Commit | Line | Data |
---|---|---|
71e3aac0 AA |
1 | /* |
2 | * Copyright (C) 2009 Red Hat, Inc. | |
3 | * | |
4 | * This work is licensed under the terms of the GNU GPL, version 2. See | |
5 | * the COPYING file in the top-level directory. | |
6 | */ | |
7 | ||
ae3a8c1c AM |
8 | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
9 | ||
71e3aac0 AA |
10 | #include <linux/mm.h> |
11 | #include <linux/sched.h> | |
12 | #include <linux/highmem.h> | |
13 | #include <linux/hugetlb.h> | |
14 | #include <linux/mmu_notifier.h> | |
15 | #include <linux/rmap.h> | |
16 | #include <linux/swap.h> | |
97ae1749 | 17 | #include <linux/shrinker.h> |
ba76149f AA |
18 | #include <linux/mm_inline.h> |
19 | #include <linux/kthread.h> | |
20 | #include <linux/khugepaged.h> | |
878aee7d | 21 | #include <linux/freezer.h> |
a664b2d8 | 22 | #include <linux/mman.h> |
325adeb5 | 23 | #include <linux/pagemap.h> |
4daae3b4 | 24 | #include <linux/migrate.h> |
43b5fbbd | 25 | #include <linux/hashtable.h> |
97ae1749 | 26 | |
71e3aac0 AA |
27 | #include <asm/tlb.h> |
28 | #include <asm/pgalloc.h> | |
29 | #include "internal.h" | |
30 | ||
ba76149f | 31 | /* |
8bfa3f9a JW |
32 | * By default transparent hugepage support is disabled in order that avoid |
33 | * to risk increase the memory footprint of applications without a guaranteed | |
34 | * benefit. When transparent hugepage support is enabled, is for all mappings, | |
35 | * and khugepaged scans all mappings. | |
36 | * Defrag is invoked by khugepaged hugepage allocations and by page faults | |
37 | * for all hugepage allocations. | |
ba76149f | 38 | */ |
71e3aac0 | 39 | unsigned long transparent_hugepage_flags __read_mostly = |
13ece886 | 40 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS |
ba76149f | 41 | (1<<TRANSPARENT_HUGEPAGE_FLAG)| |
13ece886 AA |
42 | #endif |
43 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE | |
44 | (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)| | |
45 | #endif | |
d39d33c3 | 46 | (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)| |
79da5407 KS |
47 | (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)| |
48 | (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG); | |
ba76149f AA |
49 | |
50 | /* default scan 8*512 pte (or vmas) every 30 second */ | |
51 | static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8; | |
52 | static unsigned int khugepaged_pages_collapsed; | |
53 | static unsigned int khugepaged_full_scans; | |
54 | static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000; | |
55 | /* during fragmentation poll the hugepage allocator once every minute */ | |
56 | static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000; | |
57 | static struct task_struct *khugepaged_thread __read_mostly; | |
58 | static DEFINE_MUTEX(khugepaged_mutex); | |
59 | static DEFINE_SPINLOCK(khugepaged_mm_lock); | |
60 | static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait); | |
61 | /* | |
62 | * default collapse hugepages if there is at least one pte mapped like | |
63 | * it would have happened if the vma was large enough during page | |
64 | * fault. | |
65 | */ | |
66 | static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1; | |
67 | ||
68 | static int khugepaged(void *none); | |
ba76149f | 69 | static int khugepaged_slab_init(void); |
65ebb64f | 70 | static void khugepaged_slab_exit(void); |
ba76149f | 71 | |
43b5fbbd SL |
72 | #define MM_SLOTS_HASH_BITS 10 |
73 | static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS); | |
74 | ||
ba76149f AA |
75 | static struct kmem_cache *mm_slot_cache __read_mostly; |
76 | ||
77 | /** | |
78 | * struct mm_slot - hash lookup from mm to mm_slot | |
79 | * @hash: hash collision list | |
80 | * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head | |
81 | * @mm: the mm that this information is valid for | |
82 | */ | |
83 | struct mm_slot { | |
84 | struct hlist_node hash; | |
85 | struct list_head mm_node; | |
86 | struct mm_struct *mm; | |
87 | }; | |
88 | ||
89 | /** | |
90 | * struct khugepaged_scan - cursor for scanning | |
91 | * @mm_head: the head of the mm list to scan | |
92 | * @mm_slot: the current mm_slot we are scanning | |
93 | * @address: the next address inside that to be scanned | |
94 | * | |
95 | * There is only the one khugepaged_scan instance of this cursor structure. | |
96 | */ | |
97 | struct khugepaged_scan { | |
98 | struct list_head mm_head; | |
99 | struct mm_slot *mm_slot; | |
100 | unsigned long address; | |
2f1da642 HS |
101 | }; |
102 | static struct khugepaged_scan khugepaged_scan = { | |
ba76149f AA |
103 | .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head), |
104 | }; | |
105 | ||
f000565a AA |
106 | |
107 | static int set_recommended_min_free_kbytes(void) | |
108 | { | |
109 | struct zone *zone; | |
110 | int nr_zones = 0; | |
111 | unsigned long recommended_min; | |
f000565a | 112 | |
f000565a AA |
113 | for_each_populated_zone(zone) |
114 | nr_zones++; | |
115 | ||
116 | /* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */ | |
117 | recommended_min = pageblock_nr_pages * nr_zones * 2; | |
118 | ||
119 | /* | |
120 | * Make sure that on average at least two pageblocks are almost free | |
121 | * of another type, one for a migratetype to fall back to and a | |
122 | * second to avoid subsequent fallbacks of other types There are 3 | |
123 | * MIGRATE_TYPES we care about. | |
124 | */ | |
125 | recommended_min += pageblock_nr_pages * nr_zones * | |
126 | MIGRATE_PCPTYPES * MIGRATE_PCPTYPES; | |
127 | ||
128 | /* don't ever allow to reserve more than 5% of the lowmem */ | |
129 | recommended_min = min(recommended_min, | |
130 | (unsigned long) nr_free_buffer_pages() / 20); | |
131 | recommended_min <<= (PAGE_SHIFT-10); | |
132 | ||
42aa83cb HP |
133 | if (recommended_min > min_free_kbytes) { |
134 | if (user_min_free_kbytes >= 0) | |
135 | pr_info("raising min_free_kbytes from %d to %lu " | |
136 | "to help transparent hugepage allocations\n", | |
137 | min_free_kbytes, recommended_min); | |
138 | ||
f000565a | 139 | min_free_kbytes = recommended_min; |
42aa83cb | 140 | } |
f000565a AA |
141 | setup_per_zone_wmarks(); |
142 | return 0; | |
143 | } | |
f000565a | 144 | |
79553da2 | 145 | static int start_stop_khugepaged(void) |
ba76149f AA |
146 | { |
147 | int err = 0; | |
148 | if (khugepaged_enabled()) { | |
ba76149f AA |
149 | if (!khugepaged_thread) |
150 | khugepaged_thread = kthread_run(khugepaged, NULL, | |
151 | "khugepaged"); | |
152 | if (unlikely(IS_ERR(khugepaged_thread))) { | |
ae3a8c1c | 153 | pr_err("khugepaged: kthread_run(khugepaged) failed\n"); |
ba76149f AA |
154 | err = PTR_ERR(khugepaged_thread); |
155 | khugepaged_thread = NULL; | |
79553da2 | 156 | goto fail; |
ba76149f | 157 | } |
911891af XG |
158 | |
159 | if (!list_empty(&khugepaged_scan.mm_head)) | |
ba76149f | 160 | wake_up_interruptible(&khugepaged_wait); |
f000565a AA |
161 | |
162 | set_recommended_min_free_kbytes(); | |
911891af | 163 | } else if (khugepaged_thread) { |
911891af XG |
164 | kthread_stop(khugepaged_thread); |
165 | khugepaged_thread = NULL; | |
166 | } | |
79553da2 | 167 | fail: |
ba76149f AA |
168 | return err; |
169 | } | |
71e3aac0 | 170 | |
97ae1749 | 171 | static atomic_t huge_zero_refcount; |
56873f43 | 172 | struct page *huge_zero_page __read_mostly; |
4a6c1297 | 173 | |
97ae1749 KS |
174 | static inline bool is_huge_zero_pmd(pmd_t pmd) |
175 | { | |
5918d10a | 176 | return is_huge_zero_page(pmd_page(pmd)); |
97ae1749 KS |
177 | } |
178 | ||
5918d10a | 179 | static struct page *get_huge_zero_page(void) |
97ae1749 KS |
180 | { |
181 | struct page *zero_page; | |
182 | retry: | |
183 | if (likely(atomic_inc_not_zero(&huge_zero_refcount))) | |
4db0c3c2 | 184 | return READ_ONCE(huge_zero_page); |
97ae1749 KS |
185 | |
186 | zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE, | |
4a6c1297 | 187 | HPAGE_PMD_ORDER); |
d8a8e1f0 KS |
188 | if (!zero_page) { |
189 | count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED); | |
5918d10a | 190 | return NULL; |
d8a8e1f0 KS |
191 | } |
192 | count_vm_event(THP_ZERO_PAGE_ALLOC); | |
97ae1749 | 193 | preempt_disable(); |
5918d10a | 194 | if (cmpxchg(&huge_zero_page, NULL, zero_page)) { |
97ae1749 | 195 | preempt_enable(); |
5ddacbe9 | 196 | __free_pages(zero_page, compound_order(zero_page)); |
97ae1749 KS |
197 | goto retry; |
198 | } | |
199 | ||
200 | /* We take additional reference here. It will be put back by shrinker */ | |
201 | atomic_set(&huge_zero_refcount, 2); | |
202 | preempt_enable(); | |
4db0c3c2 | 203 | return READ_ONCE(huge_zero_page); |
4a6c1297 KS |
204 | } |
205 | ||
97ae1749 | 206 | static void put_huge_zero_page(void) |
4a6c1297 | 207 | { |
97ae1749 KS |
208 | /* |
209 | * Counter should never go to zero here. Only shrinker can put | |
210 | * last reference. | |
211 | */ | |
212 | BUG_ON(atomic_dec_and_test(&huge_zero_refcount)); | |
4a6c1297 KS |
213 | } |
214 | ||
48896466 GC |
215 | static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink, |
216 | struct shrink_control *sc) | |
4a6c1297 | 217 | { |
48896466 GC |
218 | /* we can free zero page only if last reference remains */ |
219 | return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0; | |
220 | } | |
97ae1749 | 221 | |
48896466 GC |
222 | static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink, |
223 | struct shrink_control *sc) | |
224 | { | |
97ae1749 | 225 | if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) { |
5918d10a KS |
226 | struct page *zero_page = xchg(&huge_zero_page, NULL); |
227 | BUG_ON(zero_page == NULL); | |
5ddacbe9 | 228 | __free_pages(zero_page, compound_order(zero_page)); |
48896466 | 229 | return HPAGE_PMD_NR; |
97ae1749 KS |
230 | } |
231 | ||
232 | return 0; | |
4a6c1297 KS |
233 | } |
234 | ||
97ae1749 | 235 | static struct shrinker huge_zero_page_shrinker = { |
48896466 GC |
236 | .count_objects = shrink_huge_zero_page_count, |
237 | .scan_objects = shrink_huge_zero_page_scan, | |
97ae1749 KS |
238 | .seeks = DEFAULT_SEEKS, |
239 | }; | |
240 | ||
71e3aac0 | 241 | #ifdef CONFIG_SYSFS |
ba76149f | 242 | |
71e3aac0 AA |
243 | static ssize_t double_flag_show(struct kobject *kobj, |
244 | struct kobj_attribute *attr, char *buf, | |
245 | enum transparent_hugepage_flag enabled, | |
246 | enum transparent_hugepage_flag req_madv) | |
247 | { | |
248 | if (test_bit(enabled, &transparent_hugepage_flags)) { | |
249 | VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags)); | |
250 | return sprintf(buf, "[always] madvise never\n"); | |
251 | } else if (test_bit(req_madv, &transparent_hugepage_flags)) | |
252 | return sprintf(buf, "always [madvise] never\n"); | |
253 | else | |
254 | return sprintf(buf, "always madvise [never]\n"); | |
255 | } | |
256 | static ssize_t double_flag_store(struct kobject *kobj, | |
257 | struct kobj_attribute *attr, | |
258 | const char *buf, size_t count, | |
259 | enum transparent_hugepage_flag enabled, | |
260 | enum transparent_hugepage_flag req_madv) | |
261 | { | |
262 | if (!memcmp("always", buf, | |
263 | min(sizeof("always")-1, count))) { | |
264 | set_bit(enabled, &transparent_hugepage_flags); | |
265 | clear_bit(req_madv, &transparent_hugepage_flags); | |
266 | } else if (!memcmp("madvise", buf, | |
267 | min(sizeof("madvise")-1, count))) { | |
268 | clear_bit(enabled, &transparent_hugepage_flags); | |
269 | set_bit(req_madv, &transparent_hugepage_flags); | |
270 | } else if (!memcmp("never", buf, | |
271 | min(sizeof("never")-1, count))) { | |
272 | clear_bit(enabled, &transparent_hugepage_flags); | |
273 | clear_bit(req_madv, &transparent_hugepage_flags); | |
274 | } else | |
275 | return -EINVAL; | |
276 | ||
277 | return count; | |
278 | } | |
279 | ||
280 | static ssize_t enabled_show(struct kobject *kobj, | |
281 | struct kobj_attribute *attr, char *buf) | |
282 | { | |
283 | return double_flag_show(kobj, attr, buf, | |
284 | TRANSPARENT_HUGEPAGE_FLAG, | |
285 | TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG); | |
286 | } | |
287 | static ssize_t enabled_store(struct kobject *kobj, | |
288 | struct kobj_attribute *attr, | |
289 | const char *buf, size_t count) | |
290 | { | |
ba76149f AA |
291 | ssize_t ret; |
292 | ||
293 | ret = double_flag_store(kobj, attr, buf, count, | |
294 | TRANSPARENT_HUGEPAGE_FLAG, | |
295 | TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG); | |
296 | ||
297 | if (ret > 0) { | |
911891af XG |
298 | int err; |
299 | ||
300 | mutex_lock(&khugepaged_mutex); | |
79553da2 | 301 | err = start_stop_khugepaged(); |
911891af XG |
302 | mutex_unlock(&khugepaged_mutex); |
303 | ||
ba76149f AA |
304 | if (err) |
305 | ret = err; | |
306 | } | |
307 | ||
308 | return ret; | |
71e3aac0 AA |
309 | } |
310 | static struct kobj_attribute enabled_attr = | |
311 | __ATTR(enabled, 0644, enabled_show, enabled_store); | |
312 | ||
313 | static ssize_t single_flag_show(struct kobject *kobj, | |
314 | struct kobj_attribute *attr, char *buf, | |
315 | enum transparent_hugepage_flag flag) | |
316 | { | |
e27e6151 BH |
317 | return sprintf(buf, "%d\n", |
318 | !!test_bit(flag, &transparent_hugepage_flags)); | |
71e3aac0 | 319 | } |
e27e6151 | 320 | |
71e3aac0 AA |
321 | static ssize_t single_flag_store(struct kobject *kobj, |
322 | struct kobj_attribute *attr, | |
323 | const char *buf, size_t count, | |
324 | enum transparent_hugepage_flag flag) | |
325 | { | |
e27e6151 BH |
326 | unsigned long value; |
327 | int ret; | |
328 | ||
329 | ret = kstrtoul(buf, 10, &value); | |
330 | if (ret < 0) | |
331 | return ret; | |
332 | if (value > 1) | |
333 | return -EINVAL; | |
334 | ||
335 | if (value) | |
71e3aac0 | 336 | set_bit(flag, &transparent_hugepage_flags); |
e27e6151 | 337 | else |
71e3aac0 | 338 | clear_bit(flag, &transparent_hugepage_flags); |
71e3aac0 AA |
339 | |
340 | return count; | |
341 | } | |
342 | ||
343 | /* | |
344 | * Currently defrag only disables __GFP_NOWAIT for allocation. A blind | |
345 | * __GFP_REPEAT is too aggressive, it's never worth swapping tons of | |
346 | * memory just to allocate one more hugepage. | |
347 | */ | |
348 | static ssize_t defrag_show(struct kobject *kobj, | |
349 | struct kobj_attribute *attr, char *buf) | |
350 | { | |
351 | return double_flag_show(kobj, attr, buf, | |
352 | TRANSPARENT_HUGEPAGE_DEFRAG_FLAG, | |
353 | TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG); | |
354 | } | |
355 | static ssize_t defrag_store(struct kobject *kobj, | |
356 | struct kobj_attribute *attr, | |
357 | const char *buf, size_t count) | |
358 | { | |
359 | return double_flag_store(kobj, attr, buf, count, | |
360 | TRANSPARENT_HUGEPAGE_DEFRAG_FLAG, | |
361 | TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG); | |
362 | } | |
363 | static struct kobj_attribute defrag_attr = | |
364 | __ATTR(defrag, 0644, defrag_show, defrag_store); | |
365 | ||
79da5407 KS |
366 | static ssize_t use_zero_page_show(struct kobject *kobj, |
367 | struct kobj_attribute *attr, char *buf) | |
368 | { | |
369 | return single_flag_show(kobj, attr, buf, | |
370 | TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG); | |
371 | } | |
372 | static ssize_t use_zero_page_store(struct kobject *kobj, | |
373 | struct kobj_attribute *attr, const char *buf, size_t count) | |
374 | { | |
375 | return single_flag_store(kobj, attr, buf, count, | |
376 | TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG); | |
377 | } | |
378 | static struct kobj_attribute use_zero_page_attr = | |
379 | __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store); | |
71e3aac0 AA |
380 | #ifdef CONFIG_DEBUG_VM |
381 | static ssize_t debug_cow_show(struct kobject *kobj, | |
382 | struct kobj_attribute *attr, char *buf) | |
383 | { | |
384 | return single_flag_show(kobj, attr, buf, | |
385 | TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG); | |
386 | } | |
387 | static ssize_t debug_cow_store(struct kobject *kobj, | |
388 | struct kobj_attribute *attr, | |
389 | const char *buf, size_t count) | |
390 | { | |
391 | return single_flag_store(kobj, attr, buf, count, | |
392 | TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG); | |
393 | } | |
394 | static struct kobj_attribute debug_cow_attr = | |
395 | __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store); | |
396 | #endif /* CONFIG_DEBUG_VM */ | |
397 | ||
398 | static struct attribute *hugepage_attr[] = { | |
399 | &enabled_attr.attr, | |
400 | &defrag_attr.attr, | |
79da5407 | 401 | &use_zero_page_attr.attr, |
71e3aac0 AA |
402 | #ifdef CONFIG_DEBUG_VM |
403 | &debug_cow_attr.attr, | |
404 | #endif | |
405 | NULL, | |
406 | }; | |
407 | ||
408 | static struct attribute_group hugepage_attr_group = { | |
409 | .attrs = hugepage_attr, | |
ba76149f AA |
410 | }; |
411 | ||
412 | static ssize_t scan_sleep_millisecs_show(struct kobject *kobj, | |
413 | struct kobj_attribute *attr, | |
414 | char *buf) | |
415 | { | |
416 | return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs); | |
417 | } | |
418 | ||
419 | static ssize_t scan_sleep_millisecs_store(struct kobject *kobj, | |
420 | struct kobj_attribute *attr, | |
421 | const char *buf, size_t count) | |
422 | { | |
423 | unsigned long msecs; | |
424 | int err; | |
425 | ||
3dbb95f7 | 426 | err = kstrtoul(buf, 10, &msecs); |
ba76149f AA |
427 | if (err || msecs > UINT_MAX) |
428 | return -EINVAL; | |
429 | ||
430 | khugepaged_scan_sleep_millisecs = msecs; | |
431 | wake_up_interruptible(&khugepaged_wait); | |
432 | ||
433 | return count; | |
434 | } | |
435 | static struct kobj_attribute scan_sleep_millisecs_attr = | |
436 | __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show, | |
437 | scan_sleep_millisecs_store); | |
438 | ||
439 | static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj, | |
440 | struct kobj_attribute *attr, | |
441 | char *buf) | |
442 | { | |
443 | return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs); | |
444 | } | |
445 | ||
446 | static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj, | |
447 | struct kobj_attribute *attr, | |
448 | const char *buf, size_t count) | |
449 | { | |
450 | unsigned long msecs; | |
451 | int err; | |
452 | ||
3dbb95f7 | 453 | err = kstrtoul(buf, 10, &msecs); |
ba76149f AA |
454 | if (err || msecs > UINT_MAX) |
455 | return -EINVAL; | |
456 | ||
457 | khugepaged_alloc_sleep_millisecs = msecs; | |
458 | wake_up_interruptible(&khugepaged_wait); | |
459 | ||
460 | return count; | |
461 | } | |
462 | static struct kobj_attribute alloc_sleep_millisecs_attr = | |
463 | __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show, | |
464 | alloc_sleep_millisecs_store); | |
465 | ||
466 | static ssize_t pages_to_scan_show(struct kobject *kobj, | |
467 | struct kobj_attribute *attr, | |
468 | char *buf) | |
469 | { | |
470 | return sprintf(buf, "%u\n", khugepaged_pages_to_scan); | |
471 | } | |
472 | static ssize_t pages_to_scan_store(struct kobject *kobj, | |
473 | struct kobj_attribute *attr, | |
474 | const char *buf, size_t count) | |
475 | { | |
476 | int err; | |
477 | unsigned long pages; | |
478 | ||
3dbb95f7 | 479 | err = kstrtoul(buf, 10, &pages); |
ba76149f AA |
480 | if (err || !pages || pages > UINT_MAX) |
481 | return -EINVAL; | |
482 | ||
483 | khugepaged_pages_to_scan = pages; | |
484 | ||
485 | return count; | |
486 | } | |
487 | static struct kobj_attribute pages_to_scan_attr = | |
488 | __ATTR(pages_to_scan, 0644, pages_to_scan_show, | |
489 | pages_to_scan_store); | |
490 | ||
491 | static ssize_t pages_collapsed_show(struct kobject *kobj, | |
492 | struct kobj_attribute *attr, | |
493 | char *buf) | |
494 | { | |
495 | return sprintf(buf, "%u\n", khugepaged_pages_collapsed); | |
496 | } | |
497 | static struct kobj_attribute pages_collapsed_attr = | |
498 | __ATTR_RO(pages_collapsed); | |
499 | ||
500 | static ssize_t full_scans_show(struct kobject *kobj, | |
501 | struct kobj_attribute *attr, | |
502 | char *buf) | |
503 | { | |
504 | return sprintf(buf, "%u\n", khugepaged_full_scans); | |
505 | } | |
506 | static struct kobj_attribute full_scans_attr = | |
507 | __ATTR_RO(full_scans); | |
508 | ||
509 | static ssize_t khugepaged_defrag_show(struct kobject *kobj, | |
510 | struct kobj_attribute *attr, char *buf) | |
511 | { | |
512 | return single_flag_show(kobj, attr, buf, | |
513 | TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG); | |
514 | } | |
515 | static ssize_t khugepaged_defrag_store(struct kobject *kobj, | |
516 | struct kobj_attribute *attr, | |
517 | const char *buf, size_t count) | |
518 | { | |
519 | return single_flag_store(kobj, attr, buf, count, | |
520 | TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG); | |
521 | } | |
522 | static struct kobj_attribute khugepaged_defrag_attr = | |
523 | __ATTR(defrag, 0644, khugepaged_defrag_show, | |
524 | khugepaged_defrag_store); | |
525 | ||
526 | /* | |
527 | * max_ptes_none controls if khugepaged should collapse hugepages over | |
528 | * any unmapped ptes in turn potentially increasing the memory | |
529 | * footprint of the vmas. When max_ptes_none is 0 khugepaged will not | |
530 | * reduce the available free memory in the system as it | |
531 | * runs. Increasing max_ptes_none will instead potentially reduce the | |
532 | * free memory in the system during the khugepaged scan. | |
533 | */ | |
534 | static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj, | |
535 | struct kobj_attribute *attr, | |
536 | char *buf) | |
537 | { | |
538 | return sprintf(buf, "%u\n", khugepaged_max_ptes_none); | |
539 | } | |
540 | static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj, | |
541 | struct kobj_attribute *attr, | |
542 | const char *buf, size_t count) | |
543 | { | |
544 | int err; | |
545 | unsigned long max_ptes_none; | |
546 | ||
3dbb95f7 | 547 | err = kstrtoul(buf, 10, &max_ptes_none); |
ba76149f AA |
548 | if (err || max_ptes_none > HPAGE_PMD_NR-1) |
549 | return -EINVAL; | |
550 | ||
551 | khugepaged_max_ptes_none = max_ptes_none; | |
552 | ||
553 | return count; | |
554 | } | |
555 | static struct kobj_attribute khugepaged_max_ptes_none_attr = | |
556 | __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show, | |
557 | khugepaged_max_ptes_none_store); | |
558 | ||
559 | static struct attribute *khugepaged_attr[] = { | |
560 | &khugepaged_defrag_attr.attr, | |
561 | &khugepaged_max_ptes_none_attr.attr, | |
562 | &pages_to_scan_attr.attr, | |
563 | &pages_collapsed_attr.attr, | |
564 | &full_scans_attr.attr, | |
565 | &scan_sleep_millisecs_attr.attr, | |
566 | &alloc_sleep_millisecs_attr.attr, | |
567 | NULL, | |
568 | }; | |
569 | ||
570 | static struct attribute_group khugepaged_attr_group = { | |
571 | .attrs = khugepaged_attr, | |
572 | .name = "khugepaged", | |
71e3aac0 | 573 | }; |
71e3aac0 | 574 | |
569e5590 | 575 | static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj) |
71e3aac0 | 576 | { |
71e3aac0 AA |
577 | int err; |
578 | ||
569e5590 SL |
579 | *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj); |
580 | if (unlikely(!*hugepage_kobj)) { | |
ae3a8c1c | 581 | pr_err("failed to create transparent hugepage kobject\n"); |
569e5590 | 582 | return -ENOMEM; |
ba76149f AA |
583 | } |
584 | ||
569e5590 | 585 | err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group); |
ba76149f | 586 | if (err) { |
ae3a8c1c | 587 | pr_err("failed to register transparent hugepage group\n"); |
569e5590 | 588 | goto delete_obj; |
ba76149f AA |
589 | } |
590 | ||
569e5590 | 591 | err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group); |
ba76149f | 592 | if (err) { |
ae3a8c1c | 593 | pr_err("failed to register transparent hugepage group\n"); |
569e5590 | 594 | goto remove_hp_group; |
ba76149f | 595 | } |
569e5590 SL |
596 | |
597 | return 0; | |
598 | ||
599 | remove_hp_group: | |
600 | sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group); | |
601 | delete_obj: | |
602 | kobject_put(*hugepage_kobj); | |
603 | return err; | |
604 | } | |
605 | ||
606 | static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj) | |
607 | { | |
608 | sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group); | |
609 | sysfs_remove_group(hugepage_kobj, &hugepage_attr_group); | |
610 | kobject_put(hugepage_kobj); | |
611 | } | |
612 | #else | |
613 | static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj) | |
614 | { | |
615 | return 0; | |
616 | } | |
617 | ||
618 | static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj) | |
619 | { | |
620 | } | |
621 | #endif /* CONFIG_SYSFS */ | |
622 | ||
623 | static int __init hugepage_init(void) | |
624 | { | |
625 | int err; | |
626 | struct kobject *hugepage_kobj; | |
627 | ||
628 | if (!has_transparent_hugepage()) { | |
629 | transparent_hugepage_flags = 0; | |
630 | return -EINVAL; | |
631 | } | |
632 | ||
633 | err = hugepage_init_sysfs(&hugepage_kobj); | |
634 | if (err) | |
65ebb64f | 635 | goto err_sysfs; |
ba76149f AA |
636 | |
637 | err = khugepaged_slab_init(); | |
638 | if (err) | |
65ebb64f | 639 | goto err_slab; |
ba76149f | 640 | |
65ebb64f KS |
641 | err = register_shrinker(&huge_zero_page_shrinker); |
642 | if (err) | |
643 | goto err_hzp_shrinker; | |
97ae1749 | 644 | |
97562cd2 RR |
645 | /* |
646 | * By default disable transparent hugepages on smaller systems, | |
647 | * where the extra memory used could hurt more than TLB overhead | |
648 | * is likely to save. The admin can still enable it through /sys. | |
649 | */ | |
79553da2 | 650 | if (totalram_pages < (512 << (20 - PAGE_SHIFT))) { |
97562cd2 | 651 | transparent_hugepage_flags = 0; |
79553da2 KS |
652 | return 0; |
653 | } | |
97562cd2 | 654 | |
79553da2 | 655 | err = start_stop_khugepaged(); |
65ebb64f KS |
656 | if (err) |
657 | goto err_khugepaged; | |
ba76149f | 658 | |
569e5590 | 659 | return 0; |
65ebb64f KS |
660 | err_khugepaged: |
661 | unregister_shrinker(&huge_zero_page_shrinker); | |
662 | err_hzp_shrinker: | |
663 | khugepaged_slab_exit(); | |
664 | err_slab: | |
569e5590 | 665 | hugepage_exit_sysfs(hugepage_kobj); |
65ebb64f | 666 | err_sysfs: |
ba76149f | 667 | return err; |
71e3aac0 | 668 | } |
a64fb3cd | 669 | subsys_initcall(hugepage_init); |
71e3aac0 AA |
670 | |
671 | static int __init setup_transparent_hugepage(char *str) | |
672 | { | |
673 | int ret = 0; | |
674 | if (!str) | |
675 | goto out; | |
676 | if (!strcmp(str, "always")) { | |
677 | set_bit(TRANSPARENT_HUGEPAGE_FLAG, | |
678 | &transparent_hugepage_flags); | |
679 | clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, | |
680 | &transparent_hugepage_flags); | |
681 | ret = 1; | |
682 | } else if (!strcmp(str, "madvise")) { | |
683 | clear_bit(TRANSPARENT_HUGEPAGE_FLAG, | |
684 | &transparent_hugepage_flags); | |
685 | set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, | |
686 | &transparent_hugepage_flags); | |
687 | ret = 1; | |
688 | } else if (!strcmp(str, "never")) { | |
689 | clear_bit(TRANSPARENT_HUGEPAGE_FLAG, | |
690 | &transparent_hugepage_flags); | |
691 | clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, | |
692 | &transparent_hugepage_flags); | |
693 | ret = 1; | |
694 | } | |
695 | out: | |
696 | if (!ret) | |
ae3a8c1c | 697 | pr_warn("transparent_hugepage= cannot parse, ignored\n"); |
71e3aac0 AA |
698 | return ret; |
699 | } | |
700 | __setup("transparent_hugepage=", setup_transparent_hugepage); | |
701 | ||
b32967ff | 702 | pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma) |
71e3aac0 AA |
703 | { |
704 | if (likely(vma->vm_flags & VM_WRITE)) | |
705 | pmd = pmd_mkwrite(pmd); | |
706 | return pmd; | |
707 | } | |
708 | ||
3122359a | 709 | static inline pmd_t mk_huge_pmd(struct page *page, pgprot_t prot) |
b3092b3b BL |
710 | { |
711 | pmd_t entry; | |
3122359a | 712 | entry = mk_pmd(page, prot); |
b3092b3b BL |
713 | entry = pmd_mkhuge(entry); |
714 | return entry; | |
715 | } | |
716 | ||
71e3aac0 AA |
717 | static int __do_huge_pmd_anonymous_page(struct mm_struct *mm, |
718 | struct vm_area_struct *vma, | |
719 | unsigned long haddr, pmd_t *pmd, | |
3b363692 | 720 | struct page *page, gfp_t gfp) |
71e3aac0 | 721 | { |
00501b53 | 722 | struct mem_cgroup *memcg; |
71e3aac0 | 723 | pgtable_t pgtable; |
c4088ebd | 724 | spinlock_t *ptl; |
71e3aac0 | 725 | |
309381fe | 726 | VM_BUG_ON_PAGE(!PageCompound(page), page); |
00501b53 | 727 | |
3b363692 | 728 | if (mem_cgroup_try_charge(page, mm, gfp, &memcg)) |
00501b53 JW |
729 | return VM_FAULT_OOM; |
730 | ||
71e3aac0 | 731 | pgtable = pte_alloc_one(mm, haddr); |
00501b53 JW |
732 | if (unlikely(!pgtable)) { |
733 | mem_cgroup_cancel_charge(page, memcg); | |
71e3aac0 | 734 | return VM_FAULT_OOM; |
00501b53 | 735 | } |
71e3aac0 AA |
736 | |
737 | clear_huge_page(page, haddr, HPAGE_PMD_NR); | |
52f37629 MK |
738 | /* |
739 | * The memory barrier inside __SetPageUptodate makes sure that | |
740 | * clear_huge_page writes become visible before the set_pmd_at() | |
741 | * write. | |
742 | */ | |
71e3aac0 AA |
743 | __SetPageUptodate(page); |
744 | ||
c4088ebd | 745 | ptl = pmd_lock(mm, pmd); |
71e3aac0 | 746 | if (unlikely(!pmd_none(*pmd))) { |
c4088ebd | 747 | spin_unlock(ptl); |
00501b53 | 748 | mem_cgroup_cancel_charge(page, memcg); |
71e3aac0 AA |
749 | put_page(page); |
750 | pte_free(mm, pgtable); | |
751 | } else { | |
752 | pmd_t entry; | |
3122359a KS |
753 | entry = mk_huge_pmd(page, vma->vm_page_prot); |
754 | entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); | |
71e3aac0 | 755 | page_add_new_anon_rmap(page, vma, haddr); |
00501b53 JW |
756 | mem_cgroup_commit_charge(page, memcg, false); |
757 | lru_cache_add_active_or_unevictable(page, vma); | |
6b0b50b0 | 758 | pgtable_trans_huge_deposit(mm, pmd, pgtable); |
71e3aac0 | 759 | set_pmd_at(mm, haddr, pmd, entry); |
71e3aac0 | 760 | add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR); |
e1f56c89 | 761 | atomic_long_inc(&mm->nr_ptes); |
c4088ebd | 762 | spin_unlock(ptl); |
71e3aac0 AA |
763 | } |
764 | ||
aa2e878e | 765 | return 0; |
71e3aac0 AA |
766 | } |
767 | ||
cc5d462f | 768 | static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp) |
0bbbc0b3 | 769 | { |
cc5d462f | 770 | return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp; |
0bbbc0b3 AA |
771 | } |
772 | ||
c4088ebd | 773 | /* Caller must hold page table lock. */ |
3ea41e62 | 774 | static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm, |
97ae1749 | 775 | struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd, |
5918d10a | 776 | struct page *zero_page) |
fc9fe822 KS |
777 | { |
778 | pmd_t entry; | |
3ea41e62 KS |
779 | if (!pmd_none(*pmd)) |
780 | return false; | |
5918d10a | 781 | entry = mk_pmd(zero_page, vma->vm_page_prot); |
fc9fe822 | 782 | entry = pmd_mkhuge(entry); |
6b0b50b0 | 783 | pgtable_trans_huge_deposit(mm, pmd, pgtable); |
fc9fe822 | 784 | set_pmd_at(mm, haddr, pmd, entry); |
e1f56c89 | 785 | atomic_long_inc(&mm->nr_ptes); |
3ea41e62 | 786 | return true; |
fc9fe822 KS |
787 | } |
788 | ||
71e3aac0 AA |
789 | int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma, |
790 | unsigned long address, pmd_t *pmd, | |
791 | unsigned int flags) | |
792 | { | |
077fcf11 | 793 | gfp_t gfp; |
71e3aac0 AA |
794 | struct page *page; |
795 | unsigned long haddr = address & HPAGE_PMD_MASK; | |
71e3aac0 | 796 | |
128ec037 | 797 | if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end) |
c0292554 | 798 | return VM_FAULT_FALLBACK; |
128ec037 KS |
799 | if (unlikely(anon_vma_prepare(vma))) |
800 | return VM_FAULT_OOM; | |
6d50e60c | 801 | if (unlikely(khugepaged_enter(vma, vma->vm_flags))) |
128ec037 | 802 | return VM_FAULT_OOM; |
593befa6 | 803 | if (!(flags & FAULT_FLAG_WRITE) && !mm_forbids_zeropage(mm) && |
128ec037 | 804 | transparent_hugepage_use_zero_page()) { |
c4088ebd | 805 | spinlock_t *ptl; |
128ec037 KS |
806 | pgtable_t pgtable; |
807 | struct page *zero_page; | |
808 | bool set; | |
809 | pgtable = pte_alloc_one(mm, haddr); | |
810 | if (unlikely(!pgtable)) | |
ba76149f | 811 | return VM_FAULT_OOM; |
128ec037 KS |
812 | zero_page = get_huge_zero_page(); |
813 | if (unlikely(!zero_page)) { | |
814 | pte_free(mm, pgtable); | |
81ab4201 | 815 | count_vm_event(THP_FAULT_FALLBACK); |
c0292554 | 816 | return VM_FAULT_FALLBACK; |
b9bbfbe3 | 817 | } |
c4088ebd | 818 | ptl = pmd_lock(mm, pmd); |
128ec037 KS |
819 | set = set_huge_zero_page(pgtable, mm, vma, haddr, pmd, |
820 | zero_page); | |
c4088ebd | 821 | spin_unlock(ptl); |
128ec037 KS |
822 | if (!set) { |
823 | pte_free(mm, pgtable); | |
824 | put_huge_zero_page(); | |
edad9d2c | 825 | } |
edad9d2c | 826 | return 0; |
71e3aac0 | 827 | } |
077fcf11 AK |
828 | gfp = alloc_hugepage_gfpmask(transparent_hugepage_defrag(vma), 0); |
829 | page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER); | |
128ec037 KS |
830 | if (unlikely(!page)) { |
831 | count_vm_event(THP_FAULT_FALLBACK); | |
c0292554 | 832 | return VM_FAULT_FALLBACK; |
128ec037 | 833 | } |
3b363692 | 834 | if (unlikely(__do_huge_pmd_anonymous_page(mm, vma, haddr, pmd, page, gfp))) { |
128ec037 | 835 | put_page(page); |
17766dde | 836 | count_vm_event(THP_FAULT_FALLBACK); |
c0292554 | 837 | return VM_FAULT_FALLBACK; |
128ec037 KS |
838 | } |
839 | ||
17766dde | 840 | count_vm_event(THP_FAULT_ALLOC); |
128ec037 | 841 | return 0; |
71e3aac0 AA |
842 | } |
843 | ||
844 | int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm, | |
845 | pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr, | |
846 | struct vm_area_struct *vma) | |
847 | { | |
c4088ebd | 848 | spinlock_t *dst_ptl, *src_ptl; |
71e3aac0 AA |
849 | struct page *src_page; |
850 | pmd_t pmd; | |
851 | pgtable_t pgtable; | |
852 | int ret; | |
853 | ||
854 | ret = -ENOMEM; | |
855 | pgtable = pte_alloc_one(dst_mm, addr); | |
856 | if (unlikely(!pgtable)) | |
857 | goto out; | |
858 | ||
c4088ebd KS |
859 | dst_ptl = pmd_lock(dst_mm, dst_pmd); |
860 | src_ptl = pmd_lockptr(src_mm, src_pmd); | |
861 | spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); | |
71e3aac0 AA |
862 | |
863 | ret = -EAGAIN; | |
864 | pmd = *src_pmd; | |
865 | if (unlikely(!pmd_trans_huge(pmd))) { | |
866 | pte_free(dst_mm, pgtable); | |
867 | goto out_unlock; | |
868 | } | |
fc9fe822 | 869 | /* |
c4088ebd | 870 | * When page table lock is held, the huge zero pmd should not be |
fc9fe822 KS |
871 | * under splitting since we don't split the page itself, only pmd to |
872 | * a page table. | |
873 | */ | |
874 | if (is_huge_zero_pmd(pmd)) { | |
5918d10a | 875 | struct page *zero_page; |
3ea41e62 | 876 | bool set; |
97ae1749 KS |
877 | /* |
878 | * get_huge_zero_page() will never allocate a new page here, | |
879 | * since we already have a zero page to copy. It just takes a | |
880 | * reference. | |
881 | */ | |
5918d10a | 882 | zero_page = get_huge_zero_page(); |
3ea41e62 | 883 | set = set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd, |
5918d10a | 884 | zero_page); |
3ea41e62 | 885 | BUG_ON(!set); /* unexpected !pmd_none(dst_pmd) */ |
fc9fe822 KS |
886 | ret = 0; |
887 | goto out_unlock; | |
888 | } | |
de466bd6 | 889 | |
71e3aac0 AA |
890 | if (unlikely(pmd_trans_splitting(pmd))) { |
891 | /* split huge page running from under us */ | |
c4088ebd KS |
892 | spin_unlock(src_ptl); |
893 | spin_unlock(dst_ptl); | |
71e3aac0 AA |
894 | pte_free(dst_mm, pgtable); |
895 | ||
896 | wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */ | |
897 | goto out; | |
898 | } | |
899 | src_page = pmd_page(pmd); | |
309381fe | 900 | VM_BUG_ON_PAGE(!PageHead(src_page), src_page); |
71e3aac0 AA |
901 | get_page(src_page); |
902 | page_dup_rmap(src_page); | |
903 | add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR); | |
904 | ||
905 | pmdp_set_wrprotect(src_mm, addr, src_pmd); | |
906 | pmd = pmd_mkold(pmd_wrprotect(pmd)); | |
6b0b50b0 | 907 | pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable); |
71e3aac0 | 908 | set_pmd_at(dst_mm, addr, dst_pmd, pmd); |
e1f56c89 | 909 | atomic_long_inc(&dst_mm->nr_ptes); |
71e3aac0 AA |
910 | |
911 | ret = 0; | |
912 | out_unlock: | |
c4088ebd KS |
913 | spin_unlock(src_ptl); |
914 | spin_unlock(dst_ptl); | |
71e3aac0 AA |
915 | out: |
916 | return ret; | |
917 | } | |
918 | ||
a1dd450b WD |
919 | void huge_pmd_set_accessed(struct mm_struct *mm, |
920 | struct vm_area_struct *vma, | |
921 | unsigned long address, | |
922 | pmd_t *pmd, pmd_t orig_pmd, | |
923 | int dirty) | |
924 | { | |
c4088ebd | 925 | spinlock_t *ptl; |
a1dd450b WD |
926 | pmd_t entry; |
927 | unsigned long haddr; | |
928 | ||
c4088ebd | 929 | ptl = pmd_lock(mm, pmd); |
a1dd450b WD |
930 | if (unlikely(!pmd_same(*pmd, orig_pmd))) |
931 | goto unlock; | |
932 | ||
933 | entry = pmd_mkyoung(orig_pmd); | |
934 | haddr = address & HPAGE_PMD_MASK; | |
935 | if (pmdp_set_access_flags(vma, haddr, pmd, entry, dirty)) | |
936 | update_mmu_cache_pmd(vma, address, pmd); | |
937 | ||
938 | unlock: | |
c4088ebd | 939 | spin_unlock(ptl); |
a1dd450b WD |
940 | } |
941 | ||
5338a937 HD |
942 | /* |
943 | * Save CONFIG_DEBUG_PAGEALLOC from faulting falsely on tail pages | |
944 | * during copy_user_huge_page()'s copy_page_rep(): in the case when | |
945 | * the source page gets split and a tail freed before copy completes. | |
946 | * Called under pmd_lock of checked pmd, so safe from splitting itself. | |
947 | */ | |
948 | static void get_user_huge_page(struct page *page) | |
949 | { | |
950 | if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) { | |
951 | struct page *endpage = page + HPAGE_PMD_NR; | |
952 | ||
953 | atomic_add(HPAGE_PMD_NR, &page->_count); | |
954 | while (++page < endpage) | |
955 | get_huge_page_tail(page); | |
956 | } else { | |
957 | get_page(page); | |
958 | } | |
959 | } | |
960 | ||
961 | static void put_user_huge_page(struct page *page) | |
962 | { | |
963 | if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) { | |
964 | struct page *endpage = page + HPAGE_PMD_NR; | |
965 | ||
966 | while (page < endpage) | |
967 | put_page(page++); | |
968 | } else { | |
969 | put_page(page); | |
970 | } | |
971 | } | |
972 | ||
71e3aac0 AA |
973 | static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm, |
974 | struct vm_area_struct *vma, | |
975 | unsigned long address, | |
976 | pmd_t *pmd, pmd_t orig_pmd, | |
977 | struct page *page, | |
978 | unsigned long haddr) | |
979 | { | |
00501b53 | 980 | struct mem_cgroup *memcg; |
c4088ebd | 981 | spinlock_t *ptl; |
71e3aac0 AA |
982 | pgtable_t pgtable; |
983 | pmd_t _pmd; | |
984 | int ret = 0, i; | |
985 | struct page **pages; | |
2ec74c3e SG |
986 | unsigned long mmun_start; /* For mmu_notifiers */ |
987 | unsigned long mmun_end; /* For mmu_notifiers */ | |
71e3aac0 AA |
988 | |
989 | pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR, | |
990 | GFP_KERNEL); | |
991 | if (unlikely(!pages)) { | |
992 | ret |= VM_FAULT_OOM; | |
993 | goto out; | |
994 | } | |
995 | ||
996 | for (i = 0; i < HPAGE_PMD_NR; i++) { | |
cc5d462f AK |
997 | pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE | |
998 | __GFP_OTHER_NODE, | |
19ee151e | 999 | vma, address, page_to_nid(page)); |
b9bbfbe3 | 1000 | if (unlikely(!pages[i] || |
00501b53 JW |
1001 | mem_cgroup_try_charge(pages[i], mm, GFP_KERNEL, |
1002 | &memcg))) { | |
b9bbfbe3 | 1003 | if (pages[i]) |
71e3aac0 | 1004 | put_page(pages[i]); |
b9bbfbe3 | 1005 | while (--i >= 0) { |
00501b53 JW |
1006 | memcg = (void *)page_private(pages[i]); |
1007 | set_page_private(pages[i], 0); | |
1008 | mem_cgroup_cancel_charge(pages[i], memcg); | |
b9bbfbe3 AA |
1009 | put_page(pages[i]); |
1010 | } | |
71e3aac0 AA |
1011 | kfree(pages); |
1012 | ret |= VM_FAULT_OOM; | |
1013 | goto out; | |
1014 | } | |
00501b53 | 1015 | set_page_private(pages[i], (unsigned long)memcg); |
71e3aac0 AA |
1016 | } |
1017 | ||
1018 | for (i = 0; i < HPAGE_PMD_NR; i++) { | |
1019 | copy_user_highpage(pages[i], page + i, | |
0089e485 | 1020 | haddr + PAGE_SIZE * i, vma); |
71e3aac0 AA |
1021 | __SetPageUptodate(pages[i]); |
1022 | cond_resched(); | |
1023 | } | |
1024 | ||
2ec74c3e SG |
1025 | mmun_start = haddr; |
1026 | mmun_end = haddr + HPAGE_PMD_SIZE; | |
1027 | mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); | |
1028 | ||
c4088ebd | 1029 | ptl = pmd_lock(mm, pmd); |
71e3aac0 AA |
1030 | if (unlikely(!pmd_same(*pmd, orig_pmd))) |
1031 | goto out_free_pages; | |
309381fe | 1032 | VM_BUG_ON_PAGE(!PageHead(page), page); |
71e3aac0 | 1033 | |
8809aa2d | 1034 | pmdp_huge_clear_flush_notify(vma, haddr, pmd); |
71e3aac0 AA |
1035 | /* leave pmd empty until pte is filled */ |
1036 | ||
6b0b50b0 | 1037 | pgtable = pgtable_trans_huge_withdraw(mm, pmd); |
71e3aac0 AA |
1038 | pmd_populate(mm, &_pmd, pgtable); |
1039 | ||
1040 | for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) { | |
1041 | pte_t *pte, entry; | |
1042 | entry = mk_pte(pages[i], vma->vm_page_prot); | |
1043 | entry = maybe_mkwrite(pte_mkdirty(entry), vma); | |
00501b53 JW |
1044 | memcg = (void *)page_private(pages[i]); |
1045 | set_page_private(pages[i], 0); | |
71e3aac0 | 1046 | page_add_new_anon_rmap(pages[i], vma, haddr); |
00501b53 JW |
1047 | mem_cgroup_commit_charge(pages[i], memcg, false); |
1048 | lru_cache_add_active_or_unevictable(pages[i], vma); | |
71e3aac0 AA |
1049 | pte = pte_offset_map(&_pmd, haddr); |
1050 | VM_BUG_ON(!pte_none(*pte)); | |
1051 | set_pte_at(mm, haddr, pte, entry); | |
1052 | pte_unmap(pte); | |
1053 | } | |
1054 | kfree(pages); | |
1055 | ||
71e3aac0 AA |
1056 | smp_wmb(); /* make pte visible before pmd */ |
1057 | pmd_populate(mm, pmd, pgtable); | |
1058 | page_remove_rmap(page); | |
c4088ebd | 1059 | spin_unlock(ptl); |
71e3aac0 | 1060 | |
2ec74c3e SG |
1061 | mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); |
1062 | ||
71e3aac0 AA |
1063 | ret |= VM_FAULT_WRITE; |
1064 | put_page(page); | |
1065 | ||
1066 | out: | |
1067 | return ret; | |
1068 | ||
1069 | out_free_pages: | |
c4088ebd | 1070 | spin_unlock(ptl); |
2ec74c3e | 1071 | mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); |
b9bbfbe3 | 1072 | for (i = 0; i < HPAGE_PMD_NR; i++) { |
00501b53 JW |
1073 | memcg = (void *)page_private(pages[i]); |
1074 | set_page_private(pages[i], 0); | |
1075 | mem_cgroup_cancel_charge(pages[i], memcg); | |
71e3aac0 | 1076 | put_page(pages[i]); |
b9bbfbe3 | 1077 | } |
71e3aac0 AA |
1078 | kfree(pages); |
1079 | goto out; | |
1080 | } | |
1081 | ||
1082 | int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma, | |
1083 | unsigned long address, pmd_t *pmd, pmd_t orig_pmd) | |
1084 | { | |
c4088ebd | 1085 | spinlock_t *ptl; |
71e3aac0 | 1086 | int ret = 0; |
93b4796d | 1087 | struct page *page = NULL, *new_page; |
00501b53 | 1088 | struct mem_cgroup *memcg; |
71e3aac0 | 1089 | unsigned long haddr; |
2ec74c3e SG |
1090 | unsigned long mmun_start; /* For mmu_notifiers */ |
1091 | unsigned long mmun_end; /* For mmu_notifiers */ | |
3b363692 | 1092 | gfp_t huge_gfp; /* for allocation and charge */ |
71e3aac0 | 1093 | |
c4088ebd | 1094 | ptl = pmd_lockptr(mm, pmd); |
81d1b09c | 1095 | VM_BUG_ON_VMA(!vma->anon_vma, vma); |
93b4796d KS |
1096 | haddr = address & HPAGE_PMD_MASK; |
1097 | if (is_huge_zero_pmd(orig_pmd)) | |
1098 | goto alloc; | |
c4088ebd | 1099 | spin_lock(ptl); |
71e3aac0 AA |
1100 | if (unlikely(!pmd_same(*pmd, orig_pmd))) |
1101 | goto out_unlock; | |
1102 | ||
1103 | page = pmd_page(orig_pmd); | |
309381fe | 1104 | VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page); |
71e3aac0 AA |
1105 | if (page_mapcount(page) == 1) { |
1106 | pmd_t entry; | |
1107 | entry = pmd_mkyoung(orig_pmd); | |
1108 | entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); | |
1109 | if (pmdp_set_access_flags(vma, haddr, pmd, entry, 1)) | |
b113da65 | 1110 | update_mmu_cache_pmd(vma, address, pmd); |
71e3aac0 AA |
1111 | ret |= VM_FAULT_WRITE; |
1112 | goto out_unlock; | |
1113 | } | |
5338a937 | 1114 | get_user_huge_page(page); |
c4088ebd | 1115 | spin_unlock(ptl); |
93b4796d | 1116 | alloc: |
71e3aac0 | 1117 | if (transparent_hugepage_enabled(vma) && |
077fcf11 | 1118 | !transparent_hugepage_debug_cow()) { |
3b363692 MH |
1119 | huge_gfp = alloc_hugepage_gfpmask(transparent_hugepage_defrag(vma), 0); |
1120 | new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER); | |
077fcf11 | 1121 | } else |
71e3aac0 AA |
1122 | new_page = NULL; |
1123 | ||
1124 | if (unlikely(!new_page)) { | |
eecc1e42 | 1125 | if (!page) { |
e9b71ca9 KS |
1126 | split_huge_page_pmd(vma, address, pmd); |
1127 | ret |= VM_FAULT_FALLBACK; | |
93b4796d KS |
1128 | } else { |
1129 | ret = do_huge_pmd_wp_page_fallback(mm, vma, address, | |
1130 | pmd, orig_pmd, page, haddr); | |
9845cbbd | 1131 | if (ret & VM_FAULT_OOM) { |
93b4796d | 1132 | split_huge_page(page); |
9845cbbd KS |
1133 | ret |= VM_FAULT_FALLBACK; |
1134 | } | |
5338a937 | 1135 | put_user_huge_page(page); |
93b4796d | 1136 | } |
17766dde | 1137 | count_vm_event(THP_FAULT_FALLBACK); |
71e3aac0 AA |
1138 | goto out; |
1139 | } | |
1140 | ||
3b363692 | 1141 | if (unlikely(mem_cgroup_try_charge(new_page, mm, huge_gfp, &memcg))) { |
b9bbfbe3 | 1142 | put_page(new_page); |
93b4796d KS |
1143 | if (page) { |
1144 | split_huge_page(page); | |
5338a937 | 1145 | put_user_huge_page(page); |
9845cbbd KS |
1146 | } else |
1147 | split_huge_page_pmd(vma, address, pmd); | |
1148 | ret |= VM_FAULT_FALLBACK; | |
17766dde | 1149 | count_vm_event(THP_FAULT_FALLBACK); |
b9bbfbe3 AA |
1150 | goto out; |
1151 | } | |
1152 | ||
17766dde DR |
1153 | count_vm_event(THP_FAULT_ALLOC); |
1154 | ||
eecc1e42 | 1155 | if (!page) |
93b4796d KS |
1156 | clear_huge_page(new_page, haddr, HPAGE_PMD_NR); |
1157 | else | |
1158 | copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR); | |
71e3aac0 AA |
1159 | __SetPageUptodate(new_page); |
1160 | ||
2ec74c3e SG |
1161 | mmun_start = haddr; |
1162 | mmun_end = haddr + HPAGE_PMD_SIZE; | |
1163 | mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); | |
1164 | ||
c4088ebd | 1165 | spin_lock(ptl); |
93b4796d | 1166 | if (page) |
5338a937 | 1167 | put_user_huge_page(page); |
b9bbfbe3 | 1168 | if (unlikely(!pmd_same(*pmd, orig_pmd))) { |
c4088ebd | 1169 | spin_unlock(ptl); |
00501b53 | 1170 | mem_cgroup_cancel_charge(new_page, memcg); |
71e3aac0 | 1171 | put_page(new_page); |
2ec74c3e | 1172 | goto out_mn; |
b9bbfbe3 | 1173 | } else { |
71e3aac0 | 1174 | pmd_t entry; |
3122359a KS |
1175 | entry = mk_huge_pmd(new_page, vma->vm_page_prot); |
1176 | entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); | |
8809aa2d | 1177 | pmdp_huge_clear_flush_notify(vma, haddr, pmd); |
71e3aac0 | 1178 | page_add_new_anon_rmap(new_page, vma, haddr); |
00501b53 JW |
1179 | mem_cgroup_commit_charge(new_page, memcg, false); |
1180 | lru_cache_add_active_or_unevictable(new_page, vma); | |
71e3aac0 | 1181 | set_pmd_at(mm, haddr, pmd, entry); |
b113da65 | 1182 | update_mmu_cache_pmd(vma, address, pmd); |
eecc1e42 | 1183 | if (!page) { |
93b4796d | 1184 | add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR); |
97ae1749 KS |
1185 | put_huge_zero_page(); |
1186 | } else { | |
309381fe | 1187 | VM_BUG_ON_PAGE(!PageHead(page), page); |
93b4796d KS |
1188 | page_remove_rmap(page); |
1189 | put_page(page); | |
1190 | } | |
71e3aac0 AA |
1191 | ret |= VM_FAULT_WRITE; |
1192 | } | |
c4088ebd | 1193 | spin_unlock(ptl); |
2ec74c3e SG |
1194 | out_mn: |
1195 | mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); | |
71e3aac0 AA |
1196 | out: |
1197 | return ret; | |
2ec74c3e | 1198 | out_unlock: |
c4088ebd | 1199 | spin_unlock(ptl); |
2ec74c3e | 1200 | return ret; |
71e3aac0 AA |
1201 | } |
1202 | ||
b676b293 | 1203 | struct page *follow_trans_huge_pmd(struct vm_area_struct *vma, |
71e3aac0 AA |
1204 | unsigned long addr, |
1205 | pmd_t *pmd, | |
1206 | unsigned int flags) | |
1207 | { | |
b676b293 | 1208 | struct mm_struct *mm = vma->vm_mm; |
71e3aac0 AA |
1209 | struct page *page = NULL; |
1210 | ||
c4088ebd | 1211 | assert_spin_locked(pmd_lockptr(mm, pmd)); |
71e3aac0 AA |
1212 | |
1213 | if (flags & FOLL_WRITE && !pmd_write(*pmd)) | |
1214 | goto out; | |
1215 | ||
85facf25 KS |
1216 | /* Avoid dumping huge zero page */ |
1217 | if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd)) | |
1218 | return ERR_PTR(-EFAULT); | |
1219 | ||
2b4847e7 | 1220 | /* Full NUMA hinting faults to serialise migration in fault paths */ |
8a0516ed | 1221 | if ((flags & FOLL_NUMA) && pmd_protnone(*pmd)) |
2b4847e7 MG |
1222 | goto out; |
1223 | ||
71e3aac0 | 1224 | page = pmd_page(*pmd); |
309381fe | 1225 | VM_BUG_ON_PAGE(!PageHead(page), page); |
71e3aac0 AA |
1226 | if (flags & FOLL_TOUCH) { |
1227 | pmd_t _pmd; | |
1228 | /* | |
1229 | * We should set the dirty bit only for FOLL_WRITE but | |
1230 | * for now the dirty bit in the pmd is meaningless. | |
1231 | * And if the dirty bit will become meaningful and | |
1232 | * we'll only set it with FOLL_WRITE, an atomic | |
1233 | * set_bit will be required on the pmd to set the | |
1234 | * young bit, instead of the current set_pmd_at. | |
1235 | */ | |
1236 | _pmd = pmd_mkyoung(pmd_mkdirty(*pmd)); | |
8663890a AK |
1237 | if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK, |
1238 | pmd, _pmd, 1)) | |
1239 | update_mmu_cache_pmd(vma, addr, pmd); | |
71e3aac0 | 1240 | } |
84d33df2 | 1241 | if ((flags & FOLL_POPULATE) && (vma->vm_flags & VM_LOCKED)) { |
b676b293 DR |
1242 | if (page->mapping && trylock_page(page)) { |
1243 | lru_add_drain(); | |
1244 | if (page->mapping) | |
1245 | mlock_vma_page(page); | |
1246 | unlock_page(page); | |
1247 | } | |
1248 | } | |
71e3aac0 | 1249 | page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT; |
309381fe | 1250 | VM_BUG_ON_PAGE(!PageCompound(page), page); |
71e3aac0 | 1251 | if (flags & FOLL_GET) |
70b50f94 | 1252 | get_page_foll(page); |
71e3aac0 AA |
1253 | |
1254 | out: | |
1255 | return page; | |
1256 | } | |
1257 | ||
d10e63f2 | 1258 | /* NUMA hinting page fault entry point for trans huge pmds */ |
4daae3b4 MG |
1259 | int do_huge_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma, |
1260 | unsigned long addr, pmd_t pmd, pmd_t *pmdp) | |
d10e63f2 | 1261 | { |
c4088ebd | 1262 | spinlock_t *ptl; |
b8916634 | 1263 | struct anon_vma *anon_vma = NULL; |
b32967ff | 1264 | struct page *page; |
d10e63f2 | 1265 | unsigned long haddr = addr & HPAGE_PMD_MASK; |
8191acbd | 1266 | int page_nid = -1, this_nid = numa_node_id(); |
90572890 | 1267 | int target_nid, last_cpupid = -1; |
8191acbd MG |
1268 | bool page_locked; |
1269 | bool migrated = false; | |
b191f9b1 | 1270 | bool was_writable; |
6688cc05 | 1271 | int flags = 0; |
d10e63f2 | 1272 | |
c0e7cad9 MG |
1273 | /* A PROT_NONE fault should not end up here */ |
1274 | BUG_ON(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))); | |
1275 | ||
c4088ebd | 1276 | ptl = pmd_lock(mm, pmdp); |
d10e63f2 MG |
1277 | if (unlikely(!pmd_same(pmd, *pmdp))) |
1278 | goto out_unlock; | |
1279 | ||
de466bd6 MG |
1280 | /* |
1281 | * If there are potential migrations, wait for completion and retry | |
1282 | * without disrupting NUMA hinting information. Do not relock and | |
1283 | * check_same as the page may no longer be mapped. | |
1284 | */ | |
1285 | if (unlikely(pmd_trans_migrating(*pmdp))) { | |
5d833062 | 1286 | page = pmd_page(*pmdp); |
de466bd6 | 1287 | spin_unlock(ptl); |
5d833062 | 1288 | wait_on_page_locked(page); |
de466bd6 MG |
1289 | goto out; |
1290 | } | |
1291 | ||
d10e63f2 | 1292 | page = pmd_page(pmd); |
a1a46184 | 1293 | BUG_ON(is_huge_zero_page(page)); |
8191acbd | 1294 | page_nid = page_to_nid(page); |
90572890 | 1295 | last_cpupid = page_cpupid_last(page); |
03c5a6e1 | 1296 | count_vm_numa_event(NUMA_HINT_FAULTS); |
04bb2f94 | 1297 | if (page_nid == this_nid) { |
03c5a6e1 | 1298 | count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL); |
04bb2f94 RR |
1299 | flags |= TNF_FAULT_LOCAL; |
1300 | } | |
4daae3b4 | 1301 | |
bea66fbd MG |
1302 | /* See similar comment in do_numa_page for explanation */ |
1303 | if (!(vma->vm_flags & VM_WRITE)) | |
6688cc05 PZ |
1304 | flags |= TNF_NO_GROUP; |
1305 | ||
ff9042b1 MG |
1306 | /* |
1307 | * Acquire the page lock to serialise THP migrations but avoid dropping | |
1308 | * page_table_lock if at all possible | |
1309 | */ | |
b8916634 MG |
1310 | page_locked = trylock_page(page); |
1311 | target_nid = mpol_misplaced(page, vma, haddr); | |
1312 | if (target_nid == -1) { | |
1313 | /* If the page was locked, there are no parallel migrations */ | |
a54a407f | 1314 | if (page_locked) |
b8916634 | 1315 | goto clear_pmdnuma; |
2b4847e7 | 1316 | } |
4daae3b4 | 1317 | |
de466bd6 | 1318 | /* Migration could have started since the pmd_trans_migrating check */ |
2b4847e7 | 1319 | if (!page_locked) { |
c4088ebd | 1320 | spin_unlock(ptl); |
b8916634 | 1321 | wait_on_page_locked(page); |
a54a407f | 1322 | page_nid = -1; |
b8916634 MG |
1323 | goto out; |
1324 | } | |
1325 | ||
2b4847e7 MG |
1326 | /* |
1327 | * Page is misplaced. Page lock serialises migrations. Acquire anon_vma | |
1328 | * to serialises splits | |
1329 | */ | |
b8916634 | 1330 | get_page(page); |
c4088ebd | 1331 | spin_unlock(ptl); |
b8916634 | 1332 | anon_vma = page_lock_anon_vma_read(page); |
4daae3b4 | 1333 | |
c69307d5 | 1334 | /* Confirm the PMD did not change while page_table_lock was released */ |
c4088ebd | 1335 | spin_lock(ptl); |
b32967ff MG |
1336 | if (unlikely(!pmd_same(pmd, *pmdp))) { |
1337 | unlock_page(page); | |
1338 | put_page(page); | |
a54a407f | 1339 | page_nid = -1; |
4daae3b4 | 1340 | goto out_unlock; |
b32967ff | 1341 | } |
ff9042b1 | 1342 | |
c3a489ca MG |
1343 | /* Bail if we fail to protect against THP splits for any reason */ |
1344 | if (unlikely(!anon_vma)) { | |
1345 | put_page(page); | |
1346 | page_nid = -1; | |
1347 | goto clear_pmdnuma; | |
1348 | } | |
1349 | ||
a54a407f MG |
1350 | /* |
1351 | * Migrate the THP to the requested node, returns with page unlocked | |
8a0516ed | 1352 | * and access rights restored. |
a54a407f | 1353 | */ |
c4088ebd | 1354 | spin_unlock(ptl); |
b32967ff | 1355 | migrated = migrate_misplaced_transhuge_page(mm, vma, |
340ef390 | 1356 | pmdp, pmd, addr, page, target_nid); |
6688cc05 PZ |
1357 | if (migrated) { |
1358 | flags |= TNF_MIGRATED; | |
8191acbd | 1359 | page_nid = target_nid; |
074c2381 MG |
1360 | } else |
1361 | flags |= TNF_MIGRATE_FAIL; | |
b32967ff | 1362 | |
8191acbd | 1363 | goto out; |
b32967ff | 1364 | clear_pmdnuma: |
a54a407f | 1365 | BUG_ON(!PageLocked(page)); |
b191f9b1 | 1366 | was_writable = pmd_write(pmd); |
4d942466 | 1367 | pmd = pmd_modify(pmd, vma->vm_page_prot); |
b7b04004 | 1368 | pmd = pmd_mkyoung(pmd); |
b191f9b1 MG |
1369 | if (was_writable) |
1370 | pmd = pmd_mkwrite(pmd); | |
d10e63f2 | 1371 | set_pmd_at(mm, haddr, pmdp, pmd); |
d10e63f2 | 1372 | update_mmu_cache_pmd(vma, addr, pmdp); |
a54a407f | 1373 | unlock_page(page); |
d10e63f2 | 1374 | out_unlock: |
c4088ebd | 1375 | spin_unlock(ptl); |
b8916634 MG |
1376 | |
1377 | out: | |
1378 | if (anon_vma) | |
1379 | page_unlock_anon_vma_read(anon_vma); | |
1380 | ||
8191acbd | 1381 | if (page_nid != -1) |
6688cc05 | 1382 | task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, flags); |
8191acbd | 1383 | |
d10e63f2 MG |
1384 | return 0; |
1385 | } | |
1386 | ||
71e3aac0 | 1387 | int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma, |
f21760b1 | 1388 | pmd_t *pmd, unsigned long addr) |
71e3aac0 | 1389 | { |
bf929152 | 1390 | spinlock_t *ptl; |
71e3aac0 AA |
1391 | int ret = 0; |
1392 | ||
bf929152 | 1393 | if (__pmd_trans_huge_lock(pmd, vma, &ptl) == 1) { |
025c5b24 NH |
1394 | struct page *page; |
1395 | pgtable_t pgtable; | |
f5c8ad47 | 1396 | pmd_t orig_pmd; |
a6bf2bb0 AK |
1397 | /* |
1398 | * For architectures like ppc64 we look at deposited pgtable | |
8809aa2d | 1399 | * when calling pmdp_huge_get_and_clear. So do the |
a6bf2bb0 AK |
1400 | * pgtable_trans_huge_withdraw after finishing pmdp related |
1401 | * operations. | |
1402 | */ | |
8809aa2d AK |
1403 | orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd, |
1404 | tlb->fullmm); | |
025c5b24 | 1405 | tlb_remove_pmd_tlb_entry(tlb, pmd, addr); |
a6bf2bb0 | 1406 | pgtable = pgtable_trans_huge_withdraw(tlb->mm, pmd); |
479f0abb | 1407 | if (is_huge_zero_pmd(orig_pmd)) { |
e1f56c89 | 1408 | atomic_long_dec(&tlb->mm->nr_ptes); |
bf929152 | 1409 | spin_unlock(ptl); |
97ae1749 | 1410 | put_huge_zero_page(); |
479f0abb KS |
1411 | } else { |
1412 | page = pmd_page(orig_pmd); | |
1413 | page_remove_rmap(page); | |
309381fe | 1414 | VM_BUG_ON_PAGE(page_mapcount(page) < 0, page); |
479f0abb | 1415 | add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR); |
309381fe | 1416 | VM_BUG_ON_PAGE(!PageHead(page), page); |
e1f56c89 | 1417 | atomic_long_dec(&tlb->mm->nr_ptes); |
bf929152 | 1418 | spin_unlock(ptl); |
479f0abb KS |
1419 | tlb_remove_page(tlb, page); |
1420 | } | |
025c5b24 NH |
1421 | pte_free(tlb->mm, pgtable); |
1422 | ret = 1; | |
1423 | } | |
71e3aac0 AA |
1424 | return ret; |
1425 | } | |
1426 | ||
37a1c49a AA |
1427 | int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma, |
1428 | unsigned long old_addr, | |
1429 | unsigned long new_addr, unsigned long old_end, | |
1430 | pmd_t *old_pmd, pmd_t *new_pmd) | |
1431 | { | |
bf929152 | 1432 | spinlock_t *old_ptl, *new_ptl; |
37a1c49a AA |
1433 | int ret = 0; |
1434 | pmd_t pmd; | |
1435 | ||
1436 | struct mm_struct *mm = vma->vm_mm; | |
1437 | ||
1438 | if ((old_addr & ~HPAGE_PMD_MASK) || | |
1439 | (new_addr & ~HPAGE_PMD_MASK) || | |
1440 | old_end - old_addr < HPAGE_PMD_SIZE || | |
1441 | (new_vma->vm_flags & VM_NOHUGEPAGE)) | |
1442 | goto out; | |
1443 | ||
1444 | /* | |
1445 | * The destination pmd shouldn't be established, free_pgtables() | |
1446 | * should have release it. | |
1447 | */ | |
1448 | if (WARN_ON(!pmd_none(*new_pmd))) { | |
1449 | VM_BUG_ON(pmd_trans_huge(*new_pmd)); | |
1450 | goto out; | |
1451 | } | |
1452 | ||
bf929152 KS |
1453 | /* |
1454 | * We don't have to worry about the ordering of src and dst | |
1455 | * ptlocks because exclusive mmap_sem prevents deadlock. | |
1456 | */ | |
1457 | ret = __pmd_trans_huge_lock(old_pmd, vma, &old_ptl); | |
025c5b24 | 1458 | if (ret == 1) { |
bf929152 KS |
1459 | new_ptl = pmd_lockptr(mm, new_pmd); |
1460 | if (new_ptl != old_ptl) | |
1461 | spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING); | |
8809aa2d | 1462 | pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd); |
025c5b24 | 1463 | VM_BUG_ON(!pmd_none(*new_pmd)); |
3592806c | 1464 | |
b3084f4d AK |
1465 | if (pmd_move_must_withdraw(new_ptl, old_ptl)) { |
1466 | pgtable_t pgtable; | |
3592806c KS |
1467 | pgtable = pgtable_trans_huge_withdraw(mm, old_pmd); |
1468 | pgtable_trans_huge_deposit(mm, new_pmd, pgtable); | |
3592806c | 1469 | } |
b3084f4d AK |
1470 | set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd)); |
1471 | if (new_ptl != old_ptl) | |
1472 | spin_unlock(new_ptl); | |
bf929152 | 1473 | spin_unlock(old_ptl); |
37a1c49a AA |
1474 | } |
1475 | out: | |
1476 | return ret; | |
1477 | } | |
1478 | ||
f123d74a MG |
1479 | /* |
1480 | * Returns | |
1481 | * - 0 if PMD could not be locked | |
1482 | * - 1 if PMD was locked but protections unchange and TLB flush unnecessary | |
1483 | * - HPAGE_PMD_NR is protections changed and TLB flush necessary | |
1484 | */ | |
cd7548ab | 1485 | int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd, |
e944fd67 | 1486 | unsigned long addr, pgprot_t newprot, int prot_numa) |
cd7548ab JW |
1487 | { |
1488 | struct mm_struct *mm = vma->vm_mm; | |
bf929152 | 1489 | spinlock_t *ptl; |
cd7548ab JW |
1490 | int ret = 0; |
1491 | ||
bf929152 | 1492 | if (__pmd_trans_huge_lock(pmd, vma, &ptl) == 1) { |
025c5b24 | 1493 | pmd_t entry; |
b191f9b1 | 1494 | bool preserve_write = prot_numa && pmd_write(*pmd); |
ba68bc01 | 1495 | ret = 1; |
e944fd67 MG |
1496 | |
1497 | /* | |
1498 | * Avoid trapping faults against the zero page. The read-only | |
1499 | * data is likely to be read-cached on the local CPU and | |
1500 | * local/remote hits to the zero page are not interesting. | |
1501 | */ | |
1502 | if (prot_numa && is_huge_zero_pmd(*pmd)) { | |
1503 | spin_unlock(ptl); | |
ba68bc01 | 1504 | return ret; |
e944fd67 MG |
1505 | } |
1506 | ||
10c1045f | 1507 | if (!prot_numa || !pmd_protnone(*pmd)) { |
8809aa2d | 1508 | entry = pmdp_huge_get_and_clear_notify(mm, addr, pmd); |
10c1045f | 1509 | entry = pmd_modify(entry, newprot); |
b191f9b1 MG |
1510 | if (preserve_write) |
1511 | entry = pmd_mkwrite(entry); | |
10c1045f MG |
1512 | ret = HPAGE_PMD_NR; |
1513 | set_pmd_at(mm, addr, pmd, entry); | |
b191f9b1 | 1514 | BUG_ON(!preserve_write && pmd_write(entry)); |
10c1045f | 1515 | } |
bf929152 | 1516 | spin_unlock(ptl); |
025c5b24 NH |
1517 | } |
1518 | ||
1519 | return ret; | |
1520 | } | |
1521 | ||
1522 | /* | |
1523 | * Returns 1 if a given pmd maps a stable (not under splitting) thp. | |
1524 | * Returns -1 if it maps a thp under splitting. Returns 0 otherwise. | |
1525 | * | |
1526 | * Note that if it returns 1, this routine returns without unlocking page | |
1527 | * table locks. So callers must unlock them. | |
1528 | */ | |
bf929152 KS |
1529 | int __pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma, |
1530 | spinlock_t **ptl) | |
025c5b24 | 1531 | { |
bf929152 | 1532 | *ptl = pmd_lock(vma->vm_mm, pmd); |
cd7548ab JW |
1533 | if (likely(pmd_trans_huge(*pmd))) { |
1534 | if (unlikely(pmd_trans_splitting(*pmd))) { | |
bf929152 | 1535 | spin_unlock(*ptl); |
cd7548ab | 1536 | wait_split_huge_page(vma->anon_vma, pmd); |
025c5b24 | 1537 | return -1; |
cd7548ab | 1538 | } else { |
025c5b24 NH |
1539 | /* Thp mapped by 'pmd' is stable, so we can |
1540 | * handle it as it is. */ | |
1541 | return 1; | |
cd7548ab | 1542 | } |
025c5b24 | 1543 | } |
bf929152 | 1544 | spin_unlock(*ptl); |
025c5b24 | 1545 | return 0; |
cd7548ab JW |
1546 | } |
1547 | ||
117b0791 KS |
1548 | /* |
1549 | * This function returns whether a given @page is mapped onto the @address | |
1550 | * in the virtual space of @mm. | |
1551 | * | |
1552 | * When it's true, this function returns *pmd with holding the page table lock | |
1553 | * and passing it back to the caller via @ptl. | |
1554 | * If it's false, returns NULL without holding the page table lock. | |
1555 | */ | |
71e3aac0 AA |
1556 | pmd_t *page_check_address_pmd(struct page *page, |
1557 | struct mm_struct *mm, | |
1558 | unsigned long address, | |
117b0791 KS |
1559 | enum page_check_address_pmd_flag flag, |
1560 | spinlock_t **ptl) | |
71e3aac0 | 1561 | { |
b5a8cad3 KS |
1562 | pgd_t *pgd; |
1563 | pud_t *pud; | |
117b0791 | 1564 | pmd_t *pmd; |
71e3aac0 AA |
1565 | |
1566 | if (address & ~HPAGE_PMD_MASK) | |
117b0791 | 1567 | return NULL; |
71e3aac0 | 1568 | |
b5a8cad3 KS |
1569 | pgd = pgd_offset(mm, address); |
1570 | if (!pgd_present(*pgd)) | |
117b0791 | 1571 | return NULL; |
b5a8cad3 KS |
1572 | pud = pud_offset(pgd, address); |
1573 | if (!pud_present(*pud)) | |
1574 | return NULL; | |
1575 | pmd = pmd_offset(pud, address); | |
1576 | ||
117b0791 | 1577 | *ptl = pmd_lock(mm, pmd); |
b5a8cad3 | 1578 | if (!pmd_present(*pmd)) |
117b0791 | 1579 | goto unlock; |
71e3aac0 | 1580 | if (pmd_page(*pmd) != page) |
117b0791 | 1581 | goto unlock; |
94fcc585 AA |
1582 | /* |
1583 | * split_vma() may create temporary aliased mappings. There is | |
1584 | * no risk as long as all huge pmd are found and have their | |
1585 | * splitting bit set before __split_huge_page_refcount | |
1586 | * runs. Finding the same huge pmd more than once during the | |
1587 | * same rmap walk is not a problem. | |
1588 | */ | |
1589 | if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG && | |
1590 | pmd_trans_splitting(*pmd)) | |
117b0791 | 1591 | goto unlock; |
71e3aac0 AA |
1592 | if (pmd_trans_huge(*pmd)) { |
1593 | VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG && | |
1594 | !pmd_trans_splitting(*pmd)); | |
117b0791 | 1595 | return pmd; |
71e3aac0 | 1596 | } |
117b0791 KS |
1597 | unlock: |
1598 | spin_unlock(*ptl); | |
1599 | return NULL; | |
71e3aac0 AA |
1600 | } |
1601 | ||
1602 | static int __split_huge_page_splitting(struct page *page, | |
1603 | struct vm_area_struct *vma, | |
1604 | unsigned long address) | |
1605 | { | |
1606 | struct mm_struct *mm = vma->vm_mm; | |
117b0791 | 1607 | spinlock_t *ptl; |
71e3aac0 AA |
1608 | pmd_t *pmd; |
1609 | int ret = 0; | |
2ec74c3e SG |
1610 | /* For mmu_notifiers */ |
1611 | const unsigned long mmun_start = address; | |
1612 | const unsigned long mmun_end = address + HPAGE_PMD_SIZE; | |
71e3aac0 | 1613 | |
2ec74c3e | 1614 | mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); |
71e3aac0 | 1615 | pmd = page_check_address_pmd(page, mm, address, |
117b0791 | 1616 | PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG, &ptl); |
71e3aac0 AA |
1617 | if (pmd) { |
1618 | /* | |
1619 | * We can't temporarily set the pmd to null in order | |
1620 | * to split it, the pmd must remain marked huge at all | |
1621 | * times or the VM won't take the pmd_trans_huge paths | |
5a505085 | 1622 | * and it won't wait on the anon_vma->root->rwsem to |
71e3aac0 AA |
1623 | * serialize against split_huge_page*. |
1624 | */ | |
2ec74c3e | 1625 | pmdp_splitting_flush(vma, address, pmd); |
34ee645e | 1626 | |
71e3aac0 | 1627 | ret = 1; |
117b0791 | 1628 | spin_unlock(ptl); |
71e3aac0 | 1629 | } |
2ec74c3e | 1630 | mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); |
71e3aac0 AA |
1631 | |
1632 | return ret; | |
1633 | } | |
1634 | ||
5bc7b8ac SL |
1635 | static void __split_huge_page_refcount(struct page *page, |
1636 | struct list_head *list) | |
71e3aac0 AA |
1637 | { |
1638 | int i; | |
71e3aac0 | 1639 | struct zone *zone = page_zone(page); |
fa9add64 | 1640 | struct lruvec *lruvec; |
70b50f94 | 1641 | int tail_count = 0; |
71e3aac0 AA |
1642 | |
1643 | /* prevent PageLRU to go away from under us, and freeze lru stats */ | |
1644 | spin_lock_irq(&zone->lru_lock); | |
fa9add64 HD |
1645 | lruvec = mem_cgroup_page_lruvec(page, zone); |
1646 | ||
71e3aac0 | 1647 | compound_lock(page); |
e94c8a9c KH |
1648 | /* complete memcg works before add pages to LRU */ |
1649 | mem_cgroup_split_huge_fixup(page); | |
71e3aac0 | 1650 | |
45676885 | 1651 | for (i = HPAGE_PMD_NR - 1; i >= 1; i--) { |
71e3aac0 AA |
1652 | struct page *page_tail = page + i; |
1653 | ||
70b50f94 AA |
1654 | /* tail_page->_mapcount cannot change */ |
1655 | BUG_ON(page_mapcount(page_tail) < 0); | |
1656 | tail_count += page_mapcount(page_tail); | |
1657 | /* check for overflow */ | |
1658 | BUG_ON(tail_count < 0); | |
1659 | BUG_ON(atomic_read(&page_tail->_count) != 0); | |
1660 | /* | |
1661 | * tail_page->_count is zero and not changing from | |
1662 | * under us. But get_page_unless_zero() may be running | |
1663 | * from under us on the tail_page. If we used | |
1664 | * atomic_set() below instead of atomic_add(), we | |
1665 | * would then run atomic_set() concurrently with | |
1666 | * get_page_unless_zero(), and atomic_set() is | |
1667 | * implemented in C not using locked ops. spin_unlock | |
1668 | * on x86 sometime uses locked ops because of PPro | |
1669 | * errata 66, 92, so unless somebody can guarantee | |
1670 | * atomic_set() here would be safe on all archs (and | |
1671 | * not only on x86), it's safer to use atomic_add(). | |
1672 | */ | |
1673 | atomic_add(page_mapcount(page) + page_mapcount(page_tail) + 1, | |
1674 | &page_tail->_count); | |
71e3aac0 AA |
1675 | |
1676 | /* after clearing PageTail the gup refcount can be released */ | |
3a79d52a | 1677 | smp_mb__after_atomic(); |
71e3aac0 | 1678 | |
f4c18e6f | 1679 | page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; |
71e3aac0 AA |
1680 | page_tail->flags |= (page->flags & |
1681 | ((1L << PG_referenced) | | |
1682 | (1L << PG_swapbacked) | | |
1683 | (1L << PG_mlocked) | | |
e180cf80 KS |
1684 | (1L << PG_uptodate) | |
1685 | (1L << PG_active) | | |
1686 | (1L << PG_unevictable))); | |
71e3aac0 AA |
1687 | page_tail->flags |= (1L << PG_dirty); |
1688 | ||
70b50f94 | 1689 | /* clear PageTail before overwriting first_page */ |
71e3aac0 AA |
1690 | smp_wmb(); |
1691 | ||
1692 | /* | |
1693 | * __split_huge_page_splitting() already set the | |
1694 | * splitting bit in all pmd that could map this | |
1695 | * hugepage, that will ensure no CPU can alter the | |
1696 | * mapcount on the head page. The mapcount is only | |
1697 | * accounted in the head page and it has to be | |
1698 | * transferred to all tail pages in the below code. So | |
1699 | * for this code to be safe, the split the mapcount | |
1700 | * can't change. But that doesn't mean userland can't | |
1701 | * keep changing and reading the page contents while | |
1702 | * we transfer the mapcount, so the pmd splitting | |
1703 | * status is achieved setting a reserved bit in the | |
1704 | * pmd, not by clearing the present bit. | |
1705 | */ | |
71e3aac0 AA |
1706 | page_tail->_mapcount = page->_mapcount; |
1707 | ||
1708 | BUG_ON(page_tail->mapping); | |
1709 | page_tail->mapping = page->mapping; | |
1710 | ||
45676885 | 1711 | page_tail->index = page->index + i; |
90572890 | 1712 | page_cpupid_xchg_last(page_tail, page_cpupid_last(page)); |
71e3aac0 AA |
1713 | |
1714 | BUG_ON(!PageAnon(page_tail)); | |
1715 | BUG_ON(!PageUptodate(page_tail)); | |
1716 | BUG_ON(!PageDirty(page_tail)); | |
1717 | BUG_ON(!PageSwapBacked(page_tail)); | |
1718 | ||
5bc7b8ac | 1719 | lru_add_page_tail(page, page_tail, lruvec, list); |
71e3aac0 | 1720 | } |
70b50f94 AA |
1721 | atomic_sub(tail_count, &page->_count); |
1722 | BUG_ON(atomic_read(&page->_count) <= 0); | |
71e3aac0 | 1723 | |
fa9add64 | 1724 | __mod_zone_page_state(zone, NR_ANON_TRANSPARENT_HUGEPAGES, -1); |
79134171 | 1725 | |
71e3aac0 AA |
1726 | ClearPageCompound(page); |
1727 | compound_unlock(page); | |
1728 | spin_unlock_irq(&zone->lru_lock); | |
1729 | ||
1730 | for (i = 1; i < HPAGE_PMD_NR; i++) { | |
1731 | struct page *page_tail = page + i; | |
1732 | BUG_ON(page_count(page_tail) <= 0); | |
1733 | /* | |
1734 | * Tail pages may be freed if there wasn't any mapping | |
1735 | * like if add_to_swap() is running on a lru page that | |
1736 | * had its mapping zapped. And freeing these pages | |
1737 | * requires taking the lru_lock so we do the put_page | |
1738 | * of the tail pages after the split is complete. | |
1739 | */ | |
1740 | put_page(page_tail); | |
1741 | } | |
1742 | ||
1743 | /* | |
1744 | * Only the head page (now become a regular page) is required | |
1745 | * to be pinned by the caller. | |
1746 | */ | |
1747 | BUG_ON(page_count(page) <= 0); | |
1748 | } | |
1749 | ||
1750 | static int __split_huge_page_map(struct page *page, | |
1751 | struct vm_area_struct *vma, | |
1752 | unsigned long address) | |
1753 | { | |
1754 | struct mm_struct *mm = vma->vm_mm; | |
117b0791 | 1755 | spinlock_t *ptl; |
71e3aac0 AA |
1756 | pmd_t *pmd, _pmd; |
1757 | int ret = 0, i; | |
1758 | pgtable_t pgtable; | |
1759 | unsigned long haddr; | |
1760 | ||
71e3aac0 | 1761 | pmd = page_check_address_pmd(page, mm, address, |
117b0791 | 1762 | PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG, &ptl); |
71e3aac0 | 1763 | if (pmd) { |
6b0b50b0 | 1764 | pgtable = pgtable_trans_huge_withdraw(mm, pmd); |
71e3aac0 | 1765 | pmd_populate(mm, &_pmd, pgtable); |
f8303c25 WL |
1766 | if (pmd_write(*pmd)) |
1767 | BUG_ON(page_mapcount(page) != 1); | |
71e3aac0 | 1768 | |
e3ebcf64 GS |
1769 | haddr = address; |
1770 | for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) { | |
71e3aac0 AA |
1771 | pte_t *pte, entry; |
1772 | BUG_ON(PageCompound(page+i)); | |
abc40bd2 | 1773 | /* |
8a0516ed MG |
1774 | * Note that NUMA hinting access restrictions are not |
1775 | * transferred to avoid any possibility of altering | |
1776 | * permissions across VMAs. | |
abc40bd2 | 1777 | */ |
71e3aac0 AA |
1778 | entry = mk_pte(page + i, vma->vm_page_prot); |
1779 | entry = maybe_mkwrite(pte_mkdirty(entry), vma); | |
1780 | if (!pmd_write(*pmd)) | |
1781 | entry = pte_wrprotect(entry); | |
71e3aac0 AA |
1782 | if (!pmd_young(*pmd)) |
1783 | entry = pte_mkold(entry); | |
1784 | pte = pte_offset_map(&_pmd, haddr); | |
1785 | BUG_ON(!pte_none(*pte)); | |
1786 | set_pte_at(mm, haddr, pte, entry); | |
1787 | pte_unmap(pte); | |
1788 | } | |
1789 | ||
71e3aac0 AA |
1790 | smp_wmb(); /* make pte visible before pmd */ |
1791 | /* | |
1792 | * Up to this point the pmd is present and huge and | |
1793 | * userland has the whole access to the hugepage | |
1794 | * during the split (which happens in place). If we | |
1795 | * overwrite the pmd with the not-huge version | |
1796 | * pointing to the pte here (which of course we could | |
1797 | * if all CPUs were bug free), userland could trigger | |
1798 | * a small page size TLB miss on the small sized TLB | |
1799 | * while the hugepage TLB entry is still established | |
1800 | * in the huge TLB. Some CPU doesn't like that. See | |
1801 | * http://support.amd.com/us/Processor_TechDocs/41322.pdf, | |
1802 | * Erratum 383 on page 93. Intel should be safe but is | |
1803 | * also warns that it's only safe if the permission | |
1804 | * and cache attributes of the two entries loaded in | |
1805 | * the two TLB is identical (which should be the case | |
1806 | * here). But it is generally safer to never allow | |
1807 | * small and huge TLB entries for the same virtual | |
1808 | * address to be loaded simultaneously. So instead of | |
1809 | * doing "pmd_populate(); flush_tlb_range();" we first | |
1810 | * mark the current pmd notpresent (atomically because | |
1811 | * here the pmd_trans_huge and pmd_trans_splitting | |
1812 | * must remain set at all times on the pmd until the | |
1813 | * split is complete for this pmd), then we flush the | |
1814 | * SMP TLB and finally we write the non-huge version | |
1815 | * of the pmd entry with pmd_populate. | |
1816 | */ | |
46dcde73 | 1817 | pmdp_invalidate(vma, address, pmd); |
71e3aac0 AA |
1818 | pmd_populate(mm, pmd, pgtable); |
1819 | ret = 1; | |
117b0791 | 1820 | spin_unlock(ptl); |
71e3aac0 | 1821 | } |
71e3aac0 AA |
1822 | |
1823 | return ret; | |
1824 | } | |
1825 | ||
5a505085 | 1826 | /* must be called with anon_vma->root->rwsem held */ |
71e3aac0 | 1827 | static void __split_huge_page(struct page *page, |
5bc7b8ac SL |
1828 | struct anon_vma *anon_vma, |
1829 | struct list_head *list) | |
71e3aac0 AA |
1830 | { |
1831 | int mapcount, mapcount2; | |
bf181b9f | 1832 | pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); |
71e3aac0 AA |
1833 | struct anon_vma_chain *avc; |
1834 | ||
1835 | BUG_ON(!PageHead(page)); | |
1836 | BUG_ON(PageTail(page)); | |
1837 | ||
1838 | mapcount = 0; | |
bf181b9f | 1839 | anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) { |
71e3aac0 AA |
1840 | struct vm_area_struct *vma = avc->vma; |
1841 | unsigned long addr = vma_address(page, vma); | |
1842 | BUG_ON(is_vma_temporary_stack(vma)); | |
71e3aac0 AA |
1843 | mapcount += __split_huge_page_splitting(page, vma, addr); |
1844 | } | |
05759d38 AA |
1845 | /* |
1846 | * It is critical that new vmas are added to the tail of the | |
1847 | * anon_vma list. This guarantes that if copy_huge_pmd() runs | |
1848 | * and establishes a child pmd before | |
1849 | * __split_huge_page_splitting() freezes the parent pmd (so if | |
1850 | * we fail to prevent copy_huge_pmd() from running until the | |
1851 | * whole __split_huge_page() is complete), we will still see | |
1852 | * the newly established pmd of the child later during the | |
1853 | * walk, to be able to set it as pmd_trans_splitting too. | |
1854 | */ | |
ff9e43eb | 1855 | if (mapcount != page_mapcount(page)) { |
ae3a8c1c AM |
1856 | pr_err("mapcount %d page_mapcount %d\n", |
1857 | mapcount, page_mapcount(page)); | |
ff9e43eb KS |
1858 | BUG(); |
1859 | } | |
71e3aac0 | 1860 | |
5bc7b8ac | 1861 | __split_huge_page_refcount(page, list); |
71e3aac0 AA |
1862 | |
1863 | mapcount2 = 0; | |
bf181b9f | 1864 | anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) { |
71e3aac0 AA |
1865 | struct vm_area_struct *vma = avc->vma; |
1866 | unsigned long addr = vma_address(page, vma); | |
1867 | BUG_ON(is_vma_temporary_stack(vma)); | |
71e3aac0 AA |
1868 | mapcount2 += __split_huge_page_map(page, vma, addr); |
1869 | } | |
ff9e43eb | 1870 | if (mapcount != mapcount2) { |
ae3a8c1c AM |
1871 | pr_err("mapcount %d mapcount2 %d page_mapcount %d\n", |
1872 | mapcount, mapcount2, page_mapcount(page)); | |
ff9e43eb KS |
1873 | BUG(); |
1874 | } | |
71e3aac0 AA |
1875 | } |
1876 | ||
5bc7b8ac SL |
1877 | /* |
1878 | * Split a hugepage into normal pages. This doesn't change the position of head | |
1879 | * page. If @list is null, tail pages will be added to LRU list, otherwise, to | |
1880 | * @list. Both head page and tail pages will inherit mapping, flags, and so on | |
1881 | * from the hugepage. | |
1882 | * Return 0 if the hugepage is split successfully otherwise return 1. | |
1883 | */ | |
1884 | int split_huge_page_to_list(struct page *page, struct list_head *list) | |
71e3aac0 AA |
1885 | { |
1886 | struct anon_vma *anon_vma; | |
1887 | int ret = 1; | |
1888 | ||
5918d10a | 1889 | BUG_ON(is_huge_zero_page(page)); |
71e3aac0 | 1890 | BUG_ON(!PageAnon(page)); |
062f1af2 MG |
1891 | |
1892 | /* | |
1893 | * The caller does not necessarily hold an mmap_sem that would prevent | |
1894 | * the anon_vma disappearing so we first we take a reference to it | |
1895 | * and then lock the anon_vma for write. This is similar to | |
1896 | * page_lock_anon_vma_read except the write lock is taken to serialise | |
1897 | * against parallel split or collapse operations. | |
1898 | */ | |
1899 | anon_vma = page_get_anon_vma(page); | |
71e3aac0 AA |
1900 | if (!anon_vma) |
1901 | goto out; | |
062f1af2 MG |
1902 | anon_vma_lock_write(anon_vma); |
1903 | ||
71e3aac0 AA |
1904 | ret = 0; |
1905 | if (!PageCompound(page)) | |
1906 | goto out_unlock; | |
1907 | ||
1908 | BUG_ON(!PageSwapBacked(page)); | |
5bc7b8ac | 1909 | __split_huge_page(page, anon_vma, list); |
81ab4201 | 1910 | count_vm_event(THP_SPLIT); |
71e3aac0 AA |
1911 | |
1912 | BUG_ON(PageCompound(page)); | |
1913 | out_unlock: | |
08b52706 | 1914 | anon_vma_unlock_write(anon_vma); |
062f1af2 | 1915 | put_anon_vma(anon_vma); |
71e3aac0 AA |
1916 | out: |
1917 | return ret; | |
1918 | } | |
1919 | ||
9050d7eb | 1920 | #define VM_NO_THP (VM_SPECIAL | VM_HUGETLB | VM_SHARED | VM_MAYSHARE) |
78f11a25 | 1921 | |
60ab3244 AA |
1922 | int hugepage_madvise(struct vm_area_struct *vma, |
1923 | unsigned long *vm_flags, int advice) | |
0af4e98b | 1924 | { |
a664b2d8 AA |
1925 | switch (advice) { |
1926 | case MADV_HUGEPAGE: | |
1e1836e8 AT |
1927 | #ifdef CONFIG_S390 |
1928 | /* | |
1929 | * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390 | |
1930 | * can't handle this properly after s390_enable_sie, so we simply | |
1931 | * ignore the madvise to prevent qemu from causing a SIGSEGV. | |
1932 | */ | |
1933 | if (mm_has_pgste(vma->vm_mm)) | |
1934 | return 0; | |
1935 | #endif | |
a664b2d8 AA |
1936 | /* |
1937 | * Be somewhat over-protective like KSM for now! | |
1938 | */ | |
78f11a25 | 1939 | if (*vm_flags & (VM_HUGEPAGE | VM_NO_THP)) |
a664b2d8 AA |
1940 | return -EINVAL; |
1941 | *vm_flags &= ~VM_NOHUGEPAGE; | |
1942 | *vm_flags |= VM_HUGEPAGE; | |
60ab3244 AA |
1943 | /* |
1944 | * If the vma become good for khugepaged to scan, | |
1945 | * register it here without waiting a page fault that | |
1946 | * may not happen any time soon. | |
1947 | */ | |
6d50e60c | 1948 | if (unlikely(khugepaged_enter_vma_merge(vma, *vm_flags))) |
60ab3244 | 1949 | return -ENOMEM; |
a664b2d8 AA |
1950 | break; |
1951 | case MADV_NOHUGEPAGE: | |
1952 | /* | |
1953 | * Be somewhat over-protective like KSM for now! | |
1954 | */ | |
78f11a25 | 1955 | if (*vm_flags & (VM_NOHUGEPAGE | VM_NO_THP)) |
a664b2d8 AA |
1956 | return -EINVAL; |
1957 | *vm_flags &= ~VM_HUGEPAGE; | |
1958 | *vm_flags |= VM_NOHUGEPAGE; | |
60ab3244 AA |
1959 | /* |
1960 | * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning | |
1961 | * this vma even if we leave the mm registered in khugepaged if | |
1962 | * it got registered before VM_NOHUGEPAGE was set. | |
1963 | */ | |
a664b2d8 AA |
1964 | break; |
1965 | } | |
0af4e98b AA |
1966 | |
1967 | return 0; | |
1968 | } | |
1969 | ||
ba76149f AA |
1970 | static int __init khugepaged_slab_init(void) |
1971 | { | |
1972 | mm_slot_cache = kmem_cache_create("khugepaged_mm_slot", | |
1973 | sizeof(struct mm_slot), | |
1974 | __alignof__(struct mm_slot), 0, NULL); | |
1975 | if (!mm_slot_cache) | |
1976 | return -ENOMEM; | |
1977 | ||
1978 | return 0; | |
1979 | } | |
1980 | ||
65ebb64f KS |
1981 | static void __init khugepaged_slab_exit(void) |
1982 | { | |
1983 | kmem_cache_destroy(mm_slot_cache); | |
1984 | } | |
1985 | ||
ba76149f AA |
1986 | static inline struct mm_slot *alloc_mm_slot(void) |
1987 | { | |
1988 | if (!mm_slot_cache) /* initialization failed */ | |
1989 | return NULL; | |
1990 | return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL); | |
1991 | } | |
1992 | ||
1993 | static inline void free_mm_slot(struct mm_slot *mm_slot) | |
1994 | { | |
1995 | kmem_cache_free(mm_slot_cache, mm_slot); | |
1996 | } | |
1997 | ||
ba76149f AA |
1998 | static struct mm_slot *get_mm_slot(struct mm_struct *mm) |
1999 | { | |
2000 | struct mm_slot *mm_slot; | |
ba76149f | 2001 | |
b67bfe0d | 2002 | hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm) |
ba76149f AA |
2003 | if (mm == mm_slot->mm) |
2004 | return mm_slot; | |
43b5fbbd | 2005 | |
ba76149f AA |
2006 | return NULL; |
2007 | } | |
2008 | ||
2009 | static void insert_to_mm_slots_hash(struct mm_struct *mm, | |
2010 | struct mm_slot *mm_slot) | |
2011 | { | |
ba76149f | 2012 | mm_slot->mm = mm; |
43b5fbbd | 2013 | hash_add(mm_slots_hash, &mm_slot->hash, (long)mm); |
ba76149f AA |
2014 | } |
2015 | ||
2016 | static inline int khugepaged_test_exit(struct mm_struct *mm) | |
2017 | { | |
2018 | return atomic_read(&mm->mm_users) == 0; | |
2019 | } | |
2020 | ||
2021 | int __khugepaged_enter(struct mm_struct *mm) | |
2022 | { | |
2023 | struct mm_slot *mm_slot; | |
2024 | int wakeup; | |
2025 | ||
2026 | mm_slot = alloc_mm_slot(); | |
2027 | if (!mm_slot) | |
2028 | return -ENOMEM; | |
2029 | ||
2030 | /* __khugepaged_exit() must not run from under us */ | |
96dad67f | 2031 | VM_BUG_ON_MM(khugepaged_test_exit(mm), mm); |
ba76149f AA |
2032 | if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) { |
2033 | free_mm_slot(mm_slot); | |
2034 | return 0; | |
2035 | } | |
2036 | ||
2037 | spin_lock(&khugepaged_mm_lock); | |
2038 | insert_to_mm_slots_hash(mm, mm_slot); | |
2039 | /* | |
2040 | * Insert just behind the scanning cursor, to let the area settle | |
2041 | * down a little. | |
2042 | */ | |
2043 | wakeup = list_empty(&khugepaged_scan.mm_head); | |
2044 | list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head); | |
2045 | spin_unlock(&khugepaged_mm_lock); | |
2046 | ||
2047 | atomic_inc(&mm->mm_count); | |
2048 | if (wakeup) | |
2049 | wake_up_interruptible(&khugepaged_wait); | |
2050 | ||
2051 | return 0; | |
2052 | } | |
2053 | ||
6d50e60c DR |
2054 | int khugepaged_enter_vma_merge(struct vm_area_struct *vma, |
2055 | unsigned long vm_flags) | |
ba76149f AA |
2056 | { |
2057 | unsigned long hstart, hend; | |
2058 | if (!vma->anon_vma) | |
2059 | /* | |
2060 | * Not yet faulted in so we will register later in the | |
2061 | * page fault if needed. | |
2062 | */ | |
2063 | return 0; | |
78f11a25 | 2064 | if (vma->vm_ops) |
ba76149f AA |
2065 | /* khugepaged not yet working on file or special mappings */ |
2066 | return 0; | |
6d50e60c | 2067 | VM_BUG_ON_VMA(vm_flags & VM_NO_THP, vma); |
ba76149f AA |
2068 | hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK; |
2069 | hend = vma->vm_end & HPAGE_PMD_MASK; | |
2070 | if (hstart < hend) | |
6d50e60c | 2071 | return khugepaged_enter(vma, vm_flags); |
ba76149f AA |
2072 | return 0; |
2073 | } | |
2074 | ||
2075 | void __khugepaged_exit(struct mm_struct *mm) | |
2076 | { | |
2077 | struct mm_slot *mm_slot; | |
2078 | int free = 0; | |
2079 | ||
2080 | spin_lock(&khugepaged_mm_lock); | |
2081 | mm_slot = get_mm_slot(mm); | |
2082 | if (mm_slot && khugepaged_scan.mm_slot != mm_slot) { | |
43b5fbbd | 2083 | hash_del(&mm_slot->hash); |
ba76149f AA |
2084 | list_del(&mm_slot->mm_node); |
2085 | free = 1; | |
2086 | } | |
d788e80a | 2087 | spin_unlock(&khugepaged_mm_lock); |
ba76149f AA |
2088 | |
2089 | if (free) { | |
ba76149f AA |
2090 | clear_bit(MMF_VM_HUGEPAGE, &mm->flags); |
2091 | free_mm_slot(mm_slot); | |
2092 | mmdrop(mm); | |
2093 | } else if (mm_slot) { | |
ba76149f AA |
2094 | /* |
2095 | * This is required to serialize against | |
2096 | * khugepaged_test_exit() (which is guaranteed to run | |
2097 | * under mmap sem read mode). Stop here (after we | |
2098 | * return all pagetables will be destroyed) until | |
2099 | * khugepaged has finished working on the pagetables | |
2100 | * under the mmap_sem. | |
2101 | */ | |
2102 | down_write(&mm->mmap_sem); | |
2103 | up_write(&mm->mmap_sem); | |
d788e80a | 2104 | } |
ba76149f AA |
2105 | } |
2106 | ||
2107 | static void release_pte_page(struct page *page) | |
2108 | { | |
2109 | /* 0 stands for page_is_file_cache(page) == false */ | |
2110 | dec_zone_page_state(page, NR_ISOLATED_ANON + 0); | |
2111 | unlock_page(page); | |
2112 | putback_lru_page(page); | |
2113 | } | |
2114 | ||
2115 | static void release_pte_pages(pte_t *pte, pte_t *_pte) | |
2116 | { | |
2117 | while (--_pte >= pte) { | |
2118 | pte_t pteval = *_pte; | |
ca0984ca | 2119 | if (!pte_none(pteval) && !is_zero_pfn(pte_pfn(pteval))) |
ba76149f AA |
2120 | release_pte_page(pte_page(pteval)); |
2121 | } | |
2122 | } | |
2123 | ||
ba76149f AA |
2124 | static int __collapse_huge_page_isolate(struct vm_area_struct *vma, |
2125 | unsigned long address, | |
2126 | pte_t *pte) | |
2127 | { | |
2128 | struct page *page; | |
2129 | pte_t *_pte; | |
ca0984ca | 2130 | int none_or_zero = 0; |
10359213 | 2131 | bool referenced = false, writable = false; |
ba76149f AA |
2132 | for (_pte = pte; _pte < pte+HPAGE_PMD_NR; |
2133 | _pte++, address += PAGE_SIZE) { | |
2134 | pte_t pteval = *_pte; | |
ca0984ca EA |
2135 | if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) { |
2136 | if (++none_or_zero <= khugepaged_max_ptes_none) | |
ba76149f | 2137 | continue; |
344aa35c | 2138 | else |
ba76149f | 2139 | goto out; |
ba76149f | 2140 | } |
10359213 | 2141 | if (!pte_present(pteval)) |
ba76149f | 2142 | goto out; |
ba76149f | 2143 | page = vm_normal_page(vma, address, pteval); |
344aa35c | 2144 | if (unlikely(!page)) |
ba76149f | 2145 | goto out; |
344aa35c | 2146 | |
309381fe SL |
2147 | VM_BUG_ON_PAGE(PageCompound(page), page); |
2148 | VM_BUG_ON_PAGE(!PageAnon(page), page); | |
2149 | VM_BUG_ON_PAGE(!PageSwapBacked(page), page); | |
ba76149f | 2150 | |
ba76149f AA |
2151 | /* |
2152 | * We can do it before isolate_lru_page because the | |
2153 | * page can't be freed from under us. NOTE: PG_lock | |
2154 | * is needed to serialize against split_huge_page | |
2155 | * when invoked from the VM. | |
2156 | */ | |
344aa35c | 2157 | if (!trylock_page(page)) |
ba76149f | 2158 | goto out; |
10359213 EA |
2159 | |
2160 | /* | |
2161 | * cannot use mapcount: can't collapse if there's a gup pin. | |
2162 | * The page must only be referenced by the scanned process | |
2163 | * and page swap cache. | |
2164 | */ | |
2165 | if (page_count(page) != 1 + !!PageSwapCache(page)) { | |
2166 | unlock_page(page); | |
2167 | goto out; | |
2168 | } | |
2169 | if (pte_write(pteval)) { | |
2170 | writable = true; | |
2171 | } else { | |
2172 | if (PageSwapCache(page) && !reuse_swap_page(page)) { | |
2173 | unlock_page(page); | |
2174 | goto out; | |
2175 | } | |
2176 | /* | |
2177 | * Page is not in the swap cache. It can be collapsed | |
2178 | * into a THP. | |
2179 | */ | |
2180 | } | |
2181 | ||
ba76149f AA |
2182 | /* |
2183 | * Isolate the page to avoid collapsing an hugepage | |
2184 | * currently in use by the VM. | |
2185 | */ | |
2186 | if (isolate_lru_page(page)) { | |
2187 | unlock_page(page); | |
ba76149f AA |
2188 | goto out; |
2189 | } | |
2190 | /* 0 stands for page_is_file_cache(page) == false */ | |
2191 | inc_zone_page_state(page, NR_ISOLATED_ANON + 0); | |
309381fe SL |
2192 | VM_BUG_ON_PAGE(!PageLocked(page), page); |
2193 | VM_BUG_ON_PAGE(PageLRU(page), page); | |
ba76149f AA |
2194 | |
2195 | /* If there is no mapped pte young don't collapse the page */ | |
8ee53820 AA |
2196 | if (pte_young(pteval) || PageReferenced(page) || |
2197 | mmu_notifier_test_young(vma->vm_mm, address)) | |
10359213 | 2198 | referenced = true; |
ba76149f | 2199 | } |
10359213 | 2200 | if (likely(referenced && writable)) |
344aa35c | 2201 | return 1; |
ba76149f | 2202 | out: |
344aa35c BL |
2203 | release_pte_pages(pte, _pte); |
2204 | return 0; | |
ba76149f AA |
2205 | } |
2206 | ||
2207 | static void __collapse_huge_page_copy(pte_t *pte, struct page *page, | |
2208 | struct vm_area_struct *vma, | |
2209 | unsigned long address, | |
2210 | spinlock_t *ptl) | |
2211 | { | |
2212 | pte_t *_pte; | |
2213 | for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) { | |
2214 | pte_t pteval = *_pte; | |
2215 | struct page *src_page; | |
2216 | ||
ca0984ca | 2217 | if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) { |
ba76149f AA |
2218 | clear_user_highpage(page, address); |
2219 | add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1); | |
ca0984ca EA |
2220 | if (is_zero_pfn(pte_pfn(pteval))) { |
2221 | /* | |
2222 | * ptl mostly unnecessary. | |
2223 | */ | |
2224 | spin_lock(ptl); | |
2225 | /* | |
2226 | * paravirt calls inside pte_clear here are | |
2227 | * superfluous. | |
2228 | */ | |
2229 | pte_clear(vma->vm_mm, address, _pte); | |
2230 | spin_unlock(ptl); | |
2231 | } | |
ba76149f AA |
2232 | } else { |
2233 | src_page = pte_page(pteval); | |
2234 | copy_user_highpage(page, src_page, address, vma); | |
309381fe | 2235 | VM_BUG_ON_PAGE(page_mapcount(src_page) != 1, src_page); |
ba76149f AA |
2236 | release_pte_page(src_page); |
2237 | /* | |
2238 | * ptl mostly unnecessary, but preempt has to | |
2239 | * be disabled to update the per-cpu stats | |
2240 | * inside page_remove_rmap(). | |
2241 | */ | |
2242 | spin_lock(ptl); | |
2243 | /* | |
2244 | * paravirt calls inside pte_clear here are | |
2245 | * superfluous. | |
2246 | */ | |
2247 | pte_clear(vma->vm_mm, address, _pte); | |
2248 | page_remove_rmap(src_page); | |
2249 | spin_unlock(ptl); | |
2250 | free_page_and_swap_cache(src_page); | |
2251 | } | |
2252 | ||
2253 | address += PAGE_SIZE; | |
2254 | page++; | |
2255 | } | |
2256 | } | |
2257 | ||
26234f36 | 2258 | static void khugepaged_alloc_sleep(void) |
ba76149f | 2259 | { |
26234f36 XG |
2260 | wait_event_freezable_timeout(khugepaged_wait, false, |
2261 | msecs_to_jiffies(khugepaged_alloc_sleep_millisecs)); | |
2262 | } | |
ba76149f | 2263 | |
9f1b868a BL |
2264 | static int khugepaged_node_load[MAX_NUMNODES]; |
2265 | ||
14a4e214 DR |
2266 | static bool khugepaged_scan_abort(int nid) |
2267 | { | |
2268 | int i; | |
2269 | ||
2270 | /* | |
2271 | * If zone_reclaim_mode is disabled, then no extra effort is made to | |
2272 | * allocate memory locally. | |
2273 | */ | |
2274 | if (!zone_reclaim_mode) | |
2275 | return false; | |
2276 | ||
2277 | /* If there is a count for this node already, it must be acceptable */ | |
2278 | if (khugepaged_node_load[nid]) | |
2279 | return false; | |
2280 | ||
2281 | for (i = 0; i < MAX_NUMNODES; i++) { | |
2282 | if (!khugepaged_node_load[i]) | |
2283 | continue; | |
2284 | if (node_distance(nid, i) > RECLAIM_DISTANCE) | |
2285 | return true; | |
2286 | } | |
2287 | return false; | |
2288 | } | |
2289 | ||
26234f36 | 2290 | #ifdef CONFIG_NUMA |
9f1b868a BL |
2291 | static int khugepaged_find_target_node(void) |
2292 | { | |
2293 | static int last_khugepaged_target_node = NUMA_NO_NODE; | |
2294 | int nid, target_node = 0, max_value = 0; | |
2295 | ||
2296 | /* find first node with max normal pages hit */ | |
2297 | for (nid = 0; nid < MAX_NUMNODES; nid++) | |
2298 | if (khugepaged_node_load[nid] > max_value) { | |
2299 | max_value = khugepaged_node_load[nid]; | |
2300 | target_node = nid; | |
2301 | } | |
2302 | ||
2303 | /* do some balance if several nodes have the same hit record */ | |
2304 | if (target_node <= last_khugepaged_target_node) | |
2305 | for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES; | |
2306 | nid++) | |
2307 | if (max_value == khugepaged_node_load[nid]) { | |
2308 | target_node = nid; | |
2309 | break; | |
2310 | } | |
2311 | ||
2312 | last_khugepaged_target_node = target_node; | |
2313 | return target_node; | |
2314 | } | |
2315 | ||
26234f36 XG |
2316 | static bool khugepaged_prealloc_page(struct page **hpage, bool *wait) |
2317 | { | |
2318 | if (IS_ERR(*hpage)) { | |
2319 | if (!*wait) | |
2320 | return false; | |
2321 | ||
2322 | *wait = false; | |
e3b4126c | 2323 | *hpage = NULL; |
26234f36 XG |
2324 | khugepaged_alloc_sleep(); |
2325 | } else if (*hpage) { | |
2326 | put_page(*hpage); | |
2327 | *hpage = NULL; | |
2328 | } | |
2329 | ||
2330 | return true; | |
2331 | } | |
2332 | ||
3b363692 MH |
2333 | static struct page * |
2334 | khugepaged_alloc_page(struct page **hpage, gfp_t gfp, struct mm_struct *mm, | |
26234f36 XG |
2335 | struct vm_area_struct *vma, unsigned long address, |
2336 | int node) | |
2337 | { | |
309381fe | 2338 | VM_BUG_ON_PAGE(*hpage, *hpage); |
8b164568 | 2339 | |
ce83d217 | 2340 | /* |
8b164568 VB |
2341 | * Before allocating the hugepage, release the mmap_sem read lock. |
2342 | * The allocation can take potentially a long time if it involves | |
2343 | * sync compaction, and we do not need to hold the mmap_sem during | |
2344 | * that. We will recheck the vma after taking it again in write mode. | |
ce83d217 | 2345 | */ |
8b164568 VB |
2346 | up_read(&mm->mmap_sem); |
2347 | ||
3b363692 | 2348 | *hpage = alloc_pages_exact_node(node, gfp, HPAGE_PMD_ORDER); |
26234f36 | 2349 | if (unlikely(!*hpage)) { |
81ab4201 | 2350 | count_vm_event(THP_COLLAPSE_ALLOC_FAILED); |
ce83d217 | 2351 | *hpage = ERR_PTR(-ENOMEM); |
26234f36 | 2352 | return NULL; |
ce83d217 | 2353 | } |
26234f36 | 2354 | |
65b3c07b | 2355 | count_vm_event(THP_COLLAPSE_ALLOC); |
26234f36 XG |
2356 | return *hpage; |
2357 | } | |
2358 | #else | |
9f1b868a BL |
2359 | static int khugepaged_find_target_node(void) |
2360 | { | |
2361 | return 0; | |
2362 | } | |
2363 | ||
10dc4155 BL |
2364 | static inline struct page *alloc_hugepage(int defrag) |
2365 | { | |
2366 | return alloc_pages(alloc_hugepage_gfpmask(defrag, 0), | |
2367 | HPAGE_PMD_ORDER); | |
2368 | } | |
2369 | ||
26234f36 XG |
2370 | static struct page *khugepaged_alloc_hugepage(bool *wait) |
2371 | { | |
2372 | struct page *hpage; | |
2373 | ||
2374 | do { | |
2375 | hpage = alloc_hugepage(khugepaged_defrag()); | |
2376 | if (!hpage) { | |
2377 | count_vm_event(THP_COLLAPSE_ALLOC_FAILED); | |
2378 | if (!*wait) | |
2379 | return NULL; | |
2380 | ||
2381 | *wait = false; | |
2382 | khugepaged_alloc_sleep(); | |
2383 | } else | |
2384 | count_vm_event(THP_COLLAPSE_ALLOC); | |
2385 | } while (unlikely(!hpage) && likely(khugepaged_enabled())); | |
2386 | ||
2387 | return hpage; | |
2388 | } | |
2389 | ||
2390 | static bool khugepaged_prealloc_page(struct page **hpage, bool *wait) | |
2391 | { | |
2392 | if (!*hpage) | |
2393 | *hpage = khugepaged_alloc_hugepage(wait); | |
2394 | ||
2395 | if (unlikely(!*hpage)) | |
2396 | return false; | |
2397 | ||
2398 | return true; | |
2399 | } | |
2400 | ||
3b363692 MH |
2401 | static struct page * |
2402 | khugepaged_alloc_page(struct page **hpage, gfp_t gfp, struct mm_struct *mm, | |
26234f36 XG |
2403 | struct vm_area_struct *vma, unsigned long address, |
2404 | int node) | |
2405 | { | |
2406 | up_read(&mm->mmap_sem); | |
2407 | VM_BUG_ON(!*hpage); | |
3b363692 | 2408 | |
26234f36 XG |
2409 | return *hpage; |
2410 | } | |
692e0b35 AA |
2411 | #endif |
2412 | ||
fa475e51 BL |
2413 | static bool hugepage_vma_check(struct vm_area_struct *vma) |
2414 | { | |
2415 | if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) || | |
2416 | (vma->vm_flags & VM_NOHUGEPAGE)) | |
2417 | return false; | |
2418 | ||
2419 | if (!vma->anon_vma || vma->vm_ops) | |
2420 | return false; | |
2421 | if (is_vma_temporary_stack(vma)) | |
2422 | return false; | |
81d1b09c | 2423 | VM_BUG_ON_VMA(vma->vm_flags & VM_NO_THP, vma); |
fa475e51 BL |
2424 | return true; |
2425 | } | |
2426 | ||
26234f36 XG |
2427 | static void collapse_huge_page(struct mm_struct *mm, |
2428 | unsigned long address, | |
2429 | struct page **hpage, | |
2430 | struct vm_area_struct *vma, | |
2431 | int node) | |
2432 | { | |
26234f36 XG |
2433 | pmd_t *pmd, _pmd; |
2434 | pte_t *pte; | |
2435 | pgtable_t pgtable; | |
2436 | struct page *new_page; | |
c4088ebd | 2437 | spinlock_t *pmd_ptl, *pte_ptl; |
26234f36 XG |
2438 | int isolated; |
2439 | unsigned long hstart, hend; | |
00501b53 | 2440 | struct mem_cgroup *memcg; |
2ec74c3e SG |
2441 | unsigned long mmun_start; /* For mmu_notifiers */ |
2442 | unsigned long mmun_end; /* For mmu_notifiers */ | |
3b363692 | 2443 | gfp_t gfp; |
26234f36 XG |
2444 | |
2445 | VM_BUG_ON(address & ~HPAGE_PMD_MASK); | |
2446 | ||
3b363692 MH |
2447 | /* Only allocate from the target node */ |
2448 | gfp = alloc_hugepage_gfpmask(khugepaged_defrag(), __GFP_OTHER_NODE) | | |
2449 | __GFP_THISNODE; | |
2450 | ||
26234f36 | 2451 | /* release the mmap_sem read lock. */ |
3b363692 | 2452 | new_page = khugepaged_alloc_page(hpage, gfp, mm, vma, address, node); |
26234f36 XG |
2453 | if (!new_page) |
2454 | return; | |
2455 | ||
00501b53 | 2456 | if (unlikely(mem_cgroup_try_charge(new_page, mm, |
3b363692 | 2457 | gfp, &memcg))) |
ce83d217 | 2458 | return; |
ba76149f AA |
2459 | |
2460 | /* | |
2461 | * Prevent all access to pagetables with the exception of | |
2462 | * gup_fast later hanlded by the ptep_clear_flush and the VM | |
2463 | * handled by the anon_vma lock + PG_lock. | |
2464 | */ | |
2465 | down_write(&mm->mmap_sem); | |
2466 | if (unlikely(khugepaged_test_exit(mm))) | |
2467 | goto out; | |
2468 | ||
2469 | vma = find_vma(mm, address); | |
a8f531eb L |
2470 | if (!vma) |
2471 | goto out; | |
ba76149f AA |
2472 | hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK; |
2473 | hend = vma->vm_end & HPAGE_PMD_MASK; | |
2474 | if (address < hstart || address + HPAGE_PMD_SIZE > hend) | |
2475 | goto out; | |
fa475e51 | 2476 | if (!hugepage_vma_check(vma)) |
a7d6e4ec | 2477 | goto out; |
6219049a BL |
2478 | pmd = mm_find_pmd(mm, address); |
2479 | if (!pmd) | |
ba76149f | 2480 | goto out; |
ba76149f | 2481 | |
4fc3f1d6 | 2482 | anon_vma_lock_write(vma->anon_vma); |
ba76149f AA |
2483 | |
2484 | pte = pte_offset_map(pmd, address); | |
c4088ebd | 2485 | pte_ptl = pte_lockptr(mm, pmd); |
ba76149f | 2486 | |
2ec74c3e SG |
2487 | mmun_start = address; |
2488 | mmun_end = address + HPAGE_PMD_SIZE; | |
2489 | mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); | |
c4088ebd | 2490 | pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */ |
ba76149f AA |
2491 | /* |
2492 | * After this gup_fast can't run anymore. This also removes | |
2493 | * any huge TLB entry from the CPU so we won't allow | |
2494 | * huge and small TLB entries for the same virtual address | |
2495 | * to avoid the risk of CPU bugs in that area. | |
2496 | */ | |
15a25b2e | 2497 | _pmd = pmdp_collapse_flush(vma, address, pmd); |
c4088ebd | 2498 | spin_unlock(pmd_ptl); |
2ec74c3e | 2499 | mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); |
ba76149f | 2500 | |
c4088ebd | 2501 | spin_lock(pte_ptl); |
ba76149f | 2502 | isolated = __collapse_huge_page_isolate(vma, address, pte); |
c4088ebd | 2503 | spin_unlock(pte_ptl); |
ba76149f AA |
2504 | |
2505 | if (unlikely(!isolated)) { | |
453c7192 | 2506 | pte_unmap(pte); |
c4088ebd | 2507 | spin_lock(pmd_ptl); |
ba76149f | 2508 | BUG_ON(!pmd_none(*pmd)); |
7c342512 AK |
2509 | /* |
2510 | * We can only use set_pmd_at when establishing | |
2511 | * hugepmds and never for establishing regular pmds that | |
2512 | * points to regular pagetables. Use pmd_populate for that | |
2513 | */ | |
2514 | pmd_populate(mm, pmd, pmd_pgtable(_pmd)); | |
c4088ebd | 2515 | spin_unlock(pmd_ptl); |
08b52706 | 2516 | anon_vma_unlock_write(vma->anon_vma); |
ce83d217 | 2517 | goto out; |
ba76149f AA |
2518 | } |
2519 | ||
2520 | /* | |
2521 | * All pages are isolated and locked so anon_vma rmap | |
2522 | * can't run anymore. | |
2523 | */ | |
08b52706 | 2524 | anon_vma_unlock_write(vma->anon_vma); |
ba76149f | 2525 | |
c4088ebd | 2526 | __collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl); |
453c7192 | 2527 | pte_unmap(pte); |
ba76149f AA |
2528 | __SetPageUptodate(new_page); |
2529 | pgtable = pmd_pgtable(_pmd); | |
ba76149f | 2530 | |
3122359a KS |
2531 | _pmd = mk_huge_pmd(new_page, vma->vm_page_prot); |
2532 | _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma); | |
ba76149f AA |
2533 | |
2534 | /* | |
2535 | * spin_lock() below is not the equivalent of smp_wmb(), so | |
2536 | * this is needed to avoid the copy_huge_page writes to become | |
2537 | * visible after the set_pmd_at() write. | |
2538 | */ | |
2539 | smp_wmb(); | |
2540 | ||
c4088ebd | 2541 | spin_lock(pmd_ptl); |
ba76149f AA |
2542 | BUG_ON(!pmd_none(*pmd)); |
2543 | page_add_new_anon_rmap(new_page, vma, address); | |
00501b53 JW |
2544 | mem_cgroup_commit_charge(new_page, memcg, false); |
2545 | lru_cache_add_active_or_unevictable(new_page, vma); | |
fce144b4 | 2546 | pgtable_trans_huge_deposit(mm, pmd, pgtable); |
ba76149f | 2547 | set_pmd_at(mm, address, pmd, _pmd); |
b113da65 | 2548 | update_mmu_cache_pmd(vma, address, pmd); |
c4088ebd | 2549 | spin_unlock(pmd_ptl); |
ba76149f AA |
2550 | |
2551 | *hpage = NULL; | |
420256ef | 2552 | |
ba76149f | 2553 | khugepaged_pages_collapsed++; |
ce83d217 | 2554 | out_up_write: |
ba76149f | 2555 | up_write(&mm->mmap_sem); |
0bbbc0b3 AA |
2556 | return; |
2557 | ||
ce83d217 | 2558 | out: |
00501b53 | 2559 | mem_cgroup_cancel_charge(new_page, memcg); |
ce83d217 | 2560 | goto out_up_write; |
ba76149f AA |
2561 | } |
2562 | ||
2563 | static int khugepaged_scan_pmd(struct mm_struct *mm, | |
2564 | struct vm_area_struct *vma, | |
2565 | unsigned long address, | |
2566 | struct page **hpage) | |
2567 | { | |
ba76149f AA |
2568 | pmd_t *pmd; |
2569 | pte_t *pte, *_pte; | |
ca0984ca | 2570 | int ret = 0, none_or_zero = 0; |
ba76149f AA |
2571 | struct page *page; |
2572 | unsigned long _address; | |
2573 | spinlock_t *ptl; | |
00ef2d2f | 2574 | int node = NUMA_NO_NODE; |
10359213 | 2575 | bool writable = false, referenced = false; |
ba76149f AA |
2576 | |
2577 | VM_BUG_ON(address & ~HPAGE_PMD_MASK); | |
2578 | ||
6219049a BL |
2579 | pmd = mm_find_pmd(mm, address); |
2580 | if (!pmd) | |
ba76149f | 2581 | goto out; |
ba76149f | 2582 | |
9f1b868a | 2583 | memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load)); |
ba76149f AA |
2584 | pte = pte_offset_map_lock(mm, pmd, address, &ptl); |
2585 | for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR; | |
2586 | _pte++, _address += PAGE_SIZE) { | |
2587 | pte_t pteval = *_pte; | |
ca0984ca EA |
2588 | if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) { |
2589 | if (++none_or_zero <= khugepaged_max_ptes_none) | |
ba76149f AA |
2590 | continue; |
2591 | else | |
2592 | goto out_unmap; | |
2593 | } | |
10359213 | 2594 | if (!pte_present(pteval)) |
ba76149f | 2595 | goto out_unmap; |
10359213 EA |
2596 | if (pte_write(pteval)) |
2597 | writable = true; | |
2598 | ||
ba76149f AA |
2599 | page = vm_normal_page(vma, _address, pteval); |
2600 | if (unlikely(!page)) | |
2601 | goto out_unmap; | |
5c4b4be3 | 2602 | /* |
9f1b868a BL |
2603 | * Record which node the original page is from and save this |
2604 | * information to khugepaged_node_load[]. | |
2605 | * Khupaged will allocate hugepage from the node has the max | |
2606 | * hit record. | |
5c4b4be3 | 2607 | */ |
9f1b868a | 2608 | node = page_to_nid(page); |
14a4e214 DR |
2609 | if (khugepaged_scan_abort(node)) |
2610 | goto out_unmap; | |
9f1b868a | 2611 | khugepaged_node_load[node]++; |
309381fe | 2612 | VM_BUG_ON_PAGE(PageCompound(page), page); |
ba76149f AA |
2613 | if (!PageLRU(page) || PageLocked(page) || !PageAnon(page)) |
2614 | goto out_unmap; | |
10359213 EA |
2615 | /* |
2616 | * cannot use mapcount: can't collapse if there's a gup pin. | |
2617 | * The page must only be referenced by the scanned process | |
2618 | * and page swap cache. | |
2619 | */ | |
2620 | if (page_count(page) != 1 + !!PageSwapCache(page)) | |
ba76149f | 2621 | goto out_unmap; |
8ee53820 AA |
2622 | if (pte_young(pteval) || PageReferenced(page) || |
2623 | mmu_notifier_test_young(vma->vm_mm, address)) | |
10359213 | 2624 | referenced = true; |
ba76149f | 2625 | } |
10359213 | 2626 | if (referenced && writable) |
ba76149f AA |
2627 | ret = 1; |
2628 | out_unmap: | |
2629 | pte_unmap_unlock(pte, ptl); | |
9f1b868a BL |
2630 | if (ret) { |
2631 | node = khugepaged_find_target_node(); | |
ce83d217 | 2632 | /* collapse_huge_page will return with the mmap_sem released */ |
5c4b4be3 | 2633 | collapse_huge_page(mm, address, hpage, vma, node); |
9f1b868a | 2634 | } |
ba76149f AA |
2635 | out: |
2636 | return ret; | |
2637 | } | |
2638 | ||
2639 | static void collect_mm_slot(struct mm_slot *mm_slot) | |
2640 | { | |
2641 | struct mm_struct *mm = mm_slot->mm; | |
2642 | ||
b9980cdc | 2643 | VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock)); |
ba76149f AA |
2644 | |
2645 | if (khugepaged_test_exit(mm)) { | |
2646 | /* free mm_slot */ | |
43b5fbbd | 2647 | hash_del(&mm_slot->hash); |
ba76149f AA |
2648 | list_del(&mm_slot->mm_node); |
2649 | ||
2650 | /* | |
2651 | * Not strictly needed because the mm exited already. | |
2652 | * | |
2653 | * clear_bit(MMF_VM_HUGEPAGE, &mm->flags); | |
2654 | */ | |
2655 | ||
2656 | /* khugepaged_mm_lock actually not necessary for the below */ | |
2657 | free_mm_slot(mm_slot); | |
2658 | mmdrop(mm); | |
2659 | } | |
2660 | } | |
2661 | ||
2662 | static unsigned int khugepaged_scan_mm_slot(unsigned int pages, | |
2663 | struct page **hpage) | |
2f1da642 HS |
2664 | __releases(&khugepaged_mm_lock) |
2665 | __acquires(&khugepaged_mm_lock) | |
ba76149f AA |
2666 | { |
2667 | struct mm_slot *mm_slot; | |
2668 | struct mm_struct *mm; | |
2669 | struct vm_area_struct *vma; | |
2670 | int progress = 0; | |
2671 | ||
2672 | VM_BUG_ON(!pages); | |
b9980cdc | 2673 | VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock)); |
ba76149f AA |
2674 | |
2675 | if (khugepaged_scan.mm_slot) | |
2676 | mm_slot = khugepaged_scan.mm_slot; | |
2677 | else { | |
2678 | mm_slot = list_entry(khugepaged_scan.mm_head.next, | |
2679 | struct mm_slot, mm_node); | |
2680 | khugepaged_scan.address = 0; | |
2681 | khugepaged_scan.mm_slot = mm_slot; | |
2682 | } | |
2683 | spin_unlock(&khugepaged_mm_lock); | |
2684 | ||
2685 | mm = mm_slot->mm; | |
2686 | down_read(&mm->mmap_sem); | |
2687 | if (unlikely(khugepaged_test_exit(mm))) | |
2688 | vma = NULL; | |
2689 | else | |
2690 | vma = find_vma(mm, khugepaged_scan.address); | |
2691 | ||
2692 | progress++; | |
2693 | for (; vma; vma = vma->vm_next) { | |
2694 | unsigned long hstart, hend; | |
2695 | ||
2696 | cond_resched(); | |
2697 | if (unlikely(khugepaged_test_exit(mm))) { | |
2698 | progress++; | |
2699 | break; | |
2700 | } | |
fa475e51 BL |
2701 | if (!hugepage_vma_check(vma)) { |
2702 | skip: | |
ba76149f AA |
2703 | progress++; |
2704 | continue; | |
2705 | } | |
ba76149f AA |
2706 | hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK; |
2707 | hend = vma->vm_end & HPAGE_PMD_MASK; | |
a7d6e4ec AA |
2708 | if (hstart >= hend) |
2709 | goto skip; | |
2710 | if (khugepaged_scan.address > hend) | |
2711 | goto skip; | |
ba76149f AA |
2712 | if (khugepaged_scan.address < hstart) |
2713 | khugepaged_scan.address = hstart; | |
a7d6e4ec | 2714 | VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK); |
ba76149f AA |
2715 | |
2716 | while (khugepaged_scan.address < hend) { | |
2717 | int ret; | |
2718 | cond_resched(); | |
2719 | if (unlikely(khugepaged_test_exit(mm))) | |
2720 | goto breakouterloop; | |
2721 | ||
2722 | VM_BUG_ON(khugepaged_scan.address < hstart || | |
2723 | khugepaged_scan.address + HPAGE_PMD_SIZE > | |
2724 | hend); | |
2725 | ret = khugepaged_scan_pmd(mm, vma, | |
2726 | khugepaged_scan.address, | |
2727 | hpage); | |
2728 | /* move to next address */ | |
2729 | khugepaged_scan.address += HPAGE_PMD_SIZE; | |
2730 | progress += HPAGE_PMD_NR; | |
2731 | if (ret) | |
2732 | /* we released mmap_sem so break loop */ | |
2733 | goto breakouterloop_mmap_sem; | |
2734 | if (progress >= pages) | |
2735 | goto breakouterloop; | |
2736 | } | |
2737 | } | |
2738 | breakouterloop: | |
2739 | up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */ | |
2740 | breakouterloop_mmap_sem: | |
2741 | ||
2742 | spin_lock(&khugepaged_mm_lock); | |
a7d6e4ec | 2743 | VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot); |
ba76149f AA |
2744 | /* |
2745 | * Release the current mm_slot if this mm is about to die, or | |
2746 | * if we scanned all vmas of this mm. | |
2747 | */ | |
2748 | if (khugepaged_test_exit(mm) || !vma) { | |
2749 | /* | |
2750 | * Make sure that if mm_users is reaching zero while | |
2751 | * khugepaged runs here, khugepaged_exit will find | |
2752 | * mm_slot not pointing to the exiting mm. | |
2753 | */ | |
2754 | if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) { | |
2755 | khugepaged_scan.mm_slot = list_entry( | |
2756 | mm_slot->mm_node.next, | |
2757 | struct mm_slot, mm_node); | |
2758 | khugepaged_scan.address = 0; | |
2759 | } else { | |
2760 | khugepaged_scan.mm_slot = NULL; | |
2761 | khugepaged_full_scans++; | |
2762 | } | |
2763 | ||
2764 | collect_mm_slot(mm_slot); | |
2765 | } | |
2766 | ||
2767 | return progress; | |
2768 | } | |
2769 | ||
2770 | static int khugepaged_has_work(void) | |
2771 | { | |
2772 | return !list_empty(&khugepaged_scan.mm_head) && | |
2773 | khugepaged_enabled(); | |
2774 | } | |
2775 | ||
2776 | static int khugepaged_wait_event(void) | |
2777 | { | |
2778 | return !list_empty(&khugepaged_scan.mm_head) || | |
2017c0bf | 2779 | kthread_should_stop(); |
ba76149f AA |
2780 | } |
2781 | ||
d516904b | 2782 | static void khugepaged_do_scan(void) |
ba76149f | 2783 | { |
d516904b | 2784 | struct page *hpage = NULL; |
ba76149f AA |
2785 | unsigned int progress = 0, pass_through_head = 0; |
2786 | unsigned int pages = khugepaged_pages_to_scan; | |
d516904b | 2787 | bool wait = true; |
ba76149f AA |
2788 | |
2789 | barrier(); /* write khugepaged_pages_to_scan to local stack */ | |
2790 | ||
2791 | while (progress < pages) { | |
26234f36 | 2792 | if (!khugepaged_prealloc_page(&hpage, &wait)) |
d516904b | 2793 | break; |
26234f36 | 2794 | |
420256ef | 2795 | cond_resched(); |
ba76149f | 2796 | |
cd092411 | 2797 | if (unlikely(kthread_should_stop() || try_to_freeze())) |
878aee7d AA |
2798 | break; |
2799 | ||
ba76149f AA |
2800 | spin_lock(&khugepaged_mm_lock); |
2801 | if (!khugepaged_scan.mm_slot) | |
2802 | pass_through_head++; | |
2803 | if (khugepaged_has_work() && | |
2804 | pass_through_head < 2) | |
2805 | progress += khugepaged_scan_mm_slot(pages - progress, | |
d516904b | 2806 | &hpage); |
ba76149f AA |
2807 | else |
2808 | progress = pages; | |
2809 | spin_unlock(&khugepaged_mm_lock); | |
2810 | } | |
ba76149f | 2811 | |
d516904b XG |
2812 | if (!IS_ERR_OR_NULL(hpage)) |
2813 | put_page(hpage); | |
0bbbc0b3 AA |
2814 | } |
2815 | ||
2017c0bf XG |
2816 | static void khugepaged_wait_work(void) |
2817 | { | |
2017c0bf XG |
2818 | if (khugepaged_has_work()) { |
2819 | if (!khugepaged_scan_sleep_millisecs) | |
2820 | return; | |
2821 | ||
2822 | wait_event_freezable_timeout(khugepaged_wait, | |
2823 | kthread_should_stop(), | |
2824 | msecs_to_jiffies(khugepaged_scan_sleep_millisecs)); | |
2825 | return; | |
2826 | } | |
2827 | ||
2828 | if (khugepaged_enabled()) | |
2829 | wait_event_freezable(khugepaged_wait, khugepaged_wait_event()); | |
2830 | } | |
2831 | ||
ba76149f AA |
2832 | static int khugepaged(void *none) |
2833 | { | |
2834 | struct mm_slot *mm_slot; | |
2835 | ||
878aee7d | 2836 | set_freezable(); |
8698a745 | 2837 | set_user_nice(current, MAX_NICE); |
ba76149f | 2838 | |
b7231789 XG |
2839 | while (!kthread_should_stop()) { |
2840 | khugepaged_do_scan(); | |
2841 | khugepaged_wait_work(); | |
2842 | } | |
ba76149f AA |
2843 | |
2844 | spin_lock(&khugepaged_mm_lock); | |
2845 | mm_slot = khugepaged_scan.mm_slot; | |
2846 | khugepaged_scan.mm_slot = NULL; | |
2847 | if (mm_slot) | |
2848 | collect_mm_slot(mm_slot); | |
2849 | spin_unlock(&khugepaged_mm_lock); | |
ba76149f AA |
2850 | return 0; |
2851 | } | |
2852 | ||
c5a647d0 KS |
2853 | static void __split_huge_zero_page_pmd(struct vm_area_struct *vma, |
2854 | unsigned long haddr, pmd_t *pmd) | |
2855 | { | |
2856 | struct mm_struct *mm = vma->vm_mm; | |
2857 | pgtable_t pgtable; | |
2858 | pmd_t _pmd; | |
2859 | int i; | |
2860 | ||
8809aa2d | 2861 | pmdp_huge_clear_flush_notify(vma, haddr, pmd); |
c5a647d0 KS |
2862 | /* leave pmd empty until pte is filled */ |
2863 | ||
6b0b50b0 | 2864 | pgtable = pgtable_trans_huge_withdraw(mm, pmd); |
c5a647d0 KS |
2865 | pmd_populate(mm, &_pmd, pgtable); |
2866 | ||
2867 | for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) { | |
2868 | pte_t *pte, entry; | |
2869 | entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot); | |
2870 | entry = pte_mkspecial(entry); | |
2871 | pte = pte_offset_map(&_pmd, haddr); | |
2872 | VM_BUG_ON(!pte_none(*pte)); | |
2873 | set_pte_at(mm, haddr, pte, entry); | |
2874 | pte_unmap(pte); | |
2875 | } | |
2876 | smp_wmb(); /* make pte visible before pmd */ | |
2877 | pmd_populate(mm, pmd, pgtable); | |
97ae1749 | 2878 | put_huge_zero_page(); |
c5a647d0 KS |
2879 | } |
2880 | ||
e180377f KS |
2881 | void __split_huge_page_pmd(struct vm_area_struct *vma, unsigned long address, |
2882 | pmd_t *pmd) | |
71e3aac0 | 2883 | { |
c4088ebd | 2884 | spinlock_t *ptl; |
71e3aac0 | 2885 | struct page *page; |
e180377f | 2886 | struct mm_struct *mm = vma->vm_mm; |
c5a647d0 KS |
2887 | unsigned long haddr = address & HPAGE_PMD_MASK; |
2888 | unsigned long mmun_start; /* For mmu_notifiers */ | |
2889 | unsigned long mmun_end; /* For mmu_notifiers */ | |
e180377f KS |
2890 | |
2891 | BUG_ON(vma->vm_start > haddr || vma->vm_end < haddr + HPAGE_PMD_SIZE); | |
71e3aac0 | 2892 | |
c5a647d0 KS |
2893 | mmun_start = haddr; |
2894 | mmun_end = haddr + HPAGE_PMD_SIZE; | |
750e8165 | 2895 | again: |
c5a647d0 | 2896 | mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); |
c4088ebd | 2897 | ptl = pmd_lock(mm, pmd); |
71e3aac0 | 2898 | if (unlikely(!pmd_trans_huge(*pmd))) { |
c4088ebd | 2899 | spin_unlock(ptl); |
c5a647d0 KS |
2900 | mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); |
2901 | return; | |
2902 | } | |
2903 | if (is_huge_zero_pmd(*pmd)) { | |
2904 | __split_huge_zero_page_pmd(vma, haddr, pmd); | |
c4088ebd | 2905 | spin_unlock(ptl); |
c5a647d0 | 2906 | mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); |
71e3aac0 AA |
2907 | return; |
2908 | } | |
2909 | page = pmd_page(*pmd); | |
309381fe | 2910 | VM_BUG_ON_PAGE(!page_count(page), page); |
71e3aac0 | 2911 | get_page(page); |
c4088ebd | 2912 | spin_unlock(ptl); |
c5a647d0 | 2913 | mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); |
71e3aac0 AA |
2914 | |
2915 | split_huge_page(page); | |
2916 | ||
2917 | put_page(page); | |
750e8165 HD |
2918 | |
2919 | /* | |
2920 | * We don't always have down_write of mmap_sem here: a racing | |
2921 | * do_huge_pmd_wp_page() might have copied-on-write to another | |
2922 | * huge page before our split_huge_page() got the anon_vma lock. | |
2923 | */ | |
2924 | if (unlikely(pmd_trans_huge(*pmd))) | |
2925 | goto again; | |
71e3aac0 | 2926 | } |
94fcc585 | 2927 | |
e180377f KS |
2928 | void split_huge_page_pmd_mm(struct mm_struct *mm, unsigned long address, |
2929 | pmd_t *pmd) | |
2930 | { | |
2931 | struct vm_area_struct *vma; | |
2932 | ||
2933 | vma = find_vma(mm, address); | |
2934 | BUG_ON(vma == NULL); | |
2935 | split_huge_page_pmd(vma, address, pmd); | |
2936 | } | |
2937 | ||
94fcc585 AA |
2938 | static void split_huge_page_address(struct mm_struct *mm, |
2939 | unsigned long address) | |
2940 | { | |
f72e7dcd HD |
2941 | pgd_t *pgd; |
2942 | pud_t *pud; | |
94fcc585 AA |
2943 | pmd_t *pmd; |
2944 | ||
2945 | VM_BUG_ON(!(address & ~HPAGE_PMD_MASK)); | |
2946 | ||
f72e7dcd HD |
2947 | pgd = pgd_offset(mm, address); |
2948 | if (!pgd_present(*pgd)) | |
2949 | return; | |
2950 | ||
2951 | pud = pud_offset(pgd, address); | |
2952 | if (!pud_present(*pud)) | |
2953 | return; | |
2954 | ||
2955 | pmd = pmd_offset(pud, address); | |
2956 | if (!pmd_present(*pmd)) | |
94fcc585 AA |
2957 | return; |
2958 | /* | |
2959 | * Caller holds the mmap_sem write mode, so a huge pmd cannot | |
2960 | * materialize from under us. | |
2961 | */ | |
e180377f | 2962 | split_huge_page_pmd_mm(mm, address, pmd); |
94fcc585 AA |
2963 | } |
2964 | ||
2965 | void __vma_adjust_trans_huge(struct vm_area_struct *vma, | |
2966 | unsigned long start, | |
2967 | unsigned long end, | |
2968 | long adjust_next) | |
2969 | { | |
2970 | /* | |
2971 | * If the new start address isn't hpage aligned and it could | |
2972 | * previously contain an hugepage: check if we need to split | |
2973 | * an huge pmd. | |
2974 | */ | |
2975 | if (start & ~HPAGE_PMD_MASK && | |
2976 | (start & HPAGE_PMD_MASK) >= vma->vm_start && | |
2977 | (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end) | |
2978 | split_huge_page_address(vma->vm_mm, start); | |
2979 | ||
2980 | /* | |
2981 | * If the new end address isn't hpage aligned and it could | |
2982 | * previously contain an hugepage: check if we need to split | |
2983 | * an huge pmd. | |
2984 | */ | |
2985 | if (end & ~HPAGE_PMD_MASK && | |
2986 | (end & HPAGE_PMD_MASK) >= vma->vm_start && | |
2987 | (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end) | |
2988 | split_huge_page_address(vma->vm_mm, end); | |
2989 | ||
2990 | /* | |
2991 | * If we're also updating the vma->vm_next->vm_start, if the new | |
2992 | * vm_next->vm_start isn't page aligned and it could previously | |
2993 | * contain an hugepage: check if we need to split an huge pmd. | |
2994 | */ | |
2995 | if (adjust_next > 0) { | |
2996 | struct vm_area_struct *next = vma->vm_next; | |
2997 | unsigned long nstart = next->vm_start; | |
2998 | nstart += adjust_next << PAGE_SHIFT; | |
2999 | if (nstart & ~HPAGE_PMD_MASK && | |
3000 | (nstart & HPAGE_PMD_MASK) >= next->vm_start && | |
3001 | (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end) | |
3002 | split_huge_page_address(next->vm_mm, nstart); | |
3003 | } | |
3004 | } |