userfaultfd: teach vma_merge to merge across vma->vm_userfaultfd_ctx
[linux-2.6-block.git] / mm / huge_memory.c
CommitLineData
71e3aac0
AA
1/*
2 * Copyright (C) 2009 Red Hat, Inc.
3 *
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
6 */
7
ae3a8c1c
AM
8#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
71e3aac0
AA
10#include <linux/mm.h>
11#include <linux/sched.h>
12#include <linux/highmem.h>
13#include <linux/hugetlb.h>
14#include <linux/mmu_notifier.h>
15#include <linux/rmap.h>
16#include <linux/swap.h>
97ae1749 17#include <linux/shrinker.h>
ba76149f
AA
18#include <linux/mm_inline.h>
19#include <linux/kthread.h>
20#include <linux/khugepaged.h>
878aee7d 21#include <linux/freezer.h>
a664b2d8 22#include <linux/mman.h>
325adeb5 23#include <linux/pagemap.h>
4daae3b4 24#include <linux/migrate.h>
43b5fbbd 25#include <linux/hashtable.h>
6b251fc9 26#include <linux/userfaultfd_k.h>
97ae1749 27
71e3aac0
AA
28#include <asm/tlb.h>
29#include <asm/pgalloc.h>
30#include "internal.h"
31
ba76149f 32/*
8bfa3f9a
JW
33 * By default transparent hugepage support is disabled in order that avoid
34 * to risk increase the memory footprint of applications without a guaranteed
35 * benefit. When transparent hugepage support is enabled, is for all mappings,
36 * and khugepaged scans all mappings.
37 * Defrag is invoked by khugepaged hugepage allocations and by page faults
38 * for all hugepage allocations.
ba76149f 39 */
71e3aac0 40unsigned long transparent_hugepage_flags __read_mostly =
13ece886 41#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
ba76149f 42 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
13ece886
AA
43#endif
44#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
45 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
46#endif
d39d33c3 47 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
79da5407
KS
48 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
49 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
ba76149f
AA
50
51/* default scan 8*512 pte (or vmas) every 30 second */
52static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
53static unsigned int khugepaged_pages_collapsed;
54static unsigned int khugepaged_full_scans;
55static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
56/* during fragmentation poll the hugepage allocator once every minute */
57static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
58static struct task_struct *khugepaged_thread __read_mostly;
59static DEFINE_MUTEX(khugepaged_mutex);
60static DEFINE_SPINLOCK(khugepaged_mm_lock);
61static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
62/*
63 * default collapse hugepages if there is at least one pte mapped like
64 * it would have happened if the vma was large enough during page
65 * fault.
66 */
67static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
68
69static int khugepaged(void *none);
ba76149f 70static int khugepaged_slab_init(void);
65ebb64f 71static void khugepaged_slab_exit(void);
ba76149f 72
43b5fbbd
SL
73#define MM_SLOTS_HASH_BITS 10
74static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
75
ba76149f
AA
76static struct kmem_cache *mm_slot_cache __read_mostly;
77
78/**
79 * struct mm_slot - hash lookup from mm to mm_slot
80 * @hash: hash collision list
81 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
82 * @mm: the mm that this information is valid for
83 */
84struct mm_slot {
85 struct hlist_node hash;
86 struct list_head mm_node;
87 struct mm_struct *mm;
88};
89
90/**
91 * struct khugepaged_scan - cursor for scanning
92 * @mm_head: the head of the mm list to scan
93 * @mm_slot: the current mm_slot we are scanning
94 * @address: the next address inside that to be scanned
95 *
96 * There is only the one khugepaged_scan instance of this cursor structure.
97 */
98struct khugepaged_scan {
99 struct list_head mm_head;
100 struct mm_slot *mm_slot;
101 unsigned long address;
2f1da642
HS
102};
103static struct khugepaged_scan khugepaged_scan = {
ba76149f
AA
104 .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
105};
106
f000565a
AA
107
108static int set_recommended_min_free_kbytes(void)
109{
110 struct zone *zone;
111 int nr_zones = 0;
112 unsigned long recommended_min;
f000565a 113
f000565a
AA
114 for_each_populated_zone(zone)
115 nr_zones++;
116
117 /* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
118 recommended_min = pageblock_nr_pages * nr_zones * 2;
119
120 /*
121 * Make sure that on average at least two pageblocks are almost free
122 * of another type, one for a migratetype to fall back to and a
123 * second to avoid subsequent fallbacks of other types There are 3
124 * MIGRATE_TYPES we care about.
125 */
126 recommended_min += pageblock_nr_pages * nr_zones *
127 MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
128
129 /* don't ever allow to reserve more than 5% of the lowmem */
130 recommended_min = min(recommended_min,
131 (unsigned long) nr_free_buffer_pages() / 20);
132 recommended_min <<= (PAGE_SHIFT-10);
133
42aa83cb
HP
134 if (recommended_min > min_free_kbytes) {
135 if (user_min_free_kbytes >= 0)
136 pr_info("raising min_free_kbytes from %d to %lu "
137 "to help transparent hugepage allocations\n",
138 min_free_kbytes, recommended_min);
139
f000565a 140 min_free_kbytes = recommended_min;
42aa83cb 141 }
f000565a
AA
142 setup_per_zone_wmarks();
143 return 0;
144}
f000565a 145
79553da2 146static int start_stop_khugepaged(void)
ba76149f
AA
147{
148 int err = 0;
149 if (khugepaged_enabled()) {
ba76149f
AA
150 if (!khugepaged_thread)
151 khugepaged_thread = kthread_run(khugepaged, NULL,
152 "khugepaged");
153 if (unlikely(IS_ERR(khugepaged_thread))) {
ae3a8c1c 154 pr_err("khugepaged: kthread_run(khugepaged) failed\n");
ba76149f
AA
155 err = PTR_ERR(khugepaged_thread);
156 khugepaged_thread = NULL;
79553da2 157 goto fail;
ba76149f 158 }
911891af
XG
159
160 if (!list_empty(&khugepaged_scan.mm_head))
ba76149f 161 wake_up_interruptible(&khugepaged_wait);
f000565a
AA
162
163 set_recommended_min_free_kbytes();
911891af 164 } else if (khugepaged_thread) {
911891af
XG
165 kthread_stop(khugepaged_thread);
166 khugepaged_thread = NULL;
167 }
79553da2 168fail:
ba76149f
AA
169 return err;
170}
71e3aac0 171
97ae1749 172static atomic_t huge_zero_refcount;
56873f43 173struct page *huge_zero_page __read_mostly;
4a6c1297 174
97ae1749
KS
175static inline bool is_huge_zero_pmd(pmd_t pmd)
176{
5918d10a 177 return is_huge_zero_page(pmd_page(pmd));
97ae1749
KS
178}
179
5918d10a 180static struct page *get_huge_zero_page(void)
97ae1749
KS
181{
182 struct page *zero_page;
183retry:
184 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
4db0c3c2 185 return READ_ONCE(huge_zero_page);
97ae1749
KS
186
187 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
4a6c1297 188 HPAGE_PMD_ORDER);
d8a8e1f0
KS
189 if (!zero_page) {
190 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
5918d10a 191 return NULL;
d8a8e1f0
KS
192 }
193 count_vm_event(THP_ZERO_PAGE_ALLOC);
97ae1749 194 preempt_disable();
5918d10a 195 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
97ae1749 196 preempt_enable();
5ddacbe9 197 __free_pages(zero_page, compound_order(zero_page));
97ae1749
KS
198 goto retry;
199 }
200
201 /* We take additional reference here. It will be put back by shrinker */
202 atomic_set(&huge_zero_refcount, 2);
203 preempt_enable();
4db0c3c2 204 return READ_ONCE(huge_zero_page);
4a6c1297
KS
205}
206
97ae1749 207static void put_huge_zero_page(void)
4a6c1297 208{
97ae1749
KS
209 /*
210 * Counter should never go to zero here. Only shrinker can put
211 * last reference.
212 */
213 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
4a6c1297
KS
214}
215
48896466
GC
216static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
217 struct shrink_control *sc)
4a6c1297 218{
48896466
GC
219 /* we can free zero page only if last reference remains */
220 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
221}
97ae1749 222
48896466
GC
223static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
224 struct shrink_control *sc)
225{
97ae1749 226 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
5918d10a
KS
227 struct page *zero_page = xchg(&huge_zero_page, NULL);
228 BUG_ON(zero_page == NULL);
5ddacbe9 229 __free_pages(zero_page, compound_order(zero_page));
48896466 230 return HPAGE_PMD_NR;
97ae1749
KS
231 }
232
233 return 0;
4a6c1297
KS
234}
235
97ae1749 236static struct shrinker huge_zero_page_shrinker = {
48896466
GC
237 .count_objects = shrink_huge_zero_page_count,
238 .scan_objects = shrink_huge_zero_page_scan,
97ae1749
KS
239 .seeks = DEFAULT_SEEKS,
240};
241
71e3aac0 242#ifdef CONFIG_SYSFS
ba76149f 243
71e3aac0
AA
244static ssize_t double_flag_show(struct kobject *kobj,
245 struct kobj_attribute *attr, char *buf,
246 enum transparent_hugepage_flag enabled,
247 enum transparent_hugepage_flag req_madv)
248{
249 if (test_bit(enabled, &transparent_hugepage_flags)) {
250 VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
251 return sprintf(buf, "[always] madvise never\n");
252 } else if (test_bit(req_madv, &transparent_hugepage_flags))
253 return sprintf(buf, "always [madvise] never\n");
254 else
255 return sprintf(buf, "always madvise [never]\n");
256}
257static ssize_t double_flag_store(struct kobject *kobj,
258 struct kobj_attribute *attr,
259 const char *buf, size_t count,
260 enum transparent_hugepage_flag enabled,
261 enum transparent_hugepage_flag req_madv)
262{
263 if (!memcmp("always", buf,
264 min(sizeof("always")-1, count))) {
265 set_bit(enabled, &transparent_hugepage_flags);
266 clear_bit(req_madv, &transparent_hugepage_flags);
267 } else if (!memcmp("madvise", buf,
268 min(sizeof("madvise")-1, count))) {
269 clear_bit(enabled, &transparent_hugepage_flags);
270 set_bit(req_madv, &transparent_hugepage_flags);
271 } else if (!memcmp("never", buf,
272 min(sizeof("never")-1, count))) {
273 clear_bit(enabled, &transparent_hugepage_flags);
274 clear_bit(req_madv, &transparent_hugepage_flags);
275 } else
276 return -EINVAL;
277
278 return count;
279}
280
281static ssize_t enabled_show(struct kobject *kobj,
282 struct kobj_attribute *attr, char *buf)
283{
284 return double_flag_show(kobj, attr, buf,
285 TRANSPARENT_HUGEPAGE_FLAG,
286 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
287}
288static ssize_t enabled_store(struct kobject *kobj,
289 struct kobj_attribute *attr,
290 const char *buf, size_t count)
291{
ba76149f
AA
292 ssize_t ret;
293
294 ret = double_flag_store(kobj, attr, buf, count,
295 TRANSPARENT_HUGEPAGE_FLAG,
296 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
297
298 if (ret > 0) {
911891af
XG
299 int err;
300
301 mutex_lock(&khugepaged_mutex);
79553da2 302 err = start_stop_khugepaged();
911891af
XG
303 mutex_unlock(&khugepaged_mutex);
304
ba76149f
AA
305 if (err)
306 ret = err;
307 }
308
309 return ret;
71e3aac0
AA
310}
311static struct kobj_attribute enabled_attr =
312 __ATTR(enabled, 0644, enabled_show, enabled_store);
313
314static ssize_t single_flag_show(struct kobject *kobj,
315 struct kobj_attribute *attr, char *buf,
316 enum transparent_hugepage_flag flag)
317{
e27e6151
BH
318 return sprintf(buf, "%d\n",
319 !!test_bit(flag, &transparent_hugepage_flags));
71e3aac0 320}
e27e6151 321
71e3aac0
AA
322static ssize_t single_flag_store(struct kobject *kobj,
323 struct kobj_attribute *attr,
324 const char *buf, size_t count,
325 enum transparent_hugepage_flag flag)
326{
e27e6151
BH
327 unsigned long value;
328 int ret;
329
330 ret = kstrtoul(buf, 10, &value);
331 if (ret < 0)
332 return ret;
333 if (value > 1)
334 return -EINVAL;
335
336 if (value)
71e3aac0 337 set_bit(flag, &transparent_hugepage_flags);
e27e6151 338 else
71e3aac0 339 clear_bit(flag, &transparent_hugepage_flags);
71e3aac0
AA
340
341 return count;
342}
343
344/*
345 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
346 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
347 * memory just to allocate one more hugepage.
348 */
349static ssize_t defrag_show(struct kobject *kobj,
350 struct kobj_attribute *attr, char *buf)
351{
352 return double_flag_show(kobj, attr, buf,
353 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
354 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
355}
356static ssize_t defrag_store(struct kobject *kobj,
357 struct kobj_attribute *attr,
358 const char *buf, size_t count)
359{
360 return double_flag_store(kobj, attr, buf, count,
361 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
362 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
363}
364static struct kobj_attribute defrag_attr =
365 __ATTR(defrag, 0644, defrag_show, defrag_store);
366
79da5407
KS
367static ssize_t use_zero_page_show(struct kobject *kobj,
368 struct kobj_attribute *attr, char *buf)
369{
370 return single_flag_show(kobj, attr, buf,
371 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
372}
373static ssize_t use_zero_page_store(struct kobject *kobj,
374 struct kobj_attribute *attr, const char *buf, size_t count)
375{
376 return single_flag_store(kobj, attr, buf, count,
377 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
378}
379static struct kobj_attribute use_zero_page_attr =
380 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
71e3aac0
AA
381#ifdef CONFIG_DEBUG_VM
382static ssize_t debug_cow_show(struct kobject *kobj,
383 struct kobj_attribute *attr, char *buf)
384{
385 return single_flag_show(kobj, attr, buf,
386 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
387}
388static ssize_t debug_cow_store(struct kobject *kobj,
389 struct kobj_attribute *attr,
390 const char *buf, size_t count)
391{
392 return single_flag_store(kobj, attr, buf, count,
393 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
394}
395static struct kobj_attribute debug_cow_attr =
396 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
397#endif /* CONFIG_DEBUG_VM */
398
399static struct attribute *hugepage_attr[] = {
400 &enabled_attr.attr,
401 &defrag_attr.attr,
79da5407 402 &use_zero_page_attr.attr,
71e3aac0
AA
403#ifdef CONFIG_DEBUG_VM
404 &debug_cow_attr.attr,
405#endif
406 NULL,
407};
408
409static struct attribute_group hugepage_attr_group = {
410 .attrs = hugepage_attr,
ba76149f
AA
411};
412
413static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
414 struct kobj_attribute *attr,
415 char *buf)
416{
417 return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
418}
419
420static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
421 struct kobj_attribute *attr,
422 const char *buf, size_t count)
423{
424 unsigned long msecs;
425 int err;
426
3dbb95f7 427 err = kstrtoul(buf, 10, &msecs);
ba76149f
AA
428 if (err || msecs > UINT_MAX)
429 return -EINVAL;
430
431 khugepaged_scan_sleep_millisecs = msecs;
432 wake_up_interruptible(&khugepaged_wait);
433
434 return count;
435}
436static struct kobj_attribute scan_sleep_millisecs_attr =
437 __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
438 scan_sleep_millisecs_store);
439
440static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
441 struct kobj_attribute *attr,
442 char *buf)
443{
444 return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
445}
446
447static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
448 struct kobj_attribute *attr,
449 const char *buf, size_t count)
450{
451 unsigned long msecs;
452 int err;
453
3dbb95f7 454 err = kstrtoul(buf, 10, &msecs);
ba76149f
AA
455 if (err || msecs > UINT_MAX)
456 return -EINVAL;
457
458 khugepaged_alloc_sleep_millisecs = msecs;
459 wake_up_interruptible(&khugepaged_wait);
460
461 return count;
462}
463static struct kobj_attribute alloc_sleep_millisecs_attr =
464 __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
465 alloc_sleep_millisecs_store);
466
467static ssize_t pages_to_scan_show(struct kobject *kobj,
468 struct kobj_attribute *attr,
469 char *buf)
470{
471 return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
472}
473static ssize_t pages_to_scan_store(struct kobject *kobj,
474 struct kobj_attribute *attr,
475 const char *buf, size_t count)
476{
477 int err;
478 unsigned long pages;
479
3dbb95f7 480 err = kstrtoul(buf, 10, &pages);
ba76149f
AA
481 if (err || !pages || pages > UINT_MAX)
482 return -EINVAL;
483
484 khugepaged_pages_to_scan = pages;
485
486 return count;
487}
488static struct kobj_attribute pages_to_scan_attr =
489 __ATTR(pages_to_scan, 0644, pages_to_scan_show,
490 pages_to_scan_store);
491
492static ssize_t pages_collapsed_show(struct kobject *kobj,
493 struct kobj_attribute *attr,
494 char *buf)
495{
496 return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
497}
498static struct kobj_attribute pages_collapsed_attr =
499 __ATTR_RO(pages_collapsed);
500
501static ssize_t full_scans_show(struct kobject *kobj,
502 struct kobj_attribute *attr,
503 char *buf)
504{
505 return sprintf(buf, "%u\n", khugepaged_full_scans);
506}
507static struct kobj_attribute full_scans_attr =
508 __ATTR_RO(full_scans);
509
510static ssize_t khugepaged_defrag_show(struct kobject *kobj,
511 struct kobj_attribute *attr, char *buf)
512{
513 return single_flag_show(kobj, attr, buf,
514 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
515}
516static ssize_t khugepaged_defrag_store(struct kobject *kobj,
517 struct kobj_attribute *attr,
518 const char *buf, size_t count)
519{
520 return single_flag_store(kobj, attr, buf, count,
521 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
522}
523static struct kobj_attribute khugepaged_defrag_attr =
524 __ATTR(defrag, 0644, khugepaged_defrag_show,
525 khugepaged_defrag_store);
526
527/*
528 * max_ptes_none controls if khugepaged should collapse hugepages over
529 * any unmapped ptes in turn potentially increasing the memory
530 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
531 * reduce the available free memory in the system as it
532 * runs. Increasing max_ptes_none will instead potentially reduce the
533 * free memory in the system during the khugepaged scan.
534 */
535static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
536 struct kobj_attribute *attr,
537 char *buf)
538{
539 return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
540}
541static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
542 struct kobj_attribute *attr,
543 const char *buf, size_t count)
544{
545 int err;
546 unsigned long max_ptes_none;
547
3dbb95f7 548 err = kstrtoul(buf, 10, &max_ptes_none);
ba76149f
AA
549 if (err || max_ptes_none > HPAGE_PMD_NR-1)
550 return -EINVAL;
551
552 khugepaged_max_ptes_none = max_ptes_none;
553
554 return count;
555}
556static struct kobj_attribute khugepaged_max_ptes_none_attr =
557 __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
558 khugepaged_max_ptes_none_store);
559
560static struct attribute *khugepaged_attr[] = {
561 &khugepaged_defrag_attr.attr,
562 &khugepaged_max_ptes_none_attr.attr,
563 &pages_to_scan_attr.attr,
564 &pages_collapsed_attr.attr,
565 &full_scans_attr.attr,
566 &scan_sleep_millisecs_attr.attr,
567 &alloc_sleep_millisecs_attr.attr,
568 NULL,
569};
570
571static struct attribute_group khugepaged_attr_group = {
572 .attrs = khugepaged_attr,
573 .name = "khugepaged",
71e3aac0 574};
71e3aac0 575
569e5590 576static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
71e3aac0 577{
71e3aac0
AA
578 int err;
579
569e5590
SL
580 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
581 if (unlikely(!*hugepage_kobj)) {
ae3a8c1c 582 pr_err("failed to create transparent hugepage kobject\n");
569e5590 583 return -ENOMEM;
ba76149f
AA
584 }
585
569e5590 586 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
ba76149f 587 if (err) {
ae3a8c1c 588 pr_err("failed to register transparent hugepage group\n");
569e5590 589 goto delete_obj;
ba76149f
AA
590 }
591
569e5590 592 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
ba76149f 593 if (err) {
ae3a8c1c 594 pr_err("failed to register transparent hugepage group\n");
569e5590 595 goto remove_hp_group;
ba76149f 596 }
569e5590
SL
597
598 return 0;
599
600remove_hp_group:
601 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
602delete_obj:
603 kobject_put(*hugepage_kobj);
604 return err;
605}
606
607static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
608{
609 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
610 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
611 kobject_put(hugepage_kobj);
612}
613#else
614static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
615{
616 return 0;
617}
618
619static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
620{
621}
622#endif /* CONFIG_SYSFS */
623
624static int __init hugepage_init(void)
625{
626 int err;
627 struct kobject *hugepage_kobj;
628
629 if (!has_transparent_hugepage()) {
630 transparent_hugepage_flags = 0;
631 return -EINVAL;
632 }
633
634 err = hugepage_init_sysfs(&hugepage_kobj);
635 if (err)
65ebb64f 636 goto err_sysfs;
ba76149f
AA
637
638 err = khugepaged_slab_init();
639 if (err)
65ebb64f 640 goto err_slab;
ba76149f 641
65ebb64f
KS
642 err = register_shrinker(&huge_zero_page_shrinker);
643 if (err)
644 goto err_hzp_shrinker;
97ae1749 645
97562cd2
RR
646 /*
647 * By default disable transparent hugepages on smaller systems,
648 * where the extra memory used could hurt more than TLB overhead
649 * is likely to save. The admin can still enable it through /sys.
650 */
79553da2 651 if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
97562cd2 652 transparent_hugepage_flags = 0;
79553da2
KS
653 return 0;
654 }
97562cd2 655
79553da2 656 err = start_stop_khugepaged();
65ebb64f
KS
657 if (err)
658 goto err_khugepaged;
ba76149f 659
569e5590 660 return 0;
65ebb64f
KS
661err_khugepaged:
662 unregister_shrinker(&huge_zero_page_shrinker);
663err_hzp_shrinker:
664 khugepaged_slab_exit();
665err_slab:
569e5590 666 hugepage_exit_sysfs(hugepage_kobj);
65ebb64f 667err_sysfs:
ba76149f 668 return err;
71e3aac0 669}
a64fb3cd 670subsys_initcall(hugepage_init);
71e3aac0
AA
671
672static int __init setup_transparent_hugepage(char *str)
673{
674 int ret = 0;
675 if (!str)
676 goto out;
677 if (!strcmp(str, "always")) {
678 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
679 &transparent_hugepage_flags);
680 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
681 &transparent_hugepage_flags);
682 ret = 1;
683 } else if (!strcmp(str, "madvise")) {
684 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
685 &transparent_hugepage_flags);
686 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
687 &transparent_hugepage_flags);
688 ret = 1;
689 } else if (!strcmp(str, "never")) {
690 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
691 &transparent_hugepage_flags);
692 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
693 &transparent_hugepage_flags);
694 ret = 1;
695 }
696out:
697 if (!ret)
ae3a8c1c 698 pr_warn("transparent_hugepage= cannot parse, ignored\n");
71e3aac0
AA
699 return ret;
700}
701__setup("transparent_hugepage=", setup_transparent_hugepage);
702
b32967ff 703pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
71e3aac0
AA
704{
705 if (likely(vma->vm_flags & VM_WRITE))
706 pmd = pmd_mkwrite(pmd);
707 return pmd;
708}
709
3122359a 710static inline pmd_t mk_huge_pmd(struct page *page, pgprot_t prot)
b3092b3b
BL
711{
712 pmd_t entry;
3122359a 713 entry = mk_pmd(page, prot);
b3092b3b
BL
714 entry = pmd_mkhuge(entry);
715 return entry;
716}
717
71e3aac0
AA
718static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
719 struct vm_area_struct *vma,
720 unsigned long haddr, pmd_t *pmd,
6b251fc9
AA
721 struct page *page, gfp_t gfp,
722 unsigned int flags)
71e3aac0 723{
00501b53 724 struct mem_cgroup *memcg;
71e3aac0 725 pgtable_t pgtable;
c4088ebd 726 spinlock_t *ptl;
71e3aac0 727
309381fe 728 VM_BUG_ON_PAGE(!PageCompound(page), page);
00501b53 729
6b251fc9
AA
730 if (mem_cgroup_try_charge(page, mm, gfp, &memcg)) {
731 put_page(page);
732 count_vm_event(THP_FAULT_FALLBACK);
733 return VM_FAULT_FALLBACK;
734 }
00501b53 735
71e3aac0 736 pgtable = pte_alloc_one(mm, haddr);
00501b53
JW
737 if (unlikely(!pgtable)) {
738 mem_cgroup_cancel_charge(page, memcg);
6b251fc9 739 put_page(page);
71e3aac0 740 return VM_FAULT_OOM;
00501b53 741 }
71e3aac0
AA
742
743 clear_huge_page(page, haddr, HPAGE_PMD_NR);
52f37629
MK
744 /*
745 * The memory barrier inside __SetPageUptodate makes sure that
746 * clear_huge_page writes become visible before the set_pmd_at()
747 * write.
748 */
71e3aac0
AA
749 __SetPageUptodate(page);
750
c4088ebd 751 ptl = pmd_lock(mm, pmd);
71e3aac0 752 if (unlikely(!pmd_none(*pmd))) {
c4088ebd 753 spin_unlock(ptl);
00501b53 754 mem_cgroup_cancel_charge(page, memcg);
71e3aac0
AA
755 put_page(page);
756 pte_free(mm, pgtable);
757 } else {
758 pmd_t entry;
6b251fc9
AA
759
760 /* Deliver the page fault to userland */
761 if (userfaultfd_missing(vma)) {
762 int ret;
763
764 spin_unlock(ptl);
765 mem_cgroup_cancel_charge(page, memcg);
766 put_page(page);
767 pte_free(mm, pgtable);
768 ret = handle_userfault(vma, haddr, flags,
769 VM_UFFD_MISSING);
770 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
771 return ret;
772 }
773
3122359a
KS
774 entry = mk_huge_pmd(page, vma->vm_page_prot);
775 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
71e3aac0 776 page_add_new_anon_rmap(page, vma, haddr);
00501b53
JW
777 mem_cgroup_commit_charge(page, memcg, false);
778 lru_cache_add_active_or_unevictable(page, vma);
6b0b50b0 779 pgtable_trans_huge_deposit(mm, pmd, pgtable);
71e3aac0 780 set_pmd_at(mm, haddr, pmd, entry);
71e3aac0 781 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
e1f56c89 782 atomic_long_inc(&mm->nr_ptes);
c4088ebd 783 spin_unlock(ptl);
6b251fc9 784 count_vm_event(THP_FAULT_ALLOC);
71e3aac0
AA
785 }
786
aa2e878e 787 return 0;
71e3aac0
AA
788}
789
cc5d462f 790static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
0bbbc0b3 791{
cc5d462f 792 return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp;
0bbbc0b3
AA
793}
794
c4088ebd 795/* Caller must hold page table lock. */
6b251fc9 796static void set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
97ae1749 797 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
5918d10a 798 struct page *zero_page)
fc9fe822
KS
799{
800 pmd_t entry;
5918d10a 801 entry = mk_pmd(zero_page, vma->vm_page_prot);
fc9fe822 802 entry = pmd_mkhuge(entry);
6b0b50b0 803 pgtable_trans_huge_deposit(mm, pmd, pgtable);
fc9fe822 804 set_pmd_at(mm, haddr, pmd, entry);
e1f56c89 805 atomic_long_inc(&mm->nr_ptes);
fc9fe822
KS
806}
807
71e3aac0
AA
808int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
809 unsigned long address, pmd_t *pmd,
810 unsigned int flags)
811{
077fcf11 812 gfp_t gfp;
71e3aac0
AA
813 struct page *page;
814 unsigned long haddr = address & HPAGE_PMD_MASK;
71e3aac0 815
128ec037 816 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
c0292554 817 return VM_FAULT_FALLBACK;
128ec037
KS
818 if (unlikely(anon_vma_prepare(vma)))
819 return VM_FAULT_OOM;
6d50e60c 820 if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
128ec037 821 return VM_FAULT_OOM;
593befa6 822 if (!(flags & FAULT_FLAG_WRITE) && !mm_forbids_zeropage(mm) &&
128ec037 823 transparent_hugepage_use_zero_page()) {
c4088ebd 824 spinlock_t *ptl;
128ec037
KS
825 pgtable_t pgtable;
826 struct page *zero_page;
827 bool set;
6b251fc9 828 int ret;
128ec037
KS
829 pgtable = pte_alloc_one(mm, haddr);
830 if (unlikely(!pgtable))
ba76149f 831 return VM_FAULT_OOM;
128ec037
KS
832 zero_page = get_huge_zero_page();
833 if (unlikely(!zero_page)) {
834 pte_free(mm, pgtable);
81ab4201 835 count_vm_event(THP_FAULT_FALLBACK);
c0292554 836 return VM_FAULT_FALLBACK;
b9bbfbe3 837 }
c4088ebd 838 ptl = pmd_lock(mm, pmd);
6b251fc9
AA
839 ret = 0;
840 set = false;
841 if (pmd_none(*pmd)) {
842 if (userfaultfd_missing(vma)) {
843 spin_unlock(ptl);
844 ret = handle_userfault(vma, haddr, flags,
845 VM_UFFD_MISSING);
846 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
847 } else {
848 set_huge_zero_page(pgtable, mm, vma,
849 haddr, pmd,
850 zero_page);
851 spin_unlock(ptl);
852 set = true;
853 }
854 } else
855 spin_unlock(ptl);
128ec037
KS
856 if (!set) {
857 pte_free(mm, pgtable);
858 put_huge_zero_page();
edad9d2c 859 }
6b251fc9 860 return ret;
71e3aac0 861 }
077fcf11
AK
862 gfp = alloc_hugepage_gfpmask(transparent_hugepage_defrag(vma), 0);
863 page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
128ec037
KS
864 if (unlikely(!page)) {
865 count_vm_event(THP_FAULT_FALLBACK);
c0292554 866 return VM_FAULT_FALLBACK;
128ec037 867 }
6b251fc9 868 return __do_huge_pmd_anonymous_page(mm, vma, haddr, pmd, page, gfp, flags);
71e3aac0
AA
869}
870
871int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
872 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
873 struct vm_area_struct *vma)
874{
c4088ebd 875 spinlock_t *dst_ptl, *src_ptl;
71e3aac0
AA
876 struct page *src_page;
877 pmd_t pmd;
878 pgtable_t pgtable;
879 int ret;
880
881 ret = -ENOMEM;
882 pgtable = pte_alloc_one(dst_mm, addr);
883 if (unlikely(!pgtable))
884 goto out;
885
c4088ebd
KS
886 dst_ptl = pmd_lock(dst_mm, dst_pmd);
887 src_ptl = pmd_lockptr(src_mm, src_pmd);
888 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
71e3aac0
AA
889
890 ret = -EAGAIN;
891 pmd = *src_pmd;
892 if (unlikely(!pmd_trans_huge(pmd))) {
893 pte_free(dst_mm, pgtable);
894 goto out_unlock;
895 }
fc9fe822 896 /*
c4088ebd 897 * When page table lock is held, the huge zero pmd should not be
fc9fe822
KS
898 * under splitting since we don't split the page itself, only pmd to
899 * a page table.
900 */
901 if (is_huge_zero_pmd(pmd)) {
5918d10a 902 struct page *zero_page;
97ae1749
KS
903 /*
904 * get_huge_zero_page() will never allocate a new page here,
905 * since we already have a zero page to copy. It just takes a
906 * reference.
907 */
5918d10a 908 zero_page = get_huge_zero_page();
6b251fc9 909 set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
5918d10a 910 zero_page);
fc9fe822
KS
911 ret = 0;
912 goto out_unlock;
913 }
de466bd6 914
71e3aac0
AA
915 if (unlikely(pmd_trans_splitting(pmd))) {
916 /* split huge page running from under us */
c4088ebd
KS
917 spin_unlock(src_ptl);
918 spin_unlock(dst_ptl);
71e3aac0
AA
919 pte_free(dst_mm, pgtable);
920
921 wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
922 goto out;
923 }
924 src_page = pmd_page(pmd);
309381fe 925 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
71e3aac0
AA
926 get_page(src_page);
927 page_dup_rmap(src_page);
928 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
929
930 pmdp_set_wrprotect(src_mm, addr, src_pmd);
931 pmd = pmd_mkold(pmd_wrprotect(pmd));
6b0b50b0 932 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
71e3aac0 933 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
e1f56c89 934 atomic_long_inc(&dst_mm->nr_ptes);
71e3aac0
AA
935
936 ret = 0;
937out_unlock:
c4088ebd
KS
938 spin_unlock(src_ptl);
939 spin_unlock(dst_ptl);
71e3aac0
AA
940out:
941 return ret;
942}
943
a1dd450b
WD
944void huge_pmd_set_accessed(struct mm_struct *mm,
945 struct vm_area_struct *vma,
946 unsigned long address,
947 pmd_t *pmd, pmd_t orig_pmd,
948 int dirty)
949{
c4088ebd 950 spinlock_t *ptl;
a1dd450b
WD
951 pmd_t entry;
952 unsigned long haddr;
953
c4088ebd 954 ptl = pmd_lock(mm, pmd);
a1dd450b
WD
955 if (unlikely(!pmd_same(*pmd, orig_pmd)))
956 goto unlock;
957
958 entry = pmd_mkyoung(orig_pmd);
959 haddr = address & HPAGE_PMD_MASK;
960 if (pmdp_set_access_flags(vma, haddr, pmd, entry, dirty))
961 update_mmu_cache_pmd(vma, address, pmd);
962
963unlock:
c4088ebd 964 spin_unlock(ptl);
a1dd450b
WD
965}
966
5338a937
HD
967/*
968 * Save CONFIG_DEBUG_PAGEALLOC from faulting falsely on tail pages
969 * during copy_user_huge_page()'s copy_page_rep(): in the case when
970 * the source page gets split and a tail freed before copy completes.
971 * Called under pmd_lock of checked pmd, so safe from splitting itself.
972 */
973static void get_user_huge_page(struct page *page)
974{
975 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) {
976 struct page *endpage = page + HPAGE_PMD_NR;
977
978 atomic_add(HPAGE_PMD_NR, &page->_count);
979 while (++page < endpage)
980 get_huge_page_tail(page);
981 } else {
982 get_page(page);
983 }
984}
985
986static void put_user_huge_page(struct page *page)
987{
988 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) {
989 struct page *endpage = page + HPAGE_PMD_NR;
990
991 while (page < endpage)
992 put_page(page++);
993 } else {
994 put_page(page);
995 }
996}
997
71e3aac0
AA
998static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
999 struct vm_area_struct *vma,
1000 unsigned long address,
1001 pmd_t *pmd, pmd_t orig_pmd,
1002 struct page *page,
1003 unsigned long haddr)
1004{
00501b53 1005 struct mem_cgroup *memcg;
c4088ebd 1006 spinlock_t *ptl;
71e3aac0
AA
1007 pgtable_t pgtable;
1008 pmd_t _pmd;
1009 int ret = 0, i;
1010 struct page **pages;
2ec74c3e
SG
1011 unsigned long mmun_start; /* For mmu_notifiers */
1012 unsigned long mmun_end; /* For mmu_notifiers */
71e3aac0
AA
1013
1014 pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
1015 GFP_KERNEL);
1016 if (unlikely(!pages)) {
1017 ret |= VM_FAULT_OOM;
1018 goto out;
1019 }
1020
1021 for (i = 0; i < HPAGE_PMD_NR; i++) {
cc5d462f
AK
1022 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
1023 __GFP_OTHER_NODE,
19ee151e 1024 vma, address, page_to_nid(page));
b9bbfbe3 1025 if (unlikely(!pages[i] ||
00501b53
JW
1026 mem_cgroup_try_charge(pages[i], mm, GFP_KERNEL,
1027 &memcg))) {
b9bbfbe3 1028 if (pages[i])
71e3aac0 1029 put_page(pages[i]);
b9bbfbe3 1030 while (--i >= 0) {
00501b53
JW
1031 memcg = (void *)page_private(pages[i]);
1032 set_page_private(pages[i], 0);
1033 mem_cgroup_cancel_charge(pages[i], memcg);
b9bbfbe3
AA
1034 put_page(pages[i]);
1035 }
71e3aac0
AA
1036 kfree(pages);
1037 ret |= VM_FAULT_OOM;
1038 goto out;
1039 }
00501b53 1040 set_page_private(pages[i], (unsigned long)memcg);
71e3aac0
AA
1041 }
1042
1043 for (i = 0; i < HPAGE_PMD_NR; i++) {
1044 copy_user_highpage(pages[i], page + i,
0089e485 1045 haddr + PAGE_SIZE * i, vma);
71e3aac0
AA
1046 __SetPageUptodate(pages[i]);
1047 cond_resched();
1048 }
1049
2ec74c3e
SG
1050 mmun_start = haddr;
1051 mmun_end = haddr + HPAGE_PMD_SIZE;
1052 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1053
c4088ebd 1054 ptl = pmd_lock(mm, pmd);
71e3aac0
AA
1055 if (unlikely(!pmd_same(*pmd, orig_pmd)))
1056 goto out_free_pages;
309381fe 1057 VM_BUG_ON_PAGE(!PageHead(page), page);
71e3aac0 1058
8809aa2d 1059 pmdp_huge_clear_flush_notify(vma, haddr, pmd);
71e3aac0
AA
1060 /* leave pmd empty until pte is filled */
1061
6b0b50b0 1062 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
71e3aac0
AA
1063 pmd_populate(mm, &_pmd, pgtable);
1064
1065 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1066 pte_t *pte, entry;
1067 entry = mk_pte(pages[i], vma->vm_page_prot);
1068 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
00501b53
JW
1069 memcg = (void *)page_private(pages[i]);
1070 set_page_private(pages[i], 0);
71e3aac0 1071 page_add_new_anon_rmap(pages[i], vma, haddr);
00501b53
JW
1072 mem_cgroup_commit_charge(pages[i], memcg, false);
1073 lru_cache_add_active_or_unevictable(pages[i], vma);
71e3aac0
AA
1074 pte = pte_offset_map(&_pmd, haddr);
1075 VM_BUG_ON(!pte_none(*pte));
1076 set_pte_at(mm, haddr, pte, entry);
1077 pte_unmap(pte);
1078 }
1079 kfree(pages);
1080
71e3aac0
AA
1081 smp_wmb(); /* make pte visible before pmd */
1082 pmd_populate(mm, pmd, pgtable);
1083 page_remove_rmap(page);
c4088ebd 1084 spin_unlock(ptl);
71e3aac0 1085
2ec74c3e
SG
1086 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1087
71e3aac0
AA
1088 ret |= VM_FAULT_WRITE;
1089 put_page(page);
1090
1091out:
1092 return ret;
1093
1094out_free_pages:
c4088ebd 1095 spin_unlock(ptl);
2ec74c3e 1096 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
b9bbfbe3 1097 for (i = 0; i < HPAGE_PMD_NR; i++) {
00501b53
JW
1098 memcg = (void *)page_private(pages[i]);
1099 set_page_private(pages[i], 0);
1100 mem_cgroup_cancel_charge(pages[i], memcg);
71e3aac0 1101 put_page(pages[i]);
b9bbfbe3 1102 }
71e3aac0
AA
1103 kfree(pages);
1104 goto out;
1105}
1106
1107int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1108 unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
1109{
c4088ebd 1110 spinlock_t *ptl;
71e3aac0 1111 int ret = 0;
93b4796d 1112 struct page *page = NULL, *new_page;
00501b53 1113 struct mem_cgroup *memcg;
71e3aac0 1114 unsigned long haddr;
2ec74c3e
SG
1115 unsigned long mmun_start; /* For mmu_notifiers */
1116 unsigned long mmun_end; /* For mmu_notifiers */
3b363692 1117 gfp_t huge_gfp; /* for allocation and charge */
71e3aac0 1118
c4088ebd 1119 ptl = pmd_lockptr(mm, pmd);
81d1b09c 1120 VM_BUG_ON_VMA(!vma->anon_vma, vma);
93b4796d
KS
1121 haddr = address & HPAGE_PMD_MASK;
1122 if (is_huge_zero_pmd(orig_pmd))
1123 goto alloc;
c4088ebd 1124 spin_lock(ptl);
71e3aac0
AA
1125 if (unlikely(!pmd_same(*pmd, orig_pmd)))
1126 goto out_unlock;
1127
1128 page = pmd_page(orig_pmd);
309381fe 1129 VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
71e3aac0
AA
1130 if (page_mapcount(page) == 1) {
1131 pmd_t entry;
1132 entry = pmd_mkyoung(orig_pmd);
1133 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1134 if (pmdp_set_access_flags(vma, haddr, pmd, entry, 1))
b113da65 1135 update_mmu_cache_pmd(vma, address, pmd);
71e3aac0
AA
1136 ret |= VM_FAULT_WRITE;
1137 goto out_unlock;
1138 }
5338a937 1139 get_user_huge_page(page);
c4088ebd 1140 spin_unlock(ptl);
93b4796d 1141alloc:
71e3aac0 1142 if (transparent_hugepage_enabled(vma) &&
077fcf11 1143 !transparent_hugepage_debug_cow()) {
3b363692
MH
1144 huge_gfp = alloc_hugepage_gfpmask(transparent_hugepage_defrag(vma), 0);
1145 new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
077fcf11 1146 } else
71e3aac0
AA
1147 new_page = NULL;
1148
1149 if (unlikely(!new_page)) {
eecc1e42 1150 if (!page) {
e9b71ca9
KS
1151 split_huge_page_pmd(vma, address, pmd);
1152 ret |= VM_FAULT_FALLBACK;
93b4796d
KS
1153 } else {
1154 ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
1155 pmd, orig_pmd, page, haddr);
9845cbbd 1156 if (ret & VM_FAULT_OOM) {
93b4796d 1157 split_huge_page(page);
9845cbbd
KS
1158 ret |= VM_FAULT_FALLBACK;
1159 }
5338a937 1160 put_user_huge_page(page);
93b4796d 1161 }
17766dde 1162 count_vm_event(THP_FAULT_FALLBACK);
71e3aac0
AA
1163 goto out;
1164 }
1165
3b363692 1166 if (unlikely(mem_cgroup_try_charge(new_page, mm, huge_gfp, &memcg))) {
b9bbfbe3 1167 put_page(new_page);
93b4796d
KS
1168 if (page) {
1169 split_huge_page(page);
5338a937 1170 put_user_huge_page(page);
9845cbbd
KS
1171 } else
1172 split_huge_page_pmd(vma, address, pmd);
1173 ret |= VM_FAULT_FALLBACK;
17766dde 1174 count_vm_event(THP_FAULT_FALLBACK);
b9bbfbe3
AA
1175 goto out;
1176 }
1177
17766dde
DR
1178 count_vm_event(THP_FAULT_ALLOC);
1179
eecc1e42 1180 if (!page)
93b4796d
KS
1181 clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
1182 else
1183 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
71e3aac0
AA
1184 __SetPageUptodate(new_page);
1185
2ec74c3e
SG
1186 mmun_start = haddr;
1187 mmun_end = haddr + HPAGE_PMD_SIZE;
1188 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1189
c4088ebd 1190 spin_lock(ptl);
93b4796d 1191 if (page)
5338a937 1192 put_user_huge_page(page);
b9bbfbe3 1193 if (unlikely(!pmd_same(*pmd, orig_pmd))) {
c4088ebd 1194 spin_unlock(ptl);
00501b53 1195 mem_cgroup_cancel_charge(new_page, memcg);
71e3aac0 1196 put_page(new_page);
2ec74c3e 1197 goto out_mn;
b9bbfbe3 1198 } else {
71e3aac0 1199 pmd_t entry;
3122359a
KS
1200 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1201 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
8809aa2d 1202 pmdp_huge_clear_flush_notify(vma, haddr, pmd);
71e3aac0 1203 page_add_new_anon_rmap(new_page, vma, haddr);
00501b53
JW
1204 mem_cgroup_commit_charge(new_page, memcg, false);
1205 lru_cache_add_active_or_unevictable(new_page, vma);
71e3aac0 1206 set_pmd_at(mm, haddr, pmd, entry);
b113da65 1207 update_mmu_cache_pmd(vma, address, pmd);
eecc1e42 1208 if (!page) {
93b4796d 1209 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
97ae1749
KS
1210 put_huge_zero_page();
1211 } else {
309381fe 1212 VM_BUG_ON_PAGE(!PageHead(page), page);
93b4796d
KS
1213 page_remove_rmap(page);
1214 put_page(page);
1215 }
71e3aac0
AA
1216 ret |= VM_FAULT_WRITE;
1217 }
c4088ebd 1218 spin_unlock(ptl);
2ec74c3e
SG
1219out_mn:
1220 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
71e3aac0
AA
1221out:
1222 return ret;
2ec74c3e 1223out_unlock:
c4088ebd 1224 spin_unlock(ptl);
2ec74c3e 1225 return ret;
71e3aac0
AA
1226}
1227
b676b293 1228struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
71e3aac0
AA
1229 unsigned long addr,
1230 pmd_t *pmd,
1231 unsigned int flags)
1232{
b676b293 1233 struct mm_struct *mm = vma->vm_mm;
71e3aac0
AA
1234 struct page *page = NULL;
1235
c4088ebd 1236 assert_spin_locked(pmd_lockptr(mm, pmd));
71e3aac0
AA
1237
1238 if (flags & FOLL_WRITE && !pmd_write(*pmd))
1239 goto out;
1240
85facf25
KS
1241 /* Avoid dumping huge zero page */
1242 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1243 return ERR_PTR(-EFAULT);
1244
2b4847e7 1245 /* Full NUMA hinting faults to serialise migration in fault paths */
8a0516ed 1246 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
2b4847e7
MG
1247 goto out;
1248
71e3aac0 1249 page = pmd_page(*pmd);
309381fe 1250 VM_BUG_ON_PAGE(!PageHead(page), page);
71e3aac0
AA
1251 if (flags & FOLL_TOUCH) {
1252 pmd_t _pmd;
1253 /*
1254 * We should set the dirty bit only for FOLL_WRITE but
1255 * for now the dirty bit in the pmd is meaningless.
1256 * And if the dirty bit will become meaningful and
1257 * we'll only set it with FOLL_WRITE, an atomic
1258 * set_bit will be required on the pmd to set the
1259 * young bit, instead of the current set_pmd_at.
1260 */
1261 _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
8663890a
AK
1262 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
1263 pmd, _pmd, 1))
1264 update_mmu_cache_pmd(vma, addr, pmd);
71e3aac0 1265 }
84d33df2 1266 if ((flags & FOLL_POPULATE) && (vma->vm_flags & VM_LOCKED)) {
b676b293
DR
1267 if (page->mapping && trylock_page(page)) {
1268 lru_add_drain();
1269 if (page->mapping)
1270 mlock_vma_page(page);
1271 unlock_page(page);
1272 }
1273 }
71e3aac0 1274 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
309381fe 1275 VM_BUG_ON_PAGE(!PageCompound(page), page);
71e3aac0 1276 if (flags & FOLL_GET)
70b50f94 1277 get_page_foll(page);
71e3aac0
AA
1278
1279out:
1280 return page;
1281}
1282
d10e63f2 1283/* NUMA hinting page fault entry point for trans huge pmds */
4daae3b4
MG
1284int do_huge_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
1285 unsigned long addr, pmd_t pmd, pmd_t *pmdp)
d10e63f2 1286{
c4088ebd 1287 spinlock_t *ptl;
b8916634 1288 struct anon_vma *anon_vma = NULL;
b32967ff 1289 struct page *page;
d10e63f2 1290 unsigned long haddr = addr & HPAGE_PMD_MASK;
8191acbd 1291 int page_nid = -1, this_nid = numa_node_id();
90572890 1292 int target_nid, last_cpupid = -1;
8191acbd
MG
1293 bool page_locked;
1294 bool migrated = false;
b191f9b1 1295 bool was_writable;
6688cc05 1296 int flags = 0;
d10e63f2 1297
c0e7cad9
MG
1298 /* A PROT_NONE fault should not end up here */
1299 BUG_ON(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)));
1300
c4088ebd 1301 ptl = pmd_lock(mm, pmdp);
d10e63f2
MG
1302 if (unlikely(!pmd_same(pmd, *pmdp)))
1303 goto out_unlock;
1304
de466bd6
MG
1305 /*
1306 * If there are potential migrations, wait for completion and retry
1307 * without disrupting NUMA hinting information. Do not relock and
1308 * check_same as the page may no longer be mapped.
1309 */
1310 if (unlikely(pmd_trans_migrating(*pmdp))) {
5d833062 1311 page = pmd_page(*pmdp);
de466bd6 1312 spin_unlock(ptl);
5d833062 1313 wait_on_page_locked(page);
de466bd6
MG
1314 goto out;
1315 }
1316
d10e63f2 1317 page = pmd_page(pmd);
a1a46184 1318 BUG_ON(is_huge_zero_page(page));
8191acbd 1319 page_nid = page_to_nid(page);
90572890 1320 last_cpupid = page_cpupid_last(page);
03c5a6e1 1321 count_vm_numa_event(NUMA_HINT_FAULTS);
04bb2f94 1322 if (page_nid == this_nid) {
03c5a6e1 1323 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
04bb2f94
RR
1324 flags |= TNF_FAULT_LOCAL;
1325 }
4daae3b4 1326
bea66fbd
MG
1327 /* See similar comment in do_numa_page for explanation */
1328 if (!(vma->vm_flags & VM_WRITE))
6688cc05
PZ
1329 flags |= TNF_NO_GROUP;
1330
ff9042b1
MG
1331 /*
1332 * Acquire the page lock to serialise THP migrations but avoid dropping
1333 * page_table_lock if at all possible
1334 */
b8916634
MG
1335 page_locked = trylock_page(page);
1336 target_nid = mpol_misplaced(page, vma, haddr);
1337 if (target_nid == -1) {
1338 /* If the page was locked, there are no parallel migrations */
a54a407f 1339 if (page_locked)
b8916634 1340 goto clear_pmdnuma;
2b4847e7 1341 }
4daae3b4 1342
de466bd6 1343 /* Migration could have started since the pmd_trans_migrating check */
2b4847e7 1344 if (!page_locked) {
c4088ebd 1345 spin_unlock(ptl);
b8916634 1346 wait_on_page_locked(page);
a54a407f 1347 page_nid = -1;
b8916634
MG
1348 goto out;
1349 }
1350
2b4847e7
MG
1351 /*
1352 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1353 * to serialises splits
1354 */
b8916634 1355 get_page(page);
c4088ebd 1356 spin_unlock(ptl);
b8916634 1357 anon_vma = page_lock_anon_vma_read(page);
4daae3b4 1358
c69307d5 1359 /* Confirm the PMD did not change while page_table_lock was released */
c4088ebd 1360 spin_lock(ptl);
b32967ff
MG
1361 if (unlikely(!pmd_same(pmd, *pmdp))) {
1362 unlock_page(page);
1363 put_page(page);
a54a407f 1364 page_nid = -1;
4daae3b4 1365 goto out_unlock;
b32967ff 1366 }
ff9042b1 1367
c3a489ca
MG
1368 /* Bail if we fail to protect against THP splits for any reason */
1369 if (unlikely(!anon_vma)) {
1370 put_page(page);
1371 page_nid = -1;
1372 goto clear_pmdnuma;
1373 }
1374
a54a407f
MG
1375 /*
1376 * Migrate the THP to the requested node, returns with page unlocked
8a0516ed 1377 * and access rights restored.
a54a407f 1378 */
c4088ebd 1379 spin_unlock(ptl);
b32967ff 1380 migrated = migrate_misplaced_transhuge_page(mm, vma,
340ef390 1381 pmdp, pmd, addr, page, target_nid);
6688cc05
PZ
1382 if (migrated) {
1383 flags |= TNF_MIGRATED;
8191acbd 1384 page_nid = target_nid;
074c2381
MG
1385 } else
1386 flags |= TNF_MIGRATE_FAIL;
b32967ff 1387
8191acbd 1388 goto out;
b32967ff 1389clear_pmdnuma:
a54a407f 1390 BUG_ON(!PageLocked(page));
b191f9b1 1391 was_writable = pmd_write(pmd);
4d942466 1392 pmd = pmd_modify(pmd, vma->vm_page_prot);
b7b04004 1393 pmd = pmd_mkyoung(pmd);
b191f9b1
MG
1394 if (was_writable)
1395 pmd = pmd_mkwrite(pmd);
d10e63f2 1396 set_pmd_at(mm, haddr, pmdp, pmd);
d10e63f2 1397 update_mmu_cache_pmd(vma, addr, pmdp);
a54a407f 1398 unlock_page(page);
d10e63f2 1399out_unlock:
c4088ebd 1400 spin_unlock(ptl);
b8916634
MG
1401
1402out:
1403 if (anon_vma)
1404 page_unlock_anon_vma_read(anon_vma);
1405
8191acbd 1406 if (page_nid != -1)
6688cc05 1407 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, flags);
8191acbd 1408
d10e63f2
MG
1409 return 0;
1410}
1411
71e3aac0 1412int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
f21760b1 1413 pmd_t *pmd, unsigned long addr)
71e3aac0 1414{
bf929152 1415 spinlock_t *ptl;
71e3aac0
AA
1416 int ret = 0;
1417
bf929152 1418 if (__pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
025c5b24
NH
1419 struct page *page;
1420 pgtable_t pgtable;
f5c8ad47 1421 pmd_t orig_pmd;
a6bf2bb0
AK
1422 /*
1423 * For architectures like ppc64 we look at deposited pgtable
8809aa2d 1424 * when calling pmdp_huge_get_and_clear. So do the
a6bf2bb0
AK
1425 * pgtable_trans_huge_withdraw after finishing pmdp related
1426 * operations.
1427 */
8809aa2d
AK
1428 orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1429 tlb->fullmm);
025c5b24 1430 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
a6bf2bb0 1431 pgtable = pgtable_trans_huge_withdraw(tlb->mm, pmd);
479f0abb 1432 if (is_huge_zero_pmd(orig_pmd)) {
e1f56c89 1433 atomic_long_dec(&tlb->mm->nr_ptes);
bf929152 1434 spin_unlock(ptl);
97ae1749 1435 put_huge_zero_page();
479f0abb
KS
1436 } else {
1437 page = pmd_page(orig_pmd);
1438 page_remove_rmap(page);
309381fe 1439 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
479f0abb 1440 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
309381fe 1441 VM_BUG_ON_PAGE(!PageHead(page), page);
e1f56c89 1442 atomic_long_dec(&tlb->mm->nr_ptes);
bf929152 1443 spin_unlock(ptl);
479f0abb
KS
1444 tlb_remove_page(tlb, page);
1445 }
025c5b24
NH
1446 pte_free(tlb->mm, pgtable);
1447 ret = 1;
1448 }
71e3aac0
AA
1449 return ret;
1450}
1451
37a1c49a
AA
1452int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
1453 unsigned long old_addr,
1454 unsigned long new_addr, unsigned long old_end,
1455 pmd_t *old_pmd, pmd_t *new_pmd)
1456{
bf929152 1457 spinlock_t *old_ptl, *new_ptl;
37a1c49a
AA
1458 int ret = 0;
1459 pmd_t pmd;
1460
1461 struct mm_struct *mm = vma->vm_mm;
1462
1463 if ((old_addr & ~HPAGE_PMD_MASK) ||
1464 (new_addr & ~HPAGE_PMD_MASK) ||
1465 old_end - old_addr < HPAGE_PMD_SIZE ||
1466 (new_vma->vm_flags & VM_NOHUGEPAGE))
1467 goto out;
1468
1469 /*
1470 * The destination pmd shouldn't be established, free_pgtables()
1471 * should have release it.
1472 */
1473 if (WARN_ON(!pmd_none(*new_pmd))) {
1474 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1475 goto out;
1476 }
1477
bf929152
KS
1478 /*
1479 * We don't have to worry about the ordering of src and dst
1480 * ptlocks because exclusive mmap_sem prevents deadlock.
1481 */
1482 ret = __pmd_trans_huge_lock(old_pmd, vma, &old_ptl);
025c5b24 1483 if (ret == 1) {
bf929152
KS
1484 new_ptl = pmd_lockptr(mm, new_pmd);
1485 if (new_ptl != old_ptl)
1486 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
8809aa2d 1487 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
025c5b24 1488 VM_BUG_ON(!pmd_none(*new_pmd));
3592806c 1489
b3084f4d
AK
1490 if (pmd_move_must_withdraw(new_ptl, old_ptl)) {
1491 pgtable_t pgtable;
3592806c
KS
1492 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1493 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
3592806c 1494 }
b3084f4d
AK
1495 set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
1496 if (new_ptl != old_ptl)
1497 spin_unlock(new_ptl);
bf929152 1498 spin_unlock(old_ptl);
37a1c49a
AA
1499 }
1500out:
1501 return ret;
1502}
1503
f123d74a
MG
1504/*
1505 * Returns
1506 * - 0 if PMD could not be locked
1507 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1508 * - HPAGE_PMD_NR is protections changed and TLB flush necessary
1509 */
cd7548ab 1510int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
e944fd67 1511 unsigned long addr, pgprot_t newprot, int prot_numa)
cd7548ab
JW
1512{
1513 struct mm_struct *mm = vma->vm_mm;
bf929152 1514 spinlock_t *ptl;
cd7548ab
JW
1515 int ret = 0;
1516
bf929152 1517 if (__pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
025c5b24 1518 pmd_t entry;
b191f9b1 1519 bool preserve_write = prot_numa && pmd_write(*pmd);
ba68bc01 1520 ret = 1;
e944fd67
MG
1521
1522 /*
1523 * Avoid trapping faults against the zero page. The read-only
1524 * data is likely to be read-cached on the local CPU and
1525 * local/remote hits to the zero page are not interesting.
1526 */
1527 if (prot_numa && is_huge_zero_pmd(*pmd)) {
1528 spin_unlock(ptl);
ba68bc01 1529 return ret;
e944fd67
MG
1530 }
1531
10c1045f 1532 if (!prot_numa || !pmd_protnone(*pmd)) {
8809aa2d 1533 entry = pmdp_huge_get_and_clear_notify(mm, addr, pmd);
10c1045f 1534 entry = pmd_modify(entry, newprot);
b191f9b1
MG
1535 if (preserve_write)
1536 entry = pmd_mkwrite(entry);
10c1045f
MG
1537 ret = HPAGE_PMD_NR;
1538 set_pmd_at(mm, addr, pmd, entry);
b191f9b1 1539 BUG_ON(!preserve_write && pmd_write(entry));
10c1045f 1540 }
bf929152 1541 spin_unlock(ptl);
025c5b24
NH
1542 }
1543
1544 return ret;
1545}
1546
1547/*
1548 * Returns 1 if a given pmd maps a stable (not under splitting) thp.
1549 * Returns -1 if it maps a thp under splitting. Returns 0 otherwise.
1550 *
1551 * Note that if it returns 1, this routine returns without unlocking page
1552 * table locks. So callers must unlock them.
1553 */
bf929152
KS
1554int __pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma,
1555 spinlock_t **ptl)
025c5b24 1556{
bf929152 1557 *ptl = pmd_lock(vma->vm_mm, pmd);
cd7548ab
JW
1558 if (likely(pmd_trans_huge(*pmd))) {
1559 if (unlikely(pmd_trans_splitting(*pmd))) {
bf929152 1560 spin_unlock(*ptl);
cd7548ab 1561 wait_split_huge_page(vma->anon_vma, pmd);
025c5b24 1562 return -1;
cd7548ab 1563 } else {
025c5b24
NH
1564 /* Thp mapped by 'pmd' is stable, so we can
1565 * handle it as it is. */
1566 return 1;
cd7548ab 1567 }
025c5b24 1568 }
bf929152 1569 spin_unlock(*ptl);
025c5b24 1570 return 0;
cd7548ab
JW
1571}
1572
117b0791
KS
1573/*
1574 * This function returns whether a given @page is mapped onto the @address
1575 * in the virtual space of @mm.
1576 *
1577 * When it's true, this function returns *pmd with holding the page table lock
1578 * and passing it back to the caller via @ptl.
1579 * If it's false, returns NULL without holding the page table lock.
1580 */
71e3aac0
AA
1581pmd_t *page_check_address_pmd(struct page *page,
1582 struct mm_struct *mm,
1583 unsigned long address,
117b0791
KS
1584 enum page_check_address_pmd_flag flag,
1585 spinlock_t **ptl)
71e3aac0 1586{
b5a8cad3
KS
1587 pgd_t *pgd;
1588 pud_t *pud;
117b0791 1589 pmd_t *pmd;
71e3aac0
AA
1590
1591 if (address & ~HPAGE_PMD_MASK)
117b0791 1592 return NULL;
71e3aac0 1593
b5a8cad3
KS
1594 pgd = pgd_offset(mm, address);
1595 if (!pgd_present(*pgd))
117b0791 1596 return NULL;
b5a8cad3
KS
1597 pud = pud_offset(pgd, address);
1598 if (!pud_present(*pud))
1599 return NULL;
1600 pmd = pmd_offset(pud, address);
1601
117b0791 1602 *ptl = pmd_lock(mm, pmd);
b5a8cad3 1603 if (!pmd_present(*pmd))
117b0791 1604 goto unlock;
71e3aac0 1605 if (pmd_page(*pmd) != page)
117b0791 1606 goto unlock;
94fcc585
AA
1607 /*
1608 * split_vma() may create temporary aliased mappings. There is
1609 * no risk as long as all huge pmd are found and have their
1610 * splitting bit set before __split_huge_page_refcount
1611 * runs. Finding the same huge pmd more than once during the
1612 * same rmap walk is not a problem.
1613 */
1614 if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
1615 pmd_trans_splitting(*pmd))
117b0791 1616 goto unlock;
71e3aac0
AA
1617 if (pmd_trans_huge(*pmd)) {
1618 VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
1619 !pmd_trans_splitting(*pmd));
117b0791 1620 return pmd;
71e3aac0 1621 }
117b0791
KS
1622unlock:
1623 spin_unlock(*ptl);
1624 return NULL;
71e3aac0
AA
1625}
1626
1627static int __split_huge_page_splitting(struct page *page,
1628 struct vm_area_struct *vma,
1629 unsigned long address)
1630{
1631 struct mm_struct *mm = vma->vm_mm;
117b0791 1632 spinlock_t *ptl;
71e3aac0
AA
1633 pmd_t *pmd;
1634 int ret = 0;
2ec74c3e
SG
1635 /* For mmu_notifiers */
1636 const unsigned long mmun_start = address;
1637 const unsigned long mmun_end = address + HPAGE_PMD_SIZE;
71e3aac0 1638
2ec74c3e 1639 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
71e3aac0 1640 pmd = page_check_address_pmd(page, mm, address,
117b0791 1641 PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG, &ptl);
71e3aac0
AA
1642 if (pmd) {
1643 /*
1644 * We can't temporarily set the pmd to null in order
1645 * to split it, the pmd must remain marked huge at all
1646 * times or the VM won't take the pmd_trans_huge paths
5a505085 1647 * and it won't wait on the anon_vma->root->rwsem to
71e3aac0
AA
1648 * serialize against split_huge_page*.
1649 */
2ec74c3e 1650 pmdp_splitting_flush(vma, address, pmd);
34ee645e 1651
71e3aac0 1652 ret = 1;
117b0791 1653 spin_unlock(ptl);
71e3aac0 1654 }
2ec74c3e 1655 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
71e3aac0
AA
1656
1657 return ret;
1658}
1659
5bc7b8ac
SL
1660static void __split_huge_page_refcount(struct page *page,
1661 struct list_head *list)
71e3aac0
AA
1662{
1663 int i;
71e3aac0 1664 struct zone *zone = page_zone(page);
fa9add64 1665 struct lruvec *lruvec;
70b50f94 1666 int tail_count = 0;
71e3aac0
AA
1667
1668 /* prevent PageLRU to go away from under us, and freeze lru stats */
1669 spin_lock_irq(&zone->lru_lock);
fa9add64
HD
1670 lruvec = mem_cgroup_page_lruvec(page, zone);
1671
71e3aac0 1672 compound_lock(page);
e94c8a9c
KH
1673 /* complete memcg works before add pages to LRU */
1674 mem_cgroup_split_huge_fixup(page);
71e3aac0 1675
45676885 1676 for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
71e3aac0
AA
1677 struct page *page_tail = page + i;
1678
70b50f94
AA
1679 /* tail_page->_mapcount cannot change */
1680 BUG_ON(page_mapcount(page_tail) < 0);
1681 tail_count += page_mapcount(page_tail);
1682 /* check for overflow */
1683 BUG_ON(tail_count < 0);
1684 BUG_ON(atomic_read(&page_tail->_count) != 0);
1685 /*
1686 * tail_page->_count is zero and not changing from
1687 * under us. But get_page_unless_zero() may be running
1688 * from under us on the tail_page. If we used
1689 * atomic_set() below instead of atomic_add(), we
1690 * would then run atomic_set() concurrently with
1691 * get_page_unless_zero(), and atomic_set() is
1692 * implemented in C not using locked ops. spin_unlock
1693 * on x86 sometime uses locked ops because of PPro
1694 * errata 66, 92, so unless somebody can guarantee
1695 * atomic_set() here would be safe on all archs (and
1696 * not only on x86), it's safer to use atomic_add().
1697 */
1698 atomic_add(page_mapcount(page) + page_mapcount(page_tail) + 1,
1699 &page_tail->_count);
71e3aac0
AA
1700
1701 /* after clearing PageTail the gup refcount can be released */
3a79d52a 1702 smp_mb__after_atomic();
71e3aac0 1703
f4c18e6f 1704 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
71e3aac0
AA
1705 page_tail->flags |= (page->flags &
1706 ((1L << PG_referenced) |
1707 (1L << PG_swapbacked) |
1708 (1L << PG_mlocked) |
e180cf80
KS
1709 (1L << PG_uptodate) |
1710 (1L << PG_active) |
1711 (1L << PG_unevictable)));
71e3aac0
AA
1712 page_tail->flags |= (1L << PG_dirty);
1713
70b50f94 1714 /* clear PageTail before overwriting first_page */
71e3aac0
AA
1715 smp_wmb();
1716
1717 /*
1718 * __split_huge_page_splitting() already set the
1719 * splitting bit in all pmd that could map this
1720 * hugepage, that will ensure no CPU can alter the
1721 * mapcount on the head page. The mapcount is only
1722 * accounted in the head page and it has to be
1723 * transferred to all tail pages in the below code. So
1724 * for this code to be safe, the split the mapcount
1725 * can't change. But that doesn't mean userland can't
1726 * keep changing and reading the page contents while
1727 * we transfer the mapcount, so the pmd splitting
1728 * status is achieved setting a reserved bit in the
1729 * pmd, not by clearing the present bit.
1730 */
71e3aac0
AA
1731 page_tail->_mapcount = page->_mapcount;
1732
1733 BUG_ON(page_tail->mapping);
1734 page_tail->mapping = page->mapping;
1735
45676885 1736 page_tail->index = page->index + i;
90572890 1737 page_cpupid_xchg_last(page_tail, page_cpupid_last(page));
71e3aac0
AA
1738
1739 BUG_ON(!PageAnon(page_tail));
1740 BUG_ON(!PageUptodate(page_tail));
1741 BUG_ON(!PageDirty(page_tail));
1742 BUG_ON(!PageSwapBacked(page_tail));
1743
5bc7b8ac 1744 lru_add_page_tail(page, page_tail, lruvec, list);
71e3aac0 1745 }
70b50f94
AA
1746 atomic_sub(tail_count, &page->_count);
1747 BUG_ON(atomic_read(&page->_count) <= 0);
71e3aac0 1748
fa9add64 1749 __mod_zone_page_state(zone, NR_ANON_TRANSPARENT_HUGEPAGES, -1);
79134171 1750
71e3aac0
AA
1751 ClearPageCompound(page);
1752 compound_unlock(page);
1753 spin_unlock_irq(&zone->lru_lock);
1754
1755 for (i = 1; i < HPAGE_PMD_NR; i++) {
1756 struct page *page_tail = page + i;
1757 BUG_ON(page_count(page_tail) <= 0);
1758 /*
1759 * Tail pages may be freed if there wasn't any mapping
1760 * like if add_to_swap() is running on a lru page that
1761 * had its mapping zapped. And freeing these pages
1762 * requires taking the lru_lock so we do the put_page
1763 * of the tail pages after the split is complete.
1764 */
1765 put_page(page_tail);
1766 }
1767
1768 /*
1769 * Only the head page (now become a regular page) is required
1770 * to be pinned by the caller.
1771 */
1772 BUG_ON(page_count(page) <= 0);
1773}
1774
1775static int __split_huge_page_map(struct page *page,
1776 struct vm_area_struct *vma,
1777 unsigned long address)
1778{
1779 struct mm_struct *mm = vma->vm_mm;
117b0791 1780 spinlock_t *ptl;
71e3aac0
AA
1781 pmd_t *pmd, _pmd;
1782 int ret = 0, i;
1783 pgtable_t pgtable;
1784 unsigned long haddr;
1785
71e3aac0 1786 pmd = page_check_address_pmd(page, mm, address,
117b0791 1787 PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG, &ptl);
71e3aac0 1788 if (pmd) {
6b0b50b0 1789 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
71e3aac0 1790 pmd_populate(mm, &_pmd, pgtable);
f8303c25
WL
1791 if (pmd_write(*pmd))
1792 BUG_ON(page_mapcount(page) != 1);
71e3aac0 1793
e3ebcf64
GS
1794 haddr = address;
1795 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
71e3aac0
AA
1796 pte_t *pte, entry;
1797 BUG_ON(PageCompound(page+i));
abc40bd2 1798 /*
8a0516ed
MG
1799 * Note that NUMA hinting access restrictions are not
1800 * transferred to avoid any possibility of altering
1801 * permissions across VMAs.
abc40bd2 1802 */
71e3aac0
AA
1803 entry = mk_pte(page + i, vma->vm_page_prot);
1804 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1805 if (!pmd_write(*pmd))
1806 entry = pte_wrprotect(entry);
71e3aac0
AA
1807 if (!pmd_young(*pmd))
1808 entry = pte_mkold(entry);
1809 pte = pte_offset_map(&_pmd, haddr);
1810 BUG_ON(!pte_none(*pte));
1811 set_pte_at(mm, haddr, pte, entry);
1812 pte_unmap(pte);
1813 }
1814
71e3aac0
AA
1815 smp_wmb(); /* make pte visible before pmd */
1816 /*
1817 * Up to this point the pmd is present and huge and
1818 * userland has the whole access to the hugepage
1819 * during the split (which happens in place). If we
1820 * overwrite the pmd with the not-huge version
1821 * pointing to the pte here (which of course we could
1822 * if all CPUs were bug free), userland could trigger
1823 * a small page size TLB miss on the small sized TLB
1824 * while the hugepage TLB entry is still established
1825 * in the huge TLB. Some CPU doesn't like that. See
1826 * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
1827 * Erratum 383 on page 93. Intel should be safe but is
1828 * also warns that it's only safe if the permission
1829 * and cache attributes of the two entries loaded in
1830 * the two TLB is identical (which should be the case
1831 * here). But it is generally safer to never allow
1832 * small and huge TLB entries for the same virtual
1833 * address to be loaded simultaneously. So instead of
1834 * doing "pmd_populate(); flush_tlb_range();" we first
1835 * mark the current pmd notpresent (atomically because
1836 * here the pmd_trans_huge and pmd_trans_splitting
1837 * must remain set at all times on the pmd until the
1838 * split is complete for this pmd), then we flush the
1839 * SMP TLB and finally we write the non-huge version
1840 * of the pmd entry with pmd_populate.
1841 */
46dcde73 1842 pmdp_invalidate(vma, address, pmd);
71e3aac0
AA
1843 pmd_populate(mm, pmd, pgtable);
1844 ret = 1;
117b0791 1845 spin_unlock(ptl);
71e3aac0 1846 }
71e3aac0
AA
1847
1848 return ret;
1849}
1850
5a505085 1851/* must be called with anon_vma->root->rwsem held */
71e3aac0 1852static void __split_huge_page(struct page *page,
5bc7b8ac
SL
1853 struct anon_vma *anon_vma,
1854 struct list_head *list)
71e3aac0
AA
1855{
1856 int mapcount, mapcount2;
bf181b9f 1857 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
71e3aac0
AA
1858 struct anon_vma_chain *avc;
1859
1860 BUG_ON(!PageHead(page));
1861 BUG_ON(PageTail(page));
1862
1863 mapcount = 0;
bf181b9f 1864 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
71e3aac0
AA
1865 struct vm_area_struct *vma = avc->vma;
1866 unsigned long addr = vma_address(page, vma);
1867 BUG_ON(is_vma_temporary_stack(vma));
71e3aac0
AA
1868 mapcount += __split_huge_page_splitting(page, vma, addr);
1869 }
05759d38
AA
1870 /*
1871 * It is critical that new vmas are added to the tail of the
1872 * anon_vma list. This guarantes that if copy_huge_pmd() runs
1873 * and establishes a child pmd before
1874 * __split_huge_page_splitting() freezes the parent pmd (so if
1875 * we fail to prevent copy_huge_pmd() from running until the
1876 * whole __split_huge_page() is complete), we will still see
1877 * the newly established pmd of the child later during the
1878 * walk, to be able to set it as pmd_trans_splitting too.
1879 */
ff9e43eb 1880 if (mapcount != page_mapcount(page)) {
ae3a8c1c
AM
1881 pr_err("mapcount %d page_mapcount %d\n",
1882 mapcount, page_mapcount(page));
ff9e43eb
KS
1883 BUG();
1884 }
71e3aac0 1885
5bc7b8ac 1886 __split_huge_page_refcount(page, list);
71e3aac0
AA
1887
1888 mapcount2 = 0;
bf181b9f 1889 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
71e3aac0
AA
1890 struct vm_area_struct *vma = avc->vma;
1891 unsigned long addr = vma_address(page, vma);
1892 BUG_ON(is_vma_temporary_stack(vma));
71e3aac0
AA
1893 mapcount2 += __split_huge_page_map(page, vma, addr);
1894 }
ff9e43eb 1895 if (mapcount != mapcount2) {
ae3a8c1c
AM
1896 pr_err("mapcount %d mapcount2 %d page_mapcount %d\n",
1897 mapcount, mapcount2, page_mapcount(page));
ff9e43eb
KS
1898 BUG();
1899 }
71e3aac0
AA
1900}
1901
5bc7b8ac
SL
1902/*
1903 * Split a hugepage into normal pages. This doesn't change the position of head
1904 * page. If @list is null, tail pages will be added to LRU list, otherwise, to
1905 * @list. Both head page and tail pages will inherit mapping, flags, and so on
1906 * from the hugepage.
1907 * Return 0 if the hugepage is split successfully otherwise return 1.
1908 */
1909int split_huge_page_to_list(struct page *page, struct list_head *list)
71e3aac0
AA
1910{
1911 struct anon_vma *anon_vma;
1912 int ret = 1;
1913
5918d10a 1914 BUG_ON(is_huge_zero_page(page));
71e3aac0 1915 BUG_ON(!PageAnon(page));
062f1af2
MG
1916
1917 /*
1918 * The caller does not necessarily hold an mmap_sem that would prevent
1919 * the anon_vma disappearing so we first we take a reference to it
1920 * and then lock the anon_vma for write. This is similar to
1921 * page_lock_anon_vma_read except the write lock is taken to serialise
1922 * against parallel split or collapse operations.
1923 */
1924 anon_vma = page_get_anon_vma(page);
71e3aac0
AA
1925 if (!anon_vma)
1926 goto out;
062f1af2
MG
1927 anon_vma_lock_write(anon_vma);
1928
71e3aac0
AA
1929 ret = 0;
1930 if (!PageCompound(page))
1931 goto out_unlock;
1932
1933 BUG_ON(!PageSwapBacked(page));
5bc7b8ac 1934 __split_huge_page(page, anon_vma, list);
81ab4201 1935 count_vm_event(THP_SPLIT);
71e3aac0
AA
1936
1937 BUG_ON(PageCompound(page));
1938out_unlock:
08b52706 1939 anon_vma_unlock_write(anon_vma);
062f1af2 1940 put_anon_vma(anon_vma);
71e3aac0
AA
1941out:
1942 return ret;
1943}
1944
9050d7eb 1945#define VM_NO_THP (VM_SPECIAL | VM_HUGETLB | VM_SHARED | VM_MAYSHARE)
78f11a25 1946
60ab3244
AA
1947int hugepage_madvise(struct vm_area_struct *vma,
1948 unsigned long *vm_flags, int advice)
0af4e98b 1949{
a664b2d8
AA
1950 switch (advice) {
1951 case MADV_HUGEPAGE:
1e1836e8
AT
1952#ifdef CONFIG_S390
1953 /*
1954 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
1955 * can't handle this properly after s390_enable_sie, so we simply
1956 * ignore the madvise to prevent qemu from causing a SIGSEGV.
1957 */
1958 if (mm_has_pgste(vma->vm_mm))
1959 return 0;
1960#endif
a664b2d8
AA
1961 /*
1962 * Be somewhat over-protective like KSM for now!
1963 */
78f11a25 1964 if (*vm_flags & (VM_HUGEPAGE | VM_NO_THP))
a664b2d8
AA
1965 return -EINVAL;
1966 *vm_flags &= ~VM_NOHUGEPAGE;
1967 *vm_flags |= VM_HUGEPAGE;
60ab3244
AA
1968 /*
1969 * If the vma become good for khugepaged to scan,
1970 * register it here without waiting a page fault that
1971 * may not happen any time soon.
1972 */
6d50e60c 1973 if (unlikely(khugepaged_enter_vma_merge(vma, *vm_flags)))
60ab3244 1974 return -ENOMEM;
a664b2d8
AA
1975 break;
1976 case MADV_NOHUGEPAGE:
1977 /*
1978 * Be somewhat over-protective like KSM for now!
1979 */
78f11a25 1980 if (*vm_flags & (VM_NOHUGEPAGE | VM_NO_THP))
a664b2d8
AA
1981 return -EINVAL;
1982 *vm_flags &= ~VM_HUGEPAGE;
1983 *vm_flags |= VM_NOHUGEPAGE;
60ab3244
AA
1984 /*
1985 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
1986 * this vma even if we leave the mm registered in khugepaged if
1987 * it got registered before VM_NOHUGEPAGE was set.
1988 */
a664b2d8
AA
1989 break;
1990 }
0af4e98b
AA
1991
1992 return 0;
1993}
1994
ba76149f
AA
1995static int __init khugepaged_slab_init(void)
1996{
1997 mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
1998 sizeof(struct mm_slot),
1999 __alignof__(struct mm_slot), 0, NULL);
2000 if (!mm_slot_cache)
2001 return -ENOMEM;
2002
2003 return 0;
2004}
2005
65ebb64f
KS
2006static void __init khugepaged_slab_exit(void)
2007{
2008 kmem_cache_destroy(mm_slot_cache);
2009}
2010
ba76149f
AA
2011static inline struct mm_slot *alloc_mm_slot(void)
2012{
2013 if (!mm_slot_cache) /* initialization failed */
2014 return NULL;
2015 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
2016}
2017
2018static inline void free_mm_slot(struct mm_slot *mm_slot)
2019{
2020 kmem_cache_free(mm_slot_cache, mm_slot);
2021}
2022
ba76149f
AA
2023static struct mm_slot *get_mm_slot(struct mm_struct *mm)
2024{
2025 struct mm_slot *mm_slot;
ba76149f 2026
b67bfe0d 2027 hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
ba76149f
AA
2028 if (mm == mm_slot->mm)
2029 return mm_slot;
43b5fbbd 2030
ba76149f
AA
2031 return NULL;
2032}
2033
2034static void insert_to_mm_slots_hash(struct mm_struct *mm,
2035 struct mm_slot *mm_slot)
2036{
ba76149f 2037 mm_slot->mm = mm;
43b5fbbd 2038 hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
ba76149f
AA
2039}
2040
2041static inline int khugepaged_test_exit(struct mm_struct *mm)
2042{
2043 return atomic_read(&mm->mm_users) == 0;
2044}
2045
2046int __khugepaged_enter(struct mm_struct *mm)
2047{
2048 struct mm_slot *mm_slot;
2049 int wakeup;
2050
2051 mm_slot = alloc_mm_slot();
2052 if (!mm_slot)
2053 return -ENOMEM;
2054
2055 /* __khugepaged_exit() must not run from under us */
96dad67f 2056 VM_BUG_ON_MM(khugepaged_test_exit(mm), mm);
ba76149f
AA
2057 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
2058 free_mm_slot(mm_slot);
2059 return 0;
2060 }
2061
2062 spin_lock(&khugepaged_mm_lock);
2063 insert_to_mm_slots_hash(mm, mm_slot);
2064 /*
2065 * Insert just behind the scanning cursor, to let the area settle
2066 * down a little.
2067 */
2068 wakeup = list_empty(&khugepaged_scan.mm_head);
2069 list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
2070 spin_unlock(&khugepaged_mm_lock);
2071
2072 atomic_inc(&mm->mm_count);
2073 if (wakeup)
2074 wake_up_interruptible(&khugepaged_wait);
2075
2076 return 0;
2077}
2078
6d50e60c
DR
2079int khugepaged_enter_vma_merge(struct vm_area_struct *vma,
2080 unsigned long vm_flags)
ba76149f
AA
2081{
2082 unsigned long hstart, hend;
2083 if (!vma->anon_vma)
2084 /*
2085 * Not yet faulted in so we will register later in the
2086 * page fault if needed.
2087 */
2088 return 0;
78f11a25 2089 if (vma->vm_ops)
ba76149f
AA
2090 /* khugepaged not yet working on file or special mappings */
2091 return 0;
6d50e60c 2092 VM_BUG_ON_VMA(vm_flags & VM_NO_THP, vma);
ba76149f
AA
2093 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2094 hend = vma->vm_end & HPAGE_PMD_MASK;
2095 if (hstart < hend)
6d50e60c 2096 return khugepaged_enter(vma, vm_flags);
ba76149f
AA
2097 return 0;
2098}
2099
2100void __khugepaged_exit(struct mm_struct *mm)
2101{
2102 struct mm_slot *mm_slot;
2103 int free = 0;
2104
2105 spin_lock(&khugepaged_mm_lock);
2106 mm_slot = get_mm_slot(mm);
2107 if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
43b5fbbd 2108 hash_del(&mm_slot->hash);
ba76149f
AA
2109 list_del(&mm_slot->mm_node);
2110 free = 1;
2111 }
d788e80a 2112 spin_unlock(&khugepaged_mm_lock);
ba76149f
AA
2113
2114 if (free) {
ba76149f
AA
2115 clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2116 free_mm_slot(mm_slot);
2117 mmdrop(mm);
2118 } else if (mm_slot) {
ba76149f
AA
2119 /*
2120 * This is required to serialize against
2121 * khugepaged_test_exit() (which is guaranteed to run
2122 * under mmap sem read mode). Stop here (after we
2123 * return all pagetables will be destroyed) until
2124 * khugepaged has finished working on the pagetables
2125 * under the mmap_sem.
2126 */
2127 down_write(&mm->mmap_sem);
2128 up_write(&mm->mmap_sem);
d788e80a 2129 }
ba76149f
AA
2130}
2131
2132static void release_pte_page(struct page *page)
2133{
2134 /* 0 stands for page_is_file_cache(page) == false */
2135 dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
2136 unlock_page(page);
2137 putback_lru_page(page);
2138}
2139
2140static void release_pte_pages(pte_t *pte, pte_t *_pte)
2141{
2142 while (--_pte >= pte) {
2143 pte_t pteval = *_pte;
ca0984ca 2144 if (!pte_none(pteval) && !is_zero_pfn(pte_pfn(pteval)))
ba76149f
AA
2145 release_pte_page(pte_page(pteval));
2146 }
2147}
2148
ba76149f
AA
2149static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
2150 unsigned long address,
2151 pte_t *pte)
2152{
2153 struct page *page;
2154 pte_t *_pte;
ca0984ca 2155 int none_or_zero = 0;
10359213 2156 bool referenced = false, writable = false;
ba76149f
AA
2157 for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
2158 _pte++, address += PAGE_SIZE) {
2159 pte_t pteval = *_pte;
ca0984ca
EA
2160 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
2161 if (++none_or_zero <= khugepaged_max_ptes_none)
ba76149f 2162 continue;
344aa35c 2163 else
ba76149f 2164 goto out;
ba76149f 2165 }
10359213 2166 if (!pte_present(pteval))
ba76149f 2167 goto out;
ba76149f 2168 page = vm_normal_page(vma, address, pteval);
344aa35c 2169 if (unlikely(!page))
ba76149f 2170 goto out;
344aa35c 2171
309381fe
SL
2172 VM_BUG_ON_PAGE(PageCompound(page), page);
2173 VM_BUG_ON_PAGE(!PageAnon(page), page);
2174 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
ba76149f 2175
ba76149f
AA
2176 /*
2177 * We can do it before isolate_lru_page because the
2178 * page can't be freed from under us. NOTE: PG_lock
2179 * is needed to serialize against split_huge_page
2180 * when invoked from the VM.
2181 */
344aa35c 2182 if (!trylock_page(page))
ba76149f 2183 goto out;
10359213
EA
2184
2185 /*
2186 * cannot use mapcount: can't collapse if there's a gup pin.
2187 * The page must only be referenced by the scanned process
2188 * and page swap cache.
2189 */
2190 if (page_count(page) != 1 + !!PageSwapCache(page)) {
2191 unlock_page(page);
2192 goto out;
2193 }
2194 if (pte_write(pteval)) {
2195 writable = true;
2196 } else {
2197 if (PageSwapCache(page) && !reuse_swap_page(page)) {
2198 unlock_page(page);
2199 goto out;
2200 }
2201 /*
2202 * Page is not in the swap cache. It can be collapsed
2203 * into a THP.
2204 */
2205 }
2206
ba76149f
AA
2207 /*
2208 * Isolate the page to avoid collapsing an hugepage
2209 * currently in use by the VM.
2210 */
2211 if (isolate_lru_page(page)) {
2212 unlock_page(page);
ba76149f
AA
2213 goto out;
2214 }
2215 /* 0 stands for page_is_file_cache(page) == false */
2216 inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
309381fe
SL
2217 VM_BUG_ON_PAGE(!PageLocked(page), page);
2218 VM_BUG_ON_PAGE(PageLRU(page), page);
ba76149f
AA
2219
2220 /* If there is no mapped pte young don't collapse the page */
8ee53820
AA
2221 if (pte_young(pteval) || PageReferenced(page) ||
2222 mmu_notifier_test_young(vma->vm_mm, address))
10359213 2223 referenced = true;
ba76149f 2224 }
10359213 2225 if (likely(referenced && writable))
344aa35c 2226 return 1;
ba76149f 2227out:
344aa35c
BL
2228 release_pte_pages(pte, _pte);
2229 return 0;
ba76149f
AA
2230}
2231
2232static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
2233 struct vm_area_struct *vma,
2234 unsigned long address,
2235 spinlock_t *ptl)
2236{
2237 pte_t *_pte;
2238 for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
2239 pte_t pteval = *_pte;
2240 struct page *src_page;
2241
ca0984ca 2242 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
ba76149f
AA
2243 clear_user_highpage(page, address);
2244 add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
ca0984ca
EA
2245 if (is_zero_pfn(pte_pfn(pteval))) {
2246 /*
2247 * ptl mostly unnecessary.
2248 */
2249 spin_lock(ptl);
2250 /*
2251 * paravirt calls inside pte_clear here are
2252 * superfluous.
2253 */
2254 pte_clear(vma->vm_mm, address, _pte);
2255 spin_unlock(ptl);
2256 }
ba76149f
AA
2257 } else {
2258 src_page = pte_page(pteval);
2259 copy_user_highpage(page, src_page, address, vma);
309381fe 2260 VM_BUG_ON_PAGE(page_mapcount(src_page) != 1, src_page);
ba76149f
AA
2261 release_pte_page(src_page);
2262 /*
2263 * ptl mostly unnecessary, but preempt has to
2264 * be disabled to update the per-cpu stats
2265 * inside page_remove_rmap().
2266 */
2267 spin_lock(ptl);
2268 /*
2269 * paravirt calls inside pte_clear here are
2270 * superfluous.
2271 */
2272 pte_clear(vma->vm_mm, address, _pte);
2273 page_remove_rmap(src_page);
2274 spin_unlock(ptl);
2275 free_page_and_swap_cache(src_page);
2276 }
2277
2278 address += PAGE_SIZE;
2279 page++;
2280 }
2281}
2282
26234f36 2283static void khugepaged_alloc_sleep(void)
ba76149f 2284{
26234f36
XG
2285 wait_event_freezable_timeout(khugepaged_wait, false,
2286 msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
2287}
ba76149f 2288
9f1b868a
BL
2289static int khugepaged_node_load[MAX_NUMNODES];
2290
14a4e214
DR
2291static bool khugepaged_scan_abort(int nid)
2292{
2293 int i;
2294
2295 /*
2296 * If zone_reclaim_mode is disabled, then no extra effort is made to
2297 * allocate memory locally.
2298 */
2299 if (!zone_reclaim_mode)
2300 return false;
2301
2302 /* If there is a count for this node already, it must be acceptable */
2303 if (khugepaged_node_load[nid])
2304 return false;
2305
2306 for (i = 0; i < MAX_NUMNODES; i++) {
2307 if (!khugepaged_node_load[i])
2308 continue;
2309 if (node_distance(nid, i) > RECLAIM_DISTANCE)
2310 return true;
2311 }
2312 return false;
2313}
2314
26234f36 2315#ifdef CONFIG_NUMA
9f1b868a
BL
2316static int khugepaged_find_target_node(void)
2317{
2318 static int last_khugepaged_target_node = NUMA_NO_NODE;
2319 int nid, target_node = 0, max_value = 0;
2320
2321 /* find first node with max normal pages hit */
2322 for (nid = 0; nid < MAX_NUMNODES; nid++)
2323 if (khugepaged_node_load[nid] > max_value) {
2324 max_value = khugepaged_node_load[nid];
2325 target_node = nid;
2326 }
2327
2328 /* do some balance if several nodes have the same hit record */
2329 if (target_node <= last_khugepaged_target_node)
2330 for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
2331 nid++)
2332 if (max_value == khugepaged_node_load[nid]) {
2333 target_node = nid;
2334 break;
2335 }
2336
2337 last_khugepaged_target_node = target_node;
2338 return target_node;
2339}
2340
26234f36
XG
2341static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2342{
2343 if (IS_ERR(*hpage)) {
2344 if (!*wait)
2345 return false;
2346
2347 *wait = false;
e3b4126c 2348 *hpage = NULL;
26234f36
XG
2349 khugepaged_alloc_sleep();
2350 } else if (*hpage) {
2351 put_page(*hpage);
2352 *hpage = NULL;
2353 }
2354
2355 return true;
2356}
2357
3b363692
MH
2358static struct page *
2359khugepaged_alloc_page(struct page **hpage, gfp_t gfp, struct mm_struct *mm,
26234f36
XG
2360 struct vm_area_struct *vma, unsigned long address,
2361 int node)
2362{
309381fe 2363 VM_BUG_ON_PAGE(*hpage, *hpage);
8b164568 2364
ce83d217 2365 /*
8b164568
VB
2366 * Before allocating the hugepage, release the mmap_sem read lock.
2367 * The allocation can take potentially a long time if it involves
2368 * sync compaction, and we do not need to hold the mmap_sem during
2369 * that. We will recheck the vma after taking it again in write mode.
ce83d217 2370 */
8b164568
VB
2371 up_read(&mm->mmap_sem);
2372
3b363692 2373 *hpage = alloc_pages_exact_node(node, gfp, HPAGE_PMD_ORDER);
26234f36 2374 if (unlikely(!*hpage)) {
81ab4201 2375 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
ce83d217 2376 *hpage = ERR_PTR(-ENOMEM);
26234f36 2377 return NULL;
ce83d217 2378 }
26234f36 2379
65b3c07b 2380 count_vm_event(THP_COLLAPSE_ALLOC);
26234f36
XG
2381 return *hpage;
2382}
2383#else
9f1b868a
BL
2384static int khugepaged_find_target_node(void)
2385{
2386 return 0;
2387}
2388
10dc4155
BL
2389static inline struct page *alloc_hugepage(int defrag)
2390{
2391 return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
2392 HPAGE_PMD_ORDER);
2393}
2394
26234f36
XG
2395static struct page *khugepaged_alloc_hugepage(bool *wait)
2396{
2397 struct page *hpage;
2398
2399 do {
2400 hpage = alloc_hugepage(khugepaged_defrag());
2401 if (!hpage) {
2402 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2403 if (!*wait)
2404 return NULL;
2405
2406 *wait = false;
2407 khugepaged_alloc_sleep();
2408 } else
2409 count_vm_event(THP_COLLAPSE_ALLOC);
2410 } while (unlikely(!hpage) && likely(khugepaged_enabled()));
2411
2412 return hpage;
2413}
2414
2415static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2416{
2417 if (!*hpage)
2418 *hpage = khugepaged_alloc_hugepage(wait);
2419
2420 if (unlikely(!*hpage))
2421 return false;
2422
2423 return true;
2424}
2425
3b363692
MH
2426static struct page *
2427khugepaged_alloc_page(struct page **hpage, gfp_t gfp, struct mm_struct *mm,
26234f36
XG
2428 struct vm_area_struct *vma, unsigned long address,
2429 int node)
2430{
2431 up_read(&mm->mmap_sem);
2432 VM_BUG_ON(!*hpage);
3b363692 2433
26234f36
XG
2434 return *hpage;
2435}
692e0b35
AA
2436#endif
2437
fa475e51
BL
2438static bool hugepage_vma_check(struct vm_area_struct *vma)
2439{
2440 if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
2441 (vma->vm_flags & VM_NOHUGEPAGE))
2442 return false;
2443
2444 if (!vma->anon_vma || vma->vm_ops)
2445 return false;
2446 if (is_vma_temporary_stack(vma))
2447 return false;
81d1b09c 2448 VM_BUG_ON_VMA(vma->vm_flags & VM_NO_THP, vma);
fa475e51
BL
2449 return true;
2450}
2451
26234f36
XG
2452static void collapse_huge_page(struct mm_struct *mm,
2453 unsigned long address,
2454 struct page **hpage,
2455 struct vm_area_struct *vma,
2456 int node)
2457{
26234f36
XG
2458 pmd_t *pmd, _pmd;
2459 pte_t *pte;
2460 pgtable_t pgtable;
2461 struct page *new_page;
c4088ebd 2462 spinlock_t *pmd_ptl, *pte_ptl;
26234f36
XG
2463 int isolated;
2464 unsigned long hstart, hend;
00501b53 2465 struct mem_cgroup *memcg;
2ec74c3e
SG
2466 unsigned long mmun_start; /* For mmu_notifiers */
2467 unsigned long mmun_end; /* For mmu_notifiers */
3b363692 2468 gfp_t gfp;
26234f36
XG
2469
2470 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2471
3b363692
MH
2472 /* Only allocate from the target node */
2473 gfp = alloc_hugepage_gfpmask(khugepaged_defrag(), __GFP_OTHER_NODE) |
2474 __GFP_THISNODE;
2475
26234f36 2476 /* release the mmap_sem read lock. */
3b363692 2477 new_page = khugepaged_alloc_page(hpage, gfp, mm, vma, address, node);
26234f36
XG
2478 if (!new_page)
2479 return;
2480
00501b53 2481 if (unlikely(mem_cgroup_try_charge(new_page, mm,
3b363692 2482 gfp, &memcg)))
ce83d217 2483 return;
ba76149f
AA
2484
2485 /*
2486 * Prevent all access to pagetables with the exception of
2487 * gup_fast later hanlded by the ptep_clear_flush and the VM
2488 * handled by the anon_vma lock + PG_lock.
2489 */
2490 down_write(&mm->mmap_sem);
2491 if (unlikely(khugepaged_test_exit(mm)))
2492 goto out;
2493
2494 vma = find_vma(mm, address);
a8f531eb
L
2495 if (!vma)
2496 goto out;
ba76149f
AA
2497 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2498 hend = vma->vm_end & HPAGE_PMD_MASK;
2499 if (address < hstart || address + HPAGE_PMD_SIZE > hend)
2500 goto out;
fa475e51 2501 if (!hugepage_vma_check(vma))
a7d6e4ec 2502 goto out;
6219049a
BL
2503 pmd = mm_find_pmd(mm, address);
2504 if (!pmd)
ba76149f 2505 goto out;
ba76149f 2506
4fc3f1d6 2507 anon_vma_lock_write(vma->anon_vma);
ba76149f
AA
2508
2509 pte = pte_offset_map(pmd, address);
c4088ebd 2510 pte_ptl = pte_lockptr(mm, pmd);
ba76149f 2511
2ec74c3e
SG
2512 mmun_start = address;
2513 mmun_end = address + HPAGE_PMD_SIZE;
2514 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
c4088ebd 2515 pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
ba76149f
AA
2516 /*
2517 * After this gup_fast can't run anymore. This also removes
2518 * any huge TLB entry from the CPU so we won't allow
2519 * huge and small TLB entries for the same virtual address
2520 * to avoid the risk of CPU bugs in that area.
2521 */
15a25b2e 2522 _pmd = pmdp_collapse_flush(vma, address, pmd);
c4088ebd 2523 spin_unlock(pmd_ptl);
2ec74c3e 2524 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
ba76149f 2525
c4088ebd 2526 spin_lock(pte_ptl);
ba76149f 2527 isolated = __collapse_huge_page_isolate(vma, address, pte);
c4088ebd 2528 spin_unlock(pte_ptl);
ba76149f
AA
2529
2530 if (unlikely(!isolated)) {
453c7192 2531 pte_unmap(pte);
c4088ebd 2532 spin_lock(pmd_ptl);
ba76149f 2533 BUG_ON(!pmd_none(*pmd));
7c342512
AK
2534 /*
2535 * We can only use set_pmd_at when establishing
2536 * hugepmds and never for establishing regular pmds that
2537 * points to regular pagetables. Use pmd_populate for that
2538 */
2539 pmd_populate(mm, pmd, pmd_pgtable(_pmd));
c4088ebd 2540 spin_unlock(pmd_ptl);
08b52706 2541 anon_vma_unlock_write(vma->anon_vma);
ce83d217 2542 goto out;
ba76149f
AA
2543 }
2544
2545 /*
2546 * All pages are isolated and locked so anon_vma rmap
2547 * can't run anymore.
2548 */
08b52706 2549 anon_vma_unlock_write(vma->anon_vma);
ba76149f 2550
c4088ebd 2551 __collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl);
453c7192 2552 pte_unmap(pte);
ba76149f
AA
2553 __SetPageUptodate(new_page);
2554 pgtable = pmd_pgtable(_pmd);
ba76149f 2555
3122359a
KS
2556 _pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
2557 _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
ba76149f
AA
2558
2559 /*
2560 * spin_lock() below is not the equivalent of smp_wmb(), so
2561 * this is needed to avoid the copy_huge_page writes to become
2562 * visible after the set_pmd_at() write.
2563 */
2564 smp_wmb();
2565
c4088ebd 2566 spin_lock(pmd_ptl);
ba76149f
AA
2567 BUG_ON(!pmd_none(*pmd));
2568 page_add_new_anon_rmap(new_page, vma, address);
00501b53
JW
2569 mem_cgroup_commit_charge(new_page, memcg, false);
2570 lru_cache_add_active_or_unevictable(new_page, vma);
fce144b4 2571 pgtable_trans_huge_deposit(mm, pmd, pgtable);
ba76149f 2572 set_pmd_at(mm, address, pmd, _pmd);
b113da65 2573 update_mmu_cache_pmd(vma, address, pmd);
c4088ebd 2574 spin_unlock(pmd_ptl);
ba76149f
AA
2575
2576 *hpage = NULL;
420256ef 2577
ba76149f 2578 khugepaged_pages_collapsed++;
ce83d217 2579out_up_write:
ba76149f 2580 up_write(&mm->mmap_sem);
0bbbc0b3
AA
2581 return;
2582
ce83d217 2583out:
00501b53 2584 mem_cgroup_cancel_charge(new_page, memcg);
ce83d217 2585 goto out_up_write;
ba76149f
AA
2586}
2587
2588static int khugepaged_scan_pmd(struct mm_struct *mm,
2589 struct vm_area_struct *vma,
2590 unsigned long address,
2591 struct page **hpage)
2592{
ba76149f
AA
2593 pmd_t *pmd;
2594 pte_t *pte, *_pte;
ca0984ca 2595 int ret = 0, none_or_zero = 0;
ba76149f
AA
2596 struct page *page;
2597 unsigned long _address;
2598 spinlock_t *ptl;
00ef2d2f 2599 int node = NUMA_NO_NODE;
10359213 2600 bool writable = false, referenced = false;
ba76149f
AA
2601
2602 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2603
6219049a
BL
2604 pmd = mm_find_pmd(mm, address);
2605 if (!pmd)
ba76149f 2606 goto out;
ba76149f 2607
9f1b868a 2608 memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
ba76149f
AA
2609 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2610 for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
2611 _pte++, _address += PAGE_SIZE) {
2612 pte_t pteval = *_pte;
ca0984ca
EA
2613 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
2614 if (++none_or_zero <= khugepaged_max_ptes_none)
ba76149f
AA
2615 continue;
2616 else
2617 goto out_unmap;
2618 }
10359213 2619 if (!pte_present(pteval))
ba76149f 2620 goto out_unmap;
10359213
EA
2621 if (pte_write(pteval))
2622 writable = true;
2623
ba76149f
AA
2624 page = vm_normal_page(vma, _address, pteval);
2625 if (unlikely(!page))
2626 goto out_unmap;
5c4b4be3 2627 /*
9f1b868a
BL
2628 * Record which node the original page is from and save this
2629 * information to khugepaged_node_load[].
2630 * Khupaged will allocate hugepage from the node has the max
2631 * hit record.
5c4b4be3 2632 */
9f1b868a 2633 node = page_to_nid(page);
14a4e214
DR
2634 if (khugepaged_scan_abort(node))
2635 goto out_unmap;
9f1b868a 2636 khugepaged_node_load[node]++;
309381fe 2637 VM_BUG_ON_PAGE(PageCompound(page), page);
ba76149f
AA
2638 if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
2639 goto out_unmap;
10359213
EA
2640 /*
2641 * cannot use mapcount: can't collapse if there's a gup pin.
2642 * The page must only be referenced by the scanned process
2643 * and page swap cache.
2644 */
2645 if (page_count(page) != 1 + !!PageSwapCache(page))
ba76149f 2646 goto out_unmap;
8ee53820
AA
2647 if (pte_young(pteval) || PageReferenced(page) ||
2648 mmu_notifier_test_young(vma->vm_mm, address))
10359213 2649 referenced = true;
ba76149f 2650 }
10359213 2651 if (referenced && writable)
ba76149f
AA
2652 ret = 1;
2653out_unmap:
2654 pte_unmap_unlock(pte, ptl);
9f1b868a
BL
2655 if (ret) {
2656 node = khugepaged_find_target_node();
ce83d217 2657 /* collapse_huge_page will return with the mmap_sem released */
5c4b4be3 2658 collapse_huge_page(mm, address, hpage, vma, node);
9f1b868a 2659 }
ba76149f
AA
2660out:
2661 return ret;
2662}
2663
2664static void collect_mm_slot(struct mm_slot *mm_slot)
2665{
2666 struct mm_struct *mm = mm_slot->mm;
2667
b9980cdc 2668 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
ba76149f
AA
2669
2670 if (khugepaged_test_exit(mm)) {
2671 /* free mm_slot */
43b5fbbd 2672 hash_del(&mm_slot->hash);
ba76149f
AA
2673 list_del(&mm_slot->mm_node);
2674
2675 /*
2676 * Not strictly needed because the mm exited already.
2677 *
2678 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2679 */
2680
2681 /* khugepaged_mm_lock actually not necessary for the below */
2682 free_mm_slot(mm_slot);
2683 mmdrop(mm);
2684 }
2685}
2686
2687static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2688 struct page **hpage)
2f1da642
HS
2689 __releases(&khugepaged_mm_lock)
2690 __acquires(&khugepaged_mm_lock)
ba76149f
AA
2691{
2692 struct mm_slot *mm_slot;
2693 struct mm_struct *mm;
2694 struct vm_area_struct *vma;
2695 int progress = 0;
2696
2697 VM_BUG_ON(!pages);
b9980cdc 2698 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
ba76149f
AA
2699
2700 if (khugepaged_scan.mm_slot)
2701 mm_slot = khugepaged_scan.mm_slot;
2702 else {
2703 mm_slot = list_entry(khugepaged_scan.mm_head.next,
2704 struct mm_slot, mm_node);
2705 khugepaged_scan.address = 0;
2706 khugepaged_scan.mm_slot = mm_slot;
2707 }
2708 spin_unlock(&khugepaged_mm_lock);
2709
2710 mm = mm_slot->mm;
2711 down_read(&mm->mmap_sem);
2712 if (unlikely(khugepaged_test_exit(mm)))
2713 vma = NULL;
2714 else
2715 vma = find_vma(mm, khugepaged_scan.address);
2716
2717 progress++;
2718 for (; vma; vma = vma->vm_next) {
2719 unsigned long hstart, hend;
2720
2721 cond_resched();
2722 if (unlikely(khugepaged_test_exit(mm))) {
2723 progress++;
2724 break;
2725 }
fa475e51
BL
2726 if (!hugepage_vma_check(vma)) {
2727skip:
ba76149f
AA
2728 progress++;
2729 continue;
2730 }
ba76149f
AA
2731 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2732 hend = vma->vm_end & HPAGE_PMD_MASK;
a7d6e4ec
AA
2733 if (hstart >= hend)
2734 goto skip;
2735 if (khugepaged_scan.address > hend)
2736 goto skip;
ba76149f
AA
2737 if (khugepaged_scan.address < hstart)
2738 khugepaged_scan.address = hstart;
a7d6e4ec 2739 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
ba76149f
AA
2740
2741 while (khugepaged_scan.address < hend) {
2742 int ret;
2743 cond_resched();
2744 if (unlikely(khugepaged_test_exit(mm)))
2745 goto breakouterloop;
2746
2747 VM_BUG_ON(khugepaged_scan.address < hstart ||
2748 khugepaged_scan.address + HPAGE_PMD_SIZE >
2749 hend);
2750 ret = khugepaged_scan_pmd(mm, vma,
2751 khugepaged_scan.address,
2752 hpage);
2753 /* move to next address */
2754 khugepaged_scan.address += HPAGE_PMD_SIZE;
2755 progress += HPAGE_PMD_NR;
2756 if (ret)
2757 /* we released mmap_sem so break loop */
2758 goto breakouterloop_mmap_sem;
2759 if (progress >= pages)
2760 goto breakouterloop;
2761 }
2762 }
2763breakouterloop:
2764 up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2765breakouterloop_mmap_sem:
2766
2767 spin_lock(&khugepaged_mm_lock);
a7d6e4ec 2768 VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
ba76149f
AA
2769 /*
2770 * Release the current mm_slot if this mm is about to die, or
2771 * if we scanned all vmas of this mm.
2772 */
2773 if (khugepaged_test_exit(mm) || !vma) {
2774 /*
2775 * Make sure that if mm_users is reaching zero while
2776 * khugepaged runs here, khugepaged_exit will find
2777 * mm_slot not pointing to the exiting mm.
2778 */
2779 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2780 khugepaged_scan.mm_slot = list_entry(
2781 mm_slot->mm_node.next,
2782 struct mm_slot, mm_node);
2783 khugepaged_scan.address = 0;
2784 } else {
2785 khugepaged_scan.mm_slot = NULL;
2786 khugepaged_full_scans++;
2787 }
2788
2789 collect_mm_slot(mm_slot);
2790 }
2791
2792 return progress;
2793}
2794
2795static int khugepaged_has_work(void)
2796{
2797 return !list_empty(&khugepaged_scan.mm_head) &&
2798 khugepaged_enabled();
2799}
2800
2801static int khugepaged_wait_event(void)
2802{
2803 return !list_empty(&khugepaged_scan.mm_head) ||
2017c0bf 2804 kthread_should_stop();
ba76149f
AA
2805}
2806
d516904b 2807static void khugepaged_do_scan(void)
ba76149f 2808{
d516904b 2809 struct page *hpage = NULL;
ba76149f
AA
2810 unsigned int progress = 0, pass_through_head = 0;
2811 unsigned int pages = khugepaged_pages_to_scan;
d516904b 2812 bool wait = true;
ba76149f
AA
2813
2814 barrier(); /* write khugepaged_pages_to_scan to local stack */
2815
2816 while (progress < pages) {
26234f36 2817 if (!khugepaged_prealloc_page(&hpage, &wait))
d516904b 2818 break;
26234f36 2819
420256ef 2820 cond_resched();
ba76149f 2821
cd092411 2822 if (unlikely(kthread_should_stop() || try_to_freeze()))
878aee7d
AA
2823 break;
2824
ba76149f
AA
2825 spin_lock(&khugepaged_mm_lock);
2826 if (!khugepaged_scan.mm_slot)
2827 pass_through_head++;
2828 if (khugepaged_has_work() &&
2829 pass_through_head < 2)
2830 progress += khugepaged_scan_mm_slot(pages - progress,
d516904b 2831 &hpage);
ba76149f
AA
2832 else
2833 progress = pages;
2834 spin_unlock(&khugepaged_mm_lock);
2835 }
ba76149f 2836
d516904b
XG
2837 if (!IS_ERR_OR_NULL(hpage))
2838 put_page(hpage);
0bbbc0b3
AA
2839}
2840
2017c0bf
XG
2841static void khugepaged_wait_work(void)
2842{
2017c0bf
XG
2843 if (khugepaged_has_work()) {
2844 if (!khugepaged_scan_sleep_millisecs)
2845 return;
2846
2847 wait_event_freezable_timeout(khugepaged_wait,
2848 kthread_should_stop(),
2849 msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
2850 return;
2851 }
2852
2853 if (khugepaged_enabled())
2854 wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2855}
2856
ba76149f
AA
2857static int khugepaged(void *none)
2858{
2859 struct mm_slot *mm_slot;
2860
878aee7d 2861 set_freezable();
8698a745 2862 set_user_nice(current, MAX_NICE);
ba76149f 2863
b7231789
XG
2864 while (!kthread_should_stop()) {
2865 khugepaged_do_scan();
2866 khugepaged_wait_work();
2867 }
ba76149f
AA
2868
2869 spin_lock(&khugepaged_mm_lock);
2870 mm_slot = khugepaged_scan.mm_slot;
2871 khugepaged_scan.mm_slot = NULL;
2872 if (mm_slot)
2873 collect_mm_slot(mm_slot);
2874 spin_unlock(&khugepaged_mm_lock);
ba76149f
AA
2875 return 0;
2876}
2877
c5a647d0
KS
2878static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2879 unsigned long haddr, pmd_t *pmd)
2880{
2881 struct mm_struct *mm = vma->vm_mm;
2882 pgtable_t pgtable;
2883 pmd_t _pmd;
2884 int i;
2885
8809aa2d 2886 pmdp_huge_clear_flush_notify(vma, haddr, pmd);
c5a647d0
KS
2887 /* leave pmd empty until pte is filled */
2888
6b0b50b0 2889 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
c5a647d0
KS
2890 pmd_populate(mm, &_pmd, pgtable);
2891
2892 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2893 pte_t *pte, entry;
2894 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2895 entry = pte_mkspecial(entry);
2896 pte = pte_offset_map(&_pmd, haddr);
2897 VM_BUG_ON(!pte_none(*pte));
2898 set_pte_at(mm, haddr, pte, entry);
2899 pte_unmap(pte);
2900 }
2901 smp_wmb(); /* make pte visible before pmd */
2902 pmd_populate(mm, pmd, pgtable);
97ae1749 2903 put_huge_zero_page();
c5a647d0
KS
2904}
2905
e180377f
KS
2906void __split_huge_page_pmd(struct vm_area_struct *vma, unsigned long address,
2907 pmd_t *pmd)
71e3aac0 2908{
c4088ebd 2909 spinlock_t *ptl;
71e3aac0 2910 struct page *page;
e180377f 2911 struct mm_struct *mm = vma->vm_mm;
c5a647d0
KS
2912 unsigned long haddr = address & HPAGE_PMD_MASK;
2913 unsigned long mmun_start; /* For mmu_notifiers */
2914 unsigned long mmun_end; /* For mmu_notifiers */
e180377f
KS
2915
2916 BUG_ON(vma->vm_start > haddr || vma->vm_end < haddr + HPAGE_PMD_SIZE);
71e3aac0 2917
c5a647d0
KS
2918 mmun_start = haddr;
2919 mmun_end = haddr + HPAGE_PMD_SIZE;
750e8165 2920again:
c5a647d0 2921 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
c4088ebd 2922 ptl = pmd_lock(mm, pmd);
71e3aac0 2923 if (unlikely(!pmd_trans_huge(*pmd))) {
c4088ebd 2924 spin_unlock(ptl);
c5a647d0
KS
2925 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2926 return;
2927 }
2928 if (is_huge_zero_pmd(*pmd)) {
2929 __split_huge_zero_page_pmd(vma, haddr, pmd);
c4088ebd 2930 spin_unlock(ptl);
c5a647d0 2931 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
71e3aac0
AA
2932 return;
2933 }
2934 page = pmd_page(*pmd);
309381fe 2935 VM_BUG_ON_PAGE(!page_count(page), page);
71e3aac0 2936 get_page(page);
c4088ebd 2937 spin_unlock(ptl);
c5a647d0 2938 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
71e3aac0
AA
2939
2940 split_huge_page(page);
2941
2942 put_page(page);
750e8165
HD
2943
2944 /*
2945 * We don't always have down_write of mmap_sem here: a racing
2946 * do_huge_pmd_wp_page() might have copied-on-write to another
2947 * huge page before our split_huge_page() got the anon_vma lock.
2948 */
2949 if (unlikely(pmd_trans_huge(*pmd)))
2950 goto again;
71e3aac0 2951}
94fcc585 2952
e180377f
KS
2953void split_huge_page_pmd_mm(struct mm_struct *mm, unsigned long address,
2954 pmd_t *pmd)
2955{
2956 struct vm_area_struct *vma;
2957
2958 vma = find_vma(mm, address);
2959 BUG_ON(vma == NULL);
2960 split_huge_page_pmd(vma, address, pmd);
2961}
2962
94fcc585
AA
2963static void split_huge_page_address(struct mm_struct *mm,
2964 unsigned long address)
2965{
f72e7dcd
HD
2966 pgd_t *pgd;
2967 pud_t *pud;
94fcc585
AA
2968 pmd_t *pmd;
2969
2970 VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
2971
f72e7dcd
HD
2972 pgd = pgd_offset(mm, address);
2973 if (!pgd_present(*pgd))
2974 return;
2975
2976 pud = pud_offset(pgd, address);
2977 if (!pud_present(*pud))
2978 return;
2979
2980 pmd = pmd_offset(pud, address);
2981 if (!pmd_present(*pmd))
94fcc585
AA
2982 return;
2983 /*
2984 * Caller holds the mmap_sem write mode, so a huge pmd cannot
2985 * materialize from under us.
2986 */
e180377f 2987 split_huge_page_pmd_mm(mm, address, pmd);
94fcc585
AA
2988}
2989
2990void __vma_adjust_trans_huge(struct vm_area_struct *vma,
2991 unsigned long start,
2992 unsigned long end,
2993 long adjust_next)
2994{
2995 /*
2996 * If the new start address isn't hpage aligned and it could
2997 * previously contain an hugepage: check if we need to split
2998 * an huge pmd.
2999 */
3000 if (start & ~HPAGE_PMD_MASK &&
3001 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
3002 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
3003 split_huge_page_address(vma->vm_mm, start);
3004
3005 /*
3006 * If the new end address isn't hpage aligned and it could
3007 * previously contain an hugepage: check if we need to split
3008 * an huge pmd.
3009 */
3010 if (end & ~HPAGE_PMD_MASK &&
3011 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
3012 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
3013 split_huge_page_address(vma->vm_mm, end);
3014
3015 /*
3016 * If we're also updating the vma->vm_next->vm_start, if the new
3017 * vm_next->vm_start isn't page aligned and it could previously
3018 * contain an hugepage: check if we need to split an huge pmd.
3019 */
3020 if (adjust_next > 0) {
3021 struct vm_area_struct *next = vma->vm_next;
3022 unsigned long nstart = next->vm_start;
3023 nstart += adjust_next << PAGE_SHIFT;
3024 if (nstart & ~HPAGE_PMD_MASK &&
3025 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
3026 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
3027 split_huge_page_address(next->vm_mm, nstart);
3028 }
3029}