GFP_KERNEL, &memcg, false))) {
b9bbfbe3 1163 if (pages[i])
71e3aac0 1164 put_page(pages[i]);
b9bbfbe3 1165 while (--i >= 0) {
00501b53
JW
1166 memcg = (void *)page_private(pages[i]);
1167 set_page_private(pages[i], 0);
f627c2f5
KS
1168 mem_cgroup_cancel_charge(pages[i], memcg,
1169 false);
b9bbfbe3
AA
1170 put_page(pages[i]);
1171 }
71e3aac0
AA
1172 kfree(pages);
1173 ret |= VM_FAULT_OOM;
1174 goto out;
1175 }
00501b53 1176 set_page_private(pages[i], (unsigned long)memcg);
71e3aac0
AA
1177 }
1178
1179 for (i = 0; i < HPAGE_PMD_NR; i++) {
1180 copy_user_highpage(pages[i], page + i,
0089e485 1181 haddr + PAGE_SIZE * i, vma);
71e3aac0
AA
1182 __SetPageUptodate(pages[i]);
1183 cond_resched();
1184 }
1185
ac46d4f3
JG
1186 mmu_notifier_range_init(&range, vma->vm_mm, haddr,
1187 haddr + HPAGE_PMD_SIZE);
1188 mmu_notifier_invalidate_range_start(&range);
2ec74c3e 1189
82b0f8c3
JK
1190 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1191 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
71e3aac0 1192 goto out_free_pages;
309381fe 1193 VM_BUG_ON_PAGE(!PageHead(page), page);
71e3aac0 1194
0f10851e
JG
1195 /*
1196 * Leave pmd empty until pte is filled note we must notify here as
1197 * concurrent CPU thread might write to new page before the call to
1198 * mmu_notifier_invalidate_range_end() happens which can lead to a
1199 * device seeing memory write in different order than CPU.
1200 *
ad56b738 1201 * See Documentation/vm/mmu_notifier.rst
0f10851e 1202 */
82b0f8c3 1203 pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
71e3aac0 1204
82b0f8c3 1205 pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, vmf->pmd);
bae473a4 1206 pmd_populate(vma->vm_mm, &_pmd, pgtable);
71e3aac0
AA
1207
1208 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
bae473a4 1209 pte_t entry;
71e3aac0
AA
1210 entry = mk_pte(pages[i], vma->vm_page_prot);
1211 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
00501b53
JW
1212 memcg = (void *)page_private(pages[i]);
1213 set_page_private(pages[i], 0);
82b0f8c3 1214 page_add_new_anon_rmap(pages[i], vmf->vma, haddr, false);
f627c2f5 1215 mem_cgroup_commit_charge(pages[i], memcg, false, false);
00501b53 1216 lru_cache_add_active_or_unevictable(pages[i], vma);
82b0f8c3
JK
1217 vmf->pte = pte_offset_map(&_pmd, haddr);
1218 VM_BUG_ON(!pte_none(*vmf->pte));
1219 set_pte_at(vma->vm_mm, haddr, vmf->pte, entry);
1220 pte_unmap(vmf->pte);
71e3aac0
AA
1221 }
1222 kfree(pages);
1223
71e3aac0 1224 smp_wmb(); /* make pte visible before pmd */
82b0f8c3 1225 pmd_populate(vma->vm_mm, vmf->pmd, pgtable);
d281ee61 1226 page_remove_rmap(page, true);
82b0f8c3 1227 spin_unlock(vmf->ptl);
71e3aac0 1228
4645b9fe
JG
1229 /*
1230 * No need to double call mmu_notifier->invalidate_range() callback as
1231 * the above pmdp_huge_clear_flush_notify() did already call it.
1232 */
ac46d4f3 1233 mmu_notifier_invalidate_range_only_end(&range);
2ec74c3e 1234
71e3aac0
AA
1235 ret |= VM_FAULT_WRITE;
1236 put_page(page);
1237
1238out:
1239 return ret;
1240
1241out_free_pages:
82b0f8c3 1242 spin_unlock(vmf->ptl);
ac46d4f3 1243 mmu_notifier_invalidate_range_end(&range);
b9bbfbe3 1244 for (i = 0; i < HPAGE_PMD_NR; i++) {
00501b53
JW
1245 memcg = (void *)page_private(pages[i]);
1246 set_page_private(pages[i], 0);
f627c2f5 1247 mem_cgroup_cancel_charge(pages[i], memcg, false);
71e3aac0 1248 put_page(pages[i]);
b9bbfbe3 1249 }
71e3aac0
AA
1250 kfree(pages);
1251 goto out;
1252}
1253
2b740303 1254vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
71e3aac0 1255{
82b0f8c3 1256 struct vm_area_struct *vma = vmf->vma;
93b4796d 1257 struct page *page = NULL, *new_page;
00501b53 1258 struct mem_cgroup *memcg;
82b0f8c3 1259 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
ac46d4f3 1260 struct mmu_notifier_range range;
3b363692 1261 gfp_t huge_gfp; /* for allocation and charge */
2b740303 1262 vm_fault_t ret = 0;
71e3aac0 1263
82b0f8c3 1264 vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
81d1b09c 1265 VM_BUG_ON_VMA(!vma->anon_vma, vma);
93b4796d
KS
1266 if (is_huge_zero_pmd(orig_pmd))
1267 goto alloc;
82b0f8c3
JK
1268 spin_lock(vmf->ptl);
1269 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
71e3aac0
AA
1270 goto out_unlock;
1271
1272 page = pmd_page(orig_pmd);
309381fe 1273 VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1f25fe20
KS
1274 /*
1275 * We can only reuse the page if nobody else maps the huge page or it's
6d0a07ed 1276 * part.
1f25fe20 1277 */
ba3c4ce6
HY
1278 if (!trylock_page(page)) {
1279 get_page(page);
1280 spin_unlock(vmf->ptl);
1281 lock_page(page);
1282 spin_lock(vmf->ptl);
1283 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1284 unlock_page(page);
1285 put_page(page);
1286 goto out_unlock;
1287 }
1288 put_page(page);
1289 }
1290 if (reuse_swap_page(page, NULL)) {
71e3aac0
AA
1291 pmd_t entry;
1292 entry = pmd_mkyoung(orig_pmd);
f55e1014 1293 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
82b0f8c3
JK
1294 if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
1295 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
71e3aac0 1296 ret |= VM_FAULT_WRITE;
ba3c4ce6 1297 unlock_page(page);
71e3aac0
AA
1298 goto out_unlock;
1299 }
ba3c4ce6 1300 unlock_page(page);
ddc58f27 1301 get_page(page);
82b0f8c3 1302 spin_unlock(vmf->ptl);
93b4796d 1303alloc:
7635d9cb 1304 if (__transparent_hugepage_enabled(vma) &&
077fcf11 1305 !transparent_hugepage_debug_cow()) {
356ff8a9
DR
1306 huge_gfp = alloc_hugepage_direct_gfpmask(vma);
1307 new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
077fcf11 1308 } else
71e3aac0
AA
1309 new_page = NULL;
1310
9a982250
KS
1311 if (likely(new_page)) {
1312 prep_transhuge_page(new_page);
1313 } else {
eecc1e42 1314 if (!page) {
82b0f8c3 1315 split_huge_pmd(vma, vmf->pmd, vmf->address);
e9b71ca9 1316 ret |= VM_FAULT_FALLBACK;
93b4796d 1317 } else {
82b0f8c3 1318 ret = do_huge_pmd_wp_page_fallback(vmf, orig_pmd, page);
9845cbbd 1319 if (ret & VM_FAULT_OOM) {
82b0f8c3 1320 split_huge_pmd(vma, vmf->pmd, vmf->address);
9845cbbd
KS
1321 ret |= VM_FAULT_FALLBACK;
1322 }
ddc58f27 1323 put_page(page);
93b4796d 1324 }
17766dde 1325 count_vm_event(THP_FAULT_FALLBACK);
71e3aac0
AA
1326 goto out;
1327 }
1328
2cf85583 1329 if (unlikely(mem_cgroup_try_charge_delay(new_page, vma->vm_mm,
2a70f6a7 1330 huge_gfp, &memcg, true))) {
b9bbfbe3 1331 put_page(new_page);
82b0f8c3 1332 split_huge_pmd(vma, vmf->pmd, vmf->address);
bae473a4 1333 if (page)
ddc58f27 1334 put_page(page);
9845cbbd 1335 ret |= VM_FAULT_FALLBACK;
17766dde 1336 count_vm_event(THP_FAULT_FALLBACK);
b9bbfbe3
AA
1337 goto out;
1338 }
1339
17766dde
DR
1340 count_vm_event(THP_FAULT_ALLOC);
1341
eecc1e42 1342 if (!page)
c79b57e4 1343 clear_huge_page(new_page, vmf->address, HPAGE_PMD_NR);
93b4796d 1344 else
c9f4cd71
HY
1345 copy_user_huge_page(new_page, page, vmf->address,
1346 vma, HPAGE_PMD_NR);
71e3aac0
AA
1347 __SetPageUptodate(new_page);
1348
ac46d4f3
JG
1349 mmu_notifier_range_init(&range, vma->vm_mm, haddr,
1350 haddr + HPAGE_PMD_SIZE);
1351 mmu_notifier_invalidate_range_start(&range);
2ec74c3e 1352
82b0f8c3 1353 spin_lock(vmf->ptl);
93b4796d 1354 if (page)
ddc58f27 1355 put_page(page);
82b0f8c3
JK
1356 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1357 spin_unlock(vmf->ptl);
f627c2f5 1358 mem_cgroup_cancel_charge(new_page, memcg, true);
71e3aac0 1359 put_page(new_page);
2ec74c3e 1360 goto out_mn;
b9bbfbe3 1361 } else {
71e3aac0 1362 pmd_t entry;
3122359a 1363 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
f55e1014 1364 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
82b0f8c3 1365 pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
d281ee61 1366 page_add_new_anon_rmap(new_page, vma, haddr, true);
f627c2f5 1367 mem_cgroup_commit_charge(new_page, memcg, false, true);
00501b53 1368 lru_cache_add_active_or_unevictable(new_page, vma);
82b0f8c3
JK
1369 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
1370 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
eecc1e42 1371 if (!page) {
bae473a4 1372 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
97ae1749 1373 } else {
309381fe 1374 VM_BUG_ON_PAGE(!PageHead(page), page);
d281ee61 1375 page_remove_rmap(page, true);
93b4796d
KS
1376 put_page(page);
1377 }
71e3aac0
AA
1378 ret |= VM_FAULT_WRITE;
1379 }
82b0f8c3 1380 spin_unlock(vmf->ptl);
2ec74c3e 1381out_mn:
4645b9fe
JG
1382 /*
1383 * No need to double call mmu_notifier->invalidate_range() callback as
1384 * the above pmdp_huge_clear_flush_notify() did already call it.
1385 */
ac46d4f3 1386 mmu_notifier_invalidate_range_only_end(&range);
71e3aac0
AA
1387out:
1388 return ret;
2ec74c3e 1389out_unlock:
82b0f8c3 1390 spin_unlock(vmf->ptl);
2ec74c3e 1391 return ret;
71e3aac0
AA
1392}
1393
8310d48b
KF
1394/*
1395 * FOLL_FORCE can write to even unwritable pmd's, but only
1396 * after we've gone through a COW cycle and they are dirty.
1397 */
1398static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
1399{
f6f37321 1400 return pmd_write(pmd) ||
8310d48b
KF
1401 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
1402}
1403
b676b293 1404struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
71e3aac0
AA
1405 unsigned long addr,
1406 pmd_t *pmd,
1407 unsigned int flags)
1408{
b676b293 1409 struct mm_struct *mm = vma->vm_mm;
71e3aac0
AA
1410 struct page *page = NULL;
1411
c4088ebd 1412 assert_spin_locked(pmd_lockptr(mm, pmd));
71e3aac0 1413
8310d48b 1414 if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
71e3aac0
AA
1415 goto out;
1416
85facf25
KS
1417 /* Avoid dumping huge zero page */
1418 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1419 return ERR_PTR(-EFAULT);
1420
2b4847e7 1421 /* Full NUMA hinting faults to serialise migration in fault paths */
8a0516ed 1422 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
2b4847e7
MG
1423 goto out;
1424
71e3aac0 1425 page = pmd_page(*pmd);
ca120cf6 1426 VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
3565fce3 1427 if (flags & FOLL_TOUCH)
a8f97366 1428 touch_pmd(vma, addr, pmd, flags);
de60f5f1 1429 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
e90309c9
KS
1430 /*
1431 * We don't mlock() pte-mapped THPs. This way we can avoid
1432 * leaking mlocked pages into non-VM_LOCKED VMAs.
1433 *
9a73f61b
KS
1434 * For anon THP:
1435 *
e90309c9
KS
1436 * In most cases the pmd is the only mapping of the page as we
1437 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1438 * writable private mappings in populate_vma_page_range().
1439 *
1440 * The only scenario when we have the page shared here is if we
1441 * mlocking read-only mapping shared over fork(). We skip
1442 * mlocking such pages.
9a73f61b
KS
1443 *
1444 * For file THP:
1445 *
1446 * We can expect PageDoubleMap() to be stable under page lock:
1447 * for file pages we set it in page_add_file_rmap(), which
1448 * requires page to be locked.
e90309c9 1449 */
9a73f61b
KS
1450
1451 if (PageAnon(page) && compound_mapcount(page) != 1)
1452 goto skip_mlock;
1453 if (PageDoubleMap(page) || !page->mapping)
1454 goto skip_mlock;
1455 if (!trylock_page(page))
1456 goto skip_mlock;
1457 lru_add_drain();
1458 if (page->mapping && !PageDoubleMap(page))
1459 mlock_vma_page(page);
1460 unlock_page(page);
b676b293 1461 }
9a73f61b 1462skip_mlock:
71e3aac0 1463 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
ca120cf6 1464 VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
71e3aac0 1465 if (flags & FOLL_GET)
ddc58f27 1466 get_page(page);
71e3aac0
AA
1467
1468out:
1469 return page;
1470}
1471
d10e63f2 1472/* NUMA hinting page fault entry point for trans huge pmds */
2b740303 1473vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
d10e63f2 1474{
82b0f8c3 1475 struct vm_area_struct *vma = vmf->vma;
b8916634 1476 struct anon_vma *anon_vma = NULL;
b32967ff 1477 struct page *page;
82b0f8c3 1478 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
98fa15f3 1479 int page_nid = NUMA_NO_NODE, this_nid = numa_node_id();
90572890 1480 int target_nid, last_cpupid = -1;
8191acbd
MG
1481 bool page_locked;
1482 bool migrated = false;
b191f9b1 1483 bool was_writable;
6688cc05 1484 int flags = 0;
d10e63f2 1485
82b0f8c3
JK
1486 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1487 if (unlikely(!pmd_same(pmd, *vmf->pmd)))
d10e63f2
MG
1488 goto out_unlock;
1489
de466bd6
MG
1490 /*
1491 * If there are potential migrations, wait for completion and retry
1492 * without disrupting NUMA hinting information. Do not relock and
1493 * check_same as the page may no longer be mapped.
1494 */
82b0f8c3
JK
1495 if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
1496 page = pmd_page(*vmf->pmd);
3c226c63
MR
1497 if (!get_page_unless_zero(page))
1498 goto out_unlock;
82b0f8c3 1499 spin_unlock(vmf->ptl);
9a1ea439 1500 put_and_wait_on_page_locked(page);
de466bd6
MG
1501 goto out;
1502 }
1503
d10e63f2 1504 page = pmd_page(pmd);
a1a46184 1505 BUG_ON(is_huge_zero_page(page));
8191acbd 1506 page_nid = page_to_nid(page);
90572890 1507 last_cpupid = page_cpupid_last(page);
03c5a6e1 1508 count_vm_numa_event(NUMA_HINT_FAULTS);
04bb2f94 1509 if (page_nid == this_nid) {
03c5a6e1 1510 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
04bb2f94
RR
1511 flags |= TNF_FAULT_LOCAL;
1512 }
4daae3b4 1513
bea66fbd 1514 /* See similar comment in do_numa_page for explanation */
288bc549 1515 if (!pmd_savedwrite(pmd))
6688cc05
PZ
1516 flags |= TNF_NO_GROUP;
1517
ff9042b1
MG
1518 /*
1519 * Acquire the page lock to serialise THP migrations but avoid dropping
1520 * page_table_lock if at all possible
1521 */
b8916634
MG
1522 page_locked = trylock_page(page);
1523 target_nid = mpol_misplaced(page, vma, haddr);
98fa15f3 1524 if (target_nid == NUMA_NO_NODE) {
b8916634 1525 /* If the page was locked, there are no parallel migrations */
a54a407f 1526 if (page_locked)
b8916634 1527 goto clear_pmdnuma;
2b4847e7 1528 }
4daae3b4 1529
de466bd6 1530 /* Migration could have started since the pmd_trans_migrating check */
2b4847e7 1531 if (!page_locked) {
98fa15f3 1532 page_nid = NUMA_NO_NODE;
3c226c63
MR
1533 if (!get_page_unless_zero(page))
1534 goto out_unlock;
82b0f8c3 1535 spin_unlock(vmf->ptl);
9a1ea439 1536 put_and_wait_on_page_locked(page);
b8916634
MG
1537 goto out;
1538 }
1539
2b4847e7
MG
1540 /*
1541 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1542 * to serialises splits
1543 */
b8916634 1544 get_page(page);
82b0f8c3 1545 spin_unlock(vmf->ptl);
b8916634 1546 anon_vma = page_lock_anon_vma_read(page);
4daae3b4 1547
c69307d5 1548 /* Confirm the PMD did not change while page_table_lock was released */
82b0f8c3
JK
1549 spin_lock(vmf->ptl);
1550 if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
b32967ff
MG
1551 unlock_page(page);
1552 put_page(page);
98fa15f3 1553 page_nid = NUMA_NO_NODE;
4daae3b4 1554 goto out_unlock;
b32967ff 1555 }
ff9042b1 1556
c3a489ca
MG
1557 /* Bail if we fail to protect against THP splits for any reason */
1558 if (unlikely(!anon_vma)) {
1559 put_page(page);
98fa15f3 1560 page_nid = NUMA_NO_NODE;
c3a489ca
MG
1561 goto clear_pmdnuma;
1562 }
1563
8b1b436d
PZ
1564 /*
1565 * Since we took the NUMA fault, we must have observed the !accessible
1566 * bit. Make sure all other CPUs agree with that, to avoid them
1567 * modifying the page we're about to migrate.
1568 *
1569 * Must be done under PTL such that we'll observe the relevant
ccde85ba
PZ
1570 * inc_tlb_flush_pending().
1571 *
1572 * We are not sure a pending tlb flush here is for a huge page
1573 * mapping or not. Hence use the tlb range variant
8b1b436d 1574 */
7066f0f9 1575 if (mm_tlb_flush_pending(vma->vm_mm)) {
ccde85ba 1576 flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE);
7066f0f9
AA
1577 /*
1578 * change_huge_pmd() released the pmd lock before
1579 * invalidating the secondary MMUs sharing the primary
1580 * MMU pagetables (with ->invalidate_range()). The
1581 * mmu_notifier_invalidate_range_end() (which
1582 * internally calls ->invalidate_range()) in
1583 * change_pmd_range() will run after us, so we can't
1584 * rely on it here and we need an explicit invalidate.
1585 */
1586 mmu_notifier_invalidate_range(vma->vm_mm, haddr,
1587 haddr + HPAGE_PMD_SIZE);
1588 }
8b1b436d 1589
a54a407f
MG
1590 /*
1591 * Migrate the THP to the requested node, returns with page unlocked
8a0516ed 1592 * and access rights restored.
a54a407f 1593 */
82b0f8c3 1594 spin_unlock(vmf->ptl);
8b1b436d 1595
bae473a4 1596 migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
82b0f8c3 1597 vmf->pmd, pmd, vmf->address, page, target_nid);
6688cc05
PZ
1598 if (migrated) {
1599 flags |= TNF_MIGRATED;
8191acbd 1600 page_nid = target_nid;
074c2381
MG
1601 } else
1602 flags |= TNF_MIGRATE_FAIL;
b32967ff 1603
8191acbd 1604 goto out;
b32967ff 1605clear_pmdnuma:
a54a407f 1606 BUG_ON(!PageLocked(page));
288bc549 1607 was_writable = pmd_savedwrite(pmd);
4d942466 1608 pmd = pmd_modify(pmd, vma->vm_page_prot);
b7b04004 1609 pmd = pmd_mkyoung(pmd);
b191f9b1
MG
1610 if (was_writable)
1611 pmd = pmd_mkwrite(pmd);
82b0f8c3
JK
1612 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1613 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
a54a407f 1614 unlock_page(page);
d10e63f2 1615out_unlock:
82b0f8c3 1616 spin_unlock(vmf->ptl);
b8916634
MG
1617
1618out:
1619 if (anon_vma)
1620 page_unlock_anon_vma_read(anon_vma);
1621
98fa15f3 1622 if (page_nid != NUMA_NO_NODE)
82b0f8c3 1623 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
9a8b300f 1624 flags);
8191acbd 1625
d10e63f2
MG
1626 return 0;
1627}
1628
319904ad
HY
1629/*
1630 * Return true if we do MADV_FREE successfully on entire pmd page.
1631 * Otherwise, return false.
1632 */
1633bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
b8d3c4c3 1634 pmd_t *pmd, unsigned long addr, unsigned long next)
b8d3c4c3
MK
1635{
1636 spinlock_t *ptl;
1637 pmd_t orig_pmd;
1638 struct page *page;
1639 struct mm_struct *mm = tlb->mm;
319904ad 1640 bool ret = false;
b8d3c4c3 1641
07e32661
AK
1642 tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);
1643
b6ec57f4
KS
1644 ptl = pmd_trans_huge_lock(pmd, vma);
1645 if (!ptl)
25eedabe 1646 goto out_unlocked;
b8d3c4c3
MK
1647
1648 orig_pmd = *pmd;
319904ad 1649 if (is_huge_zero_pmd(orig_pmd))
b8d3c4c3 1650 goto out;
b8d3c4c3 1651
84c3fc4e
ZY
1652 if (unlikely(!pmd_present(orig_pmd))) {
1653 VM_BUG_ON(thp_migration_supported() &&
1654 !is_pmd_migration_entry(orig_pmd));
1655 goto out;
1656 }
1657
b8d3c4c3
MK
1658 page = pmd_page(orig_pmd);
1659 /*
1660 * If other processes are mapping this page, we couldn't discard
1661 * the page unless they all do MADV_FREE so let's skip the page.
1662 */
1663 if (page_mapcount(page) != 1)
1664 goto out;
1665
1666 if (!trylock_page(page))
1667 goto out;
1668
1669 /*
1670 * If user want to discard part-pages of THP, split it so MADV_FREE
1671 * will deactivate only them.
1672 */
1673 if (next - addr != HPAGE_PMD_SIZE) {
1674 get_page(page);
1675 spin_unlock(ptl);
9818b8cd 1676 split_huge_page(page);
b8d3c4c3 1677 unlock_page(page);
bbf29ffc 1678 put_page(page);
b8d3c4c3
MK
1679 goto out_unlocked;
1680 }
1681
1682 if (PageDirty(page))
1683 ClearPageDirty(page);
1684 unlock_page(page);
1685
b8d3c4c3 1686 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
58ceeb6b 1687 pmdp_invalidate(vma, addr, pmd);
b8d3c4c3
MK
1688 orig_pmd = pmd_mkold(orig_pmd);
1689 orig_pmd = pmd_mkclean(orig_pmd);
1690
1691 set_pmd_at(mm, addr, pmd, orig_pmd);
1692 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1693 }
802a3a92
SL
1694
1695 mark_page_lazyfree(page);
319904ad 1696 ret = true;
b8d3c4c3
MK
1697out:
1698 spin_unlock(ptl);
1699out_unlocked:
1700 return ret;
1701}
1702
953c66c2
AK
1703static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1704{
1705 pgtable_t pgtable;
1706
1707 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1708 pte_free(mm, pgtable);
c4812909 1709 mm_dec_nr_ptes(mm);
953c66c2
AK
1710}
1711
71e3aac0 1712int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
f21760b1 1713 pmd_t *pmd, unsigned long addr)
71e3aac0 1714{
da146769 1715 pmd_t orig_pmd;
bf929152 1716 spinlock_t *ptl;
71e3aac0 1717
07e32661
AK
1718 tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);
1719
b6ec57f4
KS
1720 ptl = __pmd_trans_huge_lock(pmd, vma);
1721 if (!ptl)
da146769
KS
1722 return 0;
1723 /*
1724 * For architectures like ppc64 we look at deposited pgtable
1725 * when calling pmdp_huge_get_and_clear. So do the
1726 * pgtable_trans_huge_withdraw after finishing pmdp related
1727 * operations.
1728 */
1729 orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1730 tlb->fullmm);
1731 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1732 if (vma_is_dax(vma)) {
3b6521f5
OH
1733 if (arch_needs_pgtable_deposit())
1734 zap_deposited_table(tlb->mm, pmd);
da146769
KS
1735 spin_unlock(ptl);
1736 if (is_huge_zero_pmd(orig_pmd))
c0f2e176 1737 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
da146769 1738 } else if (is_huge_zero_pmd(orig_pmd)) {
c14a6eb4 1739 zap_deposited_table(tlb->mm, pmd);
da146769 1740 spin_unlock(ptl);
c0f2e176 1741 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
da146769 1742 } else {
616b8371
ZY
1743 struct page *page = NULL;
1744 int flush_needed = 1;
1745
1746 if (pmd_present(orig_pmd)) {
1747 page = pmd_page(orig_pmd);
1748 page_remove_rmap(page, true);
1749 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1750 VM_BUG_ON_PAGE(!PageHead(page), page);
1751 } else if (thp_migration_supported()) {
1752 swp_entry_t entry;
1753
1754 VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1755 entry = pmd_to_swp_entry(orig_pmd);
1756 page = pfn_to_page(swp_offset(entry));
1757 flush_needed = 0;
1758 } else
1759 WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1760
b5072380 1761 if (PageAnon(page)) {
c14a6eb4 1762 zap_deposited_table(tlb->mm, pmd);
b5072380
KS
1763 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1764 } else {
953c66c2
AK
1765 if (arch_needs_pgtable_deposit())
1766 zap_deposited_table(tlb->mm, pmd);
fadae295 1767 add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
b5072380 1768 }
616b8371 1769
da146769 1770 spin_unlock(ptl);
616b8371
ZY
1771 if (flush_needed)
1772 tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
025c5b24 1773 }
da146769 1774 return 1;
71e3aac0
AA
1775}
1776
1dd38b6c
AK
1777#ifndef pmd_move_must_withdraw
1778static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1779 spinlock_t *old_pmd_ptl,
1780 struct vm_area_struct *vma)
1781{
1782 /*
1783 * With split pmd lock we also need to move preallocated
1784 * PTE page table if new_pmd is on different PMD page table.
1785 *
1786 * We also don't deposit and withdraw tables for file pages.
1787 */
1788 return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1789}
1790#endif
1791
ab6e3d09
NH
1792static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1793{
1794#ifdef CONFIG_MEM_SOFT_DIRTY
1795 if (unlikely(is_pmd_migration_entry(pmd)))
1796 pmd = pmd_swp_mksoft_dirty(pmd);
1797 else if (pmd_present(pmd))
1798 pmd = pmd_mksoft_dirty(pmd);
1799#endif
1800 return pmd;
1801}
1802
bf8616d5 1803bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
37a1c49a 1804 unsigned long new_addr, unsigned long old_end,
eb66ae03 1805 pmd_t *old_pmd, pmd_t *new_pmd)
37a1c49a 1806{
bf929152 1807 spinlock_t *old_ptl, *new_ptl;
37a1c49a 1808 pmd_t pmd;
37a1c49a 1809 struct mm_struct *mm = vma->vm_mm;
5d190420 1810 bool force_flush = false;
37a1c49a
AA
1811
1812 if ((old_addr & ~HPAGE_PMD_MASK) ||
1813 (new_addr & ~HPAGE_PMD_MASK) ||
bf8616d5 1814 old_end - old_addr < HPAGE_PMD_SIZE)
4b471e88 1815 return false;
37a1c49a
AA
1816
1817 /*
1818 * The destination pmd shouldn't be established, free_pgtables()
1819 * should have release it.
1820 */
1821 if (WARN_ON(!pmd_none(*new_pmd))) {
1822 VM_BUG_ON(pmd_trans_huge(*new_pmd));
4b471e88 1823 return false;
37a1c49a
AA
1824 }
1825
bf929152
KS
1826 /*
1827 * We don't have to worry about the ordering of src and dst
1828 * ptlocks because exclusive mmap_sem prevents deadlock.
1829 */
b6ec57f4
KS
1830 old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1831 if (old_ptl) {
bf929152
KS
1832 new_ptl = pmd_lockptr(mm, new_pmd);
1833 if (new_ptl != old_ptl)
1834 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
8809aa2d 1835 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
eb66ae03 1836 if (pmd_present(pmd))
a2ce2666 1837 force_flush = true;
025c5b24 1838 VM_BUG_ON(!pmd_none(*new_pmd));
3592806c 1839
1dd38b6c 1840 if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
b3084f4d 1841 pgtable_t pgtable;
3592806c
KS
1842 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1843 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
3592806c 1844 }
ab6e3d09
NH
1845 pmd = move_soft_dirty_pmd(pmd);
1846 set_pmd_at(mm, new_addr, new_pmd, pmd);
5d190420
AL
1847 if (force_flush)
1848 flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
eb66ae03
LT
1849 if (new_ptl != old_ptl)
1850 spin_unlock(new_ptl);
bf929152 1851 spin_unlock(old_ptl);
4b471e88 1852 return true;
37a1c49a 1853 }
4b471e88 1854 return false;
37a1c49a
AA
1855}
1856
f123d74a
MG
1857/*
1858 * Returns
1859 * - 0 if PMD could not be locked
1860 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1861 * - HPAGE_PMD_NR is protections changed and TLB flush necessary
1862 */
cd7548ab 1863int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
e944fd67 1864 unsigned long addr, pgprot_t newprot, int prot_numa)
cd7548ab
JW
1865{
1866 struct mm_struct *mm = vma->vm_mm;
bf929152 1867 spinlock_t *ptl;
0a85e51d
KS
1868 pmd_t entry;
1869 bool preserve_write;
1870 int ret;
cd7548ab 1871
b6ec57f4 1872 ptl = __pmd_trans_huge_lock(pmd, vma);
0a85e51d
KS
1873 if (!ptl)
1874 return 0;
e944fd67 1875
0a85e51d
KS
1876 preserve_write = prot_numa && pmd_write(*pmd);
1877 ret = 1;
e944fd67 1878
84c3fc4e
ZY
1879#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1880 if (is_swap_pmd(*pmd)) {
1881 swp_entry_t entry = pmd_to_swp_entry(*pmd);
1882
1883 VM_BUG_ON(!is_pmd_migration_entry(*pmd));
1884 if (is_write_migration_entry(entry)) {
1885 pmd_t newpmd;
1886 /*
1887 * A protection check is difficult so
1888 * just be safe and disable write
1889 */
1890 make_migration_entry_read(&entry);
1891 newpmd = swp_entry_to_pmd(entry);
ab6e3d09
NH
1892 if (pmd_swp_soft_dirty(*pmd))
1893 newpmd = pmd_swp_mksoft_dirty(newpmd);
84c3fc4e
ZY
1894 set_pmd_at(mm, addr, pmd, newpmd);
1895 }
1896 goto unlock;
1897 }
1898#endif
1899
0a85e51d
KS
1900 /*
1901 * Avoid trapping faults against the zero page. The read-only
1902 * data is likely to be read-cached on the local CPU and
1903 * local/remote hits to the zero page are not interesting.
1904 */
1905 if (prot_numa && is_huge_zero_pmd(*pmd))
1906 goto unlock;
025c5b24 1907
0a85e51d
KS
1908 if (prot_numa && pmd_protnone(*pmd))
1909 goto unlock;
1910
ced10803
KS
1911 /*
1912 * In case prot_numa, we are under down_read(mmap_sem). It's critical
1913 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1914 * which is also under down_read(mmap_sem):
1915 *
1916 * CPU0: CPU1:
1917 * change_huge_pmd(prot_numa=1)
1918 * pmdp_huge_get_and_clear_notify()
1919 * madvise_dontneed()
1920 * zap_pmd_range()
1921 * pmd_trans_huge(*pmd) == 0 (without ptl)
1922 * // skip the pmd
1923 * set_pmd_at();
1924 * // pmd is re-established
1925 *
1926 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1927 * which may break userspace.
1928 *
1929 * pmdp_invalidate() is required to make sure we don't miss
1930 * dirty/young flags set by hardware.
1931 */
a3cf988f 1932 entry = pmdp_invalidate(vma, addr, pmd);
ced10803 1933
0a85e51d
KS
1934 entry = pmd_modify(entry, newprot);
1935 if (preserve_write)
1936 entry = pmd_mk_savedwrite(entry);
1937 ret = HPAGE_PMD_NR;
1938 set_pmd_at(mm, addr, pmd, entry);
1939 BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
1940unlock:
1941 spin_unlock(ptl);
025c5b24
NH
1942 return ret;
1943}
1944
1945/*
8f19b0c0 1946 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
025c5b24 1947 *
8f19b0c0
HY
1948 * Note that if it returns page table lock pointer, this routine returns without
1949 * unlocking page table lock. So callers must unlock it.
025c5b24 1950 */
b6ec57f4 1951spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
025c5b24 1952{
b6ec57f4
KS
1953 spinlock_t *ptl;
1954 ptl = pmd_lock(vma->vm_mm, pmd);
84c3fc4e
ZY
1955 if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
1956 pmd_devmap(*pmd)))
b6ec57f4
KS
1957 return ptl;
1958 spin_unlock(ptl);
1959 return NULL;
cd7548ab
JW
1960}
1961
a00cc7d9
MW
1962/*
1963 * Returns true if a given pud maps a thp, false otherwise.
1964 *
1965 * Note that if it returns true, this routine returns without unlocking page
1966 * table lock. So callers must unlock it.
1967 */
1968spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
1969{
1970 spinlock_t *ptl;
1971
1972 ptl = pud_lock(vma->vm_mm, pud);
1973 if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
1974 return ptl;
1975 spin_unlock(ptl);
1976 return NULL;
1977}
1978
1979#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1980int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
1981 pud_t *pud, unsigned long addr)
1982{
1983 pud_t orig_pud;
1984 spinlock_t *ptl;
1985
1986 ptl = __pud_trans_huge_lock(pud, vma);
1987 if (!ptl)
1988 return 0;
1989 /*
1990 * For architectures like ppc64 we look at deposited pgtable
1991 * when calling pudp_huge_get_and_clear. So do the
1992 * pgtable_trans_huge_withdraw after finishing pudp related
1993 * operations.
1994 */
1995 orig_pud = pudp_huge_get_and_clear_full(tlb->mm, addr, pud,
1996 tlb->fullmm);
1997 tlb_remove_pud_tlb_entry(tlb, pud, addr);
1998 if (vma_is_dax(vma)) {
1999 spin_unlock(ptl);
2000 /* No zero page support yet */
2001 } else {
2002 /* No support for anonymous PUD pages yet */
2003 BUG();
2004 }
2005 return 1;
2006}
2007
2008static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
2009 unsigned long haddr)
2010{
2011 VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
2012 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2013 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
2014 VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
2015
ce9311cf 2016 count_vm_event(THP_SPLIT_PUD);
a00cc7d9
MW
2017
2018 pudp_huge_clear_flush_notify(vma, haddr, pud);
2019}
2020
2021void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
2022 unsigned long address)
2023{
2024 spinlock_t *ptl;
ac46d4f3 2025 struct mmu_notifier_range range;
a00cc7d9 2026
ac46d4f3
JG
2027 mmu_notifier_range_init(&range, vma->vm_mm, address & HPAGE_PUD_MASK,
2028 (address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
2029 mmu_notifier_invalidate_range_start(&range);
2030 ptl = pud_lock(vma->vm_mm, pud);
a00cc7d9
MW
2031 if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
2032 goto out;
ac46d4f3 2033 __split_huge_pud_locked(vma, pud, range.start);
a00cc7d9
MW
2034
2035out:
2036 spin_unlock(ptl);
4645b9fe
JG
2037 /*
2038 * No need to double call mmu_notifier->invalidate_range() callback as
2039 * the above pudp_huge_clear_flush_notify() did already call it.
2040 */
ac46d4f3 2041 mmu_notifier_invalidate_range_only_end(&range);
a00cc7d9
MW
2042}
2043#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
2044
eef1b3ba
KS
2045static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2046 unsigned long haddr, pmd_t *pmd)
2047{
2048 struct mm_struct *mm = vma->vm_mm;
2049 pgtable_t pgtable;
2050 pmd_t _pmd;
2051 int i;
2052
0f10851e
JG
2053 /*
2054 * Leave pmd empty until pte is filled note that it is fine to delay
2055 * notification until mmu_notifier_invalidate_range_end() as we are
2056 * replacing a zero pmd write protected page with a zero pte write
2057 * protected page.
2058 *
ad56b738 2059 * See Documentation/vm/mmu_notifier.rst
0f10851e
JG
2060 */
2061 pmdp_huge_clear_flush(vma, haddr, pmd);
eef1b3ba
KS
2062
2063 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2064 pmd_populate(mm, &_pmd, pgtable);
2065
2066 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2067 pte_t *pte, entry;
2068 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2069 entry = pte_mkspecial(entry);
2070 pte = pte_offset_map(&_pmd, haddr);
2071 VM_BUG_ON(!pte_none(*pte));
2072 set_pte_at(mm, haddr, pte, entry);
2073 pte_unmap(pte);
2074 }
2075 smp_wmb(); /* make pte visible before pmd */
2076 pmd_populate(mm, pmd, pgtable);
eef1b3ba
KS
2077}
2078
2079static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
ba988280 2080 unsigned long haddr, bool freeze)
eef1b3ba
KS
2081{
2082 struct mm_struct *mm = vma->vm_mm;
2083 struct page *page;
2084 pgtable_t pgtable;
423ac9af 2085 pmd_t old_pmd, _pmd;
a3cf988f 2086 bool young, write, soft_dirty, pmd_migration = false;
2ac015e2 2087 unsigned long addr;
eef1b3ba
KS
2088 int i;
2089
2090 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2091 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2092 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
84c3fc4e
ZY
2093 VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
2094 && !pmd_devmap(*pmd));
eef1b3ba
KS
2095
2096 count_vm_event(THP_SPLIT_PMD);
2097
d21b9e57
KS
2098 if (!vma_is_anonymous(vma)) {
2099 _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
953c66c2
AK
2100 /*
2101 * We are going to unmap this huge page. So
2102 * just go ahead and zap it
2103 */
2104 if (arch_needs_pgtable_deposit())
2105 zap_deposited_table(mm, pmd);
d21b9e57
KS
2106 if (vma_is_dax(vma))
2107 return;
2108 page = pmd_page(_pmd);
e1f1b157
HD
2109 if (!PageDirty(page) && pmd_dirty(_pmd))
2110 set_page_dirty(page);
d21b9e57
KS
2111 if (!PageReferenced(page) && pmd_young(_pmd))
2112 SetPageReferenced(page);
2113 page_remove_rmap(page, true);
2114 put_page(page);
fadae295 2115 add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
eef1b3ba
KS
2116 return;
2117 } else if (is_huge_zero_pmd(*pmd)) {
4645b9fe
JG
2118 /*
2119 * FIXME: Do we want to invalidate secondary mmu by calling
2120 * mmu_notifier_invalidate_range() see comments below inside
2121 * __split_huge_pmd() ?
2122 *
2123 * We are going from a zero huge page write protected to zero
2124 * small page also write protected so it does not seems useful
2125 * to invalidate secondary mmu at this time.
2126 */
eef1b3ba
KS
2127 return __split_huge_zero_page_pmd(vma, haddr, pmd);
2128 }
2129
423ac9af
AK
2130 /*
2131 * Up to this point the pmd is present and huge and userland has the
2132 * whole access to the hugepage during the split (which happens in
2133 * place). If we overwrite the pmd with the not-huge version pointing
2134 * to the pte here (which of course we could if all CPUs were bug
2135 * free), userland could trigger a small page size TLB miss on the
2136 * small sized TLB while the hugepage TLB entry is still established in
2137 * the huge TLB. Some CPU doesn't like that.
2138 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
2139 * 383 on page 93. Intel should be safe but is also warns that it's
2140 * only safe if the permission and cache attributes of the two entries
2141 * loaded in the two TLB is identical (which should be the case here).
2142 * But it is generally safer to never allow small and huge TLB entries
2143 * for the same virtual address to be loaded simultaneously. So instead
2144 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2145 * current pmd notpresent (atomically because here the pmd_trans_huge
2146 * must remain set at all times on the pmd until the split is complete
2147 * for this pmd), then we flush the SMP TLB and finally we write the
2148 * non-huge version of the pmd entry with pmd_populate.
2149 */
2150 old_pmd = pmdp_invalidate(vma, haddr, pmd);
2151
423ac9af 2152 pmd_migration = is_pmd_migration_entry(old_pmd);
2e83ee1d 2153 if (unlikely(pmd_migration)) {
84c3fc4e
ZY
2154 swp_entry_t entry;
2155
423ac9af 2156 entry = pmd_to_swp_entry(old_pmd);
84c3fc4e 2157 page = pfn_to_page(swp_offset(entry));
2e83ee1d
PX
2158 write = is_write_migration_entry(entry);
2159 young = false;
2160 soft_dirty = pmd_swp_soft_dirty(old_pmd);
2161 } else {
423ac9af 2162 page = pmd_page(old_pmd);
2e83ee1d
PX
2163 if (pmd_dirty(old_pmd))
2164 SetPageDirty(page);
2165 write = pmd_write(old_pmd);
2166 young = pmd_young(old_pmd);
2167 soft_dirty = pmd_soft_dirty(old_pmd);
2168 }
eef1b3ba 2169 VM_BUG_ON_PAGE(!page_count(page), page);
fe896d18 2170 page_ref_add(page, HPAGE_PMD_NR - 1);
eef1b3ba 2171
423ac9af
AK
2172 /*
2173 * Withdraw the table only after we mark the pmd entry invalid.
2174 * This's critical for some architectures (Power).
2175 */
eef1b3ba
KS
2176 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2177 pmd_populate(mm, &_pmd, pgtable);
2178
2ac015e2 2179 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
eef1b3ba
KS
2180 pte_t entry, *pte;
2181 /*
2182 * Note that NUMA hinting access restrictions are not
2183 * transferred to avoid any possibility of altering
2184 * permissions across VMAs.
2185 */
84c3fc4e 2186 if (freeze || pmd_migration) {
ba988280
KS
2187 swp_entry_t swp_entry;
2188 swp_entry = make_migration_entry(page + i, write);
2189 entry = swp_entry_to_pte(swp_entry);
804dd150
AA
2190 if (soft_dirty)
2191 entry = pte_swp_mksoft_dirty(entry);
ba988280 2192 } else {
6d2329f8 2193 entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
b8d3c4c3 2194 entry = maybe_mkwrite(entry, vma);
ba988280
KS
2195 if (!write)
2196 entry = pte_wrprotect(entry);
2197 if (!young)
2198 entry = pte_mkold(entry);
804dd150
AA
2199 if (soft_dirty)
2200 entry = pte_mksoft_dirty(entry);
ba988280 2201 }
2ac015e2 2202 pte = pte_offset_map(&_pmd, addr);
eef1b3ba 2203 BUG_ON(!pte_none(*pte));
2ac015e2 2204 set_pte_at(mm, addr, pte, entry);
eef1b3ba
KS
2205 atomic_inc(&page[i]._mapcount);
2206 pte_unmap(pte);
2207 }
2208
2209 /*
2210 * Set PG_double_map before dropping compound_mapcount to avoid
2211 * false-negative page_mapped().
2212 */
2213 if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
2214 for (i = 0; i < HPAGE_PMD_NR; i++)
2215 atomic_inc(&page[i]._mapcount);
2216 }
2217
2218 if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2219 /* Last compound_mapcount is gone. */
11fb9989 2220 __dec_node_page_state(page, NR_ANON_THPS);
eef1b3ba
KS
2221 if (TestClearPageDoubleMap(page)) {
2222 /* No need in mapcount reference anymore */
2223 for (i = 0; i < HPAGE_PMD_NR; i++)
2224 atomic_dec(&page[i]._mapcount);
2225 }
2226 }
2227
2228 smp_wmb(); /* make pte visible before pmd */
2229 pmd_populate(mm, pmd, pgtable);
e9b61f19
KS
2230
2231 if (freeze) {
2ac015e2 2232 for (i = 0; i < HPAGE_PMD_NR; i++) {
e9b61f19
KS
2233 page_remove_rmap(page + i, false);
2234 put_page(page + i);
2235 }
2236 }
eef1b3ba
KS
2237}
2238
2239void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
33f4751e 2240 unsigned long address, bool freeze, struct page *page)
eef1b3ba
KS
2241{
2242 spinlock_t *ptl;
ac46d4f3 2243 struct mmu_notifier_range range;
eef1b3ba 2244
ac46d4f3
JG
2245 mmu_notifier_range_init(&range, vma->vm_mm, address & HPAGE_PMD_MASK,
2246 (address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
2247 mmu_notifier_invalidate_range_start(&range);
2248 ptl = pmd_lock(vma->vm_mm, pmd);
33f4751e
NH
2249
2250 /*
2251 * If caller asks to setup a migration entries, we need a page to check
2252 * pmd against. Otherwise we can end up replacing wrong page.
2253 */
2254 VM_BUG_ON(freeze && !page);
2255 if (page && page != pmd_page(*pmd))
2256 goto out;
2257
5c7fb56e 2258 if (pmd_trans_huge(*pmd)) {
33f4751e 2259 page = pmd_page(*pmd);
5c7fb56e 2260 if (PageMlocked(page))
5f737714 2261 clear_page_mlock(page);
84c3fc4e 2262 } else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd)))
e90309c9 2263 goto out;
ac46d4f3 2264 __split_huge_pmd_locked(vma, pmd, range.start, freeze);
e90309c9 2265out:
eef1b3ba 2266 spin_unlock(ptl);
4645b9fe
JG
2267 /*
2268 * No need to double call mmu_notifier->invalidate_range() callback.
2269 * They are 3 cases to consider inside __split_huge_pmd_locked():
2270 * 1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
2271 * 2) __split_huge_zero_page_pmd() read only zero page and any write
2272 * fault will trigger a flush_notify before pointing to a new page
2273 * (it is fine if the secondary mmu keeps pointing to the old zero
2274 * page in the meantime)
2275 * 3) Split a huge pmd into pte pointing to the same page. No need
2276 * to invalidate secondary tlb entry they are all still valid.
2277 * any further changes to individual pte will notify. So no need
2278 * to call mmu_notifier->invalidate_range()
2279 */
ac46d4f3 2280 mmu_notifier_invalidate_range_only_end(&range);
eef1b3ba
KS
2281}
2282
fec89c10
KS
2283void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2284 bool freeze, struct page *page)
94fcc585 2285{
f72e7dcd 2286 pgd_t *pgd;
c2febafc 2287 p4d_t *p4d;
f72e7dcd 2288 pud_t *pud;
94fcc585
AA
2289 pmd_t *pmd;
2290
78ddc534 2291 pgd = pgd_offset(vma->vm_mm, address);
f72e7dcd
HD
2292 if (!pgd_present(*pgd))
2293 return;
2294
c2febafc
KS
2295 p4d = p4d_offset(pgd, address);
2296 if (!p4d_present(*p4d))
2297 return;
2298
2299 pud = pud_offset(p4d, address);
f72e7dcd
HD
2300 if (!pud_present(*pud))
2301 return;
2302
2303 pmd = pmd_offset(pud, address);
fec89c10 2304
33f4751e 2305 __split_huge_pmd(vma, pmd, address, freeze, page);
94fcc585
AA
2306}
2307
e1b9996b 2308void vma_adjust_trans_huge(struct vm_area_struct *vma,
94fcc585
AA
2309 unsigned long start,
2310 unsigned long end,
2311 long adjust_next)
2312{
2313 /*
2314 * If the new start address isn't hpage aligned and it could
2315 * previously contain an hugepage: check if we need to split
2316 * an huge pmd.
2317 */
2318 if (start & ~HPAGE_PMD_MASK &&
2319 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2320 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
fec89c10 2321 split_huge_pmd_address(vma, start, false, NULL);
94fcc585
AA
2322
2323 /*
2324 * If the new end address isn't hpage aligned and it could
2325 * previously contain an hugepage: check if we need to split
2326 * an huge pmd.
2327 */
2328 if (end & ~HPAGE_PMD_MASK &&
2329 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2330 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
fec89c10 2331 split_huge_pmd_address(vma, end, false, NULL);
94fcc585
AA
2332
2333 /*
2334 * If we're also updating the vma->vm_next->vm_start, if the new
2335 * vm_next->vm_start isn't page aligned and it could previously
2336 * contain an hugepage: check if we need to split an huge pmd.
2337 */
2338 if (adjust_next > 0) {
2339 struct vm_area_struct *next = vma->vm_next;
2340 unsigned long nstart = next->vm_start;
2341 nstart += adjust_next << PAGE_SHIFT;
2342 if (nstart & ~HPAGE_PMD_MASK &&
2343 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2344 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
fec89c10 2345 split_huge_pmd_address(next, nstart, false, NULL);
94fcc585
AA
2346 }
2347}
e9b61f19 2348
906f9cdf 2349static void unmap_page(struct page *page)
e9b61f19 2350{
baa355fd 2351 enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS |
c7ab0d2f 2352 TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD;
666e5a40 2353 bool unmap_success;
e9b61f19
KS
2354
2355 VM_BUG_ON_PAGE(!PageHead(page), page);
2356
baa355fd 2357 if (PageAnon(page))
b5ff8161 2358 ttu_flags |= TTU_SPLIT_FREEZE;
baa355fd 2359
666e5a40
MK
2360 unmap_success = try_to_unmap(page, ttu_flags);
2361 VM_BUG_ON_PAGE(!unmap_success, page);
e9b61f19
KS
2362}
2363
906f9cdf 2364static void remap_page(struct page *page)
e9b61f19 2365{
fec89c10 2366 int i;
ace71a19
KS
2367 if (PageTransHuge(page)) {
2368 remove_migration_ptes(page, page, true);
2369 } else {
2370 for (i = 0; i < HPAGE_PMD_NR; i++)
2371 remove_migration_ptes(page + i, page + i, true);
2372 }
e9b61f19
KS
2373}
2374
8df651c7 2375static void __split_huge_page_tail(struct page *head, int tail,
e9b61f19
KS
2376 struct lruvec *lruvec, struct list_head *list)
2377{
e9b61f19
KS
2378 struct page *page_tail = head + tail;
2379
8df651c7 2380 VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
e9b61f19
KS
2381
2382 /*
605ca5ed
KK
2383 * Clone page flags before unfreezing refcount.
2384 *
2385 * After successful get_page_unless_zero() might follow flags change,
2386 * for exmaple lock_page() which set PG_waiters.
e9b61f19 2387 */
e9b61f19
KS
2388 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2389 page_tail->flags |= (head->flags &
2390 ((1L << PG_referenced) |
2391 (1L << PG_swapbacked) |
38d8b4e6 2392 (1L << PG_swapcache) |
e9b61f19
KS
2393 (1L << PG_mlocked) |
2394 (1L << PG_uptodate) |
2395 (1L << PG_active) |
1899ad18 2396 (1L << PG_workingset) |
e9b61f19 2397 (1L << PG_locked) |
b8d3c4c3
MK
2398 (1L << PG_unevictable) |
2399 (1L << PG_dirty)));
e9b61f19 2400
173d9d9f
HD
2401 /* ->mapping in first tail page is compound_mapcount */
2402 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2403 page_tail);
2404 page_tail->mapping = head->mapping;
2405 page_tail->index = head->index + tail;
2406
605ca5ed 2407 /* Page flags must be visible before we make the page non-compound. */
e9b61f19
KS
2408 smp_wmb();
2409
605ca5ed
KK
2410 /*
2411 * Clear PageTail before unfreezing page refcount.
2412 *
2413 * After successful get_page_unless_zero() might follow put_page()
2414 * which needs correct compound_head().
2415 */
e9b61f19
KS
2416 clear_compound_head(page_tail);
2417
605ca5ed
KK
2418 /* Finally unfreeze refcount. Additional reference from page cache. */
2419 page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
2420 PageSwapCache(head)));
2421
e9b61f19
KS
2422 if (page_is_young(head))
2423 set_page_young(page_tail);
2424 if (page_is_idle(head))
2425 set_page_idle(page_tail);
2426
e9b61f19 2427 page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
94723aaf
MH
2428
2429 /*
2430 * always add to the tail because some iterators expect new
2431 * pages to show after the currently processed elements - e.g.
2432 * migrate_pages
2433 */
e9b61f19 2434 lru_add_page_tail(head, page_tail, lruvec, list);
e9b61f19
KS
2435}
2436
baa355fd 2437static void __split_huge_page(struct page *page, struct list_head *list,
006d3ff2 2438 pgoff_t end, unsigned long flags)
e9b61f19
KS
2439{
2440 struct page *head = compound_head(page);
2441 struct zone *zone = page_zone(head);
2442 struct lruvec *lruvec;
8df651c7 2443 int i;
e9b61f19 2444
599d0c95 2445 lruvec = mem_cgroup_page_lruvec(head, zone->zone_pgdat);
e9b61f19
KS
2446
2447 /* complete memcg works before add pages to LRU */
2448 mem_cgroup_split_huge_fixup(head);
2449
baa355fd 2450 for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
8df651c7 2451 __split_huge_page_tail(head, i, lruvec, list);
baa355fd
KS
2452 /* Some pages can be beyond i_size: drop them from page cache */
2453 if (head[i].index >= end) {
2d077d4b 2454 ClearPageDirty(head + i);
baa355fd 2455 __delete_from_page_cache(head + i, NULL);
800d8c63
KS
2456 if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
2457 shmem_uncharge(head->mapping->host, 1);
baa355fd
KS
2458 put_page(head + i);
2459 }
2460 }
e9b61f19
KS
2461
2462 ClearPageCompound(head);
baa355fd
KS
2463 /* See comment in __split_huge_page_tail() */
2464 if (PageAnon(head)) {
aa5dc07f 2465 /* Additional pin to swap cache */
38d8b4e6
HY
2466 if (PageSwapCache(head))
2467 page_ref_add(head, 2);
2468 else
2469 page_ref_inc(head);
baa355fd 2470 } else {
aa5dc07f 2471 /* Additional pin to page cache */
baa355fd 2472 page_ref_add(head, 2);
b93b0163 2473 xa_unlock(&head->mapping->i_pages);
baa355fd
KS
2474 }
2475
a52633d8 2476 spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
e9b61f19 2477
906f9cdf 2478 remap_page(head);
e9b61f19
KS
2479
2480 for (i = 0; i < HPAGE_PMD_NR; i++) {
2481 struct page *subpage = head + i;
2482 if (subpage == page)
2483 continue;
2484 unlock_page(subpage);
2485
2486 /*
2487 * Subpages may be freed if there wasn't any mapping
2488 * like if add_to_swap() is running on a lru page that
2489 * had its mapping zapped. And freeing these pages
2490 * requires taking the lru_lock so we do the put_page
2491 * of the tail pages after the split is complete.
2492 */
2493 put_page(subpage);
2494 }
2495}
2496
b20ce5e0
KS
2497int total_mapcount(struct page *page)
2498{
dd78fedd 2499 int i, compound, ret;
b20ce5e0
KS
2500
2501 VM_BUG_ON_PAGE(PageTail(page), page);
2502
2503 if (likely(!PageCompound(page)))
2504 return atomic_read(&page->_mapcount) + 1;
2505
dd78fedd 2506 compound = compound_mapcount(page);
b20ce5e0 2507 if (PageHuge(page))
dd78fedd
KS
2508 return compound;
2509 ret = compound;
b20ce5e0
KS
2510 for (i = 0; i < HPAGE_PMD_NR; i++)
2511 ret += atomic_read(&page[i]._mapcount) + 1;
dd78fedd
KS
2512 /* File pages has compound_mapcount included in _mapcount */
2513 if (!PageAnon(page))
2514 return ret - compound * HPAGE_PMD_NR;
b20ce5e0
KS
2515 if (PageDoubleMap(page))
2516 ret -= HPAGE_PMD_NR;
2517 return ret;
2518}
2519
6d0a07ed
AA
2520/*
2521 * This calculates accurately how many mappings a transparent hugepage
2522 * has (unlike page_mapcount() which isn't fully accurate). This full
2523 * accuracy is primarily needed to know if copy-on-write faults can
2524 * reuse the page and change the mapping to read-write instead of
2525 * copying them. At the same time this returns the total_mapcount too.
2526 *
2527 * The function returns the highest mapcount any one of the subpages
2528 * has. If the return value is one, even if different processes are
2529 * mapping different subpages of the transparent hugepage, they can
2530 * all reuse it, because each process is reusing a different subpage.
2531 *
2532 * The total_mapcount is instead counting all virtual mappings of the
2533 * subpages. If the total_mapcount is equal to "one", it tells the
2534 * caller all mappings belong to the same "mm" and in turn the
2535 * anon_vma of the transparent hugepage can become the vma->anon_vma
2536 * local one as no other process may be mapping any of the subpages.
2537 *
2538 * It would be more accurate to replace page_mapcount() with
2539 * page_trans_huge_mapcount(), however we only use
2540 * page_trans_huge_mapcount() in the copy-on-write faults where we
2541 * need full accuracy to avoid breaking page pinning, because
2542 * page_trans_huge_mapcount() is slower than page_mapcount().
2543 */
2544int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
2545{
2546 int i, ret, _total_mapcount, mapcount;
2547
2548 /* hugetlbfs shouldn't call it */
2549 VM_BUG_ON_PAGE(PageHuge(page), page);
2550
2551 if (likely(!PageTransCompound(page))) {
2552 mapcount = atomic_read(&page->_mapcount) + 1;
2553 if (total_mapcount)
2554 *total_mapcount = mapcount;
2555 return mapcount;
2556 }
2557
2558 page = compound_head(page);
2559
2560 _total_mapcount = ret = 0;
2561 for (i = 0; i < HPAGE_PMD_NR; i++) {
2562 mapcount = atomic_read(&page[i]._mapcount) + 1;
2563 ret = max(ret, mapcount);
2564 _total_mapcount += mapcount;
2565 }
2566 if (PageDoubleMap(page)) {
2567 ret -= 1;
2568 _total_mapcount -= HPAGE_PMD_NR;
2569 }
2570 mapcount = compound_mapcount(page);
2571 ret += mapcount;
2572 _total_mapcount += mapcount;
2573 if (total_mapcount)
2574 *total_mapcount = _total_mapcount;
2575 return ret;
2576}
2577
b8f593cd
HY
2578/* Racy check whether the huge page can be split */
2579bool can_split_huge_page(struct page *page, int *pextra_pins)
2580{
2581 int extra_pins;
2582
aa5dc07f 2583 /* Additional pins from page cache */
b8f593cd
HY
2584 if (PageAnon(page))
2585 extra_pins = PageSwapCache(page) ? HPAGE_PMD_NR : 0;
2586 else
2587 extra_pins = HPAGE_PMD_NR;
2588 if (pextra_pins)
2589 *pextra_pins = extra_pins;
2590 return total_mapcount(page) == page_count(page) - extra_pins - 1;
2591}
2592
e9b61f19
KS
2593/*
2594 * This function splits huge page into normal pages. @page can point to any
2595 * subpage of huge page to split. Split doesn't change the position of @page.
2596 *
2597 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2598 * The huge page must be locked.
2599 *
2600 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2601 *
2602 * Both head page and tail pages will inherit mapping, flags, and so on from
2603 * the hugepage.
2604 *
2605 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2606 * they are not mapped.
2607 *
2608 * Returns 0 if the hugepage is split successfully.
2609 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2610 * us.
2611 */
2612int split_huge_page_to_list(struct page *page, struct list_head *list)
2613{
2614 struct page *head = compound_head(page);
a3d0a918 2615 struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
baa355fd
KS
2616 struct anon_vma *anon_vma = NULL;
2617 struct address_space *mapping = NULL;
2618 int count, mapcount, extra_pins, ret;
d9654322 2619 bool mlocked;
0b9b6fff 2620 unsigned long flags;
006d3ff2 2621 pgoff_t end;
e9b61f19
KS
2622
2623 VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
e9b61f19 2624 VM_BUG_ON_PAGE(!PageLocked(page), page);
e9b61f19
KS
2625 VM_BUG_ON_PAGE(!PageCompound(page), page);
2626
59807685
HY
2627 if (PageWriteback(page))
2628 return -EBUSY;
2629
baa355fd
KS
2630 if (PageAnon(head)) {
2631 /*
2632 * The caller does not necessarily hold an mmap_sem that would
2633 * prevent the anon_vma disappearing so we first we take a
2634 * reference to it and then lock the anon_vma for write. This
2635 * is similar to page_lock_anon_vma_read except the write lock
2636 * is taken to serialise against parallel split or collapse
2637 * operations.
2638 */
2639 anon_vma = page_get_anon_vma(head);
2640 if (!anon_vma) {
2641 ret = -EBUSY;
2642 goto out;
2643 }
006d3ff2 2644 end = -1;
baa355fd
KS
2645 mapping = NULL;
2646 anon_vma_lock_write(anon_vma);
2647 } else {
2648 mapping = head->mapping;
2649
2650 /* Truncated ? */
2651 if (!mapping) {
2652 ret = -EBUSY;
2653 goto out;
2654 }
2655
baa355fd
KS
2656 anon_vma = NULL;
2657 i_mmap_lock_read(mapping);
006d3ff2
HD
2658
2659 /*
2660 *__split_huge_page() may need to trim off pages beyond EOF:
2661 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
2662 * which cannot be nested inside the page tree lock. So note
2663 * end now: i_size itself may be changed at any moment, but
2664 * head page lock is good enough to serialize the trimming.
2665 */
2666 end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
e9b61f19 2667 }
e9b61f19
KS
2668
2669 /*
906f9cdf 2670 * Racy check if we can split the page, before unmap_page() will
e9b61f19
KS
2671 * split PMDs
2672 */
b8f593cd 2673 if (!can_split_huge_page(head, &extra_pins)) {
e9b61f19
KS
2674 ret = -EBUSY;
2675 goto out_unlock;
2676 }
2677
d9654322 2678 mlocked = PageMlocked(page);
906f9cdf 2679 unmap_page(head);
e9b61f19
KS
2680 VM_BUG_ON_PAGE(compound_mapcount(head), head);
2681
d9654322
KS
2682 /* Make sure the page is not on per-CPU pagevec as it takes pin */
2683 if (mlocked)
2684 lru_add_drain();
2685
baa355fd 2686 /* prevent PageLRU to go away from under us, and freeze lru stats */
a52633d8 2687 spin_lock_irqsave(zone_lru_lock(page_zone(head)), flags);
baa355fd
KS
2688
2689 if (mapping) {
aa5dc07f 2690 XA_STATE(xas, &mapping->i_pages, page_index(head));
baa355fd 2691
baa355fd 2692 /*
aa5dc07f 2693 * Check if the head page is present in page cache.
baa355fd
KS
2694 * We assume all tail are present too, if head is there.
2695 */
aa5dc07f
MW
2696 xa_lock(&mapping->i_pages);
2697 if (xas_load(&xas) != head)
baa355fd
KS
2698 goto fail;
2699 }
2700
0139aa7b 2701 /* Prevent deferred_split_scan() touching ->_refcount */
baa355fd 2702 spin_lock(&pgdata->split_queue_lock);
e9b61f19
KS
2703 count = page_count(head);
2704 mapcount = total_mapcount(head);
baa355fd 2705 if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
9a982250 2706 if (!list_empty(page_deferred_list(head))) {
a3d0a918 2707 pgdata->split_queue_len--;
9a982250
KS
2708 list_del(page_deferred_list(head));
2709 }
65c45377 2710 if (mapping)
11fb9989 2711 __dec_node_page_state(page, NR_SHMEM_THPS);
baa355fd 2712 spin_unlock(&pgdata->split_queue_lock);
006d3ff2 2713 __split_huge_page(page, list, end, flags);
59807685
HY
2714 if (PageSwapCache(head)) {
2715 swp_entry_t entry = { .val = page_private(head) };
2716
2717 ret = split_swap_cluster(entry);
2718 } else
2719 ret = 0;
e9b61f19 2720 } else {
baa355fd
KS
2721 if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
2722 pr_alert("total_mapcount: %u, page_count(): %u\n",
2723 mapcount, count);
2724 if (PageTail(page))
2725 dump_page(head, NULL);
2726 dump_page(page, "total_mapcount(head) > 0");
2727 BUG();
2728 }
2729 spin_unlock(&pgdata->split_queue_lock);
2730fail: if (mapping)
b93b0163 2731 xa_unlock(&mapping->i_pages);
a52633d8 2732 spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
906f9cdf 2733 remap_page(head);
e9b61f19
KS
2734 ret = -EBUSY;
2735 }
2736
2737out_unlock:
baa355fd
KS
2738 if (anon_vma) {
2739 anon_vma_unlock_write(anon_vma);
2740 put_anon_vma(anon_vma);
2741 }
2742 if (mapping)
2743 i_mmap_unlock_read(mapping);
e9b61f19
KS
2744out:
2745 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2746 return ret;
2747}
9a982250
KS
2748
2749void free_transhuge_page(struct page *page)
2750{
a3d0a918 2751 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
9a982250
KS
2752 unsigned long flags;
2753
a3d0a918 2754 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
9a982250 2755 if (!list_empty(page_deferred_list(page))) {
a3d0a918 2756 pgdata->split_queue_len--;
9a982250
KS
2757 list_del(page_deferred_list(page));
2758 }
a3d0a918 2759 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
9a982250
KS
2760 free_compound_page(page);
2761}
2762
2763void deferred_split_huge_page(struct page *page)
2764{
a3d0a918 2765 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
9a982250
KS
2766 unsigned long flags;
2767
2768 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2769
a3d0a918 2770 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
9a982250 2771 if (list_empty(page_deferred_list(page))) {
f9719a03 2772 count_vm_event(THP_DEFERRED_SPLIT_PAGE);
a3d0a918
KS
2773 list_add_tail(page_deferred_list(page), &pgdata->split_queue);
2774 pgdata->split_queue_len++;
9a982250 2775 }
a3d0a918 2776 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
9a982250
KS
2777}
2778
2779static unsigned long deferred_split_count(struct shrinker *shrink,
2780 struct shrink_control *sc)
2781{
a3d0a918 2782 struct pglist_data *pgdata = NODE_DATA(sc->nid);
6aa7de05 2783 return READ_ONCE(pgdata->split_queue_len);
9a982250
KS
2784}
2785
2786static unsigned long deferred_split_scan(struct shrinker *shrink,
2787 struct shrink_control *sc)
2788{
a3d0a918 2789 struct pglist_data *pgdata = NODE_DATA(sc->nid);
9a982250
KS
2790 unsigned long flags;
2791 LIST_HEAD(list), *pos, *next;
2792 struct page *page;
2793 int split = 0;
2794
a3d0a918 2795 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
9a982250 2796 /* Take pin on all head pages to avoid freeing them under us */
ae026204 2797 list_for_each_safe(pos, next, &pgdata->split_queue) {
9a982250
KS
2798 page = list_entry((void *)pos, struct page, mapping);
2799 page = compound_head(page);
e3ae1953
KS
2800 if (get_page_unless_zero(page)) {
2801 list_move(page_deferred_list(page), &list);
2802 } else {
2803 /* We lost race with put_compound_page() */
9a982250 2804 list_del_init(page_deferred_list(page));
a3d0a918 2805 pgdata->split_queue_len--;
9a982250 2806 }
e3ae1953
KS
2807 if (!--sc->nr_to_scan)
2808 break;
9a982250 2809 }
a3d0a918 2810 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
9a982250
KS
2811
2812 list_for_each_safe(pos, next, &list) {
2813 page = list_entry((void *)pos, struct page, mapping);
fa41b900
KS
2814 if (!trylock_page(page))
2815 goto next;
9a982250
KS
2816 /* split_huge_page() removes page from list on success */
2817 if (!split_huge_page(page))
2818 split++;
2819 unlock_page(page);
fa41b900 2820next:
9a982250
KS
2821 put_page(page);
2822 }
2823
a3d0a918
KS
2824 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2825 list_splice_tail(&list, &pgdata->split_queue);
2826 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
9a982250 2827
cb8d68ec
KS
2828 /*
2829 * Stop shrinker if we didn't split any page, but the queue is empty.
2830 * This can happen if pages were freed under us.
2831 */
2832 if (!split && list_empty(&pgdata->split_queue))
2833 return SHRINK_STOP;
2834 return split;
9a982250
KS
2835}
2836
2837static struct shrinker deferred_split_shrinker = {
2838 .count_objects = deferred_split_count,
2839 .scan_objects = deferred_split_scan,
2840 .seeks = DEFAULT_SEEKS,
a3d0a918 2841 .flags = SHRINKER_NUMA_AWARE,
9a982250 2842};
49071d43
KS
2843
2844#ifdef CONFIG_DEBUG_FS
2845static int split_huge_pages_set(void *data, u64 val)
2846{
2847 struct zone *zone;
2848 struct page *page;
2849 unsigned long pfn, max_zone_pfn;
2850 unsigned long total = 0, split = 0;
2851
2852 if (val != 1)
2853 return -EINVAL;
2854
2855 for_each_populated_zone(zone) {
2856 max_zone_pfn = zone_end_pfn(zone);
2857 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2858 if (!pfn_valid(pfn))
2859 continue;
2860
2861 page = pfn_to_page(pfn);
2862 if (!get_page_unless_zero(page))
2863 continue;
2864
2865 if (zone != page_zone(page))
2866 goto next;
2867
baa355fd 2868 if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
49071d43
KS
2869 goto next;
2870
2871 total++;
2872 lock_page(page);
2873 if (!split_huge_page(page))
2874 split++;
2875 unlock_page(page);
2876next:
2877 put_page(page);
2878 }
2879 }
2880
145bdaa1 2881 pr_info("%lu of %lu THP split\n", split, total);
49071d43
KS
2882
2883 return 0;
2884}
2885DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
2886 "%llu\n");
2887
2888static int __init split_huge_pages_debugfs(void)
2889{
d9f7979c
GKH
2890 debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
2891 &split_huge_pages_fops);
49071d43
KS
2892 return 0;
2893}
2894late_initcall(split_huge_pages_debugfs);
2895#endif
616b8371
ZY
2896
2897#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2898void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
2899 struct page *page)
2900{
2901 struct vm_area_struct *vma = pvmw->vma;
2902 struct mm_struct *mm = vma->vm_mm;
2903 unsigned long address = pvmw->address;
2904 pmd_t pmdval;
2905 swp_entry_t entry;
ab6e3d09 2906 pmd_t pmdswp;
616b8371
ZY
2907
2908 if (!(pvmw->pmd && !pvmw->pte))
2909 return;
2910
616b8371
ZY
2911 flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
2912 pmdval = *pvmw->pmd;
2913 pmdp_invalidate(vma, address, pvmw->pmd);
2914 if (pmd_dirty(pmdval))
2915 set_page_dirty(page);
2916 entry = make_migration_entry(page, pmd_write(pmdval));
ab6e3d09
NH
2917 pmdswp = swp_entry_to_pmd(entry);
2918 if (pmd_soft_dirty(pmdval))
2919 pmdswp = pmd_swp_mksoft_dirty(pmdswp);
2920 set_pmd_at(mm, address, pvmw->pmd, pmdswp);
616b8371
ZY
2921 page_remove_rmap(page, true);
2922 put_page(page);
616b8371
ZY
2923}
2924
2925void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
2926{
2927 struct vm_area_struct *vma = pvmw->vma;
2928 struct mm_struct *mm = vma->vm_mm;
2929 unsigned long address = pvmw->address;
2930 unsigned long mmun_start = address & HPAGE_PMD_MASK;
2931 pmd_t pmde;
2932 swp_entry_t entry;
2933
2934 if (!(pvmw->pmd && !pvmw->pte))
2935 return;
2936
2937 entry = pmd_to_swp_entry(*pvmw->pmd);
2938 get_page(new);
2939 pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
ab6e3d09
NH
2940 if (pmd_swp_soft_dirty(*pvmw->pmd))
2941 pmde = pmd_mksoft_dirty(pmde);
616b8371 2942 if (is_write_migration_entry(entry))
f55e1014 2943 pmde = maybe_pmd_mkwrite(pmde, vma);
616b8371
ZY
2944
2945 flush_cache_range(vma, mmun_start, mmun_start + HPAGE_PMD_SIZE);
e71769ae
NH
2946 if (PageAnon(new))
2947 page_add_anon_rmap(new, vma, mmun_start, true);
2948 else
2949 page_add_file_rmap(new, true);
616b8371 2950 set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
e125fe40 2951 if ((vma->vm_flags & VM_LOCKED) && !PageDoubleMap(new))
616b8371
ZY
2952 mlock_vma_page(new);
2953 update_mmu_cache_pmd(vma, address, pvmw->pmd);
2954}
2955#endif